Algebra, NAP_80077
U2FsdGVkX1/EPwbvWozxl2dP02hMqlqivMLXfxzCM+jNqgNEuEOW+T++P7mYelTJ1i6ZhoKBW94xgxe8NSDI0cmH9t/HVzPYVQPfvsBLD8ZAyjj3SvfjMSrC46XhEXV/2B/22snwBBEuBpm/uRiKui+JC0qxoyb99uQLxiZApGwUvDcNtIW+kd3saun/VdTIKjlwAAo0jJEvhBT/eGzbmBiUATtqM1ihFv3Idas0ekqy16cd6lUxJGJtcbCMHqDOZglpJrSvdy9FcBsaKm18SonEQ4p/jZo97UwtkAAmTB1eUVNo309Pk14Zc0iu9nS/dXsA3thiT5fLS0hEn/WVJfRQ7InKZ4lnkIh+3ujrO185yAB0OPGlzcpbiaw4ajOqp+FKTsHdGC6+Z6iM2698rF2vaIkEHcqaYHJoZnYafY2LOfRPyLtkWU8XyWqkX5uUdA5mUNt5OJ0gJhxO++63GPh5I4Q0oI6xVexodo9IaWBNU2tMWqFmHJsNYhkS6CKzVfH8UTNZ4UObexsJ5zx0XAkKgsHGKso5OktZ6aA8bH0Y+/Yq55eB6NbIwGACVcvx9Qq5VrPlLT0X2vzCGB6/FuLVMPPrt9uKGySMV+L5hmsyAvI3vIiwovgrUqT0FhaxV4zQTi9RCi6QVLm5bn12wt/KU3IlJKuVzpww1w3zsAo+hOrSto2zgEK1suEK75w55BiUCtRboq3EIy7GtMefokBjlZywCm8RFu0CLUvO0IbJgFKQ9pHUCqp/0iJHCMCKOCcEknbZuJjJFbKZOnXLHJrgGpx3zXleCpmSzuNoP8e7mrQhJE8QuhvRZEVqiXn3eKqD+/JuLuh6pMe4yDQofmaxnaZXlwKM+SjboQAm5ZY5lSJs7nqqTai2EhgLBhjrjGiJsX+f5tiRtsJiVPYBDaqQKunFGHu0K++j7rMtipCWGZsQO27hAn4kRrAUyaEXDY5GQuzMQhJz7N5agzxGkEmz7Ux32eiaCd8B+vlrKsh0r87X/7jj0LDa+3/Oor8e99xUG3ZcVOkp73CpCuM2LrNZgFR/+pkSfBaWL5GG7hj8fEGRJW6WILIPjP+H3KlDkyoTiX/ZLATcRWbxMavgBVWdPHJNh3FUt1or3yOuurr0SXyVBTIMC+p7kkOF6cB1SlWUwAnXMKpTdxucnP0lsxeJPbUhGWhJlt8j+0vj8PDzlCnBSROl3Kl87TgBe1hysgav4v9JzflT4xUZfpLwRJbXYr6Q/cHsGmmHgeWHCTVJaP+x5Dv6f6O+lbIEix6JK6XbWJC8pGslb9NbcHDNfp7MtG5AfNw3fSfqWCdXIczdNa+k+S3abUiwl0S3ZIeazydYiRc2vxBSYgt7mKghhdk/SlzoVQfWf8i/ufZ4aUwgWQoi6UOi4jms2X32rYqOXc9CS3e9RlINw7ud0b6Vr1LKJyKpki/lQ2KnNt2/gz/XBqUepnrBYz/+vqSssQL/272JfInWfmEROx5fP/wa7EXCIVkxErFHHZKbb5OG5JNoOeq1U8pzwtJwfomFpjVn06B1GEiCNSraqUdoBfJkQhj+Pq/JFzfho4i/ABZeQZP1TMNs2IKSizuO0flqPj/sgH1ohXMoE59j2O/681imNcb5BRSxNFKRO22JILflou4dvaVw7/2uH+qrcALYGyVSDAo00b7+sgf9ZDi4Et7B+QWZuDzhnz5Q19vGiRYaGjLMmR+KRnsnIG/TbZb+DsTPMysWRVAbLZqEfxiZJV5cfk0DseH4ZutQRQ1ZH/+Q4F3d8S6LSfAlz7JBKOiYIT+NNvS7CjCPPJ7FHXOAjo25j4eeEPFbQ1LfdosH6D79pn4SvocAFx3dZ9Jyav29cpCutbKM2XtC/26BG8cB5TaS0e0YaXV9C6nzZ50Q0iJaXiR58O/trm57BVsrrc8iHCEZGGAKle1gSU3rItkbnBH1jJXrmx0AKLA89S03uoSWTw/LjD2qFCBriD3M6zMxcn7+7D//msBDarYiTKnYR5pMwLWWVaYlCTCVRbnqEoPpN9Sc9Blizc/vsCtvb5mjqXy/qUGqJjNjo6jn3H4Er9RDZSNtaLGMHF//EQPzduvSJnrkWF/4LtTcYnYXE3Z522tMVx3hCesVLg5Qf0P3m8rQcH1Kp5M8yTYtuMuGBc0OA64jzWZ/Qr7Fa9OsLxhKJ+FpPmyohpptteK1atb7eJzHm5L4p2JoItrbInyPld5L90wOn+FItDssNTR7Yj2kDYZ6YOZQRa9mOKuhn1BoywttvBts4SlN2eEm4ZSGdOY8fyrzA0L5002Sc7yvWmZ5PPe43F1RsC3Qhn7XdwnsK5NyTdUx58YkJ8EArm47pD/RG5PfbwuVx8pZwohnPt5hq7anSvYA1wgksksaQzMMVbwL/OgecIGE6HnQ/RONtC3p8lLlohT+RVnk14efYnxeqIHenDWbZsk1dLFfm4KkXFOEePDN5moaViVud0Y2UJpBCxRJCcwFOO9VYlqtz/eZUesAx24lzsJyVBI2EdStWV4dwJVkGZ4Bx1iEskc0NVhbasp5wE2cqpd7+lh2mZ7PYMmaOBV7ylZX04Ga1nsnxJr3z3r5NWv4ViEXHISNe675xChJgC1yvePUjWE3P9vdSjh2M5xPVbr1EsUVV0gc9LDxd/EJQb2Z+AS2bUyqccNtI/C5hXtKQo4ACKvvoWc1QQd8wOzvpLCwN/xAPGPLclqfRQuiSpcXCXjXhu14RcAn+CQ0zBxR7QxwuJA72r2I6tTqMHisB3oxQr5dl9WdnW/umX75Q+ezVL4QPgjPpKD0fW3TQtbqd/0JPYsMR7IP4ebvk2BRTpI41yLhFwfvXGvo+pRIgHJ/j8BkQYqFSvVTwHE71khRPH9trAGYJKk+PSk7zwYN5DZKC5n9GqdwjEGx7ZuaoSwuduFxJt9K8XsfKl6BmV4zF5CcpHNnG7DWMS28qfQLQyGgzjTePbcp1vvNvAJjeozjf0SSdbV1tyuKc6RrHjxQAh0KhdqGToj6TUFebJlJ7roXdCJl+oewAEEAgnvQgLH9cug+dUFAENGoAPnUUDu9YWIJWZfTP2QpcMEiYAyg4J9SS2fBtzO3o5kU+J/bILn1/ibAzY1+97ebptGkXiIGYGXbK6s2WWSszHE+QdvYT3E/FzZ/yfydL1AkH56BjxXQUPi9kGS4OgCjFAfhhpLKNEqlyKyoRLsS78PHJxn4FBGmgULcuw3QVXtV2yqJbl4J4OaLxehuXIYeaVp10aKDhHo+6EmPLqRgEklYKC6mwmkeH4MCaMLPht5/KGzlOEkSDtvVx0Ev8+S1y5tBTIn7JMMbBkC9GJpD+q4Kr958huR1GMinrpf3JznTQ5ZvuQF//gg2BCTzcjCD/gMZOyepSUvCrpTHhRx4YW2iOSzgGYuaw8z//6/yjaa1D5hUe4/ihaVpHfJHJpeSGe919Z9ACVU/jawdQ7+1H85QtWjsBxb9VwQpiWYeCnolLfc5D2AduAadDhmboIM5990W69NI6cVtyEKAqVzpin6cQmSRkT3VuwybQBRrdG9XkWQDo+zwenSqTbAV8JyYVeOyoMEwF2iC7inluZi/QTWJP+vqHF/Lg2obYDiuwH+gQ7VCuse7ees04FmZ7x94fleKCg2ydhJm+fhQ0pMKQK3dYAdyId/OM191fZL26bjXlFwTb/ufGFUUH+6L5FGRxTpY+0QIOOTwwEgLmXIIHCPDtTPxqF4R7zHuAwNRNxhOSHJSHir7Qax1htx4ZcQF8d7QCN/UGX2YKMGhu9OXp4dgSk38tTwjlFUD1UKf3sZF9HRFxrT3zL0kjcblWeqx2VWQjfigFC87BRK016M4IUcppOS1hOc8go/OQrnwm8dSgiD+ZOpHpjK5b27Od642ss+kIBjutfi9u2BQ/bWh1lpwKyDBItOFkpDilEF+TIu+DmXLwXKXKJYf8rfiVv9xaPco8Vb/z4quvYpdM87s9IaISEjeiK4pUtk+MlBNNoLsAVlZlH6+7DEHvsoTSJDgeMObAP3D/kopEjhOFnd+gJnRqkkL3qvU+U0frXew/XxRkWwUVT+ec9Z6V2uChTG6pQE60Kq4TCjC25kgbGIO5d6V3GAhVVYtR+Dz3RizmvsNnyVhi49IVdiuM/qxkgy7SCU5xzYs3cqntCFr8soXoge1I+pXHwXedEJVPfzQi9KQa+3Bngj4tcJDnrZ2zIXKWitcMCBlnW8Y3vOpF4j6qbdhDH9QXTGjlGRdKoLAZZaaEp2y9YrxE/XPKxveOCEFqVRnRCldoKXDElNUlgwNcjsYuAYb7MEQCQqTBbJ4bpBbhsDWTAIo539Joshbd80zIuOcPMv64vkYm+RJbpz9Y4+f/Pk+1uC7+1Q9MRuq+QI3i4auKN8wKpGWNUUkf8aBb1fKq3T+DVZExjZAosV18GQJthkopkQ38lK0nvb9XBmWtP/+iZa9OO2wExerVfZKnCwyf3BSYFYc19SgIPlnvTb0oH6TqAol7gIOsdT3T8Pew7aqO8rnKWt7ZViNJ43pgKmJq42knKinlUHEHbl+AbivHhevI2l68becxfs2i9iHU1JhKveMiWiZ8ftgqyDNsaqvLvtinxlr88DMAWClxRmkr2S0pAhIAbydO6y1xeytRMo0asB2w10J8n7dVcYyaqvDe+1FEILHaZ+tsYH8x5xo
Variant 0
DifficultyLevel
576
Question
Mia writes the sequence:
40,0.4,0.004,0.00004,…
Describe the rule she uses to write the next number in this sequence.
Worked Solution
|
|
40 ÷ 100 |
= 0.4 |
0.4 ÷ 100 |
= 0.004 |
0.004 ÷ 100 |
= 0.00004 |
∴ Rule: Divide by 100
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Mia writes the sequence:
>>$40,0.4,0.004,0.00004, …$
Describe the rule she uses to write the next number in this sequence.
|
workedSolution |
| | |
| ------------: | ---------- |
| 40 ÷ 100 | \= 0.4 |
| 0.4 ÷ 100 | \= 0.004 |
| 0.004 ÷ 100 | \= 0.00004 |
$\therefore$ Rule: {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/snSGJEAReEf/p6m5scumek1Cdj4lfhJGELr4Fu5nsjaLNEdoYYNZ/72YyCRHnUtVFx47Y00SLH043x924LZadLFnZ/uHM3o+y7avlHj1v6s2Cl+rbwGzT+aPC+DdELYWchAvjIF4vw81DXqi4U4T1pmu3BAkXa1JSHHehRMQhL8vIeB/G54AjPM1/Un3CmQuS2PaF56ttqlU65gZJS3ikyG4kLsAHxSpiIBigF/L2IcY4kgAumDcibIkgvl0x8QnjcRiGEjEeaotX6hThuXjslaY2JXhsyvm2oy6lw0EO9sWbbVwfQL9ow2TgenjO3LAfaHDWvFne6seKdeIjyaYmbNguqYccSb0IqG2vG+IvXcc4WPXku8kEctHgywGY1obcrpSiPJsxc5TRoktEjFaD1ihBptvafkwfdBaL3/QhcGc0fBo5w2jssqEftThhzkkSVXq0d4uM5bzFJ8fnITjFv/kQwUKzrQdNZ2+gq6UtwVn5eDY+519oNIDA6ONs7FP3f3Et+U2wN1/l7ArngtMizr6Zz5HIU694/+Gn4iLQg3z+wlZ8Zwy8uyMH5Td30QWuIu/SI+x6/jIsocyGGmIn4Rptrt0rpnJBCHSG+T24bfMxnkQKb6B51DvJ9sOe3NlpRxPX1Ku6uDkcIKKQ6A8V8Q2QNJ/DXcvMhU6h9B0mGGM6gZwzki/UXgEXgwIpE8/5XHWzeWARuqfYnFMxsVDIFZ3k/hf3fgNeLCKfiBIxr94m9GWO9J6y3dWBGWnWt6ujU121W5kgzzO+S1S3fCKzktrwUjdoGnpDXv5ZyntaGKDwY+eAKqdjv20mCxfQqg9stQn+xNo4lhUg7UJ+I1SvQRk6a/1g3K/6lEmad6q2MVHag8qp8TEaWW+xLzBJlRL+XdNw533VyTyVH1FwGyoEvd2G3t0L6zOaazV4rWVs2ryQPSm1+4bhdeB4yCFGhS3M3jcPyRrj9G2iXHQ50HVWpnwaa1NiMJPYBa6H6NxXsJR40u3SAnuR3vs7VYpfoJoT735eno2qHXvdJ9qExnGZ26lMhLCzNbMWRm8QMW+lG8hnY+ig3Lkhf/bg1toBOs0OIjSaU+BZPIQxrdmWD1kXZBkgWCpNSL3gnVyPChkT109xe0utI+X/K1KEoCknVNTDNdP0Zgdl8DvpDrNN4FUM61dh7Q939+B6HmRvR52JgIVj4AIjEQbgkJtPogR5utUrZCrqRCZ3FVdlfxFtdECe1NrwaG/2FFvO23wJIHIi4TPDBpUOADFATJzU0HLCkuJq0mfEiQdLnhXbi1EMM3IJit4/uoCuNPNpY9xCFejWPP3Nrv53kdBen3Yh1GqJEVTcV7EdeuEQeU9cvV+MNQT8L5fqsOiGxvb3wE+DMTh1cPa4y8Rg3e1+VPp6gOrJqxcNW9X2fVrNSp5PFm6lM9UO8+p+guy5RlhAU4gbO9+xuVKPqtpMpz/a0s5zcl8G7kw+wCfFYGtAnZMipBKs9y7N1z0vYeoGQ+PBeJgwM+XkQVAuRanzAtZlAsELli9Wv5EDIUb5QXLpekgotydes3htvREw/jt16JIKWnuJeAmXQlp5YStMph8lxGQcY7z96qRuNmluIlCLj5OjHr+D0EaPlbwcLEZir7d9+70Uf6HDp4YF06G118oQTbeCb4ur58IgsWpN0EjdunotnQL7AGv6VEKtQDb4oIcWNAye0G9ZYBhZuVs6JG/buEzFpnNTq3Z2TZgkzoSrCt6r4J+aAZNbu+YAiXOXijFChPhrDiERPPvFrbGkjlSZ54pzgg4pP4pZd1kvDBc7/5SYrrPBVQ3Z2wwD+qK9Yvf1ywwl0LOSaVfTRz+40HE3uTxiVAhPqch9NYM+Ji2LI9E+uNk4OfZ7AoG+bzPRa0VVCRAYFkJqK8xPLX70UXmWAfl1pRJjlq9kVEt9Blqf00yKyUUCfJgknQWpTg0OaaicTZAqSRIJIROyqtgJUL5/fLq6vepfOKgSynjzzGYTe2+Im55Zp7uRoN0I1LUbBixMexajN3pFeuuR8MGnQndfoJ4g7M94vQYYrICH8W/od2v8luuXZltIABE5Q+Qfm3GH+3m6Lb/mWHMSoxn1zWNt7LDOKKUhLnY6uQGOvQUNdS07L5GIGj48kdIbPSgkuOiK3B5ORmOZmhcriN86cjvqxmP3ndOgEwmrEBiEir/M92pNyNnnfc/UvWvydMMi3QvtvQyUx5EHdyiRs4XFV4K3sJLNczzS3Swk3ASmljgbN4jiv4BegwLgfsVpi6QPFYfFpLaEdDPfSBxBL2mCBAAja4pcoerNO6pQAoUKuLE3GBD3BchZhK9wC7VdHDLOUcmE3Dsq2VnRHJzivkFnk/wZjaYlhS36L3M+tsF/YRiKDUtbkB7s0zeNHkF09K6wvGFZQI5vK9udFxBsGFEBnXHrvCxlHL6HxE6EPTXfK8G0XiJUdoN9CFWWQCEnlVlmVtdtbH/CrUZq/7qKCT/jue8VPuJDFfVyVEQa9LMjjbpsch9rCMHAou+ZPvK+L/cMUV/SJVh8ocdVgaXRDwSKvrcZf0DqQlLc2KwmXRyRo4Vy8Z52uqQtbrYgtZWYe4PkR9qBYZszYH9O4RQGqqO0rfUxl7q++9kDmG8UNZOrPSnQdRUS7pnuaVk8rVkFDUpYNSBMghJEYYG413mIr8cZPUs2rd0I90MgeCuguP3CqtV+tVwxfk2gLh9rSNKCXUG/jGMVECKw3n4imnJuy0LBcBh8HNOP6xL8q2fRPY8FC6bF8JXzCyO6DBElkjaFIJOomCncingk8Zr7WNjpbJxxB7mmyVOTtkCNmf3cXiO+yLBhzGo+RALrIjlYJZKpMtZ7WFCiawKkMcyntx/DaeV9q2ghroMfOWd1L5kbZfpEhdv0ZrEoC80RuCl9gj/AZtNpV5wWQQC05qVlbGCNvt1uAu3FOk7jtwPcSLNzJKSBhOrurbr+z7CpG1A+gjTIgLaVTIEMQj5Q3kBTCgdikjoj2i2JlodWakDj1q/BXiA27biLPSL2+CNlntxgRjyu+7U8ksFQfot9EtX21KGL8So1esGjWpKVp8X/ykWY5ns1xxcCldbqdIJ6GxR4tTxS2SJ088VOzLw9xFR/waE+s/Po0kSHq1OW77PLy+OtPZ0RbbexfyzWdhM7Sb/5mysbkKvMUBoycnIxRTH0gqw9tEiHeZtAPT8I90W3+lXxwVo5dBunpE7Pi+fuWfSMGqb2xUcLfvMuQFEZSYQ500KoLo/co03i1RzmEgYKNwjOQWP3rzd4Qk87rY3nELu8S5DGLCSKxjdtP2w3UEfTAEmd8Lok4dHdHiohO1DABlYGFZSMsVH4Sh7djq221D6Js8YytQ3aNXObUb9/ug2zXZcYc6uk9QkwnViRK9IPiOhAXcvlPMrMh9XRyZ0lkusbF78dtHad44XKjSOBfjzs2I+SXoKgGU7tav7aFrnTDpfeMC+wfSH37FJWSWUACr2lXpkEZeW/+SDPRoluF3kUajWNPm8na6Bxl7Uzx7LPooP025ikV+IQY8w+O+gQ65EGyL6zcmfDdIz+WWOfGtXGU9OaGL3wTu7HKKxZEDWY2qhWXfqjTGKrLuPKZWEFYLUP8qUCj4sGJziXhKzpZuHIUmtQqFmmtyrj5WhcwTZaRXVyNdEG+wodRcxcZnhD0rzrc6p1JNUKpqNkyjOiDaXxXK1NJxRH1xu2tJQ4r0jJq3MrWyRVygv5BpG1pZtwKGnD9bRqUOv3wsDQLPTqB+2w9OxHqXnTlinApE134ZZC8ZS8EZuZVn7vfil3O56lJFkT5cpEVTnymWrzDsB0sri7qixqtjZ7b3Rd2iD2K/+4V4ihtd8Dn4rtPljAujSkdEX/SICvBTeOyVb/0icCt/S8AukLi6gqLNeBZokuDorVpN2OKKP19MDkxD+WfEFEiy5/NKrojSsDU9B6m9M5vtKtLEjcicUc1G8Ma+e7llAL0PG1nrSPh1rL5nBAhAqvPVaz+t+vIZGJuAsseuhSDwiFJ56GOJ31wEiG8TPSTDVHxKZYUYdWvZR+4vvz8qrbxgntkciUB4ubZv+L2Mi3yDrfn8s047/Fja9GLUcqisgvju/1AkGmm8mFJBMVCsssqUqPp4SB1dewpBnB9RR1ikuR6oBIIuVUJ+XsWgqCbnLr2FU6988DhKWx1K1of7M6ceoqpqeG+Ed9XAfqrzkZ9nTaMY+XYqWxT1nSBKdqlyMj7+8ZhtbwcDUgyXBjleh0iUnQZpEhQeq+Xe86f7hpRqpb89h1Ie8yuSM7vFp2NMWBix9bACzYC6jm6gdYMcqRcY5XVEiH9ZG5RhwvDRq/x7PfbIMshFZPVeHQReKGpY8sS/qo0HfTIf/Ol4fcE9qPkNiZC+yINHRuolWzg9zAr474rN8J5+boirTY/rjj1tbZZE/OmMGkAKLFPOgYY6jy7grg7A0NGkh3Zxqs+9XUktDmm4IoLnM5PFIUiuxF6m9wsCglKmGepi05hucK1oFBR+fUSmEomXio/71MahidMLIIr9C95hyNuSla
Variant 1
DifficultyLevel
578
Question
Thomas writes the sequence:
18,1.8,0.18,0.018,…
Describe the rule he uses to write the next number in this sequence.
Worked Solution
|
|
18 ÷ 10 |
= 1.8 |
1.8 ÷ 10 |
= 0.18 |
0.18 ÷ 10 |
= 0.018 |
∴ Rule: Divide by 10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Thomas writes the sequence:
>>$18,1.8,0.18,0.018, …$
Describe the rule he uses to write the next number in this sequence. |
workedSolution |
| | |
| ------------: | ---------- |
| 18 ÷ 10 | \= 1.8 |
| 1.8 ÷ 10 | \= 0.18 |
| 0.18 ÷ 10 | \= 0.018 |
$\therefore$ Rule: {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/UL9qwv7npZcc1ihrKDZpaPPnJ72CKFwcO71fSV/l7Kb+Jqwd/1Gf7k9FTgz/FYoj15KSwwLxo5fGK6KF1unWqGfkLQvqlGJAMtekaatPZovzupjjKSQEh5J3900kzn2CMSuKzLdPqOahImtUr70stmo61zSM+SGVQ3n/DayL9A1sBXaolTKDSOv9EjAk02SN+rbbapbsdfqO978TpTil4Jbcghe4kK3gk89dOIN+rwpBZS2iACvbYaaXxdxk7ALqtE+WzEp6bkV7a+PLpM00czEgO2A1Tj80cUeV71vYD+F2R7pw2IfQUdR7Z75P5SpR/BAWV6zaYdrMPiW+Bw/gg0sglGrx8/1Q+nviqrGKBfdGSiTJGyW9K+ekuik/3P6NQupKuTk70eCONAI3DJ5bNkoLjuh9CxLPGi2ba43j03nQG8VwdYcALKp/x0ROsi/0hfNhHmPi3oycmNwzhUk6Hp5PSxLoJSQiA6D98ES1yFbzymEVTKIJ68t7cf8OKrko/P4G2H5XCCcgBS16E9v2gYHXdwRqNbXZbWU+u1NRYS3Ah36mL9Ym3rKbi8aVfqI64hEPMTHAMw2cnR/Hfsd375dZ4re/hxMTseVpVDWUVTR+qKye22GiM5BUtU5G/xl/YqRbJp0Rg1prjc7btt2C3qtPc66++MSUrpPeo2F2dgfFBUX5GA7H/hH+k24TCwwA1zPFrwWRCYP8FYJZBL9MD21DC5Vn3zfZz/jX0axsqdiZ6BWhPnFG2RSD4ryi0J8R4shvi8IF9b/5wnFtAqVrYERRQVD5b7twBxsaqxna80urhSO3tQYuZdMKzRs5eViw2EQewDf6uWwbZG+sKi9vtWN4k1FqQ0gNHCm6x/pPTERWAhvW0MRY/TIe3kx07p0J5EZ4Vb2TYULpZrVwOKuLJy2cDapicKGJ+YsFMx0ApmGCk5e0yeKr+ezGYmf41UTpcL1mfbYQzPTdT5v/nwiTSukaUemwW5c/fvIXE3KEX36m7l4K/oymAbOgjz/CKcl3pPUFxXb76DEQY2flpV9c0TUl8eRI3DB4u9LV3jN1TfBO4JznqvoZJ3k3emLChPhrHlJ38YaGyEp+OLZHXfgqFCXNTLqtkmHQiN4maAPeoVdjwtDv8BdMUX99FEFrn0VDPewlTACs+/El6GwKRpPyr5Zto0o5kFP3++p3jeDsoAsFbItY2hzwFDDk+3X67ZtMmelEDD/1HMN8DvOxhH/UgJ0zcxllZaw9veOUHeoHJSp2ZRsk+dZoRjEM1il5OR3K7/syj10M+ANG7gNhXG2ZXw3PfturMr1eI3fBQFGJ9lsVyPeRXh+TbtuCeQbyMhucvBE5klYPwl7syuC5auIIGZzYZhVxHnxavOQD3oYfQwShY8qTlGCVG9MZhvEpqY/8G1JCFFIVOIcpLpMMT9umx+AW3ugsqdyyiUMrBk5tfbnqUl+3AQHl63J//8drP95O7YAg4bm9LTsANGfae++BuihTNjiBGtpexn4YKTgY0dpmSE8TTC/BRK+o175yNrIS6AUrR9Ym96DigoSX6v4puQ1io4MjUoPfNbKXNmuiQWGaQhNrKl1jOmpvRIQ8uDPVAnlj/TLnVxzcvTpq54Q7pJ5kiPgQo06InZpST7UoCmNCsbgktq5H9kFYYpU3NJUFY6k+K6m3xQl9zCjtl+EpD4hGFQcwY89VeXgBAi6ckysRdNYbTwe/jqjr8VNlYpx2aR1mWoMALJnH6Bq6VdOiJxXwm8ZEVko08TYMICZomCgsrkO31kGFe8v/oQbevcjChTr5hOOZu4hq2GjaQdq9kypmmD4aVyJZsdxGbZx0zTss2OQ2RVWvGqgwsij3LauXfsd6stBzJxsykQvM74GU/3DAR4RIhxs2AelMFnfi5sPSenBJjQegG5QXv4dZJDHzLPJQ2lRvv3rBYt/ZM1tIwbDY83HjQHgu1bR1XAv+yomM0kIfPXEFz4HTm0IufILoj3lZhJ0IDnPt//T2MxZRvIierbgniXUsBSQL3BUmq3ZQks2OeB/KvHO2j66w44BQwqJWPEcVp7byJPOcRCl016I7+lBhxp1axwiCHDPbkoCuj/fW0s3fIB0nWejL3PMECD0K5dmTd2mlnr5EBRxSyu3t9h6ThcqkdQDuofWmbf7aLucrorHFJZDrD0+BY+BxkTBp9+IL+GyGq2fhXaC7lWmquGkfu3rKrRirK20XoExEc4QENw3D8ged04XCguOv1dZuTGTSPEebZdkP50LNdtqv1fXVb4s4QC0wGbZ/2qwo0lUMUQ64bzucCeZ1BLa1sWgLtDM/qeAwI5YlSDDX1Ym7Mh5RMy2u6nJY16sE/8IbhXiX/ACROns0wv7+9ePl6eEk8OXDol9beZeV8xhSCgLa1k2zmexHeTKUNUc6EGfVww/EyfaIQggpRD3qUc+tmKe0hDgxpxs3dW2JLXMlo4eOgn7V0iINqaYOR2mLbMN69WF+ha19Zl8An256IX6axZmBO463SyXOLHVrniSvtA0oGYh/LCD+E4RQhAbq4GFzIDYo9KRkd0sgzaCIbOat821XbLwTLUrO6O0neLzKD774tTsnXD51rtwJwVNeSNRWpW5uSCZGJ4mVqi1SFlE/yduQ/QtZNbDfb01rLzjLOrHqMz8J2/quBxFv+ndY6GDmHd0juv5jsdG4lDx5r16TXgE8/eUFLqE3wJC2QRRPgIqvyYt4j/isx3NQjytYsX58KOQYy1XlEOSfokpYLGDP7KS/53JCx/VqmEz+mOwAAJa2+K8tC3azQFOBTqKBK0JP5pd0S8MrlwM7CoV1HAgf81vwet8LAjR/m6sLCFZcZW7QH6IRZqu5rLNok/cY8Jf1xnGQ8EcWRnk9teIq31aC/6J1M8sqaKIc5w8TC4Vm/K6P+8wI2sIZUV6QpVaJadzIJnTjanfHdAnxrud+nSz+gXoK2UDF/R99lseR9mVagQRi8QvoHMcBhrGEWB45MzCzm0XokvJBGrSMm5p7NIBbaHmeVdpTfo8WKqV9KlkA28/gpubq/9kzUPmtnTc8ZeRzx7CDKJadWJxyWm7NiLJIHKI3rogGf/v6V/4Ou7YFDCGn3KJvLkdLYHx7n3hgu/wF/r9HogUTrU2Hh5HPofcyNLQsHA+2DKNBQHQpRYgHaXUBhKGazpavnjc+A9eHCu3Yq/vH3BaELGzJEEco86oJZKUkNvYF4xYQ3KYHToBcWBYzvFTt3rUmmkc/CWNzyjjVz5p3eY7e8IQCHujMu+eKy3wd51IKixwDA583C8TcyyHs8/xnUMi1sOhDleSNImL2RG0ijM6Clj9o5H0KSU6ghC54R6Nt5QOES0x4/Wj0tu2Xvmd1jJqcHl+9G/1LjsmH4OLiDzcTVnJ5gEIaTeJrJMQzJI22JcRi6XqyhWo1m6S8LrImWpAN06zkpyRCNLS/LbFfJSLrEHSICey2Nw1xJ1wOTrAyOJep2PQrAQexbjC0sAheW2xU+Ey27llNl0s0/laeKUP4SyR7aKDlD5nDsFPllZGi/bq8s61GQSSWu52nF2dl5ZY5qbPw1h/D44o0lD5i/sp2fF5HTvyg5x2DFrEXvvD/fjZZmz4pBfZlXjIhqkk8/SXIIEXdPdhm/49I6mMoLRUoRAS2mtqHDg8p/EBBPT6ETjnJ4qh6xXfdBLYNqpQG3hgyLwUCbqSBEMMHCNRjR8a1eAEkxoTtOoBgfmFzzCLDo0jCltUzXv6yZrMDKoxvYTwQ/KP01GgnSUzUREj3MznYYQCno3d/eVwQeiZJKP8zzfgPTxlfoaBtQBn4AR37m0o3nGgHi8VYO3KYvmcKjQSTSyQwRDtWZnMOpeG3D5sZHgCBMBTi0VisBPsA09TkxRULntAPz6b2MXSjDLf0NQomDQCOAezG9CkkUQ2Gaa+pOSpsC1tp19oB0Hf/LaApSlmjXsPGJJ1Zn0siGZ3uv8DRAhouuNlq+ytpVYXoCWvOLc6RdFEparL937HWpTSyaDmd+WCbf5Fyi53Ab7VkRwA+HO5WoiS0mBIE8Uss4b70J/t+FYBxJOzy2gw9mokpDbYZokfPo+aKLqJGWLgahLOXHGrnj4sdBeYnjzqOkEd6cEG2J12CMZwQYtwDG2HHntP9lRI7bPm0UpM0OQoY3SJGtxu8c5s1NNw6+iCmtVHxpzW3dGnbGRIbNvQPr1qpxUCqZpigkGCzqPbtzkqLN18aEFZR+y3WLqa4t+Moe8Ww4RvX+nntqm0SJuybt2kRX9AOvjmtugljJdQRLqJPam/zMqOjeoxiKYxj+dhidkLJOl0LlKWZSC11ZzMzMZu4/boWxvB0QHev24AEJn9mfWlzdU+Gk4Hdto2+I+GhHHQu+zEhJFG9w7unQco5IAhfHWD68H79+l9FZcdipilnXQHeaQk/J1BjeaqKjR8jtuGeHgq20JElqDS4M2SWp1VSUAxmo1SAJ520Nfp/p5SajsCAY5foin0UpkXmgbahC5pVq4qvHro7xreywymQd2kg/w1vFHC+6LAoioez7Y3B464DTpUqNE5wFqGaDVqj9ux7C4JmYYNxUicOS6+vzZpYJxaJjso0qb7nogLYCCNNAFeU1sBz8UApd7elCMnBOIOWtVXYsDO90bfvy5Zy8D90045EQSstq+A8XDNZO9uzuh6eRWDqgbqDDqHRmj6MG5BotxQ9XZNpwHfUAZALt4vY9rpgHMUjbhZj2DXwb7i3tBrBnEPA4NIPDKVDU5iUum4KucMgV6+iFysV393c2MqlFzxRe+NBXCAd8Lhsax9qsX+chZ0y4DrrHo0L6ky67desvWp9swpcDSeXa3jvP/rTH0p/bfq+6SQL9nnJi2p4HYtABzEIixjF3RQHp4LgihccKsaLt4q2rqh03+FT6DayLx3xG/cj1v5m7V0Lg1FCgRsZG3I1PA8AuQx4dkfmgJXiEe+myGmaWjCG7uWViYNCzUnIQEnmSWYmYZmnzDKj5S9e5o3uByiHOeEYwxjP11EJMFL5D7ioyvKeU515PjzBunKA5fnO5OJMK1wfZ85h9PZi44BoSBiQjuhwdGTALRtSALVx+WUrOQ1R0qjfI7cydFZZkv5IsyU2tT6POq0fY07ppiXxhR7ciIcc51SWL92Qi2uyngQaQbBIWUsK5vcfrRsy7QyKG2TRpYkfsroWrks2EIGuo7I3LLO19xaPnOjGBb8ex5YHF8AAHG7lccGNK6I68hzh5e8qxAQlihuSeBD2jAjG/Y6LEwx8lFBMO7/UAVJ3hpvypvQq7LPJQ8LdA8VAU23I1yhCZdQhP18Xxjsr93OuprgXn97abxts6UGEHIgM5vgJE7L46cv2JwT5PMwrXiBEmQjAjMWw33de/bYEWlt81YT3mijvTUd6Fa4KnpbTftvK2cirpwz6BlUWg+1Ejmvi3g/9yif5rJsWOxgeNnbuWeKzhJPHlrVigOl9mgunygGA7LN7lKlCt/y+yYE0vf08Te0CO2Gvx0Mpn/C51Rn5aYoc2RDRoZeIcz05/Ueo/pYblfoj/KOdLNcdBiqpatsG66Yvh1Jp9GkMlYKyDxsWT8YDP9heALzvlaecuAHJOCOnzLOd/4HyT3skDqVio+5q1D29SEZytNpFRyZ9STfkkYdm44kqRQFOuQ7v+JdrvyksPJjroZZh5OOvi7QDDIBXrJzw1EInRFa2RO6i75yWaMicJKTgRtEG/vyPmG1ehkYkEkq9gQGqWnRiYYsHtkcBuR1owj+OKWc6GRi3913B1uoCrIHsP7PTWpGigI/9aI5trr1wXxOxZ/oTD1daB8kwCkqUQiy1TSvp6dLsaw45fdMaEVqnbVeeXAK74eUbtuiFSVu5SbahFJQ//S1S9OhNrrvBtz0GBINGnLlMF8TIOdtcQxZzyTELrSFtcDTKQz2aO92eCcjMWtGHAMDAKRuxpWa5PApCFXmPUhAuVq5k1gSEGO/ByMI8V2ER7EUXuHWZAItVDKStjvVKxvef91z5aUroA+JZuqzZgJ9i3bRZovB4sPtN0FH1eSpY2TWstbhQHPuR3REgcVeVJUP2eV54Jt3Vi0Fr82DeXOYFE0HcminIYwaaTVyxifIjtvgjf3wmXEeoZBmqx1LHY8G0lxtgL1GVYIr28j+cv7A+MfivvHBMtMryQIE4B7rM6nX8Q/i00gIK27H8i351RqYkEryPVmFw88cOXoxlwYFPDhRuqELI82GasQlZ7nviYgHz/sHFqSAx48Yo9f5sDRe5C2leDggDqOyxDqoZL9w52+wA7eWjIVdiVsC/2ikaWGlknKmiJrNeK3OJjcEN5pZALPDvJAduyS9Sd2lOIuUM7W4ZLL1gYdmpw8kIPlEMGdZrojMwvHdN0TXbHwRkPqN2gCTam2LlAkNS9FBdfWQlMYpAAS9M6mAzbZWEG3tSSmVhrvbYEILsRbWKBUoCyUMogCu/XJg5pS6pUcr3SyhmtdPNaUre2LS/WMGpCth7D9gb+uQQgpzBsQ8KxPKOH42gjmsmWj+yjSFbw6OFKUMucvlsu44FKNCp/oxYChtjdffEhiJTNTlGxy81crTRgeaQsONvTgoYDhnaXykrwBcHi
Variant 2
DifficultyLevel
581
Question
Happy writes the sequence:
0.0024,0.024,0.24,2.4,…
Describe the rule he uses to write the next number in this sequence.
Worked Solution
|
|
0.0024 × 10 |
= 0.024 |
0.024 × 10 |
= 0.24 |
0.24 × 10 |
= 2.4 |
∴ Rule: Multiply by 10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Happy writes the sequence:
>>$0.0024,0.024,0.24,2.4, …$
Describe the rule he uses to write the next number in this sequence. |
workedSolution |
| | |
| ------------: | ---------- |
| 0.0024 $\times$ 10 | \= 0.024 |
| 0.024 $\times$ 10 | \= 0.24 |
| 0.24 $\times$ 10 | \= 2.4 |
$\therefore$ Rule: {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+fUL7XjfH6iYUdB5tkmTz5dj22gGA0sUZz/PKxCOWlDqIAv1XXDwYhv9JxOn444kci3cvqyIwnjqDv/o3o0icw/CdPMn2mTWBfxaCw+QwD0XCGrE8wOdfGli+Kxf9jbKpal6aJtIdPH+6mU3mxDll97hTdUavOWPW1DKLflIx3LBgrshSkuowN+h3iLqc65c928Q8dwH7WGuTgCrWYaoOf/VA7zCgfNobafY+TAvTlMKvkMJGQjFR3Vuve447jk1yW/0G0Nipca2ElZ7x52OYQPLfiYvcRXFfAUIKJS1oyrybZMslnNPPE7bwrUYQDPxsP7vXm9psWViiq3YeQGlrzjcZxp5jbUo/ERAIlu8FbUrgpp5wq1Wh0VajfxDXU423t9tTPTLZQPF1P5L8HTE+khqJFHI48DqAMYNTuj8JgJVSVwWKc3ypol5iRxpdl9bmf3aihb/qLj5o3KWUKha/mkXy98fQ9OpEw22YWdVqI46sm0cMA2E3+KJRR9zix/vxhcscxd0smdsxe+y8NI8Q9n3Luy3jeMGIQitRXh3R2vL8lebXGxxvLLekRGz03quS1lnG1ydSWtWf7kzDg9qnWZtasXCrHT6L09tQfQ05uUV/FJJ1c21ogiMIFcB3MfrQpIxs8pM3pnoExh3Q+J6r0Yw9UmJJ+ObUgXXc3vDyGP7NhHe7su5qJ9ZXgOKhtAFTh3pGdrIbkAhK4UsqrRT4JiaEb1UsqBghb0AhMq03gL8WIdmguKWWzoJ82vA2384kn+vHE582SU41PrDmfO/20926bisQunSBAcjCi8HFPoaoe7Lj5CDBVC+zuVF3YJObvnWkC+ZGNyVc8SBI0kEYR2OCR2h4DiFevPJtuXaK1Yf3TK3qmTRJRw3mKu4c0lTyg5Q/tHArzA+qYnRI4NPvqqUou7zGxAb3j2Zfwj3O8dtKrRm1VfzFVdma3Ff9dic3BgZ6Mlism94D3lnsv7tEHauTPs9zxbUg0mK3TOYocmg2zLdAVnYk+jQTb+jDOEu+S3oyaJhOrrm2Atcji151gZaejlZGyva3tS1VqFc0ISZsoHA8fMYkwMbC/Hf6NeuWfBHNT6Qqxug4vXorGj587VzRZBEuXbqQTHvDjodDxu9aPSA7Ag8ncM5Z3yiPFBukybi2aeEydQtOLiv2NwJKnTZr+WLnRUBcrHLFW6L4WBfjwm391WAD0W+0kVkrx4Jol6lkJ3LiSWJO1LxFtRYY8dfdKWfmnruQk3U8Nn2AKm2cXzt5U9oh5W9z2gUZrQAr5Jc/l60gbA1HBa6jHwk7Y5Kx5U26ACQzOTgHV/WI8xt6PhD762UpNxiTG9VlP053mmdCQjri0mci4/L0dbv030vzRUnhLijpvWDTY//tc4yIVlvOfVPamse1bRL2AtPh7IfRdh/Ebm64/yPd/HwIYgsEjAqhmTOabxzr1nVHDrXCex2WloG7+TnmT68Wq3Au5LG99sUqVcz/7/xvyrEYfGBcSjfc3pizej8XRrR24VIMC/21E/PPVHW0LEj8dw92LHBsp8Al6MebbRy4bT2xwVBaxjevNqZbeRaWezFprXyTk0vYra6VXeWUPAmPCt9//kRsrpwQk5RRlJe6SsriWDkSyrBAzbPURKDaSBpjT1pV60Wy+TbtNeizPdMfu0cHfgk/cPQIxKtD4ssWdyUuddt3a9rdj9v+mkpkQJgiBZjhaMh+o5R9jmG5ZVWc0QZYbH5tuHgWW7a+1iAURa2OkRq5/g/7YBfkvqzN+oMAT6e9gdOIZhdBzqWpsl2zV9yIoki5mavT/HnFTh3k2fuO4+I4X3oRygJTUvRfFu1Ely6KASpq3+9eW97sv2jjHxteJ0vhqTmGDwc/Moa4sBYW9H27deIh6ku71HgBDvl5+xg/VTYG9VEif6EtJCrMsa+7fMK8vTmuZLddNsQzQiq6mMSWwhzF+Doxy27WV2N7MYNFLLlMu8oiPJ36sjyW4UoyWd1SZdq/FLWq+ZGgOG7BLb74faJivA7sXE7cYtOHhmRRFAH3ccZ20zwVtAsNpTGgpDVNytigJYNp7+6uWNOQmxXMpzk70B17hpz+0FiBZQrwTPPFgYbCnvJfTZU1+DAkOFJ6GGPKH/piF+pYoSCfhMuhnxWin4avgG5EekmeJAPgXY/HAEtS4HoDJAyyTZKL2UKYc2LrF6fnUWBNxPz3sazVg9h/XhSWLxnBSaKnXt/BKy/6NFDb2sY7Z9xAUOebyFbnv1iJ9JeiTvszsfE/apwJcq2+TVES0FhZJqRVriIW8/Wqn/whAd7p46phA+8LjIY/NL1r1zoz/b08UcEuRAhWLSEhOJNjH0I8Elq/Bfqwf0XTF9CV23YHqp2H8XjUUHgasrUJwWCbNo9GKswkqdDgsOCIRBa01yLY+3vTJ6ccLpJbimZ42KeuEDKQCxKeZ/ck5eor5tmigsjsczJaEfhsAH40VWjwW5f+u8aulaQYL8joTLf8OZdbqK3NfoXsih/K6Bp2/Jr7HDmDuyjpK+47ijlYC8ICPEi3qKuvDDa1u0Lgnlr5Zu4+wlQSycTRTNCDRkjds1BvnQSVgEBZTgiXhIKGDOMpGWhMSc9aR7sDQ3mV//+F4AWtIYOFI/3pCQ8NGPJ3AI9iX8HHGg9Z3MQzhA0FnTPzRcsDjVZ7OstFG/Ws3LZw/fgKGpM2oYONJqKf2Bzr7KIcBTBj3iWfcPVGjNNPt5Qt4x0c+6VUwrcL2zikyWHMj2WdPDCZrIaLpY3c1theQss2PvnQadZEoFfMK0C5EYJnrlx3Lr/VzOgAmx06r0HaAGOVY86Jx/FCQfatL3NvUDlzZssLxDcOVXqxA8NSmEK2oyQ+wSZgPZwrmLGEYLoZQdmYLXcQkxGtkqPUTyNADeq4DQ86SAH7I0CiVWwv7I57ECI99bYWnKxE++cNzGxMzuHmyuPaXTwChlGzw52wBQFGW6DEKLHcGvv8ews+byjutE5UP4iijSJatHp1zx+JcVaUdqxeDXAgRCUsd1VY67bzvo3c1OC6UEmdNmvqUlcvznW4OTzXisl4SHt1/lEBACquMvLiCohCuD5BBIxugtIMhX+bl5L/fgqt2NUvXscqlY9BW1qc/Z8eW5YzyZYEdNzjKwReL9kufU6SzKfg/ujbVxv9Ae30ioPt0egk+kLgik3e7Oj/I1BULbQxAtQ5jaP3Q2YfTI+xReUiuE66XTYfcbMIFP26dpQgYVbrP/rJ598WjGCpf0VhHYxmdSdLFjy4JFyddyf08PZk0CirKDO68Y89D3K5iopdC9Ijii10EgLqPS1alQeen6/uVwg/LVHH8gJdj/Db7nTeyVdODx2f0/JUmEfT5M1upx/Vahd57RoOyj4bQTZaD8NLS7E/XmediH2K1RDmvfEq1aRYtJbSqzSrGbZmjkuk0BOZvde//eAD6TVS7Jh/inT59VKq8/QwiwoBVOIWVSw8N0H/tj70DtUqwPxwWdQSO1t/rCQ+iku3utDLRintC0jvk3S4ImnUZQ/NdBjATD5T6gBrTxb5HVnKq3EjhD4QAayVnEUU0fdlQdA6bdD2ujksPMe7muX1tQrsSbTgppFYkpCip17vRviFkkmVWbR97J9scwl9qLa9RDbQjuYVCuSG3qvquKpHrpkUgTr3NGeO20SVD4rCIZ5IGmt+KwTrrQyKrgb4EWLXl+urWo0r5Crc3xVb5YBbLAL5PKmytRvS5oqFGqST6+6a7LL5ukfjjuODKgqywQyEVSPkeKw+mQyOg2ZksOVBp0XeggAS1GTMIqa0PjoGSkOB92Y4hoMW9XYTMj9Z3OK949eC5CMRJpt5+70rL5Mm4JdFqu0K4ix/TEp8iQ0MLtB7j4xszZZrjO5DsmNL7awAw1WJeDIUgrVuwA6nftOUMqI9IHjBuS4GOXaLBfJHFb3X4btzOOB+7uSv6HUoEDqebjA4xJ7yDGmjeCxF62xmtsVCpgUf+Df1C/JiO8isVz0Y8RVcEPUoWUo5mxLBFQynN9wYe9kBVGHiYQVKAF0QTp8k/nAtMRlhZBDG7pF9CmpdKk96E4UPLwrGAneE+ZHuU25cb23Pqk19sC/HwITF6CLsD5OKI/2e+3tk04G6Q2UMSy1NR1L1o/Q4Yji6c0oSuq90i3l9zWfY4Lj/2nNt1xW8zoJhauz2ze34tepSNe3t+egnHaCaMTtFGqXRBzqBxoTMJR89r3vM45d8K2lDNdMgsD7u9rQRt++9pkq/XDL6eZhOKSVcITkKNfDl3vojPnatrpbl/JvjaRV0YeWQIdsk6a7HCDKti+NvF+T73K1+dLWpLfxeWHzMuDbNO3M6iPc/cYVuqSXh8aEopAqOCkCaJGet35xgXi4k4Mrzao/wd6Qzt/dzp7S4eFin9jFgex27GwC7YDOqKwnATXShGVaaW2PFuU5HBAMOX7OVRZRVb+lZcGp0hErpIWgfvNMPj4LsR19t3fRG9CfJYcqRWgXh0HyhLv8sLDCFP3ZhUv0gcvsxZyFsBLh2Uo+8juH8viM0nOwa382U+MQ419O/shngWTerbU1nA6XvL/LC/9/VpprC6GNK9VRIzcO4aUMIblVZz9E6exZWsrcQXu4nD+QfGFT81NbpMAUWD5ezGz6Tf85jrW0Tx/3D4DqcaxP72J0dzUeqQVgDSd2JyToh7v9MkziFWCOTyKdRLmRt1CcKZfOeVHOoge/7ORQa1OMe3XxJdLbNfSeR7o1IW
Variant 3
DifficultyLevel
583
Question
Jacques writes the sequence:
890,8.9,0.089,0.00089,…
Describe the rule he uses to write the next number in this sequence.
Worked Solution
|
|
890 ÷ 100 |
= 8.9 |
8.9 ÷ 100 |
= 0.089 |
0.089 ÷ 100 |
= 0.00089 |
∴ Rule: Divide by 100
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jacques writes the sequence:
>>$890,8.9,0.089,0.00089, …$
Describe the rule he uses to write the next number in this sequence. |
workedSolution |
| | |
| ------------: | ---------- |
| 890 ÷ 100 | \= 8.9 |
| 8.9 ÷ 100 | \= 0.089 |
| 0.089 ÷ 100 | \= 0.00089 |
$\therefore$ Rule: {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/KgQWXO9IxaYT5oF/3SIuYpRsc40Pjh3J1wJaIR++OPiKsp5FMSglr9zIQaaodfMo+OhOPy9ze1lLIDWJq1Nc4Sb/nXYCMRpDuu5Fj3gYxHcuYK51NltSBR5bnaa/YRRer4ZasSPOW4957Ow/YdWqiFhMBzsfiSUdkeO3R7lN3sqAnWib1w4/x1j1pe9WwT+CjMqkms9Tr7fBtYThqFx7LjmDy2MCkQO70jwAyr2hMn+an4H18lG+X/oGu9ichlYCZQOBPUZ0XPiBv9H5r8Lb11+fVGFzA3mwpIwaijMgzF5eQ9tmnYXYYet18aebKOn5Pcu4PqAKeXu8PeE8941h0pTG9DaaPwYgM7jnijmULckgvp09rplbsrAEHvhnRejyeqJG4kXl3EKt5PT8PspUMutFFamo9LuAZC/xcvDmdyfVFRn0PVUAozJufhxLEa0zl3ai4ASrJz98fPekwQSb3xzxiIB+Yxy/kWqh7HldzLuFhw/ECCDIQdD9a5ToWeIMZhTblfr+0vcq+26Ksg5WyqOJP+PACjnNStFTGwXCSBTpRjfDbQrP4IKc30WQE8x+8XC/oclHB2RXdvhyAoYATlHC0kFD+2iT1RQpR1Jhq5nwvu5cswGE1/IM4M3I10lPwKJXixlqfK6uUb+N+dDjWuj25NR+TbLfCqq4yrSRJ2Cv4M1GZuRfJkKvfojHa9XskZa/FzKLImGpTXA8uQTbauF9f3ui5NIos8OBSfLzUzJ+2OO1/DlBS++rcPIEKV5isFvTFW87E+JjUwThpIsonDwfXVse/zxc0Ri8ttsJiXYUj65TyDDM40RkxzcNL6y8KsiwD0x8pZwMpIVN+TfAcC8pcis89h0LIStBxbzMzfR4RQwcD6eGe7zaAblwCfK3LahAj95QmThqE7to7rkjI5hHtlHmYLs7rHHQGXUJSoeDqh0vZ5FWi93oQhK2KCaOaDK5K++tDFQnCMOAQsjyV1lalzI7DeyKys5pHJgSYdzNtA06Ng8FkUX42vJ7fWgbZJVhU4eJJTkIJaXTfCckHLzs/KHyYcx2E8ZqgJN+/tq4XaPkWWA062WdjA8pgYg2pazylEAuQbLR3kVH+TulT+0zZmmC6FHsOX1W51BsXqXFlBy41rSlw6x1R39wUdt0zC/WGibYA/492gRTHcBrNpH+B5IOFqc+AlhvIMnwGBw11jVZpF2FbY0PRQ38o7fR8UdY2m6U2LJLOA3WETlwa3nAdAFOsADKL1CigoB2cyFCuJH1OJt628N27k/tJh1fr3rq5sFiQcUasf9I/t4cVJeWwXw6Yxnat+LMMbqf5lFVViMoVv+d5ns5lbsJ6nToz52tNykZUOp4VC7+DnJ7zEZt9vVupJV50rYqLmsc/1CVLe/FpFGfB/cYrig2G7CLjgTDTPgZUi4Y8NttLzDBCnrw74iHo07Z4kj8DXKMA5qAdTT/ooIDzasgl8s9BfOwYIpIdvUIyFhXRrZSSLlNqtDSnms5h05ERr8gPdJTZwIBlfHD7Rzc4kp7A/WsK7yHZ73MShsEwks7qzTqW3NdtFG/qP5yJhoKs71LVXHxiWH2ibw532PSGr/alIGcU3/B/Gy+VMLXTF3ggIIkic3B6qL7iRL0POfCyyEkZ7urIVhaYYHASqmv0x3fjQ33E/7ItsJgEeDS2ruj002CaXL1bVIbVtbzBWqxWVdJcu+cZGZJkjo1h5evY1FJUqhemaqQQw7a3SJBqNpkAvfFaUq7h1hB2G8qDiSwhy7yPbWLMvVP690OdjgNC1qD9OG9MO0ke5VxRIRzGS2tagcwbbeEfvm9r/Ze5WfFS/a2BaatXkWpfGi6AN1XGyYPP/VDaIePdMo+Fh6atXxlGAYQaEtfurhd4UzaVlMtsLbF5rtuCihhdhTPKUsXVtYhdyKZTTZ+GNMNFv7NtdvI0bBmi3oMMOheEG/yK3ZcDQ6CHRjCZutmfew1g0HpI7ywOiu9PoiVhbzpHFVOhxK3MCYG+Izi7dbciQnK9n0NynhutZxoewySweFetvrbmgZzuLcA16oMFLmZNihmSaTtyfo5CRzfd+r3cM2yfr2mqb7QAenx/Os6UE/o3AEM6pBO01fZNK84ACVQviwmmxhi83WdSmg4U7dfTNB7wHErJJgG+Oxlj7EzeWvdQ/4OFhePNKTSu56NA62/UU4oqj4YZlAe7crfpwfk1jtu23m0L08S1L5hHtll09xAGtSOYFVMnYDmolUWpx7HDFenGn/wzX/YcIq9UPWehj0ArHc9Cukyn8QQhvM2b1uIr47WlvJIm5Ksl3yKyUEu/4n+7/61f0Ku28Ap9u6cDu5Prz8/G1oefFp6duS1HHIKrZ4RzQBWuTCn4SChlFSjKNA+RAbJpbeM7XEJMcjvJ+f598hg/46fMNXS1IThWTHdeiUf6VOyH/MX1BI8s2u+/66mhO7LiRYwpGx86OHLnqjx5HdfhhzAa2RDWSWUhYt/vWvnKwWmI/yUh0dmlINkc6CFZnP3fORCYkNMxs7FDHV1y8Ouejcds98xzkpQgJedYnM2DqSugZ6WOjTu3/Sd4MmxvFoX07f2hZxckOTe248JNS7eGw452gRS76qvEVvOUZgYnhnLYYc3qBcrIKE60pgWFQ//hR80OX0dpVZBS2iCDQ8Nhks8HkB6WUh8EtWnXe0uqHUP4RNOUkA4D5pwQmkkBLlF5XdJRuRD3oujPJo4LXsEBEj26i3v2lboiMJx88Ls2IN3qqtaAEz3DNi+kZcEV51t3VzXbH+6aSwQGN9GTvzuqpRhd/Od+Xy6bFCTs5us4sGkoqOf1udeADGn1RtuhTFWZfTM/OFx3bPWANdz9aHZ+gqMtdMOTJl7iIkq4PB3LC9vRLA25gD4tJlIQgZrRoTlW+nvfHyLmVpFRlz2TySvPhDXQRVx3i3bLYmdDtJDB5zo9pAaTnN4u7hrDkRs1rbEK2S8qCq8ESrfaAvlnWgpUYrMDxVXSykEcHXHtVM+7bBGUz5jG6DBK+CudV6sXv0Fr683zQ8FfexPk/zpp5aeHC/lA0UPWpY4UtUkmMEqIcQddQ/2SZ3CoHLDhctLy7XGfgAPFSIre0Ih2YMj0T0SxIbc/WNLRY3RyDuLCc6Glai4hFtlmUcAMQ1RqVqj9SOEGABL73Y72QAy+sUNmiAZ4xDX4b4I1/747d6jSp8wsJjfrGuC0eXrJvM3ly0tW5yVhoAbqUeOU5E38cZlXqb2Ik5J2MTSWIcrsuuZeKRqNxu8bRdF3YX6FYtash2pIgpziftU174Ep7m2IwdV9mv0u51Ti1RWe3n89ROBO+Xgem1cvQq+Ha3HuWsBv5iykv+d+rDASTzUCAdb8jLgM1+3VaE8RKmS9cUaej8ALhDfrbWhit0nlOE7S3pIcbcpH5C9rVnxbnj8I10+zKHW/wgeTI8MpI2WlW0+/V0zjC14HKy9bimz3YiGmUz2uvU8ltSNoJb8uWw6GI+Qped47Gab5n1giK/01iBCkLyzYTQZ52IcnN6VWjNXaKiAlIno79MlzLkQOi5sq72DQpwmcy8atcL0rl1UHEmtyLamgcBvNbG2KwCzFcM3PhjfXfVlLi3KoymcOU3VJUkvMUZPVxpF1OJ3hhT8ZXxqdUzqaAC0LxsCPPDGyOOYYHK5k7J7VlmDkd8rCdo47aplhtbPL1ej6JrvjrpstH7swfPZ0Oq4DyfO2vtRVBi5djLLY/zgKvEYBEUTah10VtHezz088zQoBPdKjhtag4tp/In05/7kLxUTltFWERbvuvWxsZKAZMCZS3HZRw7m585uaJBkoefhQwXbGASlSWcIdVeV1YAoN31MVdFjYii6l7WsyM8w8ugHj/f8aYTLjN/IKSBcL1dd+unziVmnFMb63lRUIFX1pQAMl7xEBvfNTzNk0HqJWtH++2bg8apA7N6WAm4Yojt9F4bqRfeEmXu9MyGxmHpqj1rjsJ/iZra5ED6FHYnCSGl84tEVu+Um1QknDgoLafRg75trJcWeA36Hs642QOCPt29KNA3qebr829E6S2omLNpxxqU9F+QZl5khZ8WvffKz0BfyWC2xl6Mj9KRV97leP5rjs5rMMz+E/upP8gv/X0+rfwAY4QqLtyvMZHchwi8rjHL9Ab3fs0aDCnkUAlRjcu1fUwtW5SFqZetk0oS94PpGH981QP1yCH1ylrGrpQ3blNYKeeGw1rBK8maEd5rNmsaDB/zTdY5nQQ2/PpwTTffKFh2QakjgQkweY/DMeSy7NTIE4g/oPnPTop1zj3vDHOzsHwztIeyZ4n9hLq4yeeBhOfCcGvFLNxQQ5AR4swC9mCRW+BQDzZqM43sGhytw1INRiLfe0odjLXGp7qJ8q7DotfEEopTOUObOOYBuNQ8Aw+eQs4v6jdb5rqDAXDRMfh4tOPnMYk4kyxcyQK1O22K/S4FIEGhJyERWAxwvNyV3Jp/9yMdmUksgGrWJ9cfY+3XeREqJ4navTzr2POgjgy1YWBcrPKkn1Jphc201wtGV2saajs8RQVpcXUFLsWY6zirc1cndQfHi2EPlwO8rodsFJDxNC74nU/jAC6b6N8HsUK8rWg1CTSVHQABf3BJy9UmLn2toDTaCSsof2IoC7LevT7gKfx0JpFxJjaR0ae+nS8AWROVQJcYZ5CpByLxfUsAewUc9V0IU6JGBwUAoxJNF3h87uLoJTGusiHNv6CGm0NRppYJ74eAkcB+AjtmhCFlOgV60/o6VMmbjkIu2bhvLiliYoXjaA22+O5qzLn48FC5DRsWcsG5KUsIHkiEdRvYMVRJKZRNIG+oa99Q1Ttvb3e87Yzfz7WP0r/eo+qNZp4uld145LjVwfinTiAQQ76fr2e37syjDVz66qGsF71gLhj27RVgp/yIbOBZ7MjifdRbrnIBSRu+qSfRuIsGXTqqogFV+BVNy3LJcy+CMueZgC3a7ZUG39ultgK7se7YMgiktKnE9SFGH4IQBvENV4vHeTiwRKOMfvgHhSlDf29fJ2fNmqelkKxrZ1V+GGZ/xWMQpI014Y9a8ihXQeNoZfzzM1kuPrYeHLyFZ/f4bH6NpK6SvzItvTy77r+l30cX7uYN3K7ZxvNQ0pky1sDLge7a5W8qE9v+GS5xctfuvuCXsgNp2Mj2UI3wDqgOzynhZ1F5mLgODslVzkVdU+TOq7VrFRospwu9AB1jt0qcr/6jhcg4wlA8G8vf8RZdC7bmz7Z5WFAYOl1P+cRBQN6i6l/zJtKIAJJ70prsSa8yqjbczrU2wttu2nahJVBKrM76Vb5lZz15XX1z91L5q8jXPssY14dEuDvTAFyVAM8tX+N7PjsmUUn0k1G3eFR9uLmjTeZkkhSX2ZpAjZ7zgtSn6xEGrkjlQRLUnlVx4uz1Qb9m6GLcrR1AjTXeYJJlZR1Ap9gWpEGEb9s4QpbDAlba82mCMo0i8cm94xYslkglvb02r8O7gTxVVc1qsZP5cPpcmHtFMzihH8vptb0l2btJddtwqFso18Dii4I7H914vyoPgEqDI+Q+16AmAtPfWIo227IrOnLPrb98+a9uRNckTLR97gad7fKEgX/maTzBIX1MXreZ0YcEjrqdeLhxuFJ+gOlNo4OK2EBpig27i6H8xCSCNkfEP6s0ew1G7Kd/bXBlWAySr3skQRN/gknui4fqZEARQ1S1r72XFua2h01OSTDguCba4EiN2qM62DyxFKIGXPfBlvhcoXNp0Y70Gurtzj3vPftH1Cta0OiAIcjBg+p+rZhsynrvV+beODfv17gNyEMBqzQar48QVqOk8ZfBHA/CZLGAR4UQCQwEZIELT1vY9I3/ri6gfVzJo0QZeP6Ox48bAFTSOAOfawtT/WGVncQXawfXh8BLsLWMntiSnKUmBeGSYoqbL41SD6UNir4NH/2HPy/eq/vuKFrirJjUCk3cW8iOwF2GFeu30dcdyodKvFsOBklNoJF4ewUZzjgpLCWWQl0fNDjl2HikJAA7ZNB71tW3mqCNHA0zkqcYabWUVY+76PnnEdyNA2hO/dsXvGtjj9B83Ct8L/mRsV/Qil+LFR3MFI2txKcBrsiBJNuVDvWVhmLmeitUQkm6sc04/vYaY+C4EYFnEq4fVWMj4PWlIs3s/63IkG3BVTXkeRb3Lc7qs4S6FC2tyI08Q6FrHU3XlR2UhfzL2oHNF3HKkO9KuPQBSx9vpFGaGz2eznDP+VMhcirh6NHvA3L2KVqA2joz4RXoxusx2vJaEc0m4RuElJPmg+kbY/WKnLJ6Y3/nEJADXUEFhSuKYYCsh9e0EI57qLnt0A+VXrykCCkOAvBKMeSjULDi+PNn31YdbDrO26VoWlf9N/WsKlCXAzR8lttcdlm6P6C+Pjk+3e7tF6hC/ldto4sW7vaNKXPq9FE/GYezQrinaWcTUmTi7gh5aOGa1TNE1MCuY5nyHyesZwYD/JT4fFbtGY+YDX0ftk17D7K8yCBSqtHmIracA/NBCpnAzkxTwomRdEMq9L2GLnwQAb1uuVTRiMeFvjPO6lBhTWiYOBmkTlc/BhMypc3RZh2wcBO4rHQV1xxNgRjVnTSeviUgi4MqpXIxq78vQQhy5SIxbjjN8vEz4ImsTLqYS6dQWq+qBYpAz49vJ4OvuzC9S+SIexaqj4++b/Af46mc3+zGHyFJ/LgHvtVz6afbLqlr858seWFPzrR6O+2L8atK9hbvA+JgMOXzB7ViO35Kd8hrMf2ecFOYY9XB4i8bh9ocyIG/1WcRde9fWiZTs=
Variant 4
DifficultyLevel
585
Question
Bernard writes the sequence:
0.00202,0.0202,0.202,2.02,…
Describe the rule he uses to write the next number in this sequence.
Worked Solution
|
|
0.00202 × 10 |
= 0.0202 |
0.0202 × 10 |
= 0.202 |
0.202 × 10 |
= 2.02 |
∴ Rule: Multiply by 10
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bernard writes the sequence:
>>$0.00202,0.0202,0.202,2.02, …$
Describe the rule he uses to write the next number in this sequence. |
workedSolution |
| | |
| ------------: | ---------- |
| 0.00202 $\times$ 10 | \= 0.0202 |
| 0.0202 $\times$ 10 | \= 0.202 |
| 0.202 $\times$ 10 | \= 2.02 |
$\therefore$ Rule: {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18wX5ZQHudeYkGcaKIgP0ZpvFumiTJuVfttAYQKLZ5NK5qX8wRbIqZW0OOgUy6lyC/sWrknbrpIom53Mpd4icU8Fruvnxs1sGglFcPB1YxTHDqBZjOm2z2udGSKPDtg94q1s1NMYSc4W+eOjBXegehTZhUPyS/hilKuE/0iBCvtBrH5SBJHywC95P0Z/u5dXjgin6W+9uHxpAJVJwUA+zYJ1GFNP+f4KkZMXpElWECG4WghebbAQIDH9UsV8FYId+RUVknhtGtCcesJMHxKtlmKvYxoFNN7koT7H0aJoaaMBRXCCqItjGt/Q4jH+bqwVRdGPZ8crGCUT/MJWSBVWzq2anPWJdaGF7PLy+WMzSEgScx5Hv9oR3PDg02HEf2WHZHBs9ZoGs+IH+ZxnniSBipQNpjcGcm+vrdm62B8CeSBfaXgR/M6+7zyrUmN2bz4geC2YBQmOpj5Blh2oQUHysLKOB5PcKXJJXgHtAumwuAtI7NklpVbJITFfxGAsS8/Z2wvnnYCX+4D+nGrLFUGkP7v59mC4P9IyK0dw1H4PjW3JfxglIvuwwYWY7sLxb7/otj8f5jd2Lkyr9Kdu5OrChn3Yb5ttA8F1ZzPyn+DIy2zDmsmVyWC/x3BqKxso1bYDpthRbVAt2s7e2DPNChNQLZerRpGGPDk/f8IXCQnnswsODtF+DYw2e9wjGORXTGcRLGcwBWlQOwmYlHA9AH50GDfaz4TCSRKUfOpCMZy+pLRSQpeoPFdU4p7DbP1gUzBgC2usefQcYfsHphavSdSrfZ3DwBaoPYr6D0n9LULqE5mbg8BHQtnI/EY0MhYY67XoJvdQ1Hdv/b7kfU/KUKosCj5nB6IHfdTk1YsPp97nZlZQ9Dth6GJIRY3GlwNsg1dp9uW2GRHW1OJwFwSGGKCgDeO71IgmextjZlB76OKAVtI7mYTiNXM7cwxQh0uFlyGh9CcaNJqxQ6/zAbDbJYVqU2fso+0zcUWQmD09G1E/+0dZZNnqtnHhf93RZq1OAzXwhx7BaH1my34AxxoHrEJ03tdsXcUeKedEYQWhxl0b35yM/Q+GdRjzr/VhHwdCe++w5Ok2/gtIU9oV3mJws2SpdwhSCI1zY9mvJ4UUtpS/IU4Ur3S9A0WmkHtUvaGN67Mgyw3vU99njbymsFf9tgAkHgKus0V/jn2YUwQRmEKJDJKqfBZCYau2ITjQ5m5UaegA4JDbj+QVu0kc4O/6kkInrYzMM4Xcj7EgUVsXFP+Cx1oQsryW9ZlVVHwOs+Zvq7zwKwEDxseyAt+193NGys3gdX9u/CYFDpK0kx/KbDfvGV3146AnG+0imAdTcPVg6emc3N1ctzaaxLZga43aGvbGSqBv6l3GakT0dCxYrZS/Cqp9OOVpqRvTO/+rlF9SPiXVcM3u4ZAlBSDQozxb8G3oWfpT8EqTVAxVUOLux/s9e+P0IQbPg6FMbIs6O1dq1XxmCLfLdUD53Q1Y6L6BnJTumjYFQLLcgash84PRd9joy4GQOlfBNxn1w+XcS2K6C4PbertEMJHfwI9g1wDPWv7Pd5x2sJMAn13/gJ1LZnIYOPraCQ9rW8cNhU26qFP5mVszkGDeycVMPoUxvOU6ii+u5Iui26R/QmWgV5geR5qXMgjQBUaXesFvRzVUYiHmHqXF7tJeSVl8SUwTf0sZkBRImT3ZkZgHfr9oDVaM1KiE4KBiRaJO/2u5zIBeFM2WX8/1Vsb7N9xqqo1aG3eEbgfIt702RWlHCHz4qMXb33QeH6RwYLOODIByd0ZDRILDJW3yu4Xmd0JaGf+FPJxu2xcTaWLYXb7EYutbfG9KP9u+2bj5AAJpsGLKqcpo0hN92II1t0Dxllsi2PXYLd1fl9/8wwO3OZudpJCigdPb++SFQwJCLSQKm0yFaBrrDTR//bP3P3eOS4oeKEIJBH/3BxV9jWOyKgpeO9oaM7+93QJM/1kBwXziRZEkLJuBNzd/nVSCcnGD60N1QgAoCelrQ5M6UBbUvylxvON5jjV1lcvqjfAI2miQM0JvDEU6qC+S9osDOTC3PJK/nxXz0K4nLbIJx8shOLoSVaih1Fyabf33aFZHCAYVHRKiKEd1pITFZFKta9UKISc0XKz873ESetB7LxANR/VRzZUDQtcLQnXzVOhbq+gAVWCh8fB1xDeZ4CjUQFjiCIrI9p2mggGC9+3157ratzPhrpBYZ6ozkakFsNxX2ru2T/5d8z48ApE6XGewd+Fg/7/JEG0+VNDsIkgEqKzG9t5RbCviMgztl4NKAkaIY2XAWjQHwnp374puK4KMM8y6Pqe4gjqE9nD1A2TyRDN9PnGNMg/hVrfB+tWro35FWg2TCk6jV7LdIbRVTWwYlBeCGQjch5Mc/0HDpKHikrfFH1WbiHazC+ETlRD8mT+yKdnEmLQ00CrK4QnqwSLoWyxwLkUvBgZ82zDQcSsw5Hp8y9enZCyBt9bSnBJzdHEymCfqKQBlbGzCx5W1Xvu/WLzrREXgGmq8iMwY1ZtOEImaWj5gWRq0nuWAaMOOp61c0t8k9TwAf8oLhsIgXfpfnB9MMmvvJiojAcTpzCwVWEdt/8XGR6/Tl5aLbIQFVPj/CyQFnCuWoZZE/oJlROMzi+xHGl+2B9Oc3Ndn/uLVUGe0Xcn+sS60WxQmHXNsEsDMly1428AJkfB3CEqwIF2Vwirg2JpTy3ufZ8ewfGZMQ4oml3gS4Y5zPB5UzePRZHAZb86GqcHSzKLM+vKxMOHHkEBYndrK+D978dYmDAG+tu684d/fVOZLx8mfQfjVQwopPrAjtwVbxxr897jHX+EOisfP8F3twfVdhnfBd7Xdzuiumjkw9E4Sgk9PQu1kEIybswHvqtJrbq19996n15gk5+mlYEOTB25O8ezRaoECSyN+ocvs0GIggBSXB0+XXrJtdZSEiarrBxyimhWjH5DVeyJ1vsCgJpCx3o20o8F12zQqj0Km9XjBPqqPBDa8BmP/muGBlsHvjcrKlGxbK5xSDvcWB9nY1/FiP3cFEjxTsErVaMkmhTUwCXVc0s3rzd0v6sJHH8y7EQSqrpRao4s6DgbzcGe7hVg1UUWmG6DSpH575t4BIkBPflnhMeQNfe6Ll+flbcunXKt5oxs6ihFjImTv6q7nK/sD6f8jd+M4ORfAyzG0eZY6xfeZoQiUWLraIoSgytDwegE0+01G7feGkGorcJhnTaVXf5RDPwgkaQ/vubNP4iOVAYhqvjzGe9TOQHpIgAZBIfDXaIk3mtVdRntlpyGa6dQ7Lcb6XaszcIvXH/UESBA3uYLTfaXfD2P8E9VkI29whvBj/LlqQb7pThfUTgSdcwAGgdpdLp4JoJv5PEEyV+o/gSf1yK+VyQEbPwJMnrUVXr4laxmNbiOmSv+1TaF3/5UU3vpQLaySebhUc822FOfP9YJZB2/lFyQxzQnb9stFFwedz6tRPfklwlGQkDn3AEQyWq8u7H1YV9R6ihx3lbtYUjeTPMtD48naR87xrXIUONN0HAzfKgDeK8W3d71KoKpvYngD7MERvw7bT6l7hsA0CKg0sdSApYj6x9hh/v2FnYnZBXjkf6Ng5Uc78K6gGkIjZhNAJxh8b1JowaO8O0QzVgXZCU/7qI4/8PSx7+gTbviv60rhG3yN/h3XQHNqiUDCZB9Xhp5wB/cVXNdzmf4aS/lcvCed0yEIsQgXiaBGmv5hdZ+Eh7poIhmPxh6rvB1sj74IxYt4xF3Jk5yslSbH0tX1sHDDAsXxA/T0EfZftNzlxewLBUEc/HTqRIyg/IHh6IMV3lJfeCA8+FayxwEWT3Aaxc3wP+w6tkdERW8w/FzcKcTnGaI4hTBMA0ftw5qMH01SVHpirEOC2YjeBv8Y994qu1M8SkVpofodJQEicbuyMQ9DXc0SFQJ/2nA54D3zAvDa5vv2dKyMkXFizNKXYcMttlRaEEb0EmRIbYlq7/CktZ7GUysBZf2d5+bPJrHEBWj6HWhjE6fPmSZ2bZQi+o3zYbCavtTxEdEbQ725rdWeAY2YdFZnAU6ZRa+eIfbPB8KtqKBiDLQ34jN2qOGy8PkWKO5GIvAA3WUnuicNjxb4NsKKq/Y+39UIhhZlD4puoML7HHw5xyVa8iHJIJ3FkEFDH4B5oVZBbwBVV0ULfvzUbsq/BIv4NEkkAP7g1tWgh0ZuU7Gr2vv1tc0pMqFMoQXZE+xuAfc5KtPJ7lQfHRKjorJ3yplyKlD7no457Bx+KHvbQJzlc0g7DmAQm4vurddjYlw1yX1us6cRcXYlWoywhpe9c8mWR44H0x9AheOBPyFzzXbLXChNNCnvT14D9Q9dSAKcqOIYmzwu4OnrPGb58cQkqJ/PjKxbaz/nE0HuZCfeZYeh2lzjW49P//mvfN1Gtw7OXYoTCHe2Hi88jrWyHaNDzFjEzd5Z9P2lk8cNue+DN22EFnpYdj5SaR3hB+ybIx9ID1513/9DzoqxoLed3UbTTkVB5fHYui6eOxBhNCGLNcMJG3i6kg1/bMTvnRYWwFMvFYFhdjLfQKas529mKV4+XhNUJwmDuYkXAy3Q1eGirLld3ui/DS8N1ZkQz1aEygdIoooRX2w+sOzPnJ3PdMiOyyat0i7Q2Un/rC1zkq+yRTGBhchX9vXcZFTGkal2pmZPDJn81STBcxoDgw9qPLrtunVFfzv4gkzay/HsYvobsLhbgFib2aSr6WjP8xuCUB2rc51+TdBv46A2x8nLuQa7tLgZ8TLYiXp/zjfH1oNOLuJroGASyAahf0rDPa9ePcQrJS8X/6NQe//d8VfJQSLQcCP6Mmy5dfvknew5jG8WkYjz952/p622BsrczhVEFopcJAId0mxQ/1hxqp3qPCVhvDCS4FSEPYKgOBseOPbI/Cyz5HM+Sl+fold2XhubrRxkZ0+5mBraQGlOI2xDlWjQo/ZozzI/f+blPJJd4IAg5wOHVJnsDzVzekNa3ljm/j51IPgu8W93h9gZq9roH+FHDtgACOEY35yzlLDDdzVuzxiFREHUJlrBiStGd9RN9YNCLrCCDeqrSWeb94Nx/ikH/ZUAs/oPnPMcakw2uHxixFEIa2haElp69xA5A7tcMJ0tUJL8UsY+2E0WjlGUqRpdxcOuhIamLint28d4PEI0F1PXy2Gc+ljpAxQLCnGoxcRONacaYCsn1R6XFDZwXw0JmvQq/7uPu9Qgyzocp9bopi8gJb3bRx982wImzbNHMYaHEEntpn8yKQQs9zkFYUN4R5GTknYb2eEfRdiCH95crdEYGVIq/CBN4NvcJKTSH10rO2v+ZAb/JdZuoW94nRAk+gRmIdUAr0cLnYPSJKwL7MNgAasr4VwwNObArwIMG2ub8c9xyXbgmmka2ut9wj7x/77lsRaqfnOFzyxBYH7A0oIfeR8TXD1K2ex+/d7baiMyVqlauOPj7y0l1fIVWIlsrPmnflEnchQEYjYFJqBOxIszQRW7DLoW49ejCqHElZBRTKdJ4tYMZkp8+sJ0l8DxujJsaDx7pmlYlcTjxOUX2f65zEN6PeeeKTwnxSIGXjJ1jhkepdgRI77IZM+SF9F6HI3rmHYpwN6ehPP8ydF775yhoqDQCPKBxcOhDY9jFfAfzoX44fh18W/+QKmX8QpU/yzglSpWRWpxSBVq2+KeKFHMspqhxeejeQQZQriZyo1FlH1JRM9LFBPfy95cszZhQnd3h31PJmBfMD27wAdDveldnw30VjUKkHjHhSSqP+dloU1dT6ya9W2aqsj6WLh/KGTNSHT6xevP/DjFOs8Dz4n2U7X6UaTXTDX0Ou7ZK7WWPNyKs7Voq2RDC4HWRu3iMc415WxfUmfpYEYP7aJHd5mYH3zq+a8922aB3UnQYY5899DAZ3ciPdJwWHwwGigF9UDSx8Z18sxfD9LEj4YbO1vMIMeg5VoiJhLN43B4H2qarAHlYdWTvOuv4vRqV9xLSGV+tQuo3dtWYcLM4DPPA47VdhriG6FG+UOyDUUikvwt1CRwpacBdxXBeG/JIOIWI5beY2hvy8hSE1XGswtjTcxJ3JGUaUeaA/Zaks9PoblSCC39z0WOnjPvvk5XckRQG2eHEMZSi/xEXoFaP0LAqCr8YrZo522J1Oftynpjr32MogwbJ+jKLJmDyHhcVD9tJGUUc7BSCtlFIvhLe18pXvlzAu4GcqoH0Zbho1gGZcPSBPP9rr47oI9/zH3q15j1rajK2ALKLYRaYA1KYZ9QGKFytj2CDJjkbift91mRkh80k2Qn3hDVYFmchZIJI3/dCNnGI9U2+4arXa8A57/gRiGVBOeZtelj4hGsLkDLAxrFmVV3Lowi7+vxuvxbuq5iHHQ5+c04xTYQsF6yW5WSYE9wCTmUH897Fh0fB/61OF9qtG2VZIWR6dAMpvpGnrKssadwGWSjMip7ZUtOgB93612bOtkRCoSM1sF78y7I3QiWr4a+wBK5RiTGWD9wNmbNGz2+OP/jacqVjIzHOLAAk6ulgGuB3myHUZ/uANguMvLkrxmnUnl6LXhk5VJjdc4thWdygGl5UOsUh/ZMrppQsYoPyHflR1S+GhjqSFqHgIaaTSjRv1KMRhG/jmGvkzRSWsR3wmwtMbscsu/z1C4vbvw9jcvqyA4nD+tGru8D3NqjF1DP2fqK7LGi8169KZBSjMUJcekxvn2qA1G7n8WEF5Go+L/RzQ1JCmLCh6QRwlfXYEieP+oOlkuy3fUmUWDDhJwU+ja4J6PJjVxVhnpioGkNKlOTOg0aX7K6W3BSWPKNLHpyMXnP42yjyLLUAOiuPdpfJmD7FTYtcc9RZ3DaIOeonzfv31ox+YlkM/uSdg9gTxyN1vsq5+uAi7tIZCH/MO13SPW7LMkNDgej8POdU+oDqe1KEjdqD09RsfKIMl2o2z59h8iLP58Qk+i1Mp/bARvHY+4851cI+o6pK55HkN0VlQT/n7fISpXumMKr6vvUCCHqFxzD/3nsRV6
Variant 5
DifficultyLevel
587
Question
Heathcliff writes the sequence:
1.01,0.101,0.0101,0.00101,…
Describe the rule he uses to write the next number in this sequence.
Worked Solution
|
|
1.01 ÷ 10 |
= 0.101 |
0.101÷ 10 |
= 0.0101 |
0.0101 ÷ 10 |
= 0.00101 |
∴ Rule: Divide by 10 = Multiply by 101 = Multiply by 0.1
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Heathcliff writes the sequence:
>>$1.01,0.101,0.0101,0.00101, …$
Describe the rule he uses to write the next number in this sequence. |
workedSolution |
| | |
| ------------: | ---------- |
| 1.01 ÷ 10 | \= 0.101 |
| 0.101÷ 10 | \= 0.0101 |
| 0.0101 ÷ 10 | \= 0.00101 |
$\therefore$ Rule: Divide by 10 = Multiply by $\frac{1}{10}$ = {{{correctAnswer}}} |
correctAnswer | |
Answers