Geometry, NAPX-H4-NC12
Question
ABCD is a trapezium.
Which of these must be a property of ABCD?
Worked Solution
A trapezium must have a pair of parallel sides.
{{{correctAnswer}}}
U2FsdGVkX1+d15JRD8g9A76FkYu2qttKYINMnZaeBtj+7rS9XQMsU5xqY3WU+Tf96o/DvsvW2SRdSv7yLLKdr7sLvE4CR0/Ww3n1jV9UesGu5ZyGNXo7VxGRvPYpEeXeF1uhNleVQ8sghlyRi9XBWVtl2qmjhDkvYVpHzju02nV4VrC6HiY4bScwwqDoumXI7JlEZTr6iOznGwU0Cns2mafMwUgWyX3HfmpYcBfs7KDDBPW/F5YJGCdnHH1uQrTVigV/u9+xA5guXmZZSQZ8pma6eYPMmAISEpD289xeJT1KPt50uMd8VNKBOZc3fjOl8W1XGTPcquA19IYLl/cX/QnOPZCXLrv+PUz/ye9Crq1u5F/xnIFXIrWYXe7cdOQBsILzKNhPSLctbwTTCaGyJaFMNi4zS68gZV+oMHLf5uLNIs25ZGX7YEBU0yzyNZMSBQlCHzXYCj19jmjSAJPaUHCMgmNXvoosEcb3Q1dkay0pzvylnh1GuhgHRV+pkErRN9QZHvf2IcpzOKLl2+MgozlV920yTcU2O9rOV7zT4mDKwnCPSpVW+7VwP2vOXL8/Gskc1NhLy80YT7u9AQiRfxzQbNVXJ4I5qjGL+HX6H4VD7OwAKlSYARyWDs8dP68FH6z1X0tarZwOenBUPHiIzPhJQ3/Gm0Dew7bUZjizpQy8ZEMRu7EHTtZOUDL+kOAGEQ35E9XViXg0zB9LGT1Zok877gKnpS5ATE5IWrXWnohTb5LHXJTwOWKp4cf9YeueW8ou8f5EOUDmMJRXRG0T7CSnuXkZg7nutI58zaVj9LbjQkLu3sSeVliF3VApgmZvqAbOQE4+sNDi82ic+mMhr7KkSiAAhPvFxyio8SyMLSu0xHr9DLv8l1w+r1hN3xzAIDR7gx0Q9fsSJDGt6MgvDtrZvQhZ9SyGfhXPGL3ZR2JQbfQ4DgJJWWXhBEwkttSFqufdTavclUk+CwFH9uSJ1qG4NPLpOs2rg07FNYQOsiUwCV3+G9p5HWWKrP5wTuT+PaxwnB+2KSW9v+wV41xB5zapeF7TxuRahC8ZIRESmfuUS5GLiB7Jr9jOlxWvHv/Z4bX82F5IKyz5/fasw9EcSqgBg6lOXlZkLoQG3hkTw3DylthpNMxG9o7H8chd+TWm+6Z5854Z5QMCdTDDHSDLFXnuHgYp9EEJPNuTRC7j4TruUdxH9HrFKUxErbWGSfo+ZnPS49n6gevSFuIRZIWeX2YPjxSmgp4miqUy3cbSzb9eBcNU5yey4Fn4qOHo4K6pW7j9FWdFkVKT1TEetPn3/6TUtWKPOqxtn1HQtPCkKjGDaWtIfadfZcSzozQVoUZMwdl5XGR4z6MFvyk/PyMHlW3i+pHDTOwBy/El8Ok43IZwFmApjdAt7F7bBlGNk1hOvPjwkgpiUZ7v+bfCBCaffDwEcADx1vUd3zqV7PlcxcwAmKMsrPqTMnK0iQ+PDU9C+PNny2fEwrp/2BuKEPL+pFlvBVwuTLFYAe4A9d/x7gOrObUivv6Lb0cM9nJoDu3/+Drb8PkvoeOs0wpOrVcSkSh1dXxVYiFVVy2ZrxjeV+EcsOFzijcXU1Sy2c4Q3iryJix8rpVpNsXyxZCIYtwFH5r6FddgMai1YGG2xGySvgiFowDb4M/UkwAiqZ0tWFT/Fk7MGSZ6CkjAruNIaAo67Ym7ocx50E3nt4EVN+6uudaZqiXZ+G8Z1C+jgOxKZoyORoaipIX2JXVvPd/IAYqtSB8pcCPPdVh8PcnooOhAwr0jxWW7P5NnG4MIUSzPFeKQm34wMb5SoWHMhdpwzf4Cv4ibD/t9U3//+GUuLaIwi045YQRjN9ey0RKJDXJr6/juuKUe4aaFY3GYs3lwz8KAiPolbdJ0LsiyrL2uaxqUsqESEZxVWyc3DtLoSCA/zXu5RCKByuFgAZ3UD0E/IPQJfSeqcJTshFVEbsGejxKpXhCg9FrwpeewNovtW0y4g54mmkozGUmorL+RF2KFXbqR8/OfllobQlyylkyug1R+i6GOzvD/pmD55X1McPHtFZ/KyUDwDWP7Lb7jhEFTornROkNMgVe96W+6WNkZVpnsc17Wv1sUpt6LQlMxOLQ9AFPL0dd+JYahAY3atmN2BztxXOXl4j2R/QsqYuI5BoOe2wIm+DK6fJLrRy12/9eNJJKBpsG30YnYUPDODDSbzbXH132VZfyDCgI/4JJWD+OhEWQ+2krOnaBcBuoRDtZtV+ezdNVnEjlaqWvlFhTiEAV0n3WpPpMAYnPOdp+OFKokEBtuyIW0t2IdH3GQIHBkmbd5lKLULZD3EDOvXFonjnVVNkUEUS5NiUqWdvabujRba4zBy54yBG0FMTYSkNKJTSyG/WqXMYFb1sPT+n+uvxK7bK2lU537/jG7N0MBTdZcW0wOfb3Rzdwx1hOJyLBSQlJ0dRD8RFRv1yHH+fOs3qng2IP1dMNVYeYTetcW24kYWVSdlZi27MaZRCx5ngIZglhC+2yuyecN3f9p6JGIqD+KK/6Cs/XKNBVDqx95BSMjHy4a4DWgb8l2aYotQpak/NKOocoUYg08SsIU0Oea/GuUYqxzVtoXTeSD8rF2VMZdHNXBfvNyoqD9WqQ6PkgkcAhqvMmYvjC/Ss72qYnHQSuZsVH36RuDaxJZGOTxTQCKNVhRfgUxUHWo+Bh9a5tVEou+vEJ1VIxjJ4tP10THtVmPaoLCR6N6N6xThsnvoEWnNpTZxC49wDqgqj6X6TTpTXiATdmiODBfqYKS9DnKVNsvB9aNMKoM3wjZrceOv62L2t8u8xa4IoAsN+LgxQdc+9eGFma87eSVeTyZapStlD+T8Yn+kJS0oMBLHEm+htynkWCcoQrcEXkdwnW1J7yEoSlwNTP4ayYEZLqXcd9b3UOp+LHrjfGQIqnwgsl/yQPo8J3sJe30Q5aGFXEF9HFPxJXlZnFVG7Tm5VqPPVEoQfH+NpuDwj+gykXWYDqt3RwoncK0ZEa/EYvutBUs5a/DttrmsWWT5dhpwOdx6aao1dwEhEkVEPzrZ0++RbuONk2J8o/anAidgsZtUZ2GULWSrWRcoUZdhwEQDrEeTWBsbCazExbq41SQJVmI6JdLVgQMnA+eahEMLGKjXx4TDbhszAGNsEATkuKvyfqpq2kQnCKgtnK2BO2RszRfZJs99GFsi1YHBQJMFrdy89yKPVJwVkppvAxiuzUHks24j2zuM/ZbpTMMHoxfCiB6grNNgMKk0277RpEQoSQo5pwn177DnUagH45KtlKCE5ljW3ClyQTdfl+bx9TFf3QHwfHv4kpvZ67Qs5KQdyHirw52HRxJqYtaL4G0EqpwYw+/8rAaYiRbz2uf4RMZKAYzUMu1QLv2kvVCpz/ryhPIZ0rRXO2etFVXGRN386+E+5dqFSKe1XPtybvb52Osgm2AB+436emXlm8XompMLfv2uoSREO1RNOplQdwfzw0OqDigZ1lxAS/RWHG5HevLHR+c74hK2VKN5Zkcl7OfvzcwiN4TdgrB8yaHLURYpbf5YQUBF9ZpsI0BiNN7TIcxDyQkEtxnJQtghqAXcwIBvDgYIxDtYx6Yvnc4f2BmEqEqn+ZO3WF5Nnp7XAE7cwRse9cqZ0/SAt1AtJIjWuL6kz+HnXS14iuHgI7LyZzA2YHn8gERL509A0HkDJvHpFTbAurKHk/gMn01DGpPji4fRCcWYVAK+iDFVvKNOwBZ/V2WlMjKQzNToPpMyI/mzzEwjxB5LraJUQ18o5SwGxbNrqlw3OSlkIYvKPjEf1MBzaitOv7C8YTlsazrKXOcJm5O+Lgqy14AYkp2m2Gnonjo+369Kt/+KWaoMHhkcyhnVlurGRsCWDXRzaslzSdVw8G0yY44D4hL/yofzE7r1IKwTRFpSt9kSPOxFprjLPZkR5qTPexNr0vrZ3hJb1w11qnJn1YZ0xITcvk/r3Kp0OKa4CpKrj29Nlp01mkjct3vpPHxyqnI5ldH6OG7/A3cmuOVYa4HBG5sDrqFFFYhPC96xHyBFvBvrKbzo2J3wF2AHRPK4IdifnscFjjSLjgHSjKE02Uk6KeNuqEhlg7ANrNwEoNc7a9LZM0noKFAagQpaEUxDXonLpBeRP4kga0dzo5C7cCfnwcpbS/4iuEQMaX9/FtTgNCWnCpBAaQrk0FZQMiNl5r3x71fj7VP7izSlxXtvQuE7A0nph8LhmvujmbsaRw/3J0VDeQiJjy+8P1ZPHj8SWNJx7J1BVnJ2IIBZGvBY7BBc4e8iPCTghq7aMJ+8ogU/zfdsfpv0xpyb84cRJJoIbtukv9ktcC8/IYa9XORO0jBHWk5jvJYozP5sFB5Y/Xw3coIlRByHnjfqk6hMpAFBe4kNlnUJBikQF+2dhQLdBRNYf3sEEtybIzii0Vl5Tcrzkbb1rrb3xbUuoZHZfofdBIeVS1aC/xo7yS7p8qBCrcHmI02fLTpEcyEFHl4RSN7WaEOcIP0mf6uFF3qBhW/htrRs6FiHDarVN8Q8wBmBmoZ9CibTZPKFmoh4PHW83PyppuPwpfXcdjYX+yt67fiXe1q+bP/v6VMMzY0P2vqHM8EFs3GX4iHOy0TWOkHcfcwuA5WrEFqhuUtue/Ns3OeIqJm0c/F6YfpryeXQE6e6idFW3S1w1V8AJWbbGQraKOtkAyXaHXvJwWVQv7W+V1zh8SwbUhqY4ygg1Pg9ZRpioWcPbPNi8t8RsWvBy1V1R/jRC8TLT+DneCrUzw8SQOXEZflMxBIAVccxXfBJMb+r4tlEplsKPq++CDWT5WG/UqQvIlGXHk4buJMQi7RLMeRgA1O/TOsclbo0NpEryzu4lHIRpcyISHkA6AcCCrl7Y/2wU7kmecJu8+o7kBKhUJfHI67BxMq3X6oysWs7JhmD5EDocV8BB1Yt8DtQtgyrqfvb03EECRoKrrGsN8IsNzuKbsgU1Ec9/kBUGGRNVfzEUaFJNzxnf5rPn+XJZbhI8C8s7Y3PNeBLG6g++sn63S4lcGgeQW+Q8OJ59tQ9XFfhA3JCFRV2c2STV6+e1ZCAMuJBdvNIZaEJbOzg8+UwEnQ2KXh28ghKjWkD0ny1TwhPDI6Nxle/7YMIRXovO83d4He4xwgvvnEri37cTNs14FegOqr8oR7dGGaoFrP2n2VpOhvBcVuWJUtEnGvUu7jihcB/hvVk3Q0Z/HdGlcwVnFmYIYFgANr6aXYXZabydSVIf/4dBMVphPWmG9VDzQ6ZMP68IFxScLQDlxRw77F6EnJj9gvTGcT+fvtcsPuAX4CMs581IogatvahVdsuVSkXcssjj/szPGtNuxxQLP5oG9ejtfhhLxnLqcoots0IFtn0jr7dfnYaDWclhzXjTOI0xusoDt1UJp29O175rFCTZNSv4USepLw3Bd7ACH8ePKZ5VFnaQnHs+LRD6M/J3Hv4IXrPN/JDSgYR5oIff9bpbarF7/TAe1J1Vp0qN7MyZ8XdT4hfNLzEdOi38ZDfCkIhrzvSebyDO4ljve9fIvMu+tk8vM4HmVH+i3PEhh18q9Bhdi4wc1BQDvpjoxZFIlmNjeoOTrdciOIEsGQl2lPDPGFpRoCSqcONVbNEc8BvhHfE4CKisuJO5xCTP8ynQNifZvFJHsdMujJzkIVtLmz7li7+eziUOyzX6tg8251uYModkMO9ZklLqMwNzpbdqLq4yFAz0b8G+uIceqz27RI86v6PmYzPNBP+sFklVNz9iO5oJA52v2gOw4AR/i1Pd7jA6JlSUhVbbBisD2crRNFm20V/wxXzdr5GPBcVYtla5Z0BjZr/3DkCUylI4IKYnIrGTcDLH3fKBMqhPbZLMVJjX2frzVpTEtZ7TnFBUFjonD6xXCWscpG4glEP2RapNRykX9vIbwQMZoLRwFLdIorC/K8QGc1sDgoAOB6gbnhG3FW7SUrse1eJ3RoW+E19rvZVgy70K5FBseOlD3hi9RpGv7F/i60n/F4ClgbN6uuuB8mk2lDjef5+TIeOsYyH2n0wu7AwVbV/3RQl+I3wEskeAX9bS9MptG/U/vbKqj69ub4cid8UGvskMDoW0R6Gzjah7kXz+TL2ZpyHJ04wewzREhh2I9mfhBbtilzVfj/47gSSWC8uVw3LwEw7uR7Mq3Mjeb/pEU1Jd1eGNiJpeOI5ZcI0AvJDDf32yaCfSj3F/Wu9XapCBjmKdZbPBS8eggwmHXpEZZrygfhsAFQA51lwwk11EsDHRgWDTNORXwiP+cc/HaDMddns3CAVXdoGb+93CaTq2MG6iBITQ3KDP7Gd6JNL83VUIFlfLFGaGwSPf5AiZUgyW6PdFo4avRNihlhkx704kz0ByicScugK0Nc1ge576yILKwwuaCs/puqY+PUt6zYcA1BF1ATsnQxCLB2Fbmzv+sAySHp1K/1XmGu22jqjScPPc/r4tKgvoE2EfIQMDnf21718nutp+MulIE7Nza0WHvLvE3XPh9wKSnTiCia3AoK/rY5hKc9yjoeTeW7mFWMSdRg3OHIBjRhhq6gC+mCsQcXJc6rt/DmyK0GgWASZMNAc5CkF4JyLJvvi2BqHrpakBtY0rtAQ1cus/cphKw1HtxWyfgk+CnvLXqeHJE/vfoTCpjjcj/r7gMp6AixL/JoTXiobA5j+oMrn9FGesKf5ozZDbBKSTI+2Ysj8vt0VmcWxqXkuztWqvlQyawBGENWfD6sj5ct5tXQR/zTbGQj6XDb5rofDR9COK+XRXFOx0wOdntrbBFPBZ/igbcIspcEYYCY6b8gRnE8PuhNUXrnAL33kE7iwa28O7jb1YiJb72fTnMW5DBbSnOrK6Ps0uFJWxvaqH+aZCwvEPcFliAfAMuqnb9GdDe1uGfd8kkcOBOSW2AEU7aRb+Q/xnQMz30OulQC8oM5BMWa3qmw/3eHBfvdy1n+Ir1EheyzyfftpqBHg5L49OQjLccvnZbwxEPzxj4seSCJhvv2MRNV5Mexc9SzPjIyBc1x6nEYXHtXpIvRndsWhz/fhGuAEwaWTC9YikPslRyXlvHPbvzPeBEtLh3gB6ObunnEI9lOd7Tqba5RiPFqNyvDi+MvKJ73OmID0vf5FCd6W6x5LXjC5DfPDvjzPhDlkrq3HYq+X1j6DoFdc5RVTaCLrmDZdwLdLM46UBUy1Ol8vEJoTuAuOYCpZLYd6Us5+BtsVWjzTr+5ZoUa4CrQcJx98WmKtuMG+njsR1i/WBhzdRfn3VLVsfhRAXVjwLDVIAiCoop9YVy7QkxKzWKyW7QD9Ug3W+zutD5UW0A8AqpbyaoyZDTUqv4gMr0/f/Fm8Tqz693FQNKPtD6ZbkitViyjyPxumk7XdiNd5hlJXQc8EYHEfsa7LNaWcyGqrxKOIN4vCc30ugDWyzDFkGRRBPiI2JDi21w+dUNcF6ov11lwUT3D32RBaypMGiOOL45oPmQJEkDFp1MwNnCB0BtMIzcRwSMXTDAJSwGGhxbWndFbc20yR0V4MV1MTFW1xfNIrvqBeQKaQKj1jgD/WkrcrQQQqjXjXxgpIkqMruWlDm6YBhz/yAXDhMYCTM3XpwGd5phyDIkrE8RSGrixgQmN9naARI/CgrUd3YAkvxdlWGQoGbBLePq9bFQNefM52pi4/dPOkN2Gooj30KHvedzeXE6Epy54lCqcJ6VzJ/m01ihU4Plvr+IPhg6DzZijpoBJgynIGXfqWMKEYcgAQS5qkIORoTJWQC/dyHTNhjRSJxRvAK3MHYNOUOxNmkM31PGj/BIxQ23IMBaf9jCr33LCIP2O5turZwmNXpD1rU3KT2gIWMPLsidVamQ5NqAkJmF36IcTqD8aEAolcyk3DUj7gRtp4Okky2RmsytXz4xdpDxdSfQppSIRHEqCcW10XeJAs5QNFoPVjQ2VOwonY2LKlm9aPVE2webBek8yB6W/uMbu4l1dq/BbRR/bma4Nlm1EfiDXCiEqElWZIAxOhQFE2aKNYDFBE3Tt3yEaVEewJQUjQE3UDmTsz4BtS0X0sj5pKtnZvOtgB8ouSuWLWjx0Iw9c1nb1RsL+/zF8vrbkA43FFBshx6MXpQfM5WfHKHQbHgITcOqH5QpPkQ59Tzx1dcUGrsQ7WCLeANofpJE9gujlWpRvAHao2NrOkdEk1aGiZTxwIN748R7KUq5riv++8LXiiUK7MAgKI3psDPCxjmCx7Dt9HdGLqXymtjwaTc4ATwE8Vo3m5KgqMh+INWkU7iVAk4wUqBMEo/NzI9hzuf44Ec6zReJDOKSFG5U8uzeEFBhyhRJ1II+lYGQdBMJqNftwzlKtuM30oTsadTURPNiCDqeupj/pRT4Al3Rdh4YxLfN8c3dWCAtJy6lm3+PAbL8ER7c9Gg9xWBQZzMJlf4JkBiQpnoUGCF6/J6bBn5Jii2AFRSB5l8HiP4kOrknp2/ADELBUOYdQefEWLvug+/uaJcaemxklCe7x9f9Dn1GcwjQs1O1cmC4GUQn9eFbVA2u6Efj9DwaYrpSj/BXowgc8VLEGyRHPOOSMvqxuM+ayqHHWDa15Euu+HmpYQTSm7GJmLl4e13NdQssX78tB7HKPLybTvElwReuQyrDWF8y5IEKSQpYLix2r066+OFReaYcpEq6UpIwV48JkSu3cKbUr3QCWAhbIuyFWdlDV5YkE7qLWa55y7HiiHzRIPrMEet7vrY/p+eVe4nXz1Q0ULzlM4qBVwtt4CavcEg1vjc6AezZV9D0pS1qF4MqS9r3xP0nyelR7cyXjYMRspGbZZ+LKdkkVfKN8ycW0+oqDYTOve+xTeGYyBZtG31LP/hE8S7T3Pmy6LCsngD5llXyMGOzwyV9M3I3K2TzXBNxofZ8hG36hPDC1g5yT5xFz+WhSoGIaCfDWr7QsM/k0u/bWfhUPvN8+xnj5BhChSRs3r62d1oeN6OfpF/5jPpAM9Uq5nhE/zOcs0wt4IkhHrDxdav81AkFWU0gIbyLYw/zz2qh5K8hin5Gi1aFLriFaM6T0RXibQjqOwdSaVmv5C1x5NbCTNJCHPIPBvaQDUa0n29sOQg6bRda0GkoQ2yOpZP98hrGvW/2ZT6qMWg4RuJbyuama8vFrUXBrSh2+eS0ajU6MjRuYiCfzTBOdLnPgECKjr2QQcPq9FCjVsahvI0kN9WkA/PUaM4z2ugT5WGKwFLIGQ67m8KNsrC1s3aVTXaZg9LOpt2wBPkQJkICn0wBst7B74Z+VUI72Sc+KfoeHsvhPWc3HrSy5I18xCv0NCk3TduToNuriIkBPFIHTrv7VNjkZt11wlk8BqJnEwmFLUAM8urlTTQqbPw4TVmHGPJu4pi9yp7vnMD4ff2mtX6JuglH4bT8sYCJBgsxotDJAJhN8a4X0Oq080zcx3wuOpNmK8A6HMynE9JbTD2f5YsrnHXVunueCnLeRKEroUm9MANigCS1JUlmYPVjekn0dELbWHkkFcepxFRXlBU9wn66aN2UA/ggEsSZRvY1CemAmTXKncHpSgVe4FuH6SwYepy3AzEhOiGijECkZri+tJtS46reR5to3cTJqH/oyEl9qKf4aECtdXGtlgm1wyz2IfmWv5h5GXo5gBbKGFYci54w/N5G/RxFIdPwgI6bm++8PSqb/CeKzFar4deC9w51IqkmKv9XJYu3ZWDa4S4zIhF3bBFiE8aG0J3ntH9Qfie5Hyyl/uQe/lg08nozkhmShgkncksJVuUY0u4LQ/9wu2nJM06bkA1RqhhJeRsFxPwglqHPZNzXjeEpRMQmxkx5t+H5l8F0tkAXNV5EuVpFXHGyzmFmfwoFE1wr2Kx8o4roxOUGBNpmEGoQEdk3nBtyAG0d3QuMoFJSuaFSWWfPPjWL+x1sizh9Y7Q+KiLUziFo7LGXXfHPNKWdGkSFKr5NsSydgqZLnn6/v2L+2ZDgyvvd3CokoAQwXxoyByZU5N4n0St3VlSd0huNAjfcINIgWyAh+nYclKfrw5MO/keseaSAz13YAN+yYHjprtDNjKSlQ0N71nj0Jtaqtx5K1uH7bKbNeF5cGBDWrIlkyLvnoXkBMZ/oq+Z+k1cUOJsAYPdWlo/8g18bLtUqjihE7ieq+n08uP5YZwR3tMx7i2xP3MPbzsMScfQ9ZoQgYiVikrbiYLFC5dpgMY7q2sNlDhzjx7AOmPVXbomM0BX9jjqljxcAS/FDYs2BVPEfyI4PFU8fimVPaiZQsUmy2/cFOcNUagZH6J34FGhygAqsz14qLS4wdGvXUfPm2kgpYJpXzPCXdQYRn9WCSKEVNQ7PKlx4IAs+UFCceU1S3JG9/OKEapWhyE+kOjtQPzTc3XaLazcrczaP1J0dWJEBlD8R+AWO2KpH2pznpQETL0KXi2nL1ZZzjoEie7kYDZEXldKteyw0q47NDo8Xc1VpKTMMIeEPlsM9UTsJuwh/f6BPFyUVjeNG49plS3ZCvGy7mu78OCdzLMONdsIfFbTllBsX2HdM157AK29I5OJY/1oM68+Kw1oz+9U9qMxwRIV6256+LXaHGIkN7e6x2sjBeOiltJsRUugEGbpDWLHhpJBx1TYBUyr1t3RACU4Ggd3i383noQNMYJ/vqWqdJmJgEh1tJt7S4BJk1Wjn9KCI4OoVNaB3NLdtPXRbyEcQHCzlMKPgSboShKRArpuaNtHvm7WvgMX/zex0zcSHTEtXPPchRbnTBn0krZioM/2uaf4ca9N5+SGor69E+JMxSO0n6kN+oN3wU+kKRQ1KqSpUaN26uCO6hgPz6snX/4S7ZVE6GXB10hUYaOmsjumPYR2jQomvGUzrBx+gPSBzQr8WIhNb6KuWgYtP14YLiVnM+NVHYd9QIPFK7M+cXKVAK6qoPKxTpibuXUWVfvM6qMx4slHTNKLKg69f/NEXu8FnfMtQfdrefPNjnJ0D/L7KdCepLnbcAn+Tqk1bZgNXVXLVEmzC38BK1LvdfANbVxOXqaxuLodV7YbSok0CcDeiooIdnQLg/G4kXK8tMUluAQKC6AVv9vC/aXZw1G41ca4AP2W604MaiG2iVZNk53RRI3L+I0xBYF6wVZcL9m8Z+7w==
Variant 0
DifficultyLevel
601
Question
ABCD is a trapezium.
Which of these must be a property of ABCD?
Worked Solution
A trapezium must have a pair of parallel sides.
Line BC is parallel to line AD.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | Line $BC$ is parallel to line $AD$. |
Answers
Is Correct? | Answer |
x | Line AB is parallel to line CD. |
x | Diagonals AC and BD bisect each other. |
x | Line AD is perpendicular to line CD. |
✓ | Line BC is parallel to line AD. |