Geometry, NAPX-I4-CA16 SA
U2FsdGVkX1/xxbOM1AmPWj1MmoLj7YnHKQdtAx9LpdAuTdGfzy/OOtCTLtNNVuhkThjfau7sNxrWwvscpuPcv4iGXeziMbwbYPptoKoGRmIODKLej42LlkvQkPr2Ah5XxDniBe56S+mTThl9zKgt0GolCVFl7KxfwxauzvGZaYDzvGZtd1U4xL1m/VmEwsBaRLG1Nz34RIOn+n4S6XHyVn8nQFfAhvYJina6PcvXr7q4mSjHV3KKkPpiR/HmmREZHdKyU9+lsXtTM3NeB9BsCAaUvM7Ae+rn4OsBn3Koj9Xe19hIVBypDD+DOkl7b/rhmBftPs4oGKbor17ZkqZnqTET5io5LtcCBavJ5UZV67b9ZPD1J9xLfYbF9f/oPQW+FADLbyT+NFIcnOfwxb5IbPwB4mJPI6iW6Z/IRO6nvwaUvQi0nStvBN62e/a99BoGGS9E0Nj6c/hHhsLiDAw72NaFKMG3plNauoc8KTm8go6g1hRLfPiwOAkxD/IrS7p6SEgWAsk2zCGJN4mUErfpWikjLyQ/7RoCq2BLaz8TxkRuwoLR2v78c7xXFVErAfHGmLZDHr0OV/Y+RUohtdFJQ92ijzxIpmBDwIZrudTPDe6oLJ0QYiFBCb8r3ytookYuQyUZVX4KG3B/1orOP/nIr53t7JG2i3QgxxpuGt0nClXzZ6uLP2Mg4rhCmECit/8wtUIRsl0DVE6FQ0/HP6hZExNfuOwKszshK2GeZQEBbth/5H9HVJtv7M0k1Xmw5Jzmur/3F6y6ym/2tvLlgJu+cxFKCRfVhE7rxzqO/vDSSwdLK6YVoQbUD4wTgcf/muCf0q7CSYhEEIsy2qLFqtP4gqCdX84VvR+PYSrIi9+IUwI8BVCQg2U4GD/9VuD1etum5YDvckoKIcX5BLTRRS16xpQirUWJi+JLbUeoDqH9x8xP1TWec5Q3qAU2jIP6VZ1z6AFlkZTKmYzEldGsY9MeqcexV3iFEgoEIkxgIiEnj4hdecM9TIJk+eO/u+ni1IqIEVbg/EMVuddgH881rTlV0SRJYQC+06BPibajtu973zNC3KgBaNiDhWNXMNO2b6akD5nnfIQBg0EWNIwcSVig5qaF/rTEqEeX/L6VMP4qqkP8nl55TgL0K5uN/Wg2Lm4UGZUH9MFtHh8+G0mExGzEF0ai4mi3P0U0wu69URe0ad+yHisHRPRD5EVYW4bd+GAJxTEhYRN85TWm1l8XIc5Piyv1nsNbfn2jpvP4D+LaRlmosC2/JuEl7H4P4bREVhzAEts4gX0LTFLJo/IIYSUO9J1jUUZd99nQf1ReQ0IZP1IcnlwSy8P1q6pb7dWYXjtP0sET8qb6X1Gqr9jxNLtHS200alywsU0VwSaFKduBTqEh/+rNreS6c4eGBskoQpNiTq20xtLUkWRy0aKwwbLdUpqZCCcheSwmvKiNvo8YR67Gi1oadnsi8RcI/7GJBIN81/lV8nKXlg+ZA5x/wKJMFXlGkAAWCJzlELsCilNERTvxS4CmSD+UU8njOqCHUBWWWZv8luEvj8YDeKbXIy6H+70W5dmhod+OKVQbPVmFclNq8q0huu8tmD0fS8xNPndI7JsahKWEM5SV8JDZlkYCC1O+jfxgwH+8oclF/C+C2PQSLWPfvYjToPJFlC5p2nJf1UrKtv4N1eQM8i8ZXrlYnxLZJUT3VJeUslD7Cqxmau8iCpvBpYi89uBmBrvxZ6va349I6YJnxHRj/RxTFRasVSAa7fxuOCDZPcYDZbX0aHMwO0/KLLg0QNHR2FSFrlOhiCyM0uqG4qSC/2qzEib/WZ53Ep9yoF6fgV6Zr8ZeQ5vSZVOi+QSXXiRevUvrQvudvv2IkRiNwPFotgtFLb631nYdhQcrz1eQ8G71tG4r52KKf0+A/W3lrOAcojlYhPldjxeGXRrXJ5REmgnWddk77zBqI+Yc+rmYADpUgKN3v/dqnI3XeQHSnZWBofddNzs4QPG43aMZ1W4rXJQvPU3BkElgqbT+15F1y6iVeWZr1FudE/AX+rjptIqZEeoc92+DTcd4q/8DhTW71H5ZCFXmZDZmXWy+vI5ZJ0J+3yLZiVtRVNitGj1rFLCJsE2n49Q0jjyGD8kj2sVa+ANp5+USqzwItsMakMKn10Jf/WyHTq2NvU/ljJLGc5ZEnGaCEihpKxS/cJClURH/2CM39qlcBQa3P62Naax65MuXeRnSDLiExtdJxYrvz4nYV0R9DZ/gRTFqXzJWZkRyYj+aBmKU6WeMhjC/dHI6AqlTpz/B1Z6RiOuuf6D8AA0pAK7JzL5q4q/yDkiFbHQmAmAgYAe3o3P8FE5iebdr2RjZfSgSqVmEzj8+YCOmCszQpNtPlYmPoZlBT3ULjH2yuqOC3M6XesuOUFmXV0+1ThHj5ErC9anv9tjPSj0xCVe0oO+ATljzBIDCiWqLe1AdpSH7cHWZpPQJOUvQl7ZHpG6X+5XqFLXD/eDQoUctV3zfkrHQe9cL/BUCA02tJFN7wy8IfJqXWrIk0VwVm659CHevCEhBcfYJy65YSv92h7JIZJnaHxIu3FK8rRMtJqXTJn/uzRowH3NQPl7ATLCFsKTuKBsfLwrZoGfcTie8rf/OwfoxxTrY8csLvJ0SqPXHc7W6sDthNpBqtNejJaAshyeDJsr2Fmj41CIyXzDoYmCUpnW9fd2OgzwpN/+5QitNQw3PXVMZ9asreuu4Q62dYkxJ1l5OM+pV7tHZgWJXKvLOTez9Uvn61gtsQj749Uh4TTdeZrv6cGgEcRrRPkkfONgJAIyxzCB9qo/BLTAa506wHZ+deYO46fd+qofydmxzTuLMj7QflL7+UBi1Dhim6FLQ6ibrPPjMQM8YsgQzu/mkxflDmO4006fLlxa/Dhu0koPUs7P+WXJ5ixAFUCaFhkCW6eeMAiE9i/ekeuklA0iZ3jFWn7DrY+f04crC+UtvAlg3zBG5a3Bsdovl2XOCIMpOGgJ9Rjlm+XU+PS7BWKZTog65A2KRFsEXsHv4ZfAxbirunKhNPl2lOPPe3JTGm9NB4TV6+LB0D0o+GbKfZ2HXWiGD/kmH6hgoBmB2hBuyrs05+uVHxTptbeXjQku6R1HVS4cd2wsnOzpp96YyggW2x46GmTceRiDDQWLYuJpZ2wLe/dxTG5QBPt3duooS8qSPDnNbYy4lNSSxbLPPNV4ohOGbxWLRc3GZExPxGXrxbDmrCCGLTWDp6F9eO6cBP1bQNoFHHGDZ1TcEznhwiwnKlbMelr5MxlvggqC2Aq90Z/RBOkjvAtU1Ocl+7PqizZUdELxZA4SpUXz3SCV9PO9NDclEDLaV/6XB5zxc3PEkK0rVeFIFIkvT+eFReXgSq2Do3j6pWXePPJHlbYyZVMXqCq+241BkkdlrxlQuvq8wAsVh18IWnWMA/7bAL7pm7f5oj/ZX18PPub6BnoJ440glHuuKM8WhsFqjqDzk6FMI/BB7M4juP3nNuERR1FOJLsd+tXnWJU9B1TSXV3GSECs1Fd7J4xfOMgy05OYebm6d6vs3pLoHCzZKj9aifZRzcTnzUpoF9Kplor1cTN+FQ8GV/EymJj5suDg/BIk6qkGSpH+V9rgiv+3Roai6cPA9T/B1emr3bHLEfbxWMt3mis+6xL6RiKZo1xjBZkvBsSQl5qQ8NnhtFB2IDS7oIT0iy/Iqa+l1q064t4+f4Hpyq+FO8Th+y7IPDDbxjJlszWhF7igTE4B7A1qvzxFGkWdT7zTgQ3XZ30c8fwwWcWJvDpQCOmfXSm16V52Fsc0JInHAdfyXmVbd6yU9azyyUdl45jvlsBJawWqpjnd8wyPQXLmf7AHfWy6fSVsszapcRn4aPoyxvUyr7Fem3+T9wt4EuPGCJhLLqDnKVDAWGfKlOYpbcMXBK370KeBUSSziNojCWCJSmQN+ATFiisxClg5wWhY83Jorn01W/H55+9ZMvruq0EPDksp9YPejPgYJ00NUux7qkhIHcIQ7Mz0OspRpwfeq2fT9HSNfmGnQpybGWSHI5gUT583HNA7WMl6u1WVYqPgIyndcGbQ3WISPsyqp8OvpZ4QRAGbDulnbO53XctH7vDmPT17Q37oHC9nJ2o8WERprK/jMfE6OQwuRnKWfQ+GcNxsdnIQqeaV6E93sC21g2d9eK4Mmk2Ry0tGmFB2g52xNSTIkGlYFvUcdnKOQrspv+N2G9/TzO+LPuGbrBzth3Aa3yBen9HMlPRQGekcd6tE4E8nRJl8dKAYJJV8tQqQ2q/WRM6kNQdG1F39IHbIQpaqHCyYeLzprREZ4eRMSQ/YHhj8TMuwLsSVz8ZAC4L2Phiezj+CHgIC7FLtaXz4Ton50iOmcvtTixyYjFXSTV89d+uRua3aEQN5BfnSWGn3q/AwsUQViWOnZndVS6rozNwru6txp1PYtjOT87uXxUd9D1JEmvUT2iFKnDKJe6NK8ZhmN3JGRlJOG/rnTzaRxjRXmot9yTJcIhf2Ht7FaBnSu5pF2H9w9udv1YOjiUsiC0kW4Ai+N86wVoRiAzip72kBuX2JAJpHg7xM0X0YAdFNte3K6oTcO/NEcduKcVNu9QNFszVQoB4x5x7rAs2LtHPRk+fmSH21vrFtPAKFQLJPWAfq0QLqBVy1OEYWrmbk2J2m/PhxFTNF67v9VYOmPZ6dd43V92wceYjoZJxHzyzELM8xgOehNk/c+g9C6aI1Wuc4ELmH4mdKS8d3RiGSe/abehS/ieFjgtUPrN/IPLSS2OTrhLT8dofz9YWx7aBBHxuSpG0PxT3GBK87Aj6Sf/vPRFFi8VV4KpMkmD+eJ4eX5lTxJvUC8QuUwaaqatf7QvOBuAnt1E3oEs6UHJPkh5FJ6FVvPuuOY57V9ALhBdnZC15XtvhI4Z/1ss6x1B2jTRmS3bAFXPg5CaFX7nR0RNgsmFb8dEXiPobltUUWKJC7BaniRmN8oaqmtUaNZZDH0nRMSkKUkJE3mHGpo5VHBfUU7W2/6vae7S4apIYGFdslKycdhrv3B6tsBDFaVO/Ka8JCmaq+NYWvCfk3FDcOz/S1tJr4dsY+a6MmNMb5viU60vVv6a31JelyoFgqGnCtsQJm+eUT+TXW7KLC9B/CeFr9yF16g6xU28E5gPnaCXzgxo/u6J2cu9ERd3c77Y7HY+cePrL3759bEM8EwyBDZMmyedKMRqimRX/LZTXGKdq1ELgHvkMAERVkZnFs2XfaXaMV31LJZz+BSg8944UKs6x81Jn6VfdeC5Wae0MWGMPJsbQ5UiVAoYkH+EUgKIt+PzzwQP4CbPS4XaGmX3azF8MegknWtFdjy6QNVIjKah/Va0ytI6uNNPKV1Tj6oUs1ga11xjeSIxlO4czIK9lUz5/Y93bF8CZaAjN2O+0U1XooyqA3d11mTZwgA49ZFCaP6OV2JbQKQIhxLD3rBu7/sril6P2ewfiSi1HzU2Jynk8OUGro/lNVCRqbGAyWsiP27GiOj+4gkvPzP7/tRQzEPMhQaDuhhsbdL3lamvfW/SxqChT9maNN6A2UElBmCuvM2yquJ5gHmj4TCeA/SrVQq+hKYYidyV0Vs8blx5xtg/7ekwt2ZNSKX0H1PpNllQA6mW/8JxVQlZF7vIOTsUWqSY78pA/4K/37/pL1h1gR1ClkE0BINZ/RnHIqTVzp08SFG45twfl95MP80kFHWKv6JVHzXd5POv5/Y941GJdkox8GGJE8YyICiQtFMyWB7szw1JQC7VGZrRuqevazIM9PDFqY0LKazCOvQEJH2n4xlNwsrL1X3oAArcD3UOKpg9FjYwDaKVuIUikuuiK+tmsXZvxmVwqUBY+ytTPG9ZZpwLt4bLD3LgRWAucCuiKqB5V8FmMAEgytHE8vq1jU6EvB6prXgnsU+cjt/f+3dO05GSoLG6BMMKVTOCIgQVmXISNM82KUeA4xQYWlGgq10UWWAkn4zQseYfdiq5d1bjJtwPL0rI9a7HU3l52RtAfOmC5JnP+OfGBM9IPNr76JDdYrMyRuZ49LjzWVueudXbAzO1foQJGV+Tkti7dgs6sMP7qzoSpoo9WY1FTfyIbAaWkGwXjeDNzRlffxKGIUgq4ruAjJJxUwMbmweF52RngbA3knlGpwPJDTrs08qwYEhNrsPeOE4gitNciqlqhFezzllCZ1pHU5K4aQCMcpMrw61piPfWk6pBEe56XHfVDIfOmubpRBMJBIzuhJ4xkg4E4+UKZfImklNkcf1h9ZWhb7JZq7bOw9qKix8uhZXz6SO2smgHWEGQwskGyATipZLM2IT8xc/Pb6W+FQBLQAHk3U471VmSNqduWlbXAawxGavqoXP05K1sS7FqoqCZ8224xfyNpxxxsiD87jUUqVSuYHiyah74HXH2jz3AXwtdVNL1qxFQQFyAVvS8BsRnFck9kRbThkA69zUBpIdt9YM1mPnsMbiJ3ifAR0FOEpz/OEeQBwHQm7zIOEzYwAy5P010zDeW3n4hV2z7Plj/WoedhWZYsGV0+sFTDRNVZaZ1+WABrkrGl6ubrAjTP8WiEE6wHBaClaRA3R3Ia7k7YWbW1bpi4fj8mtAs6Vc94fq5cKwDDyOBWvip0nqEbsmrDMjfovoxAu38PX4joprQb3m5ydNcKO57QTRxqS56s1a84X1prr/50TvCjA4KzvNrxTV+1u16MWST13SPG8IY8GznsaR3KW2G/HLEat46svkr42XxmjfRBxCf7yMjOMcCrBQvPhfMprL4SkC9cDm9I2uKcjLHRjB9AmWe9BinxCQnX+/GOCaej1mTkHL4mFpGBcwzFUTz0HiWX0lZR2rnzsg7F+HySwaMfKHxy63kpgCXliYLTsrFsm5x6jDuA/hVo+hKPCfSiqf3TA13lynT4jbryLWmwXS3S5xVL5Dtv5OspCutOrvjVqp90BIF29eAons8rTtM/+5K8hd/JdZNNJFWtjhLcLN5PguQhZwiUkaGnMiz9bH+2dc1q8h+loN9fJGHeSjKVLK7EO5/gddQZgeVsUeJKOOAictXp4ygrOyTWRw+RlZ8NrO02W8HQCCECFQ7161cO9qaforZ0iDU/A2nibiZwANbH4fCpP5VjiwCV8K9jTjovNp+12MKLDVEZjUduVd/TLfxo0j+Bx8q0pZIFJgwFk/I3xlqSFrw7A1vWNAHZINpkZY6vxxsKZVVchMXPp7ijjYjBCI7JdnYdPgrjqfg/Pe6j/G/ryHqYeOnlQmFD8gDsoESZiKkTcwUTaZVhzU+qhRpwQdCDdFxkcr/0JDb/9O9khOU0hMBePabZStsootfuwdP5lmSwM2xJ1jxpTHOiir+4INpv1edLxcAOFosYeeF/k7SNwsGSon0P/iZu8LJNisvjH/cvMGtDJNUaoHuio1V0yYv5+6l4KcFQ3kbSabcbRsftJkN/62tZqK1apFkd1BNFdV/Q7ce3fBJpyiyEbUAEqqSPzbbcmHzeBBPXAdqFSsHMzgxW0kmF2I1RnmLSaUKtaZzIuWBnsyPy7WuAGDG9/0iA==
Variant 0
DifficultyLevel
625
Question
What is the size of angle x°?
Worked Solution
Base angles of the isosceles triangle both = 32°
|
|
∴x° |
= 180−32 |
|
= 148° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-I4-CA16.svg 380 indent2 vpad
What is the size of angle $\large x$$\degree$? |
workedSolution | sm_nogap Base angles of the isosceles triangle both = 32$\degree$
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 32$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 148 | |
U2FsdGVkX19QKW+OerHZe3EBS8Oa3Gis5+AYFrNQA5e6x5GeQfqJNoiYFGcd6TUdoJuhgbOYZvDf3zHRQdJoKhfEp6LKKm0P89N2luw3P+JSFlpi5uZYtc2dN0TzsQ/JC4gcvTqiIDUWvC5jHB/5HFT27FAhoc5r12sVhIuV0TxvnnjaLFqtwcp2IELNesG572QqRBSNyS4daTK7Zdzy2BqKhXWcN0Hc/WmBCqeTG4249y7Qw4ZJokRFBS+uiKNtenQPj6E8hY4VlwUAMnDbQUjuVK5eYoi7J1FWayfG/Nyqm0bRwtBsu0m9J0tSM+TmXytxXBSLGsr8lgN6KV9U6pUr/JUy+yqqjo2/MpLOZFp3gdbyWyWCSBra4iey7m1DtP9kwSUzkPFXa0JcaT7iwDBBTEfcgs684aZhkwDA1EPuQ92dUVROwf/QSEKxxQwaSr3gT7M3oDpcg4ogN87tyeHD1gTC14WT8MDp0SiW+AsTvc/ymVUCL6urKTNzYiuLOgt0s7h/BTF5ZlHIXhv3qVPP8cEgcmP+SYm/9H3NJggaCr6NlI7e2d23sMG7Mzvn+NQIOkQDVhI9/aaiA3WUt4vWhJoBZwsS08AdPiwzRvKzw8VGzF5uZ1q7VPkqDCesPflkn78QKnGcl5lGIX+xk6GWGPpZ6hwVplOVsJL7IcfupJoj4rk1HXFs65Q+5M/4YizxDphv0jki1IR8Cjk+6znfqQvzxU1gziXrkOWIEGbRQNjWE/fvG9c2r8Tai7lTHXlqCJY3F5c0ilDMW42llsBfD1sL/3tFoKRVqz6avGHH9HWuiFbsdAoP5SnBWwLSl4GE0SHcImi3TtYMgcIezbKEqtSNuPG27kyoLW/uyITGERQkv9JBsrvpi8dOV0rg5RLSowFZNiv7HX2kjjULIHUeOBKvN4Al0m1IvA/R5qBHxA3VDE7oS/krL/4kufHB6gztVr+H/eMQ+UaWlPmijA6a5Y9c22kfMB0Ag7jj5oFFdIvQRuP7Qx4IeKkpcs7D091w2uX/iAQbeAtlzuYcYfRRjktqDbGJFSMRI2LLd7WXhOkBDDIcaRTr8jE08tl/3qBEDuxEN4g5PQr+poB33QZ8xc4uhUY69uxX0+idR/CUPZSqqxW0z1JWbHewtqCJJVe0eMu5jURCIH3fl7Pd8qRZOpKNiruEDEOz7shFtHWO5vBqOnHFjcjo7tg2PhZujqDxe66GyQU+ic4yVurALvcFI+Jmls8LM1FUMapXpWkL1iinFcOye6yUrDKrEMs0r69rgfcYuMSrAR0e7ur7iOzmN7wofrfbHAYmtQQaylDA02jH2DswKx5nbU9xuCOsCi81fIH5lgD8ZZTAeVmTRKNOUUc5jIrJPAptLs8zU2Clcro8PTUS6hW379ssyKpjTPQJfDFvs6xPIioE2RO87UTKpxqdZLT0sj7GGaKrhaBvU/UWzrHP/dtxKIkapV0eBoDvf0w0XeU1ZrPF/gBad+bQ8QeZRhvT4+TTcOH/h7vsstqDK3sbSjSW+oaNY2JIcgrL4UwHav3h03J7nqmGVL1FHFnWVNwQUQC/9pfEnhQ+DJxDRa+mC+nfyvkFVYI79vRXZ9Lce21JeKhy/71rvpvlmBZcOf2o9TVeoqnzM3LYowcl65WuNQvLzrw/RWEtZff2ObdgS1ZB0YxadAUao0n1GD1XGTsddXxxzIKkAQ8WnV8bRftf+xvg7KAzoV2M0EZG6NJkQVZuCg0iTXSmkLRCCCO5Insil141HaMOMPbXtdmTSmDeiHojFgyONJh8MUGPu7uLmcuao8J/31K1mzACeB0JSOvfvPv3J5t1r9M138C+61uRUBBYgJXAouEM86PDbgN5WoxiPtdqcpEP6nOxnvUkrovigpB3LGjJ6nrZjNQw7inYWFRgebVINqF/nJXi4c1CNqUtDKHxR5rKhZ0ti6em1TUEx/ug5gSSFPnW9vwHDqO6GjQ/XuLRSZXIysDTWqfdXryFTauV7JdQfWYAyQfQkKRTu4JeRXeqr+Pt8nHvIyJ4yq8l76EyBuCd/ii/PwJz1W/gvIRncfUVAw1luav0erdjQqA4v4+g7rEIcINEPHun6/vl5Kw2hG3BPhdAQhbb1fRhULZUGee3rNvTmGsJ+62NWt9dCy7ZwYuFNTsVwR8TjsfZMPi5pO6lxviwhTlpl/XXrolhGyzxU0xx5OqIz5KtY/kbgsLN1+FdbL8LJkG2VWsVZzjPJ8jb5vSTdcUEpk8IMzpXEpxBGfSvm6zztC6PnozC85Irc8sWOb/p/ZG5Zq5p+Xez6k0yNeA6OK8qdhv8J76BzHkvd33b3n8B2dIRehhmqmqNcP72V9Qb7T/9zZrql+cEJesOiAJxnorWLJQndUyZSR+FLjW2GqwujySP5e7VnRp4WpuBgp9QLlMWF4dX7AxtGE+Gn4x9w3Edxvdn/bEaN7nd+bBahLh3AvPfw7hIUqXHphV2+AbOApTkYh2JWT+Jqj/sKWh4aaHNJr6S5Yyw7547UzUBWSXwFq9QQWak9uLTc2aTE+WfUVuhB5lzCaW54XC657ljCcuCpADogLFIwYdrfP2XTCF0ZdouFd3OkMiKnozNO/5fgMwxZNkaHBEEhTi5sdJTjwp/1mZ3lT4LW42Mjwt5JAo5RV8xW0j7wUTFzrVnotfUnmBPV7gM/H1HOW8vtCv/ryIq59zmjWRNd/gz+wp+Mwy/TuGlpAn94YJo576A9eNrsPUwOzdJ4TalLJdobR5vzt9bxGWXbFSbrozvFl/zxKJgUOdJsoX7g7CD8F3AXTddFP8AcUhV6e5Ogo2eo7kTvdVqwRKUWmKXv4NiGPADG9msrZFso5z4L9MI/1xH/npwMF2wZoq0YS9yP0Q2F/JaaMpChiZJ4I+CXOH9Lsv8hOIOfYtsF6j4YPxSqRMyEaZzvYeMHVH/fovMwNlaEhsAvUvbO366QPOc0FFaWCC0/G4oodJ3I/Cx/uDyqLx7l4j8iGrWAqzA21p+ddmEMN7MO0d1pAa3T9Pxt52LBDOl1k3g55jMfebUsqfW+uCD16dYL+cONbaKeScZZTUcIbFrH5oSfCiCqJgreHSSTPKC2104GWTK/zOTAHX++vnLKS8VZ4+dQujfxxlK7GdpKGwbqTfiwxxlicR2s8Hka8Vr1p9/6qxyS4XYsVGZHPp30ma7FP34LcLDwrViffKnF94ZnP7YTJGF0ibDC14eTJE/vbXEMs1qI7WSOmJ+9uvj0cL74tF5FbTi4PD1buzR5eeb1cicFZ3wQmgj3OLz/AcFN9bTnbU7Ir6J3ZGOCAyUm0YOiw3am/xshE6umfas5JKa37GFGv50T7BDJIhT7xhbWVeV+EyDMn4g0+t1FFmHP6qwPogJPG908jsaFnWre8KSS5L3FiYBDvuaf4anmhRw2v3MQe73raS4vFXjY1IsSm14VUls3NGWgBoHauVoDpYXiTxReZBZWZzt1T6CNCiu//20rxgXp4AwdxDJs6JP7A/p76J9FLZf14rIwyDmOPd3cGcqgr1gQtUL51zwWhnZBM46ia/LkywGqu31qsTgZnVEGNRmJgeD7mxIi/HW/RlVKO5t+OWOd42YX1hZ17bC+lBDW+A3CLVSkyh7Os/G5/b4x0Ck29/UHyZCS7fCv0qoHQfPXB5Beg2EQZeTvc72WCGvSOPRtKwJ9Uydrylz2abUI3N2v/ogaK951xBtfK54NK+Rj3ypqEgj2E3rco0kSYhZEKqQnFqyNwPaceJM+DaQ/pi4kvxBPgFuqN1SX2GvwxtD+v4XO//lPSavpBzoGNXtTLIXB0kqol/JUD645lvrSXCUL3xj6GX+KiKqIXxAzv1pp4MtsipVBWMBw6/81KaN4tI23gkITfqs7+TgY1L4fSgDJaan+9Zz0KkwaVklBoRhFt/tJdb39o9HGH2YljGa3XwvacevlgwIVxDG56peV7sNPMY8cnkQthdUJEX42r4Zf1Aii72l9M+nQAepstr4k/d5GnaXGM2yQHTmSFfC2ebIFPoKa51izap/vc5/xlRYpdSjcusMWILpDWO+ZJ5WSw5YKdHWN3zfwGuDVr7sQcu6KsvZCae8WZf5ZsBs2PKA7sp5Rl2xLRk8oMVpqLUvhoceGI3Zp4TJ/p92n7WtkyDmJCWBKs7a88VrQHUBOqRwgMSN/DUIqLrMF3g+my6MnRgj60SUYc666JPYPeF4OvIHN4CA1NaQWhl2RRMN7XKPTCHV5oelrcUnp3OXXyjHsykI6ICQKsZinyXdpWhPKJUkBc+IZsrTYLfKwfrlrL456hMUQMas0QwraXubaVM1m8kGrBrBJgm0bcUy4MJMY0PV46GOgPmaIIFSU50oPojjhdQypzRtM2yK53Cy8XXgiJpoQxFV1r9OEOk2VZJnqXDVG6L6QZy0e2MRsgWKeps2WqgW+cPU1bSQrtZH+YjkRgCoz/8Lu9lExTNWkUpoJdMz58G7qbVvwYSGOiMD3GkL+d/ZUKPotwq+HL9RuGlOM+yZ36hMaAmvq69mXkshWvaGCgjxrQR8pKRy0CBXo/q5tQHPf03YYqh4/y/r8KdVAq/hkHRKvoairM4fZqlU/RM9mEKKZHbLkg94l6ztwPU5fkvmvnW2BE8k/k2jZCvp5fq3+RYI+QKBJ65ZTeusBeXuyOeB7AWuTe2d85XzRlsFz/V7TB5a13YSCIqnkEBo1xsIQRqRjtkes55ycfytsZa2oRoDBUvBvyk38KKBWlOy+nrPguLLDaFTYv3DwkOjHXOQSygosMMlBJCWAP5U0W1e7h1stHx1helhzPW7KRDOCe9GjS16E6j9TmnFGDq15NyEvHKhc3+/ghb1sn6XfvV+BLCqgZA2y5QOO1Gbvxm6SX1r0gQkzNvH18YOJ0Hv+c89jFJFqVmMHApHfMRRNI0B7Qb38sVGoTJOz3m6vZDbVDvdXqCXIBRrA9dSu7xp9gWcwJ+XFNIhCtn4S/Fxd3LvYY4b7C6jOBizO/4DYIOk3F0B3Rnk1h3qpBoWBRAslsZgR/8dK8zwMj+2cEyWzO9+PtAnuWmRqm1eGiX+8MM0KQujgi0bxsrRdoadAw/FJ+GAqJx9/NPaZXsplbemDtmSOFVL/vP1kXBjZv30sqpW8BdFVe/5euDtSB5B8CoAkR4AEZrXES1QWMsHr57lqA6rENblNG39qApoyO4vhAOh82llSt4oMJCuatlqoNdMd0UbRkyW++q1FgRDYpFxZFZ+ldDHUUOoAGqcNMsINl+Si0ttwuXhgWwyhxeS+aQXh3g39RbcdXFrayHdQ9akG0c/C64BXNWl6KgEBNGgyWUHjzeHLzx1u8meh+0D3OTrPVFAJ0L5ZGnX/k1+4h7NrxMQnsTXBGScVXLyVk1ojyajxevVMMq+EpPlCadyq0QMFk9pUwW1p+GqvUgQzQXTiJmZWBBqxJM/1jrIQHwXB8UxyCkCSoR/c/DdNRv5YyhtW5/xZDAPJ+809BtLRlY/+8cYaoo6duecRlKjGk3a5lTOkB+VJZad8QLJ9DMK7QHZ2AOUz+wMluS2yKbVkMPxlJcBY2V+ZZGzPicLUdeBWFb5sn2H7V15n99lWKtx7F2vE2KwbdLgp0kgoEsa1s5CuD4K8iWZvgCNDW0aNiwsGP8NQWa5zFEq3kPJ773kXvjHavR3kANFaR0nArtt41obO7M0q1IDO8u5DHODNNAqHYOA5T/4JM9W61kSq/K190SKMLoU1SMFDy/GmG1YuMjcjY6G1XGqfUQsY9daO25CNfFgsC3NzyOHuS79JKWBu5TFq5ozQDhqHIXTRELFxcT9UJsQ/QCXadofR976TYzv6S1Ux2FD53gQOfL3RN7jN4bA8J7PfvVOiMBeqZa6+J4RUrxg1kzvLIxSfZq/1pDzXRcmMnUX3tJnG0Rr2nOev2fZIpn/7KvjAlO1bdIgILDGx66zBCndbahZ9kkaObb+Au8JF5w/CEhYRJQIFdzRMCKuOCWxv4CPqvAphA0y/OOrZ9kIYxtAOrF3LgNSamw/34MtQ+XctbbabMopnFx8HcVlcTA+m66bN7zyFB9Rbj2D9eqlYqhn9W793+vEQZ38SITLLZLK2e8ejULa5w7wMfa/iXtczQgdDJGOCWSsZO/qWOKD3XeS0k+oCP/1hRLUjCj6U0KOQFAMEIEaqAyRlZ8/QgoDjnURuVek2NfpE0USmuw9ZrFG0b4/yJ5cTOdllJJ8ShUid8vZn4Y2EVq0yjpfOtaTD0ydq+mLXw7f9H9vGftco0kmCV9hv2fL4q13ZRwjFk1PMbrshU63pFsVndYv2G/47INRM5iHZOUDRgxgst6AwYKeo2TnDdFN5zrPVBAUvz0wVlxQ8u0xTGGF39E0AlF+t1Dtj3fb5jLFM72275ybpywsC1z4MRL6xI4tbrrgGuTIbOpkiL3Z/5BByF5NZwMjdgD7xge8cXEwoGHV3ooDg0nJn8ngZBvqX3qNYExBZ4mqrWsNzllQckPZIJYwBuxIMOSkXjL4pKPByUFxWShtrpXkZpDvWmEBP33FPx3tLcH3q22OtAr3PpjhHWfTbd4H/0c56nWmEU6j8AFhnI0tyEMmybZl5ifepTFod7O/WrgXbLxBc1Tfpl54VHCDpVcSbVkHXzW2XM/0Csnf0+HuwympUR8AgmDu1w3QqBTLwJdKw0fbR+kJXXpsCofscvf7NU5U8XPirV9KVwJ7d16AbR+/KJez6dq+fvGM8nyk6ZzkRs62FWs86uFpUF2rUUz+9ouIr4XkGgQwWND61/jHkKINVndWaM2OATLdFi0DIsmHNZge2rDm59A47nbAEYhJBadtPHakg17TJXImBeRxBaLbKsJY5teexAk+wQytvjaQLFYuSCprIdoPyI6c+d508a5FiYmsG8vXsm9iavFn2eoyV5zlSA3xMV1baZz7WrMhy7AnynjPUVj3SefjVq26fHRaYq8a90KrQVZ7AwsWXQO8aah3WISdIF8xhdq7AQU1P9mTvdY4FpFSuzU2EaW8GKIHLpAWMhDSPOzeWAyoUpUc4dIB49mNadkt9r39slVJXgXIfTLpk+gBvjScFDmEGZMOIFhuzWhMOIrIhwC6BkxSNiDQJ7N3UhFiYp4GvYLtF8m5AvSvG3hvhuHk0Ct50dUSVXLhEXfc2Z59laAq0BzhtLgy2yumLw9MclGiitsapYD+2XGpFakZ/XhV7elSfOB8UsIj4cYOCp0n6M26fIijmvTBjt50xspXGeTk9Z59ypms1pI3354EynSrwH35AJ5tr22WMKlxNclCdMqlKwGsIlLfsBL3P4DzohzxtM/eIZGU+kL9xEzBGLkDCVTkrpqMBfZ0nwzKzbOjLbz6DcFLpTLosQGMCJTqfHMQ8X3Lu0rRb2i9T8Fot7QSN343UZuC7ZrWKcmb7F3/vWopjFh1jakfyh8lrXaPK3kQNphFbHnYuYXwvF//ay++/PP2t1rEgO7oYkmNl382z9MfGlDNr4bemb2qwUxYckzfztD5hRX0iisoLQ==
Variant 1
DifficultyLevel
620
Question
What is the size of angle x°?
Worked Solution
Base angles of the isosceles triangle both = 45°
|
|
∴x° |
= 180−45 |
|
= 135° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-I4-CA16-SA_v5a.svg 340 indent2 vpad
What is the size of angle $\large x$$\degree$? |
workedSolution | sm_nogap Base angles of the isosceles triangle both = 45$\degree$
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 45$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 135 | |
U2FsdGVkX1+RrM4EbQsvSYUHCWQTVi4nbrqveuSMER2mvb+L4CRL8PsSlwdSUv3JBccxZURTsdE6HUomHtavhCMR8HespCrvzozDqKfMmL0gprLBicjTNYYc9zk7nvuX7eXSY7gq2wAMrDVa51MFtwyjhe9qZoRgkneH4kCUWoCYKyOreBzY9Qk+tPiUdWKQnePm1v3c9S/kiv/UHVLUR9KEelxlyfjeGCbBsEbIGJHFqUI9reB1ZRkYrxZpJq2bsplfz7VpqVkPu0dS0TbgbF4xa7S+IK/mppScLCWgwbpew9BmMR9NnUHAoffjUl6Vq3QqvOpxaYXXEygniE/xlLkHrCmcJkI4QI6cZBqUZuRKpeTWfu+ovHD6xoRUdFbtolQyflLOBH+maLFONqXvyU5jVQqyBH9jeSZhYbdJqeT1EeVC0S/gnVgkABCKdoEbLhg/7nPkYE5nvd1Hhy++hEorULVrscLzX4okkMoqUGyCXZRdAFfOZmKBL1oJrUZ5uLs/N22022wSHsKNLO0eKg+Zr3YlsI9EHLGfjimmNhKl6CZGa7eHoqABPpEJ7fm8HmW0SzfO2GtN0FvXugZ3EBFU4pCXgDfaMq+Rd+H29/Rg9QWqICAlFfohUqRWt1eiCx6xp2WNmTYZAnhA3mfNugTX4zLPcvtRGmjbrie3/P6kV+1avfMq3GtcwozlnlvzAdhDROKWsU66lZrDVirISfBkVZ2TyIlkzWRHCojNQcctkcnOugRQU3FhO/BrVSAlePFFFikz0y3R/XJ6kRt8cBsWARgI/jeE8XUW89rZMDENcevdKZGQEnwt1AGX38Km6wJJLozS7lp2838NktCiBgK7VXDkiXE1QefcodVv7+gdM0a0jVF/n1CqBWCpXq13VY6KrCdcVh8K2TrbjyAdU+CdXW4Kf6s4kUkeodYtU7pVPpgh/fB1PsWE2wq/IAbrpe0CP81X9RGKnYfOptW8MrRcEWmh4w5VQ6ob6hUNXanRkVhBx0wxy3cuN3JGwSvSEe1/ayNvPKOgq2yzbSI8BxOKCkd69AUcPO+LnvyzPMBioBpMG6G03meWicRqlr/T++w6BVuVbFai/9NfLD+a5yN7/Hm+HzpDEB6TYZ6VmzH/oJZdycxPZyfqEcKwpJKws52JDqX5tfQNuT7t5WpxpTfk0v77QNnW1A0M4VCMfEqBaug4XleTc3Rd2oxyEyQNSBeYUJV4EaEQYTfrCDoADLK4Nz9q4TAGAA/meGsMdmAkQ3h1aomMQ5aPSpSMz/r+YuVSmyD35grRkOKkVfz8zJf4j0WHWRJjwzFuJWLwTfq65w+CUQGFyBZtcP/uHqLc9udXsmt/qiNZoC2W6guryqS3yZ/abXRx1+2ggjun5crUitgUSCFzhVtSneFAiT8rupzLaf6w9huv72yw9WeG123ok6BNFIi0ijBdUJleGS/CKGDCVVFxIu0BZh9fCvBIANBzhX9Y6y1THFgo1fFEeIlfoSE2scA/Tngy/eJUsEK7PwisFFYejymjoHEf5xJQE2XgDB1HzUNLtCp3ooWQKUfbPvztsxEPwVZDJf9F8py8umyx8yj3m+6J1rNTsnMF/WBsXKPBlCbQkjRG6QVW82yd2sozxjeyzhqe0WAxa3ib+IlFUA9D/DBNlixW00hai5lhPgFwJQWvpCAbTtwvdvOcwGISOlPmLOc9ktnBXEOyTGCN62JoTsXU6HWfzoIq7QaIkOtHWw5z4vyrFiZqdy+ByXYqQUveXF0OVQGmXmN2XMetgSltnbOhDGCC8Lo/an22249MStssqV8qYLFrlYmQgic4pnTRo9a8V8fqBvJBEpJFT0lI3lGEVYrQ/1h8Vt0aqYi99wRcJ4xXhIFE8UbDb6LtngSguIfLKSdvZ5Z4WrkM8VpgdHypoBKusuaV2dLh6OJjOujckFCbfCoqQ3Z+q80HXPQZKA888XQQmszISSNmvsPbUqQr8kHmkH0aPpHqILuLf0JRtCph7Oa6DdgKfQPkYlDGQQWOfI+286FkUwtuIa5Yo3rwk8ztugifetKeSR0Q6sbOUFql7t02X04luUg3A74Lk6CJyTt5bTSJYVqaHVDqQl3tN0UF/Rt/WuDUs7tXpxQc1ZsuV453AgeMHJ7U09umFdjE2YTxR8fX/HcQXCC+ZGFiNJsfEqWrYGohrsmNjUkeIpo3XCxDt6vqo1RYTK3Exrz9t78wtquA6T61ZN4+srYiRHdNfM3lt5O+Ml3rwFf+i+UTia/00Buut2Z8hTdHC3u5MMu3OdIZ746H2hZECobtVtUdRG6D7AN5j+cPX/R5ZCKh5NE6NC4Cl+CvE8wqBqJ5TjWBeiEEGQQ19bzV2aSRZFJ0AQyi3UKqQA8IK5zOIX/Yv2EcOsBIqrotB0/a8yPqMr5td+6IWQLAfZLnxdAyKKRCAn5iyfnTMeblXbMTz8RUbBka3e6a8EToMbxaCbuot6fzjrdADF6xDltcvVCHk/SD+vPEIF6DlQqTtGtfsJ72v81XB7IcQ1Cbyf8rpKO7VT6M5sm8QCxFk0zkOh5yDN4upiLO+qJ8Y3T7advX4QHY7rpgQAHLLAhUmCbFb1pQ1S6fhYVcmrZbzYaHKN0JgjEoNCxgc3kCU6QlwDe+iIE01ovesbGpIfdKsLcLRr8CnrQ3Rumk9V0vSNs+lQDqaw1lSnbdlASxIoJ8tF0lUxGg4YYF0zUqOjeuMjTHNEq4lOrn2yTXrJR27pctp8Xtf2q3Yn5SPmnr2h+pVcPgnVPxvGKYl2AbkOQvCrPFD0QrCOKgFy9AFLt2RxMHbcOORoDs1JwRmAQ9yYmYpZrMI5l+NAZEK6hFMBbRbmJlk6TKoragTqY8P9HTICOLFBuYgnBBuzchcRW/KbYDqvxCzOvVdVvqgMXqx3UyyfUnmsaa79ZKUcecdM5xKE1mXdY61Siz4NBg9KWMsQC+cYwXhk3PGh1ouEaJ9PTpc8wvKdJjmOD7CibNCAqKUYimV1orAcZTjwBk969/hrneMv8z9z6GUklRG9iL+RI2sXgYFV+2N69UFtaRCaVrVIC58vwHiN8sDt4tcTArVjgVCPzQlJpvsrgHnKwbJSlkeRle2vrtl1RLYVA8vWDJrYufagAh4f+yvEuHZ5CQ5AxWYPPP/IjXRPokOfJxWNjnV9siVYmCaYyeKScusr+SgPCdP/L/UWfrasXx4do0bD1J0mbCT81QejEfp8oBwtmW1p5dYvYxfTcLL/XvLBwYa1M2LBFIrm+o4ruvoDDy+OvtoUdA69oipJcxH+Y/udVhniYfhxFyupgOyNxc6WzJ+dkPWSTfJj83cU0Knu+lv9GIfGRtd1tYfRXKHntxGXDI5gA9DcIiIrF6UehuPQJOoBbqydQkM5OcpL/mmu3Zl+PrSQFkLqzwcvaOVpkQvwTSh6lWHHFNpSh3CcDAdC3ml8roH5H27XXCqx9qBSEWYk+MkOW5hFN0QOek5OL2LcUTbB7Dpfs2LKI6wzk7jycwsXlapPVRPYJ8ZiKSZci6+AtGNBqrmfQGsX+u+UKWrwZGoRtqNi1JsjGo0RCOQQ0SXH+MUmOHYMVBZ5TA/SJgrKrYsYKPQJ1hz0/edkcbR/CfwP2f9EZeCQslDWGdUXVlhlA6nq6s7XNQL5ZOQdFInO9omFut7qrkUYWnE9uiKmSSLmzMSCwCAohWiKhKWTiJmW0co9ucYOVpxIMc3YckkUqj6HfQQgPq07yJ+/onwqWOsQTbl2KslfLIT8MTjc0RqgdPXpQAXwomXabQJRJWayK5SZ7N3fkyw0q9vUsStpMSUtluIjKP8rF3Riu9qh4pHozR/XuUDFC7NFxjGfkkTths7QtU3vmpvugsU1dHHxO9zVJNaUDxIgiVbNiiJz+AS+58l6a+SUkuGaNjns/mK/bAqhHuZksajKtU0zlcu1jLrI0pK7ujpqYCzUBkQfEUvp9Iun9fWW4NZbDDdF4yuiv3c6ofK6m7Jyy7e6hG3jSAqyBlH9NzbuNkuyvg8L6+fu3nW9pCLqjDcReIQB7pQD9ZgEg+JGBLSl8O8M2hiB2GDUo6HhTOId1RfieCJ1kcKCJlpsg8tQnsUgnZuGVXtCiE7AIrXfosP+MDgc5nthth7QI9v58BMxxFN81ZmmWVmoU+Gn4h0d8CEpJVBZ4A7mVy90e3Inp9vwJaHbeB/4p0cDQZJ3KBq7sLgJX+iMitKcTzuxVKlUGs3BhuK9eGkeaLLArsKaiTNOuiVPRtzta7fu7edWpUKFFH8Fy5BX6JwbTxAwoT49e3gcM6k7mFWKDotFXDrFbr69ffm5ouHjN269QwqqKzkY+Vj6iec/nbDes0/4o5t1ZJOKvozkmdNuuJQuj0i4hLCOoPvBlIcO4atbBiwZbvle+nljszd+q6q0c8NMMAs4gC94Uyq1RQguCtHpm1JIrHaZiI16PA/6/oou5PqXb8ftpzQCy5zxadVYx+9fEkDKy/lvZpBXiGEmM553RWJbHbp4f69JuVr/jE2Gn1YsdjeM4sOew0ZO8pz5m2pKJsR6grozHYpZl/Ra+BDKC3gHV3V7G/a6QOCb2nFiL8xNtZbkzvoGQgUxcH7Nul7XlJDo0vPVcIDDbfGEqfZ7GQfWZJ5Y+G72dCVHEetXm/uMTi9CdCS/WPqYJgJryyq1Kly+LnN3bYO6EKhSuDbKXfX2YruAZvyhTjGtseaU66ZQ/kT67AYETaTZ1mdnL6nDFCIs1PHN75bmzRRkf5JWPAJRWPjl3Oy2wocOXNYrKWvO00FXajCcLhFmjbjmfqBit1rYKwOsKercDZfo71r6IyQ3pTPJBS4VIUDBIcK5iApJ3ENXRDgPQB1oxaVSQQ5n0rhQZeQJBXOOznc1EeJL8+eL+hsVhQjXrZ8jlQcfJ/X/0UpBvFpPPizAXQOnoOyTusu2aMdzrwoXuutBkIQuIyLWS+9Fm8ek3eQKcjod0EoymLd/slUQLMbkVky4cYlMR8PxzQ1TVLo5hSe4T8tFb0pQb5XLYwHTDG/5qcd1P68WZCyCUB0jxFR+H/cuFGwGaK93MwPJYrzConu+LErC+v519C41afDyPI/9pNlR5vZ34/vDxbPbAnGFMiW7uVoPocBwQ+g6PLz13467rRlwtaRcH3w1odSuEUB065YMmuwdsGVJy+R9eGI9xFAHO7n2U9ZtP+dTQXnDspQHthgAdWLuqjOsw9F6gV0R5ytzlbNlxD1+mA9bXF929L3k2REl0IVkkYYm2n5rOduFb7/pgwCt5ojM1aEdvkS3yNIvTIpsba8hOCc5BSp23zfLKa8l1Br/OKU7QSq4xR+LISO0u+BbWgE5HiaImHUfnEMuLjefRWcmlUVOMa7Qcr0nPQdJysCK0BK5rtG9hRRAqVj4ym3ZPhM6tm5fNCO7r9wQ3Anpdtl2+8i3qnXCrC50zFJh00oIslHAubGZO/vBVl0GF2Yn8MPwlXOg49kbIBu1fDRgWGu3uHa7MpJN0xsgGhWlRWTD/7kZ6KhJtFrxRnHm/SzCNF2XFduWrw4sJaOefjWKZxXtshGrDHdRrVvclz89L2CsCXystcgSa6qQ5zBNvdbH8P7l7PvLd6Rc9NPJwKRBmQGXt+xNEm9FjJMbqQzTcUTcDlZo8Aq9dJyaP6orJS6qmCGat/AKV5PmeVipWE66UyPuS1L2jceTeQ6oTT+WrylMsH/18m8SSm6ulx322PJSV1H0yZ35DBwhv9eBc4fbGNKLOAkN4pbnnrgnWvDJpyOWQJsngHX9jgXvPUxpc6z5wLAteOkdENLioZRBhXPuVL4KEdagjbv6ucdVtCNNN+oQkZOP5TkWkJvDKgfYdrjzq/y48bQ5tr8ts86jyCY/p7EgnguXzp/fwhFbqVX1QQ95l5N/UrAB5KY8vIawyP1Kl6t3h1XUB7nkF8w5kV6ngBuqoLQa2ZERPxkZtKlUbxiKmCbwrb/qewvVfknj1d4KsYDYVAmwxDBUOyU9zGA2+rQ50HIPMgroeK7dqQQoenQicHFK4+/KqvN356p+ifvJvXnwdXquBlokSvBf11j5L9asRjpSphpdc6pvfBz8NeaahMVhBuPD02OJIOJpu23DcroocgDRSIFhYUrmaF5SiHc+gesxlrWxRPUr2ijG2mRTJw6ZWbe+gLvhfHfdgiHUJfqbcEWdxRI4xchYrGQAMmCrZlL2PjKVyobp6WjhXXN7dFCSFFs2qtvc6Fho54OnGHpVWRIU2zAb7Iqx4vwmDOyK5QFWXPYU0znNiK9sIC1el/1sAZ9dzTSPQKkqjpkX5BAu4tF20gSGorFE99G2yR6ZCyXwsS/JpQ0Pm6PDVXQAvqMuc7Dp0ZYoPznOmjnvz4S8a1K/k7J3hPpNLX9HU4Yl87Kf1SDxReuukLiNTeN/cKdYf5JR4qinesbMYWwE63g8vZOcJnXFAZn7tBAcm2MuAl/XwH1aY4YaY0It8thNqMfsUVjyE4IyRVOp8Qvkj6uHwYGypUSAUhjcKoVtFL9MjbnZEIH3+y8jfkASegW3sb8LVqhCH2zYA9ZF8XSpkmg0b31mlMM+eH89zn6XXASj5SzAeJGmSYTd8AXhTkTe85s0ppnIm9XQkQUeW6OJiiCZi4ZAR8RGUDsFMwBE+wvWBG5M88Zhd3CsBI/vk0Zww1JQufbV5mJ6sPCDPGFbkpsDfqkpt7FsSUmNRVLfXPeN3YGGI5l8opgW6ZdhuKjxB8L84G4O4F1f8OtDT9233lZBzMid+I4CpKV1xFG46u86rIPj67ZHXsribMiAebYe0bKhDdsk3f1hn7jGNOXnuhDfBUIFa2PP+G6qGDNJP2pAh4SMy/tBfDJYVZiMUbAUXMhI3HovMDIGW9xAQZtcFVwV5+5yxuSvaVF+lU8DgWuu6M3uPGKjfKrQpN+C3UlSjf3Y1cL8AIohahpKDBL47/q2vY7SOSmNd9AYNyYZUAl0o0Q+yrBcsKuWuhLJ5N0JUGXBnvpTgmKruCF2X3WTqfIiH83Q==
Variant 2
DifficultyLevel
619
Question
What is the size of angle x°?
Worked Solution
Base angles of the isosceles triangle both = 63°
|
|
∴x° |
= 180−63 |
|
= 117° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-I4-CA16-SA_v1.svg 300 indent2 vpad
What is the size of angle $\large x \degree$? |
workedSolution | sm_nogap Base angles of the isosceles triangle both = 63$\degree$
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 63$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 117 | |
U2FsdGVkX1/4nfdYqjk1AuzJ9haW+9q6a9grQE/76KWnslB1o/1OdlToZ1o9vK1c2j2lbjZZn1EphTpqxbj2Aft/0ohqSIYDr7h4GnXHuixCunQ/AFc3fDMyT2EVZ29fVnFtbV7E8S9b+YqPeRGx9HhW7oXXGDAXcyKYAPGJ8uEr/fodsFQNmTL8bO7rAaspVUz+JEfhp+rHa6b2TLgLCgLk17LP9GcPF6XtkFazZ/H3N7Udpm3y2tfN1nTgroO7qu7NFibX1spJIVB/6wpmi0KfO+wOu2ksQyLZPHgqCU+/Yb6F8eUWU+i6Dsg4+1G4fmhSUmu/tpxs+igUNODgQZIHtqD6ZfK2YyxXkOH1JqQOOPElLPGfTVy8B+YnjcbWtTdVJvLv5PkNcSjNBJKTjTgQX1LEzv/i1Kdvk5HFD2enlQkmLvi0EsVYMgYuL1z1PLbPyWBv0TMqMUXpWpNRY1huta8c1f26FPeRzkpbdZZ6UI//ZlSXVha8V8wsH2OI7WmfCnPk5OAItgaHe3uUSuGyNzIhhWgqiNthapCJ+nEXMTvWGUy6HAm2Q0DX5ySk+gPaQYRykdN3BUlvFBijlrs4NESrH0uOBJ+TIBl7jY/8kFoYup0UJe8jwt1Vjv/ZAWOeKmdi/uP7MoXF8strWeROf2XgzA0GL6ik0SSEVLN/3h89ovwV+w7R1TsTRn07lwN8hmRn0Fa5LwrERcQX62fzhrIOUp8g4r0nutl0Muk+p1Bm5xyIw3XzJkzG0QT50rEUg6jICw1WBbYbfUQM5eBoxMxtQxXAuOXf+ZyjizChuOxqndF+6BPvYDYAC6Xtg8RAYnXlayQH9rOZ5Pd6uVHWq+GziZWaVeHcnfrTy+rxqwppgyzt/C9YhvjNlt6XDg20nLKJH3mMhIuRAqmIJHBAlv/VOsltu6yQGKZ696H+EixE7Le6iPPLbggbQQ0BVmy9l9NaOUeYBBj+ylcR5SJMOzoSy6AJd463F0a5e0AgaCO7buUd2sHU312jLNY7Nffx/8n6TJjL6DovGOL5RTJ3lz7ClRcOt8Ib4nsMVNIeZV4N8Xbseb/o5uRScF5Kz7AMdNyTeW27oIDDoc4bxDL0RVM9E/5k5D4swA/eWJiRpCs58BssKThn5NWwW6jvdjDLjDec0xa6WEzGDp+VhVbPa97YWpgzt4CfJjHL8vrFMDmUEoxbs0KAQInrlYBmbHdbWSopESAyPHwvbkphfoEd7fcEroEYmA4S5q5wIRr0zlu1L0Vm/Hg28bq59gcENMTBkD6gUiyiHLb7Q/lCpd2Az4v9rz+2mXiG4LlL6aOc7NBDcWdMxDCHnOFmcGRi9KEseuENmNSRk9wmr7LYeHWBhHn9vm11zybGNvlGXXt35rnNplwzvfKvWauAsZ3AM2vhA7iGVKSGMu8juyQDHY1bqauWz3nErBbyO4PBLEjo+x19DPoF4TumrmpovAnGKbVTkvZtws6Ypr1/w31ynnRpqSghqtlAq1nbGMix5NzhWmjg4xC/HLht27AfZ/VKtWABsIggI0bOfOifhn33+FR00zAyYwUOgxiqLXLN2QJXOi3x7F3NoAwJUM5afI1Di/PibaWIZCXIDi3WV0eAay50QarXyWXu/wRYOccUZJrQUznBXZzuR7+5W0R6yeS17wnMUYJMSya/CdVl0OsP1ZW7G1a8yBJEygpC3hVpEuv5LdeU5qPgiJMZ+sys9usc4rTXcljbvIuitayTDl24A1fpatVZjbKmTePLoyaRVAjc8MMldUWbqaYD6f0CtyyFEu5At/w9FSb1Cf7FeJhTUDF4om0L/NlA+ju3XzcqZxd+oswBbEq3007LScYbvX8iFhat+qhoVy/0ECSTryIXtO8GhpGNK7eLMtnGeyZVTLF8eGKNeZfF4DrdmCRv0XOfKin7ho1OyLaa/f/hX8IxVnfEkOhkgEhuJag3Oj3c5FaxdPo5XI/pHxaXeQ1TpDVZ1+E1WwLIabZtMs4RzKQKtyQPjOEy4Es3D2vqLuUS4SiqsTqaE8xIqUnM/ex+t48ic00L0d1cmr4iVIQNqnzjANOai+krk3ggxjoqj37/ijSg+ZXc0wrLqjffJTyr98XbAVgduhQzNR5+bSkiESKrL9BSFB3fmHN47Oc0fRXXxvBVT4HCsq0LvHX67gQG9iyol/kEOnkacWOEZ6M0ey8Mv2SRBcbhoNXr9r2mh32G1SjLniqkB4NXqvLSmQUBcXHG8ZWqrpmVCANXLik5dGdIEChaKGiNM3z3DoFddo/CJQc/vspxss+UMIVYGXFpWiX/iQb7PGjSvcwEfTWnHwphqf8KgivHKugxyWOHk87417CjwQDrhjgeoQP71OXuKd5qw9SyiGOzm30W8pquLPRTmoVHwwpBXNlMUO2Md6eBKqTVZ6TaXjavHaLX6Pf0IQO3+GxBHYQzoZKTX36jlGlNd0KL3k/73uj4fljzcURQ6BcAC7KK2TprDdSUoG6hiZ+0Qn5gVmWE/Pq6aTFFpRAsZ1UGozcR0jg5fjc5PzeA0CPMt8VCgo4W4sQFm4iAxImtwdWN91yzYh7tqv9dZ5dHxIIXaMcWpfOyYyctbofjGFvYe8/X4XXFrAQ8B6TH5kJqYkfgoYziUjtwKYhOaEmhAETp9liOL2zdB5zwCy9zqGHbk5NYxLHSrG6BQN2w5ADwo4F5Ag0XZZ1utl+cqgHGo0+s+YhocJRK6W3chv78kXZXCuKYCU1YE78ARDnhq0W5fd6x0jhbcuZwjtLYnJ/zYshMvcdhGGjzMpbcfAfPPXDPDlneTX1bp1wtPoYSPHJPVkHG9irFjH7Xz0q1281h2yym4NONNhw/9BC2nKEPOyMVMb1LXWQ2NmpHEXSqngMUbxVCUcVjN2wfSmT9VZ26/tueZz0BaubvfioEVBABc+I7f8k06G+H4gnXFjh4aQIRv6S6bXJU8i/Ktgj++BEPQUGyt/LOHyAh4QEoj9o0h4H9YtxmsnW5kbMr6HYCJbzPF+v8icCDI/u1bYy2vibqfbmGDKeO5kOOuTBacw1FkUfXWVFghvW+1CRMjA0HMqY/CLk5Up9rCVnd7LpMUPlGXzI4jGc+hU8slN2tgkMLX6qyHCVmzf8chAkQ2Jxd+FVT08AvfRu9hIpxYSyzKrZQ7Z9htpuOc7jOTn8G85V0aU5E7BlUiOJLJGgB6E847GGMOg4c0QepctsPgrZHO+/OQjfEcw+PwgXuys8nql22ZsEpPs63nDZoIpTSYYAN41+Q3662LFSIk886z81LhUU15S9wJN+71664Rr/HjQ0Puc+oJP9uy0knU3KrttSsEK5XgEh6OK6KJDqgUjCMhbeSRV5ySYWwwU6suacXis1w3uK8M2LhoBUpjquEaXHGfGrfzRYnkBfJVLeei8jKOIU5Vo64qvRzGY9PF4Uf96VHLHXBMhrT5dOQlLiY89/gEKHpw0BhH+l9phMmY+LmdYPBgkYisZsr+sQ6zhk7lE0tzkuO6HCXh+wxdNs26trtRdVWqiKWArBqGr9HPBK+yKseZ/QD61nyXE8rRrpEq8NLgYoxXuPETXyDCKSWliBC4RRAUKvju6sezUX6ZSG1uYEY09piT/lJVdLMFVLpEYy+FW68kMhUTGwNr5TBKhGR4dSVa0lr4bLK9j/1GDIrxt4yaDeIUxxMRiiGNycCdI1BOnSapV3S3zKBLuNwznh2v6XrTPE9t1ClE3g85rBqijgTgFaL/EHdR7iFHGYXfboEgxbFWcSYR2HrYmaHK0tSeXqMpTlinZMr9wf2Tgsu2amHMzcn46EqxKL9oIxP1BoFwgB6IP/c4vIvD5kVLLf2g9kuUMtOvOwcpkaKRARQqxMCqVP7itF+KeHCcEfmyeWrnOCtuKAHUXwlW4IwKKB/5ZTRI7YpPCjxeqF9gZ3rVBehUw9xNM5p7mHaGiJoxAvywSEmPPRZA3nNf/YSqe1QPWJorcfJqlOaGEdMHg36gwpHxCGA1WawymyROURjWLYT72eFp1kDfVe/nM41/SZ/ZN3fhUXfphtja0A1x/JRaULNt/D1PuqPWbTDwLdPKaJZluFmuNOoYl9tEEIaZoKuKWwpPzMDs5E3W/Y8sL6piwjGxHyrhcYDGOSdHKuDHoA67LlSVNO16qql/+KQg/CulqaGVqKuhK4hi8aqc8JX4c+gkAdIm+uvkXH1HrQoqTEBX2shZzCJW0o7KN/KFsSUGxuqGFt4wARjoPOjkpEcSrk1GUJXoq3zynTCOWoQxCoH9eYlQQAQxUkBkMsCdxwCsId2sGiyZ5YB82llSW891jyqzDzMErBiAOUkRMgqYGN7WmSQfIn7RWXV9HYQ6uW7cBUa93eu5sETGR3khb6OAPQPKG7Rb1l3qgli1mDQg1oK4QxUocXVG1sAc8Yo8xnKIFfjYsLk71sVcUbYCmZUgezRuJJTeIIid9W/Zv9Bd4ZsjYERMCS/BQG9LCEz4l1D2PC0Ctu/2k3HGGjP+rSwwDyQvtZBmWSC+CESoGkNh62O2sgLZVoN/hoZKudOPLx6jS3RdGaFTMbXFwh6uF6a3OZp7Cq16Cx/dy5yhWv9PmQZKIhneUfslH27xKQMwCaA/bxVKYp1i7xCMBqD6pu0fkJjueUg51d/TbTAcJyG+WvQoM73IUNf9yd2Gyeqodcxm2eOGhr9/WH8SbJ0x2BP6tS3plOJZUGkXg7o+d/m4bYJXWiK4UM7ADztZIQkOYndug+VnSNrkove/OUUhY2lr3lSkOOIRcApl2ix+t57RKu4dGCGlvpW56M3SUSDx+QLn2s3lhPMYUWDBXV1Dv5q0L4YuaGe+ek2jtg4DixOjki/i9FTE8NasN++aibz6bzp9JJMzx7fEmaytGzvLIs1KfiK+KhCR6SJ2LKUaOPlTdMBGvAne3p54NK8RiE/mjRdkET/72QjDzpRWpypYf29COQlG1CszzoUOzSpjOjaagmLt0tS26ZmE8EV0nwPnSFAQLNOBIilDue32X2i9kKXFOOXkUFPXfXLK3agvQuZ5bi6roNHKIkit+fX5rbeiAdm0vjorM7n4SKkCFol8jNxY6hs0euHzWNl+Qv7T+eXUDZbPdRdZDSSGn+dS7s+konHIYIsq/eAYK12dMDDwn2M3pjf7tLsTZst2FKe9EmtQ16ILfX2sMsTAMR5zak3hgJFwzIzZMkRhPAyUSelGzZkNdiQKM0V+ANf1iZZRTHOgqHa4yraFEcMmHr45W9cj2OHmfXZ/gvk1se1KYgbQf6CSJ+xokFV4uwVDBLuMo47S1/4eN4uSnLOd/DOr5Owwf5kExgc2rlQ4qkYYhVGShJn3zOYdWrzD/T/VkcsTvmYY0dLYMkX/YAptsv0IiXMbrBpZND893JlaLag/IB3rxOPH9TDNWXXAzbOa4ZCqwQYfngTgMJJQ4Jqy1BGOoE1a2+YBk/Z+uwbMiPQ9vz3Y+X8AJ/pGRNtpZDm0Q+NoDTXHmMgjjGN+IGVSW9JN0JFyQr3Vy80iYm1aJOFCLoizVbVDg9dUIFGzHwQ5/tMtBq2uzt6v6BGtBZp7roJgyV5EAsuQiKkdJ/ly34x+1LAc+gH73QwOMf2PwrLEYDnRRGHqAsqWFyThAWNSSjul8l/TPbqSpeT5VFBwlKb4KUddoLyMBxJakT17YxhZMQloFKUQlmup45Az1y6mzwUMkNy/o+IoI6pg7ySvuecrWgtALxdHa4VNgcGtoH6cHp3tBzeUT3dRLoZ8OONxGh66X1RcEAzqTgjiqZAI3eqHTeLeYxTNC7NZdHnikRHBM3HG/9+5YYIxEf3OeRdTGymM4V5wH1HtrZn52jDcEGsxXssa/a9q4yntgHz9u6i08a8N1JhyWqrHZWcRVVObgXk2kBAI1tpKle9xPizvSsJXyRkDVtOb79KnQkM0jSZzif6xrW0GDvuKoK2ZEo9KNlIay26cuVi459rnyd/p24isAu2KROHCwRRg8f3U74ndU/zGzTSeXGrpi4VsR4hdWfDBMqUXfpA31vIpu62/ulrHmjRgoNo7EgSrRs9pImqxJuSro/2x/eOCQjIUbg4IPyo10k/AgczE98UmIWUexCKAUrJzDgbKUkkI/EXBtzxeEKdsbXA62/zmsA6U54kOVnqdOHhK2P8eiYOKhETIy4J7KUt5QdlBzS7NYy+XhMR4d0z/lvu22cMKDcljR94tesUU9kWDpgV/0V7SYc54ayjpgUR37nRVmgmwZKSpcSv8hdhJVyMT9wfuUuj+ZPl3GuQvS8GfcgnOc65DzSmhCIk5lGWigYzXMuCVX45sy7kqZ50/0XkKirG4LyLq/njGMkXAep5zP6XsoACt00QbR++L56XKFC7PQ2TQpIVkZXa4rd2UXii481UEF8n7QgZU/jdutx9wrRsR9VuZq+r6H0hUVW/y2q3SUTBa8iRry92SGDtPVQ3U9qSmN5rsF7E116CjPRJ8Nc3m2yNFlBgYCvI+oUBjL9TWHDxHZducbwWt7cAm5nEaEh+lXTaOjDh62iM34ITLnqbSWEaI4eaeGfnidomMWJ0bWbBeBk+0uU7X74kGYxs0bcQztjKGGGLWEh28xnTQyj0HDGaeNqIVaGVeK0QeSekRmdlol8/JT8zVclScgAPEeEci+PggU+dXy/HAysK6QSDKqxuFVqyIkqDJtKAb5Pe+H5PNDCLwrNtvRKZ1ScuHrG7EopzYld5uP5B7RpyCwPq5K7zhwxVjSoKc2tPwlFUFkMsfl58kfTww5hK3zul3Nt0SIQiI+sGAok8Q3ZArmLgwsY9m/24a9KfH0a1ZdC9oHNo+ZCffFzGzF9eTV65+GjysVp7du+q78PUJXUsgHSCYErNgP1MHZzXhMOFBR/yr4JhcpBWrCnWYi1fyPR94Bc5RuAYeClwiysiJgkT/I/eHMJHcc0xvL1U7XRWSBVpE0BMFidJFAmH1196sk7a6I2W0JXmUf05k23Zymadk7p4Zde9XqDtWK7wFuStKcXREJcYs35XJjbmzh7W3Uj01Kj7VwmckmJUIsBk4oqv3oN+7oYHyOKrimjqMs6IfIhBFB0RNPH8JiRFi1R5MxOMsz3KfU/7bCBiACxPlm0VLMqjWJjKgmDM6obeWGqIYzgF/6c6QKpxrwsZDTu/TPdYqB8M6gNdcmPN1lv3eQ9fT6qA9L/1BAgHM2SkZuAmfvRcOvWohCRrZPgtPIqy6cbnBRU+oqKJExT6zKc+48avXLLyyDKDzLaj/EzaoJOJLkJ/zgTCUKqt8EtfPX7vkftl1Pf6JyEDZHYi1YK1jIKS+7zZJxHM9TMbR//EcFBaCM/jnT7kbua+ZrAWjl+nT9iNvQYkGEOj6cV4m8XFcr+VfYE97/YuyzUKbTR873lkLS2Z6BD2iWhBKzbhP4FAg8C38g4VDtoKu18XNYEqKT7oP9clYCjLOemD7W2juleppbxVdy4734Y+mD9s/c4BeCwyo3l9sARRn2fzd8U9gTRGOQksuGW3WNx6bvZ99C6+Eo2xV8EU5Q==
Variant 3
DifficultyLevel
618
Question
What is the size of angle x°?
Worked Solution
Base angles of the isosceles triangle both = 36°
|
|
∴x° |
= 180−36 |
|
= 144° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-I4-CA16-SA_v2.svg 400 indent2 vpad
What is the size of angle $\large x$$\degree$? |
workedSolution | sm_nogap Base angles of the isosceles triangle both = 36$\degree$
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 36$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 144 | |
U2FsdGVkX1+U66DfOl8326/UYlD6/c2bsjCroi3xN6MudDBkll1fnhAAYWFBKnrMKRVsBYukVnhAFT4GYZaPhpBCXDSH7kpFURSe7mgQRpAzM/zs434LRruwvMkJasZy1tLB55pAWLJ7Rn4xzTNAWww5RmCp06e8Qs5RcUS25t8HN4f9LyHanrN7oo3e5TQ5KtJFbsXbF0OznB/vzW6iVx3N21naFxIJgehwBOmzx/oCP20duzt7eBpHlWiEFI2+W5ueHqZrHQ9m03teP8icv9qKsXW+RR8FC9yChthKFfxy6NyZ72UeC2lK/LlluQ3LJaZDZjxTxbfEXWE0fwFYarPKPu54KIQhmk0VdDyunat0sYElC3mCAQt47Dh7qIN3PXHlCSgb3f0BiSfcyQa9Bx0z7BuB1sul+h/0nknJsEkRP7GhjepKshOrceQo9cmO8ZviMxIoURUR3xrKIRotPlrQ/OVy0I65wkHsybDUw6b4f2o5PqQTK06CtXSN1I9falkTzQ/Mr9A4Bl+FdwkllqdjvtmW1/i6POZwHP6dmFOZrBalNDFB3AFpsvn41wWptBtPYtjkpRp++SWwHE/wgvMcOUICkcmrg7coWKqQEhbujMSdTlcVhi+OaqHu3G/phguxd+9VMV3XdFP2hYeUBt4pIhKtt5BHMUfDyeFauFfAUvxcouY6Khv5pVfZKAGMMnvj/SO4sonXk/5JhUOg5jXtNcNNphYQ8XDnfy6b2zfRI1E1i/8dqrd4wougo7wIRR0BOoWEdmkcPMsYUgms1s57ABiZPWDlU7BjA0B1OiJa+C9UaHpvUXbc5UXumd/7vXz7ALX38R3yjPLayaplcSlTgCSExGVIBD/CLXpK3Nl/twt0wYfOUzEyiG0h6o8DcU3eLr9Nx+Kl/hGvmsb8KOdR1hZkEO7hrroEuz3Og6qP8esWcBJE2Y8mL4ukYYOMP30poVSoR2gSubxIh8/7JKxQn4fZI84bXWGdpEKzerTRpMWDsZb19Yn+hXbvJde5/wKVdTUBb3Tux715jrPFMo6MI31r5+YwznaBbVNueHtHVm9r3rm5jbHcl7IvDVis6Ki9ZvdEhv+S2D7YM+0n3rGHunyXw3PiG1R/vw0yhZUKYuTy3jUZF4UH1EIJKfpqrXgEMAeJBvL7KMXIg/ltQyDyXCvjk4/cgPQwWS873lfZbxDloSacEb3y2MiLXoBC+1RhoWMIXMhk/9SLo9xDrcwvuuqL7H8Yu0RGtZrRbYqASG/w8TSE6BmrZX3SdwBQ4+eX6AUqiWRj2LubL4/gaBiJE/D2hKdbfbW44aLb44N1nOTW9+dSm5WZE7Sj3TrrFH5Ga/zz1qHxt+9tcz/l7Mdw32BDEwYAMnnv4QE8jS4uUhqSKioAKE6hmPSmP2MvjJ62AXCMBriV2TfTCkrDxj27aWtGVoJQAVBxXkLr4j3dxK7fdMv7Ve4hGkOxj9k1L6pzkBRTSNsA+yRdfAOGJTEdGATVxsERkzO3MkbzPmr3HEW1V1MVLfAbbsE/CFpKuTbK2lJozHPtRac5Xr+Zq2jei7LK7hjC8KNriqEveoR2JQs6scyG5rh573gbR8HAYf5W5NMUYLmqlXRIyyIGiEs4O8+zPAUkm14Sjr1zOTF4FurYejQ+jY7QuUVdt/rJNT5ajNx08ujongJQ0Spbzqu1ONgRx2dgnCnaEc6HIgl4zHw7uYPzWQ6MsDxIv5s8/yGD8ZP/czhCWNIc59w2zlQ3KYmdClq944TmoG7d5c8qlXfW361ZnsCerdn3kvHb8UnvEoxAJ8//rI+v+RumO+wrDfMLQpygmNKKIo+KRIVmLa2q4/zRKpAxa+W1FuYq9A6mgvTD3m6E1liVCfMYwEDx9+VcWKZqkZRHeThtletngQi5Z3SNltNaczKHsmhBZYhx5RePdrNMMKStmO7R8J1d9Ds8bC+keo3KpxePtJigPRn5EBnQJgZozesgAVMXrDsXU/s+Qjpvgbfsk59exazy6KguekmDMj7gEYWXOP5RxENloc2qtF+F2yy53VFMQqyp1z8YfmI2Cg/XnYy0D17N0iQGjV8cCA4akcEMFTYyYgukO/ymrMzvI6F4obopzoYAwBiNZOJMMYWhUeLsuJt5tTXPZeYlAagmu8dJ2zHXq+wbuIH5iVhMWBtN5/o/LPT8LUXsGeKoSZmfXwVOxjYn1eabvnECVYBhiXsIfCA0S+qskYDxlATz3uyaRESee0ZpSvqfi1ad6L5JmeZm/nRC1GFHcE10rNiQnCWVGpDtGcbILo0oUNp7MlmF2KAGMR3KSXe1eFOJGx/yXDP4M9a7SthmfOi5NGHlWHOvOCm1GPwsHR3c2ijKxUUiDaqCJaxVjCe3MNUGC1skK6rveGVvai8hvg3uOZbDpXByctuqWDr132+li3GHPFyrOvR8XOoqlE8MXI1wqC4U90GDXdL4CGw+4TPIpz6mczQKn7kae9ZBAwr/q1OoerPpZYS8ZEqXUjYRH48KSjRakPsIeqr5Advgdh/2FOsRgf+zfGD72tx1LizmXJKYyiCpLD7LPbzEOJkEMXalyKMC0/QJJuCjqzaAUqv53JLBJBP8cowNHu9r1MXGN/cUDrxCYlLup5aMP4bAPwGNXNbpX265cdyGKGCJ5BqZnUr8ZycRjLn2BBUhcRRG9GL13ajchRtCfXe8rQZ//SNi4aSEVt11oClSToqLJGjWYQ9huKEnyFL/kqKx5P0hb73QANcdvv80tN9wDdDt7A7d1D9E8IiZAtFMOe1/eXVr2d4VZ9FPCUAn5kxuEEi9Qg0DJbJ8IJlrhmhILSgpe8rW6Up00JGhOPFw0dNbZLPb7vrIBjGGq2NWEWc3MHWwuJziDrByn578WckZQf4BNCGhuVRZcmzsI9+dzz3UcktnhWQVjejhFaE4qFHeT2UOCEhkXPP2W4W45INa30AERMvWd94ePI54SdUliXA++WTROLvMrSILx2gh5o8rb07VkiPysOO5VbchvcGi4rGEvMKGU+h80DrIxIXoxFVzoyrChwV+KLr6es2e2Vf1WX0xMRM6JZT3qHPgXw5ff5sz0feBBGUYtUVHlqpNW8wJ1DDjyp4BuYrAw7p70VPD0/bZXAibwNb99XtkT6ci3Qhfmo0dD+F5Smjh4u7LDhAiuXyrjluZfUtsLObxB9e4DdJuwFYTQ91W32tRnnQBda5r4bAgsLuk3QbFnh6pD7ZcNcilBkwPEMbXtCrgm5RFp8pWhBOp4YWagm+u4SiovQclbZsCLVLTZe6E4R2+OmkADSsb85z1iz9y6D8s1ZHoX6Faz7VdhNXvREeqZK0CfSf7Cr8sriL7WTaOfWa+pKkPEtboA27obTB1H1O/vyEIPhjQCZAgW25TNtUPhbRPgY4WSv9jNDRfT4RD8EPeTRBOCiuNH6NqcoGU27WN3/A7zdvTu8i53c21cwUVCxW4i2FoMWXzV402/DYjv/5eLY/iEO7ZS44z6uQdCzI5/ywgy9CupVg+a1AAd5aQC1AYqh9xEP3HW9Vm7S0M8Z7+mM7h7WX0v1rVFlzAgCzobYh4QTVqcBjBmb40+k2y+RJVdVQiw3FFmJmo1ACBlX+HbkSzYJxg7L9ZRY8SSgH/hk8JEkfNeN3BHzqLlWBHiieiQW3d/AzHI5wmYxP6iVZYwrBBnMUs15Q/xeuIQBvI+5alkrl3Qdil6DAj09+g/l0hTx7Qw9KNyde74yguIyRA4+cj6+GQpV4V/t6V635G43NlXeI9+a8naFoVTgFyv2UKHh1xH6gYkL04UXv1DlZ+L5v+r065h94hIyRD/ScdoOLa/Ct+w3FOWYhQj53S5H5PSDdqTKKQNYqge5OWfecOufdHRsR3EzQMhEV5r2Ffv61VXaFp/9wYPi9lszJqRnfLnbfH6zSsnijHVwgJlp7UFKcDMthmlnwAweV1UhZN9SzKveV4Lx0g9MVRh1+3XLg6PCT7zBEiO+6nRqBWWKvhD9TFBhTCgj1u3F1F5pSZ5wAid69nVmbbCADAU6M5VHzy3eulEqRqnYKj9u2MHoBtgFQjctwJOvmA8/uKVTL5oWQg9ZZCBjMsPI2nbAXkvHjt21tvz+sfqBRsAPoh5fDSuRZl7GTemmUt87tlljk4GCiFZkJy4KWwO5DeqeoreV9YsOow94pcYrx/KVzM7uK8pWw+aq+QHYp9yF3JTqwM7npOocXSyWnn5WLVJTJlYHtS9h2VCs+8zE/MakuUxKCVHUPnTvJtRy4mwGuXUErFnavppgY2mihf0gr8vThl3nuhQb8uoTpfgLFbbCQTi/7Us4cyUb+v7xIH+7gt77JAtPr16FHG/jQsxLqq2bPpRGyTyfZJ3xFisA4X3yG/ouBF8PZSwVjYPGDIcZnwU8yuk2COLfL7zCofVBFWJCubaa0haemZDQALEtC65vrVpI8vUIEVtsRZPPZZRmDLFXGR9u6mpKEgfzBoGRqAd7R5jlPfiG5hbErA/UAyH5r6UtzJOjVOOu5wFk8b0FW0Bxzn067XzXJsOWBVBEdIIq9Irp6jT7qC+quXUyL3KX+blUhjSwdiM4Zw2/kYvjpIMM9WQO3pVJaQZNY5yZorAYHoGwikQ/NqXUjGIYTOBe9krpLqp3dRF/YbYjc59PiCOnn7LZQk0/pLznWyYHn5n89xaOLSlbRZX5eJJSMnGGCHbon4c2DVszrXj1nd5ViykYtEMASHMnHijo4q9AJQfQFl5m1zPt9kJhhMfasa1QBzWOizVyOpyXaibFP57LTpw5tYHUsWAgTmtaXPueyBZrFpGAuPvtiw+8Awz3r97LFKSCRSrwEawm+CXk1PIOpjBmC/ogWJ4nBnsVrMEkzWKL16S2KLLzUNACZkI22gKydOLPrZgx+4DSJxkW9TULkEFnxx0i4SbHVQ1SDw5FM60vSQ4KCX7B9XEELuUbh8O956xRDCeoFaqEUJ+mcYNS1S9yYXC1i1QnGyJW4XRJdhigNQQPjUgiyi5RQSfpZg0o3bNrK6nl5EEfrN1PFmb3GvI//o5HXre9+oVHm0xxNBq+oHAmCAnWHPqOZK0ZuZkj2T9pFomFLNKBc5IqOsU231bgbXBYbcl2+S+g/ClSRiWGNzzMN/2fdE43jcvBk/umDhl7r0d8gR2Z7xMA2z/ra4ygnRSi/9t/kBYpvshcSxE9Ntjs5QqOhPsmbs15c+ev+5YalN1FSKaWP/rjFgpxlGUuB9trDKXVILM5oJf+H2jb3TGv5UbzRrbAROc4hBCqmrJG6yzXkDW3noW7bVaP3UIJV8ZWjDMI0Uuz0Nd/NBqyrt13VS2a9XVhhtQPBXi93r1pMmNoWIynggMWTg7ZOeWIPa55BCDNXTFHKsJxFYvBGaRvVR7rquIw/lpegO8z16c14XEHGXjEWK52ClbDLhcARWHSAh1eLSEWNmOuUXjFyh63rGg3Y8AnMO+8C42/MKtWiTGZOWFGsiYq7Y36V9hogbVXtLVLEgsxzCgA6jw1/uOiEWpdiQNy4UJyiROo8+l0L8JNKp8lMXDJ1YseIjjAKEqL/023uVG8tLfHA/YkyoQaDMDuJd5757KRCFFhZxVQLymbe3r/wl6AIV4T1ndfrqR8+WF9illCgG9gcxyLmXpmNFvSzf0pORn4AHn+T3Pe1/rKEU9V+8/2TxHE3Yr8qv+vLRyvhwes/amHTMNP52pDZOORxK7iNfo1HXypfC5Xu/8aTlMeSyQvysQlJaI/wGHk7XKfwPjlMZFTfSuX8eV0UeJP7B/hZWVeiuTQOKSXKQo4FsUDMaNKUNxDw4CTpA26lulJdpu3mZLO55Vr5oTxrsOH47PpnntHhdM0atASyNcC0WYFCYQRZc59kuev03TGPZvKcHd9LNkb0RLRQaoOW/kGIBynPQnDhyjyOqLtfTbf99GSP5xlbZUbXzHwfFhv1kJWnJzk7SoENy8phIrCHW/ytUzkk/FoJ9PjT13iLIKcR29S3ccdnrjWRLG7VD1AO33Ecv6KVhSX1mIzB0yRotM2ZkWnq4/PE02qFHfqRdYq8Ytao47IctIiqUBiYvF0lbF4sLCCYMw2T1mQlKSl5u9lGUaWOqijLom4Q4WP7VjYcAevFtUdpgpLDJLWZ3HD3ijNO+mAXG/HKEyJ0c8YPNat2cMnBstYaVrUi1olKdIIQDp255bCD8MUVAzN6oTaPw38lGaAEs2BdWGCsm1g6IgXcF//kupvw5/wpSvOZ4IfKwWsxDPY4ELbuDjNsqTIa5tyhCs2eHXzJIewevpY0P++FwZ5zJyTDkPIrtyUi6LmaUcAPcjUuzI3wCXTZ+RofAuhpBJ/NCpF8AfbH7BZCIViYodkdNDsRQ3V92T6DFja5uG4gvR144DOCMSJmHjCRmmTSYRqFYgaxzVzc5Es9YJdw3vUazeLIJEi8zePClEXsCkZRFV/ND3HEqr1KIQpXPw4cjv5Qn7mFl42iKMXFJMlj11VSbhHaHOpdYcgRzkzWOT7mIcXGrT5qkWifG0eb72gRvMXOYzJJloI2lYn8UrT2vDTWjuufpGfRJmrSwkIwaj5qw33swPmWmp1IS40CPaaqeRxoNe08QwizbzUmmD2LY+k7WwQ7zMg/UZ9Y9iym7WKZU4D132U+ylfpGyo1Zz0bMAa2t1YGHn9bxYbtF1kdWmz6Ymo4yiNHYLdelaVMhAdQVVcejbfAKrAFpUGoSNej0fp+ypRW3EDN8/jA21psYw8kQJo+sqIOPXh9SbbIz5FFHTWIw9nMsw0aieDAnYUJtJE7SZcs4RzOErbcGWEgGDVciDRHdU0lUPnVXID27FQlIsr8DDxGV1cb8PBap9Q9kEp3OvxU5g7mfct/ewbIzAFvh3E8dfiYm5pMPQAL1jqsiF/SFbsL3iiEaVpC2Z2BYPX+NR1kQKsqIKswTCB2uhZl0gM7fwNSfe91eVmWXi39uRZ3avgMnQ9tKcvK5JDdBmgIWX8ydWXMDr6j90t/9c2+PBY+LgG6Vc30xG1x6zpRkqPy6twj7VEZsjYm1kgfl9A4xc80wQduUo1Vs3Su5/3rqCIGI1BELNxScvi2KZ+A07Q3i+ajDKuE/l2v/F5x8ts1t/iKJfor9BO/rl1990soYSd1YA34KpTh2PQE2SKARypilt79hqWGdKRkI0OUQHS0qRtwWQryH3ZlTkqFw4c+PAVudXfCreLtt1Hk78VT2GuGvsTrIVoxcaRTvP8UfPgR8nEdZwwTLh7A0z5ThMJIht7Rcow+BJQAYlUdJVoAsJCXth0FpmBIZPw1lFr/K5+ADxrCvKKOwYAdIjBfLscL/fOzhQHM2iqf1DFiB6BufEBhx2oYHFvexBXlL4QAu4LBi8B5vp2PMdKebgP46pqCpaayOeuaKuc+n4Iho10mMc+9eyA9459XmchjatGCDedMlXdvjEH1Qtr03sJl4v2WhM7EOb6CBQ9E6/+BTOQ5V25Cb38AjPqDWgYp9JOMNtsrM8QdbzecIIWz3StJwhJhyRO9lh7zzCw==
Variant 4
DifficultyLevel
592
Question
What is the size of angle x°?
Worked Solution
Base angles of the isosceles triangle both = 31°
|
|
∴x° |
= 180−31 |
|
= 149° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-I4-CA16-SA_v6.svg 80 indent2 vpad
What is the size of angle $\large x$$\degree$? |
workedSolution | sm_nogap Base angles of the isosceles triangle both = 31$\degree$
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 31$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 149 | |
U2FsdGVkX18QMI8m09Gqu+brset0BwUJf7kZMRQlgw5KFv7x/7HI4hYDX9bg9s8l8Hr44ZonYCzVjQS3qF1PHrThH9OJhb4QEp+3TrqHvFD4WcjXoZt92aM73Ss9E5sbO94Hl+9Nk2v/ooVKZT275j3nH9CMN0mfhvHGs8YD1aQ68pGOEyCx1iWi0ybMW2aQzU7PWgu/HACbVO3xo+JmmMIXEs+ClVWxRIJpsBzQRw6Ci/OSOrFy9pOCVds6y3ltEe6fett/rRdZsPriVTzq5T/puUfs0CbJ2Eeyd4ia5j1wd+/PIlciwUPS1wf5TME2EupG3BZ+VGuBp/MWNunqp1YF/p4k119Z8Ok+y+ETKkORCCQZDkICu8VtBxeJtUTt9yz/MUN0AzYqothrvLVoScvVeF2+lEEsIxDhzUR7FAop8HEmuihldjbL2HqFTBe2wV/RdtO4zDGYRSG+/jQtJlYh7BLcI3x+MIgFcVK0HVvUGF3n4vp9Bij0wJzaISMzYmTISYT8u4hrH2unJsjvD7Lr4kA6j83+0kqt/i0dnkWTpdsUMGFzZf6uduT2eLcsqRLfPVKVepHmhHpzC3iW0J/mvE2moK0TPPkzXYDCFk+T6J4tpXSoBLuyyfpq2b7X1tjkGUog0scMlwn5oATgwx3XsXtzmkAvSCxs3qcEPmMMtB+kgp1oBWeDxPHaShXip+aVh9JRcqimSpZJG21Xmt9jqlfWJUa+Nq3Kex/PPX/vNknNi61mdpUn5EZZZzjXaVnLufNkZYu+zOqFCvUI/0ewUWvdNArFXyrEtMconLTqkPHoxkNg3C/LSkipzU4mtSgOrGPNA9b2ETKPGZ5IMz9QWOnSLyVgjtLTTuDUQMYEAmM37kkcPGNb1nwHGj3w7elIlJHMF2Akor7beo+p1vkhpo/T5UR1TKJo4+AvXOGZQyvwBlIoWuqR6jPZ1RWaHF0BF1GTEsOX5GK5yACjo4DbZ5e9Nid+/9w8OkXkFpc/MGEqGkYBBfq3CkyNnyafIjNl77gU0iMFiMWrDJ1AzN07fWABEPCptAExty7fwZaGETAI6xpH+lOvCsE7spx6S407LL3fyv1L1V45SUSC/7laoPGI7JK/zhZkBf9uRH4I+ia6OvWFbxK6bdkjIN6NAI1BE2fvxHlwbhipGrviK049U91kLLx5QmwZyXbAHzKHtszQcJmakcrCDOwNO67LffLJ1Y4p+NhuMxPUp9qm6u8tt4/Tw2drgZ/Fz5nBE6wLgkka3HNu0035msZWarK+4ShIU19F9oYjdom6VGCeZZgAQFkFVvm7MaMFDhaMLERFpqdLRnTG63xFhT3+BQA/WIwUg+SLzBjha0bJGYV4Zpe3IoPTLOMXexS/U/eQmX1+mX2KLxaZwqIc6pUgd60yDsc2JeetFmXmqnyNQfeLK10qpNR2n+c8SjKvZg78erBoJmXoWzHHhJh7XdXwPybzcOvFhnzGlunCidDNQu3bHtANo6sqiy3Cbs+Q1fiJ6lZqHp/0FRqf8sNVeOU5NhUY2zkBQ/SHMoz/l3DPwG9Pd+ztNgx//kkJHum/iK6sydHkWUsKGlYJwjVD31UgjjumciNWKekskCFtW27tMJxtD9x6cBifKbv/yOGBVGt4FgOipKsjrW3/gOhHJC1YnAf3IXPsVWktAkPJNSV2y17OHkbOU4uLFFcOlQO3qnZ9M61TERwPe9KxeUHuiVae7MURQml8iY2Rcf4gd/k2iCUGYXHHDCIkl+S4C16JBGdxmOdCnNoSQNRdrE7tM2LDLnfd/XWzfOvyD6LGe8pmPrbqw6jJR9oS1SCvv8874orys64jzdRFKG06+PxJAo81P2aS6f7nnzngSV9Xx5Ns5b4yq7bKbaw4c3VBKZkaVZISBKKsPl3nuMBRf3JKiWiIwVIv3ocZFRc/Z0cMqPIj1wYUwxCNzyjDeBek8be4FeEJqR97bZwmgzMc4bcD50tI+FiWVi5connfiU6TwFZURRsUmwCieAA4hpe19cS+7okMSbX7LaCbI0bjIisNtKmGdeINmlZlcswHKNm+UUOHbThGP2ZEsHTDwHhY4GFdiVVX8wOd+AiYCqAT9T+8cjNxDlf10jW6t/ZlhC+rGQnEMx6KF1PSVYFw+LVj/f3EIZKdreJBSSvZJpB7HMBxfwl0XLGXmBvlbaNHHVoURXVZp14OJSnsLTwnlcTzeywFwuv4CuUtaq/ppm9gG5OfZFF/F6k4zly/ZmOPEX5Y0UvFYRQMSqdMqLw7zqQ6bWSeyYKfKbLOC891hFKHI0DSp3b8+4D4vcmY/8FxM/zdPwIIcaQvZWwsboaIKx61DoObj81WD0YgjmSOMc8jSrHhV8TstMlvnTKJ5mZyUZQh8iBjWPBgWJ6gsbKW5Hzu8GaKkLZbj8q4C8MnquhJnRwuv7+gZ9Yerd73VLF6/j0bZOBsiPe04hGfOFShgQqjp7RoK/+j0IOzSol0P6fkZYiKQG7UN+1SkeyFUNXej3hA/0K3JiDM2z0BcJbaJzVtgdpkDsaavFvciEO+N194eZeEk8mvH6YU63kyr+OO2ooRryvGPFKK6wb2H/UuYakhi8I+nq00DMH4YHqQx4aQkzANaE41tywrOCXoJTjPIhYGSgJJXbnQqIAXMrt3ydnNvtJRton+YLbCmMNh0Wtp+q9Cmb2+Fnbj+0WnwjFCIPsXIYYFrH0IndJGprJtSewmt4jaiDrgFTfyxPb3X4ilSyTjMcZaIIj27IjQKXfptXNFzbM3smct3i2Y0uMt8rPO5hEx6qYYAN5WRnqwz7zgQPdP25tfpf1RLTEuh3/YUashUR+EUdLYTkPPx3hAV/O6GxnfUZgMoXh1RsuMr2ejAOWLxLk0NdMhlIOjLJvrtk3hRrmfR3UuuyiQxBO5tVxMyb3Z6gumCTyadXfN3yMX9YS6wHWGlQJnP1DbAztC/Brq+9mbV0qfvGNjLay/I4URVcQ/9rS9k/2xatQ8BVTWKVrCBJVKAOTAN9dUJuk5N4COOf9/DOnPZcfViXDUoxDQ95dNcS0YhYHQFedNXc7R/+ki4Ah9JX+24aKYn3640okiX5mxaLrpj1QaA/Ih9N8hK8vrDFyuUsj0LFgLqq5E24kh9QKsWl1YfeMyYQbr/guHwHbwboEkNul5uh3/qUc9ADUnkrkK8zYI9PJ5jm41Bm6DSEQjT05EFU8Gc4OfsC/qyz5OWkleWsz5Pf5+fPy1RlUTPaanSLLONF/vSIHs7NIJH2Re6/vMM/YY5048q/nn1MaAfQfYqULhbr7fYFQnYsN6e+4LX/ROVNqRv8cp/3TWbeo2puA6qhkQnD0TelSlWUvG/ghsZfmE1y911b3jcys4eUHevPTL+XU+ZcA4n4773snJ/CqCSg60dnyj1id1S1dNawhOfABLau84gVJF7dvyf/gX4v1H7v/WKCpZtCqwsbJ6vGeMQfxoyNhAV4+zNiXT0iqoS1SR8ZzaeDX4PeE54tynp9EAWGJdHvsWv1rk44EPdPIHDyQkd2TTMgH2W3ZYlD19lz7AY3s96sgFVm55ggOii0mdB3YmPxXsp9GC53kfmjxIa3bG8wcriEoiJoAbkhU1nY5grQhqCV1vuE6x9vft8AixpcDdhsQxTPOnDQdK1mx3KpNP9a355UdE8rMz3yQHkOQvbwgUtrwuqfj5oJZVscrGCNBbf861HqrWp0YmfiQmaKt1VBsvUaB0rbk/slEjUQz1j+/hVNSAbumvG7EQ4gKoHrZP8OLnJRnx/fTXyw/bz5jU/v+ktrFF333Vhs8cu8JoWg8rbdoUS1GsHrElazerkrc3V5V3x+4PrIOmoZCYMunXUPbuxDBJ31i1JecEkJBG/rZHLIgd9SRtkggQjtT73wpjSEkR4QWcsFzWt1QZ2+Y2GIDKKpRItN9kkeBmb32yxxjw0nb4df7RS1TPmgWtR8CIzKdVmDAdNC0ldc7YEwXWyuyHTjPxjFB2bTUuj7Ud2UsC98PMgGnZvHd+Edg+Id+W+tR+0Irm/D+0DYVNKGcYghW8N9j5t31zsaoOE+8DBE7prOqG7xoC8C6eoZfxjsbu/nG5RJpKhbyp5kNCMhB7wQe5cNVStLnomRMw6rO7HiB/v/40zfy0lQOyQaUOtH0a/+oioyw7iqvqG5K1zGSeQL5dQ6vCRVR7aEe6Q4b7KD4ESxq0MoK6yTqEygh0HSSHV0G+2SmnuVZ9dVSOksmlaMCb4KVHMQMMsj+zemgK/5u1r1FJEj1FWp54nCA8YigLvsScdBXXOp06NjIhG2NMv3qIT+Wq+9DaEkuSs5O3lPQetGAy+RK76ilC9Uj6xi4qwM7sbqWBijInkGPIWycFnmJZbuANdeyGFq+bmZYkmNkrPRMyAwNdfepodqyRInRoNL3plU/Pl+cxKxxEB7PqtsufpKXc87rauKMeLswRQA/iucmQUvcnI9Tx57UwNccMIW6GRJQZ8cA5glIQADni5u7FgJq6Y2d5HKYPULiYCbYM5Qxv9Zb5ytWML0V7pTImoveTUYPzybKHZN3y7rmeA5V5a3iGvzmR9ks/tQXTrJ97DslLlPJ3CyVNhDliMC+gqurJzjezEOiaSEEhCY3/RTI6QBzP0c3bviq4g4PAyqsCJlal4nz4+dA9QsVJAexTdUhlX8vWS0LM7cr2KRZ4WeRYV2d2PX/0ycGTQRyzk5AytFSbRGzpV3aApkzYW8h3WVtXnj8aKPOPC4J4r3tIdZZ9XrVRH3UJSMPpr5OyYy79g2GaziHhpzQnzcaic3Nu2pltyKQR4XEsrL1+wCAADz/pLPb2K9FA+H7IG7TUBzOyNku5kWNmFGKUWi1/ilNUk7uqcHY1FcavTBr3cxUjeYH23nupG0KQWeTudXvAXXMa9a7RnJZ2w+dVK4GtL1utKOzIInD5mjQO/LLe3c3fkAk4MbYjLmsN3VZ/gTEmjhADBLUxiGi/ImTGG3DMjjiuBTwABD797uI3K4f7xvw18XWjp6NChcFHaTerCrWavXbRQjDHgq8DJQsWZ8JtpY6busIgpkb0lEv0kLE0uY2GpejjcQw9d8lNLRgO1hAsySdciD4kW5U2PXNLn0/a9d8yMa1406fhEK1M8j/NMVn8C6m9dE8b014VrcNSPiqyEzpcqE+v/kC+IlNWK5lcwQ1LLkdKJobQJ9n/7G0skdBiFp0Ok/ulGymyUJ8p4+Ee6kS9+s+sPO07gTtgc9+CJN7V93yhPQMJP+32Jz3Ddfvn/yTcMehrjpml8CP45AMBCVoy/clEq/Z+4fvKkWkKP/QjDeVn+49yOO6QSzKr9PipVrfvzddIgBOuOdHrbsVXF4/YgP8p3Z9A9CjDM6gTdFK1osEzq/7ZjxHSsPE/uAnt8dFp6bu0x9+rWKnC3BF+/e2uPe68YqVysscksmqMivs5rXqtqWAPiUYBp9OnpfWPf4iubGrSZXNyQdEltZpnrROUdK/91Zu2qmSdIJVqYboXde/Ri1bDuqM0ie+YgWEVKf3ieFw38mcvcac7Z67wdkLP4qj1q/rTo0gh80LZlfmdxEV7toF6dtjjryaq9wPbP7YAjhU3iF2A1En3pKKkhTxxof0jR4i/skFyRPww4wehbAccq3zRGDPM3RUjtFGMBc0jm5P9qrMX3o4h7X+jRO9rmD8yUIZJApyuNPCK2MJzRvovAEypPb/4vFwksDuTNAtn2akNsAEAaYQzbFoZqLNqc3K5d9AtMYVRL5pbiyE7UzFPZaiDVxyK1D/ul2y0Qatj3u8AuNwO4b9Krl9i0mFGJKRCdYCu7CKvGXAl8pjJRP3wevXQ3Ib2IhXGSNdQi8CT5hCqXQ/gPHfj/usC8uDMjgJrqZitSamz3tg1Un7xgA+z25hSepBx2QDrYOFxU1HWkY6UpWHsOxh2BkSLUERe4A+aSg8DaK5E0f27iDeyGL18FivCg4sPMelRqMuk/RFAepjStvFLWFvrKjvW1REIoe5Azws6rYoI96ilJkhdaxOSnAZ4kIFuei1o7MdHnzQRFHvkpikjxqBnvP39KxiJ30PRtr48X26H8Ilsjp26st3KxOx3AxX0DAoXzb2QMAgxfZhi1vQMbVd79Qs5XZxepqlUublznj1gB4ZIIyYpKYNf4u5JuP1jcqKrRtSmyt2QsgmCi78++oE/hvivBoLI8eMI+2Pr9dpibH3U9CWs8wkr7k0LOipNNtMsV7x3Wm1HIwpPUvzhtdJ1YqnE2/8OujPc7ZyZMKuVJwStu2x8DXdbnLjvt4o4Y6R9F89FOmJDqyNXOgkbK9jlZTq8fK+777/YALcKCy5Plx5jT25phI0BedgUGHqqVGgWUbPGH05op46gpvamoMySvtoeCjDLJq3S8mzb+RzibjidxEY8eATuAC9DvT5RPdVm0eKcGECa7qloOy8imSyA5b1Q3BhfxKFowt96CzQ/GJMLCToksledALB+LTZaP2sw484GVQ5VuXYwzXqH+S2zn80vc85nef9PrvNHUQ6sdfDnojFBhz78KJ1GSvsfYatmkd8XGAE2CN4GMgFhpfSRoYOYKoglsgI2pLAzp6Aig9JWm2DqdT8gmWYo8komND6fJrMjeEr9cK1bD5WQ3qu8fPNL4VKmPl5rf4+otZqV3nF654I1TW7prfT5Vjm2WoqxmAgWXRJuadQGLJSG0DzxQsrCNk/3+Ig8bxeLN1LYD+oIYL7gqt8EQQnbRvBrk1XCU8uiqlgnIzCyHyd3jVxywDsOjVwVr5Std13+Dj6ACD3rtFFGiTmsY+DnCB9j4Mr0ijBOXHX+6Bf0dw9M1Ag6kZ0CGKsJAn8yCusIWNX/7zOXvztupVAPe26GtTXBc474DAekeju+oCuDVvhGxy1c57hX0CeJg/J+f9OdTvITnuw09HQIkr/qJdYJQIh6EjBvjV04XHyt6LUCIUxIZ5U2Oty1tnuPk7p/MS/0hSe+BRgFeQqhOlwx899PXqghsGyFFuUMIejEdIiskuJ6hR8M7UWC0fhWMOx4QvPIwjjYf+7YG35NyGf3JhaIPRwbvGjWNw+eRr7z9QcqWk7fnEcA7zId8RunJZ48HcPvwZ01GZ/kjGrV9Q9XsSPXvo5QfOEfUZuhyCh0SbnVlN6AALngu1CQ4hPDdIL9P2T80SQ0OKIytuUNlR7YS883rXVKQT3ayYV51Lx5cogMgydFCkWd3+Vmvz23ydX30n6KPkZwvPBEc0Mdm+yAAWUPXsAziBdXdqH2WwVWgJZ59axL0uOCRVd9zCguWIMKy2G7/qJ+QhiVcftWSaVrNmCkFeDg6hEZnDXYOIykvO6xAnvjVYrhpXgBLA5XFLR4KzZdywPiECmi5z3GsfUmnxQW84kDE5VJlHnpgltBd93fSOzhqoJxjogcOxH4D9IiOSWQPeUcDKfXf0qXpVBa8shqEPpWwfw0LcEtFPmaxgAKZ3BAgMRF+IXqhGJVAXDUfMHGQSr1Fv+dnt1IpOhwrfCgjuUxc/ARQgcdlTyVTL9Aok4YMG4gjw==
Variant 5
DifficultyLevel
591
Question
What is the size of angle x°?
Worked Solution
Base angles of the isosceles triangle both = 69°
|
|
∴x° |
= 180−69 |
|
= 111° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-I4-CA16-SA_v3.svg 180 indent2 vpad
What is the size of angle $\large x$$\degree$? |
workedSolution | sm_nogap Base angles of the isosceles triangle both = 69$\degree$
|||
|-|-|
|$\therefore \large x$$\degree$|= $180 - 69$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 111 | |