Measurement, NAPX-I3-CA25
U2FsdGVkX1/635DQU/1IC57bf8DW6WPnlQLPzoeK+HKDNAKWnnsmCRDGRKFIwdJsRw/JZfMNVPaacgqctciBGFMsasY4US4XrE0Y0E1m2dOyVzLHxVE4kMl+3rCQ33Ov4ypwIsz9zrj2QWuFw7S0eMYAJzWXrgSS629HYSAnbaA6ZsHv2zbmQfm/WQzvQA4j1JtDep9oXwW9OOiHi3DuF4M92JMxY/td3W5ewkpvuCwNLF6EXUPm4qHQkzC27cKcUQ6aPrDsWFP7UuseAfya3owzZsfdm6yRCzBVg9yu6jh60Si4eKjQe2b2cbneZXGxybvSMeTLTt2fa4Wlol+6XC+GZQbtWQY3Y3utZcYnoXrlLeIxYUl/k3PWwjcHzzXAxoZb7CJimXHT9d/hy14BkXD8cb3wfjK/oHWIEmck1TtNRh+NSnyg+oP7U3QuMNac8F8DY3Jt/KcaV12yYXrkk5QH+JP/evJ/mZc6/UEkMQ5YAWTdscsGyEPAK32MAoO/4l3vPSruqVyDVOmFmNZFjhA9RjixN6FscxK1opldJfIEIp8+Pwpg5yNIbZV+gFnazbC9TpEZWSPSVHiDCx/jkqS9Zuj2VxSxr/Zak1lHq2MTSatEYRbDa4EqxU1J74q+OOkcP90v2gYLCDDqIpG8QuCMgiQpmxasylmFE69PM1dPUb40tDgSDIxkhGHPZsAvqcPy0ShnoUVgv4H5yQb045+fw8yRTIKV0o1N1U9Mb99P1c9yn5UgKp6FCtBVTyTJk3AfOuREoNbvIAPFV3R0ZrH4EtOdWjuhSkADgpo3MIF1RG7Y9YZmI14rBBj0ATNS+2+gi9j9xoAExtOp3F9/3nDUGbj7cuSQvSnJHfU8BfXL9gGNXF8COlPEWmaftEBhmyTCEC5RAKmlNp/NGmqbuKb/2TzFl6pTettXeCgy3v+GGCjAquY8c1BRFe+xfsicCKTSej8YfL1YgdeHIyzKyVxrEdEuBuK5o8bcJ+puV7WU5Xj11BmyPBPBoyD/lIW2KABF/BYRTnrqQ+xMojGLiDy/TL8ifSduEHXsbtRdkv+VJmJDBIRoyfWqKIr4jsboPlpv19/cq8GZj1QFwJXAxmcJxanvwqTe4QlkiLuRw9eZV2lbeZl45mNCeYTVvYFNqH+ph0OFt7bUQo3WBgNAovp+hT/bXTbTMo0V/nCCc+8w45Vag7WukdoDu/NrzlTC2NUDVvsjTvjbv1KgddIUzNJLIAjr3JkXNDtl/szM6VKmkYIX5HAgfLdmlMN+Nm4VNm9w/lslH6PdL7+BSznTMwoRMb55W6xgfqnBZi5WRvcp0sidcMrVpvzV/uAOeKg4RUyvtPMZhg7MxpwAb4WAcNRIvvT4xurmgTna9jqgNoX2C4x0S2YrWVIhb8JtzEpbeL4wPT3pUpqz9awAAWJz9g/kQ4w1/Lb7Leww0BhEl/pMOUKjWSQrCzv8KjWLDJ5KDTk68aoEI7YAHDiMi7U98LinHRpFNVyW9JSe/SaZFHp+L8MRc/qJLckt4PHT5c14JDesHWVYfcnCB6G4cAOeeO89/MdzRdLgDfTXvs1NmtpkcSxx2EANHt8Jh+BxyEgHGtEe8RkEcljXVsD3ES0PiTg9+uO+AoknLDJGGwkPxtLsRz8Qhk5VAwpUm78BmPsscFjMwhuNxcnImFeC52Mzp+l5ROBEOCdTklkcNmsoU8JME8lcBjj9qymNWxriuLYNx0oTanXrLSkDtGFWjoL18QTwi0XPkB8g4xob1PSNsAakVbsoo8C5dsqMH27RyCBqnkROrxx0/BJDjLuEiCTUpsTxIAqhof8LoC8rggr3YpznHFNcFtRLcKTmL8NwghvHvvHRnlGPBO3wnmf4bBsMzQsa1sW3jeXbaAI8kAaSd6TlGWYQMj4VmRo+7uhPBSisSGxEoHXk+GZTGBYEMZlBclJ7l81FhxROevixXiFdmHc+cCnb95sW8NLdt1xx4/I1COwrkH91aaEoXCrdKGVluLA11lP5CDClJJIdRFLbnkc7wh+xjAaj/Ea1+xSubzXtkTb8QsQxqhsFhAZRefsQD64SDDx/+Z8g19fQ2f4O34IbFprR59uXoNPcGJ4/iYhyWp+ABGrVoWRj73BMLekP+YAkJo2If3QBLqJLGZOQWVXlAuAj5/A6G/a1++i4HKCI6jf5PO8DweTIMAd5AWgpxh10niVsco3C7AY1Nnyw867fUyXflQ10CKhi29u2PkrCyhnAYNqci8+pyg5zmeh4XYJ05z2js8umtseEddELqNfh1vIhGzfSI4LWyaHJbcZBdxiX+wrX53dofEoiMfnY4FMvcaijeC+TEIuSE0uJtP3LzJjoo7HpFIeVv4jNpjnVTuPxJ1e27krFltJS8wGzDjyG+pSYTJT0ECaALn/6LYGlXSi4RasZz88mg7dTW95cGQ3Xn924Z4ko3vJqzqXaAL1oY79RCxTTSSVgHRKEW4C/HDr5iE4ailCyOoYHBN8iP6eodlvcogVzGZMejZoEUjDLxlrmBrT+Bzjd6XTEcbwVkJwWDbOTylO+ghTsZSc98af0wF8STc2pqT86hn4Yu7hbZiScW7NNobdHjtRC6iqr07LZU+7X/+SPxegHIXRQ1phqrolsqrunSocjjpthMMKTcdeIveDb9V8+LOydtPeB59bIth2uE66sN6wfGSdE+6AAl0EJX8Ok+cwWHMqQLZqfGWi375vsvEV5Ctt9uEYmnqQgZE7eyvx4JgNH2o5sOUm7BwJd4EFDSjupFAvaMWTlfqeioAHRknPprkvZ/fB/WC4mYCPk+sRe7HR+08pV1HBF9mCgU72iXdhNLoEdWB6gWwmnkvEbLg2PBgEyWAGcTUcvEytjerUFE6wQNYZHkcgNYGzmwevnp/Fc/m7rOb6EWEtc4C926TZEZ2uCeUoPL+LX7lwAEnfjbmK5FQ0rKT6FBgaaOXE425FrntKB0BPZo86ihu4VmCY/tUR5lwE24gZpEbUF6WN9ZfVtPSP0QRthombX8zoTCgkLwoCrTe3Taq7YN9cUFFHVG+Q/mPTh3HKl4L52SMJelt1MbbAmvVPSgUMxJ9xfhzEXEKMy7X7v/b1sJO1zT/lf4qIuNvrFOdwfuh/qkTlp6LeR9qQKl0uruVziVZuYKfOjbhBXop6CWIgXlHiP1W/JDPAU5OmHwd8jH+Aq3Heq5snTnmsiKnPb58oO3qhjHgoD/4+3YmARQeR4Htk5VJMTLgts7IIngd2m/p9cbkaAcRaBfJO1tRNG0DElSDGInTD7VyMs8j7NN+DAq78oOKNcdwuHrJSRpXZGV7YZpUIfCFeOzaGDwgMti8JRuQMqGvPlp71a06UeiW9u4ecg5j1gEABs52TzBtBy/miSs0QphhyZRD1T+CO19OarOjvKaXdVNzQ7xCVuHIfvLX/HpPEs3VA4QsNEV7I9iMEKsmsv6B5rGxWp3DeqKQ393xMIg+VBYVeP5gYvFRlSZ0RzL19PKECGP2yqNLu5LaVLIHJGAXxCIj4nnX2MqrZHpDHc59ONOX4I8FuPPTKK9rtWWewrTVBppktwxMafAuj9Gla1LKpquXGL+l5LtvhTJXplDTr2urEa4Yy0F8pVBtTw2+FjxlmTJYGkwnOV4mSchoZqFq6EkgLErgmLTd4u2Vu2yCh11BDS1TTL07mQtwlENCAPNIrOEwKBvDRW18DOCOkryZo+EBb2DT21/wXfMGN0sA7L2f0+JiZebDIt4ETIoAoI62TJNpsj1NDW/gCbxDDL3RYWv83ylBTY7CI/ryKZbWEgpuSHfpN2IntKr0oA9AV7ooJSBHZf+fZzi3WMXBJlkQ0D0U/XlSlNMGTpnLUVlDBjRKagM+ztsTuE9BMhHrRzLE1BeTJ0niQBykq7kachye+B8bD9eU55O/dnzWM7dskd3LNHTyU60PGSx5+BE/EK30EV2LIEswfwA+VLKhlwdYBGORrjGw/vulEdL4Z6tWMLa94NiwHiYeN/YXcM+Gt3s/9nZnEQu/CZIObvmRi4fIZ2WnSbxfiygv7no6aXQwTVOAFtTHkTDwUu9+3pzTOcd7TefkvvGRN78IuFAZa6AW0VwamFM4fexMEMiCEkOZfwKygN26A4WAN1m5ToZAP+neIMxu29cw2tUI6x2C0SN16aMiRNn/rfxhtm3wVeM/JT3rv1NO1MJZXspSPul68DzjN30qKTXl3sZlv97tjC3kv4HwH2Qb0nLl/LHtBiBm08s/YUJCuq45m7eehKVx4EG440wbg8JXX1ZZPIhT15Ss5eBsenNbs6cPWSq2e6P8RHtJlWHSe2t9JFbDgNocxZfFTM2N0Efy9UHDU+lIW6Zj4fnYbz8mICQJYOUJQdY8WWonWMPKeOpoQjgstpw951hXA+M2sFfXK74fc3lMr+N4AV7mZXcqzNRYywudIzomHCajvn6sI5svZwWLVvlWPIRGGblcpPHiUwn8sDVIdWwHv11QK8wCUgUltGR6YFJEAsoqSX4gPi9zIztB/rQpK3/5z+8+HkR0BAomRn5JXw6MQayacEl7BH08Vwtl1NlBIt333BBYJkAl2gG9BMILAtz2MRMOGblZ2f7Wjp3f8IgAuGeeRiWzu3go/hJcrCcmLsGFgAocTuXTKf0Q6FWo2x94IaGDsR3S90dIqo1hSLRdfNSlPJXpxLFQoVtsauu3KsBDdESgsJ0JFCwW4bEPSreuzaOHAJS5fh00j16Vfi5TZu5mSf7TGkwNeRZ2XnnS20QHIiP68u4anLFklIdxv2pFkITUGgw+k3S/ULO35Jace3NcSyqFjz7SbUd+yfT++u5a2N7NuitorSsAXCjQ4Lqn4TqnPfc4KfdLxZBAKe/J/IJTU/h1qmY/uNlQM2NtRVJu8I5GUuod9Cg/XmEvP6cAWP8LIbhClQOuBG6zLyI0E/sGKXFgwlGEwe9k2VH7PgDZsMBZ7tPxQlviYOCSV5O3FCZpzz/WwrXgQLzk+ajdkBNDrCdEQ1ImHSEu1jaS365OCZ3jF0ZCf7YvtwvfMi4RQcAPf8DF87yQUl9dzPARiTpzjZyo7VnZ4lKS2uOwLEO4Iunr6vxuMHRl4nOFLDzVyL5ZRUmD7WS/Z9+3i6Jdh10qYr1FSpCTku4ke9+mz0Ug28CLY8KNO6pgJch3RFjP2bnNiar1EfVFjgSTLNzunBQZEkyKnAlh9pLBdO+GmadWBkpRrx+QhI77xFECP6tUv2U5d/Q1zUttYvnN1f6+4NBkwZPeR438kCz1iIYX34MAGAe9vR2EFmdOOnXpugxnlX+JxJZO3+O3sNE2ZYOdNJFDbWk7Iu0k9nGSTItpFtgsy93v1/Ha5WfgNvqWbJq5AOVsX36yaWRZHYe8Q8eBTfVFk1enDq/IG2kmfOoA9/PPZbfbivmyoT0l/ix1ZPvNOCfwdYqT9Gy//Syq4M68hqBcRf8E9Ns0FdNqVzVoPIwIrLmuU+THZX780G76ikei4W4RYWK1RGw/dh5EPxm76Ko5M4QKrlfKvgN3PLvRUafgCaowQDCTqYqGsVotAYUsB6m2TwR73E8sQjqIm4a1ZrycO3qfS2IR6gLMTwY0Q0Xso40+PgpAIjxhmVLN2W1MVf5i+WzoHJfCOoeaTgA8xxnrhcKM9G0KginoujXdTRWmSUfCKA+pDjPlbEvZzQePWjbwb85+Q7ICbCEtDUKzIakaaSy9fTpJvlkxM1jySqg/crasrxNxvs3xL3Xcvue5EwyQlPt3N0bZk7kSUxBbvXhY1XXo9Nk9ttyatFjEtfydGDmk5dQqv55iO0lu0kK1BqplT2lYDcUUKI2ahUqAwr5ojlm0qSwNE4L8i5pCcHHvA8yTBQ9U6Y5e5eTvaI9KJTjNH8zSKwFucTGOR/HM4SOzbFJSubbZra3AKQZ13wRM9VMb52k0dqsFRk3A1Iam7CpCfzXm4byNaDyEMZW8hbP4Rv9GbdOpQd2bKGNNi1mdScZpHFcERFLR14BA/7iEFUNHB+eEUVktaec/LFwjZ0QMtv8WGK9M2IKCfLiCxsapabCm0jPMeqAQ7k9CrIut0SLXCiBdEhc35QZOCxxXnnRl7E4hsYcXonxxp6+KYS1a3ET0AuvUtPE+K6/DfUHB+ndUZBKfA8Xk7HkJlT7CzpeswK2tg0nkkJ4YPv0HQKeZTDl9R338b3+X57DAd2BS1Lh3JseEDM5VkzsirKN14jNUrGOxQvBOiBQ1lPGfVFvIdg0v4UYsLTxHYL3thuckgDQN8zYYOwgVSxaVoDrOyifOsokL8CVJ2seLkGGwD6K4X1ggTRuk7ybUKkoxhjU+5T8h01sq9MXDEZM+oWFCfe5gO3DMCTV8+xZqxb/DaLoGrsISu8vN2lSnOC93F5LcmJxiyIrYR62k3kySvEZn3VzkVxHOK4OWupBB0zdolJymSoYBiCxxW2dpLHZz5LUFf8ISJoQ4/docuo1PzhbJYczQcIzIliFUMG6HVFgqgVIrenBm5o1JcrnHkDt4kkmzvbz1hrfeqoPiODDAlq+pV+3pkdAkXfZ55+SzcBsZ51rYYHEt8pPYiDMC7auZ7hgBYUBAekX86EsItEV4IrpPHISeYRJBFNvN7AkJZjXjdpxKi15gOzr/De0eD7gEvT6JVwx6m8synu/lVZ2yQUbS8BFWQg4jXk48MJmA77dUuO2wrvFTASM3RvymbLZTBqhwm0dTgS1ZX4TfsHNY0rEy0+PmQd5RcfIagM5zAW3yRUPK96FPNXRtUAxFbs//0Cz7GfqY82+gGjolHI1kT5W0hj6BKD37jtKeqMuWmusdkd6tiO4s0W5s7xyD4yR7F2lm85dAL3wgVP3MKOL4a8DC1n8Jf7ecM+/9eYGmTIQDuVp36P80EbXobOePKy5zPa572Vmhc9XM2oxQsKFshVbZfDpOK4FErud/d08YFe+K+MMAOM4QK8wemuIhinvyGLlI7kX2xA+wZ8xQADgauInplhsxKY0AWgFHUozEsM4RflpynxZOQU/pSDBVNYzJWsGPbRjAo5u/2aLc7pAZqMXf6wA7Vhil8gOqLnUXGuigHkAAAStTMDsbe7KpNM/Pw5ZoGJWTGZ2qBAl8lh4fJJzKJqWu1qeKKPHy+X7rj62aK/WpkwnxJXXzfRlsITnRIzYz+YpR72OWDY4HLw5w6/NVhXIu2+0Kp28Fvbfo/ojTvioiqqjYqz5kz5HQPI6viKjUuKLN/MUgXBl14Zsj5h+ySAzcRQgMWoIRgQQ1eud4YcS0X8iOV0ia4RMVR9VR0Q2RYec81dRaaaV9IzdGYyFDcW7mzamns9XyR/vsL02jrJ/krN6aTSbt7r/WWHAden1XpRmjL2hDkTsDfHKfxNIXr9tc7oYT+WIgxN+xelrLiA9NjRniMTk/1pIVMrYFw8W/zWfIrSQzQuly6+B8PXvG1B4UBpmj3q6Ki9PwxP0QkGpQx3fE9rWlBwXwt44129t6My9zE92NFFOq1u7qXvbdV0vD4wYY2MXU9AF9Jdy4Tm5eOgnruPEY+nQfoPjeXZwZRarcsJXhLpvfKWTIvy3d9U04OHJm2qMMr9hDU5GmXj1JWMKdVCCphqXdBWoiQS5v1uKlVcaVW+evMR955IsKxtweDuGUSZ3fayH9XEwpUSTcigOCYBw1SBgEGMZrRO5l5RECKJEbYt1cekL1PairW8x1dOHWSs3UJmor+AM7mowhE8D/q/4NthlZM2Y/SKumcAatJoKsldOlHJcEC6h3DlfrHVxToveREIX0uV3d70U+GnQpEzs0E80U7iKcm0OxLmRaFXNmPcnA9EeMpytJwUZyNqzCivnqLu7k6fDxM0wF/c7QVcTHc70GO0/h0tIRRKNhm3Ek3GU25GBQetecb610COM2rgJ3ODAuKa1HkYwT9/bw7HJVK07TQII6Mekg8+VZVdVt1QsJ9SajPnTEIQvFZgndMncEMamNb8LGJicobVuIxp/D0iMIAyyRmubL9t9RUKeBHq1UzFhIV8hCknbPDcD66nF3YxV7n8iKj245ZbxqKd9JG0mSx567WwdHzgwuKikRG+McJLmzvGMO6/OPQgJHpKYY7f3vX5OirImlfdPBKX2ryaIZSEb/Au6RNWCAszHQuG6e1G39Ht/QQS3t9OUgE/lk3uzJv63Iu5uNUmIRBpKppz06jzyQXK92Ks+UbImecX5LEqZo3wzaFt7pK/fc5Vcxt52451H+DSUc9Ml7Uc5UiFLpichDoOdb1wpVYxIo2mnlo9nr8wzbo20b41/yxVdDSzgqbnj5VL1rIl9UA/bIZHFSe7FdfB48GxMUT+rMkIkJ1OvoDfwCRPSuIQwnXLxYCvVXbJZGgwItj7LLJwzlnogAA+nzcyfn3Rkl08rIevdb3m6bvu9KzWGu+3byrdWRK8d0gNYB9V/qGGIR8Xw8VDd4WXrnQr6m1y5arpo3I8E7PJ5zPoFFtWlAArTio/yRFQsVu1xPjkD7aFstDOzkDT/d6kSUUfD++Qk23Y3ZMopKAPC206PFO9ei2t5Xopjumq8ObJZRLYiGYUz4jt+qE2kZ69+J9mbxS4shj9dFzEvF8+pKZm8cGFl4tA9VtX1WUThL3UDj9y8KBGwLEDzzGvihPMnGOEJLRMjMm5KjgXu+hEqGnQcznyHIrMeBz7LAXlF+KR94zAk4F6rQeUM1GIh5emrVtmQA724XU+ymQA5naAX3sc2o0bFz9ndv96eSre3aSL7Oqh4R6LJmfQVLR14XCFpQ8dpsmLxVGHmJGGrDCDF+wg2JUOE/dYnPOH7q3iWfRo77JdqbjDcU5h7X+ZosbTRMQ8hZWNEoBZusCZzxs0p7jbEi/0bA12HQ0tthhH+N++At2Wp6+zK4mQQhdP+8RPRfKbMc9i07FDUVzowwCNyuLsiSuW09oUZZl5+Pz4MBRkh289UwCbqmYkNmQ1aNo/a0wsNeTIzq7UpZqKnwotCuZ1L1C4fxYwMQ9eUkhJXkIzxPyL2cAZwdYCGYwNPXAr5tC//B5/5+GAhh8tQmNVxwYxJt0nkE/y/xLX9MJ5nPnBVP9y/1+IwlcVYj6qMEHCXdoHPKNdzcux7Rq0ynSHH8kewEa2R90m6Td9Zd4K566K0k4OAi5PYFfpX3d9+H1lN6OdzEUEIOLWkqICijaS9YgNdC3ZgL0QVdxo67ttfg0huQ6q0q25d9A2ivWvlmCJ5D4FusM23zTcbOfkbhNItCZdxcU1t3ZDRU5PcgvJV0siLCj/bXisRITSOLp2Vo73+W6DWiA/RC/tI97oJz9VqJFKKTWwWYZ1+GUEjJ3DPQ1kQViPnfNW2XkUrFg0873KeWdLGYKe3ggkISxF6I0ZOclb5j823XRayEx3rb+dqAnbrSH7J8b5LTso3fDUhoIJuACHyhEr0kCJsXRTpem7RgHLLKHKHiiWJb2Iru0WxrLGjsDbUvogvnWwEIFlG/QOrzV4RcEVWn6EZtQgbbDNJMmEYE15BeKx1dyWjEaP5XI+c8emM5GDBlNXyhJOltXq138hP3JTIM8Xu/JGu4O4ofga4M9H6udwDWQVv7e1f1uwbmp4P0wPXr9cn9XcG0/EkiSgGXOu/HufVWeiYTL1CDTTfScxKgcFDd++8GtsoqNDn1WozGY5ljgTiAMHcpK8uhlML1mO2qEg1bA9HFdfr6f4UIVH2FfDJN4oBtgt2Z+qvvfWJk/+hjQJ0S7q6QMYxLAjhWs0v0hMS85ekeEizA+W6SQjILPuZtc47LwJTXru0uKtu/AFnndGc9H9cPoAOvu41qjkPe9bjAOdFKcDyUV4dhGHHBZ7q4BTAqJBoOFfAjfmZsW9U4EoEb1BSBRguvdghY21owib20ORoVEIfHzqaCV48/MSioLIQrR8bIgiY7RmjSjh62jMP+Xthzhp5owX/s1/62jVq3jJN6thgAsmVtyMcxAYwrAFCVeKguHNlUtbLWVCsxskjOGrDLUIFnQgrhy+SAziWeZYKAog0kF7P1Adz5Z7ZS6iLaO+ppST+aRSXZyRKE0WhOFywMtLyN/WYdFto+jNxdj/Rm24ZVpFEDyQxvdpgxVRLZDr+xERiilUc0hrkj5fqFOAMnb4ndkaMOFJKQHnzkrVkvRAMswULPahz3ZL5Va/ts8IelOnyK6LzUC6jTyg7HI1bDBdTCfC6Vb0QscEMIHIAOd8MPpjgBC/q0H1ceFQFEK3EqrCxDhDDnow6W15bmnvwrs26zPY58VIuNlr+NZ1BRfUVzTh0S6094UJuzPoV6blx1hvpo4JVwNZ8fsZOSjGTcvRjfYhAbFzRe3Rl7JduKiUgQYcnxb6Qh7ohtRMrZi96aFlsXv8/UumlqnnButLoXGaZeIKhAamJhRHHQaFZpGaFMogxkddyzX0ueM5d9XYuPVrRNh8YyFCqM8U/5IgfFjZPW7BwJ/Sz2AmAf3I7+wVEk/aWkXsGfQoFx2IlBX4ZSFoXAMp6+1eDQmx8jbbGPfjZCTiAqLEJH92RjqWqDQ3IUgG4Xg7meITDsljigyEesg6fKATpdODGxNjtNANk8solkaFELINsnHk5CKjk+6NQzQ9Us04BDNvtujEDmlVbAyf1R5/e/1tzNRuhB2kE3qJZp9qrS+9ovmbJhOO3M7NfAtL7csTKEOBAgxPQaukZDKZuTnSzUy/rZF5cMXfk7fWCtAs3SYawTRn7ADQCZKu9hnKKn7BCp4IzZIbQU9OvN2sGjn4xVXW6Pbjj4V8iIgJRc/Hl0wxrDG5rXQHzqqYfq1RSrG/vrW/JwDu97BDWqC1mHBbQkXODlib7R0gAg0dViaDCaUBpOl4CO8FVxT4v6cMRmPkkfgj6xICLk3Au42zrNxM2EjZeG5gW61A+U4hArfXZNYstY9SCwHCT9VkckBs0ezJIGIrnQKgEu5xnmhytX7bdq8/4REAx0ciLYtK1OtgWAhmr2Hdyg68NU820HlnGXWXonue0mXglsSgZwHX+9Bf/UwCiD2Pt15nVHug4NwEGhj3ETHYhZ1gwL++USldMQocqloerq06GmMWajdyKbjizNdt3LPVfi4nC3M0V3o6cP0oXfXHKr69PjhD23cCb/Z4HI7UTqHrIfOxPZBJ927S9drGVQ==
Variant 0
DifficultyLevel
684
Question
The rectangular prism, pictured below, has a volume of 19 000 cm³ and a height of 25 cm.
What could be the length and width of the prism?
Worked Solution
|
|
V |
= l × w × h |
19 000 |
= l × w × 25 |
760 |
= l × w |
|
= 40 × 19 ✓ (check options) |
∴ 40 cm × 19 cm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, pictured below, has a volume of 19 000 cm³ and a height of 25 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-I3-CA252.svg 240 indent3 vpad
What could be the length and width of the prism?
|
workedSolution |
| | |
| --------------------: | -------------- |
| $V$ | \= $\large l$ $\times\ \large w$ $\times\ \large h$|
| 19 000 | \= $\large l$ $\times\ \large w$ $\times\ 25$|
| 760| \= $\large l$ $\times\ \large w$|
|| \= 40 $\times$ 19 $\checkmark$ (check options)|
$\therefore$ {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/7kHExCe6mo6GD+5fma+DeUFvdDzh/GBnOTfisIq2LFPYgW2HV0yo2FydMxalDcyxqoRn8ufHYAQm5+dzK5PhBWjJg3Y+2uHQxhs2xdgszkSJcOo5O6uPOQT42LZk51O50xCO0xE1ldGceWU5dRB4u8byDcXO0sz3od3hx+m25UP3ZKMjLa2KXoFcQoIYjW4BqIt5Jbk08w3h9IPp8zsDIxcHzEQQP1Evt/okN7Jx/mfdpU5pzf/nkmdGA2AGSGKulG7CyAjKjOqAqtmYQ5+mYHWCZWbqXs/zSfcdnqcBZ/7TNHnEL3aN09ucc+QoaIGjV4KfBjVR8NBKxMND5VOBM/pP3s5GBa13BhmVrGE8uZCQM6ajHEsAq5213SRbPmiNwzaKXSNo/MAc9mePYqqeRdX3Bon9Uh+yi5T8K8+1Lyi15ItkKRPXmUdrZjzZW03U8Ywqh5is/FSSQC3Y6MeqbACTxQf+d/J2dAvH6J8kw3+xtFuxDYSFKwdixUkLWuN1LWw676l88kSHm6MXRNEkuq+fkm9Y+F+igTl9WGcJ9IzHA9ArnxEFn0ecErqm3g5nISQ7Uiuy97ra4zTE3HXqFwOOdVdRiAVZ0d3UV5MnQnjQnHyPrsbxAn3nZtEUxWR1m4WvORLd3voqUaX0CvZWFvN4UV0z+TbnmraTBvyS5Y2rXwuml9kionIFX5dJXXCczrVLoam2lAatALtuja22fJZafbApMniTNdizCne+vjHY6b8pCZeCuC8jlyGFFaal9Lbam+WFG3sSAXSZNsfJfLqBUMGQQ3oN9E4H2knPg7PuDryl6OLrMb0WhDXnkIz4QhKJkEByfDHHeuRu08ZfrUCLTTCrA+TxxdViDnr3Rwn4t2pAqPMMC9COeiISwK1FrO+cVdxEttmYQ9B5kjsqbradbJuabuUeXQJEwsXn8MmoCjRKJm9MH1WG7NzvOMRC+uWBv9EapMMwpUHddNAMyLLWvpKRMwN0Xd/zr0ibVoIy80GDrD4hJnX1AXUgPPVzvSqyzYfRaxFiOE2FKCwm8mvHFafmn60jHrXY6pJsyQ+P/a1ijFBGD0TVoRL5J+NnrMyzthtiOx7h64ic0iW0VTepGhkkRat4AZ7+OwGXHss5Vf7ivlH7mxOG4X/Gs8JQk8MebgRnC1e1M6wA3C1+ZbZj3rBaB9GJamM9tvJFREGrfCOuafOMle43dQAS+SFFDSvMgzHzGPRvZ8IjCJaNwvnpb9810FHcjrH8UGaZyEp7pRQwy0ri9k8WPWN0Fozz6i7yR+67qeQ2nnnph84otnRUK+dTeFpw6p9WxVil3Uf2j9z8T2HxntuC4WIGVYnEX8Jqil5d+cs5WZ9kI69g4ehMWBx3WgPsH1wJF1pqo3eFQVAh1d3mpwnw+ayvx6ICxBCy1jn/cFuEOGNytq9tHHcUblkg4zN3Dehw6kHQuo5luCjfIU3v0V0JFxZnF371s/G0/h2KQSuSAx4U83JMIHzqPTHJMvdoGqYuDMyHiR1MS21C54PPdQ8oiSAZc9oWchXRgdxPhQYxAfN3y08/BAwL/XF/KhMn5E5gzOIu7D8UV946aFtvKUSGeYoyQE+UJ13Ixy1gXUcnhqV/WZ4jEZHIwrExiqbLfqIt1DluaLHVvXuybWaXDPttuG4Aa0w5ad1r0rL2zjvVIIwntA5oTZb9NTKxEqBfulETld/NHzsgAS0COXP1cJgD5/W5Mau1IVE1np/yEwftUFB4rG90Ha5WmkxXVKDD0SdkstBMlrPTg7jeUU/Bxd50q6qhew/ipw4S/sBGI+zlrn9H6UHxFIHBgb1rX32C1Re1bgqmWFwSh9VRZulokq2YB5gj7jKGz7+zIiPcuOT018Xu/OOztMqgnZh3YhOudmWu5N5/BVNdNxZZYKBOFJaYr1Pil8i+I9YnaHipWvxSKECnwfaWHC4xztJ8/BobrYtEeTT37J11IMtZ5PmUxiodp5smpLo+DTj0/1EqcsDVrAtPoxqO3ZgWY1++Ils/8hUvSpKU4e3lgFABbZn3kXZI9FySuw0n34UypxodJ5pVT8qmOO0PNRt3Wj2zs8zFbX/yIPhHtWZuetrRuKhwVRiwjs/sv55Z50nqABqecMCmrByyvvSwlYr9PvKsUF/Pq+6pivLyCLwfGDOVY8ShXfuRABb+eD77lPI/n3Dc2kst95M/lvIsGwbpc+ntu6MSs9IH7Xm7aW7eqnFPMCWx5O2/Dm77bjWuuKV/U3XbqZSlsb7j3n9BhqyYG/Dp0picGp5eWSsghtZNX2zibDUvDTMxm2EuR96tiQPSMYp0ne+KMyKQMc5LFfzoIUcRmRhPThLxv0RY1qqaFY6tU7MHN/qXnMJyrZGwjX19CTcYnpcTdwWHIyek8vqKmjsdOqEc4gq6Ykx4eTfMllAHw2FIjHGk9FU6G2PKvdzeXv6BdOhGwCvwS8vVKyXuADtXRQ6fLxFOIKQ0q+pWxC7XYiSIAVwY2dpSfRZpwty0Qi2LST9soK6HCbnTwho78TD+IKlEBJpog58nW2vzTYdCI2fThAVUHqxOcrd7k5I9gAxPzfb8TP0FREtUYw0bMQ4XBhAQLMrZfYR4eDmFkyWrZgt1OmYqO/w3L9ohWRhU5EMIBT+Bnf4kH6+1o7cB3xRtqoJkhuv0BaNNgYM2Z5HebUI3/RSvad0L0YBasHM85LixwaGSTRodAIDjdDp5WZsxtr2+8sz1iMrmbULEaMVzPeKDKyTgDtbOIK4b9fDIdQbgp2UH9s5YFCs2vjxQgiBXQCw39sSp0Od0BqPn61XYGDFBNoUVg8iR4Q7HFe2FTGSfJEuYHbxMc2XI9AVTiKC+q9jk6St6s+jOUfmOTdnC1pAqo0bcbWdqJN9DOQrVkqpKB/Zw9KTtWUw5GBwhvoER6Hu5xsOzYAho/afPx1JRo2uId59cD0B1/Pz5Ut1UQRnTGit+Vo74XC7TZQmaB4YXvGp3Z8tC0hvReo1PHtsnrvyCws2tUf8KfcCsEoHFpXfR5e/B6+7hQpi9S1Kru+9lQYD5oiXBloHv2aWND485wV85lOWzD9Ktkr40U4Q+06rQs3Kc7wtNiTvqQ2s/zk8BtdGIZIR00XZzSbmm0CC6DqsRuk9FMByiN40tumYDmLx18+V90CqgKsu8FW+FN+WhmdjyOgaedmnJz5fVKOiKU4y3jgBxiYDo7EsnQHJ1S+VuydeTVJk2zuCnx5lQMswArk6woyo1F6xG1BEodU/24QLXtE8C1YI6jCWd1GO8t4KlFamOP03KsKJlzIjoB15OdnntgvdyHBcFSa1XO46/TNougpDZVbO+sAKnRZFCi/hyiL3FStTjkeHLktVsBMbBQLYTHQQYmmL1GkomP85VEyIT0Xsnux2UwztjHEoQ499rwSM7LfcpEXT2vHFv0psx3VLrQSe5nu7qrgrj3Ke5lQi/f6HyCWrB3kKB8sUMi/5PaHoFv0H2YsD+lc4YXs0sqxdJdlyCtLc593/F7OCfuv1H6nQ0JRTdBRapDOkY7SniIFuyl3Fji5K7Tc57Ntkg3owo6D9C2+C3zFeTCnR24SEBcuqzpuUU/cBQGii8R6vwtWpKIBKUlAZ1gLnuyME6vEN5OuwTwJBQmS3/sGXBCkX/CqP8qTR6lrvYHRf1+q4RN1BSEPlGH4KrL3PfddUn7hu50Nql5k6GUuSQP0iGGb/zjSK/kr7G2OOCRUwmJbAZYxJL6evjzn2sFcQe+JSGlhJWMyPund0/9hg9CCynyz4+TLCtI9mbPnK/HpYE7+xvJHT+6sslAxIwrcpXUV0NnJh3XHVMytE9e1gerzXNKzMZFoxHHxVe06NFyfSrKTujeoSnIgwD41+1S9DALxP+geLSWiAqYYSQnhgUXOrJUDU88Rp3U63/GoNfzpPAeVIcyj9DnY34ZIwtkncuMB4ZbYW2bh6rkILhDng8L5a7OTnIfiLkCdt78fvcE9mf5gw+3nHo4PiOZ7+QZzxkVlIxQZzfx5LbSO5e3ouCVPmbEwiqXhUwID9PYHHEyTXOeKExnKU6B7AJ0HjNOSjSSWuM3cnOczvHrsv91iiW1r6g3+4u+UD4Ao7Wct68RTq41jCP2Y2yL3tP62fTnIOAr3JLMAReN2SnO6Veb0xwqELh1W72KBIF2mwWeDsu6+weK7G+rhvKr8YGuoPWUu/HzK6gBsiTjAn0VHI55bk8yh/dT/UOWGSvvR2HtfrW2tlPLy6+xX9tmcflpgKA8G5NovYonBz6An7JSnmakjor3HUW+AV8HNvxNyzOJRUqxEWtdZjyMzP4pXXCFrmakOoaRCkirPIJLpEJ6XVg8sUCBlruOt13WiTs0n7b1JZsA3M6Y1j2sd7p7eOHWEsegqD4LebO3B1gbEUWSHsW9w3cMxPw2OAttw/I/yPP6u3TlODy9MDWM6f9a48xVHrRekL9BbuYNdTf/ZpaeQQLnv2aZ1dr6ryNM+0ffYc7/7MuoBxMem7Y/C+iNcu/oEEO6og7qGhw3+pmQWZuTtyqARVVn2hs6rbJ7X2CoUz95SHi0utcW8SucvlwvVq+WkKHaojx9+UW5a1WVkUnCgbrwDSozsi9bUzLPf2cB6uKOPme38MkIcCQck58vf4YnAjWySuRA3ZGssEt6t2T7KJZWiEkJYT0IJLYbGMkjuoFITRrpZyykcJOg7T785cFE1lNqhuF1smlxj0BFiLes54A66ojRA9FZN0D+MTbHRbdyNYNCHZpuok0PYHSYA+BLq/ls2dAVQKmLLyGuBC0rAx6dbc/aQSniDNW7NYM6+bdzZ9V6CORNTR+1EWfst5NQMsogWfMXUvJ697CNWiIr9frt3C2UMmg/JA//NCsPq9h1Ytcbcqfsxr/MXh6mq+6WG4Fi2qh9TdsqyiYfUtikiHYIifXxv0IatoyKAmEvXGC65MuTdUhZporN5OKYqFKAapKCzibhej8W+vbhtAo+xF6UVISoHamQarMmLjNoEA3fbGjP7vishzf/YoK5E+I9+S2VnNZhFwx11bCHcPWW81D8tMcasQlW7TAQu7h8NtlDqzruVTW7AHmMXtphjj+k0LBM8CbOGuDCR6m5JZuyJ5aYC2O/PEGDp3E+urXsDcZbUXaIOcuhojA/YGeAZHEcsRHyEMelucR/tqb257apMaGwZ7XE2hzVO4OOrrV06KIToGEwFc1VPFJQnwjATdqlOJImH1LEHn/ykCkuiEK8GibiQaXjn/YfeZ4KdshEzQAx/tX5KDvWEt7GTpmSQ0VDbgtD/VK7f3/nKZBkpiinI8g0+mNGwVSh5lrV0ELvwTPm5JFE5pz/N4G8WlaVWXXquV5aqlLjMcyPkTqEb5hRESMqJMoMj1GKicTl4aZ45gbfEklLrpxKCJ0B2hR86rJmSrqDWUrH0wOL5wi35+72vjcSYsezgL9QMjidl5xMFtLqy9wLx4DDE2U6MJTVKFWJZBynI2m/5UEHiu4co2JgeLQSq+JaJB8xdacBFsUQ3/dkLkVicfv7A25TSvjtEqzP62aqQHsMBbE7o6zllJdStdXghv7Emt3JChxou0Wt2t3JKoiKRaXYEOPh+RDrzvleOCnrFc6AU6ueOJVXhLeeyLEHdQiWcGs8JU5OBQ2mzYDLcX+SZ6ITWDsc9Pwj4S0Bk6Seua/jqfaDHWkx7gh5uxneF/zbAJ4TrIZr86znAtMq3yemVwPhGXi9Nfb5UqnjpaSHiWB3cbIyCVKKUgTVWexRGYZzYhPwQ2r0t63aAIcOT05pf9kK9Z7Geb1DWdjhwRB/yUV30/4WZD04hzGlEdwhvjA6OJkcGvRZlICyRuiRB7+THU+xS/7adWCYgYhmY9AQIJEwwCdOblgd+bBhjuVkNkkXuo2xk//JJPUZxUd2ztgyy65Im1Knh4bUl+Tr+nvYfzLG5sKwR1d/bIUtD73UmMsyLvN+EGeJdJ4BsuKgWHZcE4U8VEkldHfgIdyzKfjUbxzIj7Fdew/JRXuya1qpOoUr0Z+Dyue7n+J4O1Jt6xckE+mqLm4YZRy/4KjfvYqg0yQKGVtQ79K6/F+IYVjyFBV//gFaCLeN+MdqD6mM2qScTXfAfQiGH+5Orgj4lBu3we2fPaB9AHuYFCVU5uPSSW8YQcjgClBjWoVWNtcHNzFojhZy/XRmrvsOdYuo/Sih1F06Sfmcz8SRRtb3moC0tG9Z9qYP5HG6YS16j4pUDHH0EUoqK9xNwE9lVoTvkbAqEEutT5fac+eBvrEuJy2B2YKCySAD+lWtqPAbz5k7fbubEWl45WGF/4kQUECZk/ihviNTP3tlgO2qpN9lhbj0RgaYtq6gC9wUcIxq+XSNWJ7WnHeM0tn2+NjdR/s1YvFSC1msX36o/2wHv8HuW+bqbdE/LiKRGubqtiXrnLDNZu0CKMx+IiVbGE/0G50gwRk3iAdYX79E6d8/CP6f5B0G5F6eGLqxCZi0gqLRPqIxFQRRmNEeE4owjqSu0Oef7iRQESFllxO8dcZV6rGdL/qEZMFTjA+Bz8kTJMMqVXIg+KPNgDj9q71tcIhFt+1EyzAkJgzPf/2ejCyDrtnuPdIHVKeiD70bGiP4XKvxNBYW25d+iIkvxu+fOJ9BIbGvjOw7x0mt5zIxvkXSo1PSd2E2GIsU8mAWcs6aIbOM8HnnL6ljXXvlac9utJ49dRKMfim6Szg779Iumncb3AAc8gYLYBVBG+0djKeDev+cwYWhYUjQv2NbzZGiFrmRSYESdnIQtm2M31shAjapi2FHw6kvnkCOMYJVLHdnJgsFbsZEOgfwUatERcpd+PUAC9j5N2wYXMxOUxHan5APybJrWrcUPMHNRr/xkQJrsYuYGJCpc7J1fMwYDtQLVLrF9Vse/rTNIJANcVLzI4qF0W6vz2VfQKxNrv7yIpIjFmzVBeC//vLPj6ObJrMZG2ovRsWOiyxhIULWBqDe5UtJLLhO4a5v+gsRVAK76hl3hbQEreoZiiyQApe/eBrLcJt3WlhF09Ne/iQSSQWeygrFKgjt0n+dIxB7rTo6Aoq5yJezFtXFA0DzG+qJKSR1k5KS3NmLsFF050N4IGsIgNlexpSVGFPRs82aQuf3Y4jNonjigvptoGnZDr9nm4EfNxEWxb0B1Ag/pmfUwfsYVw78Iw88nKLCf9+EmDzWLUyFxkzcpZYrILaupjgMZmKBeZw7wSkmgiBxqIQX2qx9iRTD2FJn9LAx2KkIDrCoPb5rBgz3C/kdbYICShVW8l4d2l3VMXN5qJynK3SI8syQB60VmIC24aSe/IoH5VFhStM1UTdj+yeWRJCsdNXMi95nCviPiXKmjNL40x3I21WEopy5Ht2NP/m+srrHTUjbi0a6NmVaNuIsXLtcSwvaM/UmndBUMlpo0/rE01BiIgzE/HQ6F15cYz0pT+o/+h0zF7ytj0WFu7Kqo7AdCn4nDI3woI3iRQAoWxXW0bsruQqSBvElPFqtDVl3mJwg4TOZlubhRT+zSRvuTBgDRWEF5AOrJcF/qEdmK+r8wn1mqBeNNR+GlYRsbgO66eI47tctwaT6jpaAVQIOYC75/5Ci+L5+fviZXcSjsmbrzYuEps21/eUt4koUGGad6INA07gR7scAhj5Jvk4yhH4lqjdF9wo9y/YtQZ7DuUGrlesqm4RcZmZjpc8nnR0xoLPqGlEpTBhbQiwOEo0dvOhyoE8mB0UyeTCXdHGn2Y6yGqN9Zh/wgNr63MS98C6iPy8qsKiwnfbfOqfIf9ioopasX2YxfYA1+VC6QGa1cIkTku8Ui6fOXxuUZFsiHV989eumPFdirEkcmvCzgkpvJ3OYqKKFYByv8fm/rgDLouDJytwd9uuJZA7j4vWZc+d4opr9DBxIT8jKHroq4Hte/hfzvWcaRpT2JYGjIimicY123zycRicZ4FchLq+Q2LllVrgqcR11jylr4PYHg8yH9DbRnMaAJ8lrkdiyDAR07wFz9RUlKT8NOUOnuFfWkYdCmt37sckx6nkjjY5yppbnksqGUVjAUWk1f0SlQX649Tia5iM04424cYkT12I9+9iVzrBDaCQmsDFfNRf2BqUfOS2bxopdZh2PPFQ/pJEqz815hhi7Yk+WZRsVFcGoz+be9VDayZSkNiLZ8UGJw3FR9aD44PF6DOkLJgj/gwEum+UeEBLCdOkeJIOt81w1+2+l+7SJS+98TrQU3AF29dlz+SOehSjnmQnniLVIZab3m778hnu6Kc9D+vaQWhUuvA4dWgmIFxbuJEcZQrY+Nfj4ZOmSqATotBgRYdGAxK6aJYJGyNu2mq0e9NewzT8Ot3hqXl24/qIziCAhLG71wiunbwP8iJuExEO6ArkWVpWESIIBF9+miiXhV5UXo/sni6c2lX9O9LfpOnFIfkcWlFVGiVrqUmQX2DJQBz6LJf/859V1DTKrTPM7rjyYwokliBLqUz58rcCdxIpbh3HOLyNlihhYhlATEMRmqGgqI6rfaW+mgYryVZUOZUC1n0GOGGXuc5w/wnjVdMV23Ujf13CblzWM+Ad2DCKyC55CS8KcZJn9d30NPvASu6SmAcLZUCkcU9bOIhzG83QYVNZelo9qbnlc72Vqg1qwf+oThyW5INjQvDb/0h891RsWGvLqZ7to1oDLgLoZGNcYjcyfBih8Ifvc5nwEt0JqfK5uI7D2hZBIt/uo/XJr1WAGYrfd3l8L+Jire6StnyrmTdtlBKXGBnvCo7tF8WXSSYvhOLSM5k9Vq0sLHEtwbfqVEX2HEFUZmZK6uOg8ipYJkGkEoiEMs8xo8Q9J408RjufyjzgBxabVZ18yk8HqaoVwXDeWZhmYSYMOuBRmXjh0KMBqK/HciowCuYY6ylFAmRqHgJm65MIx5PLfGU0bhhu44fmwordPTaxPQbHxyeuhlxSu/Cmit8idiuchLwBBIzUPVNwq9uRp+NCnl3lzZa01/cgRencckFHQDm00coRIppi/IXSemdssbYnh8sN4Hq046nWJsiA2vKFTWDw86GluQAM6Ei3WFLOJ+5meZd2fWTLCU/NBBCNaL7nJCiu6zV5IQHwIBAW7zCuSiD992aNwu/wgxM6hrHyNaDy3ruv6nzbG3O0dGDuA+Z56KC6jtuOx6BcAj9L2itYoh5Iya1FC7s1OcctEf4fEBPJWyvGbL43YXuIZ8PFqT2a6L1BsvkD1CkzPRS5pg/+bYBLyV0lI/eAmitvPGWQh9cj2lKZx+T2XXX6Q26hbskcbFdqYHe3ca/v5jEWuU5xPP1JzMnsFjC8G4IuFcY2POcoNonsFH8bv1S910GnA59r5rHrpeMK8ZNaNnZ1NrVuCJJXXaffBVOvxHLN4cmDpy8SCQUM9kKjGcT5Gq1RbJiVYfG4FUqADQolHE2hfPH4g3V7RVGC9mw/Jk9Cj3jjemfViFkJ3xoA9xcbOfcnd826G3k8DBAACHYxd9yO2o8KORzqHFX0o+1cXfAPQ8voI3gcn+4JyhpRHa5shSRKV59HYrJnXufcIa59FUsXcEoda16bGlVkRZhQY2YiO+rRVfRP8TKsYhEbnuk5huYtrzNLmrt51fy2UYktkhbJW26KCzcLC9TaaEgibBz09+FlIDWTn4XKBs+qja1zDetmgcPtKA/8Zd/Q2y9VAA6F6qx5KG4x1PwIYnM1ZAewpca2nXtJDgLoLZEKeuPZLodwR9Z+dZwyLJqaKUlAULxaxR7cRMWck2Rr5WFCKkFZ7sunvXp4eondinyo/xUhzfvZ+ueF9SGLzuJEcB9zcqVYgTje0SwmzWx9yr+9hC8eDWtZiNrgWDqJHaWZNLznR/aXM4l3N6ba3rNdA7UTDPCWcPb/t+uqhUz7BO/BztfQBJAEK8g1U7T4uAifQHzVaf29WxbDobUR8RrDMlMPzz8vfHpDAwXo1K24H9BYqe5JlyoyDRFRR209KmRwcGn7sm5MJvn1X6G8byMZ73iHXHYDck3paBdqbNQFajm9lvP+QSZdB3KSb/uynNiPk5WXFn1kFvqOYNEQ7OkfcKibm7p7yvKf0Jn8tuidR8dEz2cJLIhCm7/vMjjWWLpI9RnDT5lA+025hPZkGrdt52uqJ0WssgP/lWrci67AGlRRz00Riw9zgcWMCqgQfqVwsGmQKlNqQviIh4WTfQP+Wmn8HIuPxM4mTKgu/vRJTlRsXaRlwPD37RxOLMi8NG3Lvrh3IdEQbG2iNhi2SlpBAwtPnt1QbK/joUAVWWLieVXJKJiO7N9TWRb1i5UVcxmL5kCfrXHQSx80RKWVp0XKce9WtSMhEZ7m6wph0/A7Een/yRpvJvOTgukjfbrfsXqFvNHu8cWrWgerzPpZEgAt0L2k7T/DAbVruvbUW7Z9znxBFzanjUr/M7Zv40cof8zjRqtaIuYmuYhmaeDw+jS6ZFNeDgv6tZ7Wm7TAY80WGPE2qQ4twDz41GFqzh1UyVzxcoZzReYRo71hnpuc55H+wOY/sa5u9fNQokURRm1UttDBieTuSAR6fRs+19uC5njx+Fns8vTLlm6X9VN3GEs8c65xyOdFXg5AUvSFuQzQuyxeP4t0rEwd/+KSxYfHTkwOcvcW+hUFlHI3DDcTrTAbxHSO5WZrCDiTbZgUA9HyBywG6bjcr50ptr0r0oxi10EmmxG8Nddz55+kbjDb3tSB8vqhRaFfQ5A/ROmN9cZy5GYZkalpsuBpkWPfZIGm1A2HIzqlNrgRhBB7b/Rdsg3GljMnCkMUIhRKa0KNyXNpYOhC/YQ8T1mHovFD1H+OJU3NPh3IBY24dPLzsp7v26646h2kXJN/OZaOhIOFnuL5RCJ8tk1fxe4ivgevtmPY0TnHJSXztNRglH6uFL7apqOf8dRGnQNFNyivLzxenfTUtYrwg2Bgtn1UNL5Ql+VkN9vaqWJbtSoYs8NBsXEKSrDo+Rw0amy13H6yzgyWEyg9KSckSg235Q8P5uODnlmYnwcYetIMXHIv4GgJzD8UQ8oDmDiAONxoT6zrCLOIV8qSsQeuwZwWSduhP6ReUHPB5Hf3Z+H3bSSSoNi8Ut4aVJy6tCzvqEvuzAXDTU05vhAyAFhquVavDo7oRBUdwU+Wtkz2dbam5bPn2ZeuurdmglQ==
Variant 1
DifficultyLevel
684
Question
The rectangular prism, pictured below, has a volume of 13 056 cm³ and a height of 32 cm.
What could be the length and width of the prism?
Worked Solution
|
|
V |
= l × w × h |
13 056 |
= l × w × 32 |
408 |
= l × w |
|
= 24 × 17 ✓ (check options) |
∴ 24 cm × 17 cm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, pictured below, has a volume of 13 056 cm³ and a height of 32 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I3-CA25_v1.svg 300 indent3 vpad
What could be the length and width of the prism?
|
workedSolution |
| | |
| --------------------: | -------------- |
| $V$ | \= $\large l$ $\times\ \large w$ $\times\ \large h$|
| 13 056 | \= $\large l$ $\times\ \large w$ $\times\ 32$|
| 408| \= $\large l$ $\times\ \large w$|
|| \= 24 $\times$ 17 $\checkmark$ (check options)|
$\therefore$ {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/2ctvXpjC5wwBb3+D1u8YTJAgou2folCBdYcuUGxFWOba2O02Yyv89trSsWR/urVp+zjJnLrU2qTL/ncoavBf+ykMeL3W59FmenRStQpSyUPFiqn/5v74hJVtSBbykdfLFYMhYVsZLA1lLHjPcOB6u4IBVa1yrsAipWQB2Rl3BBKqdtw77c4H3f37jBojrwZCq4gOduGi4m5qeEN4zf82guxkb9fZH5JyA7qqaEti3rLvc7KHv6P18SxjhkJ6ZNmORrqpNX6n1MwTjwwNSr4ps+n76DYuqgg+Z7VEJED0lNhbLrTVWBWVxIGRcITz///ar2l/isAtM7dl+sz3/1GU1XoFV8SSUrGm8IWj9e6P8yRuNM2QNRhG30XZtRy7F6cRrY4vCa480lyXZZkTODjypcKSje5v8Hdo1MAhBdkocS+lNkMVumeOEbquTEAbQ45LqveSVjfowPx69ZWZ9SiC3hLINArsPIhQK7LQfK9GBTESz1f+2KWP2zy3J85d2FzpTSiffvEEd+zj3Cd2vh/JsjDqF4ky9ssakMf4QbShR9dH/ooMmVoZYRigN4/bL5SSASJNMbOdKx+AC90vOleEE4LwMIVwfcGwXyAnG/TFnXfeOeanCD3T95HMZ0XzfBYK2UFWnNiCoDolu4aa4o7ayRWB9Li1QWCH4rfORVBLg2BO22cBD+VqYufL2Nstqoru68Svc8gyXeV2uf0/o07nKArvPQgWNy6tFrhOzdjUGPaV7J4+uFRC28rbhgTR26KjUXPxZmZ+2EFHPQ18yqbyV6byqxktA0GQPNN1Tsw4c9CQieMPNar7ndNJdSuv07iNWVwjJkGZvRnkfyVyp94UccoXoCSE8ISbF35HbqdLRhcnKz83JntDOwmqrM53lDNbX+XabraQznAloqLhlv94Fvbl7AlfVi3+OkLYRdlhx9XJeTo2h8VpF2H/6SGsWI2AHpnQGdsegLpfv3Vl/EK0A60XM4yWh+BCm2trzWZxJnf5CZ7Mc7qWElg7YN9UwCuXc0qW+QdonR/f/UyZUzc60k1cWUc4CULIO6qnvSAUE6uS3ZHILUYx28PErqPYS4TJIVCBIaJ+c065WUgHJxAXNWq/ISPUM85kVyaGZCHFVpmhLkBrDjEA8OZrx5sY7C9UiJsyrp/6nmp393Z6a0CvBfibBeJ+QbcIDbFkUf996zuvjbwK3n000oVus83OL1jMjq0mu6D6SE574/LKGlKdtmRnOCpcSwsghbx7/rOnO1QybEGr/r/NM65Ovwjrj6BSjdUAaGNBa9cJ3kVPlFAlkHnJ6e3B3TcbHRx5uBRjH3nUOZ9+xds7MTMwXXHP8p1q2PYlZsn13CA3+q0o7yukwfo9d22WNIz/1JLiWTNSLp39f9dQ801iSkMlVwhp2y7lDAt0upugX0dru4ZOqOg0foQbxxRJSiXl/Jvf2cuuxzmyAFCxk3eXvr+8aFMIWSBr3TprfDonxdrUwop/j3nj0J3es/3PB6mIDKpBm9nyMsm1yfzFl1R/2jeQ+I6Gh0r4LJVnB2fc47rOOxEUCOdli37zwent8OhgDoTJaa+t/0vcnHThOG/M8NBou6QhVQzTB+RiwgDz3Ch2MyfNatSEVHk32b7IGtRt5giXjKdviry9MLrb/JeHQbrORfKxxQrhhZeV3LE+Z78QJxBibnImQfRvIBQc8ylzVwjjQElJpqPOMePz/fHPJRL3cFWfhDTdGLymrzhvJGkRqO3l4tMqJYjFrxkTanHbkoxdvxViisiEI7kmru/PSiqNf0ywlkZyHlVvDnHg3cOs7FhdxyhCfPiSAZoNOdw7SMqCHcm83fB7KEIOw9AbxEEPGBXfu5x14ITvUSCZiZSi8zIp6Qzv+XYtGQ0W1UP/ZHZqIgsIcIHaD5lt8ek+fQ1evQk2XdteVQXDZBYILpgU4qU7OtODvhur6lJXr591fCpwfOjN3D10o7EDVkIxCtyOUPCHKMPyafeI8voHfsIWk6Rc+goHwyE5tq4GJPr0gMQ6N0EBayqr0I1BA/rvU+iILLSrvv2QytllcuTcsDtXmojGIEC6ShUalm4++mUIg0O9oecejZMYkP0VSvcuoRuJYQM2DPlvXA9XSp7EY7g4quF+USOYoi9ZfKC9Tyce0ol3QDNPAAf6Z0s61f2G/l9DHYnj8SWFcOGYykmUwFc6kzm7lU/0oCk/nVb0gVVemJY3S0bJIB45nTaJomqWjIsVsvEZT/7ifNzsBWgerWYlUv1+4a3BHa2GPrVG9NRa0aVVpaM4ks9LN8Qc0cSi0FV5wTsvcaCg4MARAYnRN9hCQp1cOplCUNsRWJD0wsqS0Jh0H+Y/1TcGslAlajlNQH5Q0Gyj1x6HqZi/viTW5pHhTSKNY1wAt/mURK7ZeK+Z6xFZMNkoi2nfsQWsv8E1hGKRgQJ0ST0DbDCMxT/icYkiPrFB4h13IC3ZERXhYGkhRgGsHDve5aoyonolrhAb/aS6JZwSuJpgzxkhEl3TM8MXBhZGW+XfPZ4aH3Wa8YWGcI7DYi8R8RRSj8t4/DUWgLLncUwhhkhSD586U1ARcU+JZ3MWZWeezNu1E5akEZ1jZVr+ApKGIBRZVfFDXuMC4Bc5FUzsTT966l21pimEh3oW1KPIfFZnKc4LGzB6y9ALsgWEr741p6ETqrh7E7FAOK9L63/yxwasdcz4iqCoJ5x31CzgG0+1lJav3CrYzcDSToDbwE5VmM3v5/qd3WV0rBx2HYxP/SznTypBrfgSCBMxXCyDGRO8utu6aoiBSU33IXGXmKLm3/7gzXEV959FmatvASbXaJteaKX4DJxZOEwg98E4Q/tTWJjABX8ofo2zSi+eZX4Hl4Q1UR1/YDe8UngWSTLa7xCMxaXUWRHcIcqwZqXpEDHiM5csTy+FeHxVXCfkxBEyY4VfVRM2Jsf1SqTTlzRdQ++ZWCysAjgYlzTJofZ5EVLNdErtw5lUkoQI3vsvVqIKLYP+Pjwyn0VcZ4V2VdGG6vqL0JSBA/EX69PqrUR86+lHa/gTIDRMeIDW98eiVV+KNJSxf+3xcI9vMzRrpAkBKcf9RXd8Sjo8oRa0cjM8Jjp0qqyUbOZsOg0IJ/HBPms9zuSEvir5crZrPn8nX/1fIDsXjFsCSJ7h4cnjCEQs9yKYGCB3R7LCrJQNgAHHc+hW2WCZgEKQBb+eDypz2MwQl+KduPIs9/RdKkc0y3AUDFtYZwhRR2y0EkBRNGsJil9xnz0U2u6t4ZWCdkFAxg0OGcq1A6YuxDKyC4t7w5FPwFcRmOTHNIkWYduoukipoTPNZcB/JD7EQWHMzXs4w6++GpNrhL1SG4FIqEzhuk0lsaBzvnLcJkTiTZBu3tluhcgu5ZGL2gC0wQAcTPdZkOGCoIm1aUa+Ga+YzIRQMQpRLkZOVSgnIV6sNdYRLcOpgboRHM8Sd/wBMRkvJB05rUfAy5ZFG/050axnsyxKDlcf/KCJ/RcTMxzsVCetmiG22SS4+x2EDaFZIZZd1NjfUyXRN/ANmIJayBi/qLVXFrjxQIyHzjYBntE4//rl8TD+PKvfUy67haM11+mNIc9ne4+YHN9vmor1HR03Po3Fse84TAbbKv2Lm7PwMfClxH+vEdvcRrMCLPKGlL8hyLhLZfGmWoiFt9GaOwcc8f3kmvsiIKqW9ldxGdPfex/8dufnmLkbuZJImqvXKUnSb0ZOsUA7eBIREOxvHBKGvDzih6gO+INp6hWkY4XwbHco+5oHToCOe1ShWZ9O2taM4dAAS6ejpnFDDusdbPp32ZEOfgBEqtZHbTiwpTa5iejczCuojwEGmQ0UusBkx16qPOu+LfVRGQjR3HVniUDALJKg0cB14qBIkwOdWL3v3GzIh7gP/AuDIA9j4jcjjjMzO12WfJtFbWa2+zGfmKe19mxDYYL3Di5F7mPlUeDaY4GDQWW2FpCXeUPGN91miE9Oi3Iuopoht7Dmuwqd8hUJ1tFjgXchcHhKUsVbgzwVRhk0QXxhu6W7O+OGa00UVjeMclk9r3V6sGDny9BKlQ6RLw2j+r4Cig419ukydpX6ug5pgHqCeS7fs/rxmiwcMpeJWh5M+qETKn5ctETbfaz/ZPmvClSXv4vFDp8ekeeWMiM5lSNuqvVZZgf7tr/Fp8pSwxZZrRcUv1ox4twddOuvDfXBzGhgvZEIKOlzA3g1nYmJL5r7sbP+n4CacLhkDL3H0QftD7ytKTvNmUyL6t0fm4859xNtIXGsDkxB4ADaqnaKboECbV9ZsoVRnoXJvUC1ZnRQrSnXL3rGlgAIwlyHEjqoGL3WC+wTroYusTDp8AZwHo9ToAbl1PklcH6aY+7ZpIq6KR6TsXkgvA6N5E0Kz7gemOjLF859evP/oIutS4KOrnvGzHW5LAihksV3gQnyFmwdjosSrOiWdFxSaNlOd3G6okoc9rm73U5H0FgBJkG63xRt0NN9CigMio2nYY4zNlj/JocCEsOs/4c8nnOxvMz5r3nVKx6TJFlGzA2wyKRyUXgK9+BIY6MWOj3+lCX1mQy8/7h5ln4iXAwzkawaHKiyTW6ETSHRvMBqwDCUeAcWMnU4mdoeURuLrBM4L6OkG/nkXj7t9UHTA4HX7S4KrhDjaMWtbWr0IWnKKlgrGTVG+yQ2sa/TRshaDTuuF8QaC2aOaw0rkydH4zRGJD6I4mnIa8bIjIxXBT++bVcJTg7L2kf5d22tDTmO6kqD3iwNDgqWtm6w/ufdjYoJHvbNBGqxsKe25x2ErCdOxbachglg4lxnPEiSmGl7fVzwtviDDbxteKHGSzRx2rH0ATnbQTBt/R4WQx0KU8R2AYo1TAQjGPR5YePZ5LaarPTclvEtli/saOyBCWx21SGMUKGKMJWy7f11h41zOljSElbpDyQnaYAr3DOg+AwYRIaf4vp/4MccQOAWlB5WPd/hOhGlFhgelZBdHfGh6Jgxlbg8pFelYduiMfLU/OtKPDUWdi75zF9yDIqlpyrm8SEDOalCanw+8suIwmNp5xAEP6hUIe3JwDHaJl78fGa8LmPoMs4rKlXhQbaSHNmx8vkEs2PhyCFhdAgP7OQGsvUKMFUmkEkbwjfsmPKzaFS5V7k9BRiXYVD20cYt80pPA7be8YIPL3cNWpG9+gc3c9a3ygMleEom+m7Y0WhFNCvxDRsdoT7dVHnT0ey307Jq7CcXsoOcZAux8lZ6a16O8NEd7jYzVk5Anr9uZRbiZv+t1TPJqSSFlOLP9a5au1wGj7Qac03RW/dBP8sraqraVtgHdq3MC3bSHWqWE238VzjaOxykZlAU38I7mw9flVcONz5Iyaw3bWy5F/QKECHtncrS3Oi7skfjmBx2oAMedPdaYTyEjTUlCgkyUZ9eSceAhdzsT8Zx0WjxEnjS0B95nKH/7ncoo91qvaLqIkhcvUET2nYvL7/PJOD0ujBGf+dqvA2IkxzzxeG38/jF+76AkoFqg9h82K5ZWqN+K34WL4Hpyy7/fcx9wOaXeLWHTShZ+IqnfT2b4MeJsmz0IPoqJVTvo6BD4S9DNeLzKBk8UsGPf1K/NGUqnZGPi8FMVFioRbCyVkTnBb/FIASf/QjIpmEHScswp3j9DcHqbKGQdo6d+cbbEh6anvGJ4F8+1vKsjPwK5b/PdupzPtiYMMroC/XcRoEfbwkvurJ7K1Z60s+u/NRY+Igu22Qd3W4jxIH3zRuKnix7eHDdPBHBgVZi69ZCldkRZFGJvFL7am6uENFfgZWYIWGWOXBkubR4bMi11jtuquIV0zGiE2xw6YHSiMIfH6O7si/FKsCw9sHIWudZHTNf/rSA8d3tyVhKdeW9KTdjxPAsAQTMC5/sGCobNXVPbYQHxW6f6h7ak+YQ/vglv81AkNLwdWJou70wQ5E+keoU0Hl49mfHth3arLURK9vBGSbEc2tAs8WKC/hMqTs/ka0Bo3zoSkQavar8kCD3lCjp4sQNfbxuoSO0AVDNbOcJmd7ex3/74klxX7XoCVNQwoAg5wruWlQjVONd296hhXPVb2zmF0cvbKj/5uvmhSTZx5AkQb1dXgNGXWxRpIIIjhJn2rs16utfhGrWl1AJDX+TmgZdL9OWdI7Z31CBXvmyq0NxG0ACU0I1nhU9PeD6G/+sYCW4Oiizz4JOxo9k913HZXo9CJeK7xyKCs0BDIR/eMi5i4RiNUKAiX60e+KxP4qpFY+3RA8r97kjFgioo9ydhuYtFk89r+SCNi8wQ2Iu5yl4RaozdaYlxC49RcjJZiTV2rprS/6DBP35sNHzjChf+hLnTDKE9uQKqkww8okwH4p0C0blBZvOB09wwiR2doj7La7hXC5nG6vGi+MXlIH42gSx9IGOjTAJlOXtdgzxcqWS/28PvBpzAAxn7x04KRV5iiFZQg3tPn/k08dUAwa0BCxixsd2ke4reSrkF+/rWCBH77lT7dMV8FVaEXm6jsnIlCyaXzGCt2Alu+TqHukv92DQ45tkBth3BtilfjcoK0Wb3ANn+tT5ZKz7pUvyCcCQUfZbScfm6JIvzm+h75iKhmtQO6dcxsa3xxMMp6dX5LM2tzZbCtl7eo1ZQtwTSAow0jrTynSoOYy+/XiyebfQZKyykF3rTo2mo3bZMxcsRrOYvDp7YYtkIafhlZbjmjX/J8IWnmbDKX7n3MNkyciLml/cAChtsyCBUB3i7tNCqrmlJh2at6SnxBL7kGueNGwdJUy5+xM7MJXmiGNh/O9PXUUQ3cv43C7WKkbCBEPnv7+XJmFRvDywzjdFubH31Yr+yfq5281t5aYEYke1l8wkuPeZc2/u+oNRqpgzsTQCnvD8FJ60M3mxepN8oGbDnWEdtqA6C54rj9MsVaTFjpZlLZzKcp+84APrHUY9/ysdTEeNSPo+2jnjejGRQJg02Cfu+vAHKwNIiaGzln2JLlGK8qbSckK+RAmI3AcoXrx4uwwsHJvSjHY3/C+P8BCazPAxArwbjCOheZ9wudh38LFOLMBFt1KbJyq/wG246T1VM+oyHozMUGPvgxeHGyWhTLrKXX6CAnxmyhh2EMhmnn0Kg//zXCQTtcLJi/A33UcJfiZ6aPWk1tSWwX88+uEQsFsHA9AqWPg/qkzHwMO75+IMjHTNIkKouZ6MSqErvXuHJK0b3SnFsc/FGONVEjtBxbWALQB5cAZy9z4JVX8i1OGBbv3a2MQ9peI35yEN9tkQof9OTDOJUPDyWYSdIlGbVoGYBUtfjpl3YtTWCRlS7izmMdxqZRRcKRR7BXO8m3QBH0OpXuXZmSBid9U0zNqqjeLEvx4ET/44PnMjrGHvgFhHqqcGTB452MnskMkYBXVw8WPHZSQdkFXryRbHzKmHPPmLMRYc/gLcn2Na200D1rTGb8q0zO/d4fuVFlY+wRcSnO/MCqgkpy+HW4W2PUNhZLVOnKCacZ2U8kMsPG9jRtDn6dLpL+owsCqu7dgiLXC5k3j2wN3NItqxoGn+nnOwWFuVF4WZm3twIQ3ZjW4e/0qbEL4wKStTmIQ2jPyqyKySC/l7EQd+pudpYhYcQoJ+zwgPyaemfJ1+s5IzP9jNU6NRh3UqOPslFDEQhlVV875n3efX0502kAVqmdpDGbGjMk4jyd3tlrY3CkTuYcgbh8QjF+cBYGnncGrEt/o1K6zYEMShodnYf+2sMGcraa0A3Lrz2/xPusHpxppTkNSVvfV+mPZODzv7W+cveDUmmO1nWgpta1gTYiEh2Sw/0dbVqeJgSWpsMX7+iTxHmC4mUc1kt393fJMIoD2FTMdgrjm2DVjO/wXJ1FjSZJICLJX2z/F6Kat6A8eyp7SeOmMFMLkVmqXtRbFJatGP6zH31oSesjD9tMwqSagHnuC19osZPzwGcADak2rGf+gGpJpRKSJtcR5z2E7z8ZlxXZhoZm8P00giWob+RceuKLdy6GNenasYuej7xbxeMxHjk/F6sRZ3Ye1m02qiuYXCBhjqWqp40hhXYZid83fNnktZrahn+IsuarIpTlOJLUOVBLeFSOpCzq7TWtgJVgaLeoRE0L1cvpvUcZ32oEk6kxNTKWz3gj9O3GBnXGQsDcHwewXaL1XVMECYomr2wnn8mXTz9sOgHyKLkVE3XvnaEWCiTuWgAus8X1Q+IelAnOSYbpbJBrSWN6VNNoQPlLqM5Afc2n4SeTSJdv1ET5AA7vuMR2WGaV+859akgUd75wcwu1kXj0QWCLVZA6V5moEy+OzHyRSziuGckqi4AciP2COdCeFPy1P+jeRQCHfYcCROpc8OHogODSAuEHPv/uZZde+TtCTvCHaNQLcXPU4U3hi1kpAcaBAjBjPO1J5eDcuXXwzifIBZ2GBSR6z6NSm3j4Kch+5MjT0LQGsDZq9y6I1VjQtqNgpMtRMvw8XuMtM9N5XdfjkOQIp9AL51+5+Ak07OazSVMIfU4kH0jRCWdjz2RWVtgpQmu1aeQmXfdORZhyWYt1w6kkTuw600dwGzYS4WzttxmXV3xrUiRPbo4OXEo6tS5CGbZ77anYQnqGGPt32S8gQ8PceovJVHVoNvdR/QxUldui2gBOM7IKmgQEmapOK1GFVQFKQ+NgEjoRXXmV4v/0ALfHWZCWdSzjDhcfzJoRHdIwxQqzidYvw3aKsBpKQEx1QvahYplnQsqp1qXVZRDpOGte3cv98MzMffOsrfuU5CzZR5sQx3UGLlbpdjxF0oBabrsj+PDPOicWFqog+hjjdLNH9s9FREFz2xpU4wNQqQVIomMBrFJcoVOlwusVY59d2JbTI/lqupa5bnZt8t4zvL79C15BkzFDG/EgjdLfKyqAUn51boJ8WQZbQn9zOqV3p6FUkVteVF3Clz0Ifi/r+LVKoAHh3VeHJgkqQr3A3RnvNPesCkrboEAVUo+pi8hERaGPj41SoRZ4lsot62AXFrFlgAxcNPZkQoJ0mOInlieDJbyh6WBOEynwZ2c7xRUhNvc40xNZ1/+Hd1qoVgJYcUsqpwCSBfw0P3o/CqMzJw/2QdJuIs34AICV9xQS93od6XL80qHLRvTFiFvjL4DHAUBO37i4PIwN5WaFcSDisiEXKSO3uKBbTGM7FTVSO5GlQGh/yeg+Zjohak3Nlf/uGIK4Rxb28D/lwnuaUvc4+XjNwcRP7p/3E/I0NNYPwJW37aruZ2FAWp9rrI1JOMTaIW60hF8hE2ksnWOfkN8wwB/rKtnUzHmfh+HrV2VfVRbd4x1bkFfX8pJfdWDdnyGnGjgQhNyWsF7DNgtvvz4FCDEQHoU15u/GmNQcXTHZ9vNUd3vPL+QUNOHStKwf35gZvBYSjJA+0YVU3jhyr3dHI2bTrPQh5Ccv2x+qjycAgiZHM4eDENISiUEQC7v2oPivwPiPZQCGEZVvlGhBbQvTO5O35m500SKXCgblH+EWAwi95CDlwVkRfeO6vmjx0bulroRv3B7nSn0eCppydWeqkWHVk0kswHUV8Vb1nobWPIRj9bOaJLVUCayY/qNhnZz0gbR/6Ie2OzNDlZnF+fcVLzAbiOtrNLLCQT0tQWaypOkqn+/eF57005R6Z2C29MV8Q0khVef+qzudrlaXL2k+mYTwq3vkDLytPsxWsogOTK7mGQC7Nn1XeYGgfDBlN7SNJ4awoT+prYhBizI5QcTIfOVaW92mpXwAfqa53Zp4+XAuLMePGQxN8Yo2cA9Efa7aAbaYuIXq+MP/MdOr93QD6QLPeO2S4kX3q9qWUxJP+EDqUZrtmMWX3Zm4wNmmgTXZ1oGYy235CUZ/GTIiputkhsoyGI6QsdkCHRjPz8FAYLZh0OKKz/L7KoXR4mG2QvXbe+UXZtj1GrDxcO1KeOU6iq77+CPLsMJ1gk9+cbxDN3qP8mZ6qgY19QKaW7I7ehPV60JdkQNUIFSwljDaaWn9+OgFSoZiHE5+znfYozxj4CCiCJFbwOeasmFOj43CHoDVSPrw/bsIy8YRTGv7fAggzWRLkyYUki3AB5ksz1GGIg81YN5CAqvChO19I71CxQRfU3b0pU0ixjp+pz5hwc4M+5BsKVAlDnWYX6X3dNKb7Of7+1JEp15TNtc2EK8E75ntzHReeuTk10G929D8adG/ykvEcQ+hsrmGI1+UFKo5Bpr9PJhwG4YOm9DRJroN4bdyd1VM5+JJOstXFd+eRDZ2JjA58ZDBZ7qcp3dPkoWr2p0eMgJAVNYoQ4CErBHR0e0P5rtXP/zrE5q8wgyvmvUy0kP0k04sDPmLErEaV216n0c8WW07298Tp6mjEx1/mAk3b1bUphLWOrt+I+iajVir6Egz37awm/RW31CBYynD97tL+ue+qIQ
Variant 2
DifficultyLevel
684
Question
The rectangular prism, pictured below, has a volume of 6555 cm³ and a length of 23 cm.
What could be the height and width of the prism?
Worked Solution
|
|
V |
= l × w × h |
6555 |
= 23 × w ×h |
285 |
= w × h |
|
= 19 × 15 ✓ (check options) |
∴ 19 cm × 15 cm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, pictured below, has a volume of 6555 cm³ and a length of 23 cm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I3-CA25_v2.svg 260 indent3 vpad
What could be the height and width of the prism?
|
workedSolution |
| | |
| --------------------: | -------------- |
| $V$ | \= $\large l$ $\times\ \large w$ $\times\ \large h$|
| 6555 | \= 23 $\times\ \large w$ $\times\large h$|
| 285| \= $\large w$ $\times\ \large h$|
|| \= 19 $\times$ 15 $\checkmark$ (check options)|
$\therefore$ {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/0+x1PY20YQL6y9TyDRY6D8A9U5mMsYkNcwjiyz1hBVy4NelvXTMNMFWV6F2oTS/nz2iPFbt/Q79Y6/CwOY4TbbocSjRlNF2MbL9MsQYRwvqo1FQnoGRfP3NOC/7lByW6V9UrJGqpxsEM+u4Tdgsu4hu8gHEZjZxX9KenaJDmIBZhWtzdRohfQQ81rEtB/f3z14VvgWumyaBto/5a6Wl/9vUjNA57/3pMb+pCdpds9taTyo/vdudo8cbSwWv7jw5nIVjEKM60FlYrcAD4Kh8jDZYwRbXrrxEKWZu6l6Xcl9kEB0UPDOvvorQTAnZ+2QSMSqL1U7sV9ujQbIZeKKxVrzkLQisVYgqIqlS1B1vFuWPgO/TSHC1sMGCSeeMOUx727OeSRBBGu4Ufzbf0zsLyXK1mb7bzk3a4U2CW2AKs77dcz4aTGAu3p1U08VnK+A23GzCjSxr9HCpD+YyfspSTlXb4KjHXQ3r0WgRnIeTJrCY5xvAnLUIX6g7VhUE9fH1rVafz+Zpdg14q97ySO6T76JZ3feIRmCHIfDGZkzFXEelfd3FapGiww+08EIG7hVrSMdVAuvKFQb9HBaP2DkuS99ASQ+kQM36fuA9JmL17/kP6xEa4Aj33hZQnXG0Dj+oq4yYfoApGlJwICmatNdSE99khcZbajGt1EkhpwWCIWdPb0LwGMzuA5L+3W1Op4jR+i51puB0vSKJeKn6cjm0rRAY2QqMB3+HV2bgJMeHaxsMepmSY1mwpyThRk1SH+975fz6yqDuull6tX8hvP9Wi6bpf2+Dwg3ICMlSFfmC2dlvj2mPAuCdjdOHY9sV01MleaMsXvig1Envtzl6v964jnfjU0zR7AH0N0jJjLy8KUhK42bpNK5qTWaa6A7hCKR28ZbKMqOU8W+/d9vt/DcfKuZpWLWw46W3JIG+fq+uBkCdlfuE0DZxEKDiSMhkJuvj46qAoBz0v3zIKBDuLF0s9CmE1lRU3DPbd6zt6gdAe4xKvG7H23+DnA2+dQ73bFTELKKUEaODZax1UaexZIs3GmkWid4+kc9il8hL3FflrTnpx0LgA8vp1kG7KUFzh3SWrn3IXrU4bWEems/b687MM99eAtCJtX38vs8YzmMeru8jOAUAlhtFwWhmGGGxN3RgiMe9OBU7+MUS+AAbX3Z5KMdLayTuC3qzPUZH08D+4QNFIHACW3DGn4G9XsmgDN+dFbELmJ9NvTX08jrQRu62nx20sq9TUic0jb8mIWv47mjlKrLxqZnc+vz//FIqS8Hx/bW/0uTWaaZ1Z2AysMSKxFBKkUQrcPOmRM0CrCfvYUZ8CkW/dCNPcqXEe9VeKG7oGW8031dgY2qkjEWZwRQ8FCWflHXHSUBZZ7krB2w4K6nZMb3eo5AIGH5KNVXZnhr0UjCenqAH5Q/CmRddK7JraNtZ/m1UMID30sNNi6Dd3V2R0HTM+APjpFwt8Uii8drbL1Afouz9mrHxNGI6yqlrpkJ6fpwVhtUqbbrafakhwXYtYX4LPduk1o4h/2zLeIqamexwKKbN93rlLnjYCK1Dp46ru7Cyji29mkm4OfkQyFcEQKeK1pY98g3k0kyXJWAxlGn8Oxhnl+53yyCYt4UrJoUsyRmx/orf+9GKz4a9ec1TGL3KmgF8e3l5vsL0RO8VPDEKN7KwARU2hau4VPheUjvhomzmFvYa3gNGOKuvzFTPlXmj0aEUL0FRZmQmnRFbSX//Fryo3H/Ltj+izpdUrRVPfardhHj0cUpFojpw7S39ZGtIau0ZUxz5kJGXBiMKPruTUhHWlajt38P96K1Rc96+mghq8wAQjAhNb6wzzqHcRYNlXRUbM0XKf0cwhE3izEun8PX4I55i/oOp2r6At/9fpxyOC9SqNS1W3o0P0Pl7d7U6T7RVwkbUPjaE2KbXo+7RC13h//OnZBuLDEMq6UmD+JJZiRfaD38FBadTerGyjYYj99oFvEALBlqI5KT8LAFz9IthShM98jg8bvJ96Gz1okckWP2iFP8qNRQvgzBl7g+iRzQIiTOM/OTW1i9dKYiprtaPbuUYCUP7f50WfxNCgrWV/Y4as05nldUpIfBjnBP4TAo1QHCHvoQq3U1a0VUJVXe0mJT/oDKaJgQrhEqi7SWVilBTQ/ofkN4mI8Cqd3BRefywCZfzPm9wJGli+canEGa2R9MLhyeOIdA0p326upP4JRgcNUIKj3lzzec8CFMPvvi8bzHrpcZHYCBUnFQRw9FrWeQepxsXpFCoF2M8vUCWf2HXPDWoIZUysrpS/jFrk2AuzfQ57HCvSN3yu9BfAy4xiojhbyWXb20EnhFQhpM+P5DAtvofbY4PGzGysLcOjkbdOpiQYSadDm0737xxE5XeIxe8T1dob89uKvHwHuSRxtZGeZyTjjHxyaMXgZbpWGjc0tadhfYuKYml0JlBWfLzoS/b9/MKO1Jhfme/JPFwSYzfW030nnVvamz/hazxCdPjWUWaa00O9eF7qmK9bYgxFi+Vaz0sM/8FdxtP/WCR9xZ88j2n31qSiD95sB6G8CATCv7rRxEK9nh+yK1CNWLzr4EWVebuYA89c3Hz6U9K/HDY53dvAyU/bU7CFxQjPTuajgNE8TlP1XOXe/KxxgTFfcmZ7r6ItJhfK9HTA/wX93FVeYgOVqsUE9nvl60IPbu3a8II/XWdDMpGgt1rX2M4a0pXMIzhnNlPlSm+nTgfwb4MYaWE6qkwetGU1cW5JF8zEE8ZziCviQ9XAiXGJ+8Yvod0FWi4oid3Qnk/NaQmysOJTqWe6/rVPtOTeq3w85ZDVG4Fku8Q3C6o0JL4FXAVM+spPRPKHXNlY0J8n0DWu5RWX3I0rkWNg9kXkWUeqWlP3CoWGmd6nq0jZ/G+p2RZIkRxgWVOV6B63SJ54Y0CKw/DsZPAJkSLGDSEMurnXxNuibeihxUy9M9V4n13u59eTOGDMY2HUWjRfsqM8yzKacSZHnf/2qCC71q9kZAisyd7GvFEWiawHsEYDRScUh4EdJnt7UVtdnz5/C4mc6fSmDTVXz93K3ZaTQzXcV7vCT6sFvJjGaAcQNKUJny+UFnBFfsMBjSrurSj8FHLKHYL1v6z6BgN37BkglURhjhTv1QmWdkY5SAe15ZG5NFsExYTd8t7TbKnUTRLWzQnRsxmsozudTVvbwoGXchvWhKTm2AgLyZhmSzbv9/7yT7RAfMc9aEa4M9Ux92LUzTLEYUUA8SInL9SXOXJDdZ1PBupDSqD5BiuFSo8y862wBqDDHXQMKxlN6uCGg0SSSt2IvsfZRE+LfilCwKrfIZuJeRXeYp2tt6FjUo0prWloMPIY7pirL0tfDV98vtvG+ITzMhc78L2+K1huOrEQwtEPE0vrFIks7BYtmC7KT1y1BdHjMtGn6nKTjOPbZBdXHsMhM8xtZnbBMnwlisXizyuVNBKzw1zehwOLSrmFUezOHwkPB6NtMV6elRcA+A1K72sEdP5QtytLg4eSAZmqiW/hoWv8WfuNuzK4lQIXbpis6xIrRh31kGtKWFI+Sgy8woAgFvsMOskOkjVzJ2mvE3ZzzEJCQhNllYIshyaJF/RICFDrXu44UlPhB5/D+sTaN2u2biQz9UoaGUED4Lnzshbou9Y5KJaYa6U1d5cEV4suNjrXNY2J4m2WRQv1rmeMXetFfb1AmUgUPZOawyHosDoPFsxEtOUlPX2QBlRKlbUtp4+7d0icdCQ/VC/2DvRI68kLW1j5VXmhodxPdCmAvbn5okavY6uNlOP4mXFHK2A6JNshtFdOkFMJ628AnyNg0AtOZe/S7X7mc9WFyPYj8q7KlXsIiFpAxBkiOnsaQEUONv6b+6MEI5jrwUPikZc4KuhZ2qU7zsuWcfal/LzbiJdjLDECHm+bsODfMknoXptKqWMv4sfybgx3xf9OB1vbIDUSgnyibDGMLo6BJB0RO9QPTEYA7u+/H/Xqwwm3Yg5jay8yoT3KDZ4q+CtRfEIyzIU5SVXxdXsBYpjuoABT68qsrgumpVfbQdkafayPRJx69f95QGiPOU/oSu6FGPGnBphbIJxB3RMFAbfSu1KqANeAC/dlyRVxNyEc6YrQoLeqSGd3Uxu/z8vKwBLJPvvLa452uzvLkbSrHvGbe0A2eMuNSo61WLWINOd7NBrRRrbvGgeh2JWUSv1+g2AW/vBT6neG8HD5H5rcCqLraUGM2vvncYwvUIz7RPRVnLbSW2MWf11LS0gKAsQuDhzejp69a+zu38DsvvvYKFT67UZeWSuG5Oa2RdcK2Wsy85SXF24k7xtRXbqypLRn9NIc3FaRMuvTN1KDwiBYuRgqbSQWciKgBDnBR6JEXgcGDU1sVf2ua3wCmIzNOdi39T7LMM9kYtrSnoyLyA3bGhDEZPD5nc/EXLHf1yiMnPls2pppDuVyupVWCbJIKAH4BtlTvtCfKVEL4qpzmOPF8+UWXCX2vHM4nXwwC0TLhpViinK3pSAb3L/B1uX00n5+0t6ns9y/LmZCLZ7y+2TQKByJMaR7ggyw7SbLmgrdl9LiWyQzpztzGHZ8LBMufPPWojXZDNiVRX3UurNWUJSZR0yD7PQS0ypjRoaYniknXE+XGuUyNWIMMPY1C57DWlZn37qQcjOVsfGVXTTOhA+c0ePWeH7+DzU0H0oP6WoBd/lpcQ60h6iJxnVQKn71GOxqIxZu5BfbHvJugb28dya/4HS0BoMDbZjUrH+FcmGUUyuTsJH6dFcNqnvR77a5AN5r0eRTnu2c/3B8nr7nVz9Q/b32YaGJOcO9pcj+64BR2NPmaBDJw+dLWqh6ypyimpnhrg5eFjBrBIvixbBlPReWq2OHJdbrpoOyAPWfRY2g9jjxiVG+3QE7LEzJt9IshLCuxrlvUiP5pvfu361vwiHMENeMwgzrXjrBnPWbCfacnYYIqxFX93SUUnFSpQvJiQWeBAthT4AtFIdq7LppCURpVZSGO6TMzMkowZwhtqJKCH0e/jJ4vuClmkTQqG62nxvLbPhIswFry/OF47j1+3Wz61LwBmvo2lD5q0c6wSBdaMnniXO08JQhxbC0cEkMkyoiVh9cCelRCKb/+NjcYLGOiTwV+lx0Q+u2yxbYTtfxycJ1OgLAhiQZW60hS9KLloEOrmcR7DjwVR2i1r+oR8CSm+DJiOwDRcUewgE45aFpuaTGK12PKbHuT9TpBksFMBKSgCjh81x8LyNdpKZ6ISBm8FK+1hl4b9FowHal6LoblQZ9qB5hP+2DylaBVLvh+Q1N9yaVXxVDLjcySyVK4yuwJXUecbAs0RuZMmLQk8ncZjacobhW1ZkUg2pWgIaGM6MFWz4r8EkkNe5nGccdGL2G/+p7yPqpw4SPp0L9e2nIeYAICaRJdEw+FNIwaNhCytZ0UJuq/WB8j2E1knyzlhZ8qg0QE3uV6dR27VSery4TGf2gY3Cb+R0xHTzQ1XRDdNoaicDoYkACwv9Kqj6jZ6JFMQ9RKRjnPdDjWqL2fpUKnxzqYCs4JbN0yw1owvBBAO3lFNamZCIzArZoLrk8Qm6MQJtjrVh1Is6yQeTN7p216yJOVVNXSjP+pREmwIqTbUSFVALaWFJoc8U65or6XPShU2yjCwn6MdGY8xk2yXxCmOopmdMkJDEZWv+15eVgylVmKS3FpJO+3wnyUTIdClWFJNx4W4bCiUCCbc6xI8Nx7mYMcKSFZJZsvmeNglHxdrvUO/cvAxFEy7rKR4xofl5BVDnAaoS7TenYnhEOE3226SjIiKrDXl7BsltnXxPBOdJ57WjvFoc60ajwcxvIk0Nrnxr6U52WjdXKvoeenPsoeSIwVTtlZ9jP2aCoX/un0z0ypeAu6jiH1QuApxnR9tf1/61PxHHIbIfR04hG2eih7fHqENiCqqvWfoW+ZTH9RtmVeINUty7QMEFBBBhPHo3LmLnjmtsDtaRrvqwA5Ckw3Xu8pwTBctJeHalaJWXsA2FHlSBkZZiF9Pw+jWSsF03hcEUSFD0TUbBew+PKG6hBHxmEiIvBYP1NvXNCe7OJ3mxNhh0DhkPF/Ao19AGtfobBb96B1eVYu44ZqUQUvEoR3hqOQLl+RnG5pQy8RRvKVGNm03V1X/4utFG9gUIYmuREv54XFZogGBsQ2QEjgQ9/RULORYE09kPG7iDk6ZFOl3WU/Y2gB7xdt6WRFFKQgeuLkTLLcKoOSUKDs2hS5PpR/94cLxWIkaVn2K6JRPUoXmU1iAxGXOzsE207n2dxEGnIPNsyXADZr4kCwotj3glX42KaFs9NIzE1Esxw73+Tgbs6Z+Ye/YaaG18kYJyhY3jatf8GqVxaxvjdf4cQdppOb9u0Z7NoyaJzKlhJiLWutME8XvlW8pKx+sx2R0OeRk80MCL+rziMEpwTM6Op79Pd67pobyOBUXPN5+4Q+RDx3BWBizIvfEXM3q2SIijRSyHMEGq7j5lt8sXoT+pZ/Z3apJh8B0GOWbzQDSO/8FaAvj8EKEMxWcZmIrq8vhwhM791BWj2m3x6eK3RmB+ie3MDP9fbb1mJXE+gSLPHFPQoe4b5OpbMe1l3vlZJjo9klz8PnaJ/Y0EPk/IE1xdj+WtR/q7hHS6id9iw2/vO87ER8we+8nqcUY+zNjEywazLKdoe59nNA3Xgb9KesmYbd0WLgakSLGpQTKkdUcIzifUaq1p4yQUiIPZQ0vzxXy0TJUjLOxtAmJ795RkvVrPzmmR1Zya0JoMUNO5Tmesx++SY6JAqucr6brMPgHTj1ymG4Q+hq+f0gQY06Lh5JSrgnpl/obojEW8s9MEkeaxEcJnujDxbqdQ3znW2ISFJhqD+l2H5viBtUNHp4udgV1zCtyxI/COqfEDiT15KgiidlS55rJqdIgM8VnOYDy5gOkOEGqqkMrtOKLPJLrXzZqBSR88Tsp4L7asY4TaqtThte61viORcAI8L3soD/6Dbz7oLkiiBVr2Nti5P7LyDFltxYS6qObUDRsKndYLRYhIT0lI3yni7sNGPf5YnwPINZcl4NIOIwaPYVfcnbQw0UCmYro8/ZPHe3tVQB7il6cC2aQITLS41QBcacBmiGI94sIkDxzG2NWMVOoi16mOwEBQage7PvdaBHRDWo/vgFX1JaJYwngmVRu0PQpSUyOGKoNYiisBId98orE/nYYXKDefwdxipmaLNqVeUDDBThzgBS5Tb4ZdR5UsLBDN3Ki80bspgPeUclIt/Y1BFZnWaG4OEUnVsTXHT8yWSQir/Bu+szkPXILBzP6srvdlQ2plTPnTipqBab6gwijH/2Ze5O70ip/vDVr9rDyeJkDnYzQmh4e6rGnUhLANinM3uW0AyHW8v9PHw63SUgqFMed8j3Ta64aTS8DFw3bzd91x/p+LH5DtC3YeFDlVmBcf9N/VfY52MEvRa1NJbDxqjyVRQbHmfql0V+0724khpTH9vc4nM8bITIrXUBVdF5VcKyQ1X7gWjLPsB7Xry4IfBo7okLVwJcCePhlUYLpd8rq2Y843lYdY98mBfayPGR1plGLJw85kArnvSq45lEDf1O26O6Oy+KaBc29M/dz5U+m5QGSgqOq0k8f0nIzJcFFI+ZdwYsUATOnhx22rFo6GY0rAQxMb4PYszfazziGWy7XGx6wIKh2/+8IWu+KXJJ4WhqytfF8gbIltus5tODjRPeKY+3/5wqcX254Efggns4khpDeGMpxziFEzD+WrLpU0fHO228BruRqdqUkrURZ31Fd6JzMXHX6d035jHNY4pC/KZRSRRY0w9p3+8eI8gF4Ia5PQ1iqMwiIFKqZjzxgeHJ27N8/20QJYY9wU2xiNcaIkT8gIkFPLUEk8xfPXwPamwvjaZ2ftS7qRUyNVSOZYRxJyWWTs+If6ci9+McAtU3znHnYKNBizScl3OYDa/8UX0tMxflswsSt/pZnHANLcYYgr5TY4fv3mzgn0hAVZnHSOrf/yuvLK5L30maStSM297HJB6yy80NQEmAQc621Cti5ah4MaSEji7cgfpTco7Srpcr1wPx4zoM0+BjuS1o8St79skf/I/w5gDotsGy/WAfLzBNdOLmhCHyY+soY/qWEzlYDXZVYTx1qXgX5gn3C62STyh9zZX+4UaBnCQLkv0rk8gmKt8xFdwWoVx/Xi+ZN+XtV+VIvAyHh4YMU0Lt8wO/Ex10TlsRusUbI13XyvQnbZpUHd33ThFbDf0v5hcTHg4BdpzvjHGPZjl6SXKF5/5lrH8k1UXfSesZ1FY5HsE3j+UypIArIZJ27G/WtQ8Sp3cpslhTIY7DfQOJNJ3g95U3xdXCPhhE7n3Fg0XkyYljq+nSKM76bITalJu0j2vm2C09nPtcTx8JbddWJc7ZIWUW9V1cE71W7Vi07TP9MF+1zFhxFHTvDflB2ZzxX/uAvi3j0sPNIr8HwLWE2c1Bd+WViL4AKUGgPyuCCerc10CMQzKIkPsT6FXXqIehDa7zMnvoC3mkuwjttV7YaLNtCHk/Sqf1cva7O3d08WnHBxuZId2LaH9uHBc8kMdeZkZtmZoGqtZ/PhZQaIoZvVgQ7TwX5bLpUuhAy506JUCIRf6j6VcueQg2J3Yf8SvPumPdW51H3qI42upzihhxFGwpDvswHPOioqUP88FW00InOKd3/mRUzy85fbGvTdWijb/GPLWbIbQuG3jPb+VzNumGQ70xupvozmbYM26DYHlhaRxeXY1Wm1l4/CdSJagwRU1b0gnJ+8iSbUxKzhyziaFE77XTE4+ST6/MhcQXdf/PamIhonAlvNszyRLrOQ5h+6cPomYT08OueQI+J4Ki+VJ5wvaPbgzxrlrd67WyCrotVCXWLqvMcbyaqWkm/8bhBE/mzma34CQZsq2pw4kF7LtXdWXTKs68UsGiDR/W6jvUIbH2SlMiHxFSbi/MiPtjO0wU1mtBNzKsYgzZN2WTG08aHRNWQvbKbxoOssetrddio9OgJcIRqYBCOMd1FdGhp1J9RT7ZcreLCxjLMwGDVtTpK5QZxq0HeKXRL3t/9hMoPH4zUBMB4PO4d7HKZfM4TvhfXHXvC+Knhq9EYBC8FT07+JIjxTQpqDEdzVJA+HUNArXGdDNEWWukeMH8Ok/YffbmnIT3ldb7jo6i7bTTRLcmMkGyQsU58X0mbtKFER7uHwxAUv2y81QbfUfTKTkmSBnSTSwyGWeZSaJGWoVp44aXJJFOtm1qqiJWh2yz10eFOIZNRnlGwMTgmTlH9/7jsZ1ilDD1WmTkC32UXBWeJzIKj3Vc/jiJdJs0pdHiGrU6U7m2Q61yaBl6RbPYfq6ARD8kQK8BI/V2D1aUN0Gi9qj36RLwTqCwphPHoqADcs178py4NmrOpH8EHWKhs5HtBth51vZvWQV/AFmDLxW5S0yWjbwO+pgf9PwNudiCSVgFkIje2lQn+NRkaGtKWjdRjvCI9lA7d1OoUZo6dyOfwWZBkF3H8MtS3z0FdxVICd3CQUbzn+P1+bJRE1jsTG/yMXPteNjzNkGLocoSNtkLx/31hSV6dvfYgiCzsMOOjUTgDrzXmQIwRddcFzHRKNrvvKcfDxh/A/W3Kj6lG37MjBWDQUWtyj0yehZ7FpWpsdewB+hQS5VapPAAqj974q6Nlxys9yQcB+itzRSXr0MYKipEI/A/pWSSjcOP0J5lnNKbK187LtgpD4UvgyCD2myoVtj+dFP0SzXSGNFzFJDyZVEcGf8n/V36EjK0MH+oLm2ON9D7dtCkw8YYOJB0nwXd4TCh9p5lKTAaHHBhnQlqGiT/EmqdpcBhb/zID7OphfdBaOUIXU3y1zGx5fP+wU0l1iArY5ri8Gl3Q9quBrwYcMUuKh6ISOMuqV5I6tdWfvjiwn9M9ypF5kld92SwQcOoIusKp7RQb+hswbZ96ugyeHBrCfxpKfbNnmirMYNGWAvehQKgm5VJTk/73aDQlAV4pernqraEd27cqjGKLNnKZcYj5kUVIe7mlv685iDCqDwZ8fkLTwwuug2VZDFJyHmxlMXs+A4OtwtJuMCRxVboubz3njUpk3taFhwhMVPbB0uicPcc2ZpyEN1BpJQnxmKwYQsMi6eUd1htrs4VDEzLOcoWhIt+roacDR5DCsHZQ4Dc70IgzmKMtkXAtWGe/YYX7WBPWuejLt2SEzb/p3d1+wYFsEHu3rd3Jd4HzWPMsUJxIFOqdsD82UgUTH5u856fAiJKJzUKMzEiUKpNE10gEgBi6hShICvxrCn2WwjcSn9IhMEZL9dhCr+OY5H6Sai97oLY+UR60ET7D+Ga9d+nJiDn9ZwS8dqE9X7sbr6iHZv/rP2T4fjsPVlkqgb+pKw1xI94CCHsXUeGjpLsk3NjFzgnJdRu3XBXIjNCr13JhzsWfvtafBscRJ5YGbfHfvMr4bvz8PfdcHlUgNSgR9BQ1/HA29qTEy26Oy/Ai4YOnD19OmgE54PgjZGdbDRo8K9rmG28+JrJbq9qeg4U+dy7SK+g2Bxc/58PMoIAmvt9yf/pYZgrkyj+ijKe1pmneWASQ4+fdKf0CyTtSttMiH0MO4gqhfYhU9LLv6O9+vfJW2Y/b4xcDZeOXraorqsPCl2Pb4ylrgKzlxJTLH/D6Wq120BJ/SLFwFC+wLF8UeRLL37iZSPudBarH6c/oX/EZIeXOrZdfyHW9kSh9t7EQc0ZqNrDuqQXETQg5v7LmGR///k9M2r5psBDd3STsqFOQTmc57zICt9CP2r0e77kGimZoyCKfc8hzqJ8zSwN+P/oZqP3hL8/FR8R3i6N5X1FrneXlmsqU8MsmJ4rmXEZNXeXcVaH1TIFUnTHCdxFtCXqLQpu0m8Yo0coq+NktoOKaN4EUw8tjnl74gPcqRDLetoRiB2pou7o7sXkmAVT6XM+Jc+FXbgp39zk91iaT7YXZC536eID9zrwI6Vr0VVeh9CKEgaounzSkrgOMhxxysxRGDt5zXPFxCIoQl81dPD9Ir4HAiVEtvuU5MSm9dzED8RJpatdhjSSy1r+FiwbXnkJABdZ6beqrP+oPmAaVqBRsgt3VGZVaEHHvBN8WyUGac1wTEA27mE8xMfWMuMRKx6vJFUTaQzcaIwQlHY581prMtGDg5q/xGOIq2nj4UFKtQ==
Variant 3
DifficultyLevel
684
Question
The rectangular prism, pictured below, has a volume of 56 848 m³ and a height of 22 m.
What could be the length and width of the prism?
Worked Solution
|
|
V |
= l × w × h |
56 848 |
= l × w × 22 |
2584 |
= l × w |
|
= 65 × 38 ✓ (check options) |
∴ 68 m × 38 m
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, pictured below, has a volume of 56 848 m³ and a height of 22 m.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I3-CA25_v3.svg 420 indent3 vpad
What could be the length and width of the prism?
|
workedSolution |
| | |
| --------------------: | -------------- |
| $V$ | \= $\large l$ $\times\ \large w$ $\times\ \large h$|
| 56 848 | \= $\large l$ $\times\ \large w$ $\times\ 22$|
| 2584| \= $\large l$ $\times\ \large w$|
|| \= 65 $\times$ 38 $\checkmark$ (check options)|
$\therefore$ {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX18QlUUoo91iGjQSRvpQtx4wOYnmOzPMi8O73aBVBhUwdoHHE/4KQwD5xRu6MaVWq/PnHYloKN0+zs5tfBDrILAIRWPYs40nF3U5i7H81rZUna16DpLVKTYuM/Olx+r+3gubmj1wNIua0x4p7ozEYgLy9MEgbY0vH2M5Q1+c1Inf44xsLAvuBnYMw/hTCAG12eMtC+A+pBQN2bdxDpV8m9aYIIRM304AIbWmd6h9wtkkJJmYxrLMF3V/zgxMrxxXxIZVyvOZ2opm5r7IwJjTpJzBl0USsGF6ORIk9xLmB+Q1rf97M0blzrm/7cZ8vyohfeDihI0DCjoJF7eMZINWs/3+HQTKTwl9ujQTKgmmdGl7jZX3CWlwgdLS5q3lY5JpwZb2j1Gh9cwshvVRo3/WC8yLnezAzlwe472K1Pn7j5jEAtsYC33XugOzL2cYMsI4yIYG5+aaDBqYXt1c+5rRgvMSQMAoOQTpr9j2H55PxlN4qg4IGOZJZXSXBRfvGc4j1Jsg1tcobE7RFPlmHgJkQ3XoxwsI7DTv3Rb7VCX4jgjAFaOJfw8631PviNeS+Y35G6h9ArYrPz4heseuJ1zIa1VDHAJfD/ij3cnOcmRutrDGr9cSDdMgp7k0pLvlIwWJJQxguzXauApDY+g16e/4B57sA7ueSfTjtG3L2uURIDUnhIDz6Z0E2hHeMSSBaZjzeNSttJDZcKnR9fjktJg5VQIJRCGRN4gJwKnMXyWc88iFV3jqUjApMMLk5PC3Bx5brMkzaO4XDj1QBULJ4gcHDkwdO0JGB7ISJPfvQYwGsrp+FIxtB79z4vSrCZO9RIuJzvR0gRJOndndxSAOHs9IhlD/zb6JA5nIG1UH+zvUIN1AL10y1g6cTsbseqXLb2A5cg7meBmgz/dz3ClxKzay29GDQDiOj/UhtLwos2mK55KGUIl56el0PO6SIBDXjRgRSaufHYpazJW1IK7NhU9Tmog51aLgYidWQwDwwS7h1VHp7Db8vE4vDYIVFMSbuc6dH4wJsfXin0Wo8ACB5a9r/QpWGlrm396f7pOcjQzQTam+A5TrPkC7J8JsFTioAzlhRByTnwSvUz9BQdrE////2AiwaZtXS3nYoORB4tYGAB4KoVc16y2QBqVG5SPTrB8pkVRKILDL9g9veNIGopGwFhb7tYV3hxTB4Nn5+ec+l2Va/gSLbYdJLr0Ui228TU6U0yb+EpnCsRzKcwteIhXApJkLMdTrIsADCrixXDIK+zt9Kq63aF0S8xaYMF5T9SGKaFGLv0hDsZu4Zd5oY+U5rJG3OsCZ2KAKyf5tRK3HNxoz6d2cTjVfZFSeZvsmd1Kg6V0m2uMOeSfeQ+q1nTYXmZmJQngcFGxynMXR58kyQY1hUawca1Si97Gw0VPQDouEyWdlAZqJhlVx0kqfimx4Ug/zYqkdqyiUgS6b+WBtvDRy7FZEur/gSMGNg581ks9H4WjtrKAZcXv25WnVG7kG223AUPy25+2PvVSl5AerKy0iAb0YuoymXbDJJsYYD/EWkkjc5Vq/K3mV0j5DNJDsm0deL+ompFUnsgDlf+ftM4j1YE4YNkbyt1ZkQ1oHh+3nLCYXJDELVmjswUsSEzzZugk3oznvABstpNJnbCqmFJUsy/XaTUVqXzvwsP4990H1S00YUnJf/c7HKPkZ8KlYvlZrj6VIzXx6k044AKzv6XgpT2pci2Tu5NDJW+xtcZs6RXdgJt2oahLBgVI+udf6dfolV2TXYDhqN27w/yodgbClb9TDuUqlHUUaEr8Qyfz3fPHaBYtg0AbiZBP3k50X+sWKGQKWadcVnrcv0kY02BWVDmYElsUc27eKBC7dCVolpkvors0zSgwprovmOkpqDIgVvUfop9m1Q+5jGfOE/NgGr43pNNrqFTeowGSv3fgxNdmZlRLWiKJIq0L/M/61MfoJoK/E+JkpAUr9lhBJIQIx+bdn+k5NotLd9wuDLEKdleOOdgvdEPO4yDijMI8dXB4wCMntd+YJsFgu4TXI+OrJofTT7ENW1b6fkP9QOxl9NmNyhQtmX2Cjod8LrSTCbx8SE3h8Ru6p+9mA8GSeCmbFhos2DUxT7lTxom9WwoiRCRVi/y1FIV1mtnf7HkpLc74tuV8SYEJy56YV9ZccckdSEewWIUL/QT4jka4/iYg/ugto7ajHiOEG5of2q/4U3/Z1400GP7Jt59/1d/fZDVGzGzWODMyhw4s5aSY+WbKgBNVOMegsRAkJZOAsx/nWUnQSM0JUmaS5P01qMUAURJI3x3tXUrJghymdxF77h+BbJoKPRAnVsHRQrMNhcEYGfYHHrrTFB5DCW6EDeVimQc6OocjbMtRdQLjEfKsTyGrRTnhcYfRp506JkhRsNxp9i2eYAjuLGCtJ/FjnOWeErGa7Bh3XEbO3lpvSFITg5ctEQ8BIHdbW0L911XtCf/EKwT+LEHS/3DoXqb9Ygdladbgjz/cKbqq1J0/GDrAnMO7CUNujKwsdqUCdhVJzhSRKfe7F3GDOk0a4JlEcVCxzuHCFxjay5G0xaa/3VEJ/hwTvnHO2Il0mqXJk3SZALq9fNk44BGQidnt/iiOL7R6gTmBWDItm4lEmnO4F05Mi/RHEdfx7EJbIC4VMePfwIw7PMyjrj4p1OWzlzBRzm8f6K2wiAgfRc5ca9k3wasFCYAgX28AiJgfdYY6d6Uf0h6LmVSV7kx2gaakqhMrBKHULeOsMITPT3hg/LbZ4No3IXgBlwV2c8RTs6o8ZL9BhJyapp8QqOZQeH4dk11v71NDnI/vUt0+uzXLUp2ePcqwtuzukj5PlbUIIskRd6Cxrvpy2rVfOroVShgyRo8e40bLPJlVvucflm/VnADB/rVbhYgJsKwFI7Bq4FYNZJRwK1mpvMtQnok+Zc075GBT2vq/sswY9JiGNf6T7VgFVOorf0wNFzfuZJPx52p0Yf/HZUOl5HJ2x3+TPjX0vCCigWue1sbc7yGdsOTI9M3zu+CVvwnpFrlpxqQfe9YxjncPLMR/mMlX8Cw1Zyv8xwuHIrFISpqDITzESEvYgTLLlboenAJHlJ57T5X+xN28t2zcwDKoxBwtHyt/oV12IVrXyAWS4g9HnUwBUCPhut5eIZo5oxIVHItgXaMB9S3gIZd1rYyRER7iWfUU7IRYnY3TBRy7y25mqJQMAMY5racWl1Vt3UXcP/NqoFOvsneCxE4kDW9QJ9Up7CLMUKMr05vI/0HRy+5xEoxGpRVSssCV9nU6iO1rEbL6aUItmank6k0oWi4Zlc4BYCcjzF2HsJFtHg2NrFoLiEDCHqhLkLfrIw0ImaoShuAfFZ6AY/dfMO2wshfBSQXHv47eqAKxGUD2ZxBtnVdvK000Kfm2KTdhpViyLcSNWmJRdxeOipbuHP9TbAPEPxdjVq4O55/kSthN42CsuohGwq83pvWAAi6GtJuGiSYIB+TiEx0gjtHZh2XbyaEKy+5+ncLbjKC1vw3PB5GUlObRi5KlWazpZqzus/S86bhufBh+iXEU03AHxpoujVpUCArDX37p9nZ2YxEzv8ZMaeirul+TBPNSuzcgcPceslIfJ5ATNfViFcxp91WhkFYRQB67YUXluEKzFSG4n/lF7VcSbMxuLom21WG3JELT3VAxvmeb6leAiujAWaFEofKTOSvYGrrthZmON6t3s4gDmfeajjvxRnd8kfuF0/nVy7hcPbaLjDsDW3m1Rk6rscjAgcXcs9jVAMOL/e/vFuBsxLSrC8lLV3x9RB/M/HRDeTnbU0+EJDjo9GeidfxuXi6Bh/1E8N+RtwX0qOYQS4yxU/KNTDGRPuXQTnthSRwdLYnwnGroUOg2NoqTFBCV8k9RC3yLkCaIXfk6JPndV16BgHxmnHEQ9eoFmbZgdBEWoWErwX92g1YqCTPKTbrwDZH1SIYS7/EytaBr5RHdjAclAwrJ8SO5N3mvFOXAsbz/RiYQc6k+YDU24pAA+LaQpuXQqRFI1q+m0Zy2B2zNvRSwTB6woZRF8NpZFLCp33MMlmeysH9DUnyYvkNodalQ4gYpD7oKVo2F5MuULVHqtylGSwqSZImyCz3mKk9iKUcUlReZ9FgUrYgg7t6bsSowYXG522EUvfzPtG33wSaVZiZ1LfDKHTLfqi6Syufd4pojLQ7B0aWD+rIx/ID6eCLJr+AkVDtvV3O8d64FNzLwelgCN96Y0d6H0CFtJ5gfPHtqcZuTCWoncCzOKJL7/d3HW65aQgFzczJEoJq8Gf9RUL/LAeLbTMpYBCIeT3AlcVbQoIBzpm3VPkEBBZPpM4mYLc2/hCSkBn7Jk8A7CQE05exY+dkxJCvDX9099CcFW6XvMK90pJqdI9CPGMwW/uAJr8xLwgiCOo0UYEKy8iexWsaaJyISvHX/45BB8xfhitkWhfACFoRyNhn9kfQ/1wDSHsfaRoqrK1tOpzOv7G4e6a8eFXgq63f95P8eT0G2Ky/PiU1iX4JYewTtC2tdAx7PBgM8dEt418B/iZ4NKqXybPr7H8Bu+2FwIVWZ+yzEE3rqnBpyz0UfaudSP+51afHA4bkmCXbDKbkMXGOnQPVpeTCum8F1SMass4q4kInykOsjKANv8SwDGWAtjvmG7hzj8E1oIfp1EOAzZWS+nQX3bdHkwq6uz9gu2OhxyxdWKFWmo55mNKscwMfklKgyG/b3vZaKAUC5jZtBHQkaHDWHTzPoWrAgFj2xIyNQ+DnMgOo1iVy80WOpTo9Iu+tgkckSmYK8UPRBY78CWrRIyONcgkn+46R9pvCwX2up9/9aUaCDMobSmiC1efzMG+akPuZt4/mC+20HYP8pK6zj/16+ABQfLlaXWXo9X4YVhZZalB2d5C74RalT+g5FeoYiCIo7SkhoPBMI+iLX13UUs38lvkqEQu1yJZHHxEAu6u9O4DZDSvHW086CpPxWKymxjy3HO6AvQJ5H1EMwLOp0F/qlHMg3BK3z9fMquOPpRn4c1j7bi8b4ciR1zjL40kAobSOz4wMKLAMOa95bIFCd9vf04yAFQWbT/nkfLt2AuVlMzKT4ruAitcIKqbVBwx7qZpHkXB58J8WlV/lLw+d5oC8h4BWaS3mnvN1EnuFN5KP82HA3GmZ7F6sm+EqU4UVPDVC2nGwwuDVhhT2pa7MUm25l9e5T+P6NlyJLM7wobunrNMGubx7JYqdbAAU39PE9MaxiEaM4/QF9n9/VjbUE/6hq82+UVbk8e5pIeykQEeMBcC1kNzb5S4LVYyu+NCz8UPOz57+Crq16jov1hq9lmqWkcL2uu8xoLpKLCKiJkRl6yWj/iteVlQefYJwjOZPzrm1rowW+0jI+uZg//+f5NYenRrLbUUnmYVYpXItSFJiQNlLMYCVuTgMuRrM8hEQYhnbKRH9n8txMnNLEIHfvqo8rmZFfs5U3nyxEFeiObF3dJa3PJ40Oc717Vq+S9ET4eI3KRJVX8/EzrE2JEtusIge3P+dObqc3u2oMDUoUa8pB028qEYcAZINwEsqPjREmA2R02RZHZv1n34GSbnI0bYo8tVGitw2GWUjZSQqXbggNFaZrz3gXv+BwtbYNLkzJIRIAerbiuqL+43D8sOdNNY8GPMaMW9JSGf+6IYtjOCFIbK5IDajJ0hUhHwc3ZByZFTn1oo6WXE/04XaOzzGAiw2x8evj3cYNS42QdObixZ0lphBE9idU5IEqgYfIMbQxYdJKW6lfqyUcQq7RD5RDORPcmdx+z214/0UioucRHEEE4A6iryYFc7Cg0YfpeB8757D2NPMQRuYHUnOsZSsJAnXVa7xwQmbyvAxhQEQZ+MblbuB957d+MAaKphz6MDbfhllHItQtgD7kfE9Pq0hED+Mn5kxMBDuSpzhBABcEphgTovPQScT9OWvruqrgB4M3mErvzGFRbg1j7jcQcvVhLmgNcAkm2avjCstjbzyyKGmgI83C2C70UNMBV5TXG5ovNuTKa/AZMReYlyjwoIMpk1fLJiqXuy1fy/C4wTYCF0NqJpz6f0mVLTpPVhANrt8D/bbO6SMVLOmNOeqyb9BstiEDjq1XbDGAdGcOGxD9N5KCGuTxXB60jYYVodwpEI7K/d8UyN1NZUt9bGcqNeEGM0ML8miOl7lw578YFOmuX7ArPkQz/eg2z/sseUBg7JiSl5TGGpQxic0FK8P3x9j3bIn9eH7HoD7SoLnvldteegdwKOoltaDaXmbxbNd70ICJt+3M1RG+YbN9vifytTjZS2IVw9p1kRDP1WjE3mT0LJHEWMvObaIj9RGzxqjtsXCeb3mBp1HQikcw8eXPg2cyAmEK5AFvJuQus0jLfwG/zEdmKk4OfEwgk4dFH6JMC7H4mkpgB2PPH0xQPjyYkUPaz1JjX27qJotnDojXRPRyDoY09l3GAmtmVGdOo6XTJPvkOakugtX1hT91Foiq3koWyHVwmz3g84yUypwlD42ya+8lHNlregcRkNP5pm/zXkXXr8XBtWE3av7cFK8n1WUMmf6P2inw6xEt8Caql+lfKcfhXldYxlfatAXblRri2nIAggCa3mGEIXSq00N5Lfu76p0EGVIgYby5/iUQL/gnasrPy2j4L51d7WzosgcPNu0KhsX83tNEyyeX/3hPlmGuxh7bWPLIjUjFjH8aSUzY/UFFiuVvs8H3N/euLLKqLEe0WMpzyxpCYsRkT6b/lvnFUgiitQJRTeE1MRf4jv8WpHwEJDQPXub2J4Twp8pyk3ht1bkEvvpvBZb0L0VDGv8E1ktLrl+nOBlzU+jZQPWCf0K8RdpDXkehsvp1YwO5rydiKf1rJt7xB3dkVdq5i+GpXbgNY5b0z45OjOqRl4QKsMfLiNidwB+9SS27DJ9wcMztaosBI8dQZoFj4xxPYn48bY7IY3p3UOkBD7peWQGWmoc9hUXyU3CVFjx8M77c0adWLq+ygfT0ddsf7ObARAGOavgta6BwKTB9kYDu2CRxAdHu1Ab3QWYjhfRN0QsJQg3vLhS6Aa7k8vy5JOcgFz7pyDtE6R6FA3DerYyNlxjTrRXuw9zrPw5oL4tnM6pWOxwZE+td++As3dMl9bhTha6wtgWkKQeKlbK7rsHBzeGDkpKNf9pVHaElL3QTGcsUN5dRyVxqDYgmjUMLrTZQ3Lo4yj5WrIW1GBlTSi4j/eED4n48Wr+S7RLMMbYoJ+z3SoJzstk4f4tl2aZq2LQf4Q5GzNCWlVkbkrR8mtzWFjux7VaPgqRAjKapNUQ3pnpOJjKt7aXOBykmVRVcyFtrp0tQOlVRXvivR3rZn8jwUqlYQI5n08HsH/Vm31slm9UL7XLV4Ch8R3mlr6kPWKC2uMoM1qO6Mc04TCstao+xYSQ7+FF6+ncgR6Fg2AbFcnJiKXNmyHA113voh2dggFNDnjLT5ZJEvKIrWSVkOjK7JGGo1vxA47lo2JQZCMoEPq3smIS2cY7/1Ggrwt0X/DniJy2FpsZIkN87qVhQgSiru+uQjHGIC57TmksTY6UOSEK6KIm/BC5O/tiYdi1qmgZiGXP/WVsYPYx4EW5R/wuspBzHZZtUPEUFKgy0dAVnNGoSsP5Z+6Qq6VPPxBBdXnWudRrRtmCbABDNtm0o2EpfmCbPiHZW4CgZwYPHW+f6xPoB2SJry6G2H6vFtIdaGaj4A6etj3yTnHraPtyo3unWDhEILTbQdO6DHc/sRzJ+z7jJjhUoqb4jf172yV4kuNz2qGtbeISU+pTfYdRm4ueTXpte4EXtIbXM2f3EOIyFXTMisJ9Gya1SLbFu+Lo8F951vc3qbzrzfAqLA7zfCpzA5SVJIdZ3XhMsEI9wVDMVUpm/p+ppCthmY3sUqFQf/N2eiIyPkTUabE4fWkrStpfQNT4N1T9m/7tKh+eDLZMCR8L/sg0gpqCj/ah/VNkvfgzdCsYf350d/+/SQkw1RGJ5lkozs853LJgEjZsMW/xoCbMBuuDzw+Og9ZXFkpUI3rJnpIOg44ycvFNMvqiuhOv8D6lsW64F7j1aeNsQyaU02ehIVvfVqrU4ucoStP7fP3fhMTMeFeVNN9EcLMsF4D+YZmTY+rJn0IAZqFqStwR3Zc6yBQngYpZD9ZAgkQdzw5FzCxDsqHRpjtr7aQCWTx6XRnlqM9OoHvrwlDWZ33Rp4aVxR3YOg1mdbvtgd+fzCsAP65WO0jC5yrOYrS0NT2E5x5xlW2bQMa1R9bbtJhfuqSDtfuAn3KI2Ya9HLyE1SNw7/00Zuaa76gmrzcvSkLhFSt4e/Iqj+P0OcgBevyX2HhegkBRcxhranSwsP1IhDfuMTycnWuGI4/BHmk8tQ18cYn7j98BnaPIIwmeVj+L26LC+TejUmh2fHKd3T72gm2kyF1v1WixsDDLWLfNXaJoZFpXZk1prJmUJ3EaDPRxVB8HkPbc4kVl5nSMNJitl/95oI7mmRIA5AareFXLTwpuS8XvEGSKx/XJkLp4+OAhvJ4s9GpN74TyhyccgtDhghNAR/jSTuLtLXwF5KP+POWrDohwYSXvCfww1GFtcp7AOdDMnkh5QX+OKy3vQbP7Wy996UuaHHvG1ceYWXvZTI15HGntxlBtyj0y+/co3LaQRC+S2i1lt+d7OOUpnjZ/md0c3zxChg5UW4aSjR2XS6+plY605KpHSnCLRrMPU5cvNaQcLiD39DKvopN32vD+WRA3kxI645mpmpMxgBUrKs4fgWC1/OWFtInYGnI7oINnNsS4zxq/sxRP9KPwtsyT9LpJ3yMcide6mlz2j5kv5Eosbn860Q4RBlp4fmfnZkO8GSWzeTiruIJTuFTviQny6hhudmfdjiGsVfjkqa2QBKqarpK53b7LC1QpMfMD4T8i/euuHvB0LBUtW3Fq0KbtE1TDRvDvhv/XXiMIQFCZTvphtTsoqo8vrxEwdhVXddvDEunFfrsMMRcf3V+bwnZECofPAcLo0lpGp8njSOnAHvyScZoJ8ALV7qt2+mlwPf7YB90y3eSeIXe7O14WqLAiU2sJn6HQEWRYwA0Xo5vU+0dJ6RbBzjtxK4wH/eVI4M7nXws4qGkn6uv2Q7Pft5d41BClWwcIZMQeQj+cimhc7cVUOCmF55haRyjkeErMBi229/QmZ16bNr4QRN1aV1nKcsVGUBEIAjGOFNkQhyDx03iXBeiC3B7kiMls8KZRMfg6csXGvhichYiy1OCzk4T+tZagJtzBxly9wrLTu+Xc756Jn5Vdy02brOJd+sMT8TE997CJb4B5hP25L4FHY8mexPNfgzYstKiH2wvZmwDs78HaTmqkttfsGw2G3b6Kw4L2+5tjejd72lKb9D1l/ewsJciJ0nCaVgzNirK1306umlpb9nc9ymFKDNnUbJ4enmF929vMcO83R0SbmenvsE+ZT1h+HUivYFqFosp2DZPbLRyCgXig3CxcC+giXSRCofuv9xkO0Yvw2wr+BoVM4ER5G0u/K+CGnV3nTzPQcne6Hzqm8byfXOOx2vjYptGIl8a5VzWDwEx7hZ42aTm1awOgGEqapcdrb7VmXpdbpWy23xYvsfDlAt9AYRsd3+bP7JXRyfy7VXdCq+lyxV/sSDqwy7JDJQ/io1cR90xrBOzJ2yyaUDwrTvxuRWoxOQvBoKudhZMZLZQvYRnysrImNTJh5eH7p/16TOf7TLAcEirUr+p4ZEPH46kwE+Lvg4oGnPnNiFBHQAkM48I5bG4LlCpRAvuWJiOE9TRpJHXojaGKjCeIL9B71lO4IwgiB1/656hHru2l1QuvWDhzhxcas7OI853B8KRqgZgNFZSzO1RJZxJ6S5AXeY71nn82d7LMuZd+QL9uO6ufRLYFwMsPJr7RzYbzrlr9GFmfPhtxISl9/2ass/ssKpeAD1ZNk0lvCLjva6k9ahlpbVuU17rz154JUx2bx2lQNdZyt/Kt+J5HxLLhb9glLlmyjxlxuaC97oRj5U3E7hvPtvWgJlXTv1FO7wxDpZuuyZHKNGCpnWK8wdSEC3J+VtR7uE+g6u/+bRcMLOOrXkuFyARJa7fbw2fWT+ZFXzXFJXOjk9ZQusxfDL+5pAYkjQotMBZEQlpEwhN45O8Ze2WKg5+D6yjtuEhPKU6F1D/YlCfcPlr3xYGTOgUu5qKpq013WaH/IMelOpawGAByMN5LVPUzUuKGSZZN0QTpdnWYGzKcKCGjH3/BJAoowFKks+211MGZn7r/v5x7u24S3pLg2QEyVn2rLOT9qbDCyJbmMYlv5dbFrOwWitQPArawXVqptMy+RByQ3vrhDXaVTporAvhpwWR0GXSh8IRIcVJfoMDshCaGJWUXaZhLKh34XHgQAKUBIKObuIaP/YI7IplTDe+6rDkSPg3rK00CdeocINO/s=
Variant 4
DifficultyLevel
682
Question
The rectangular prism, pictured below, has a volume of 1200 m³ and a length of 10 m.
What could be the width and height of the prism?
Worked Solution
|
|
V |
= l × w × h |
1200 |
= 10 × w × h |
120 |
= w × h |
|
= 8 × 15 ✓ (check options) |
∴ 8 m × 15 m
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, pictured below, has a volume of 1200 m³ and a length of 10 m.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I3-CA25_v4.svg 250 indent3 vpad
What could be the width and height of the prism?
|
workedSolution |
| | |
| --------------------: | -------------- |
| $V$ | \= $\large l$ $\times\ \large w$ $\times\ \large h$|
| 1200 | \= 10 $\times\ \large w$ $\times\ \large h$|
| 120| \= $\large w$ $\times\ \large h$|
|| \= 8 $\times$ 15 $\checkmark$ (check options)|
$\therefore$ {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1+spG2VXB/Nb9i17dlg8t75+VMP6AQkJMuLNjZxp0/4blrc/9xGJmn+bJehVp+7yG5fTUNz5Fi3dU8jkBdkhjEU9qu0etvqvV5nGiLsareBwXtQxzRjSQmLnDKtmPG3yRV34EPPmmcUUVZa0No9UxOV89X3la38IkW+IQ5rIpGGnBjD74aC+ml6asjWf7ttIa8eWgkk/zqryXHuHOr+PMDbUvkribprE3/5Z6ig9g5R5Gp5+auSLSKAZCTxfBI4tYOQ2CrkRajLT6RtIBcMfg2j9V+IFX+pIiFhRWE4v0+N5K6cX7Hp3sKueLpQO4+SCbhnb7kjgYjHdMuHQDLyaxFtjODgo2CQLtudQGB6qsEvqYTn4keKPR2gulrQjfcd0ziMzVfJikZLiaOvFXzNP8mIbM3FN03PGp/NXv4OWNn2y+GmG/805NpugWFDCg3mxHkw39fOl14Zhr5+OGNpUbAUkb/8hilXzwS2xSsB6ZqJfMRFtqG0i0mJkCFKt0AmV6sPFMnJZN6e97SqhMQMWI1PZHPMRkgICZg0jIkLRmkEj30hJScs0uoAzJBa/sN5+EffBljbxsE02qm1wmka16JwAKhQ4bRaXOxAHPW2lD1rOmcDrzijrsc/Y6fI1sMYhqXCaRYg/8eS08wgsyJKZCJMzJ6CoOIKMkOWdbB/FZSjejZa24KKMiV782sMaAhB4dRFgamodjCS6skO3MsmvZwWsaJREbtSw+S7S0Rl+hI1itjUH3pZUn2V1YY/8jRU7W+Fjp3kaZm+zazW3RaYHStGfUjOJTKL2PnLjEe0aO/HNh75picdAXZLA1507X8SQOW175rOyxmcH63+4gGMBpwbDtLRdBuFZ/A5q9pG4VzVHXBrEdrCNPdDQoHbuCVpg0s+UyctKccbLzT/7bqWpFgU61JCnjitZ5UZFhMKlHMUBQSnroyk+YRQ2m/gWHrI1Xestpt8TVe1VQYxkjaDfd9EFiwyfq0G2/avqpXIJig2soI1l+We5fWGR3Qyi+jVPpwTKFxBThUzwjho5BYLFZVNLvsrIRGB2Yj0UIQGsrgpEzz+HmKk3eLGe3mDqcYbhb/+0SJZoAhfcZ1gktUVHoTYgY3WQhdU70SjG9B3Vvypo/XGrcCK9WCXJnuQw0r7efNXcHJEnR2oihZacWBn3rsR5NNEgMu5gp5IYGmB1FRqYUseH7mmOQ889ZgS3flue78vUdK42d4q1+mOdMgwwGDgg/pizjcB3/vZt4+hlaHSQj1a9xbzjHVL44amnrpj41Ks6GfcxiXvXEHIkbmRD3seE+J34bpExMVbDiQNsgGADnUcG1sMxExgEj5iNOehsmg7inObCX6qqRCHzUuQPOVW6TTRk2m4VJRq2HA3V/XnY9YxKK4Nk9w1mf3TItfJZ9I4B4tY6J91ojhf8JFxTTkpXSQA3GpwEBP8Q372e/3Wgdg2m/kcdWt3XpSQaJoILZr2qNaM4JPn00UVu2k+4a1TV0NoffxyTUQ85FNPWuJZ/g3bWo+f4XdcttYcbCKGBY2Xw20gvdzvN349FGpjgwkZ7Rgo7nmJqzzF6q9K/qyji2osXrLArA0XtfjgZ4FO4NPZ3AemoEfPkTuFrJLfvj9tJtiCJq/o4WQ7Bbk0LWkBuOgC6uxwHom0RL/bOujyyUpNP7YPNYY8dAAL4sCGhxw6V8QjWtqNLc6/rqJyqDnXQX6U0tTB/XBQPsr/wnkdi++xQNJnz1rm5E57Z3JdUIlLr8iqYFiFqaWmzOIhaH8awg2LoKhsz5gVH0B/jFEIilVvY9eRYuTMeHkT2pc/dDy8dFhWgVmaVy9JUH5N0y/qT0a3tDkAWHl2APW72B/K1CRXholqXDi/FjJIuvRYISuqHOtRQKjthRayMQR89vgXQv3C2qbdHQmerSfkv0iKjCvj22kkDLVwit8KYJLfBP+DTdB3OIKnIG2fZOvWrZqLQJJQo/Q1sPlIEoUOO8vaLWJbzx3blgOTtwr7Xts2kXIpEN2GH6NrzCDuP+o+2tmbVqCLld1S0M6vLqZr27GyBthJWF6ezd0bMXhP+QPuqs26Zoe3PAb0fuGiCjMU8OStnAmAv4Xmo1UFlhAsBGYL82x8MAG4T49ha8RejfXa9DQJjnrT3Wfj/nLutSTl68m2uFkZqg8yuto+f+GxskWWnilg7BiHw7ZbsHEqMzXTtTTw59850HmKVoKfMhgTw2th0N4SBZllM822aahQCVjgCANh+YjdbdDV9GBTyjBlI1qJiIuQV36PhLeGunBWY9VdrbJXrNnJjvLiAvcmALDBVPa2YUIPpGDOT/Bws8a1KsLQudavKCwF5FnEBhAhzQqI1oGrX0QKxcnRO0sc1sjKjW8yWkeuFkD8tVtBjZWSQIsiTmgNnRzJWQ+okqbnn7ktV4AohKnLnosxh6hldWxtiRikrsr2LdXqGty8bOaCF1pkByzrqi1jaDtNp36//6oldZ3NrC79hez/uI/e7DVUaoGsuW3lPGPfa1yfCG7xF2vCKZnvoJx157GTuuuTeJVky2DX/2aQ8daYsOWdeRAdZsbfVvRjNte1DtK7JApHK63AP2ZvaJbhKU5O3zzcPCnE3qKetsYaezG4uiITub9O4D0glV1pj1Mb80LmZuHZxAoKYF+bdhH6DLbLjmN0OccV9+pcG8R+kMNHygK7Gx5+VubP0T95obVQvn0bm7Iu3cZhyF1MWCbuxuOMgaBKNyAxIXU/Bb2SvLXFpEOOKmQq0Uay8KcsGGkmh62LqwJZuaIsVq/tzxYEap9UlTy6mvQHUvUacEpHg7uCB2aifZMgqouMocCn5kfwx2kCiuM9hqyfzVBDCol3jII350U9HKrSfOdpCsROCxGI39+ISrCPBBTDk8NNcQaTODFKI32ip0mJh/b5OopReOiigCn4a6P5IZzCxVnGB0+VTCmMjcn80zfgtyT+Y+DQueCXOjGYUxLdGgdwY9qhCjiftsBJk2TN+vh9TJrP6eQ+cdcPQwmXtAKyEy3HeJgFKH9HOWjTnBa+uzcKjSmr9lgWV9DdOd1OcvK27WKP8TbS8bP3R2KAFlK5FU8yedLRMcQnUN2PzIh7w+BnKAYXMD7fprxVAituTtlFwkeahYgb8qzwdTHSzVstM5NeAzwx4CHToDLWfiP8hzT+gNdhHRV8vGBViWKmDBWIDv9wTJRJFtXr2f5/r4Q3bnkKBNs/CbWbwQKrtd8Od+HPaPby0Z+K4FsLwXIVPq8QImyld+4kvPYh45VG0ay/vpFxdJdRVQv3frCpRthtYwtyLe9suziCMsoUe5cy/kSv/C8lvpKiA3aAmxk3AH5wflfDd8lzfk/tYTgrdbqFHZqLfA97TezBNNzIiwWfyHbWEOofy/1wyGUHS9FwhmbxQcfzVSRmBTJr5eKVNooIFkEqSo/bDLWBKAb9Rfbt9fRQRlB/gsh9eQS2r5bAEu4KM5Hqb31hF77FgPh4UCKAf9U9F+OOVJb6OO9eBkT8NNA+MX0Aft2MIy15Ek1joqX7UVAvJgvlPEVexdR2Vh84BoKBdFJV0kk02eBB+9b19Kp03OZUUs282cls7Zo1dDbJcPL5wMtVwXr+dTEmbEOI1+1GenphHohnwT+EX87UvRY+qE6WGzgvpSvaobOYxT398xpvyhOfNSSPnFiU6ZseBB52gQGNsfdBGjFIaHA4x9mMkLAg6Zcm7F6zQtr+DfZ0drX/4i0j/Av2eQ86LtY78AEUas9XQu33+zAe/RFQbJuhLBJOba/v5w+uzR2SaJ5GwWv6OlD9Nm1aeyH1TEzT0OgHZEadr7xf+7SSLNioboV6wP1F/bI8v7Qhsp/vmLrS+Zhw/5J8rYlqDHahNEm5sebTHY7Z/6bHy+fIwx/b04X8189EV3hW+Fw2vf+VgPBG6STq9UL8H2lVDb07AY5rGn4JFU7pAvmsN+RCj4UHkRgznWqxuR39AqmGH3AiqwRGib2qqt4R70wKMGHsjzqFHTk7xKlSoKTUo98pFaxkmt7zphiyi2ZZjQ0jsKg0+dyIiYBXtz7ALdSj7Yy9k9678w/GAurbAQtNUrarKaLE7BLM58JfZLZLDpLKx/oHuEuGLFmQRFA2uTuWPbuzbrzFMIkr0cAt4qR+qFoX+xSNtd6rf6geTdNE1r8HmShm/74lzxKvmZGepBvFpqFhnsaa595jr+HriHVEqqxk9oW+WBe3nLDAThtkk/Fpr9q5WWpLuofj/mJN7x7oBo+etQ17wiBOtvuW7LjHose/zNb1rt6QxCv69gvNGNEfXxY6VNEWg80kJSpbceRJkBVRyq4ktLATkazhJCcxKu2tCOKAWsZ8t4vPKqKkzPluEIJTwx8pwdWZMbDTIVyiTnefRqrPKVxZC75Uv/Fm8UH+IGmpDkWt/GR8tSzHhRjEHI0PerMfqnBovYc3PSc5hCnwdBwiStfE9qhhjfbUr0m5TiMiY7FtM6gToH3uZvy0uffX5QT8w5ugTMgIgWeM6FN/BFak9ukVzJ4ppoRjg3Zus42Lergi2a3TYjC3AGkVq75kielDcJ5AeKLy8Vhc//XBWVtRZAxnmWOjWZJ77SL38Evd4FduNCOyX07nqXlIYF47VDx4aruM9aJ1sKyBM1BotkU6cjEDB4rS14B6OYSN9E8peudWYi/xyBTV88Tif6lYzvcw8Ajt6VqoBi1oZ8qYNzSszz+SSG/Y3YegrDnsWf/t5CUiBhykPWs9KUMZCypamqJmw5aWHVL5ZH0gYW/+8B1kTqzGg9mneWzkDVXESGB0pAPe/pU6wylSGHArCEJrTgE280t1AI/J7qyIg92j7KInWytSubKC2n28f/AYi1Nd2FR08bzcgAgOkf1CnVPwg/KiXBXzZIskWl5uaC88EDPU63l5x8J/Fu4c/tlpZHunJl4JdE9sM2T8Dg3qhqfcvrmcvdz03lPfbSUYbaKjnFzvLWglI19beIHCSNsiPN1SJ0ZL2CZ4eJ4I5jRL7uTlqL4OiMfHO3x7OtcEGvwGvvSs8e2mQtZLnauNbZUxt2bLr8EZ8GGRTDvep2Hpt+uHcAmlKfxU5ND3dAWebkgcHcHArhlefn0wBcJX+cFbM6Af711g4+lYW3LlkQQBFE5Pbyti8+V3kYTdKNRQY7vX1Ol4GjIkQ48l3Ur5YehyIVefSHU/p6CSZOVfOR9xJUbO3ax9hR4bpa9KrWQN5uWRhK6USuss/HIivv4egRWiKosvhA6fLiORn5sNUbE5sTl7VhDNhs/anFRgnLPGGH7lbdjqIB4bsyov/9yYqONMfJwRrpaNAnWP49Y9Y+PPIDZ+y29e9/IZK1cs/WKrNBhB3zw9FxQHppSgmd/+XbqonBLGGPqVu/UsF+sxDL+KO7j/ISzLrNkCqUl/7g0i5mgs1eDPi+ayX9f07crG8QvM1jx/VpmSrBvR/pLaeBIV6IA9Kiq1Pii9xCIUhXOWqviLW+S45lulN7LmvrjIomoV/+mhEuqV9Ut1+PNvLlKMyQJihT4LmEK7O2IktMpr5hOKG0UipR65hmSlxjYfJTXVILhwkW0Nts40iis7aoz+f8pugtq7VeMz58Hr4gV3/SHZrA50VUgmbBnm6UJ+KyaAfNxGBO7zWfMHy4iJOU895bDVTCWQf459pErWe3w7arlBihRNX8GCWAnq7xpVi5uuab8F4lBDBiG7jQf3AHOIw0jrDLAQ0tjvK3JZfBhPIFaIjR8FoEkgRDnDMa/ipfRd3s0EsA0QqyqBMnsnNt5PYu0NX8BvZ+DsIefKQY9UDsObKJliPshECm2KNY/Gp9nt88rZt4V8ufbMGsKN3lldTAP3iO0DNKjqs1EoncPgxRNw+V+Uc85FMdnCzKh8hKjsKHBuo+eyjxJKiPaTr0+Ck5NaXUYBISTz+Brq5ad85c9+NpW3W1TIbWPMIwK4X5UaYOjQ5l4/O0o9hyPZuX4lWatCD6205gRPiTZTMo5MOtcLhaWj7deW5XBxeqioL7GEzRyBpe+TOX3omOt+AVnNWY6IFXHSCw6ZSAD9AKvUUD1IOpl59l684J+IAdahpdLxb/GhmrlU7quh+ikTkMoFH8FS7cTQNH51De23giasd7BRoLW5sEp6iOjXFjlBstjY9mG0tmbSvj0k2VUKu2Ok78EUdUqXba1+GM3qBqhPBp+v1D2AhWyWMjmaUvm8SuZ0VfC/hscl9abE6uLOSlc6L82YqNAUg0+YhOuUg600NQhEwE1dz3M1BBPFv1Idd2NAhbhwT+6RhPBgn3LFTLdIJLeoTtKKigDE5vjb/LiN7CEVOTOhFuA4JeRq/mNze454xdl4GKbV4qBaTUHnmAM7gtqAsyT4YWSrVXi6aAkkFz1XF3S0ch53BN4TTMfP6Ksjysh3CVC7uFCP48CVg0bvLokzgJrRlj1Y4BOJS8Z+IZqWAnuMFPxVZ98L9lxnfh+KFP5Oj25cryhyQeot4Myp+cUOwEK27wdYxMb0xKUFxKjELDdlyjtMN+eX5k2du4U9LUbpVXFpP3ikGMFQixEbBKdW0L0MzsbddgqpX6dnni3/wk2jkY92Cnc5p+/iiljDzuFCR/RZV1wawl63vCVPscUN93h2KSkPp0bNnBpiflmpIgYGcib5Z15GxiutAtOaiROd1b/6f8A3OsndU+bLSEMab+w0T81NvESem0eD9Esx2kehSvQ+fy5NBQXJD4Q9rOpNutY6zOLOdjQ7QbA4xKcbQsHpnN3cz4uIo4pQewK6njJV1+oIvi5hA/TVibvoGszZvfiO/DtnkKEhu8P3UlrNki/Q3MUGjN9DJrO9Qjhj4zkSaYfLS8u/PGkkLmsholvY/pFrb2IdxmC8vi0e6SLaJnwNDtVhiRFMeulgBp1ISh7zyPTu0Giqo5Xw9au2XiKNxJP4q+avDG7iK0DEzTy4GNsEyeX45LIBNsLS5TDhjekCmHYu60kvPEL8LyZ4ANWY4GOLzKsI4NRbI8/YpCuLCNwBVmOCJ/1XZAvcb9ZTaubKho7O/ev4F+b9OnUv/Ud7aiAxN/cTmtbJideMdoqpLGc2AiZymTnMLty1M9LrPdYJvebbIefgLlLZPzQLEURAruHFlKK6py7aXcBUnuTJPHz9Nct3d7lyMygm2bANwq9G+aqLBuBMNgJm9s2DtiSBy2p0+ggsIz7etiItcfn2M53HJaPrqxVOvgrA70JEldEpP+L33/TKMWvldlLEzPq/aZBmbCO9VWq29FF9k//E0DXYX3aezsWkRI4dt9RjtlmU2gifwlZsI88iHES55FSkIqKzXSYP/f/KIvnfDo1RAH1nb9S/UlxOdqrUZSB3x129ffxVq9dMQ7JdONa4NFFWsKxXYARIdNlWCgFrTkvxfx5JnpRp2/m4mbjUoIkHQHmVjtqZCbZ6zHSanq7n9O1CuaRXN3XkQ/oOfssy5rHDGYo5GhQTCB5C3dXBUk0jQvA1/KogAX0wxoSYEcjLRxzrrVNE115uKsm/NBOAa7o6fr1XdlG4nd4DBjEln81F+asvW+V2EsoGtVX9zA82VYwUIg/70xp5SlCofBUCH9CfXEXN/MvV12LkJOPZ5wfySOx2YSWJ1eDt+/yYz0TT64tV8fG0dySnvLvosvyEJ29qaVjpm+hK8Q3Omgf7MKq46ER7gVYFAVkA+cHR8UIm6qFWa2x3OEu7zeH4lfeDKRRNzpRlJRQ9ULKtbS2kfYjZtx3bVSzNY695+0xcfpr8pgSaZuJ12AaRfpyVDdJbSS78UddkoClY7lhU04pRbC5B16TxtofzeEJaGhfvtuMiIoQ1LQxq43aC00hE2pGJ5O1smS5K/efngR61Z91HxncIM0rbixdoGiRBeh/yGjg6fEoEzzR7jta3uzYdsugGAOSf9rmHosq2SWide1mpLBKbTb4MiU3garAOSp/1Mfc7G3jEGkUHL6egsZxARUWlbsQrCUx9bk/FPx4CLpu+fdXwbDvf7sKYkQa1gM5S3/0XMiK6ZUXAac3qF+63ZlN/XfMDXt8B2A/wRCgsWy+b1Wyw+ssV+15YTOmvOqSybymrqdV0tJTGw+ubYSALNE7w7wVelf38otGF+Wvw4Tt7yfyOB2RV+1R5sdyK9NmEhxLu8ASnIMRhJj+nWhHKb3tt9wHbDmWeS+b6p9G3OW8ewIEWiBpOm6M48BvFJpaPtxxquVuIBCVoXGCpoFpoFf2JTGRGalqb7Tijg7v3UbyrO1oJQy4RzogkwGH6W9I+2OoLLzQOL1kuU9ep6hcQIQAis9lUwEMRe8Waqj3zstIAFAr3olaQ1NAvkG4IykNIPFDy9CdS1pTitqZzXObKkMi4YH9Ur8U7RoX6ntpjEhpLlkEHCdUa6a7zDSl0PGbWonTMC30O2dJPWVB85oiOfZ/cTNjc7LT/p+G85vTCRbMoSIstZBZX12YMelM8Kt3q/EXg/YpHVM3L63NBgbysT1vEhqL8kXz5g3qUy0hnymCnjp6A6t2mCZTUUgB7zRSWZmnmA2AYf/gvWuc4mSFIjYLlExzbcGElXkl6vrTi7dEeD/NRscCxD3IloICXFc7Az6zp64Vf1VqBOZd6eBJJPx8lMRTHrPhB0Au0AT3JUz6s2cduJtGgBIXKQ5QGjfLUSYYneAZt2YpB/Re9ACiuTixOcrkQ2xh4ymFHIat1kajQtazABTiQMmsV8zRdczV1lVAKWzruXO6qbwQ9OhM9eKdlTTLF5iDXeDXHqwo0kvol9A2E2JNWsxZZ3pX4wGXJPdJ0QAI+VPjUrQFyviFzoSxeltNIeof2GVd8vq7w7wCNPlFJd5MoQRP2cNI5f3eazq+ZkjZ/GXBc2mNZfbqZLp1eoJUTEtQk5DubeALk6XrqWNWoXM4rifLzS80gNpLcqOePybDGzUwc1/DMfGRqcH/Jk0TOcMDCphwnAobDvQ/jDJukiWYRpoF54ouMFjKaqU0OJ6DDNnjF+33L4ve2GmPSNz/Y6b4MqwtHXXfQOWBpANp39xkcuya/PcPIZFNWi2XRWGqvQA7OjpYF2GABHf3f94BnJ5SBX/bnBJgWF8YRl9YJlj363Qh0WinH3Uaqb2fJVvvaTEcTAbaDNFa858zCtBikfgdfJIQYYhqHLaglmk+5o8Ad5rACkcO5mxaYclGZzxyHlLJ9dBe/nXhkh5/L7G4EhDtrBZP4EOuX/q4r2BRQpiMKPvzgMTmXyC6SiqYTy+lxo4TyU1UWv4/ufUyLiPgMfHaD3O4MwdvJ+LAHp3QJugcfSeU5e91aCJHguuAPbRq8seqkVRdogd7XwvlIB+MO9w3x0X1UPX6CGtECISJ7olBJnH914rcGJuWeaRQ9md0/s6yo62/OUxe4UVyiE2WeU1TQvMnG5SyoGcPijt4gyp5rz7FB/wU29oOvXa9tkGep/zxAQpxvvS2MoG5sVK1dpf/WLd1Jrw1y5RAUjF70/crdV+6SpNnoIYLm3dGbJy9z3muqHmXLIlCt8VilJzivmSYglMnO3+copBASIoW+f6jZiW+JSeWXOdAWqa9iQiwWopUeLDSlXKqQ7TuGp4tlDuE+KB426dp6RCdVvTu7dgkRIyCPNeyc+JCbzFrPorgd+Fh5e98VxBbB/KjLZNSA1m408sIo7BO5pB/NTRWCv7wVXW7nzkLDs2xBhAHN3HHpgEWnLyj8XbALeSOIstuIs4vs/QGLBoPzZUIlssR9OACSMO9Drrxyw9Aqc9EiVQQ7oLf4Ah2y03wczfX0941He3+9GxI+K88D1zd19srPnHDVErVV85sTxA3Cni9tblfA4s7TID+aD/1PdXNibyCXXv6EU/JLm/+tL10ZBZ8K8ior37s6T4iXGpCVP7jakJoyq3rGAm1vgZJymvMnX4rbsG/+Wcq8ZOCTb5QF0/S48Rt3TczGBZgtIbW3wbeLpgIQ+8XAaBUf08FLjovwpr288wxjmXiuN+FkjDSiYGm9mmtOqabizs3SH4Pe8A3TEaqq2pb7iAMAVmSIpK153FyksA2LUvcEqQQgdMfl95ba/y+5yHpa6ZmeX7w0oBmR7lodwLdXwalM+jfQ4aU+PFg1ypyeXa/gbWhdf60RK/r2ANC/jkRrxOwZrz9+MD9hVNrkDk3foVRj/RWE4cZ1FxCafhZPMxQMkbhE6kyBAh8AGoTQ/GeJgkPqZe46A4/o5VVi99zPV4XFaOI5NASyfD/bzAW7md6tCCHhUwuI5jM/DIatWy6j+0bZ4At76v/oVIboMHYOX045hUTu2i6gKAi1qgX2Q7XDkz6/PVWyNuweahgej1wK0TynmBTJtucqdp+chvAHVWkD2jfOa6EGlfMwO9orxge/e1Kpm7r47Y7yMSq4cAClYFQTepI=
Variant 5
DifficultyLevel
680
Question
The rectangular prism, pictured below, has a volume of 392 mm³ and a length of 14 mm.
What could be the width and height of the prism?
Worked Solution
|
|
V |
= l × w × h |
392 |
= 14 × w × h |
28 |
= w × h |
|
= 7 × 4 ✓ (check options) |
∴ 7 mm × 4 mm
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, pictured below, has a volume of 392 mm³ and a length of 14 mm.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-I3-CA25_v5.svg 370 indent3 vpad
What could be the width and height of the prism?
|
workedSolution |
| | |
| --------------------: | -------------- |
| $V$ | \= $\large l$ $\times\ \large w$ $\times\ \large h$|
| 392 | \= 14 $\times\ \large w$ $\times\ \large h$|
| 28| \= $\large w$ $\times\ \large h$|
|| \= 7 $\times$ 4 $\checkmark$ (check options)|
$\therefore$ {{{correctAnswer}}}
|
correctAnswer | |
Answers