60004
U2FsdGVkX1/sxu48cULiUgKek4HC+6MBWc5djPRI6wnYZ5VAFWb9ubs/yKxnowyoLLxmsqTEk0R+Dnqb2PiOw//muzVj4yodczugLjlyD6ThQwdDRjYW0wtNcPGQBrBBFAUVD2sSX5RpS3UPyHbbJUAE3MyIFwGkaSRSIkfk2M4yq63u7JaPf+byyfb6GLskft1x2P0cB4qp66+AZFEmyFrR4MwU96w/6fhyEBvd/9GaYfunf2/ubDDUY2yuB75iJ8V4kxp1/Er577HTlPQ8xk5mNROu183ZMu3bgSsK2gvWyhlfCauub5S9ORJp8nrifKffnmnDMtRBYHWIDXeuselG1OiW4NqUeqcSh62b2Tp/sbmEB97ABrYfgqPJN1k5Z1Jrz6oJ7Ae/Ze9j17axnKmszzoN3IUhGHmB5IZwqx0CyGilKAXf2Fr7J3uCjZx121Xx0Dq7WW/PC87fEMzttgLKdrwSgPvjO+mxIRcBvxnT+uxFHhdQoYKUD6BaqZ6avuMNQxGMrjdg2/Qu6xvb11valHPQoT8jc/LcLVnWaY6lbuS5kYPUaCYUv202Rpq4lW1tZ2o3dgc/gvSiEcBhmw9XMmk1xIfY9bdB1EN5/TVl6oPAS0rGF9Y6pkm41yEAfcIs2MY55PJHXgeeYguXfSCVisew3DUwfWTrT3NSh0jf6Ep4A6LaozwfNlanyaUBVW8y8xb84sjbsXO0RDzcNMdcgScDXrL6X3MUrNAlHir6zPLH9cgGOVGB+FHyg+JHPyTt4G6zwa9Ao+HLH9e9st+9zezOwAD037VeL6UG+C/9jOD8pD5pNEb5DYC2SrSxT2+ck4stnEGMFVoxZb5q6qxChYiyRz8b/3gZMD4O3qYrb309KCYhuS1XtGeEC6Hogo+o4vaY9nNvSsCC8Mu9T0eq7EHsl1u7o/t297yaOWiHrMpY5Jw8pbkGmNMYfmNLLV14Cs0xdEmWIy0CVl7UAa+H1G+xgSuynxrHujyzarkdTuOMBbR91TNnfH/y5C74d0lZpkbPXrJnOCieYWyaMLxLg1e+il/o0N78Inj3h/mPcjWp0S0YoQkNzzFkfidEILEjnAdnHGLnkQ/gSqOCBkBXP5jrw++CpOvR4LzjGieCQYcewoQg3gVAeizLhT5ORgpnjmYSDdOEIOwRusPDJB63kGs3U/EMJUvAOjzwcW8VKsgYlqQq5NMGzT2TpepDRenvNEKc/lzb/U1gjAgFzpknPp7cdvWVuO74NeoVHAhe9sTfQTSSUnIz3PMq2trI/ScYOLJlQffbg4AgdnOjfvvLjL+Z2bh38KgBeCFukoXBTQN3h1xSLd7ppW4ncxQkDcvj/qJ4+Ul+W+SSn6FoEYq/+i8Zvjj+sSRaqO+HgABHMpOKM/GjLGvDKUIfgFgWTRkAmkT4+AinCp0zjhMqy/FRWCFkR8djE1kq92A+gCuIJgjnTVB1AxfyjbuC37iuaJDLbS1UCNEMVy88S826pk0pzEBVPeOUflv03J4minS1lkFP/m2HNgyI3WnrzrS2fmNrB19DeK2bTYOapB4VakW+e+NiXf88zfyZNnuHhd7NC2RDYVhTQgUVg2aQ2IIqKu4Ec9T0ZMQ91OpkJAmSoEB3mGIfCypMNAyxgPC7IhCo/2ZDl8dgB6PNq0k+pZrk9WYouzDEa4PnS4zdvdtWxKffFJh0wZTEmGQlnfTPRWt5zbzB9aHMvSzL0lQ8mT2s/htVYCEr+vGuMLrWgWjS+D67e17OZDV64qF7MOaPVilWUNiEL8Ff3aXZy921jofg85+K68hTDF0Qs6sY6WC4xL9S+jwSLKwydy4bM4wkiFX6QReSyOKPBJtCrHwI/RO4XmMfEyrgzkjNsOncob1PAEbaaXwJbcxC3xejYihfmjmW6U9jwRaZTsBqk9Guipb8AO/em4jZiO8PMZbz9uWbB0piqy4EJve9SZVoAA2jYtN85P7DqAmAKKuE+Z6c/4h515tmbe4SVUxlNtGYtZKAWvgQ7MObmTihM1YDGIrDIDr1TcGhBp1eljemtDLEhlrcfbL7eFL+A7VyLdnsKGLttTabZjE4olE4y6OGS3GR7s7MQCvlJvGDhAc57kZcAWnhcCq5CbQJVc6dRmj5Uw695lBfgniZKMr9x4IOFY9jP7flQNigNpQfnlVLvgqhX4m0kqbkZkstl0D9hDk7PO+H4SrT15gNe73zVR3inR1uNmhs19WO4SDlcZFN64K/8x45cZ/+w3cQnuaJX/fjOmrbm6PhH8Bod2cdiAj+2fVxC+JzW3FbKMGS8ps2UFc6vmuL5mumfvX/ZqNbILKzbVsv5PSLJ/awQYPax987UaYLOns1SwYAi58j7DKHvXBvfSkVGqAnmz8tr0VPvwKmY6kCaU99pPy+F142v9EDqtQ/iSlTeRIyDxEdE1DHJJAJw5d0XICsu8bogaKQACF6/Jmdjm/C5LpC0iL0xmbbxHmUW0P1SEdEq/k2FsL0k3uUmv8aibJeQqn+lvRhyfBLdLUkLQbCP6zFT9kx/P5p6u2Uv/O9KSynOZUfzlekfTuD8V+b/l3LrcpHXVE4WCoM34A1JnvuXzwEJcbmXvTaxQa3sfCfmqewHcVL1WdqOP3ATEnhZzBvae76d030dUCLWFbByzYZCDsrBR7/rJyRXYEpEOQRD46izyDyZ3O93bk4eDltjhu8TrVk676LFijwh1wGplJO5AgZTXNJ9LyhyjFBSZN8rEU18tgLBaGn1FuygrHendsGrBjDny07Le29SknYk2jBTZ1cZ68rn9+kngvKcYD2giKXRs4g+kYJDhPe2v+Yzw+u/PpW1OdxJO4AVtkUMrCyMsU9SEP1WUuM998o+oZETMCpaOS8PGm4B7lKUkDQFOxpEVqZX/t2MLBSLmzBoWHjhKH1kgUMwAkZTcoYGmFToOfXlj6We2d8fuGKHntUaprOXyUlML4m+d/baZBeqvUijihgKE9N3zENcBFlpsk2d3UM+kGilOaCxh87dIyVnY+zzAkjjwpnLcNCJLD73fgaWJYUTvNsKAa0cjaXmYE/IPXeCK1ZwI9cjnH0/RGlydKlp7Oo2SOr4Zmawqve8/veEbKfmr1cABOHrDX2gBI9/YobJzDWqs/ypsOWSe2u2kEe7LBSMDSlErseeKOtPh3fagIEUJ9Mjr4oPuIAdw8TQwJLzL/IYbsGPsqozcC4+3/EIPscZ6J1XB0TmgWBNyUsMzDOMuE7rmpJf1wU6k0y4hIrj/xC9pmsmixtkYlTqjB6SL6L3RF2WlZSbILK4noBkdtoy0hO8DjibC97sAtQw1xgUVEu9O2TjRmo/l8aR1HGoyDIDSBBB/RiCup41MfHcXnHprCmSdf59CH7IQ7iheDS78rawSB301SFD3vl3T2wgeQ6xJAcw43/2Vc9gzkC1ahUKJT526KhLkw1C662tnm3TXK26bvHdHg8K2OjMs1cp+Hz+yMMNC9KXt8oJ/BUaOFcrZZcasG7upkQmc2vMF+j0EL1aObLff2xEZXbbMITGxeSfP9WoT4FAM72WDjMFRj7DWK+8/XthclDyJkAT3Bqqi++UhAtow1qGlmepsWpQZOIIeoXJfJ2b8ASQbL03ukhhruWO1Z/s4VqRv7sudnLdaMiAu2xr0h4kD3Wh9ZJ8n28XaxgQn2nxs3N6RgvqHhHrZUrKQMXQRMD/k6m0Nx+UYbfJ0pP3b20TK1W57VJ7S+dhZ6NBh2zY8ztD9HCDr66gvkKA0ISexm0rFUXA4cGJRDM8kDNMjlTig26TlKVNKMN5qbk/zCQtq0U6UigqogEZcWIqgj8p4Yo3ISmjb+xXl10OXIxLo4zxUTB0RtGoZgHvMwXFquwbbdnBUjGXwPOvkLQbEnQBnQQg5LjgIuNAmjDgcEHVTNmta2bC/AL7LWagjezxDTFIEYATPWdbqb6WgCVcuNUSA9VWD49qRWtd992FtVqBS1cc9MfDhsPSfsA7LzrJfc38DDnP8Vrs9s7jTAEzSYaAIuBfnkZrcYgW/KOurwsGsLgIywpuzHl8QM9osuJn88Fvzsp/ZA1+milF5K/bWQBnDupDWVG3/rhzUQlYyc0IvgxpWbe5G5zK+dNMn7KpMqcfMcCNqnR1GwuD11cfbDnZSsg4hyuwzuh52XpPoOCX4YF37RkxwprqwI4WmBa2x2bv33Svtb6Y6kVqfo/BD/hhJWN63QunspX03ZeDcoMhjlprgzZ85u/quUPgZlvFTJHI7q2MPe6A5GKdeNiNR0J1z1deg2bAAmduwPGyETchkDFvyVGMepUUjmoREn6m45+guxnDK/dTkNXMOMqsM8d7j1hBMQLpwlmvbY7QM0IsEtE0lMcBkntawdllgJluSKbhBCPMJE4SxqpmlzwBrdmo+6T4nzL0XepvSKVPbwp5IKBRJ7tT6V9RxW8oK0cuFpBpqKS6M+hvgxGWEmx5zYZp2L0mZOVXX3VXFYjZji4Jh6bo/tvOA/BJnfKDxpU5YfJZKm95AZhEsappyCwNImTqF2zS9miS/jOYlZBUxO2IxsHDNJtZpJ/awonsccDSTYbz2hxXpJfxw4LaJh16vj3T1os+Tjb3JcT8r81vwOXONnAfkJSnuV5ZAbMJZJVWCWB06RX++Yhh8pNcMtaOTlgBz2Ucz4YXWpN/dSBwNSRQtpKaFMWZNhTGI5Mn/ROOp2ojRHLox9dD0hTu8LxF40atTrL/PvWlM/IF3aNmmcUP8p+x9dyDi14vwgPGX1JM6c9ZCiAMhU9hAa8lPQWzEsV/Qj1eTH29tLLelcHnkwSzxQh4H0ZkEU44F/BupI1WVaiCtex0cLTaBrHRp1Bvcrfv0q10+dsxUKKOJ3+GXxuQeW/oC5qZF6TmQo1dZGzKyvr8yCFTk6E80XqYyPV1dhn28BcmPznemUjNTHPKJVvVv77RCYoTcAhoX2aq4lL99eR6oN8isArP1UEm2dE3YAyr1Dw4/qP8Of+1VPpyaH1zDvcBTCiaVq4o82ILzf91S0/RQ4eN5VWlufcbkm/wY3isaBwGIcmVUidFOuneBph3WX3bICE4wJH65i43zYyRvLHb+ULf70GRt31/HUqJo9SFhIqAhWuLmW/Bf5wnOtGUbqFdAFIeEjQX5JNLBCCImjrbkGHpsyvu3TZ1l2xABCG6xHKXpPlBn7d1gsEvlQTlC6jgzyBXoIbm+oBRXuoVr3btIGo9HDGsUH2GrT8vtsMR1HoOS4abWlOnqm9GRfBi8z1XcFE8Ta8yXZVojMm4DDAhMzf/drkDR4JLvwWAmnOB5gj4vy4jU+pxioP/FZRaIw9OSCRRkOOl2ZL/mgfPno/RyQqb8rEkEhT5BSMjEViCfB1s6CJkPeB2i+HCtdYTrTbmk/i2OTXqHtPdlb1tMSXGTeGgGKsqNP7GluuJnRhpJ+G4HKFc0+7bm8H/XRbQe/1kdvm01rZn2hYOvm52uh6AlNVXylnWs3ee8F4sVSfs+5to4PbWzP30cXVnslbL1hjN3o1DwjJvlsqxXW/IynsV8eMOo1Itx0awQTyZP5e011df5yEFE11LOvGsA9lQIJtxXsjNtqLhEVCGh/e6/NJxJY8m7bWFixdYl8Zl4O5vnKOof8zqVO49HPpYZyvggbKmqxyFfzfq2aimPFlU1DxHs7JX1/hvLV8OGx2Kj7WC1IuF7uNqwKvKZWJxtdS349fVR3eJd0ETxInZTUV6Blq4M2M7x9374uWgo8gK3cl2lrOhcNw0sp9j+tK+I4QsUjL5c/PJULMyVdqGm1jFV7mjmizRUDkkMF6yE/RkIBbLj+s2/gEUKiDRdwWaR7c9t5JwncTvsjqGzEucYFFBwwlAmrMCRyxtuD/3NpB2byzyJGbfrajK0ONqrEl8jLxdPtApIWTSSDvt/b0bWVMX+WTEQHUuPZi9c/ZRgeikrTL9evARyZXKhLYKVKVVbQss2Zq9IeGmClRzga2JxLUjQChknCg55tlXBhOF1dkNt95SRqvI30YeVUeyD2Lyb5pBmRkFvcqUGgC4JYlQTVd8GtUcfRtMN24Hjfr1vcYF18hbbQzVOLI8b0xxE1Nr6VcjTy+MTJt5Eq5SYxFectbj+Gqnb15Zv/UPNR6wvupLCbfQH8UhKTTlKU1zJXCz4oY16tTTr9bRVmd7CeMLdFVCWpopY+sOM2WG/M1neCzRt1e9tABnk2UoEUmtmebf4CggH9O6A9mscWC437SWi5lEZ+xnIux4bB4X29XSY8SiZyeMiE1+A70brS7VT5hPDTK9317qjJ8+m4Z7lJf0TtPIjMfXOUQybh/jZR6HMjmTPLiglZXA/LdjkMLM3wa+Sv8acVCVE/wD7RfOQzs0PMjx0g9//ecYD/ig1341TUsFx6m6wown3uEOBEb4oO7NL/30rIGfyDhlnwMEa3G+e7nFPtW/OOucIaYNj3Ut/m68vy388DE2zyQwAQA0B3C9K7xy9dzQ6aRdikF40RC82sdRB3Vtrrjoo20DpLticSUX0lBWCNPFCrZmKdjbxcKIo9FG6UrY9pq4t+6om58O+Xxf0yFZyh8j6Ryr2v/IBHSTZfzBtwQebXzJxQ2GUAB6C0EYnGVND7pwVcUYigDgFPYLRMcZoJ0ZI3zPRFaE+NyXvEMgIPJ1aUpjjSzGta+5wwFXN/LRiX2NhtY5XyTvTpbi562GLEggbuT/XTCQ2aVIYgNpjB+WnmdNxmCoSRDKm5hEyCUnUWHqWKJA6SGCQNRSnscREx3j+HTmJCCbhEF8muIoHdAPRDvBOrRiyEQcnHYTD2itcngGZDEr5e7yMDKrwOdJHLB/LuXxl9KUs8d6vbJDwqXMzJZMhhm5cRjpSO1jWk6dmQucBr8f9SdDfB2CKGTNNZ2UPCi2Um1yvIE2Uzz5oWHSPE7NJCP8QWyWriEWJxVmIJ275uvHMOtipYUmlErSVdsy4Ox7eaocHDtHsHYbPYOKRHsRKsmIEJ4sdqpkmxiYHLlglj5ii+9bn1DToDb4iVtwpLydXbEJQ5GwAa+zYhaW9IqZA9DgUca6ZNM92tpkI83J3x7zMbMQCe/jmt37imyj7xzdpxC9QkYYjXThsmlc0MycFktQgjAnley+kvMZyEgWrbHye+BgoJZL/9Au052umj07fUimZUJ4GWBqYbpHR9Jci0gofRDtvC+8UdocRiYHwSfnpqV+9vrct0NWSEX5wiF1YwdsKSBGcy3HbY9hYACezBk3t7Oyz0TXo5SyppvIP2Tm27WGeuS9HlPKzKzSZHmEd3Ba13uIXAwrDeCsP8YmVoDwZIdathNImL1uCLSEHl3Nk62KkJ5azVokaaEwkajpUThB0OUFsgbAGk5vG53rg5qAAzU7Y2h5ZNzak2tGwigUeWtubhj/cpTDq+pYSM4Ek/alnkeGcq5N3zTl1AgyNM8/pV3SjCWvfXP/BM+Cc0zd0w/Vs8tUO99cNlMMOMgQJfy7XduAodve9YqBxCAKZhqkDoVMrx5fDU1bm2sjHwVCRYrkUaC8rjPxaBJfEd4KswNksFvf5knrkoriWbFImqSpNUhQ6Zx2plh6hsaVL4APmWLlMqyI73yW15M9ALY/o6BZzEowsyS/bSQ+VCA1n2bje9GUWLfUFhcF56YXGshXis8itMq/lhyejS+Z1DluAsP3IYkJsqRgnAj5eAY5fRiTrEj0v8309Ff/nPObkqQ76RHmHmR8/SSgGtanvyXR2azAsRb0HBVBdlFmv8kIjEhbGw0qjF6kXAuCB86rQc8unkeOyyWoJhDVHcTvo2jB3Xx83M/JcE/L/sKbQVfU8pCXAoe0L0ehDcRpBv6rBtHVN5n9ED2Bq5YCc7YHgFoILxRHOLs8AV98I9LnOnpeMX57hvwvDohi/k3LQ8RwgtKR/ouQoIHoZMyzW/YaDdg57yY35jD/VnAQVMAbNBCvbk5vIwP/bgh9RW8BjlzQuM9UM9j2M8a9BKZNhhBFBXS6gPIJwduI8ecx36Gjetn5E67rOnf4bCBlL6MkpyJihZa1xUk0dntwcjI86mZ2btd7lEAxrLoKDd5fFW+XjVIMsEYk2DZ+cVbvSbUeGKQ7WT9Ne4gYG498f9pW0K0CV3Uvl5zvkgcFCpSSdAo7e9drs8y6D8GJvmbL0OF4lu7aPyQp86S69av5vqmOZXfXP/fjWs7MxaytUPNhu5Ybd95pMU8YLj2IIKe9PSe31sss4Ixqy1ECClIIIrWh6jv/CuRrILqnxmpnDrgxtp1GoHu58q60wBb9laY2zg/MzeX7GXdh+0U/OrX1TnwvzgGf+oWDRC1OJN3WiPph4zAvuGs3hxr+jG2gwdalQ0huBxtbZRrN/0yXdUhSndiQ8AfFyB63HCbPDr9pN30vheh5dbe0PkpV952PS4Khvom2+9H5wmIjqgxV87nazLfMnghOYoefnrd60ztSgck7Aot9YUz8oLhQN/c3wdtUlouyzM5fzqZxUx9jY/DiyDRL9mzswX5sbwD8cnIWk264UY1Mv1y5Kc2EQigXOfVy49+ija3HVtmcfus6hIS0KVt5lSasUjxt27tBblgkNus1iNeK4d1+LsWYMpputlZCH0W+YNMIYW6RH19ytwsjX6RLIWu+Vh7llP6qAPNQSk07NJ1ciZ81OvEhsbOX/LRJo20crDNFxqf1CWpmi0SdkVMD7qjYe1XXrBwPHuPkztAiKXIBI+GVxXY39RQhebqkCT/oeK6ALBSYK5PbVUDEyDEM0uP8dOqt49+pxRVSk+BYuQ53iDC68Xy+oRMa7gtiK/0Jbc5NqI1Eq5ejz4+S73g6QyYeKr6WhN1k5jgYALLcxBFdu+laCPGEn/mwDcwEHfRAOlED70orSc21ArdpdF5681hYE/rSAS0JUgo/ENxVNGD+/je6WLcZRh+I7Mw817flhKHD1VLY4eN3Vba6pjQqjb7GNPEcYyd4sQ4H23SXP6N8haEGCJcYDBRdUNCc9gFfuiVa1P3SOFDdO+1r0Y11DoOutN/j04Zlfo4VmWWWlf7jyRtWdV5itgfi1xj22guRty4nJavdp84nSBUczL7ciDHIcpn4GuUfX27fOjdzsp61ZSi9iq98DJ0O2PqOSsm/7Siog6OTLRfAKiBdAaSdf2ts+4CJRRS680kV13ZRdXwDyDEHr2ba+C9+yShJ0BRS43D/Bnal+Ohn/SDgHiRdoIb0+qoDY4LhAcaBaW1Hsp8P1i+coRzHJEpfJjTE5T8GLDrVWHINIhOtFzYMAfKyWt6f4gUwuzIkw+WpJJAaoipWOtCAlrJPPRqu4uzLHGF9CYHAdHPPMh5fus80SV5zFDaLd7ZyWOzT67dCSfErEy2ApGjc3HdzaYNXyjItLsSvYywkr95o5F+Ff9F62Vbk81fzSoQsRjrIc2xaExvcms+NeHyPeXH+YjQqgLHKrt+MzCy2EH0XWHk1u+alPl52cbCLYpw15iEEsVqPNk39cuhnLFspCi+3vufNHN+99+ZJR8kvBUfL2A0wBBE5Gl/keeYtG3YJuPqyWDKeefrHsmnceRy/ATfaJnwxPyAth2U1cg78qyiMmy1JugoxFypqLYwQj6/j9ZXmT1x3IbgjkEfHN3S/v9rqONjoFwVritBKs0e0/4CUu0g41MdENVKdvOgZ7Or4pPUTX8WxObCVR/YH40mCaOEp9uPhHepmabEJCNP3XiGMlou0aTivM/doO+DbHgKkPwdmf24dvsNFDK+eyaK9PpZUSkED2HiVT9C91FI2qWdUG+TWITfbtotMHWpjNPb4bOJVHaooSKTy0csrKXVBX6e6B0iRkvB8wqk4GcwBFFo3gUMPXpJLSTmPHo0IsqQxWUbXCUyv+SGGlbSFZZm5W9+QlZcvfJZ1iqKKHZlKV7W4hQVIr22xFu6G0o50vomoE+sGlfpqY+sbTk0AzfZHQ9PD8NThVN7V1Wl/zsRs/Yi6+7z0BYwir6RbfKVFFeQWlM9J54vUINxNquSJnZd264kcYw/aOU3PQPVU9XMKj9bXzP+nkDa/c/JCWX8/Xx5IInINCWOQlwOxitGWoHhyCWXx1q2BS5bwfwofzv2QP4eAiqHxvcxZ2BnmdIxTW+WEIdHezqJBK+z8YT79H9so4gBSbrObqf0KYMABQZAD5/lzM4TGyKCTMRHRJRqa9kGwWR/lfoUECxz/SiGPSHaeBDradbq/DKvxiamY0X9mzdxcOlI1W4qYbHBkKQqzmQwnntz2kKy+GEJcQd0o6p4xrWyMlkw/S0dNXlJuVEEm1E2MYV3Kj1+harEgkCWLK1opBQMQiDy5qTymCgjo5PozaX0bBitpMIPGiBgodPbYXgnjHnJxqBiJ95zQT3tDWxs7/Lg5n/bfOZCSLoS03TQgCZhrs6CXWc4MRAE+W5rLbb/6D2Wl7AEdZGmWAdzO7TxSqV4jthDN2jE8js20Hhx/nZFlsEFx5vQbaPtCotEmbUuhX16hpWWZqBTFq8P04q+KrCAxFySKsacg5jY8jRAC6p05tsDhsDTmBld/jW8THyp/qQUWFgAGB0GIl4wY2BpEgEI0yG+KJKiud4FATHrAlrZkSZm25QV6JAfku3Fz8QfxzckFfF0PTIVZPnfex0Cym1RRiWEFVUkfHXOkn+PImEAXiw5PG0/0/VU280FJIdfoZYlqTuBIC3iaCgekEGK21DHMQec8t7/3M6QPKoVhtvNfZiEbLCkHFowshVX8G8ige/vsg46C3xhK1mhP4Jw48HCtQ2uR4nZcL1WrxxsVJq2mePBY5qN8tXv95NbYAwDweLM9mQHmAVTliL2XCmX5ZDqE4Iu2p/mKs1ZzSkPdTqm+Ys/fZXV/o7ad8H01Qrn+4Q2pnbeVL89ak5cC6Aiil5K6lD2JcYSBvfwsgxts42sA2Cuq0NlVmOi+Smn49qvxcVebScH5Is3JOQNkCPkUWBCja3R9LTu0Mw5Kut9QruEueWbYvy1hA1ivE0j4rSYQmmVgrngRhWhOlp+8v/7ncpLHKWS3U3Jt+/o9yit+B7cnlnGY/dlqIpy8Wr63ju5DWSbJxaTsgFRJlzoNSa+WgNyO00HKPBXC79gNDGvB3mLLzqptu2RYLoFxWNNbwPaqof4TTf16YQp2S9C8Cv80BZjlQnOSzA4LckhY/QvdRIr5mS8IAJpX4oFH3sZDAp6wKI3EysOF23VhQGJb6eyjuarXTGluKJ7DloVxWCXXvsR17m7OOU1K7d8DofYAFyBxS0R7bCBF+t1qUy+TqNqB5x5XJFvtQ7apL2cJiw/iPENtbjT+krp2cG2E+catWDxztc2PZ4dgOWmIX0jqxVDqVEIat8QBlIoldcPjOKjB9zIbWxAiu/hRtepm/doysP4u4NDy1PgTssz5gOFjoEigolqqRjMQgQrQLkTp0AxKyzTUzgJmMgFPZXiDPrjlokVI/emj+VQ295hYjLbctqAN11b8+NnThpOxzZyCAIqVxhPziwTMh25F6nQiFCXnReP/Y8oFiijgekN8oiGBC1pQhCzjlTDnrm8ujPo0rnq68Ufi9Uv6QZ72qR0LY5tICUQjGvAKk7Ip9OWuTGGIyAtkRysRVYD9ylchuc7R/xfUa4ggW6yxS0LX8gT6CKX2YSy7XQeUoriXHsoPfsv0T4b7jWaWRWasKq6tsLjSLnBf6QVQzeI8NIw5flTw/5ibnX8+cZxrLxP1abeVpJz0GhX8pnfZv9qU2TNJpcPpufad7Z56Ga26RtEgmDU1sLeREPbDbxvQlvFaVrInUXnJ0s5D7woEP5JxbeI3VOV6vX+UeIbDiY0qaQmCHfrSDbgVlaeulfUeb8F8B7nJK+i14bKPO3O4znkpvp1H34MXQdyUNx31LmCGM8nRbZkmcRGfRjlMx99IKxw/93h0j0ZjAy4EoG6qPdECOhdrtuyTZVvzMlb2DFemOsiLeRwSf90FqascFrOobmV9HrKAPOU02JFshxbRLIKMQtdO9ssbKNwAFL1KfDTAkB75LiMRmjp4MQ2qClONgT54Rciyytn78rvHe3MtiRa7jSaMNwTdubALmXFZfL9AS+3f3O7L0JcpYzPSCJO9gZgMoJszhKhEcFSNmAV4CaWHwYxjZKBMjpubYPgSrgt6jJKl67I7S65YnokSrfEVSzK7J5vpRQjAnvsRXwjONU5JxkRDwfaX243yVF1YNoYDnuYEvaoVb66YJnEc3UO5QMoklZQLCaiciZzqxr925+SHgUoRwrz4wFvZJxQNMMapxbmjUI68Fj4tIFnZI9vUu+eBTVtWjkgOJmi8L7iptzaUP2THOEe9L3Af1ZAFIqT3okKLCBLOz8inaOVeIhI1mWOU+RLbxFtsBeoXMNHyLeLYsFX9eSL8AHLa6d+rUci4OOVSeOotSL1SsTIbPAjv95VossJlvSxSXF5uIDDxGfEUo0FFAwRMyrcloUvjTwfZXvS3fpHz0Xi/UuXcr0RdyOFV9x794D6Hj8c0PNgdMJ80gRSt1yhoRV2G4nC7YrVGgzQsgjoEjozCHt69NA9ez4+YbkXzB/htA2U6FNRXtPOk4YgUX38TueOG0EiLGC3onsjtQVvY2zXeMBTCNPsbvQETUwlfwcY2MJNYrt4ZbdIwCvkG/B7M2ygc9U14RVZK1YLJAGu/5ktTQPE/GRiKQxA72c8oocEIBdVGgoHepfk1RuwiuqUmoltkXdOND+4MaMsdBjrKPXEuQQXpde3eIFprkrPbjs0pThDfFvYb2I7Uwy0PV1xyCQA+B+rMyJy3Iz66UI+V7wg+xtuZTxC0Y8kEpNuAGzQXDNJUksxqCGIYsBTzZ+XpgfaMvexfcyro6973BaW8g13Um89c2kWpNIPo9BoS2Q7JXABk8NZgRoL29QXueZD9grsarENTzP8rTWOESCUXAg1dmEoiKlDkcqmcVmWosZAL/5+kXWBV6icMas5yEFrsP8OoWK6ZEUmURoS4vMRvSHgPn0Pj2GPKP6FdF1z7P7eIjYLMKJLPepKru5dVOGwmJnNmVVPwVPcU61OEUX3NDqtjkMsI4/awa2+ptjvjwa4skUA2HQ6aLFa/oSTOTKJr2Z/nCkUsPB0DrMNFbIWgz+KeGbuq7qG51pia3fv18hHKJt7Km2Ln0ICP0bdlViAJGGWk6d3pC6f5aDsiLUb8bNXUBrImzCbpVL3nRMsHSie7zNK7R9J9+TkZf5zFgywkfk=
Variant 0
DifficultyLevel
627
Question
A child's bike tyre has a circumference of 90 cm.
Which of these is closest to the radius of the circle?
Worked Solution
|
|
C |
= 2πr |
90 |
= 2 × π ×r |
r |
= 2π90 |
|
≈2×3.1490 |
|
≈6.390 |
|
≈ 14.3 cm (closest answer) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A child's bike tyre has a circumference of 90 cm.
Which of these is closest to the radius of the circle? |
workedSolution |
| | |
| ----: | ------------------------------ |
| $C$ | \= 2$\large \pi r$ |
| 90 | \= 2 $\times\ \large \pi\ \times \large r$ |
| $\large r$ | \= $\dfrac{90}{2\large \pi}$ |
| | $\approx \dfrac{90}{2\times 3.14}$ |
| | $\approx \dfrac{90}{6.3}$ |
| | $\approx$ {{{correctAnswer}}} (closest answer) |
|
correctAnswer | |
Answers
U2FsdGVkX1+dIPwpofP2SjiPXQc2ni0ZL8YoyqzpAqi8uC4GJVSClRHqC27dQSHRC0o6tY7loM+vv37rSAVSRsfrHpiHBgd3Bb7uU5STHtU3WGJVgH0J7nrITw+5KUOUbALAfXWMqNg3yD70XnAj709BLr7SWQ7OtwoHGxvDU4DVu31DT1kVrTkRBgROvd2iRr3DGPlESPrPJOYWzx5UNWulKhIa0lTk5M9NcYjmgFBL+h9FMdOQ74fDbts9UMAkfty9QeONdhmSYcyqdRYOeTJrDTyiOgTxgGvavcja7DYCEhx5FWBuP2im3v/1j9tUpNzUTb1zoXP3GzNuNTD5gprb2s2aa+menJr6WemRfOu97xU1OB9sj9pB7qLu3Vwd7Wv/jYwgZCjj74vusy8z4r33D0k0NzxlF7U6ZRv/TT9OuByh9gxNOXAFEQFBZ/daTP989osTTC1q4fUWRSoEbXk0ANYjmQpSTOgQ66L5wjZsQnNS8CNO74TDlgT2V7Cb6fEhrhpA6be6aTnScgYBgvRoCcDTBq1Vbb1/7VtcUlUXCDOq2AcpHZ/Tf8hG4m6Je24n3QkbhMLitG2UnaE6Gl4cehRB5tivKUsfq8VdNWnxdkK9nUScIhPgPIHPzEC341F9lKzquczZVXHRXihluY/l7aeu27b8giNAQHh70s0GmAxRxB+0sCXgHlQVrH2lxYBtqkqhckfcW7JcXLY1xMhtyeP8ZNFrOGwDI3+BpYD9DS1yauBdvT/fq+ldO+B5eqt+anLGyoYmAUvmRF9AohNfI8lo/coIIZ6I10T5d4C420cdfggCC1KPRg/0FyxJErip5qdZVGnRN+mGdZAbCRAS5wX3PrU3p96/KNEpxDx+O8PVyOhJDzcQwuPR0qy/3p67nJvly/NWHqLUQCK0Y5cOmPeVvffuZDyNgC6KZC7LXcrJzkb1guF6hSmJNltxjAVBhwTa45KjFHVcYRwzO6YkbmTLgj7ifL2duxa15Oz1SKrBfRbCac0eNGN+2SUBTSmSUjZ84lAkUtfbbzaYNpNnpcngbv4uCuBXwSPsJeFo9WAIXnaVdxBn0QumOypHSetcpN09V17ts/Yo1Ghmn8kqyFFGsKFc1N9LXCcVyFSHAlrkrVXz6W3LCm3Wx95L3ARz+sBg7Iw7v9ZkSbVvJsoya2YYWbQMQZDQIc9SVxI7at3pjWzkTTgo6DYfEnjEaXbgV/74T1+XA07xtdZOFsRzt0+/BSCMH7W9ayRqfdcga5BZGo6f31NFlQgR/DhxXPQRU6nCsjfKJzRU/1J72dmN5nAiujtP0Jclj4HiJ1TXl1m6+RD3SfiAHEYIDCWJJg00HboKn8FqqFsHYn/LtlQlcWhUOTgaoc7IM6O6HOmJk0OdV62FkTEzazrKp65/GHW8cSct+YH5eJHzYX4vP1oFrSgWEagGyOvYQN4zMf3UUyMlZhFt2qms9p9WbpklP2guwx+eAcrZBz49+UHVR3dvxA23jyfzKvEQlL1CJgu0Ud1J4BsvYh2+kAhxbC0Yp9SdxWRN6ALOeRDnY6DkRYFPoiYv0C4eEHWWe1zHT6TNXm96XRZfVhPLZmZOB13qA9t6ckSwIRYLDwM+JZc8AoL3IbFDHzY0xPG5BKTKeVOo2Dnrh+xotjck4w1Uce9g8nynCuqGAys29RhzyPtzI3OFGQZ+pP+9bG4k02uoczLiPAYyRz9BRDXvrWgFTObYpwJFlg9c8goNbMA+iSnE3pJZZp0fZIMubmtfKtH8RMTZLoM0GHLR/EjYor5BWaKcMXpz1M2iF0/fdsknFh6nwupwGf06S7uA9oIYMPbAjSDw8iMqTXk0AgJj/8uyR4SMQvCMkceoU6W9abrUMW0qGuY4qnSeABtkTtfxUr3Yr+G14Ith6sp2L9ANMcHwxFS0dozt4QEUaDoUoZyaX6Ym8WQC+QNkGug1Fqj02+UljsW4FL+sd9Ga38n2hnxzwrCkjjLOmcSCGyTjV0hEOq+9NsLfGIsjgl2bGZ76Oq7w41/oFkYffub7PnZHTPT/V6rOATLud3UtK1cMcU+TWMmyDq9QhIJbW200Xalg+htxKe/b57nA4BcfVx5zNHY796EdwVjf+hzuajoUkko12UHQuYB2Sj8XgENXzySxM5BAyMKMta8jAYh1hnzr14B3dPJFMlxsW8ayD75k5vES4CxMNglqBzVdVbM1LuOleOsbleTQS3G3cvrIwU/zvzgRbbPDEn+XOEZcBUTny6qNj75d++yGrA5W+QLDuiwO3kPraVVuKe8B/yl9cy5K3O6ElDDdNDecb0kWnX5eFWvkvHaGF92dSUpSEG51XkptUIEY1DmrLsepS1GXf8hganBcm80KPH43khTXYRrGBI3gG0G1U4BDuM5APbsT5YDHxkyLKF2HIx1IXtNWJJgFyM17Sez8zOAulAl0BMwm6iKBVCrgzCwAkev1qtLbQuJLY5NwHv66sduWZs8qF7zj1ubI/x60ka8Dew5GreDERZT4SS2pdDUxPQf3Hh4OYiM/TxdPMtMhwaUuVl3VYbtF8FiD5/25/8pgNphyWbUhd746bbjs76uGG7P0n9yE5s2Qa4gftX53JQ/uLF5wWAnfU1egd5EtpVKfDXjBAVXno4f/ykEIg5eQGLGxkOnl5ANuyOxYEep33Yh6VrjdilzNC+aimuGmDgINE2SkmfnRfLSq9a1vclMr8i62JS2WcKZOHFVf8nLgB6BTNZSEepTAZEPlwLZFKuCKekv8y6TUlivz1RkfXXOw2+MHgKnDiRBhFw6dyP1Th8roca48aT/nVkVkhoK4Ksb+Gf0zygoWV7X2md/FDNBzoYkgcp7njV5QMIKaiWTMokclTi37m8jX8Q0rbWO/QxMCcDir8/y7Of7Z5rYAjfqr7mOdpR3sUnFgKqRENNXVyTAItHh5LtH/b1cx1Pj06fJsYGBZPdK/vCBousYFVaObOhOdqfjhKNEmAUOJnTTCFQFD++em+6POebxVfkaYC2J/1WfqpDzYK/9Izu8ISmzL1uWW5C1FOA15aqEBWz8RDJmC/KYDmUvzvch15EQ5i/MQY2TaQmUJDqIqtzBEIcGWnbCH03LSEcDgigIvf5P+toIOk6pzzeMi0DLyctkucQo5Wx6aCANn+v/oaiuTD2dZxelNL0YQQ6Xz9f5hvLXPJlFuJTwnCpMbe62SMX8RYQB6B6fF/4xjHTwjVdGyeLpNc5ahU6L0uUpjgGRjtIY2kSa00CNsVDFZ95tmPD2NvAj3ASJybhXTERKxxBKZH5ckCliD1B5otcFrKM+pteEAPO9kkQyClDm20Fkc+jDBs+gLvfZ9+hR6DFzpx0M+eMobjJbnbWxBMFuOUY+eCA1yajPl7g/Y32jMrJzE1E0DxGKUjU/sjK9+BYZQC3LMmOL4VKmnUTEwLBYRzCnysDNLR0fP5pOuGUv0W9dWD5P+ake6z24VTgGu/MqT4XWuvy/Gp0JaL+HHAf1Pl+O2onwY9m8NVZO4sD7DSc+62+AaHrmFuMulhi9oDRtMmK1XJSjd/Yk2pxTZ/n/HktH5kANYvn7rDhlcRk3qDoV/oCb0n5OQbYiQslZpYLNEwt/Z6iyY4jAn49CYRloHZavWOKiVPowCiEhts0qqJ/UjGuXv65iLzOchPuXe01oyx0Vs7wPm3YKPu4nJOHf6VzXudYpzC+krxus1Pq2ZjEfyUeE97DX9/GGxzs8ysjnOrdH1wxqGeT5JpJ2tF2UILDKOcchFV5DeazLumTgCJ4IptBnmfSn+xuznTSgNdrM8MwUgoi7Z/NxNCFXPuPLm/IKf8P/bZQQqsQOqyPK3NiTYi23tXRpBDFrLRzabe1fqQNdm901s731j/SlLbE8uH7ZBcEBiOo+JIs0ZhprePu5FNKB9lKjxEZKEjXGjGrYSRbwW+pWcsq6d3T9uGJQZntvynVaIgUa1+CUyeaDvMvkMKCcybPUw2EKVDEzt/zsgx1OMjsspVgK056dNPmwpjRjlFe+hlvRD7jzRgi5AJs67cDf8FBGRKm8yNm0Kmo1p1NJ3V/bVnLU1EmhaVEapTR1grb0y4Nv9oB/uORmvQF2AQBDyo78/7C8oVTmVaemu4CmVXQDcsFbqKtJyAyV3r3g+Lk7bLBc1wLhacZZY1ligjFngKELxXZoOG5ihW56Wn7TYuRvSBzipCfBZ2Dv5viQjkW9Nv28rn8h9OI+8erVsMMwhIhoGYOmWX7gWMgVVHXeXteg316Bv94i8OxS3arZ6HGG86bO640WIBd0R6jrIjPMXi/K/5ZOOF10mNWVvfNUCJrAUFM5iQQW/hGZvaBzpuNIZFAuHznUxd74dHnhCPYzFSbQhBiuGMZAaG8m7H6lEAHOP/uuAwy3b95KPF2cseWi56wordzVxopRuxg2lstLBsIYbAqKliQ/CU5OtwtngUInGcPTBm/EFj4Wpsi+FjKKCpzc5AM6CtR1N21zh1icBSdRo6vA+MhfXGnvcpO9apENE1Vd9P4O9sotvwqtuTk0zck1SXXfCvCxrngAUwvPfEDFYeZrPD3RBrwt7UL0BwEDrAHF+fM30Koulsg7zJ/41dPQn7oe9ScIIanko5fGe1qbpp/ImIHeisJGEQ1kvieWMNgnHPwTZ0uSvnRO37U90v9/Ce7xP8mNDhIrOIgbff9y6MDwGmHhqbG+zqRA/MDgHLnEQqazl5jMu5A3wq4oLcZL8Jia3ActFGFgvricCceRgHXDEuTs7870z0N/EFWZP/c5iHfY/sBWOKTn1AYqVbZIu+YI9bRxnMl3p642jjnZLypm2VUHe37P/qynXRvFYvEd1wuhT3EJGBN8lP6LaHXHOoPTVGSP4Q21pfXv6QXpJqitmkKk0E5SfiK5p7MOa/FhcEo6LuywTMvL5R/+R7dDAzu5ZprcWsvPlHfigswmSaieVvXLfXXRhWNnWWT1RMWQSS0u/VTwANjZLr550mXe7ilu+pTdt6MWpr+tYHAIrhyX468WQXTIPgtU/dnF6dcAY3xYTf9BeIFoPEf/f9AZ9i4naPYvVK2TrOt8R5JnQvu2iVlqo/cdVP80L5pi3QdxcOFMWRre/rotyMYka8730nNU8AfC9dpz4zMemq/xQPEgIMScF2uzvjnkaR2xzVG+WxFXM0KMUNVS1pDNfGpRt0MT65/l9MusEqensSaxrQdU3T8zP9ZZQ1hsCDIyv+LRlthFbe1yslTGikOL77CyLZ7wiP90+g4cXwb9s756saWw5CgJBM8aWE0z+WgXveDmfYC8qLyMPKAxY3PANo73ah8Owsz04FDZVgu8xnblDkClRgr4ro69p3diMghqsQSpaHqw1APKBDSHcUckaHpvEv2gCSMw6Nb/fbFzmraiIBso5VujDo0HGiFAeVHzsnSMnyanNeMduwXnLQsucWmHw67PsFg5oUpo741V4rnb6WZ5hVKzAe7K6mxEFGRrRFumfw/USnAnDyHh8voi++cHxz6I6JfUXG0/qR4A2KYAMoi8PQ42C2QZjX2hyH4W5eYtgWU48qHB5Hm7Ama/YTwDQ0icT8ZNHLyMy3HAV7UM2GD84YOjcoyueOjlh7hF0WDs6gqsBbAoL1BDAuefnKJ7l52C1YStBPHxomsy4fvACJGhtCWmChbFlayhvIXMUT5s2dg3CF8lQqPMnuVTkydHkTnbrrjwc0vdi+cvP90pK6G7Ezf9E8JhpWJpdgBtPijSgEuhDPnMooeyFVGG9sic9Df7RsVM/c8MGusyi5EN6XsqXnUtrtROdeR77S1Cmf5+vMcdTMOrjoRLspLe8GkNZGZkFE5L906uKOsqKcqr0ZdNt4egSmh0IUtCCdZr8fDGTSW7HE4ccHjX8Z/lO0/r7m/6KGWw/uMV7DA4pO8c9geXAGJYMPgC+YYW6Ke+t8tACDKCZYvjfrGHIiwOmPm6YKr4ERZOwJS0Q+P535nRFlk0/6ZbGB+hNjDBJ6vwPqCy6InwK2z+arQdyBQGCwlcvMR2h195a1AOqeske7pWGU/hCuSlB4RwI7gVUbbas2Kxpvq2xcyB9MpshTlWMvK43tgb0vDVnMRNuWB4rV0yYiCPc8qfiFdJ16L7pB1C/9QWeFmHMlRQfrml6X5og6TX6oVyEzNAAbt+vjc+oUMMdq/LIJuAQ40JzqFTX0D/Qk+HcugLpdI1gXUDlDm0IlYAhx47Lk+QGCEwQsb7rDXGUzphTFXzMqAIPjlosUKIzi/zKX59CKbRN5tHdFBqvWoApHtOVPIzH56ZJ+al0+iEhDi/HXMBD7zTuePwWc+l2LxbOiLiD1EwKHlJb5vqErVZ+qeGFYDgNlE402uq9w5k3lljQLN93SaopsWZ58i3l8mlXgI0puDKk2u0obY7SyTOx/AsEFQH/JCMW1Rl+kujC0EMVzEC7OwykWi97OjkQ7JAdeLFRN14BQSP//HG9fY+2ourkp6BhDmmET1khtZlx1pufsqZtoMohPdfZzm/cfqyJg0JLfS6phOtOVUdQAYamEPHqnOkFuhB91/ncFA+Ureg6ZvAceXWHOvbLPqNySiEW5rGjU3OO47flEWqGrzxMK44Z27MMP9vzASXmKeL7G0XvIOJ0aJG8P2Sqy1ZISyFd2z4MuuJPuv26ZItgL//jHpD9NwwgFfj/p5XXb/HCFUcMi1sY5zZ9oikRMaYQLrpvU0AbbXeGSV2Reo10XmQEeuU1EB5GYkOy9/5/d3zkPb5YcQh1B2OMWIr6GeSvtXGhIXfznMIVDQa2THr9fpFzj37P/42Zrj6qFjThoopCYryVCYlQrBHIasWA12/UGJIAWODoOHpCtjMEk6DTZ1cwG81x1qB/KmOYzJ2oG9QEZ7lrbwJDFD0hGXilsKFlNKDZbmUu0Ngt/3Ztvc2n+pWnrIK629Ke0peTd2JkahOdZmARbuvJgugngOPpco7rThLbqo0CKsWAhKprWcwhczYQS5telvbKq2XuoEYdI29QUJmfMjYoKBB96J9xPUJiQtjLKtmK4HR6IyQ8Eye5fU5Le3i3/jqL52kjtgXcOwr8FGxzRHiVz11G0DCWMbaBlFEbuLc3MRwOgCthwfJDnK2uLwaJMiIDVfvpnIJ6bB3EXFFgo7TqSY0mlPL4mztPNr41x7uOa+zOb/qeiPZBUTsiaqWtFchzwhgviomo3j2zUy4OTXz23lNS3s30uAtBOWI3depoIMKMO95Cfs/+f0XADXTxl/olMFkr1eui3Sq1sR4y3BjEQohbA0xeVTCZ6t12Wgaz6z50qdR04L9LSQloJnARLPTpsBw2BKwtHnL9xtUW6dt9yqDlExHt9/c3bDxcxoIg8+REAfyNUi7MJMVf60YeLOMDpiG3fbeOw9pp8qT/Upf+EVU+lRjGGeYdP2+2x0I6uPl+Va3B4GfGgac566k4arLdZmyiwUsOwepSGYlb3PZ2p37dNquOc6xYSGjOIIIfFPVIoBbmu+DX0/dbJhktPqcxkrOIImpRC+J6BFARRKJ7pdb/VpzFLPhRzUNJMw9kN7FwT1YbXi8BF9cIg6HAJi3jyJJQ0+D39TU+Pdj6l2bKyuKxwu/IN8d0zOExk/jabZYlio/SfgjYkNFtcTscaDHLGgw6HLTKpt/MMX4JnaqmypgIlHZFTxRZyAvxqMffUY76v+aPu5B01qTSbchCtQrjOcfgC9VF/sILaO1VNv/+oj024eVni5bxA5nXWhg5Yuf5qch0NNkcuKiGZoo04i6ldYkOpgZ6d4Rwujtbe1G1mX25V3wCo+SHWqaBWeRvwsnjEwggz+CsVosJS8WcqGrmPUy4ZVbF2wnxvf3cxgpto6fFS9x17tCpJzAISZ1m3OFEhaw8SnZIntXwP4FPnObtB+wD9FqOvb4shi1Ax8SeGjhmASmtMYgTHYj88/GkvRD1Spit/w4BfQWnvPXkMcMQR20XBrN0Hjp2cqghQda5pD9svrHBzs+w2by2fR8GYpN0SWd+LQSWRrt5/FiG15497Ldau+IfdBWJUaj7jxogPHg6uIM7Bhi4xz7Jrz/Z/DSAy2UKbBoFt8epbrxTDN/muLjGwoBN6lfN2eK/kEW9IcDawujkrFFpjPSNWNi5fh2LrImO1YHjhGkzbZ8vgJqV+zgumA+TzXya5Lz1Rcj5j8JxGcJhgE0uCG9QAX31R4yuxL1ygDYgfcxPohgpKXDL4wzuENd7SHl3Ibzd48eIP8hkKSpDjv75fIXuv09Bh6++0wuAyWlarnKguXwzD2yktfh0FSlbKt/m03xWhwFn4AHxiNM2A6rsEj/4sAscpTRR94EE/EQScYvM0nTwj9h6MqwveS95moyoGSnNs2ibvl55yN4eRJirkCkh/SdmDMGjlm30HRtoLNfzsd38L/NLs+GBQNImai40cGVFa/0ulCLjP8e8fLWGRkvGXLMtPTUkt9ib6+snYSbk9qWmPsitX+EHtUa7gHCGMW5WNqmau4+a2e6yx+GSCnFlunnXy1hQDKTYWoXfUS2kX9jFyzE4C39Cu1TX7uJ8j3xhBWRx3dSbpnCkvvdaasPXk2+UNwoLmDL5iiU6Shkppf6ChZW1MCeYlnRB0e9N3MJHn+6ZRh3tZKwKrZWN/GMuSsahdzhxhhgSQRVM/UrWFZ8BhBsXTICxZVnhal4W/CjVq7S/a58i9WFcHRmdprjkPFdnRgiuFWvosIYlgRFj8FMmOz8Tq+oc9aSOteXXXiv/YAb5oGj1C23xZTdV5RzWCKPHv99Ed9FUdVs27ZKI96Cr0J1WjVIAEku6iPDaIEFLG4xHqdFkuiaduBif4OwDiO7Aqj4m9y+JKVucYYy3DOnpEBtEOAiAVKbvM5atjqpPerAmzG6JHoRGFUFIIZ+P7d/rk/VBXASH1LW0ri+dst1Xnaxzri67wo4VcPDU+7oyEAcA0ad8CgmcsXoocKBPabuTIxlqrrV1kDVbaqyxXebt8NRi1lFyqUVd3EGpLgxP4ao5WqCDPpqhmANWUxydS1JIDZ69J6/h5ekjis6EqzVxHhorYR7s2v7MsTnmGZ9ugm9gNHZzCtrsd1bGSO34+MgrCteSFExR5iKoVczhVD2DWWVYM/J+XcmgStOZDh150fKBV5YxHVkjHmpp6z5+EoqF+7dsd1PaoxbOLff/UBIt8Wi0QoLK4FpWoGF5v/AWSwx+/j+jZDrh85jyoXEB6Nm2GCOLsktHiSQd6abkl8A1dqzPzg3LWJknerF4f7fjgVWgOZSvZ30OKMbLxp5BsrGmboaSUPZ+YabgrEBhHwFP/HmWcIrXgtYltGoz9uxVJScu3o8v2IDzM1pis2J1NHPqfssltPTK1Shr2sYxudgJkAY2nfccZM/ravZ989fzOhpz/8+lBePCi/YucO04GaAL/BPBJPgdP537B+T9pgbXA0GqEThJvKNENAWqS0OT5qQBO/mRQUAPzI590f38HsKb2LzvRHox7T140wAjIsRZU2IfH8rt/MV2LWuDbA9GJygTga3rAfL5WMLeLce6wbeZ+zWRxxDRohyeyHdg9ZrQveYc4cAgEVKZKkP9dqFxc8RCWSkm6mzxKEwx3+IwiRCbM0i/OKX87j8fWwGc6J4OVGt9inV+dyERpLouRQYNwK8CD7SS3/BmmX58yLoS3tws5UxqBPLIEs7eOYgYSywlvm8a0cAcSKD4VL3dwoI/j9lECMaQtKDFgdMQ8ZG2Z+wtCkFm8eF6nMKS/uZOtpqVo6ucnwoXFRYWNj2fbdCLt8kaFpyOvHnnRXhIUy4QHrWunQO8UD/5wStfzPASRdax9tumMhkX+Vg5O/+GLO7ALrMQANXqpZYBrdQJkGUOZp61vwGcbSNfYSrqPpsldvV7Y4u3RL5MdT2rOKpzmVetZSwyF3BJ8Ew0DJHZK81oj45lA2pCWGbZhpklzyjGxJ51WwtACZyrcOJTgW09GLoWSsZJbKJ92DLoBA==
Variant 1
DifficultyLevel
627
Question
A child's bike tyre has a circumference of 64 cm.
Which of these is closest to the radius of the tyre?
Worked Solution
|
|
C |
= 2πr |
64 |
= 2πr |
∴ r |
= 2π64 |
|
≈2×3.1464 |
|
= 10.2 cm |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A child's bike tyre has a circumference of 64 cm.
Which of these is closest to the radius of the tyre? |
workedSolution |
| | |
| ----------------: | ----------------------- |
| $C$ | \= 2$\large \pi \large r$ |
| 64 | \= 2$\large \pi \large r$ |
| $\therefore\ \large r$ | \= $\dfrac{64}{2\large \pi}$ |
| | $\approx \dfrac{64}{2\times 3.14}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers