Algebra, NAPX-p169224v01
U2FsdGVkX18SOSCpDWgncO7Zlmbej4IHG5ZnMz74KjzNVrjsww8RIwhW+Puj7oUH1QItAPreHQoMIijfLpN9LfeXDlp37+6Eu6Mya6c9/Z4AQoKHj8MnXcQNIcaecccO5G5GNo50xHPEei3GePsgTiDqZo8d9XcSB5dQuDiQp2b2MyVHbMfPi0pPo+pRhvVptCLwwcg8yzEVFTTBAn69VTSrMFdwHjGM+oJ9iSG0LS/9Vf1OQkrbCOVgmPa0HlV+1aFajso9wbPnp6KdZ/sRTMCU8HGgWbd6+W+gOZoFTQsLNY7ltaOvJRCXCZV07m+UbAaln1rlm5cUt9K7ApL92d/Q3ThN+emsKb25EJytL9PG5xd5Kyb+2NkND/oqB+z5GdqjrQ9hnwt9VCYB+NCDLOUkMr/pcGSaYwwniqZX7A+OAlc/MTrvux93d29rOccvBrQye2049RV403YKdLIcNXX3V3hUhOI943b3m4Al8mWs0tWvh+F5QKngSp+XxxfCXD2up+W91jB30nhW4+fKuQGRV+cV9H0+UA/7O4HsViAArlpmkiHzQgGYSmsBUvfkjI2IM90dDXZT3CvS+R/JO5Oq9qHqUYPAjWucnJqTAkJ3E+UqgyDxtuBLb//vSA/PHrhMehfLhTxF3EhUJQ9UyPpbWi+w0cooBpE42f+pjNhScqs6bXmygTktn3x60l2asL+dDJDwY9H4qa2dNkovfAVS7Awi5tx3o50eRVXKfUjK4ll7ZfRKkJVKGoiJX6zBZluaGqR5kHxq8H5GlUD33PABuCUDJ3BIyJS7jakwKws3ix+s9lHUfc4k4kbMjfYov7vqJWvb/0yB9QsbrSRRJmukUk58KZJmmHGmmstYRmRLStmEdImvEwHyXnY4C23GEF5MiBs2iHLBFO9FK4kb2m0wRRZCgdMsJ7fi5n9qGHUHnBIZeY6gl1R4JKz1Wo+N6Nplv+NzycqiVZQJa9Aze7SRZVjLRJiGX9T8biKQMHtZHgMnBPhVZTaSegz5BCkfgpA9n/am0CXtjOOnFDvjg21rofinK5Zt6lqXn3AtTL1JqwLQojsYmgfKENzWvFKxD+GfEMFryvaW8si0Xzt8TPRUwDybDJEs7bSpI9z93ak8D1kMdBUshBar1Z+wAE13tUVbcSbmis9D6odDQHwLOMFmUgl2KeZAmNGtRealAf6AeeS6BzojdPDT76Poptuy7YXsNTxDxVTuaAtZP9puiX+LO/qm3CXI8e5c9mWk+fRZRk7H+KMgg3NBHU4aJ7YGxK1sb0Xf6VFel6U0fYREdu6dBrNTosNiZjd+47fnFGECMVra67gqU+/5o7FlOzBk0Ge/xwYnxndOII6HiGbQXLvBW7941v5QvIw7mwsniXPp9LondSGd8+E7mKwjHiPZYoMCrqSxQaFCfzytEsP4fFlpnzhMEwlJbmUjL4b39Uus13H4UEh1GuqbdYusoWMoJ9gP3Nml76CJml9pW1GUecIeG7U3jvYJYqnlQ2auTgHXfz76LIBzLOGeifdZ1Yj+P3TyEYFTC56NIvb2zQhmoaMO0gNpSbdeBjWIlK1hP9zrgaTfEeZiKm+DDeqMm5U29rS+Nam18FMP8vXQPwxwm333ku5RTB+0zbG/Bkrgp5p8+/vT5I1lWpBIGv2LBHoqtq7Hhdvz+S8vyhnH9MxuHX9dWweTuJdKESXoXrreFIIZc6TVZNZrIPLddq94dCUBaKFMNKkaujAqIPmOZ/LwQMryUWecCI1X4PtGVoKbxc+YARhqowR8+Hoi/SsjGgqsRiXO2dzo6yAqbzHfVHp4byCbbNIYxyOaDYJUF6xYpQVSvEOdzMra9dhP8HijIRHuOs4UKhhuvsRKZsmW2fCx+7aohgl5qfURxP3EZO0uZU7Ltj93c9e5fknIQylS5TB0Ancchbn+Mn1vDKQXwtd+icIbRUS/GKrGlcjBlZEpDTllmxr+xm+lh2kR46OyyQXMj+/dnPO298o5O2PJJiKo3oFk2S/qap3Zko3oOL8zs1hocAnKwtNW42NuFTgh+az7wbqhuo/vxFXX6yBE/bmyNJYY3NmY4fUr/9Rc7s9tlZi8WcgS0OJnBsTWsb5hS6xbjD/HtnOTZN4IJyHP2YkzAnrJNQzz+MUUkBDDJy17jHgfclUGucCKT3jCtp1A8KZbVIFuUULMlj96qXpXdyMWwFFXaBDhP+XW/gsuE0kQFaGqzji3qZQ0LQkF9Qv+4kuj1NWWINZ8Ffe8W4IqY1L0f4CNcSJgOj0bXissTyC+gxi7jwkRJzflWayZDpRgMAoCGWdCVegZPSHjOKXZdKUR7NKha5AAypPgWvU3WpgSoNbic7UdVCRMGSS1l4b81blIsNSWn2zDsitabtMlnsPIqSXgpfxdZsg1SgNoeU3S1E/fGKAPwaS2jl3NoRRSR99jhTYY46MCW8EjQxk9UnwJfEg913gkeFnrrL6IUc/TBjV4tih2Lk/LXtIOJHiNfxfdq8Ivgqe2BwoOvMF7ZE7Fb4sO8eqA//WOgncnBDU0/DVhk3kAHr8XvE7oObkhBEHdktwXMyZXlIEcycNT6t95/KdPP3NsaJhqH58OmKj3rh9eBDCNwXcbQFuzSB29oTgzqIFPXQ7VYbhQEPS7t8N3zurJtB7pktgRb3b9V7XWi03Awkg6X9faqpE/10aFf654HUm1k6RbM9VtH4xSiaG73C52Q52VVCIxFdlx1VTsdwpyC+EW6jeJKYb2IN8tWxkzHcRS+S+Fw6Dg8ZkGtjS4E2qUcW1RO2Z9EdmGRWAA8eyiMLz+mBBW74E/5pf8Cpn+zXUf6+ecEJe34x2w9dEXgwV1EOwBkhgIsZMewe8ErxCreULmVoXls4fLZUn0PFTx24zL8mg3NpGHPOLgofvPudOPeSklhGyNsVPUSQA9UelbDdciaAJ4oaF0/sKwzOZ90RRNllRJi6X2ot3hq58rvEP+TV+Cibkawdosq5ZYX/kl2KmXR/UqxBAT0bybaHKjy9Iekl9zILm1CM5TvaihSwgaxRjUe7rwJR9gGqTFnIax0d7+A5h4suYG7gSOOiBJcyXWvru3/hR1pyIBmcSNSFMZ+/J6qfMSEOUMnT08M1yNzWaiBi4IhVmPpYh1EY+lZBxeIx7Z7c54ANKBsZeMSrS971Me/YB4l5S2aLVxYkB4yzmsDsT9DDblig5TX/5zkLKwNRhuG026dU5esl1tUoxjB78RnKo3yW175Y047iGxG5ul5okgJDuF9JX2w98sxqAp/CrMWafrwzKG2GpGHCtUJfZN69cNLvsm/xUMJRY8A73PRKaX85tBXiwScN+gi4VceD7IkJD1Frmecv1awQoAmCrv2513nqjHvcSGbhq2ZsmL1aXpFTZ2Irv6LiEeNanAno5KmBbv3I/7HIdrpcvWcegCBkHHvgyN9P7XcKVbVlkKCggGu9o5TCMvLzlk8hp+hbpjScgJ/y7dGJ9kKZa8B/I6nvs+bnUbtOwZ61Ta0XBrp00vTt/jPQmSG8jPmLBd1YDPYGMGU8l+gwvJ9pmb4yPQ45MMh627iG47V2BAiZNPCm7LIyRqnqOcKEnCiohPQXOMsJoKTE4W4RlgOYPOc4DaL+NQW5b8m5ZtoN+1KskbkLpIbkg/DVeM9hxDHMFo/fxIUK7m0Mh04TGpE4qO8G2GzZr42kP+ZZGnufARjKM+4UyOJ07cAV7rE/uoY+HIPIZzmozIG0LzfLZpLKFs168ja7vBigo+JmfosdTF+K8Azk/Vj+QdP6Ncq7rtgaR9nYUmIxuz+XI9fN9pdonTr1hQhIdfjeZprjDcjH1osBkkPGETUxI0iMILzvxPy8CtCBY7kGD/xe1TMtYh7BCu1f3jRrHxVEQ/ru2Yg10Rq+Ml/JeNIYHp4KiUjAiEkC3QA9YwTL8RCC9Mee0+e/+TctIPeThbH57lr7PMFdt7s8ztnrPEs30hgSev+xOEW0CKqGrnyT0AxAH3pgNv7bve24SdfgZGDMpQJtg05TRdG63rfQSzMT99KOxSyX4O1egaI/UcD1hiGEhgyLlPEBZLPZiFmKBDNjKiuKslQeLTXO7C52BrKvvJMQqnq8GF1p8Ja66fHJFWjcWembxUz/5oCU4gkeUUqKNeVMpmN4MKiNT2RmvHndtzvIhAspLfhkEBlrNsliFe5UrqBRZtH3hPbDiJbP7ILZyEfx+of+xmVyrBXbAEroOIZOx6AMGmTSE3LCbQHPH6KTSnN4QKvZrxCOs47I9mhDoOazap4nfz4W4+e9OVue6oLtfShzs3pe9sLS1DC8NMh0EBNm9W4eYdZGLR7OfdzeYl7hEUH2omXqRbEZGxNckQEye9R7mZCpZFG2TNk2bBP0uwn89zyQthAOyjl1DwjaAcVCWNzYI/8lkQvdfi6lvp0ts0BT1p7yyadmcvaYGH0Vdd5nPCQW1BDJHFVuPPduu/yIM+kaZvW4rZHbyajlblz7GH5qzleYKAsXrNckFr6pmgDqgObt67QtFSZtatVFcze3NPt/HZvpVocS9sSEJTGaOMZQTCCc6bmneHsEd0Ys3SYX51LVm/f/V82zZ3upsAuTImmWf/3p247ZfABAHMydl1KVqR+JpYzIVkLYnxSBU6EAhyoA3YwrcfLsOfSwzcZp7Ms8Jig9rLAF+VWNU6K5IGkG5glpdYZJnJx/seq1VSGZxTBMv3NaR87BnmC7JGyrD1pmOw3F/zTvlDLwm020zR12JTw4qfJDkmqo8Y0tivJPp7Rlrz9n8LjixYZw6vfzMxw9opqxkvX43k0tDQxsEMTrCKaJAPAMSoC9mYs8DfIVtFcqJVnqCDu3mHRQIH7gmCl4cnuBjzThGiu3zCC9DHFpVbKBMBYujuubYYEx/nAIvny85qPSSEpc3OufaJ69hEAJc/Ul2eye+ZXbFb99bbONNZeF+SE6goh1g7TeHMsjTfU+PgulPvkJcAXhKgEfg1QtpKt3WhuobIuhnK5KN6tQGp/VXnEnfqutlaGb/Fn2Zu9F3mlI6CKGxq92zBkdE5eOF7QLoZQcjs1jICMJCZmDm1RpAD+tCU6piPAF+MwPra7866xy2WYQKnRS4uUBbQxC6PaRy0kT41QnrR51y3z/DNVFIz2tgEZnZ02dvVaFYF5eYySAGDr56H3N5tiQZPchvKl2lirojaKZKNk7dq18bL/3ew6aoFtYBbZuwG6Ca2xUn71HK7ZmjEZcuhJmunN7nvuPVQuxUE6jli4GQYHilTTgK+9NbQO+p1eKizMcGif4923H3IMrWbbVWxo20j66gDaU43iUIWFm78eUE+TyJkhHBHonR1DckNxnXPniRWDzDEIMwMe4mHM7xWcxN0pLpFjuhwXRbWi7i7M8FaVRkQ+MEGuQYuBxr50ZDCJDXmlqUvIz2Ps2qxxuug0johOwSCqjtM0gugW0nAx3bfXbM9i8+FTsObFqCm7Max9gG5Jlv3Yy+cReBklCa/Hdp3QcbCTjoro9TYjhP/vq4QFTFiL2h8b8Sn7BsfajQstaFSbo1djsawU+kAtd1JvWax7Qm0Cyu8OsbfdV+dJhsE7wy0RAOzOcQvzySfE/9rg/sx41fxmP29ejZr3kuTWpPGXePKzw9tkICQ2NUBaYUXghS9y1VdOgPxrlnmacAexo6hB0V1GxT4T+zrWj2vBwfQslo9R7nZPXtA1F70B1NJ0Y9i86hE0x/4CaKF0sF/ay4egYyNwgwr5D0z6386+xJqx4dlsJRe/WVEArUdJ5Ljew/a2uzVaegOMV1MTHWXmFwRPaNGN/0fvE0FyecFvX/4HqqOcpbJrKIN8jLEUpdVjIsx9z5vUzjF92a2dqsXRSQyuy/F2+ejYLrn4vZL+FgW64Zr+vKGfcR1D1+aLj+9omq40zqp4hHYU2S/C8Bwl75hWj2v9eBiAOFJIX3M7SQOfNuV0O7vh0m8ZlgLQFXlvN69oWrr8cSjifm/UnbYIdTerAjiD36R+j216kdtJrikj2je2wb21TFIY1W+CfrzgBaqkIE1OZ2j2QQ2ACdVjDUEgfP/AFUbw1UczqaPsSQRb3i7+psvkuTRco9eIgyb3sb9QM9MnnNMcuBjyeyRWLTvxurG9ohO3stzTlEj6YhpCF+OgztoKRQabwy/+6DB/kZCzaeQyU/ATJ+MhlpU6N/YGEcUqpWqmwWrNMqPq2Cr7UCMgRwu5/hj2YpalaUhsodnLu977DcHYgW77KrVY42JW5bumo9t6Y/0p9j3XcyUMhwF34mw2C85IWnQiVjNi/i1665yaNWMekd/+6fXRum6Y/nT7dighg1mBKzTswVRHVHoxfRxOiMiM1VVXIiUyThBHE1Yq4FAaPHbod/PdkWZipIZk3Tev46qPO6rsvw4YBF2GynoSuhpTGhUljQD8G7Rdlh2p3KMhq0+2UHzDlk4Dmz/bkeb9+eYIPePy+p5EG/hH0TV1uBGtiIOik6pqu5oFO4WS9HYA0Oc7CccBaOi6Aast+oWPKhPJnDkBCVkXUnw5v5rLJ47Ay3/WHZx8EHizpG9GoUGfxWRJSjItpyQltlS/ZZSbzzr0on6vf8JxSWjLt7NyeVsz9hBhN4Tomnc1RlrZezOl8zxmRQQYpYKahYJeOlYc+1oKvoevFreJzhR5OvYiqchZCO2oSLDgqOD6PPPOkBFA18ePxzkMah6cFc3Vr82tiT28SalMIWwD7v39IspIGBd9Q1r2mwf3N+V04j++FdZqDvuEx08UMhrNA66m6AX2y/a9b2qEz3FFRtLiJDbm507t0oWnuJM1fxuDe24nlXOTRCANb27TwvLUlN7/7/l0ZdeRpETJfuEi6c3BMAnexa2Ac65fMmRbhbWXz800ob6kLxQEKplLhcTZSMJIb8bAOoFF0AKeG5a4MCrS8i8z7ihiMezrZJJFhHL1bUxZl/TW+Se/71JqjL4MnW9g8mYlni2Vdmf6JrfAurhAHk/5dvqgK1ftaJpQru9pHTpQgidDtVjncKUiD/7dJeoI4E+AVrkCLwXa922pdqJ9lwBx3dSfCgyYLYyV0OdQoAuZ4iO5DEvrzfPgUdz/wy/BC88wXQZ66CMWQ58Taopnp6Af2tx2nDas8ySHWP7QBzrTypMnkLbQ3LmfVeEkHXS9gvNRyZkTQxy/WECJ4/l7/Jh5umTnJWuS/1kM0PGXnN7Oy7tfldlkQ84ITJtVLzwJOk+KBqsNdcCgvY1LuKGUsmAKr77jCTyR4VOhg+6yeMuHXSMGO9u4El/aKJQ8QLixWfAxSq0SZXy9VJOVwedRT4dSjDrTKWEYic5YYjzniubC4bdsdpA8tfXUycfAQ0M/+y2+G405jTUXfr99ncpAsj9HZMy2PokqsN7yibi2anrG+ZAbRZSnvGkJMkCUbakojlULRck9NrnEX3HOcAxSHXe8lQNZn6JzMSfezMA5EBoAW3A8BV3SS0Xe2/Wdk3HCqf8fO3yc5WCApISJ7RqR+87FHH3XUPAW2zjrvfc2XMmbNDe/PW7KYSf+ZPQvqJXZ4YXAjnN53Y9dAPsMCIvVMz3htT5iGu6i7MZnrT5ZcyfJfc/LNATa0lk5J0mBtMmMDRO2PRBfy2eohkPH0w1XOzNM3rIWlrrW+7f9LXyT3nkEpmKcMqSsw0gmIVtsq946FFKXYeXQfhAQKKvvufTVg/Q6xgcqv6AlvoZSJZN0lcmGsyRWOFkGSer/HYTNstV8D5sEHbq1sS+LFMAUlOxgbo1WpW+m7wCIXgbFAxg58CclGIfmBzl8XOZWJwf4Z3S7QpqIXRGov15wh2i6e2WmIKOin7Mokm2hJcklv0OP/Z2+OqIqAm2O02WKZleQUGlTL8x3TX+3DKU4aRaESYQQenNYiuAHroFhtl2EpPr7H1NCxgQsIQRbDk7ChwH2tPOV9elfSFdtXkdEK6NgiJVu+3FEERZ0p4D7btKrRBfWX18RjmmyxbCqzbx57nr8ZC8n12rHRai8ztN/7fPc4EjYaQwJoZDpyS6UMDvPWn1NWSFMNZHCsxJPicTo0PUKs52iuYre2oghkUq2TE2zLDJsodFe9Q1fdeV+ZYvBZt4MQj5h+n4DV++/mq+yhS+MLvqI3w3rtJnENfCwDb7sYCwTQ7VwNLoJImYNrq0RHYk83vzCg2m6rVO/mLReN7ETu0mreXQfY9osBwCnsb4uQBNpZbSAqP6UBZb2wP+8ZLnVy+Bd2mhEjhcIHEhZNNrp+pTF0kL05EW5W8XYLZaafFicTbUMWSaX4B5h/s5x1BfWPbIt8wUtowWei5Kz5l5XwSjgNqz2REeNA4c0j4YUL5dSMgsBEAxol4X5nnffD1IaRFvI8X66ZxW8lKTN2SteCsRQpvieFXhWx+dqezUQ0fhjU3EJXX6fVZn8EYnka0DPspflsnPCEyBeNn9uYs7V2jioTMJ1eE9SgrW8VF8o3i4Th8g4rLuXHrSKtBSbacFLeK6eXTsrIktDcVWO/GOmMoOMvh/4o2ud4hlHGa/KfY/kBK4Ve4BZTUeSNVU0LRQtlU4BTGmfXkcuDnSGg+BIsViEb2EGJDyeG1lkfRfsnCT/lb9B3pxc6BL5/dczTBfKGZ8xL4DAzKyOlOKyY1fFcWPAs7o4B5arhIWPuiWKfaL29G/a+tjiLoLJKsLbDijg3oIP6t1uSrffhARADj+r/DDsdmpr4tzlRv/ezGc/+7yUCR0MtP1u27yjKE0jbjlHWArQHo23zdWrfY/k6C7cDfHCeLvilTJFSF8VVGhw0uUBUKpWmoJ0ltfhkhVH7SHzAfs949iXEDNEVympzkZ3kf5S76dTR/7W+5AkL0FUI5LZ0UPAErsDH/cmGsyzWaENuqAJmQuhUh9nXH/NJVNiXntEIrLcvMbG+NAgerTAAVNwFQhdPy+ifuQ0adG4iyOz7NLJkxC3H85pxv8w8q11k46v/OWd8m84F+rDpn3NG66rojtxKkip/C/bqmszBneHMObAaMaPUFxP88iiFOxrxcbgVfgZS60z9H04y6MDX7HVefzA+4932038Zl40msEaxWXsDrPUdL5cbvbbVJhab+jfY/hCQSUtZ6KWsy9QRGxoukzlXM/cBII/0j5U2MtsCo3xA7ZR99Exa5SDxBLosCR3UrxFK7G0jGTKsjcxVcIg6OevUDW7X44OMWBBYPDNaVo/nst6ltvZUmwpuQVQ63FvYMhay6D+lshogH77uwpXe3YHWLpEYntqK6RcL4IIitskLLz9BYJ56UZX1+4pHfSW93dzamjyW0CF54x/KW3BttB+fGEg5nsk1M21dpI44oS12hJYWgFeP6Tt8lkgfNVeb7VnXnj2T5yCrkWboVgHd88UH1NviTDKBNia1vkozrxFqJZyh6M687Am3QkNxbbLqetmb8eZ+qgt8TG7agrzQHNCmFcslYnXn4ROKE1VbfPg2a0VMvqDQyDboG1+s14SkSDLKQzd+zByQj2nWJMcFSYCA8nh114JVmPgrT9XIKMNYHm48VFAudH/61qmqGi95Zrvyo1us/XINAc+ac4JNjlw+iVLwZV7zzRd56oy+qtatcJ/RfSaElTQbjjyXtLUPVezPRe9WhUG/JVnH+/RZ23Zg8S2zcNH7VX2rp7e0rLKWVlHq2we2mhwLias9mOXAmHtrxAA/1llV7l832Up8oblpJMO8nBuv3us6SBbkcGaD6WH0+27Q0J/SKBUA7WsX0A1EsVt6cjRUrZdm+5eOYyJ310UPM6hKzkxfZc7rCf3ISQ+C7Ce9dqcVWe04OF14c2ITqUrgKdseRivUGAf/9aEVeUEsonp3gtYWKwfw3dd1vpIrdvJB95TtvOgaNhvN0HIIcxABimCAMqM4IaNVXmZEPucKO+Bf3a2tn93G6inlhaHWW9eGXaj1Am9dXorSn4OEcuyypWzV9g0MW+/3ufoLF9yUhQVbuEluLbweSEVcnw5m804EIiKQdAnNkopVDVVDtRxXq+qOZj13MnsHq70k5qxMEb92HGT/rjCrIfAMLiWhuP3QKQH5f7/BJ0lZOReGTpDLORIUTxfuSZdP0qpTCgm84nk9ZGIZRxEOvz+IyadLwPtRo5L52vAOgP2HYMWER/UcGxAHC/Fg0hvcnmKjXndQ8IUzP/ibEN8WBOG/kYccK3BXipmcvod7u8Xeaazl074MUXz7WQYZSVoMq0K1Yaf27USbOkWw7kuWUVpVpDIl37pvhRRnxViYfstbKJkIJiWHN9TFLZb8VhG5Qn8BbbuMSuicwrRqeuXSVsDuz5EIl4OzMBxmp2tVMdDy05ouxjzR2igFIKl0biNITy7VKwvlUgR7AD+PCFpPcYEPvYYA0apmSWBMLa/pOo9qK2HiKikFo0TYWrvtOMMLH0Q1aX8O4IpqBAUYfqkvuLVnFQOjwIb78iw8IAGVk9dSZShKZpcKfoUx0SlRvUdUNXjjZr9twlTcaGFYJR7L4U9heFUBhqB+QNFIejFK6cTs/SebWHZK43amzJLLzPJWhzIN0NZ5xe+KxseNKWqjk6oPV0vhyc8g96f6ALdLoPqZbmWy+7stosP6Hh+P6G9YUEdRj9RFqwH/YK9+SuZKIfC//trJladwpfFoGDnf2+sr1sRUuJhCpb+wer1ShL7EinfL39VH/K86fbePXj5JmvFYKrkyDDcHJXYPOak9fflhArl1dEuhFiHudTQbQvpFNzn1T9+NjmxTesEFxGCa5PiKpNG3ZZ2owHAsc6QLDYhkmHfH4rQCyGZNWE1ygtIBa61DrgNXvoHpGm5SwA3ogZcLk955lhkiHjbESzCUP7F5yK35AJGC8jj8YHyhcySYzxPuk/O9MREmytN/FSL66hEQLmoM9WwhsVWilgtLYjEYPEZm/5cT0USufyV8aAZfhkb7N4xLj2KCDaCq7KscwgACaFBKPVSRUhkl7wpN/FzWg/rAkLak0jp0bnGTt9GRDE3XW7YLr1oq+clNeS
Variant 0
DifficultyLevel
487
Question
A delivery company uses a formula to determine the cost of shipping different sizes of boxes.
The formula they use is as follows:
Size of box = length + width + height
The maximum size that can be shipped is 240 cm.
Which box is oversized?
Worked Solution
Check each option:
Option 1 - 100 + 80 + 60 = 240
Option 2 - 70 + 60 + 90 = 220
Option 3 - 90 + 90 + 50 = 230
Option 4 - 90 + 110 + 50 = 250 (Oversized)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A delivery company uses a formula to determine the cost of shipping different sizes of boxes.
The formula they use is as follows:
>>Size of box = length + width + height
The maximum size that can be shipped is 240 cm.
Which box is oversized? |
workedSolution | Check each option:
Option 1 - 100 + 80 + 60 = 240
Option 2 - 70 + 60 + 90 = 220
Option 3 - 90 + 90 + 50 = 230
Option 4 - 90 + 110 + 50 = 250 (Oversized) |
correctAnswer |
$\textbf{Length}$: 90 ` ` $\textbf{Width}$: 110 ` ` $\textbf{Height}$: 50
|
Answers
Is Correct? | Answer |
x |
Length: 100 Width: 80 Height: 60
|
x |
Length: 70 Width: 60 Height: 90
|
x |
Length: 90 Width: 90 Height: 50
|
✓ |
Length: 90 Width: 110 Height: 50
|
U2FsdGVkX18eRLnPPpJKb3BrtLCfX4BTNqtYjBIuhrgViCUa6jSbLyvcnnhS20sc6jv5DhSlZgGki+BCp967N8YazlpXQ/j3zJc6k1ljickl9eSG+MKVJbRtULPNXDnG6dOhMkGKZ97zFq4juBfA2jlnFdREdDVzM+5xtHvzrxo8RCdaz/ePjxDTH8Le/BdqbceDZIO3BY0X61zXzPEbWhdFpT7IOLPBT0WFa9j4d9Y2xKuLh7MbNrerwVniRp3UrpgqKxSfTq89aEa59+TG23tY5X9n6jquqqzK2yVFKENN03+wdeip0D04//WWad8SUXuNUj6HCfv4e6x/iwXERROatH9e9ksPTvFZe5m+NoxooFvOx9dbOZQN6ft7cuVXTvL/mEtUkz8zHqYf2BY+MM2SYu8pgLYCPqt2aL5v55DMrrDKR94H+4gG0ydjBhlK+sHgCPql+AZa8SPBDN8xJ1h0hQJTMU66h2SpwdsQ2cTARTS6+7P7RLjnKXRkofwZ5l1nfZtCDeSVlxPOMfhLphk1ptn4yX1oa9uRNIwiKpwnwo1dotmTc/c6BySbTPGLjWrwdBKuIFpGLWSRP1jH88YsNXs6x/L7E7A/bBpFi6EdfAL6S+PfHM1ASxblPdDZ+ftVifmWN92dINIamDbz8xdtPwtYbWiCNeTctKd1og28HzU1/wl+9hj+7m5muvKajv6W1L/RqZM+eTgV2B4UzZFTV/Id65rj9aBWDL4+va+yzuMfnMv90B/yPzA/moS9U0wMxkYY/Er1qC1M5Kr0oN/DuGUkKp1Lf3ThkLH78143mDx2HHgYURzodHvrnaNq2M7yyLXNgUx/NC+wksomj/lEdUvlLWvTk5Jes5hdeiTOP50wzAX0fRaBVdgv77Sgh7cyioclMcMzNGyIN1k0QY1RsvcgOz9JdSAe056ofax78HPtv3BbW6oYHb5GMSca7SQDGWLalPTLqeWOJ5pz3imD7nHcsQofnCssKgtCCItDgvbqhB2PEaHV02QoFgCr0o8Ak6SshnMWWG5yHHkz6YUw/PkwUfm3f/eUTMm+Pt/SwHtNP3RryfF0up6dZDnIQEvRyqBv7FJ7rf5h9E42VPt4ASoaOj3xVTwsNtCRFdxQ3sd/bCxG+xXK7ahg1QFYJmAhJPOgZHijyfCE6tzuBWIu5CFCefA9qrL3M2MrTFO+SxHnqgQvdX/fwx4ABmoLZl5UcWziR+cAIfWiPWWCi/qE7aV77jhUdbbGsTnWhy5RJ0hMYKOcOAren8UeU3SHRFIEE9tUHFSx/T021TyGIHlg7AqUr0fY4F9rZRhUX/FVwE9kRrDYyVNt6VsXkvloo1qw7gB5vtYXTsAMRkhsc00TY2tmlfo4u1UWuTyVWxVzHoayuCz86ojyNSgjlqImJYI98g3zvzT8Dk30RA/VvmwLp9/Y1CtYVMVHy3TCibdUJS3kGQJZVVeic3FbfqNYz2dNej7cI2PQbVslVNzvIH45i0UktIV+Vy885KDH2gjg9B/b3TMegnmc/FtPBYVyx5rs6pptqY8WBtlKtsyn/ASuZ4aL/uw+UHSFGp3o1yn7oUgrDX7+igzQW5lABGU1rliZBLXZ06Q0Rp9Z/rnPvTTJzRS5+xBZ1cbNT0cKJVAT+2uNbygg4aBkzNFXNxeIDOUsnHfTtsb26UdMGkZIEpTCeIBDFLIGz6rU4uw4Ah8KE672M7SNsjZ1Yks1efU+Gpulg15WZePF/+kRpoeJKpv/YOGwi0hwpJqJzYUnu+bb+r90PKPr2C1m28nXdofY9J648K2/kSkI90D4c9D2qAu+UzFHAmgtX0HRoTrts/xtqBDfPqEmno9blVoHolfpgux7cCYiMRvaeGcswkfPUzITbIsl0f0ETG5pxbbco4tABO3DO37ioCTPyFrWhO479HOpMMERYlruGEfXboACu1MGqfDxFj1YYaprOaT0huGZEhuJOsaHS01LXlYpIzle4VE6Q4soxQmdEZQk6sqRe0I9/JOuneT1GuJ0yxPpvzPN3/APfaHsRyPKhtbUtUKr728YWkV5UTAn7xVXpNS7CuguFMk//YsnNKvGxSz6Lw+qdP1GCui/foRF/bl08ccLgDKh+94AM6dCJDrZXf7A5oJzYQxplFAcfixznCdtiuVTqyVOyW2MoJNxj69Wz7ZifQdMLz6a0r7W3Wkwq9p8i6rqr1DyEiUqM+Bq0mVBYT90K7ENer6RrER0fbkSQfsg39XV5xyT5evR/+T6cw15/BLlflnprtuxlCHWslKVrPMFa/ynX8HOXw/aIChPFwaGdIPVuIx7ZLwq2Bw/Sl+I0jw/g2ETg9YNcA53ojVmUhN+CP7xMHy/Scig3SqXzjUxk8hA/xmhmhz4PTFd61MsSfJvNn54qjEBok2FSnKPFmmsgZF0QZ74cQlmHnd9SbiQZy1Ww3j4zuQO/Zy8RcIKcSkApSt6i7NwUtNVTRjQooEKCcaJXhHBE44EUn3Enxackyfg95p/OnkK5K8XsAnBlCTFfi85dBe6bh4aH7IgFRE0EFPM9gw9aEHlAQ4Q1IZ2yZTns/2YC7FklgrfZMxM/I/mJ69Obl4DoLEwAc93mf45KX/mBGNxkU9h32yGzscJlbGuj5VOtOmHXDeOgU21ebZOTvPf/4Bl92l2aeShIT7ewxMBLaTQOIlK14QV0zyyuvaWD8ITrUm1uUTkaMKYK4nC0YyX++0Dih5T6srL9bIusqtIhMgwsRkZ5zLsEBVuaYApE0CuASihFzVSl7e4IxB70nq0PiWutclrOmhqDYTQNJuxZ7DdUh6uW7B3HnsfdpL8MNsqiJIop/7WTDXkUTdq3y2RuwuDFgH2GbKrip1K1gnkf6Rv0mxGur3OPLuaWikxGfPBSc8mVvZxcznhrOGrNdYH5iXiADeITr/Wp+tPLuE0pxYflsSXyebQPlpRwmGK6F7BSPg3Y/1DvY1MhrHZofP09Qs9CH3JXSCHFfVMJYdAu5kFh9k4rt2xTrY0ASUa1t9J1icJIBA/jm+/XjKLxmNxekkjwudQuhXMA502DikCwjavpvacLp2mqa8im8w9VWpHz2TthG8VPhqHHTT0EL3OS/BzB80BKn82TdJizUrQxUuoJta+Cdaef6wLPDj3VBpiaFVqSeAV3Sj+vNriHFX3o6OMwj/9nTk0TSp0tJc8keHHsBhTDRA86xzYgu/nmn1FOMa1jOcwX8zIVLD71C2s7tHK86brxqPJF/+s6diaXRwGLcXARfwciZkm6zOtSdx3IRL8SyxzR21dp9MpJiEiugP2kfm+j4v9eXRk0JDS5jz/V6MXlP57EADYVEFyFAH98MosisupmGlsosf6bexSfey2SZ1xV3fjaQDfa7BqUZ1hsxSV5AOT03c1rppt248xRG9L4aseNXW3Flz22aGy5loJ6g3KbwhlCbIl6Hmt0D7AMAzgmoTWKeSJ2y2cdSvY2JSJ7YLsb3oLqf9J3NJW5x2LI2OMz+d6BFszV+zVQAbMFLGNj+AOFk+C+tAPFYsPllNmrAO3P/V/hHwQF4RvjLqARF9zPiRlwXJIxuQKjkL4o11p1ZPdV87KPvRfSuHpTwMWH6alEcQGs/CxR+VqjMtdnTH2DGPQUBbCkiKZHIUdyS9BgUv/fy808SwRTDPL58xzJF72KgGnz8k4WzUVtrNxd1x1eVTDWrDjURDAtetCNwCtQFY1tOqzkZOWjleSEDcrmrBMlJ924zcCtER418GXB97p6bMh17voF0k/80YDaUIqPLnES0W7LkZHfnTvK0CVeVjDB6n/1rFhzyoEoBuyXW475EjL4YrOzv64KVNP3g+7iPeSdFMZQvbRV0RNYkHXV+4NWGmka0JceV7Obkicfx8JBRCgWIjdzk+mkTA/rn984eymL8M35hAJn4OEut3arRjMPymrlYPuDksThZO95NL7u7mZRmWlkExQly9CRNZkwo0M1e34iJW+aUWWy3nW5P6TAfWgB/z+vTYxfxp0saTYJLGLODL0IEiwjl8u8DaloNC4Pk5oIDbATYLB582nbEgQXA/I3RG/0yBG6FYxla+t3AyiFafI/HfxvA/RIuLeNVu03gc2BfrumqLqmW9THS76BZh0ddtkSrLVsjwyZ6vy8M3bjK11hbTfXlMB0qXOgtMJyTq/RAQf2VaxJVB6lkw6IeCO+UZXec2rQcuzlnAqMwZDN+u8DjUAR/kqc5H147hsJUBsNOCqZKNW049X77AHtM2gKcUxxxA7DXtU+MoX/T3nccqAIodXFJHwFPChXZP4sNllXlKw2rOwY4D0ukBIXNFjnEwkrF/XjkT+W2S2nEtlv9x5DHqaNvxtt+37yYgNf1fmnIt+YnQNttmOPlhbCa3T24GMY9oykAlVtC/BSQro/JCYDyAFkPdzHqYLlTdHF2A2N20B03LvjGttE1+UIMRZJSmZ55n3foc2XoTa9adzHah/2mDh3qopjJ9kBEUX/H0wn9qu/wdNYAmwnbh0HDGKQAi9pe/7slqNOVhwRji0nzcOAJw0ox6GdMSHRxXft5GitlBBIWFoYMV1refdlIzHPBdsh3RCQ67uwpAVCL3tQlOkNqIeL3lDaWwJtbEHMDAu0exj75Pw4rIo+I/Fq92xzez4/qsAGG0B3OocX+9wjgq1t/KOpQB4VtFB2kEZ9zc7RGn3cu6nUbt1TIV44LKrQrjVR370A2On3MZZJW/1newKnIXG/ci5ms5v0BWrlPerUaABfNEEhBG9v6YdGFz27pGpr2Gco45Nttms3q54oPjeZsDDuc07an9VgXS4k8F2IBbkoHJSDclD/o8+VsuvVkG5s6/aGOLB4+0l8DRyJTeYmJD1Y85a12oiide+ODHVmxsoKfcwLjNwWrBLw+me1FLlt0XVthZsvFUe9LfihAPWv/cZDDmxc024XxBsfNnKd8vV2CN7XYL1WvhTyf/uXertJxzXDrRVWTggt08j25tFWxPXAK6prSAROMb/C+vLQwsJOCgx/nJKOOtNw9jMT8BQwEcfwlNpb19iOZrk1E46F80+N8A9VRVtVVr685AI7I0Juo8kK+EJJXwItAKE/R+B/0+WgbqLszXRscxxCJtfAvdMROfu3ZQi1yWZMOrgDAmatc/Xfz/dI8x2AK6mlGxw6UhaLTiuBPlnSCAf6HoLuasGdgkHTa8ijD0eTl4QaMqQHK8kV8fKt/mlifyHRu1cCjGyojq+G2IPvLAtHpdTTgKoph6WPAQ1P1rB91I7ckk7EpCSkt5rPJU7aa4Omj5xZHfrtYQr74vmVjYW92ZH6HJ/MqMp+khqQAZqSFvNubImYt6y4/kDQeEuinHTFTRpW3+F2fQeJFbHSQg7XOqOIIv/VbVF1roToeaSsPfiPmqw2EEU806gum2x5bP5z1BoMp7hEwEMFBHq+oj/3p79FNOBei2YkkzCtrQJCJ8wEPM/vw6C1Qq/PGa92pTDdqugUj2V+nY9xIv0gwC4Kn8MiyxIFem8k+sWaH6zUZRtAkXZLCfHNQ2PVWIWUbk64i9ubs7uWc5145y1NMIyHuXsLNKJBjuYBxr0EU82DEXlL+GE8pCsAuVycruDyyAVvibkUxhVS2yMpmj6l122fCfVaAtq0a63GV8MSNNvToatEnU9sB1NT4JgBvZZZ9X+1aD8P0K6vx3OdTu96jzNOwDRK2zxLUQgGG6wsd4mSZ2+dUSTnrjEaNzuAqfJt8i3/LJ4+8TiYYjrEvvvxZWkqRtoR/6+ZkMnD2NI1eD7R2RjzdqrHMdqj39a4NtfrI83QjI6p89rEhfBXAP8c6sVCeELdWna6ROXvlsYSupd8qRJSPEGKx3wUfAPEByo5po2r2FOhaKmIkvMCTQZzyXDB5UuvLzn+O6/vYQmmOanasg9Gj/zF6Iu2GiKy8Wn0LFJPM69a0ozBp0R3j9R1BaSfPsOhL9KDD7YsJ68FNCezTJ3YFRBq0AE79Q386N+hlAo/t/YVruHYC7ifbN9rNA6bszL39QLzRRvhrqaeCW+2zAwKtjlQqem4Bb9o5DRXQgcurIneyQUbAj1O/o9PYljsT60W/cJmQmaEwRUSFHOalxRT6ifNG1cOzk9A4kX6zr/kZkUtuPINWS2QPedc6uJX5XVr0++kgod1qy83ID7X3iye/KtheGtH1YGVmWe1KFUf2VygtY46INQ9Xau2/ahh4br7vphr9/rHJv9XkpFPxVfoUdFde5rZV3qw0OY4tWmhTJDFZAV1FwxD0+I4IZ1Z54aD47jE9tzQB7U5BWI49vzIzMFqLl6SSy5Y8xvV/Puc8Es3q6T5z2X+HLDzgxDZstyX9cZ8N4qcBzi7ONYu3bFzlJ2ztakXoG14aR/L3tHuP94Vzl9HUcTpjoyFVixcHXeEGCXep8zRCC83fis14Yt9K5aFDEAycy2m9tqq0jhzM5vPDqujYwVCpul5aERpS5Q2JfAze0cRXJ2pc3xKmOe8aZ+fvh74epFx6sF/VHzAftpyK+QCrWzWszEkON9SFuodhrLH8y6v/NhOsR6LMm7UXmwlod7HtwCuOUA15QBVmk4pIg0vjXFcIHoH2JhMwYYaiJNmhPYPYh/R91iOEdoKDAz18FZ0Mi/EX9FIi+SiT7VnOD98dBykY0kdS6oAUoyTaa+ti7aa7FD6jLqnJexQbxL4vb6eDFDixx9hTdWs6oc5zWU7im4tRvq8SoniC3ESXL5ws7wFLfVBFdFgj0bMs3IxzSA9OHcZvNSZMcqd2+ykZCicHEAX92HU9VbmW4J46FTF2DZ8nHRuEcTM3Vp52nkOJPLQUvd/ewsjf5YedSJGJwPXcOGDaVcHxPWxXufQBIkXSHmdfnJV3yDDODtdoeKpir9gJqq2b2HQ625FnsZoEpozvs0bMgN+TkJzaYveYjK7RN0GVjlCbuZOW2BPg2YX8wzpVRACJ4EcynTROvT9bCiXO6oMc2m5UrSJ7QA9qb5e7nj9BBOvCtgWKkphJkMJCtqh56i5/zegwer2RnAxvpjBV9HYiILQgVxvYueSxjPWNlfDZR32fJI3B8jcj9xU/3QFpN/gP+UBfbgAvF1q8iaAcY1BMZlSb1Ywanv/5+VUKYMZyLb5k9ItnLjE/9n0UsHiUYs9xVTkxk4MgZj4U2h8EgU29O2OQYpZyAS8CxYneQUsySBA5fuD7DChHe2CSxVX75QZOX56HRYfenheDKZTJjxVw0Qqf0ZC8AeFhFqM0sl5uxBYS6A+mDRMGdjgrXiBml6H6y91L2zlt95LDSuDTddE3xkRis2dNe2j/It2yTm1iDBXLG1qzhV1AxMfDdaC9P1g4ArpzEroV3jqk+CioP7TxpJWDk3C2d6W/z7kWdxlJBov+CxTKO2nL/Ngv21anr/MfW8ugVHa0+tkIOFBtGapq3em57N+zb3iNIXcZKXK3uKxSyJ1VUbZkacCs8pwY2vWJK6dzraw+yNBsiOFv/fZB8cc4Di31lnghk5ssZyPesVkIXPjXGYWCVPUnw8/hmbdmORWjZ/v4vYrhSVzVlExlEBNogi5h+qhif1iW7xo63c3B3RMIrDU8kMYt6zqQH2z2HCWzInXQ8CarqOdrFluNnr5oDlziE/7vhRa1PW2zX0YEtw538B6gV04AMKqhSUFvfyHnkVfqcFyaL1lZsirDEX//ZL8QCov/iDTrwqHMRXvpcpC5r3Af9MYPoqlzSMrRFT+2gcDgJ8XHxfAHEp4YihAIMQS3zwOBzGKvsNOGs+CoUl8tPXUBxlY19rj1w8N8BuBSCuXGTSB138CIX3nuicwkXR6+CKSpxxDNqCemPYZbg8EMrCHc8MkbQVUAP5DnHajt/aExpLD8QkD9/E68g6h1LbkMeaaNVfqQJakXCIUPqNWyVg/PsXtn3S/ya7KezTWIJtr7shBCckbdG7yg65vrxk1kRa6DVvULMtrYPZCrtWaSoEdlcc/yeIy88Y6R+Gl6j8yPJBm60ofOaq5m9bk1f2VoIf9Vg+HT0JYi6d9NaOyGAlOTb0IY6HNAZtzwPndcUHe52I49k3ZeIir007Zba0N1qYiC4fW+8bzPLbPL/iHLzUUTU5caT51h3iCQ+KBeJby25Brh8o7PRSbIWPPuIzZK8vDb5E5+Bwe/VJMKhQHbd1hBLKGWcGHEGQc7AMuwiaO+5VLIdNaZV5fR37h2R5g/bY5HI11jkmk9sfp/pI5unRNJVozeVbRrfYWmjKVB4IGt22x4AIk/dFUSYMA7hFZwAe7adExrdv6XCGyuX4ks6M41/kjt1dzlAQyo9+bQqgxDMqBo6VR6AbNjvMvLGgFXY63lQJCLNLpTt0DOxntQ1n02pZ19hHPQaDZleJWZozxlb/7OwkajXbnO4vVm4Qb0RKUtN5ZRGAF/c9oMHb1H04n3xY2pwcYT8ZwBuCVTHUpNxR3Bd6Omc1krES/i1g+0rhH1v4GUZXItu1/TrWifmi0PxhA1kDxj/Yw3lDe5+jpwfLkHRPF37hqd8QXE0AVpX7387T8MlbBrjAStfT/JCqF2/3D3pjjsUlEdPV9IaF/yUG8LNLzJ1IAoTHaD8JSvmaztUvpligizkeSbJYmS8cqVs84yWF/MnZq6tIEqJkqdRYWw/5W8ohc/HhEvJxJNrKj85AA/Df/wF0QjMqxEDViR4vHUI5OoEuEKYSc3/drxW0HHvrc5LvAYq6kMfLpguyH/4jFJcDXDxaYqJLgmTWmCG7kNlnlCBateVQ3oXKB2XvUAiCcw0ySgLXfLNdDpe/CRYZYV9q9WsRl1W8kGPepUi7r40sXJgEALy/yV1qPFZ1ANW3RdCCVFrq7Rc7No3fTJCOJTqCCNK+BupQcuw1Xw2IBX09yjKGRHxGGkKa8ijWJnkvdVaA6dXbb/wmJg4g/1o+Pw3J1mpYvFMCU11SWxMK68zUacIpT0SmjGBpD0eVr+atCglZEigBwqXgRRZVkt0nc/b09a4eepprLexOnF8O4O8nhMcITuBngFxy87edZyRyzw1cjAj1ivSNmdHbDsUaju/+syoLcBmviLNgGyaBWNf7KbAiaoAmJ1b3bNGpMlK/5aTJ/f7dvBuUF1i/fs33k7WiyAglryMsFXNFnbii2WKgQzfrn+78xVLSaZZXXUmb2s5QJayORsIYDpULoN2kP7x/1do8iu51V8X55COPX7/Idsfd/nOm+gWXIrWFoyUQQ/sVOgaunk/XHEHyIyMl5rrYWwMi9vCtN8d+Lh1HvBV/FK414gmZ2IvJFf8yeBVD3sUP30UGzCjgXhbOJtxHd5zZuhM8ia4aGX9uSo9tt5pEGO61Qy6JXySXeHQ2TXnCRDt2Wnx67bqoQghcNY3if3UTeF9O/dWIm3LlFSVNOQQtYQFkQVkvF63hPz1QKbDfXRZ3SiZby+wwQVWbnUdSJIu6dYY5KYk6orAhPVOhWPk7mYTC83hER8ilNCssRJOqQ6mE1+/ZsJ/bfygu6rMyb+AYODzkAlAjuFpYsz/Bntv+/uqrPAsLpv2wd+ukLsItMiWfj/9WhJVVMbcdxI8KYGurxW3FbbMgLgNxsQu9T2mOHNhp0GZQKRytjWehSfL0V3jOzNYn8tmGYsqyTqPVmu09U3b34QpiImIC+9jPTVYKLg6menHq4QZXXHRIZD1eTYP8wHjN3VxQnIcL0H7Lg+bOkv1taZ4E8+nW0v1dlopl/9Vs0bzUjs3nUIwaC1ij81yqEDkt5vz4POnw/9pV/cr8to9FzjVDevGDeRcOX4dEY5uWbpsl68IaXcyK96HH4ixOemG4IuPYfygTUfNAJ4dxEmTjBLwLfQqFF+AmkJTQOR6n70uZU8ofVZhlxNLQbJBvBNZ/NdDh9TMu3BwNH+pFxs0Lmh5qaCcFShMzM3AWOzrouD7pzNRYSabEH6ckHxC2Tx/NQkhuE+d7rCSMx8Jl2OjyZpY0aytA00UZyyTk0D/RHHKzi3HTnAfXU+z+XVmfZzdtjVKeE3ZinocSTOP1rL53Ck5TgVOz2UYE3QP7Gv8mZtuzzWFsmDbBAkzpeSl7ymkzAR4L5uaHvvhcGW97b25gf77RLFSsIQPkDB31Soj5wT/ZtQL3bD0ayIIKzz/JsqrGqHPShvwqFcLdmdJHi0iQzYwIWIN3ZLP1hDDZYQLr3z/y0yzF2vHP93DZ295zFUTLvORSg7/XB5CkOIgM0tTdKS3JI2lsO/tfKc6TLXbcS8zHeX26KVgJkX9CMC0LLHD/He7YQ+90KW4qOsblcUIOwLsrCdGRuq5oUkV3AO8kuTv882ULx3VAF6aNx3x6/Bw1Fc8GPVynyFbr6VKT/aecEU3T0eJzilG9TGR4neq87hosz0YlVXxz7yTG8sAFyeNsY3BuxXs2U9x/IxWkh97ow779yWwWxtWpBxiggs0aQaxBFQd1TeKCajXbJJZ9ZCKvTCnWnjbXYdmjh3ALWgljU5QQbJiGI2wYnhGn5Jw058y3hZyme0mnZ/UCrbzJfWYv/LHqxngbgbkUb86kqLWGIAeDQWOcDJpjDI5t+O3SXpBQP4s8X5ErbXsPnaR0Uv/8iRO+Kpq7TMmw9rLo47kM3q213p8t52qlPfIlNoBpqmVW80ODjiMhIeO545QTxvqIBK7qd9oar2AB2pw2iH736LAZsFDHNZIibelcmF8swBv77FJWzgpibZqMxq8/xVWxyYYs/tEcLl/4GEe7d2Y7iyXYOMYOF/t4nljyaJHBoboge35b9V6W67vczJy5DXL5SgcaP3BmHT0oKo6o96nPg8+53q8phCXVHa0qyOI/DDwKC5vndOuLoM2zWWqfwA1rWDlF3LybXiMcNGPY8d1kkzjRuvO0z0ZpH4bHnl3enKnwXBcXDkaklu8fAelgS7WDabidR0VhGjboS13eKJide5IpSFPp/naGTMM50Zg6yMucuWzGes21TwG3Sl8MAHGBPOMokFOyn9dMy58rb5dtzqta691bczzMbnOdtBI/1VCnmpXm8f6tHBfeKrvcVH9eB2o+XbU=
Variant 1
DifficultyLevel
487
Question
A company ships crates overseas and uses a formula for calculating the size and cost of shipping.
The formula is shown below:
Size of crate = Length + Width + Height
The maximum size of crates to be shipped overseas is 350 cm.
Which of the following crates is oversized?
Worked Solution
Check each option:
Option 1 - 200 + 60 + 80 = 340
Option 2 - 150 + 130 + 90 = 370 (Oversized)
Option 3 - 160 + 100 + 70 = 330
Option 4 - 130 + 120 + 100 = 350
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A company ships crates overseas and uses a formula for calculating the size and cost of shipping.
The formula is shown below:
>>Size of crate = Length + Width + Height
The maximum size of crates to be shipped overseas is 350 cm.
Which of the following crates is oversized? |
workedSolution | Check each option:
Option 1 - 200 + 60 + 80 = 340
Option 2 - 150 + 130 + 90 = 370 (Oversized)
Option 3 - 160 + 100 + 70 = 330
Option 4 - 130 + 120 + 100 = 350 |
correctAnswer |
$\textbf{Length}$: 150 ` ` $\textbf{Width}$: 130 ` ` $\textbf{Height}$: 90
|
Answers
Is Correct? | Answer |
x |
Length: 200 Width: 60 Height: 80
|
✓ |
Length: 150 Width: 130 Height: 90
|
x |
Length: 160 Width: 100 Height: 70
|
x |
Length: 130 Width: 120 Height: 100
|
U2FsdGVkX1+jg0Vampbz+ZsNjIe8RoGnJMW5U2/jSFQXIf2CeKSnkUGBGyWOhkTiY3XfuEUP3b6R3DgzGUpQPoUcpKgydGE8s1TjglAIFlwZ01MS6YztBRaxvg21qN9lMc4e9JhzTukzdjdmPUxTfvNbytcmbvOQJM8JXHSazcKkg6qSK9mWE+C6uGl9kAwZnh55o67T8JAdY5fnIaTMWY76rXnxWCNnaJT8G73K+vegTkvaiQIcZmEi7xnryMzPQ9TEtQ9bBj9kAZaPuC1RWRrLHrYSOHVBJcGVaAUCRPT2AwRFNxuk0ikEqno8VEXHkIB+YC30dZCQmWYgf6qd2EAdCX6icMDPx+YSti+lP7h+5XCVdQFucNBcSSM20fNCR3+B2xCx05pHfNoqJ5Vly2/KWmuzybjYiQvpynqHF2rK6Yz4f4P5kU02eNHwZWe5a1Cf6Bm1yfh252CSFpnWhAaLCqt0Ox/cPHrlQWIbpDkbW14bl8CfjW62Z2Ijlxq3x/ESZoDXFyMtOhr4qXfoFJUy9lSob0bvZVhOlCmPoOIbLITFqboGqTbsHEA7gwdnBLU8Ccm477ZmH5PiH6kAAZ2hqp1u0yRHEKuUSrGAZ/ywLUHk5iugnOI09cysUZ49D6PXBr4Zr4f/MrnK4+Tt8ngQ3AQzMzIrmZaaNzh7O+qPwKL0Hfk0Tfotx7JJo+dJhdeOlTUJNUWk8CfFgBICfE7iStGeTEZpwid2Zp7gB+5oXo9SHN+sWS1kF6mUs94L4PMzneXzKAwaHDpnNlVSEcVHR0xArLAMz+dtWgKWRcubxvKj5Ec1juW3z8QDbb9S99m9Tg4a2WTwiDJRukI1w+CefhPtze2kFnQ3uNgEPJ8JUOkvnaPhPlFo6CtzM/xNoTjbVStkIpib3yCeFodm6lfCOh8MW/5PEHV2z1bTiOmraXXDTW3P3ReSKqAsEue1eRGo8Er/SycyFbOoYJ41FIMO5FerWvJOyrC92TJ5nbtWVxFQryIOMVJ3YPVcwhgGu1846Sroh8e0IEjIMvRRPOTn0mgozgAi/SECCC/4GM+0cp9O2hXL1A/F4pvgUZ96gTxf2jxtCqITc+m43r8rZKXtPYmh8unSLZO4SGidlxZiYoDZpt0EdPrnWD8AN/tRHQ+ACONRFysyIs7RUYnedu3IJ0s5RPH1x8WlCa3T6L2yty4hf2c4C8IvoDgvj9uXTmbsM/dzVeocGeQ5jdR2cTZU8gNZ/lhz66gAAAklDfQ5VP+241QCN6fr8UpkuIaTYE3x8c4/1LiqeN/OBNZtEa+Oz+qos600FZLdEdUQ5cB92VOBOsJZR6AgsPwwb9RhqPdJ4At2i1dbur80reF1cTOUwEc3BK/HrtwFLitCi0H2FvfqeVxoD3LdkqNokUfC6r5Q1K1uLWCqW7IklvKblB2LVSohCSRI7bP0V67ERnu88DDbJDuK4nc/TAbpTp4R2Jy8wKADbEkKL9AcKF43nozRSWII+eZ9m1re+W2k03LKRDsEqHVpR8wQDpFG8LVSAih4d1WHPwapRwuD/QxXSgUUrekasQvxoRbv5xwh6s/Ywrs+lLKjZ7Oj+uUPsQAF9Z7uHgLelsKrKSWlmJePRVWanyX0n52t8GitTb/Nz0F0ylHuuplRB5TkclSo7/gGckMBNfpmnrQnKbn6evUFsksbj79mQwKZY1JXDw/caK6Ew5G8HPRUg6erJ9wXwA1Iv9AdLa/BAseH/TPD9B1e8AeJhoJvqymRBSMfviETEgGmN6Al06UpVVHX3yJW3OOfpX7QW8P6v3Q3AMrycgkqiTbJsUBXj1LOTrS68jrx+hbyfZVsAfJ+Mqy1RRd7tfnGidaiy0KWddmzCPhuzNs51N2VXWg+oKso9hPAFAeyijusEQWS4Xt65WwJechQ2Vstqdy1HBwKZtyH8Ie2LG98YoGnBwE7vZ0s044co3wIzyPgKpp8iRNkmO+VckS+UvQKQOW0ZcvLGNpSq2HqGSaFgrlOI1poOuJUQOOK/XfHDsV09KGG1J79hKOoS2D7i3FejCcFw9N+DGCUEi3ulM+G0/5+N0EwddAPe9e+EVvDOUw5ezyXkSwQSYWhpKAln4fF2IRHDVXaxpvfWHrkGDlm//BK3Gtp8pFI7fQssfCkh/4lH2j0pORHg10HQgw0m5y8FTN7McYXcEG8XGRv6wFAEuocQdiftdcbvaHCfc7w0OfF8QR0bXRpsHiM7XA6Ayo/6VPy1xRYh32MLclfaGbemtJzmRLmIndK2lApvrUYdzKtUqpJmF80WPSOie+kxOHYkKdYo2SJpGcN3UesQ86RxL1O3guZVKgfYVbxvhlXxxKqkbErIFd5uE1hC+hJR4NJ4tqqfNN9zNbqqsziXNod0YckRQFn2nf8hf6V1Mk74A+oQSovbV/KW8lltIDlB6Yn8P55JqQkiPqOodrX4WlOkHmsrF64u9xVX6IyB073S8jFGTMnKolpJr4zxg9YW8H7+etGkXy5t55iqMdvUlZiYN35zTkEsTseDwcbaoz8c2jkrU4Bzzk73Ks9/yTNQV8TmLFyGVpOL9sVWFee8pOdf9Bkq9oiULg/z35AEByU5DpncaKe2U4c1HlPDs864GBEkVC3K68kHCEVE5Tpe87VFDbUugacMJ3pDYKBZr54qMIMlcGQGw4m99a1Rtp3P/audet7Ku6c/s5jNmRwLplyft0busMtb+RkpET3bthiY5X08fe4y3kRcjWmSA6FoWyjDW4yZHOujn7oMmTbxeV5+plcI9oxzI2yUruC1CjudnIU/4dvrhncileeWSU5gdU+yzrQyrzcF9q7tI187x8reUBD4sudCPLv7jX5EHPs1Ezq37cPgM2TP4DRB+bug8tq9boH+z6YCR15cbldzD4kfjR/WWKCuKRE7q23GvhIEoo8QDxTQBA6kAqaYoPQNWB9buvsWSwW+cX6Mi+gH1pFA8M6yi8JSs5m395dGsoKviE51yHn4ExdzOXcEkZGE9tYBHuzIYPBJMy7NhuF/pacfAXIRSVLgD2Y/Hk8bPiXI2Icvi4WTS+a+eTjh8v9/hmS684byyp+TFBGusRRjfX1qKGAZsnUxmjlOcieB73ugcLXmPmNlfY89ai11KdPCTGHpk8X9Wiz9cjgRhaWWywvAi7Q0kgkUmIFTQTxrB26jTlIivq39kCRIbb1wEwIqHR/eR5SrcTl1Ey1HcHK3RrKeJ+WNRyFISHoW/xLNqxhK34NPslmkhT3UsAo3gNBfChfcKKeZfvKZ+NoIxMNCCftOWfT6qQTePA9wa8JOgAkxOwySfVCCkW9HXh6eUkFMXV385Gn5KsXFQZUBIJ9BwYlyfly0KNVhHueWni+HJzCQ2iITVPT3jImmqNznSetc5EMSfCC5/ZYZXObHHM/DKXfour5SDi7jc8AissdFa56XE89lca2PlyB7gkT36VNfJmitihIcTOREG5gsNh+X+J6PPhl/nV5HfyrCAk+I6gsb3bnDTJST9aqmL0wU09IIXXo+LfJTi+MHbjfe9Dmi7G3hnBbjmay3ku2aRl18Bk8teANNnUmT2xFw9zVVUjM7W71fQPpZVkIgt9OxvDmzeZyIEjgfDtbq4PZit4d0Oejg1+I9BoG05ZBQqlutK1E5Lcn5itGui6vjZB9Mx02mukjJ5izbJv94Eh11dFbU1G9XFaKuCDO1YRVz/OPJPNJrxmMr+EiuF9chze5CCGPY/UTBTgXL68ePSHWtQwQg7Q+mEx2SUkO96WUwPbGl7b6W4Fa40TcKz/lNrr6EgsgEWBiBK9Zj0XS61RwTMM/jMkmAcWyaZGvDPRFY58zTmdjqY4B14/EpjKoyNJfpnHUYTTblCiKNmBWrRvAUz/dVG5ChmaF9MImoulhXqqUMQukZcU6KFudrJpFxJ7vR7hyxuJ9r/u3cFDJ9GAcoc7IwtEPOhXPk207tGrdvLtUnHqFs7T7HHUXO5qzBVQSrDBKn8tpw2sACKmz1DM++l0VtSNqNTlq/C/tCzZgOlSbIFRAvcdS5TftRZLCohnFFflsR4UbrJ3oRyREjKPjdQVsAC0fB9Qx0v6Zne8Oib+j/qK/dvyYWjoddXiJN+d/qVJJxBuSbEEPuTg6h+g/gImE0uyWE8Lo+jpiQh2fnPsk0RmwOIkiex5+2sK4xSi979JKuOZeSKX9cpqW6Vra8JqWWdzrubFPdJUU/h+7l3XyyXYsKPFa9TQl8F+0Z7KyRJZNXB4qEknWazgzmE9nHLqfCRQQObrOwD8WBMQlAg8fODFoFc0V+j5um7LUdaINQ/Ec4VHQoFec85fsdwlTiz3cF10AUfRtQD4Th3nDNhBTu60X6Argy9xcPqiPSNdeDplaUSPXDp1kNz9cq5QvsuQ8BVjOtgaAQPhk/NfqhAR/LRN4pEGHBpM6dtlrxiDFv+9AY0IDeTWwR0XbX5IC0RRsuJ5hq6tUA5v0Hf0xsysDkpjyPIyG7iEwHzcRrTCTe3A6uZHz9BKXFu7OEKLG+V3UAjZwak6iFdhECfjA/ms4cCT7WnwI5+/6/EaFWjgHZ/UtOUQkUf4uZd1ZHWIc/YEJZ8poJeNpA6bRXu5Po+w2is1gJxZ1ugIbUznDlBkJ11m5sVz9dGSZnWSmXQcFx2bBY/MLp02QhcZN7lwsHd79CMuClt6gigzI6zOnY/mvzHtSgtlXCQEewvtCO1QcG1x5mZE8R9MGJjQkgvBkCs3P8BmIZgcpjugWuPhEObB/nTVe9XPooAm4k+6NKhu1yRtlpZzRfkWsLHHeB62KYs5Tz4OKqhJfFWAeVhpmKmX8bH1rXnMVTWsb+48ur6IIAEkZIbYKl9pyWvj2q8o9rAg4zJqJcRugLD3BctV+sD1rf+SaSLirqZHysICGxGKjRaVWZEv0mmZh8+tLxxhlbHxxn93MaOhI6G7p3oo5wxwHyS+7PaRnUxKAXGZK+ZJgzENG+OmQq2LdirRAWqtD6lp+VK1rtpnULGS+Ss5HigKmtTctY9uMYYnV1hRcxPJxuumYoGCDYI9L6nk8Y/WjD0d5RJyvrXCD2H99tb90FLGKWaq9kbJAqwVwAQn3s3rc9NsX/MXbMzgN6+ZdYFnVo3W9fimJCBFwN55ActwGvsKYFW+tbeoOiviQJS1sN/711fxmXm52AXMSgCF1qHVIGugYlnsff+nhFKi2PXg0Q3FaGnQxtqtizf+SgSUZn6ca8jr5izlEbf97jXZSof4koRlSrZtOyQuszM6gB4trs49fKJgntOXv7pH79biMXuWFyi6tGelJSKF1zRpKr3ocauNQH01dCCToQqN3JhH9A6QiZciXnB/GrCSrqelEvfg/s6vOZXLYiTwjnzpopjRgcPnSitUWwCsgoUUEw1c4/BNuhIZc3/uAZkdEN05o4NyM9tPQU6cRRfc5QVNQcDI6xldlZOXs6RwTVQoeFHqi1KrDES4R3O+/jAlCHIMqY2IW73JYYzERcIcGurP0+CixXD6teKxjPXwoJh47oJrY+zAK/fMaaS1EHpw3Y+oQhldtL+BNoCjMQy17Kparik4PIX5Bz6A/OoIPpuupMNNBkED39/IBBofFZF+MHRuK6LejT3faOxnIY83tgIYjLXtM+e8+Kl7FeUMOmYxUZyZbdJ9z5OpPZtJfB1cKUDV2iy57URKyU3Pw2Kge/GZWKN6b9JHZ7VVm8JphCG4E0Od6MbZ3EpC1U0q5IKbLYI1/A2fLFWTkFILuUObfhoQPzjv6U3Avbw1LaJ0MbVXbs8li5rH61nrISNDC2vpx2Rmj+UQQi5u0WimbPvVb/II5FoV+3uSBi11qMcNpzNYsxL5HGUtF3vIzyoV5cfv1cMvSFvz81jT1GGn0YX2c4X7szD/BjMrk98WNAYd4RqudwPuAfBY7bF3aCSUGqnke7MC+C/WIzwrsYodWOlt5h6Ub7+tJJJjvycFy5xlenmiTo1mJCRI//gQ9Gqyjz2AxE2wRPv/PRBYvTzThOaEEhq93CQLUPgymO+d8qxEjehsv6aPu/M8vaYf1/Mi3+Xg4nL3p6WVLfJTtXOWNPTsUVdoS93UJ8JV4l3sVzL68tUsF/CProf2qI9Jp4l3iu4oXAN2nh5u7s12i3bFPz5hWQJ1v/Y59igN353WdEciZKDbvpbvlRIA++2cHv1AZw+QleFJ1Um5uTF0q4DpfwZvCAWn7zTeR4rixMNMNH/fLAQQmuI0u7o3Aq+o3C79IPAgbq5cWLNiue9c6yKLvH8+cxz8lLp2KchBB0/cb743m7srLuGNqs7ejBYYM9y0MS/0iIts1anMRK3pAR2zQkTlZwXo/vv+u83Ka0xw6Tkbcmx0jAd8Kmic7VHTZxpttV93G7/avPEjl7aushlPuThYcprI5CneEh/NxbmYEOk5PgY+NTHS/ol/PrV9WmRfpPwYqZrH0Ll+qGp0S2IzRJuWoc6CA2cpjxMBEZPqHS1NtiRyxpKM1iXKR7j0kYbvg+drlcUIw+84i5VJ3hHOsin6ZTQnnTmC05T4RJkWSPI1dtQARqx/Y8AMPTZYpkTjHbeMBdsWQfcHjVQDe+1No5MnpLZq8FH7bBBcUPuS3KhnEHXuL4pVVhmbDmzYoxfYUIOBZlJoZ0jILzkuC3wvG2YrYQwAJrwrasACjoEL3Tgey4umjk3gMvnwSP+dvF903zU7nqm/J1cRguarciy7IJ8er3rXg1N6Qu4KXjSU4YGb2YMH7uO3bK153Eha29Gjmdjk8iWdtj5GfD9WIfIdHVwAg8HqdCvimJfUyGI+P4LXa81do6S052c4G7z2Pwk37xJAs6H2ozIABjRgxFkYHsKO5YHoIjKTIyvo195cZ2k7BwzyyHB8kawLDjoveugjJIN1Rq+jBm/DjZAfmpyD4JSXoOpBl5Q3mPXrHrPS5x9eJmZUK62jWouuc9z+MiQ589LT24hdmkdrB/gYJhx6K9JNHxpXkEMxScetVwTD8PZIpvJGekSPPueIibEDiecpXq/ipZAvJfqI5FO0Qno4gkuMyYkybYWttPi40aLc7JKFncniDhc9IJj/lfZoOnj1u3+crmh9L4RZ9b1GHfNZM6rzDLX4rBE5alnOoodUBET/Scf/sF3goWyGYqOj0nbU8BL2rMgmo10SfJ2fDF+H31cMj5WAf2ZmYW62Mq6TpL9cuNavB3pi4r2hqjh00cyBrXFlSbe+aHNMXOdSB6Dnb50AG+cVtOo/cSfo6bqtSfi7rnJvfYkh3JTksfJxTamRFtU3lkLzpxFJyaBxlHjbnFWNP5aA9awhDFOt66SQA+QIGkiyQHg22V7lq+1bucA3gEzSgJWwCrtR67Om7siRpdOwW+Hd5rN1QTERk7z1Gs3MMGujuGwBqAvDCe8par5qr4y8jTN38Np9qQfj9g+CSXTdLJHmrml7zs31jzfB/43gAcmAXmVzjoeWbc8C6op704jSHg43/aEjCmmGRVqgJcybSPzHi1I+kFCG10ocPfs62RQJqgO3D01m6AxEiz2u2jwswetGFkwQLhnPX7aSCEhFWCc2e7AYmx2uz9+PUZuXERYNR94mD3ibuBZXJrBfCWw6j4DXU90zw9blMup/5Pxx5KNjYC7aQN/cvGxm1H4sbgwD2HWBomskXP7xTqU2b3fzUx43q3bKMEhF1QJum7MiULUSsqyHgFQ8a0FwhJEdTFqdIbCYpkEaIr0wRvDXnSBEcg+3KofU3i5tOmxNuryQIiCqRFVvWtPYIG6HvtrHhuFBpYzk6WUBwXuVXIubf4eJKagbc3ZTLMfs8lX6FPz+ebrBJzSdO1uaXbccOCgOIkzSfMGLJnZdjY1ivL99VUGpbkjqAew9+vuf1BX+99lchg7YYV62TcHPI/BnSYJkN5BeyZutch76hRdPlIdtLuJjAo+cf3nN3jlaE9ZlIrSfuvXPu8aZbwfPXD4wNAzR+CeghCIzLtx3V/ci8MUai2LTl4l2xMYGSiTEYPEy2ql5TsaWGHqR+7QgGf2RfGIwxN18CFRJneTAXq1Y83pYxrAxJdhCKtl4JYPU7ShAkEWV/SsWvqvpAOlkVaCTSr7mZxCdFQVccQly7GwP6uJkUW9ndtRMIyCWYetTLyuAEcvXyU9hgsKIIhKIKR8Plv0SesPZ643hAEYys6MzJtGwOQLrV1W92dknrd83Uw5oaVr+1bTPu3PoHsHwMmanjJ6Z7tGqXeR4w3rxNy+uw7FaX7K9B4NoLziprObD9M5RB1ZFbkS5p+b9rFClXwnXxDSplphLpX5Mj1H9PbXhIhNt+b0FBueLV2qOtF/nn9FkvFMCCFFG6uN8Eiu+ARehbalV+vRV5emQoZBHoBdaC7c028B2YSgkP/ZgbK6H1f38emR1E95WgiLhCvg3PoD64aMDuvY3ATAcvMf/fGNfP1dAM9OYmZxbH1K5/mOe8ZcQbRp+rEDlqSoc69jat7cb3ZO3Y4FHT7zFYB7+bRbaY8siCaB8WfIE5Ib1WEGF+Rjvo0mn3Vq0bLlIB8Oojf01tpuqArhfkLSTLkYxPSLnBFfjV30HLXBfqYJLF/OdNLgMBGUOmsao2FagxNX55QVX9CKsKwyaQ0KgUwHy3u2tJry8N/sNtnsv+MWgCH8J8rlBQ4ynf6xoJ0i7XefO82yseR5aat+5+TderhZITX6nfS9y1u7vON5Wa4aeW4vlAJwtjvRrYjVWAQqi1H9kFWpyYqvaaeAEeqBsKWoEUgxrFZIlkBo6OXKCfy7PKu5DPx4kQrP2fXL+G4XXCIk0aM+8JF/uW9ItmB5YVGGAo0+JnA2Nb2Y9yNCaFs0fUr9lbciO8nJCjPUkaSwzkl+Ldet/03WP3gRpk1nC1OK7WbuWfzWLIVCpwL4EsutWB/M0Q0d99ugZjVnkc58HduU1Dfgwd/1CZ3zZnkwraNTPbHxCfKwmjD096G4jxpQ6Kf52tIYtBpLpHiuV5PuqJc2mNzEmHNqtbv0Wc/hNJ0u26jUbxltOmK6aBDvKzp8D3LAWergNcxiFLNUbdYusjA4dyiTO/E6YoS7LSq7ZtsHjJU/dRlcYVL38jnRlmsiZ0CO8T9n7ezxrggl3ItD2tt/2Vi4xIQNEAMjKUZjq5igLvPWT0RC6B8S7tWTPvZ5ebQA8vj4egP7x+Zx7yJsz37dycohNBf60ZBz3ZAh9FRTqqIVcrpWDK3bb5IldJZUBj7u2WZYNoPUbZVAmebHYnBmeZDLJxc+7SBkMf4WWLoYrKJshs1P6i8bzb2jeILXAkaDNGjTAYsFTQxQ1282t8cMGPIVdV6GgvcTallF2DalD8ebDWc83nBmgYL+Sys5789ptGlIWcrUXexh9Pj3hYeSusKmeGqAF3asINBtCljLgur7Tz5QGUIKPLbVr9VFbk0vr9o1vblsLGS+XJ4aWDsDMne4mn7KgpBlieu6ZFLEHc7py/HxGJUEOUXs2i34NaP+/Ny0C81sYk6nP0k8veGtRgTRLgMDUXPwJc8AAjR9DUMsmD3QZ4BGgraDTpVk/O/KcXl1hf2r+ant2YSDiZQWdjVGpz7RjrysTluiW3UaXJVPrr+37dDucPwhGi0+8TzInCA3nBwckdKM7VLIXI1MeUPAopRpEdvzNsegwoI3gsWfQuLrGBLfR+6sAvluhzcKdajkVVVBJhSVJ7oo5H+OeSd9qeLCXeCWayMCRQ7mzhOnh+QqHCgFzbah4hGV/Qxa/vF9THLMABFHz3lJmc1CoHmH5E7A29jtYCy+LB82XcQb6agAgnWXlJFjjq4G9At2WxfYioLvNnXK2KWYuorHhrp9OoplZAMngKenppqPwYbXCKFf6Wu6FkGPTDF2KnLYUG2/PPGcEHwisfB6oImuHk1HtM4yE/vASiXQ8Fq+cMAoVTlIY9hCfB6DCNpYEobF4zaVaaTuQmA14vPTxXwm+fZ3zMDd70AoUfXNA7CoSc//2geRyWBHjpx9ZJ0X7Ce3VMgfABYm5hfha0fbLY7xxwyCmB/qiGoODE9wjr90g7SZ6KpbMNtrYxWGkhPcSJg14HARFb2eF/Vl1MG7DqEbbCMEJKc+dcS2KhZbUagLLgB7X9wSVfZF+gyup5KTmhA7mwE28Br9EVEApCMR194jH0yJwg220HO5sloIL6PVZhGdOx0AAOstLcwQ7w4h/5lFwK9eju8Ubexv++hy+RFPugb8lYHi2e5eXkEXagjAayrLxB1AEiFqwvSiP+n7KcBxFxIuglgukFILNjY0WTmOazId2ZQKOxwJvdcqRYFU+Ms7NzpgV712h0FVI1ZLm0nKvcm2mFf+X7aRxpAIx2K9dWMi8o8xrGcNx6qMyNhAm1QKoTrZMVjHxZcu26hTkv1ZTKPv39WNk0ib82lD7vi4UFoohxsquR/LSSXy1nzwfakdFyqbyuvlHdQO3fn0ezH8ODujV7SdZhAiIngp0sMpMUyM10po6Cr8bBfXM6LgNxIawoOdHCkxHy3i+Cei+hmDy/MLoNWxXheTg87ONaNGQnR/c5rQYuaEK1rxHukf7x8AunQQYa02Dsfz8E7xgJl4A7hxv6T243Q+AEuycHifsugMfOWjat1trxuIhCMXFO4F0RQivRYZE3LrCIPfSCjkXGmuLADYONw+F+MJ5hfZwZxqwoXYUaQea3JLvTcGVZ7IpKsAyX+Qusa+Xy0hDwB3gBIGXpJANwatlK3va+5dH1KcfJiP5/6NH9XWgDNFJ1c297VewNeEbVNRcUslEFkXNCqC+V+EdjzAd4OIVgFb+ngjmh2L0wreFYdeGYduMLpRvQLh94c0jPNzm/IH66bQsBlm0s4ZVbttSi8NzMzTOFZifdzNUknWnD2jW5cmF+U53jQKXyEDB0Q8L5ColVRrlsxmbtIpPHyeALX+KVwbNJ1wHSQq2c3c2/ZfBsd/P3SV/hcg9Bu764h1oxwsnB8qGv98L5QE41eyFrYLtvlrIaXhH5gRF595mTNzkpa0twbKsn2ZfKLL6ga3sjzkcRQ+jIYbBJmj0=
Variant 2
DifficultyLevel
490
Question
A furniture company uses a formula to determine the cost of shipping different sizes of furniture crates.
The formula they use is as follows:
Size of box = length + width + height
The maximum size that can be shipped is 640 cm.
Which crate is oversized?
Worked Solution
Check each option:
Option 1 - 200 + 300 + 140 = 640
Option 2 - 150 + 260 + 190 = 600
Option 3 - 290 + 190 + 180 = 660 (Oversized)
Option 4 - 130 + 270 + 210 = 610
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A furniture company uses a formula to determine the cost of shipping different sizes of furniture crates.
The formula they use is as follows:
>>Size of box = length + width + height
The maximum size that can be shipped is 640 cm.
Which crate is oversized? |
workedSolution | Check each option:
Option 1 - 200 + 300 + 140 = 640
Option 2 - 150 + 260 + 190 = 600
Option 3 - 290 + 190 + 180 = 660 (Oversized)
Option 4 - 130 + 270 + 210 = 610 |
correctAnswer |
$\textbf{Length}$: 290 ` ` $\textbf{Width}$: 190 ` ` $\textbf{Height}$: 180
|
Answers
Is Correct? | Answer |
x |
Length: 200 Width: 300 Height: 140
|
x |
Length: 150 Width: 260 Height: 190
|
✓ |
Length: 290 Width: 190 Height: 180
|
x |
Length: 130 Width: 270 Height: 210
|
U2FsdGVkX189reMgqDNe8xvsHoEgw4L2oDy1hBlL/p3iwPExpxgPSjA+yG93InDq5aa1VW7Ptnzo610AU4fw2oUoS8h9jYXtnSzKRWkcylCYSQTQXcdvKIBjksLIYSi/PP6q8OeAZJOwvU4aIwbMxbrLXTaZcLZStge20JdD/UOMb32fnVt+zXxn4/bJj2MxFCNGlXcYm6fDUXANascqzgIelWhR1hdKZXAYLo1ckBWEU6s2Hjt0bGrik44pgXRK3PNmbLLXXgEUbsOvNm7Y9ib4U3ON6xBvjc54TDUgQKqDBVx1MaWK4P76QIySE+zYXvc/rl4xSvXdKCXRwDIChZlnp65YtrlIBJ/j3mnZpRzMNBlpTuzSlevQf553COTZfRP7fByGKxR2ZiTM5KuzFQmGHkMxDMPZK6VlIynJZTetCZg7rMmsyA1/YT/sTsp0Roiw+v0h8ci1QnVwasRbQM6TemuarwRZQGQITtyOs+f0g3DfSLdht+z8jUbx5VyRarLIaE1Rc57GIGYkZcyji+yOOJVLaRPT5Y4dxJwQO92YaHqQhQp5EyH8Wb+GVFMGQj30a1frpXba+IR/Fiq+1xzGH+e9S9WXTLoa/H1aain7L9sOU0n/npsLHritJqsg5yBFyIqCf/c0vM3oU6/WlHSe3lbQ6+54YsBuzdgA9PVd/2EAfO+xuVMyWlDCeMMRjqNq50JJ+SBnVXHHVAP0fU3+gIJFwExaw25xlOEFwD6FdFlsQ53BkWFrrlqLZqxA6UKeXdbWznbl8jjOnjW4qTr6oDlOh6MgcCFdZ61p7KcmbR2QBNc1X8z3EG476dkCvi8zhmbrPmpE5WKCDy2MGUV8GyIsPqqIk8VKdS0SUmHbFyHMJoUcLiICJGGQausF+UCQ4DGkswMlVJdVl3DoLKhjlVcV18eHMzvBrw9y9eRpmzGYts7cTWpGxgiCsQ8c0NK12wa05Ok91iGiFAp2Tl7Qa7OOmdJBgzQKFZFs3D7kuVR+Df3aJHdSxaOlwOCS8zHD5MmwfoeRjsilELb4jbeSIKQ8o3fSESHpUGdHN9HiwfKgAokbnhhWMRuKUxezQdgdJojrWBh5Oprd2J+ystRg2iW58THtkoKRk+8ggTm5JcfiQxNtru3wzR5fTMJRZ+uVMRmevHY5v628MDnV0fgzobxnvv1dHPOhLfgwHj3NXJL09WXQgGxDhf2TNZQZlp7U1y4PQjxHkm3hwJ2tdV8ra6e2tGqVGOKvv5q1DKP+OvurqUoSkMs++Yd4WwEyu08M8KUTTJAXQjhZAGuECh46W2er5huTlhhZYlui1ffH5yZ8iqpoXFjmyrLdUZ63WsxCPesp+l2iZndE766+9ncGoipVTNQZCEeVaIs6CrHGYNQRXOfTNwc/TgEJjQTPhwxt8HZfBIFS8lDG9G3ZgdnNkoJIPSy/KR7cj5kFQkWPGQHrh6HYRaRuok04uzYKucfSNhdkoiMtjoyI5+U7t2DyWCduiFAqKYjl8Dp+qwetaTkqI3Wns/7r1QQFAm98h/A8xZOHZdzc073M0KLD6Ld19/1yNdGg6ZDSSBo6gWafhpjFuJexbC8WTSWSCgE4oG6+iL7fQl2T4TFUUSfIQE7mIoAaTh3jX0U43DGywYUyz4gXiWDsfoP8KXcVT7v8HOg8pq8Ucf2Xmh7hrSVwi/Vr7rzY5IaPbFZ0RH2T4RQ42kgBB0BIYGq6bvMi+KEmwySirYIaLJnyGgkrgKN4hxdHKOex6Fbt8BrTSAOKh2TMRdCbrfVKDev5lgDZd5Ua+QaHeOIwf9OTYgvmws+waBtRcW8FCXUCrqfsIGRCKAKw3AZpgCjyCUMSVtRZ1ggAc4x21uOxBDVdsqYd+638BZAhaLg+ntSTg/rDqxDCFMonmlHNbvrdCAWXLqxFvll6cG7wGM9lNddkhbLoJlZH2nn0feZu8gwT7pTOA+LYHR6SzTMObThIGuT8knx6PiRmuTh2ACLTeroWbq7DCYFgTMTj64PG0lKGXvv9oZ3NUGBUKpZ4HR1oM6FbSwHCsPoZbgcDrjo1UqmkC+iMccDXF/vjKgdpjgxrLnjRhQgPaoHcSIu8/uOCYfjSfZibxiaAFT8DDvaJvwkiJPreTxkmtxe9lju1mJhzJ5gTnqVuXS1p2+zIJ6cNIGERB7Bt7NC5eD4gskgpMgke6HIbKyWj9pm7YTcqv4Njf45LNMd22rYAvXqSX+kpce+qnT38pwku1n+XJQ+4WjJ6sqiHrg6cnJjYZmfk4zFtud/3XC1PeRvdL8wMYCbugfV2TiIMggo5i8W1RWJJOrL2PAUvfnISfjK0ZrdrilXuyKmo5weEYWddpUNanpDiYyVCLq166/gBEo6LheKSXGng1K0a++/+8b1obvDWOA4XDToBuA1/UzFtIk5dno7VVxK2aSa9x4mBQ3r6PtwYM/v061IvJ6VO920eGY0pY/HVhLDz1px0l60ELVkyOv9C8TqN6zS4M3pKVSIqO9bGtgYxUmsX8AfnTzA9PRMiVR+/BAWQmu6ij91CfrS7h5JhfSx9l2nkTA80d05v3S0tSsT9h52KTPxHymNdvqHtoYOio/iXz8OfhMRGNj1IW5oXNFwoWPkBn9aShqKRcnuDZyBdw4L1I7gO1vFhnpo1LpprcqyYIP3ESaZxJ7+pCHjRiUaAQUdQDgCx44VglxbnHTqsAHgmwlwzd4eAsuPpumZUwp7cw1ZGg5Ha4t4EBwRYcDow+whXppi6K3MoF4LJzgqgD2omXzUVZzCmnlLSn+356BtksAIoBwwXpB2tVGbFFF2evxS2XrBGZwujtnk/x74STurQUbfq12z2ILFl/h3/PsC8CXq5x1CuTfYM+qGLmlMOucujzYAbVI/dWkMRdai+9X2a9l/Q1nxnDguGY14RgMAhYwmIt/7gIP4s2BoQQASSAhwieuj4Y5DngU47zwAJ2XE26VcIL+ZczVe3rcp3QvQA5zky88mzWNrgIEiWCM3uwbWCS2RZtpETQ9dZwSRDNuRBEOrwZn9iWB8Gg1KgU2Etk6V1UemKvhaX/4zrv5lFPu4woPq0PcoBsKwLU/RO3PTmD4FuvWQfO6QD218qJNlrLIFZF8rKwtu5PxqbYVnxDqi0KsuA3JJNTIIEdEyo7NVKaBu06faNKeTw8ABG4cuOYqQmlwr5DJNR6EmNqfJlA4OpklI4y7yWYbGxVySNidSMt1aCrJ4D53FdmyhRsn9l7cuToMo8/pIQdkYUiiRjn0D4KENed1JxQFYfy31awxSQX9/tam4Bv6BImq6cf7x5R9fzV7TxmksFcmpj9xWSlwgF92muaCzCkGsQjRd/QG0brps6epCu1ZQl+aeEEharEOO4pDc4jhYNYKwM4DZ4qExKzbZsqS3I7P5xWbR3auXVYqhLl8HInlhAKct1t/c6ZnJ8dXllzNrRsw5vrhZOtmHcdrn9E9SzryKjLjupWam3U1dY+qfZSDfnFqZ71dYFOdOgqFWtLNoouHjgIfONcOIKr1IXKp2dgeORaDwHw5M817nOgBHNfV1big0O4hPDqZ2grICaMHiJHut4M2pL24eUoCp9MJwTO0peHh+T83cCsh1hlyrXpU8Tq5i6JlyZv/KYjnfYdZQPU96jW5a6JRpKFQtRUtDtSIcXxWeiiahtbIqHqnQMuh8R8/p0VQW63UU/q9hSnprNVPlim4vELeHPp2eTnSPDlt8xJI4x9+hFwBSALviAI4E826EN8TYJdkg+HrygnSJHfx6R3OvAF6AXUCzMBa5L+Qc+Kna2A34P07dfHk4cgxqdCsVbk2mneCjWj0TyZaHpbZvAQY3E0pWlCZVgsCp6ITFbgkUwULtawrr7TNyBVpUEbeBT7EkaZF6naLUf+CouhgU9WaNaVl3cTmP42IARcj2UhNTwjl5jnenIBJjm0OOSFru//eN8NWh0lOLIESiVyd3F9KDOSMW8fno4PuhBVyW26NkdgMzvQ54nJA4Bp4VekBQZit/Mkx62pD/tl77RzVHmk6OpKMZsSlOsalq9UBQSplr3pJY/Gpupu6nRQ1dD/+3lArbdet0M1YyBTikhOPx7lYX/Lb3M7XrWBrrvTLK2+aQgjmvnG+nJPIqNdpgPeBJ0MSA6rO8/Zs0AyjyDtU9TXr2K4Krc9OZgfzingw6WtPaLhGjDLSesjS4WkaO6guP5/oVoOMQCK/Mb4O+6eaIKe8xxS28GHglnGj3Z4BOQruXgvq/t5IPo2NiALUOp2x6TY1n1GyKEAjFzjCcwYCcbVxNoC2oJMtRYIKDF5ruROH6SKMQpeZdnZ2iqDQRB5XuL0vYv7LQkDy5Q4E7Rn4WtzPkhDk3FcQem8tphFEvZd0B8463oEgk/w6+Lev71SEtFLz3EJeOZAhpqj9mZULbPklSPphsYZ0sKwtttMjoy8IJYCoIKgG7TH3OrJgOsQYCIBazCWnlFKELhXiNbsg8R/dW4fJxIMcoRP0sjEnCIAmKBpvEgPOuL1f3tDYj0jJ1+zuyW8YZaJ/gja6MiTDIani6yKQw4Tc54iHrDqIxOSL70DVnAVqNG8dwty7+KU6VWzWRGlgy6fT4d6pJwpEpVwAINrymSQsWGua9ESveq/T8JGaQPHQ1y7tPbKKNqG/m1IE3/9mFXHMkp62B3gxpBcsiBfhd+7+R0vwQ3hi7illnejfVMKyOsLX5uJnvbiaEQXDHDrO7TGmbbwxL7/BvPrML0LqiTlZuIPRhbJC6wkfxup7WVimuEtesSpaeisXZHwdsXPgmEw4LhN73IevRvIZbzS3KsVA5egJ9x2voVCeuB78C9UVPHfDyc9higg1q4R3yZf+wt9bzXZSLVnZv4ucrsXdGN1w4QKO/86nrXxHcW4ZNUuS1faqP03H7mD+FbS1VCNnYLhKXe/kxOd+F81+Xp3Nc6cMhwxgSbAetO3e/vcrvYYO9GuTNUpurRJ/lKNVwhlaLdds0sPWkD4rT6P45W9h1I8KYBkT396M/Tn3EHRgjXxoHVlyBP6gXNOZYFXw2rHV0xKmY5a181zKsoYewmlJz/McsqUqgb5eZI8Cfpqa3lCdU3JA7hlbiySujtCXYEtKA+yJOMj7SW6PKiDSLmuCmQ5Ri1yOl2FtJX7I67fcXCfgamGAo92KuwrGTVPakqxQTHAaudkFbX+RahzzGLFYVpl2xGyVs8PR+6RssHKuYdd6tca0WuQp84IlOoSUbn6hjqNKBuqXEqV3IbUsYgWWIynzo8nRTJK0c7oDAmjr+nB1LJ3bmMFQAsC8zZ6602gstghcsUBIgI/6v8x1+jicsCM9HIHI4QrQXUtHbu6bKokqS56EOT18rD/0j5cShU6EBKAxPnKxX02HtvfFr435cT6EQ3gcHEI0F0yXDtg3v6I7bu7/PLr0hn+8R9G39m9h+9zAPQkcuJDoHrwyY0Xp5rjLBMOKOGlHzWu1zvH5YSEtONgCe8AmJSLQ3rE92TjOd0JQl7cBS1w2b3NJt5b4dt3dtcnMzPnMstUbErIeS8G0j92N1Xt3S35s3Eqvl4KSZb5vFkmDIpNVX+LPTPaMm3P0auea1ktkK5pgEeG5DPebtEMXSVp/jZpTRJbQcgAPq7XtH2bJbgcBN9efmsSrTBtX2zbkxFMsGuRb2Y3jw3ksnkflj1FPHUDOOpKDDtypE7S1zWzJH3HIq1uQaVRT9j9+lN4aVcEkp+tSA0uV8KAKXfCuLXr6z8WnW8mqa/ea5aRCrNzH7nNd9NcfiNuT4IB14q6yVQ4d0qCCceQFoa/UG3G3M2Kwk3nbfgXCc6YkPiCQyH3S8RhSdhJFdIedoq90HWW2hfEjdzXyJr987QTvHFZb1JXGaKzXlMK7Qn/dTx5Y0Q3UYji90Y/YqlnmSCHdnD7UMgep7fzA3my7Khi44oGG8ojH5ejCl4pHPjDD2Nq8GNAm9SvFTlQVBHEsT2eCopRTEWs25bB2pL0YGafSpvSAO0cf8BSwyfGEJmJnbxlvFhy1lNzqU2Am4XY4a0ryaLs+qSJbTG6b2pbYq3w10mwjq7d2l3wRtoXMJtO4jfFAvoBXPDbvVL1yBlBWUNyDRpGjarHYswM09dQ7EDzdxDX6kxkLjaKxgdgJsFEzk1Pn9uu1W5sYQTNXlT/s+12skQOCqMxo8CvbXWDGEtztvjzc8nDEQSbX2QG/Bt8mFg/xfQ4SXURAqY7GsblXJi2JLI/k93YbinoA6LhhUSmrBCP4BVlxUssBQdXk4NuzJJfVwaEgVss0F01Cx8A59idpzpbeuQHHbpy6yx+HwTTLM75WbwbcI1do13JugqoIoRaTN34wi8OwP/S/eCLdMJicrP9G+/Jw5Vble7A+5pH/cmztFH2k2nL0w746I7KcepWHsSt8eqfMSid/M4UtVo1CMfxiSSyZFvfshqqXaodOBTI2LOJxr/gazcmWTbc5D4IWhb0LGEP42sKRkUw5kCmeMR0uojPwLXUvAx7e337FaE7Bl6Y0gxnisUL+y2vA93RHW/+RlKxlrYmhXKv0Xg1fllFLOGEk3P5BBhEZfG+RjnSuaHOsGxjBg3wIUYw9zCFfzljNPbanQ+kx5JwodPai109QpLW7hbeQUF6yIldBvRy12LcrMgqrjKtmszA2upwTteoXxcr0M7jjKj+iEJkSjpSBTr/UUnC1vtoVpo/POXTMrkUBEG91fCZ8NtMyJB+viq2fCubh+lR91HGF9pg7KdjBleEdnLIp0BHuuJQoQnwzUsJcS9Bg5hbkGU5UvxIAPVzue/Ew5ZQ6Cz5IghscVTnWcMlpGOitdUeg1KbhJH7D6d4w30DLh3mDvv9x5EfOaUgdEgH7fdBxglWtLqm775bBnzZzqySsw8uXKarT0ZNDTBV2I6QxojfBq3ndXkrbdXCcasyPu2bFHJHcVbU0SZXUHSaPOOoX6ZSsnQTcfcQdNbXksDRlRCuhCx/FIyh8I/4q1ASVOWhZWgWWxSroxlDuWY58v68YgwsH8vZLHQgUjHsMPsRHyslGSfTo4YcKC82zKbzDRTxmfDy48wzUi8NsUy6OVuYYtId067DP0rVp4PV+FJr9DEUoK/TGSmo3Q8hWefvJfp0/3BobCpmjuJSakMIZvv84sKQ5vJvGkoQRwj7ejGnXZikV32/n1gclL43X0AvaVILhJDTO3J13iT3WRRMe+7QHVJoebrJ9MCTAjlgIk4envC6a5xMnsPviDVBWEFTBt93ATe0T9h+ddC1i3SQbvKCNUkKVvMWrU38xKD/XiXX74vMP66OdPlL6JXxCtLhBN9+w/KiWi34JBieRtRhyE3+N3P2tpUkkLZrzZA+9jS/P80s2d1UbglWed7hOo5wqwAUuJxBx7Yp72m/bwroWvkg/H8NJWFOMFfEiGrhuHOsPlkY2TDLZuLE9lUdzVlDLyYVATYS9cq5CXgGAmsVH9w/ecFlq0PStDR4AzKbR65PwhCXRTckuftPW6sKXn7FItoWPEFEwwEHVuyK3SpRydqIek5wMnOy2xfVpyezoYVO78cTsf1h4NvxH30ArXeNP/43NU6x08MJIhTb8HaS2nzmOuHe8gpAtqquwNepLjfrLu/zdzGoIKWsZq2Z0j0+QsYpECkmUdq36pDDJsZuamzZq1kJ7w0XKIzzpV7LqJVk3AMsMMKoYKxUu2oo27UzaZYPqXVYvbxumanU54kvbVJmCc6xvZOWEtzCIoF2pXTOUbfcLpJvSAS/nET0OXJTur6tduY8hztRQ/VpBh/h/9v/oGXOQdx5R1p+6gtdWs2Y9Lgum7OgsEYnkknyVwxc7nyoQtitfgFV/9Mii47gpWAXw3OEMxGiBUXvINg0ZZhyTfawFDkEejSai+58SbG6RmOoLhIijuYO5GcmqRRZ2YLtACk3zd+O7wc14IHFVLSChbk6ewpY15qMn5rHZ3pakq8et2VStl4hz6vL5JO4U4wjIEyIiP2rH/Dq/to2b9S+qp7bw3j5srTvg02cDn6Xp1pmhCMP0HZJuTkWSat0X9SCs703qcwr3NSZctdEmQTBB0oMoa0xFB/lmhuDaMrH5R3gY2Mj8SdBnOOJAO+PW9+DFzqsuOZIEMAcLUUDBCjHxu1IFrP30cgpEiPqkFqCdg1WXJVg2MxkNAGiYJX1pIak1CFUSPk37y2c4V4HeHPVbNl4pdvP9dzckpPy2o5S+E9g4YVbyVTBT302IPKyamvjH2azQ2QqrubIpAQYXTN2KMnVz4W1QvMV4eSexpXg2c8BEauZP0j9b2oG/+C1yquNH+f5kQfIzhz1O6O+qSqEMwYKUpvRpsbHtB0vMZxAX8XGy0HydE9cOKmIyNNclep5sZv3bJh/iMQx6UD7Ymchq+U/HGH0WJdQ90u1e15ns22ui/PL20PdhgngQai10TX8bwW5xaOv0m9OT+CHoFU2BkYTAGFcCC/1FhGlitotFyiu+E21LqEeyOu78jMylhvHI0DR+fozw1uifrlYwAIjmZh2gXv9lPkqfud307OKIxtkb4ezU/y+XcowyVziRDaL8KFP1lCWV9nXnFaEAVU0BjBmeAaACMd4ZNZE0e3Y2Eo/08LLn2btezaxtvfMI9OUjys/Hzd2mhZn4f7B5Qb3RzXKCeQPYRLMMBCbv/gmZ3I0fTKz3PVTW1m+GvJytWJYmdPr8/xLMlAv3q9hlqwB01GhnDUmYe+L954PthhcTWV+3v374oMQd1Wfb3TECwKyZQf8rYujmXaVSfaDkRWVeGB03e2byTQB/RQxstevFpA43qDgsfSnB5eoWQoN4WSP/vzZ0KOY7Peo6MYgytkNa7CF6dBLBqaWWNPm7ij2H+KNdsec9p3ohIZ6v7VWEzZ0Nz8NmYoq+F1xDRitoLwXDiGaK0LJh8uaBTTcvRoNcnH8vEvqDLkc2BCiKUG5sKMEPZoy9TJ26pBA/Yoj+y3U4n5d+YXu/LGewPlHNYQoQ/wDWFney80bdbDmfFzb8OfqlAyL7DqFJhHgkJe2FCR7DiieqmukboHXzVHVwAUNRx0sIMoH32AnB/ccUb7JH7LmIsGIpqtVCP6SvDOx6MOUSDDfSBZEiMmeXz2qa9+qkQJxXV09dkJhlfVg6bFr+w39T4vDOd0B8xE11AjH2kihLCEAmcoFUuMRj50ryK4R+AHdnUvk9aKesRZoVd+sI9fSSZ/cEi4gLnyDo0xHDCJdWw6C8xUJ+WQ95KvxPoSpK265zO6uBbq+qo6jz4/V9nMRep+9t/+3FVNlmaW8ngF0aC7t66do9e4O8yaIN+wFrIOqgmjd0/NSvzNMFCScp8v1VYRTdJIgoPl4+02sIydiGvaef9s0L+Mbf2UFsLPeu5411w0/DnrhuR1V8oULIRPyROlIJLi0VLiA6ua+SZBwmv/7f/TvuInloibymOhpgEiad2mcGqXvlWrxzTIm6wpwPL7fZZN+Iuu2CjQvvGOz9qu5bd7lCPRv8mVrCr7ZBiWctjM6mV8znxqlIxC9e24fHuwxoNj6n2ZrNOPYcnNi1KxgWCS9GaB/YN5Qjjmvu35APJ0NRZWG/1fRRkV8RYVLMWgClM+7N8y5ks1qxW0dVUDOl1p7nqxmaIL8zi+pxMM+7aAltMlRpurkfqDtF9CcV5lE9GVfiymY9wyAuLN6262hthXrPg1RGHfb4Hci05RiUpzLaBVtUIZPtVOep1Dkc5ypwE6JDJTfrxBEtqEwpiC1nlWob5CfwOOjfXxR+XZnHVndpee2m2ZO72YwbexVk1PxPxmsJVOlXF+P1PL7fgCBQy6wR/veZhjljPDP/MlQIRnso9cOwl7xs+Jq7HE68IRTrTEyE4vggomkksJ2F/zhdAyGtMnF+7pCJNANI4VvWoUuhuVmBIxwwdI79Bn7wvddxp82n2aW5tSKOHrUPAdw6+Vq0T1reYtrWbfBahB+5YRRDEXARNXckSIx9/GoCv56yBBhmvgRIQZR5OIhvriIEqSj1vEqd0INoS6MTuo10Vv9ne7jftnD7YMCH8fb+h4QnPaNav7Kn7Kr1+ljr5f1ZU5x6M92TpIlNORVV8kAprqFL9GcQ2dfDoi22kB8dYqVqGlObdWUO0VXCuTtqDFh1sF+TfMTO12xKhOhGldZRF48xkHYZINrzxh0S+BCLDXidgBXWGkzLT0QI370m8x8tUtOWodM1xs+HjkycJ9CYx/sDuNx1M6t+ug7jQjr3nBLHJq734uqoEKSGLEhfztY6qQRkiwx1EgZGFoADZyz1gkXwOugJr98KAQ5D0u5sYLWhlnLIJ15xZII0vNx/q7A+N2mcWf3l1gQA2/fUHl5VvExpTQzZTL/Qziwbzw7lmdbB1+FqgFrg4O3zOO3O4hFf02EFEDlG/V8LAeph75E3xYFQ3mPSC87QqibZX8zdZWvrHm92A/r2yjr/YkQrZUkW1X0H2ZCuoQ6wu0jvd0ebAdPNoBX6k2t8ir5BB8FXFyKnFlotJAMtcnwsh9rJHTHlLRRXOzIZF4T9D6cqPSKR/Z4x9SkA9FXgSJuSAta0UeVxkWLudev6SVubFovmAjTz1Sw/59nUcogZ9fjkJ1rXtXXbTeSIYe1Ty04pcWkBLqgycU5eOMVRLUHDfunQz2n78b6RtWj8kHcIcn4ZDHQ0doYU/dM/gGn4SU+YhI7m8DrJXGmLSDaScj6PPvhem7xjPwGMxsynCqSjzJ7LMjqY54ptjCozNpcBCCYC3L1s4zMj0DdkIaJSxX24yQ2krEdAXIfesbtOch6cv2oVbn1nOREzkFWm87CnYuvfvz7RyDgMJqw1THLo5SELZ/ZQjsr/5r5HaA+L/0SN+ilznNidEncXmughtjvECjCftQ8QUnqLyuWGdllb+0q5CFiOE+ltuGYsnYtFbqEF257TpxHRcrtopN6I5MGUQ2h13CzMkE3Py6QnEfT12Fxb+0BDqWwq7keYkaxhTseQzyhHs++H+gDIhx+8rK
Variant 3
DifficultyLevel
493
Question
Australia Post uses a formula to determine the cost of delivering boxes of different sizes.
The formula they use is as follows:
Size of box = length + width + height
The maximum size that can be shipped is 360 cm.
Which box is oversized?
Worked Solution
Check each option:
Option 1 - 170 + 120 + 80 = 370 (Oversized)
Option 2 - 250 + 30 + 30 = 310
Option 3 - 140 + 140 + 60 = 340
Option 4 - 190 + 110 + 60 = 360
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Australia Post uses a formula to determine the cost of delivering boxes of different sizes.
The formula they use is as follows:
>>Size of box = length + width + height
The maximum size that can be shipped is 360 cm.
Which box is oversized? |
workedSolution | Check each option:
Option 1 - 170 + 120 + 80 = 370 (Oversized)
Option 2 - 250 + 30 + 30 = 310
Option 3 - 140 + 140 + 60 = 340
Option 4 - 190 + 110 + 60 = 360 |
correctAnswer |
$\textbf{Length}$: 170 ` ` $\textbf{Width}$: 120 ` ` $\textbf{Height}$: 80
|
Answers
Is Correct? | Answer |
✓ |
Length: 170 Width: 120 Height: 80
|
x |
Length: 250 Width: 30 Height: 30
|
x |
Length: 140 Width: 140 Height: 60
|
x |
Length: 190 Width: 110 Height: 60
|
U2FsdGVkX19vqLBvFxFhhG9NSQDKeSRd7VfJDh0cuA0IN2tn3Nzv/YDjmYrNniJokODC8TgGSohgtA3EoSJpF0x2LtPOcxdCRmDfHiAhJtTtAJeOTEjuhRSumxrM7V1Ni2qTeGLbLUE03Rv+eL3Zm8PQ+vjp4irrfxIG9/4HThf/xrXGc6ukl7YCOf8asKRsnlCOY3+LEO/37Wd3TA1gP2r9IkxVrCifA+QzIojm5Jvspz91HI4yVTuZrx7ozl58EgiuXx7GoRA9dFe2xxwXgF90Clee5wa/fG0Y0RCWmWecMn2QXKUTKywIBq9ViVa8p7ZF9KCYiaytR3QzRnrUv/2gZcuGkg6xyOwb6ps6moj181PK8ENFsie6ubxN4fjBllKWKr87T9hSdfrTEFUvLa/zrlCPGbjH5V9PyY1DbhT9z1s5y5WCmne5l/QCAGX1TZJu4CGtKyi7pLr8WI4/9WvKPOoSnf/tSSTuex7jRlwtXTgF3d9t9lNN8jjzPVsvRlUkdVnl78V8eEhhxHb6GN1lvo+pStqnQAXBuNTct4sqNZvDs7g7FRz4MUP8dlNIg/u9dXtmWYsVXfMcFTUQO0K1tjnl/7xmq7JeOS3k4qi/ckVoiFipWhqC7aFEbQOhg+q5epB1XEMIYpIPwYW+ftCV/9s5ELHQxMFenbbG+c2ZsA876vInpGNn55LNIWGFn7jBNDIFsXfbE3+fU9olbMesTXxO9E+pIPWG+YgJFcon0wDEroz8Ft53IYz83m2V2PV4mgRrnyfuGTjQ2Sw5sOBMSLD8fhu2pUDUU8VVgOcjvKwc6BQgpjEm9oHMAQ5hchDGH95JAxFy4cN9wLpMikYejx5eOEaR9uyg2KtPqRkH+EVRqRMWtAtrcTVaWINSCEvCNGVqmtyFdyqp8h74ohk/afiw1TO5/CYJcs2STaV8ultdstF8Dvc+a3WrckuzgT2ap0srzvpwiW/F2TMgoy9ELVJB0W0lk3EorDSK5SPqARWK8kHSUk2jssIg71YxemoU8vH0XBYclJvH/xIhHzkuqb9nZZh5wHInzQ+HmbGfkgcmk1zucj7yBQs1NYcIS04FXKKSNH95BNHqyMXRFQkjy7lMB8bPlesHvQO/HX41FaP3wbSPOv5eYfv+Wa2tg3PAgGQLs4YKLKwA7BoEdTNa8Pbst/jawPFpl5GlCz8Xp6oE9Jif3wKarlWZMtZ6auKGmsZ5SPeG0W6nmVmHeexrhjlV9NxA3X/19kS92zwWjSsEpDYFZJJ6zIC5QuhkGjvDnvQlNysL4ocgQQYjrn6VaWL5ti8NKoUYqSlfWMKszJ+VwBwOkS/R1ZTe58f5sAhEZghrdxFVEP3NJ19AYw3MCa0/OcqRn1QdYk7ojeObMqufiMRLwT2CQ8KNloCnPuGlkzrzI7/tyoqZmPOTWnVr1qEuzVZ7Fr0Lb7aiIB0hZ2FsmJO5krWLASW+nMYPyGnqKXEat3o+KktB9Su4XURT9cS+iQPej0gQnh83C3B1687JdpPrDq1Ui7vvFWM1rk8slykhcsf+jTcBTNvBvF6uNPj2ESo/1dGld2bKxozPKyP/4XKR4u9n22rIOqxoWfwusHBylplhDRefMBZa58lFlnvGHKwt9qqriKOgOdE00v3m8PlkaZNOm0gAjrV3iurbgbNnPESxGRrkoXN08Yydqxq3L+btsdAtzPkemcfoOLaPyS48P3tDASt01RxirFfK5UiqGogB5mfqjaGWJd6rGsU0tD7XM2e+u8hqK2OfX7Opa7v+Njvk+RTnvv4wwVcAm5BV66KwyRBqvy9b1rd17RmDktuwLx1ihB8UONTzCMLnBDtKNHHzLup8x8GjdxB91EDAokKM4sYj2WQEs/71HvhB7/2ZtKiIsDpZXkQTdBiXyx3tbbxbIANqFxgExqK2OrKuKYDvi4YX/KIgB2rfbgfDNpWeYvOCOczjGXenZOef10OesUtDUrw+bHRukjseStyMvf+EjqTfB4lC1JlqjE/GuMAxX8Ow8X9k/bRTCoobopyp9f3t0tSS9niEBDQEvBV51GNfAbrbrabKn/qQF+TmvhEEgFWjA2r6uWp0Vq9gLRzfCWyFTp7ec5QBpjwZuOJW9G64f0UJSYKVei4YcRj4zTnouMewFO7sHJcrk3pimO7MnumCtVo1gmcTHo+BoZrV/CxwjbtT3bETHv2mCgpDBueOF37zq4sdDbVCXkfVslZdsPDsmOaXqhWOVJXLnsN02Eeie7khxMmKZQMFbiHAQyIAg5xgXIiSkKe5IEhArI7SIMqpFu/3CScmCaE5D8eNmy5fIewHj9/RAYDVS9UMhLrNxM7a+GPZYVv3XrJ3bxVrsVd4Z7Ar+sA21AppiyXYmS3uUXHrAqUd9jbuqma9+yd/jCOhxySPosm0ap39zW1mlVFSsmUMjaRDLYxu6BcPJFtQ1pJdtIdFS8Be/9Q6Q39bWsvx0azi6jZ1urz0HRqXyBKgq+oBYb2BZPpiLqNzDJ0C5fgiyFylsacEuTmw1ObG38qksBl/DP604PilaYzHoXrUlps/vtcUyPBGZhSt5aCssV//nYi8fhlnLPmanyhIJuRuVxPnXsHpXPMVX9SqtL4aTH20H0imHlA7XWAyC5G2VPqlLv7QkfmsuKwqjOZBHg59eQQ9AVVZ3ZpyjR9/58AfgzN/eSjtdnBTAkf3QJROBBiiLWXTeC/0pUA+CVPNqJdtT57S1+ot0eamV66aKS8UYMQkSWHKwh2XSgA83gIk2OQ5n6CKI9YX9w7gIPBE3fWR9RBZvANHimmFopguObhHAeIy1/KM7M83pSXd/SlKzxK0aXmmDwDaq60XSgFyBDnIsDwdxf3/D0Pq4C7zZJ9KGQyX68u3GCD1QXigaqb0fCoO7Rfbt3pbltE4QbEv5KjvSpG1NUo/xy7dHLzCHvDo19FTrkCadcRzJ3pmgBXWeXG7lMcwFSIT+ijg9XTrDF04RQk4DDPjt5Hp4tvbhbVRgd/z65/eCjkFz8pR4drTm00l+TE3fCnIrk0ifycD/J5tLVYKQL913Nj1uHbiBvUDmlSYrKBGQwQwb7+S2pu7Vqmu6b0crx9+JuegfOBw9l0QdF/pEO0BDDdETmlgJmo9pDkHwwgqgteXLb/z/ovaoI2FfRN3BrXPnQQeFyVx9cMFWP4h01EVND3vFeO3aLc8mWpOhEW+b5Ioi3wY+a+ugFV72nFOKdJfKq942NIG9vfRtqjAv3t6mJHA0d9PNJKz7gWHW7kfHhU85Q8/CGp1/uilehcG11q+3oBwPxUCn+GtILbggSuIJwLT4WZB6ssgajuLzrCepAnEf9ZDPT+VW1Gg2cgrPu+ZSyY7gt4QqFm4gWplscjPXYnF8eU+CkwZIXj69do4VSYIG5O14eqCVAr8rVhMcXThkrkp8+4NFV11RyK6ei4/Wy/RwqIw5kg3vhL+zdCCdVRAT55GDQRxVjQOVeNmxrknKVCYIqOrWWojOA4fp/2RUKF9rcUaBk2DK4Vcugo8ridEYtn8rA9tfZgFJMSz1P78VEFDDVm33J1jxCOT951fnEPRxIhz8W8qUytKlXZ5qygpOX7ntXdBwMHsNGafimcRsp6slivcZHDoVPN59vrErxDZq5UCH5rEf473323kABIGBqMyWWbzImqlUXMlVyQiYWY9V3JYzxk8ASFWLClzBtsjEuuvph4nJLoJwpqES3+CIUe7SjkG/g8NfSaYkgIFzD/5CBoQV2q/SS9G02hI8t0Td84kzsLh+33OyPno72o4ecITVrgtBvD8fqd8jrOde8HFBtq/LXj4HTxxiVcRQX8H4N6SHz7esTmUZMTFM5O8yDaHAds1pukn29mDEhe3ETs2aF8ZA2CnCS1fPPw6Gnj3vtIbioJPERdLQfAMctfGmxQIBA1EfXj8Rt2j9WQRQAGjkrziA25UNaE+wJDv1scR0XdvP3SmZ9UylStMcsli+yVv+GUgdmQPjI9NDwj0btXNquwUbly+nsfbse69TTYSn19zVJGg0xqly4bq2C8XzH8duPoPvK0SH3oHBszgtbiZs3HfR+uXU47Axpkbld33PMsCv3/P7y17wSUMb2LXFq+B7gm4qfguNApukW7QS/HLvvelGIforcrAGSomh0OqUMFzFFtVP0cZLmQssQNlyDI6IEQrcpP++ePUiLKAsvqTbH40AGjDfSLLHi7QTD8YEYSqVCwsumMLu42ghF+cmBLZywA8kf+KU2E195qqI/+g/L39EzOQwa7GxnPkijLf0aBVMaJqzp2W0Qa5o7ADceYG7OUzwfwaHiCR7guKmYfeRuEze8jSpocADHDbGF6sAhd9zZrQIGQ2daXEeFGDuV4N6wtH5DLfVHoXiRpkQ+5tfA4OIbGu/+xvt4h6BqoD0v7tjmpvFgKm5gK9E+0GorVRGM7gwWOTvHOm+uixJ5uJgmRNnQ3L7U6qBbwObg5/TL/YrpHrLUzwqorRhTMRzzU2rKtBgAOhPecHJPZbSMhVXmsWp6f3w6mkO3A5Du1N2Yj8PRyTHhSHYilRIZIOSgutB5HYLOYXqk/Sq7AQbf/xP9gM77idL7N4QNLKMa5MSDcpI/ItuYUeJkvAy6WDiZZHU0WaEKbMr00ozD6bPffPRrKCz8f53aliSkHbEFJ/gYE3jKsBpXm07xN45cKk2W43JT2b7fQk/ebMKSAk3KitM2lA/nmwwMGF75E5B6AcZ5oCo64fFJALxNH1B8QfCKTZzeg7DMIjLLYUpLfMoQW9kRYVCXgfz4rQntYsGK63h3yNeWMxhWu1GgBV/PRgCt8Nv920RXCRv5s7VZa4rXz2LuZKCOVX1nM0GVuQ1cZXzsU7H/tY3EPOx46XU4pBGwcDDYIFSmhrICdmQrofZJa982GN2yh4Z0qTR1cjQnlcTFPgHHbHFgpYaqu8dKI8sKm1taCvYgxjFG/MvKgONGq640EstreZA7cYWZFVTtCAgaNTthoH2k8DREI99eiYx2tqzoSBFJAGVOF599LEIPzeCE5NNCYoDPqb4Ek6xFBUktBcyUdN0muejCA//0+SwpKIYYiVVLXZ7JgC7NlaUA807osfua174HJcvI4LTPMUApOghVTnWqAEv9hRZCKJcZDrVh2xYoV+YiAynmR8x2WICBuSJyPyCVLV9LEogXgRpM+RpmrSObbAlvoXokoJSx0Txts1IsWVeAbMhdUYus9leCsiR3xG8yweVHtW8tkEcbDKZ4J3HxKSMZQKimZmQFwy8UL8Jy8R7ld2jY8wsLvU6IlhISQoAWNaXCNEBI8vp/DeGg0xsEJr6aYLHLK9rGkP0rWjnNVhr+NzVKN3u95yAFUQkC+KD+m5ZTnHzjTraAtbyOYvsELnYjgxPJgbVMO7rHkIGzdBEwbPqHt6dzmgUltn56e6hNODvql57gc+vNuhXYCU1rCwhbWux4aUDx9qaf0M5ijLmk6hC13I9IO+PODsRSKRySbYk9QYUOr912nmlalKcAl6p1NIFWvepMSgeuNr4vkDCbPRDiDfshZZMz9cU/x7x3lng15mduqLYBsraQoqFAnTvt/ee6a4ozS04Mcb7dwgpN3RdpcJDOzMYaUy9/HwyH3u5Ria5FNAgwC9oIfC6zUOHoHk0wwU3yyFEsJZMi1qd4wA3T1P6Ui26UV71tmKlCIoPIgKXPT/UgwskWiuofMrnRllvvKQVTFZoS/VBmNbF1lrZqL9WVJm08D4jpHUp6EFjLgKcFQQqfIB+jYTI0/wICdcFQD/v4MaHrmit8zunzBOnf6Mi1924Sa611uCe33hU8EzN+IZDxhS6yJVPvWErswMXbqOamlHQ3QEhmXN228MPGzS5wbEobJ4rsYfhR4LWyf4mMR9jTuVH53hmND97T6hR4k8V887lKvyZBp+YThq85s8GTTfLGg31nfERBsNRNwAJvN9HYwfDRp4X8f3/QLd8y/wMB6tRKez7Cc2hanOqTwIFGy5sq0dtTGrRrz+RIoMTDKlCJtr4cCq5lpwc2Zz9bvGHA58TzUyusx8RZ0BcHX/Wi5eF08bWUp/pPxq7Gf5gCHhxY/YgnAi2o8UK5kv1UUz52pkxHhXe+U4AyevvbpOa21YWaZ98ipETcjq/uu3ofnJZzWAP4tlAuIVo3ErTGRqoYFRFNxmeJl83IvWr4JqvG8v+HIOIOS1WQMXNAhxkxmInhLFKNhXUpm6k40bqxKCI0nRa4IDcPchcaKwRg8tAwGT27wlEZKrPlF97ydUK/+8DWUdDbja/BX1aZjD2CtBN4Dqj24EjSzs2XXwY+csL49ChaipA33TNpW30pphaMyIzxNz6tgyUbQYfgKPDAaFS59fTvrDReDdMNDzE5GXIlQr2dQZbvOOQVgXnogd0OY81t4/TzeQyXcAy6Dcf5P3SSTG88c/TeXmjECV4zP5eoXx4AneVRtOSvD0f6NrIhdBoDwjPz1g20H9XkV3eFb6zeUf9OUDCnY/oUGGf0X5rJMwCbfTZ4waeiuK2lS78zXCB7X33q5RXbss7++xxi7CQv+1L8QCkpow1jfcTKxl/h9G/yALFRqEbAjaLnx092nwl/G+1QVYbGSYfOGPvYZ26hsopkLtI5n7coAD+4xrN6Mh+YGD4jBDhAYGUJsiamrEIWZsJsZY+k8Qg+yqDcID5epmsTvj/TKrtvRUsUWHm1095nfFjbklP+hrZOrC+qN6uhcsb625W4OKkKzlMq+FY/Ni5NhR1/hU3Dzm5lwhN47Nbgi2PVYzPKu3Ix438w2/5aq2V5Z5A7LW5A8aj0Cehgz1kpFg72Gs1FpKX5b6n2lHPZvn8uD0Z+HTSDCQhR2fxVAGzc/6tAlP0fMlVA3qxiqwb5Vxaguyh3QXSJfnUoykVayqxNDgmac63NCnEubGQY+Q/HB3mZeSLjYGUCdDwR0Q3zNnOjL2LQr5a+2bXlOrIxRrflM4dIRBVLPVNO80Gka24KmKEgFGDOXK7fau46Wm/QQFAZwSdgs3x5GTvl/tkv5vxdmQHXEv7aRh36dhvvf6pFKEOpEWznsegO53QsWntfQdgIUYQ6A2lqm8ij8ET2H+9zvVNDdFqhCoRMhg4CnyC1sJaVWlZPYuVVg48lCCR8AB+aS3vPln3P65c0PiRsTfHJ9lkrEXSHAF1azDXroaYinKrSkKZko8ATmsECBbumo2RweQpvmAU1fcsAI4qGh+FTcoE1bagH0kRAJTuZEDvbp5gU1o9gERFiFUpecUawxQKG0fV1TInR1dOfvimBjL5JZ4eRu9rIwZhrOdaYM3x+3zSrxbwLcwEGKm18kvnljbf+TyQ8A9UzCFKYkRxxed1D4krH9QzCZlSGiQcWrOmkT4FIfW/7JhTomESNV+1RoJgYl7NGsQ+W3f29a+JXc13b/y6rfxbkgeY0+rVl2nPb/Q68tO29hFVN+seb8HWdg3SjqD0eWnqlAO6TiRch340XFtjRZWUjV9P40aIFCba5Pcx0SsY1mL7LMdI7yfarRMRsDQ0V/mVTpiwYGFXlndorhOXv1wdrVVRmQV4EzAmiZY2K3fAhpit0jvlK8bgnc06eY87T9PrPHp6hVUQh/KgcYbLGho0y6faPtpW434p1hWmmfFPJtbB7DUKmh+W3AxbOcr8I3vBH49NJtXLVZLOUGE0rntcyXCJo9sRLM5mxsbraa4D8NZKUC2hBIw6cpoxo4zaAwDe0rDK5vx3U1yUTXl0ZZkyfCzdJx00GxXcyehy5th1Wj73INzA4RDU1ng3YWdpLTolje6lY8KwW0B1d2OpSu44u4b8fqp+XqLyb/Ed6+t1gk3E4aqU5UKwg7+4zVtWcj3c4hTNXEzHf8e0y03QKddJUr5AyOMz18CqCRq9SGcua5OaoT2oJaILSup0b9pOmra/49dzgue6kV25V1CJngmiulbKzzpc4VELCfIXOFATkcp9Xy20G+7wb6+LipqFwNmhEOvoQkIrZiP/ibFDnPIwRImMCMk0ERS4tUvO04I1HoeBYeriCIyLjcoOgxVJ9fqYcCN/oVa1tDFy5ncplS5WWtYCtnQrUGxcbyXErz0S9su7bp47t5zQKm6uVHP6Ml2Ux372VxXqDKcjv+I9lrl5hP/qbg3g+5Mb+WBfCd06pumaiVnbGQf6yVNcB1HIHse8OEUkyOmBK36qXJTb23Iq7+L1k/eSW3Cn/F3qCeI0um3wvS3HobURjrkXdh9zpiL+9eCIV0L2JcDw9wEBiLnO/Vn50S36cso9WA3UbrAJilXFaRCimUtlC1SkkAzS1hxmsGmGXow12fKXUIp6cSnsCMO2A0P4UEzpTdpMfIta1j0BTcw0u9/m/NnLyVDCpIwn/G0NUWKIXzLDbB90gqBNNc6wPsVh827bxRvka9JQg32m1LyXUsYRcr8dlfYk054XJQ74G3TJjrKl/au6qWr9H9n7gu28NM6xYXppYFe8YU8gv5n2YZCIasvBtl83xALr/+0h8eD5/9hRaqsYqHLvOtAHrqStNPKQvC2XocJAK2aZJZkPOAb64vWxPu9oa4t8hU39TuHWq8tXw99O/Khk0xpS2O8fXJQU8ORUb8pVPpjmA9fWUDm8a6tvd12/29qpoGD1RBe7Y0Xm9e2PMpAZ+e/UdNAZZRqrnCoSNFwWABjFrb7vfG4SZ/18R+pLiwdFskAbehskCScicyzl3tNM1fKEJyRTyFqP+jmuL2gfHKViPdHccDgMgguzJMDD68yTfpwi6PksxOtd7WN2P2pGpDWVIhdohiwUaPDqxH0JEuJPZg8kadUGUUldKfVZKBqOYC2F6HtNY8HGQYZqqeh+kYvErZTIkVNFdhczuP/ZEQqQz2ChgBcNvcoWzWXFd+zJRQ+VRUc++1MGVt4Cfy5sJSzAMNRmq+NtTWRBo36k474NR5SYoBM8YUp2lnJcAEk8REjjfpvnJu7hFM9g4jHf16rcpjrKHgQ2EPLxRRMtkyGcj+mTJIXoFbWuclfNpw5bpYY5IkLRg6PnTG5HQi8xjsFs8pbxLRyrkLaRhFZaPMFnokhRswwAlVXIcDyhn25HNdb8oKv9E0OOO/rwlH6sFbuMNKmQvTAM87pXtZJKlKZmIF2FPTeWSv1GmpLlI+n+hRwib7eLvdX+DrSWYdoV0LKCWEtS9ZGl+kxh/AUVtt5yA+IWjQRRT7HZvc+3BaynolIMnsLJirHNW/gCEB/OtFFn+w2Q7Xartak6SrDRCbJjzEGbIvZ02M/aZctujMoeGMOYF++vnR8mUxnSQnXjTn/e53zWAypzKd7p35n3lNJMNVe0tQkXdsZqowKNDniEG/TkBjFtfnmNzjKaCTBZokRQ7A1OSikLmRxWljnt2AiV/7CBVHOgqd53AUubFR9vmZUUoer2MtJcr/4bY2LQye1t91+faKnYMJYkbpjJyxGAYVkboqPSw+iOQL3rq9Uc4pNECKACEGEkw24OEb5wRKp+LYKKKaZlzCg12etJoZ0zAoMOAbVJaiunclvvdH2Rm1bWXEH7E4ifDYb0/NvQKsU94Uup+blcWA9X/BGbFUyCzGwVqeEoJt7LYy8nApnu2lyE/2zNpIHton42jIhlKradqyDcZMA0HkZA3hvAnRYeO7zbkpXzVqZxwcmUTOyx9mONo5CGDNmipmn13LrmQffv297YHN4e0zEUxJizdWEsvMpBSTwkmc+cBrAogbKzz011lNHXp3t4DipsBJ9vpvgiRKfHIeOwzsPHhfJtqf/UXZU39C5o3Yvt9ZPgQeaQj9EtKMS1hW5EQlDUJEhM0CrnV0w2ClAhZjlVXCwGhU6hGUzQBtLY8V/BexccZbpQivK9UzK0SP9OR0ajZODXXCEaQ5w2/MxNAop0N3VMZqAHT9UnfgvNhrj2tVRtQDBRp/x754RWdjol++CMXYdXGYybdHwrrq4aJ7wxojCFvS4/Hq4TovZGPolfpA1FMXhWVZ4inIz1Kq0LEsUmoNH7SSReD8vu6x8lMPix0nS+5FRERzLHnYyzHfeAbwrQA7gDn2gBonZ4td5KVgHc7bRCCbK0DUJS1lJw/gqC3xjLhUwQZhasflHIHva/vTtnOkbs635LJ1yQuJ8LFyItnApZDTl+xoNvWay1rkwcmWq59L+BISL+8atKVvD/mRY3AP3fdXXnQGabzb5KXoRuMOo79W11TUXzPRJ5jz/gaju3MOS3FaPpwrKSRxJIvP7jWGNbeZsfMX3RyNBcaIvKcLzRRSmTzMYSgMg5W9vqYYpVyxj2bWJKJKAt43JWYgKCTKPfCLihxtL441eVHy/5YbcwdaP391/5INuyvyXQqKi58k9kMvZOpuBmW5D1h1GFEjlFSi1ESdJ6m+3ccv4918MzUTl2o6ZdYPltcslp54Ac06pGMLyIGCf9xt3Cc8tYyyBfOHU4StZ4yGGGpKr0lXflYRRGXvcc1ocERi1OsynlCrSN7C0/AlEBk7F5tBMnq09OUTQe4hcyjKE10PPOGHwx9hMGCw4MsNOfkmp2KtY+0nHECaBa1nIU2Pn7z0dX8X2H+rFkd6C2Uk3HxB4n1wONiLh+XI+qrV3CvZ6DjYuvyUG2IPqX/Wm4/K0vmn4yOIwUyvENAZPge2C8TKYsn4dT47zCFU/KN1NqGTUyCzcJqUEuykFzsLyZ8mTLkQopB8tNiWjEVJdqDhljeUga575nHh9tadDNowNwQeJrkPcoKwaRM8BJUys0KhOcBMalqRDL2M1PTIP0FoQK0Jr4Bq8cfO5b4cltIxs2fjBk7Cimevfb0uZ5SKQAdHVE/aCTU36Mi7hIYBHrS5qF3neUKI1yZrRwqhQ2x5vwyKuYnOxFrf9xiKD8k0p/6MAkGbGMXnJQksIm2JmwELlLvDaa2r7Gjia8awoqcU5sTZMh4Po+8tj29NlT7Rctq/OuTRBx1MpSkeGFLhwACtvgF2Ax9uIehnMEGqeAbNDWKN5eekRHfzO
Variant 4
DifficultyLevel
496
Question
A delivery company uses a formula to determine the cost of shipping boxes of different sizes.
The formula they use is as follows:
Size of box = length + width + height
The maximum size that can be shipped is 580 cm.
Which box is oversized?
Worked Solution
Check each option:
Option 1 - 220 + 240 + 90 = 550
Option 2 - 370 + 80 + 130 = 580
Option 3 - 20 + 250 + 300 = 570
Option 4 - 160 + 180 + 250 = 590 (Oversized)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A delivery company uses a formula to determine the cost of shipping boxes of different sizes.
The formula they use is as follows:
>>Size of box = length + width + height
The maximum size that can be shipped is 580 cm.
Which box is oversized? |
workedSolution | Check each option:
Option 1 - 220 + 240 + 90 = 550
Option 2 - 370 + 80 + 130 = 580
Option 3 - 20 + 250 + 300 = 570
Option 4 - 160 + 180 + 250 = 590 (Oversized) |
correctAnswer |
$\textbf{Length}$: 160 ` ` $\textbf{Width}$: 180 ` ` $\textbf{Height}$: 250
|
Answers
Is Correct? | Answer |
x |
Length: 220 Width: 240 Height: 90
|
x |
Length: 370 Width: 80 Height: 130
|
x |
Length: 20 Width: 250 Height: 300
|
✓ |
Length: 160 Width: 180 Height: 250
|
U2FsdGVkX1/DoqbQwpA39M12wwndBShFpnG+UfyGCCttLJVKzIm+/Vr9e0V1POTa4jN1QYTiy87obOq769YchuMoyQVE92/NnfLd4dsBdFYEVjBNA29MRuz4OTbeOMsayDqkbAdjpFlq7r1ssvorQMr+uKAlZF6/e3PeRGS45tC33vypSkZVBHjxeWanVdkfBTUeQN+p2ECrS3VFWX7lZOeRG/bD+gI63HQyjuYB3DnwOswndgWSY/elaZmSdu6w3WdVllVIGOLVNEA4C0R/3dH7pmdQXavXAz8VcAt6fcAZ0Fl3Sbc6EkJ8+Oss3WNSExEZWC/tw2FZ6j4WhAze1DXFZBfY9jLgQ03GM61kqaWeto01nz1Ist6/XflSR4jSPFOLDk2W3eUWgdj9XxucoayHz6S0i1N6FKiLtYfXI/hJCO/ITcfX//YEJ8m29quhoH1nBdcgCmlOpULwa0x9owRrAIE6ngnnnb/vQ+/txqlwrZAXBCJakIPhBws5IoiMy99aIO7Kg8D8Ryx11PEireqUonaQG5FoeFwo17fG/jQAFvBBUx2hx8GhDutl8enWhj7UaUUO3ZGtGU6q3cmrDcuMnZhhjxmPUdXf+j6aMBnhlWKfM+gbUm+JM3pJmnk7KidBTrzUlF3sJ4+1nYpwwTN5MOcULNSsT2U6ChkcTFmrq0q/BHzXqAALvRjXbQYco/aqd2t7MblYsA8g9otPQnqp0uKPijkYQ5PjkDlO5lOb1lc4ia6jJnSBKtYIWZigBlg5HN7kVCa3Q9K/l1NwmeWPO9Z43I9wPMQUF3F7MyGJ/kqWQuZDwizj79KNzyR0kaA/MSPMIExGxBp746ldzPd32hF6vEcsUwAdMwmTtQY2/Wj+FspJFP3oUuRW4y517vGlNcoXXu8KLL0S4aPysx18cvuj1W7nZ/L+HF21D8hrVTIWEVpfoMZ1p4i7DZZd/RtH3Q0L8Ql1dT0JMJfLh92wi6hi53dvKemOIpVz7k5/SZ1JQiNx1NEGcRETfZnBM7x1CScoCuPstpXENAbtEei7FBli/gElCu13dzUjVYYbYI3DUlGzOKP6tlfiNOB4O9ah6+mSy/5Kre/9z9L6hPipctYPI5NdaM0EZu/N0boowo6KRIJQYOVd6rVJtAVYEIFFxngd6oUcUp02xxea5NYwwIUR/WFwLCCu8dsERy705qhn8G0z8ZIoaPjRzl+a77VNQS+Rm6Vf9tjEtGoifXppXZc68aebM4/HbYBmXmnncibwR/3r0phCMQvlc8F5KFeyvovTvKNIwhoe4iefCE0EBWQzakdODg49Yxf/CTjznt4M0SO99KylSuOK6nJEFqyz5jqqVXpknZkQg4vND8MpDBRaCC3XO6C91MCJFHkiozfcus7WWwl2GA5Q2LdZUzArtTBJa6WrMHC58/Z/9+PQkNDIceP+7THHUuI1ytM7sawTiFLOOROHrkDp+AxcYs+oAGMJ0SKl06knzCnROsDaxGYhrIn1UA1zKGcaq6uDz2XIGegCl+Mo2YJyhKCVBzwdc0pqJdwLWBZVXog6XShEtyVnBiqG/noqCr/ZuoPZStxIi9fYv9T6bPxD8wG6XyxMELtXdjE28NDY8iM/YPW66FXNSCjgcdErfCA5NmMRl4e8qgbsQKnx8/l2O6xchvMKNhdxswBmSMV+MCNw4/FM9WSulGrlj2hoxhSVAFj/tNk5A4DFfQW0Mbt5vdAu/A6u2YaHtVzY+3WMJzS9XdijcodczUjbz5jqBktQPWGtTys93DtfWyEItZcJ9cGCvhVb6Rw0v2D1HxhZa0CPE32ydLFm/V2i+tNV8pOefA/wfRO3AIzkv3EQj0ilZ0u6MD1gNPD6vG1ElIivKv9KnxMcKH42MmgUW/v3vuyoFdxU36h6ghoyezAu7aME9HDeUQmoUpImGgOk0ViZZiQ/BN0T9zqp88XgwWmiQRxu3qEfTkJ4JAsYI6cHLTvh8Js46KlUlHUZUr4Jc9yE5ElhtWMFj/25FkIJIQ1yCnlsSGisffSF43LMPFgXOfsj7C25I3TTQmptqOGH3PyDtFTtb/+EZr3gGGFML2LUaZF+ByZtROqHGZ9W38lwfv7Cj/jMzoMNQ86pMUcVOjYcGsmg8aCKUGFev212rCtsnFABmwJY89eT94lKf0UQwdkYMAO9sFw9idyHxWpV7SN5foF9BQdCGvGHurrFqxJ4ZyOro0sUW/kFd0AqpGMUsIYkIVF3RaLPpX1L/cEpNDFAcmdaZ8TnoXCBymqKgunvnMpL3lmlg8DYGT8Vt3bkRiDiKXxwKVAOCi11PBG0nsC0qVw2C5aTZNvM3B2gBS891gHfQOfsduUn84RMI00gbOLLCxHWDGw05s/zfGsVdaybQo234WO/N1EgCHsKJdPfUN5YIZIY2YVjHFqk8RnyiUY5Pu5JNfe6QDdm2XTVnQLdSuy6aGp3M1goB9huCqyAjEgpR5VxL+JRDIMpniW2FPV/SsxxyqHwfJvSlUkeyXOXkTGPjzeXtFWfwcDbQDfF09pkfEVoEuvrlXUg1AGyK1BhZlZdZq+crMEXdUgkzqGh8FbC609UjuEN8CSSCkNViXbJeUAV6/iIExJeOAb8wp1A/1YNlk9SJqtqCo8xxwLtOOFoEdo8Z2eaBP9Min/CyiJItiJRg8VWccCSkwoydD3O141OzX4odwveNE7lBmc9eYqmc2/DZLrCOaTlcdkhtvCKUwl9874/rSEMIReH6ZW09xWVU9s1NU9HppVQjV24THBr3EwFRubWmoyN3cLS4BZBBYT7hy8ewsUfZSI66rM1WPjqO45iMw7giGLO1Uc7YvvfLOO5D6y5W/Wb7m0jTsftLYcM9sgxrRNaaPTOP1CvCOC99G0FTVZKtNHLhvxaFqIKzkvccfRS5zcGR5oDOt+NfH3K4S+61amRryq9/6bw4FDdD4uYl0SjfIu8ktY0Qvw5RDJzlTf/V9binvsAUzxZE93HOt9pMJOkntbDTuDqexmXXhnL02O+dqGMMR63za7TCPZj29gGEdpprGCZUfPNagrzCfv3xu33d4forV+9t/doDYtMvQXqaGMbQ/j+L9L90hIok1w/lH4MIQDLoD6EeUjn0N+Qyz7YaVcNC2qu23reBJYn6lDZ8M88vkL0Kbdr+745qO/8xRIPqwexYyuwPs1V0Ein8nk0NJWVg1RzYpYYmZG361ev4xbmu2tpu6W5jezDy4Cb0cK7paAJ/4O71PJj8/O/yrpQz/CIFQxgc3AsbLg7LrvPzJlZnE9eomqyvN5qrTW7qBGrCb23l/gqnYk4g2+HZe6IFApoKDPhXJgjFLD2w3XlvJ0coH/H7fUSIdxGPXFjjjjs2xKCQhApsrFWFdgI5Vt5AryZYe8zTsHEjBf27ifx9ICfcfqcWmVvazYNDPWDIfj37cPB8NlXbOqf9f8Z7L9WZAYcyWuvX416raUo3DWekEFaIwaUGSFMLEbbEmPPoylQNsAnTEQbI45WGU3xRGN6+jewc/vNCh4nxMuLCLNYW5R6Bz4J1FwS1Xirj3/7QD75ADAGn9PVgXxHHDukpBUOpPrqGJfpHnlu/clk0/oWuK3IhRtV1qnvvuQc9L5nB41NadLNJC78dYyLTPNI9Gln279NEsbEvUMWBq1wNvsaMvemBM+FFOspHP1HzV8w6GGbGcDZzf7iCicTArfq/4d9neKJRjDnBSRyKMweKhxQrBsop1MtHsAqu82EffuG5lPFUzHFgHNota6VGmTR/XZhnJAbh1yf+HZOFv53lnTH/xH3mP1Xo4UbilnHpJpYbPMi9sjSiYsECP0unjicTKHw/dtXpFnJcThEEcUL9KLL25yd4oZpQeunA6ccjre/98hkj1WELUbSJ1Nsu8x9yrgmfOb9Fe9t54J7ecBV6cK5hQm0dz35esNyQBD+n0/viJ8k6LayeiYza8uSfvISmBAASK2Opm8MfXaEAnWmJm1hNFQfytzf6rOV+D3k8a+TeDcP4wjy4hs+kuWkl/8Y4J670D9SCLHCc022O2YtXHtNh8fsXP3cp0XmSnPp1CuwtYB4DzfaiVRbgsuzro74P0SDCKGnRXJdToLbu5X+yoEA+3p0fhfnfSUO/uOD7Bfp2Zj6wamDJnSVAEFt2WrWdklrFVU5RE3fbzwv+czR1+P1Ot5S+kPigLdpk0TCrRegb1/5XHQN5duBLFmASskQO2uCTaR+ysuObqXhU+JMvjAl1lTZXbs7pCYeKqNc1HxLjikts5XcU/pS3VlE7esHOkNsWnIwNYjioYVm8aILKHhHFkllK0RYtZmdpawYUwmRuaHG11OmEbwFCibIOerA9JM1bX1nk1xq8ObEwyf53Gxc+FRp/xrC9cNW7jhhxp9ZQDnNYs4spyI5/Mw+rFPMVGa+ajES8AfbEWj1h+HNY7HiwwUQ1ZO+S99UXUwzcl+7aTecukhrnEdTLfmqeNiIN+PxhMoAQnU7ij8CqNbPG/llrR+GmWGPnFUHQlLIH9ZrMtP01Fy8xKhDX4vMsdG+gIqoJZ3WyBWaGGHTLp8kYQxahTxp2xgxdqcq140+JgNNB7EdC3IqnvQYHoHdzmmEXgbDn9Xng6iM5anUB2qGyOu8DCGk+Jj0gr3qBjBcNb7JOPHicaTWVGugAKqRnwuqT+QeO5XjLrKMAD1pnEn/W7gFIxC2UUJWjCwNA6J5iNHooHXMZgc7moiJsjL/Hw4nEI6MLOZpP7AXWrBacGwEL8Y+FMK7DY9um8KhLO9ZaRC/kuRffOywdgyJe4NasHaTDHMj9cbrF6t4CewGvHoriOmWRruSPANo/1hV3P+1ds8LDaaVZ+c1Hyn/HoFgnmHD5+ZM055C2ZDZGdQ+ruA0HMxYqn3iscqyPPJwBeZ4l2hTDLJQqNyHn4MJSZJDOyrE0Oth1tr6ZvQIIBi8ZqrVzecF/+sX4PhQnF8VTwmJgSTc2+/r/MuRM+GZ5DI84f2YHye9ItPdFiES+GxJm0qcPfE/iCgsGLmMfyuibiKKyfKwsNUi1zRp2wFDH7RnE2HewSccx/fPx/h8dLxZrdUCz4yA/Z0gOzBjcgp4VLB4+myyC6Md6XqHI9TvZFuKsGYcIeFKN8MkatJeiBsmmEsciyeWriSj2wynxkOTLHzOnvPYkj2KDHIEx2vpEKj77+PkqH6OuxGzPgrGyt2XFUHCC8o91IyDMXCLf5v4e1tog6z/0gPLXVOML2piXsAktE+pnTmF9BSceEDnluOuZBx6KXhnVE2KzldrKngGECTAMfOs8UEmeSbrwPxIYAxyjrmYKEnJ2TwBn3reawV1tNOTiFHmy1ZDhXubLkuSgyUsdz1DVCaNUV05VLeN47ucvuzpHTbUbzUgmp2flz0TbECMG20UKxEz1/UKElzik6SlAapjgQ6oIGrOUfpXow8EznXhh4Juhsx+GhZFXUJSWRENx/h2Zf3bB4ypg/kjv4/+WRW+EUQbcl5YAuPQclHnde+J7QxPHW8Gs4Mz9Tvw2ozI5CoYipjs+nAV6vrI1SgsaMW7wkERHf4PWMAygLTtAMeprvuOHQgsEu3E8GcqOF03ptHqMlpX05lQmzT3d0a+ivs8FtWJokjFk24DFoxyLBZs69n5nuzgsIGXJ+v1V/exDUSSwFM+sqlSBXDSZoQ8NmWOBWN4Q7ndAsIzzIFhx3Cf/WhHWRUqbrfWk1z2+4y1LtibJV/uA1JqtUTHZeAj7/hLaCvYvjqp62irU7PRlLxqTbBa0Fd2t0uwM+bXVnsRAdv2SXqZWobt6k/fml/uiVFOt+69QhKUOdhqfoA6r8BYDTRoIHgqjcY1dMFuwP5ayN+IsMVZPq/dx3ZBi66iH5qPLm2vzxA3Thz68snyVa/9MzHU0hSKz/dliOQ435B6j78qcufdKLGgCRAVyJqfuUlHg50rr8VmcHKtbeJ0QWYnr6DHBC5mPFuRgiqnxCgdpGWx0NTIBVkDyWPJCv8m5qYi1hUX/dbqnl1GOIMLJu6cpsDAxDeE2e4iuOY7L0rcVp8va6SfJ/6vPSK/kPoB88coXaF3mpgTQXxSXs5hhA8FY4L2VViDEcz+SjRZMrq4rItgxmxOfbYcyLA3iX0oc9eJQHIk3FkyO9zhWuaVEQBtkuFsBMnG8Lo0roPpjFxNS9GsJBsqawiKNfHcHffRIika1XaDSaQGnkKYTP1JlItXOdxaSCPsal/wqkK8Jyd5YfkSpK9S3vu8VHTcHokXF7yDGkdTFyCbm3FHi8Nj3IRjRVzmjN6Fz8KigJfE0+e0wifPUnSC8/8k/PSmVEQvXGZw1necSNtPdYNb3WAtA5ZLV7LwG+yKqE89+nmn4t9wszYBhn8mpThaoOIOru4IaoWwHoSBaJbzSzFE7GelZ5RnwnkQiD42ryf39oZrUimJAoJdC4lV/kPVu1zcBDtPA7nEvW6LSGyqFi7viDmtCETEMs6+ALTqXloR6ugiJP/ZiOc5o1yEHTBllfZKgtiNA2BuAHV/X0errtfEj/MmGEYS/b1+FldD9Dzznq6+1+NV5GRig2x/K2oqzUgNf5pJD4h38NLXQjXGFSojCvS6O0O4AD8UC4ZNIXV+0WGj6AmvDtGjOTg1zCdAngkfPOi0iSNu8R5aWmU13Na7yLDjf807Yz526Zxxf8hLH+yZIBcJ0prc2PVDF1f75qTqSCTOYZVDx01abJAy7hQ/hUNskHD/YbI9RGdhV9u1UGmrxFB/gQn8/L7yrEE9veVpf842Jgs7ESyrZd3tmOqVv2zkxe7TNjAMHEyNpOmJRq08Smx2NKVGeKDP7E4NnLjzU8xfj73Ps61itLdAr7D79jOtTvA/e40ZS06u5AB/VlVi9bTOMLYYHmp1bX94w0NXNdhH1w5fcv1nny/bYa3SUZYG0ZUPOVKTDelZKSnwQi7u8Y49UE49Jhv9ZomcTp6tm7UNkNAHT0bXYwWFCUfroyybC5MtFEpw2+TCy2rWN24N1iAYyOaRi1/eDipO1nA93JWSdFlcsCIehAPowcNrYnOzhao7MrieyUSnZddGJCBDHaKWglLzPbDPWeqXQb/4dMSAyBhGoYXUb7B+rv193S7Jp8Az0PX9tk64H6Zqh9b4hmr4QxGAa2UacHCGW9QPIZSc3Ixv3JLzK9k+reKOP3kDhfOL6W7Zot7/eMf9tZEuFRkQufH1KyGmoC/q3iZ3YK7K7VEw0vUZRhhd8a+wCLSrdTVx878SEfenfLedvfQB7M14bfbLNcxEb/U4sAd4622xqwmwP6pLurKFmMcT3lvaZkKkau80EfwSalRFs98EmwivMwRFWQsWlShlv9ohcrWicJkrrT1acPBsli9PVvG4sBK8O6mmkvPF9XhRsTx/K3+oX4kxii1PHv5omYpKxKuk2zuuGixPgcrA5+9Q01+IkPeiQAj4NuG++Q2dLnMMl026FQB6/EdQwPM3cEn5ckiyEolDBto+7oaG3v2v61kHEADwlhqoF71ZCNe6T00PNRIP/nzGBjoskfnwxZpHp6ILL9yvwaqy1eqKvyAy5+Tsjbvrp5zvewnCCTYbZqrE0N0PQ7bkP+bb5fFfxz85iTX/oT6RSLQuyUZPeKuB15hRNby1rM7GnzytRmonzjvzuJdjhGAVGvJFh1vBGtkOhMPLK0eY07FTgfYM0KtDg5QGPbPbUHuFAvvv/s5b/itPznx2L1Z5dyWl+nJNJy7//eF9foKFLyhMe2LZKDsY3GbdjeJIqv448JE1TXEt6ItRhVzaaZ9QUGVJqVTl7E7cp4AJe7AFMV3uYhtnwqldoE+OofMATYL87T3JeEdkRvDVTFH0BxZVMyvyQo0n0cturOt3M3ydNV9qvV0dsHVnPJNozbsNzvJhNcUTbq6R++EGQqT2/kMKO2cui3spfRuJmwKEq550a5uGYgIeoojjBIPCbhsioOEWfFvNsS7vhHvZFgUD/hqGEciLDqkEdnGFIm7gtucy6MVMynj7wK5cEfv4r7ubaGGSr85+4geeGTdeBO83Zz5N2YfUripyXtxGvUsAY6+rdmGYcErtBvDbFIAmhiDQZmz4oHeeH2AsZ9YZpPS0oAlnfmHm6AqmJrxt5aUVKcD+1Ov7Ux84R0mOCZdzrcDTMEf1Caj66XAAeEF42YJiFobawtgpPVTFXMR1Ak7yXtFDmooGkodd0gps/a9NXhEVg9qyJ92GGNnk6sWaVtJzjZSLdtskn3JmC1jrUbeGeKAmNbOAKtUWAOIzeIkZxWIa6KmZsh5z0NQ9thSkpJ3DSR/gQNgZUFIHivK2WOaMqJjhXiu68arhGIxNMJasnOrTit1v4OAdCmrFADPa2LnMZIhoB7bma28Fl1VbflrXtbPSigNsZB2JKAKKXh/tGjk9yEq/3I1wtStrEbH9+OpsxpPlE24fJKWxjuceuQ2o3+WGmfwE9J4HNHPhhzwHOaBhP3tZEAPzZ0rPK3sr1H4M9SBozvKdS23yX3bA/Jm59gThu8qY7QLgzoDuN3qA3hvS8vRoTO5m2q3IgORhUzJbSBzrDPajZHxocirOnD78ZKJ7WuQbbtJONpHS+zWggZuTQbXFiRtd6DbRsFmRRbuqexsDueat2N/ygo2ZG2hC2yYcZnxHy2VB6sxC6JlYajbhhwYif0g5+TG0RO50dcOoBWyvamHSfwjPXTN/h228kKLSw9UOqj3lqzCQEBo9B9LcJPEnw0D7Hwk24l9p6/XGoG4rSyauV9XByqeRlzNttEUVVK+8eLaN2eonMVMV0A6I39fQ1+RmGjtbKlBIvhhHDuGo0e5bH1binIMXj0QpGbktImQES1PltW0+QKVPKH/ftDx46l0v3YEqc0v05cghckMoaUTW0NHAhlTw7608PBufaUXP9qSb7ac+c0DIj4F60tAuizTiPliqjonagQDNKvu29sydte+s+8A6lZsITeLuy/T+4gISe2Ypo/QTCeujoA7haWC6MXnWKV0TR7UWikonRnjJyb8vcDUTjGAey4OpsYp8ntLePpncPM9eUZvY20829D0yc4pLJ/agaqUPMWZTFu5DAXWxxhZQJHcPmwBvyVHVOdBqA76pMpUT87vu+ddeUWG9Adw9nsqD2C7hHqG3Bl081JV1RB/Qva7p3nTO/G+Pzh2EivE95i+bBUp4mWuXzs3QN0rYvZ5u96qy/OxvF0bVx/CqJhQWpM5JwpWI2Hl/7BcwBxbIIhtpZys2PsgtsvQgwZZjNT8tOEiUv1PMXTiJPSbTbpzDd8skV1ZyhA9iVxxpIskX/biuP4afqcT3xELfLrmhIp39KzftTyZPoZSVty4f60JLMIVCZ2zThBDReC14S6UVmjCi+ijyDeFiGm7ZelYwRYkzOeiUx/Dr+rWRPhozI3mzNRolLpOg0Iycl0Y+bRgHxQPYQuDJN7T8JHTBlEfIHGMbMJ4Z+Yr8QDhJri3DIT8ypQZcbQyq9AaJDpxrC7FTYeYyRdg0kj5Ij/IoKHtI4Qf3Dg37r6twXo+/FI0YgHl8lppDhVPrvam3X+tKNwYIGuBn2hxg/9ffntnfuo32olpZytmztqV8+/GLrHlrrZxe9FsiwBm1xg/VxFvlKcEspEgoi3dga8XWgewYmFrwhlO56iUt6ylFGlQKgHgjuKdUv3x+Nw4cy76KqaG7udJJolQneGLidZGp/9uwyjd5C8/fXn+moCcJ+NbaJXwbkY5byCdJjdNZdE5aRFJaOI91vL1EWy8Zstg10daPIgd3Btnv+Uzk/roSui8U3kYbkHjWj9+OkFLciWKRsDkX5YKzTEiTR0XoRv7bfuGysoAdxq3C7xyc/f6M1zaqMYiH4wkHT5B+hp7Kg0k3y5hMGH0cAoK7e9uS44OaO7p0CoIkLsT0W+ziz8Eut1xhPsyqriyqs3AEsOsYgJtEda4x2RKeXFwcxUePRdEOMDRYDei8DJ5D/xFLmEeX4lwaoAbBw+FcTKl37qcixrIK9VUO+LdDlCK57QU4/5rz2qFi086KRob7wxcyjNjRT+4EaAzXkbxP/EUwA0HPCpCl6C9Z2DAA4sBbgiuusFnMDTdNEcaCj4FjI3Clm6dtnTlPbKZhMxvSrq1ZA6dSxGvKcv/PsqvCBFyDMH8FkXQwJjfejRX5820RkutDAaVI5Pe5g0wILDbH84b3lDDl1LkFbilymz91cbzMr15csJv36OxgVQN7teM2EmMW8IJbpDp6lkPvn/EaVGizwm+VWK+YHwXAmsVdFkuupRto2lpWNQHGG0qhsyOn4xmhqbM8+ViLm13gTEUAzDDXPmDVLtAg28TtVJNSPR/+Y9yifkVdS/elJ6+nBFAHosxFrwccJJ/VmhUXCJMzPxNClekhIPUV9lSiE8pIWuHvYwkAzsiTI0Hb+yqM2vvuabRqaOu2bqDtV4+sZCxmzsX/hZ1FcmVQk5XSRFMN2NSivV7cArevr9s9mwGIEbfRH1W+NBWEz73jOxkWqG0Ts+BSq62NIWfl/UunQ3SPQtfppwDKWfKSCkTS8PGbUEY2Dfj4ZejWOLla7p971BPiTl1+z4Hy9+vdCx4+CHOTDCaIzOA4IXjhQujLfk2HYbdKoWdzSE4LEqXQ5sPKPO9rYdcsQoxPsTRqHdUTP6U16UFSUtjBmIsX37/RKWlUV7DR6NWhYsqbe5OaIPCr9+T4WzIa+EzQ+ZvDRPD/N8MzVCPSQnvMKB54r2jqXwVoBuZ4anbMJMHMNblnDtf7Gad6rEbIALq/ii050lGYp4LQT+t+tPY0+HCSe4dc51MlVSt2iwG1PTAld0n+GWN/q9y+rkJgxzcop14ykFOwll7YnKSOgYJsMiNdUGTwb0vWjzN+AXNQhlO0GdUenuUiVnpzjaZbjWRz0t1yBTB1JeCWk4NvaGJeJOklmUI5oMC6NXNF/mNhG8xmbrBIv/T9KL8a45OzZ4SclJzoYRmN0I1ndMnXNF7QIqTQ6H7nOoTRBSWn
Variant 5
DifficultyLevel
500
Question
A delivery company uses a formula to determine the cost of shipping crates of different sizes.
The formula they use is as follows:
Size of box = length + width + height
The maximum size that can be shipped is 425 cm.
Which box is oversized?
Worked Solution
Check each option:
Option 1 - 165 + 85 + 160 = 410
Option 2 - 205 + 90 + 130 = 425
Option 3 - 195 + 105 + 130 = 430 (Oversized)
Option 4 - 230 + 110 + 80 = 420
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A delivery company uses a formula to determine the cost of shipping crates of different sizes.
The formula they use is as follows:
>>Size of box = length + width + height
The maximum size that can be shipped is 425 cm.
Which box is oversized? |
workedSolution | Check each option:
Option 1 - 165 + 85 + 160 = 410
Option 2 - 205 + 90 + 130 = 425
Option 3 - 195 + 105 + 130 = 430 (Oversized)
Option 4 - 230 + 110 + 80 = 420 |
correctAnswer |
$\textbf{Length}$: 195 ` ` $\textbf{Width}$: 105 ` ` $\textbf{Height}$: 130
|
Answers
Is Correct? | Answer |
x |
Length: 165 Width: 85 Height: 160
|
x |
Length: 205 Width: 90 Height: 130
|
✓ |
Length: 195 Width: 105 Height: 130
|
x |
Length: 230 Width: 110 Height: 80
|