Question
Miley is driving from Byron Bay to Noosa via Southport.
Her estimated travel times are in the table below.
Miley plans to leave Byron Bay at 6:30 am and take a 20 minute rest stop in Southport.
Using these driving times and rest time, when should Miley arrive in Noosa?
Worked Solution
Travel timeRest time=3 h 35 mins=20 mins∴ Arrival time =6:30 am + 3 h 55 mins≈6:30 am + 4 hours≈10:30 am
U2FsdGVkX19rIw+2butdkjbZfZZnaPhJhm/lF1NNMaTqcziAjldHfeo6ao6bceQKmzTvj7TsmAJcqXp5E095Ndqy3KLgREd+dpaCty8HGDudXEcl2B/RR4nr32tJ6/QML3ZcxOF/zxSA8flG5MBdtO+yyYlSux7Qc0c6MQ7uHm/pGRXxW5uBwdhTRZVa68m93z3uHR+MFw1J8fT4SsEhq60aNl7MdvxZiu3tEXLUs8Zla8x10N+VDi7PTm25fpptPln3BK0YtNuPHFxmNeox0HLj5S+VWmfngn2KMC7jjxhYSZjSIco7q2vQMXs/96xHrSNKr/kfYARfOwK43Tyi7ip4cxKaO7iBe2JSKEZ/CAR8LEFw4eHhvieMhRJ3qcCrMHbT97Uz0+7r/kkzSqv3SbTXUBWNCr55jof6DNbi+uAPZcKuUZUPbUpCgZqQkbzYBN2s7zlYsYFhKb+v9V703eM5tFqH3d54iz8JS3ulYtgcUpthKWMPhzFNQDsmztRb9VAODJ6aPq0HjZF+pIQu9GD59QQAWTnIBlNjah/uDTgbz/WMmI/isxsPOCKFsy62zNv632rb1zrFbyBwzjqk2zoKk4oiJ4hfzKLbJZLvcpMXL3kXx8XekaHhnUT3dqs1sBPCxA8qo/MLiFX3wB6M5S2lyovloTyVwzbPYddkabSk83W/98xEQe36kIapgtqGYvVEgt0UElZ8R0TUG7FCBSRsdOVvldPArH1H2RODyz8t6M+Wq396bVqTy57LuEGyNxRpPLUzleDjAeJQrApgLFQ71H4CU/Yfd/KMNHYwUDbwqyO9wiW7g41ecvwkc9To02RiGMwUvgG2RyqJxhCSZm4WuaBHaAOOvn+2TES0ibsEKfFU7djgC6w1djxi8BGRjrrigfD8uyxdL3UqLtOHm975NfNx+0EdTYunRC6P8mkMKBN+6F5I9v5yf/Knq30gQUSytraOjenbsVYBCAGlcEeIvCMW8MNrbqC+Z+DJwpz05Sos7KnBUNZ5eghbLZV6RvQ5FEeHEYazyihneHTUSTG3puGQGaKcWoqNuYpTF6zSjmdrcX9nRNYF3JMjRkJwKXRhUr+XjRC5Ea3BKFFNxgumC8XiW/xj2D3vXEbny270u5i0As27naphFDICToJzhgfFD0ndsVLhRcrycdok0ReiWpjmzlYXFglcGYtcuwTGXu8+h0+NZEVQkxXilH0Nqre1vt5kO8zcIUo1IHeeAbNeiMTqIwYQ1paxf3GJfFd6lHEwkBbDSt0JCu46QoRbRN/bJYQAWabYFu35xjnO165FFG5Jem1JDdEf6DKd+zGjknzBnQzKeyMCXongHdGA3W4eNlecsjF35przLSoP8j5ci9WN9yiE19YCe51X6Sb3281/rsTQZs+E2BT7zYXHNXcC1UpRiYugBB+8HnqN7Ao6HbRNeeIk6xtsTE/Ybp/WvYsBZfJCtD7iQDqzrc3J90WsHIw2gfFc1DhQiDhhct9x4KXuZwWIfFemGFuvcRTdSfginBNcDejSURSt8o84x4Czb8egnZPC0IWZoMiHNlJmMJ2vmR4Otq3dfUN5jjTPclVZcEA2AhKc6qNw5Wtdi+hhUpG8WMdB1/IA49h+yOxx0+9lNIyc5xKK9ahIS10k08b6jfcSqovJWDtwCxcAVMts3yFBdsZ3G47DPwx23NC796OykwEj+yrPpZM/QKYdQpy96huDRrzUAII1xz7yEGl7RJdIirHayH2386o3l9jcY2NVz5YK0UeFSEZq7IwaY2yUSfY9KkNI6LkISeQgqjvbZw2lcX5hIX9T8LmqV+5B7D17xoehBolas1DwaH6vamkyp8PgLoHoFiFemnr6/JdQis+L2lKNN7a6iekIbXndvInCyILjKTzdwdV657LRHImHAmBCrZAO7cNMspJ25qwgPa/nNkpSgcTORp4wqnPox0WeCy/8o1Fv6Qjla0pFEsEqLKUOVS9xbHBOG+rSq3cKrwIjhO8Bis/Sjz+pYeIsPsXoqePHBgllv0rwolV3FsW8/z8SjIGGKp9912AHeaBGSa1Hnh3YQsfhRO1Ta0PG2ElsISWrs1IDUNGZFMNGDImRW4RpR6T7vhy0XfPnKPVE1O9xszH2z6sHgzS1Qcj3O+vyjLRduCN9BvvSKcpe9CNiwhEC/1Phs2K/F4ZviRKaQH9SkLIfey+c7DXikH0AI3z21GCgZeAd5fezGxd1KmPA3qP364Ilccx4hQyDTtLECqhqlJwIJUiSqjO/jyt/JjBh0fzc5fyGtSlSrxwYlpF9zBFKecILjUQ7QVH7g9iffiBJOdioMaCOW9E/F0sjCOjHAeFUAsqV7PQMXeNQvn1C4dKGbNTeuxFi7+4dkpB28WEAF48bnRpcPekeP05QxGT5I1hkJ547Zx1nkuMDiK1cG/tjO2vhocD/nZmxUYX/FlK8I7q0PrUAS5yJpU5fEaeEls4qeeHR007GssuXzvtINFwpmR8/DZwNYYeeEfbP4+fYKxqodmsNLuLyEp9RZWg2cfyLir9BEJC+mwCOIL+V6hyLN3AU3s0gZ20yKacmKQWJy0/Nx6Uks7nzow4qfMCHJwKg8pxZViJsRXG2PPs3o9SrXcvYspVC2/haSLlbTJELu0ViV4E4BVW5YI054rXn6PHsKMHYJwKpU/cSzI4M3MOnGRTsjq1CKayo/jb8akO75q23lufi7yHIMOi+LR9lLEHSDqWGsY97o0IdF8ACJRc7Gx/8cJavOyFXtG/wAfTTNh7ikKu1uWpe4ji0ZvDUCTbmhPreTVzat12h8dyqffb9W0BpmHPWlYsJEvRJ1N34zOq073QJQiQaFEbDPXVhTaRkoGUSiki0HnJtlxZhqWGNhIAFm/fZrV4KLcqNPHKcJMfN8MSXpOCz7pvwoHjOk70zlUaI4+L7SAvq+ko5QHzJq9WfgxS9g6P2VcTY/jxPSdDubL+AgcY9JvAWM2v9OwMu/Vd82c38Ht5STkzsQvZj2gHCBIQwVz1AVdG93Ils7M/JtpQy831f7EtYNq7DS68bQRBq+zxGfZGDBmm1ejASV4zePSrwQhRBoNrpuF6phblcm52Js4/15q65hwWEkPSW6AV/AnbAE75wv2hyE3rOIyn8eLhxZ7Mv0dUAeVST/VYORo8iyDDwCXDDT8cctjEM9RcSkYaIkcgWvLNCgJHe970FEnFaNK0R1Z9oZBcEyA78ZIZtlgNaXtXNjYkV7T8Uj6P38U5XoR5RJiR+6T7g31jpvo1m6fc7SRChhk+Cu9ad2bL4E44OU+jYXgsE2B/smKjIfON3jm9hSXuRH2pE8GIJGd1bcRIC8sXbHw/2ag+doXpBzX28dgwAg8TASs9DtrCaYGHAet69QGl7vj2RVyFbm5J7qynTglAENKhlp0MMNsrIh2j8s4sx2nsdVP+Af29X/nvjWhhbBHOrNfF18xiRNbOCd4Vi0hjIkuW8WOsusIOxjwLK/1TNJ7SE97lGDIyXBnTvnEZ/6Dtj+9u/wMaMc7SKJcZprFbDLnMjgRtSPU76cNs87GJbBwa82tdfpkHdpOeRwo1vQuf0c/T1xaY/lygySH72Y/jPTRNsHB2qttPgNYABdXSfpFiJRSnZO0aKBghyWm03AlX9hXgFMcYohnizqbMWoCc9p1ys3nmG41xlCGD8faa6o8JC0Ex4OU92sGk2BUkwvb7oe0F4n1K8WjHG/gjBZ7g9SV9C6+CkakietwAEbEhjzEwFWK57b0b5r5H+JNUJANQmOZnSZdu26mdtTUDdz+gBGNxEys/Q6XD1W64WQr7Nh74ExTM9yWhlIkG4cwfbaQDF6Iv49Q8z0iBszDzfyDwvUEIECTa91LAWpPU11r8XW1hMNhkydan61Gvxsfa0Rje4xyPf3oOHlljBzwb5kb78BZwkD8+256CJlXVhywSM2xko0MnfFjeJRKCtKio9iMKMpxtZP1OlzKybayNOxfCPaUdNCqTe1b1zIpnlLJJtMyj1JEF+kZnsOP4YKdmRbTIVmgwZ/QoBK1sMsk+TmPpnNfizlGJUSz8F/KBUDWXvubLoaQvEOx6Y2WUXukSP0T1A8u7nA2huqjq8+J3TUHIBI/WyqkMv7I7KJgOqkEXso2ZpFLI8wgYs/FJl71hQAhT/5iVgMME+Rle+h82BMsxkSuCWMCNyIc8OIrXuf+SuGbXcRTDfxmtgkcrdbxDHuIwSUjIpfTU9hTexVOgHJy1q6/eLfFjRL/AHwUH/fS4MxLCjcZrM1w0E3lx4xW/r8OuEp+tGV8ZtOwT4l7CrzMF/jaqJ5oLOxlP0el4eoPT118KXVSvuHVvQqAyxd9ac4dYD5IcPEz3QvDAinDut5UIfbc1+Nqs6CveHs1yIGNjDHFPIth6Zc2jU+A3u0r76e4v2v/rXFMB1R5J3QtFb/WJbbKfKuxTOtuCmQ2hptEqmg32cSxej9ECrstAWsJ0OBgHdFOZSr05eljuZghb4GeTjaWG48iFaWE890cl5oc0IpD6J+kNDrX15cYlVkfy6PXYq2OY/NU/8MyqsCTfTFt9ajWXoMpc+QaD3ipFyvEhwXWJpCjujPonTr0aa+8htFsS/ifoTfOLXEfyuWfHBymUo4XhofmKavNuHSYVIt3cTsf6IiunaXKNnbj29MubY++Afxap/GGxqF+NwEqtgfFxesZLf2wBdcSHX+I+QPjvEUTlzyVZKQvGSGmqc0Yi/md9TkmLX+XRLN+mygQMZgpIoXd6xXZ6/F3FULeqjK9xKgXJ+eKAbc4dT+QO/L5IwUJrLjMgaU1fKcCMXlLs4CMcWDqc7RikWpS03svpQ6osaVVIiJ2xTmZp/yS8nrb+zg6hJzo89u2/OvLsUxeJMx+tAdccAArLD/bPT79mRdTCoQwimISoU+xetmAgBt6L6EFgCPCvVseuvuQFaHtUb3aCKuICJpgXsCFj1VrJxTt6JLAuMblVMsx8X/EyYQk9c6g1grGnIUsGYhO4JbTfHl9aCOQkpaUiExkjnpceE/e9XlIkJmwo5qtf7brIXws9j1ckcuP7Pv8kji5x1I34CP893nth8rdn+4DbhuwrN5Wm7GidRGFXJkAYoq8KSs86IzwM0cVZRwEH/jnug013SeRyo3pg8Rmy6OTXLCyr/B1BrzJD5jBYT51AGlXTnDUd2PhSUYWg7kD0CGhH9rsqnEbQfmF++FZcMdevuW2/XP8QcIiycxhikZ9AQkxbpbBg42605LFvChK0V1sLBhE0aj8QHxMzV10fK/jGl8qAWz/23hbHaypZ8JhNF+vfuHHUmAhu7Tq/bKT+dvOaCEj0G69fKQX97j+hiiB5BvA8ZAZkku/bbFb3x5glcmVd9eytqN0PKqOclWKSrFwT7ifpNAuQ1pzkZR8P2QPYV3HQFRDn393y3DdP2dRfMYoVYOVWDfzz7gPl+n05oFYNpLgBql8Pla6Ye6TrVGMXjbsiXI6aD0zanyh6WC6nc6xg70CzTLqYuUdkqKkwDYg4qc/5JDm7ErUdANligotH/zxaowo81ggfwT+YP1Aw+P8w1jV7hsja6p1lEoNCBZhK2zlZEwHfQCBENopOuAMqoDGxDju0hOSjq0B9V7QPfuvoG5B9NMVUjbAWN+YHQdcaE3IvA9eNK+jpErlXUw5ieLzInoUKxUGtX8XIEs0FOJsXLAOJBq4JliOq2otk4JXPKqyfuQsXZVdXr1Fhmh+za7BD+rTD4bjxMzkVPaEUoRfBzsQG0A7jtqMAh6Q2tZjDoHObV9bSWsoDR1TJ+2g7T906z7rwiFVWyqIxIJPLBNz34kVi84jgzkICD9UlWIPgk75D+tKLmde30IZJicPjXqVMDu2m2aTKiMfkEPwGOpiXzQa0ppi2H/bvHFHxtGBiT1pt/Vp1k95ehNlK/C4EbjbX72oCItHJZDH+o0oZSHNXVRkub6PyNv40aWuxFyOz9pVLKfveOl67N+egUxE4QUsz9rWzSHzoU1++855bqpwqsRulq+gzu61oWHmwUqxXkErTUpH7Qf2AE/gvh/EMgq7pRNamnruhw6aArEPRyVKV3MzbJDPtNvEH6qyk8xTxTww1hqJZB0lR37FO55+HEv2ix5t0SBsxar8CTSWyf1yAZS7r0WwhqxJotKGv93Pjk1POx+qkSWoNkTmbKete/k2BAq8ckxyAGy6gG35AK90t4iQa3cF4cGOvehcEVypbyw3wrNbino89rl75pjalnmjKklYp9sTeqFADylFgon+xMLPSHt9bze8f2rUwIJNXmiMDO9sWa0tuqyhWOOk02wREk9nGaT/11IiOesEUZcUKKu8UcR7jbL+ydgNyY+ntgFz3/zxIfH8Q26NtLesRxZecVIy0AhfG38JvKZ+yKUE3iNza2pa8QELhbyCpM0z6I6wdN+/obLzFxAvoEoteBjGAyiNI8IKvvdYFVJuQulUMK8HWXyYpNQAkc9UEVqjcpikRKoxyqeCa5iyXYIMeUD1dw3udr30G+inOHgW6E3U7V8fTmv278KGq9+qgms4GPrC1INegCzSnBylozhwdPKIxiiFl9KdkLr3hZbBJdP2aq0a6i9VTGE/oKrnGHeXE9jSJYPYWXBFn1RrB7jTUyYI94bwrUl9pMjH3aHPnVanFNKDvf626WL2wyETRg8NbGZrFkmIy+/DppXne4PoiZj9M0QuH+YNMNF6im6ATMxlmqs0Cwv8Z4/V8X3tMaaoTlgShPNXy9GmaM346ho4iFqsmD76fFy0FAjSpx5Rlzu1Ec+umk7KNzziNUiSDwpfmkE6gu0pU9CMrGjsrIDOWOw8LKAtDagK4fCKfl/ugF1K1nV02ZaXpAPWjJA1lbqLrcgBvVr4vDpBvlNFWksMLEqrdaiOgoGFU1XlYjDIojV7XZgDzU7s3l+r4DiAF5GqGl9Vd8N6BAkewDdNywNmsLRd/L9Zp1TjDHLAKfnnKF1NMNEpWLldNhxEOmlq4/WMcnBbRP2ZarQh3WcqoPuSweuFVU6dRT6LsSppYhkAl1BJQOa7isFzCRellY65CIpl6BR3NlD+gJYERmfKQ3hawqysD3RbrVQRQBeaaz6DEGGfAsp8+BvuD9clumKBrYM4+Re2bwUE/MPTbz+aLTRBaJhQbrOCMMLsT/II3llbRrT+cxB+bYz+OgwQwenhHi7kgRhqA5QAz20YJi1i5d+eogywwdpQl0ahOrZNv/dLyPQKGa3j0RW+F67WSktdcekFmv933auhQ1StGhG70dhT4JfGc5jx41NmQZ4eUBHs2KljdQSJVdFOyJhrQcN1+aMvGYIyE9YaTX50VfABP4nvdb8iWR36STzJGGt1mrtYzJfpuarBvYMC6AGe/N0haNwHQg157c02llJmptXQQQwcjo0Toc5DwgpFe4Yh/3NaOesCHrkYwuKfANrHP56cycMQNBroyoeRiamOxcLGHqOw25OxtPVVsQYghm7i1nLRyuXeCo9zOwQVx0bN9QnzXhM1BAj2SoxfyUxQDeKTzvYPb31UMnUBvzKRqeJlV8nikhpApeUMr4FDhpXzZe0TOMDgfRpLUoThNGf1Ga8xyRK6Vhjq6Bl7mf2J+mKC29sjIOZdvlH+1Xs9QIoAXCT6uB5aIWBPFOg/w4LPOMQCKi+fN4lG3ZlBj1SuuyUhk7RFF3X0KUCac0o2H3juUzZCZsJtFb5P+ko7JQ8n2uQMRKSKTVb5jp2MYP+Ac4t2inhXj6mbyyM8Bxoc3A0rbfclXE9Er+z9XSP5VgBpzxYWRV7VbbXAlB43AjdrQqFj+Ir0BjWhqOpXNdDZFdCzXCo9Z50oUlgmzCfQM53DkI/o75AO81r3KANnD/nDsQaHDav3NkOHOGbXScdDaNmpZQ03/EBSe9fR/9Ou6yP0Y/fCXDlPj6qyEvhF4ovimPCRk+C5Gv6Go/aQWfh7oJvmxSbRYJ9sUN5yWi5o9a6KogmyrW+F/ZKITgLcdB0LKz9DU90d78Tmz1hv3iZCxcRaOlKQlRBB5MYvjwyDN0nAWHHUZ4jPKeXC3SwICjdb3E0QcSktu4MQHHnGm2U1rtXQT2lnXED5TIlr1iolY29xNoNPSE5WJq45Losdp5Z6WE9ynpEsE8uDiVt0j3qPzF3B5it6JBruxXBPghWzljRSRqg9s+wGqgs3HYOtmUWlVI/WkGLRS8EKqatBjmXpF+tucgbzLAMoqodEQQ8Iqt0WnPqX3FQxUICAs5OP9BL4ogSObOPiVIJnOyNl7o1bv5we9wH+GJ7KzAdsCVH1KGO4HrKnOFw38JkAkAas7Oj1lwGenjm5rdiaHHaMpmQgLkk/H/kJtY05tDXORnM5S/FaWO1W+n1axeATnr1tG+NGuM89+gfX0H1GcU7Jh6hFDozZNHH18xLNQOWyW0O83r6E0C9HcViVMZ2oe28r169pb0vGAprxDxs6jTwB29P4WRzGiUEftCXAn9so+8n09Z0wkY48XxDcYu4htIg85bLD8R6zEWCAivVIi1MHAutt8GGKsUwdLKxNbW7g1iZcrbYcxQRdY2HmGirIn7KATxByAeH5Dbh5CDra6k/AfUjHR8i/B6oWO+XD5BxRy+hpvYDvzTl42FzaBmzETEZFhtpcjg6MVXIcmJx9frfsU/399wWFbF4Hr/vu5GGcanqWG+Gog0C+Z1PGlSttGDWQbewNGnpXslJA/i+lAGLAk7k8g+VVhDN9WnNt0Fmdd/6ELPYusS7RHgbmY0gyHo+7kdl5nK0pR572zRil+W7xWYFSdOIv82eY0mS2s0tB2bGLIjJd1vRB2vNLiwivhEDGeA+bm2FZPLOxMn/Ou738qNT23k5viVGqOTjyS1YuJiw4BRenLE+KYi9mP8M9kkz/r1k1dAVokVFem3B1xJd75Ig+Xf9bEB0E8yQC63/A/K3xrvqmrRMCz9VSp/OUiIJLTY5MRczLxv2xpqwoMrxmeX7vpSSAPUKc5EDE6lLYIg0Ym6yhIhXYmxFeYVRTTJrpHIXjNG3C2kAKvnFtjTsyNpPeZvo+XeLMnJlorK10G0UBBvtLD0A44rs9OHUFK7/6BSsvb82erOGIPPmHwSnAVI+1+oDcXpzLE0bEGyLUVeAgoaOx0VDrETelJFcIDr9hsIJx02cny55bFNyLeewJZ9PenSF2yt4mfLL/fs8sCDbbuT9jSkJHoYLbI9UbbEU4Itf+JcTkOYy50waqj23xZtNZ87htEjoGkiP4GoqBX6twOkcC6z/Pdr5PV3D+LAYM40e5z1N1dNYqFPueY5DMIrvZ9PJv9MS3FKZo+Q5e44xweLXZcGBpN2GAuFFoO226WTw9lj9sFpd16UxBaS57NH9XJWUw6pXUFbGhGmpkZ0Iw6SOhrdf9W3HgeU3u7rqqqnx5F2fWdS2ypFOwgETi0XauAodDvX42fYo4eB2MUdAjFTvf8erj/JdAwZMtouYuXwRxvNY6534y5O24KR89a4owDHTAVIgJDw4rSZcjNh7BHuSIx+P4Q6aDd2MYrAjKXafjTv1B5/yNw82ycUvhbihAc4RBK76oCWRN0Y5dGvF3/KXeDGeC+qNFKXNZb8vfNaSvFdppNknd2PqjqS7IDMon2YwPtIyj4HWrF51Nx67mV4/Xq35qkEnQofpjFQsQ8wrEd2XMjz0tEI21zDRe5Uvy3n7uu19jzSqaUjxDtMTITcIXuNdwdhZfXeJR/EiaOVYONtDuIpHBebJb+YzWRSYV8yOWmwGqll78tfCU1DOXHNO4Cgj/YVHcKD0o03VOFWfmUiXVn33ULJ/Pt0cXcCdWWkHt+siKXYRWeXNx54laDPTREFXv1+4yJj6fM982ioiw/Nt60vJY9LJZOSl+XoNfeoutmIYeknFEbUxd0nWYtatna82mK3Nc/1YMKDvXDW8OMdNksZGsBWAW8hyYpzFIeILsSlaE3/Nx7X1veCCZkm6V3Ks77xZDxGIrDVCU84cebatX/eUDNZKYnymEvMaVPe0Ywu99UOdT60h1+VdfD0swbvdhH2yTtxDr9lR0/EmP6OvWrGv4aREoeJom9BqzjADNh28KGo+wkgJQXAAWUBtM5QlgK8rBTAT4DwVhQPjdVAF5ekupWALx4Eyh1Kw8Orz4x3woVgYC1yCIyGMbvsdyl841vzwSUqnFudHbglGFBAA7+IIAYKRBVfKK9+/av4HLMeVnfcZBBlpANF+RktR7HehSs9S4VEmx2ziE3itRCeQQ0lGg4/qpY/EgYFzgXRyq6POsz+0+ghowbP55eV3yiGlwvAOf1QSAwL4HR1WCoa4seXfuN0+cYWbWZfEb64toXwD1AoB9E/rZJSJ2Ktfm408VNP4GB8yOx2l43VRVSyOljuSq3Z4+365hE=
Variant 0
DifficultyLevel
620
Question
Miley is driving from Byron Bay to Noosa via Southport.
Her estimated travel times are in the table below.
Miley plans to leave Byron Bay at 6:30 am and take a 20 minute rest stop in Southport.
Using these driving times and rest time, when should Miley arrive in Noosa?
Worked Solution
Travel timeRest time=3 h 35 mins=20 mins∴ Arrival time =6:30 am + 3 h 55 mins≈6:30 am + 4 hours≈10:30 am
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers