20340
Question
Which set of numbers is arranged from the smallest to the largest?
Worked Solution
{{number1}} is less than {{number2}}
{{number3}} is less than {{number4}}
∴ Smallest to largest is:
{{{correctAnswer}}}
U2FsdGVkX18Phh8RKNBDArSkgEEqoItLC5I4nPxApC+tAKwxrNZC1GFNIpqycNITahq7ro2poGrDGWdOn1pkHYFXwDX5Ua99eTMv3qIpNdb7vh9BhLrPcA3oTGHP7wZYte3gKnePt4BCIrusUH1SdXOJdj+pbEi3+2IOFjKVK3DYwBUCxF2BAg4Z97teBCTxzKbGS60ULP1r28Ws2G168QnJJKI1WfM9Sws0kLZwcLzoHrVM9hoNc2qKv3W1FTVpAGGPXK+zwd0fRDCOH2BNInNddGzdw6tbT0icu6GZZ8lH8O/AUmeNQsB2z/JfbVtuXrs9JwtAtyRPzUE6seUvsx5NAgot2Qkc7USVBSebuEW5LQMzr7EJwav+woV5tXCqDxZIZirLU2enkg2cWXsq3LUJJI0xJ0VWczhVIauO0yNAhfb67GtBk0HAB95I+gQcGXYtqGbYho+uLxhIoZhkSMG5+1uId2j7vO2owTDPNTE+N7W7ajAPubWcWzDtodfE8O8lwmWvqrazNKz9ZMs8xlGyLP2QruvmuyKGZeeoASp5UNnYHA4c1jsaOFDrdIPrj/+2Epu4cAG4+Uxg4TNXVXg0hIKbkvfHIr2inKaLwEnVOSLmOxvYviDgiqvhhVg+G0gr5e0ngqPRSevhg4vv+k6gi3r/p9MxsTBq6j1GhHWRcuG0qPvwusF7XubpCGyWLbMCP0EqwGHhNwLZsXL90Be+NN14xl3GE3rLz0i77olh+H4QTPtkLRDbA6l71D9q6v+lILb71ONlfgovAow5jIEmOPlVB5z2GDLrCV6c+Z+c5V4WMXUSfBQ6OJh5n6V6/52lfTae7Xaj+vwT3ZM4rhfyzlLrTwCdWNkmu4/GwuITslc3BX6jVuwze6ph0HH+uxAXznAcCRoaIM/uM/dxbO3pvKlifhofncPsD+jA0y/geejbdtIfUJymL/ar/SpwLTC4ACO6yg5rS0F2u68pS4QKUvuLY11kDxX+glaw4ztCBlYpaaYb2Lv9uSKVMiYld0li0z8Fja5nozK8Qb+6XOS+685jrC1gnbDgT/OZwAVznrh98s+XtgkUAiqBQ2ysuUJwV18tfKz4F+I5u6kBAZtUr1w78SB2btBZwug1juD60xX+dF4C+hbA5AFLIPZ5i09l+rxzNZko0+GJXuRkRkurySU5WTUJShbT8sf0+Szwz2tA8yLpVDrbulWsFAr5DD/bzHKBt6lmrpOyrSKq0GElHeBOpaaHoIKn8I4Ln9+shvj6nULBbW/TFdpKo/fHhX5w6fMW6fOhFWDMxEnbBgy7MSvgTzTgxXktL5qhlffsV2o2N7U86QCzDmj5d2/XgSmCmoZ67E0c0E8TVvXT0mEqCrzYv0orL8LiPLNDcfkq2JVhuwN8ZG7T5vuBwxD3YGm2cUcdSViVjvh21mROT8tuVxWCOdCg/J9cMxN/qq9lanPvMm8Pm9M+j72TPQ2XSGLfPS+VhbQkHsljexEhuCgJGUcfpDHJCLms6KpltxtVM+vPukX9+kdZynBOIhB9fpvU8ah5fhMtelhAFt+TnDExIGQDCESNJD74+dm4ooVfZ7AQPbd6wDnStsjyVCkXDKn+Pe39qPpNcqoTexaCn/oveNdgP1ZmKdqazRp3GFaiMHmPXG6kSAqBe+40OiCd8uvXnFXad6xHxBJMYgDrCU30q8S51+TxklFfA10kH+JO5qwyTqnYWvQxBBoVh5u9IlVc4tcJGcNCZsceLThJqOu1QVEy1+CUAGbva1T/hhucuBj5yiY65a8cebIeSpKZLe9Tz/WomD3nIQr2ViyIJjatDICml6GmWhDGVwCFhS8zP32KkGpz0o30wrEhAZzGcb1lB+NZET0XFof7PVD74XPsqzUn4lzR15q0OoGsMTuCB7tYtxRc0dbj9Tbu1OtfV6cOjQ4sX5T7IwZYz7ObhtTMYJSxppIiD8JsCbW4t+UWtCcA/g9ye00L/RR0pPJGnm1vqbyqzoKLIyCfgcpK7rtk0BVgp6EydglziPWSs0FTH6mRYcjLKTioOE0TibrCfyTsXkxaAJcvBaJTbHx1wDomDC2swrRmGQMRUJzWRo5wIUF1fhAJQlbyNvDM+hmU0gsRMgETccnpIjTuyRq7LceaSZ5eXDTgwJMJtsT4qY7VRQUQd3fmxGjcQv8e8JhQG8Am226MnIt8irLuPArf5WuKPl4H4EKfc6GyjVvNYeHYnoe9vqnBpYnawoWf1jTo/0wY5skoaLAV6qWJF8Dx3oebA3BwtXvjdY/w1mmcvPk7pKVg4Gf9REdgxTxkWBuGKqCuSQ6ElUdQaN8h5K/Syaj54SSBa5IaiKxIyCt6RaVjAgERksk+ydDBe8c9tniwzMb4Uw6nAmxBn/24BPKULg2WaeVDxyTIX4YLKJXJzYpveNLAVWfkQwO1JMa4/5vu/qAmnpeMURRP65AQzcFkkZeiu1dnsVSIpbC3n327tB7yDU8TkQxqaDA0I4VBjtsmIa59/Cn2V/do/jcT7CdKAwYlecE7xOp0l5fu/eFGwWDIqohSiMxgWZf+9IGvFNzrlwaOVAe4m5eEGQy9l2p7qtgl33XL6ZUrsNF2QldTiHU9SM+u2aWOyEIDONjjLrreVJ5FANRckjKKCxhFlxwiZFXh1wQf5If4xeeyvoc4n31S5DkNw0vJ49wBEu4+xyjXrY2dPqxVZmxn/YXSqXWjIPVsC7mN0JEgnSOaH6R8TbNTiv8X1Hg1Kvg5N/Rw7UhUlEAA74WoKvWI6tPnG0DbnMk80uDmSmYiwFuDTGi9lHMucQ+QLp2OtIVpT0vxwzurgtg+HyyW7l2qBZ7dMyhlz+g6NQSfFlV9yQn7rnmQhLOqUy/qcZ+ZTwdzRtOwJQuIoiQ0Aqprit5fRc4OyD4PPM7KwpCMgw5rOkN2jtD1mp6DyPsl/vB8HjDqOQ2gNZLOfGqBzb7FGvDdzgnyYzjuGzfg4kzC2e0Ymxn9G600m2MI9xt3fvj6ZiA/zvR7juV/f8F7I6BLRYRrU4WwbtQWpIzyCqxX/pQHUjcxdB3afHft6lKAuThsnCaI9+MCloI9k1Eww5rlosYHdIWUGmN4a886i52tAsYQKHlQyJ8Nt4ejGCgbrNp2xnflYZH4WgFyqESpeOugUsEw3rzoohRn6ft2fjafO7eXcrZAJFE4pEx5ohzypsuEbtzw1kKsEWk3ip9uZsJSDr4kqNzAF3db06slG61dDjiIjvSieeoHJZjlSh7vwG0ldOliDJwB+AM5KcQOBg99/bD+qwyy0fsrEI2Yu03J7f4+S0xm4ejiqGq0XVe0hvFGVEG3oFjZyifRm+w62ScRgKnJR5V7uPiBJBZU0o/WWHEVAtITUuFzaXLkVyV4LgYdZ520S8mkWXkYgeVO/A5BQ3eAhfzIo2XT+jf4mHTRe/CF083DQwA2vVbq8gt8ojYO/uSdcv2Ma8XNF595RjThUFbKJtaqu/0urOEVwcFcgAzb3Pgerwuvvuar/4zI+Fm2JQ/youmEJ43gtuHe9bFWdaIHM5WPBjzQwoGv3t0baAX9TE3uLPrypL9Qb0EsMV2O2NNwsvBFIsCFQ58ojkWtwldhpCccb4Zb6jlCUbOQQOgG2RYv+x5GHeu51eQZ2DttoW0GNjEF2J8SxMbHJr8wyLBwwLDX+auWmvmCU3Cc0tZsW8ZugHolkJssHTBXryYvSxy+tfBEitts+55kPCR6m9l+clzyva5o+QZTF7m9GHnw5+m42aVvFbNh4832zhY7BaT9/+WDco6vytSBDt0XRzxdP7lofSMRxtiQNwTvvn+ehGfFAR4tofZXgsTqFiAcmEA6Y5jkSScFxzBLdbRt+b6WdHOjMDGl3zxAbCXv3NnEy8E0/yFqp3WfDJWGq+8okG1Z8byVFvTXNO9wH4P2AyDMvYpRCPTe9MEuI4V20Z0LOL4INYJr3ppKr352T4cPj+S+vwm1BJSCyRPkAugSA6Xf06e6mcge6fLoJ59u9KqbeH+Phc0YwP/CAF+dXL8e2Mf8H4qRQyzI0iid0cxkB/c34ehdxmr8MyxBQx4VRJTSIMSKfFZIoqAq37XjXpvsJyJTejubILVQr4Iaoh0PtumehA37FJwRlBauVOu9Es1YbpxztcQmOOKKVjf0eOrsRuzGTxQ+2TtcdLU5fn6kA5POQAFtE1B+Z3OwHCz1PWDrKGH73ltQiBMpnBeOiS+r2t7xB23ZHb42SLvn3rlfEXxXuWSi48Q1X85l5prcAhm404N1Ir5ejdexh4yodHPSf1hZZqC5lNh/k3zVHHR7v2hHXaDCgv3fzjgSpPtgVZRzIa5hDzh0nILlLTpfwfeVKCONFyzw3Rs8r3jStaQ2ENnTMsNRsceKy4+TBmDCDHLQXVbn83d7MZfdb564eWLhAfWjyDheU7yHax7mosZUfP2xWCOVt6dIExl1yJSAs//EX5TV3OjG0/T2PBl6ThqXYg7h2iE6bf/Mvq758iimYGdBo8fpIMfssfC26v4zJ5Z58w7K9mH/QnONdNKWbNFdRPkS8wmcC5EWOJ/Axi/p+q68Ar0CCRfbI9IntG792vA+qyhhoEJvOZ+I3fKPeQdm3K1yYSmVEuEi3Br7Ot/6Ve75RAEJDzeg3+NQrvIxJjLA5WtLSwCXwnbGGflD2dbbSlpvzaY30vXAmgxDc7bNZk5nEaX/z3RWZqzyhGTgRAqvYMdBK6js6N3feJoA/IZa2x/iF8b1ZZ/PKRuK7h6ljP9+wg9GqsvzwzV9FxDsEa7shZ9v2VY+PsfP2npc2oAjwCAEpyyUYiWRaHoR+gLbYq9/letzDHxixqO4a5YKXw61CcYWn6kIbb/eQAkF4IGvbRf8HAtF6fFsbHkYeWL2dbn6JSllzx7a7UTHc+SDBg6/FPJZC/+Nl97hPodo4YmyJelcCYJRmR1hrB/dtCGAotuv28UWJqY4srJojHvWU8buEp1IJfx3tGzk48KqCbH16va+RcU2aWA6lDNKnmGZYF1P52F8ka7OspzzTD+nB3lInMyKepU9ylYHJthWKCKG7jclicRjGu+1U5NSClcCdG4efnANIp42oM/r7bj3ysf08/Dm/NymxDzefydtOhR/nDMJycyRh+DCNge4nMkDBcBmKLEEMQie6GuJCQLpk63HhOMM5LQ5rxTc7NjQ0/wEmVCOAiQOktcSRoEU/LYPHwu2OaCubRIk1f072NYnBYHO2Pvj6/PKEQ4u7whGd+rEZ3DuaKzDt2zYPcI56xHPqF5ez3djsi/2qANs9pK5nZPgZhHY4pa9NBxbwt9GYnnAUHF2GelivL80qcyeLBC3G4ryQ5YhWO+gc2WLY0fTJ+Cr+UUcY1w6d6mEQAv09KFfbDd4T/G6sJdM5FtyF3MmNYb6/P/Y7hcNcZ4xDjBrdWixVcaQlO/VOL9luKAdilnj4G2cuxF/AC2XRBqujBhMX/163OJ8c4kbkZ6ScoE3dYTK9pZ/DoTZT9RgbUQRzfJfuB+Z5djCBX3CvHhlBCAuy4NyavWzramMxBri8j8fYiG/MHAkZozRgMw/oxHNImz//gAG4sYX3OJHVOVUuuw/qHQzderaAz58LESHQhOueAe4BnExcsANrxr2mmYXx3FP1w9lMc2WniEmhx7AN/VWvHthaIBCBrT+eJe64KJ5JHMnJiN+zgmnKP5bUFGS3p9TlWeMI2mlrS3b9l3rv4quCYbqn+vr+v1YGNedmKj20PmeZoxAHhoWGI11SXbRn5a/1J0PCNaEawygj9EYw+ctOPEaXW4s0eIPY80r+ClD0Dn3FBq7fo+ZirGI6sm5YUYW0vkjEyjwHqHKRMiWb0LTjrRZQq3M3Ck9ZEOs1Bm4ATuW05LioLPsFHYn+mDvtG5BjuB7lo2JVZO2DSPp6SdAhOawLyj3CmLX/yuqb6lkEjXkBRINqFJdA6sxTDSKQZPbC4jYbQRMwTe+Smv+qdIBij2TW7cQi7oHHfkLUkTkYgPYcukRehhaAnD/oBR9L/SBAg3DK62hwj3yduOMMKb8a8Zppbh0SB9oUZNe2z79GmtF1Znj2y9w20op8LsSlDBDPCo4wFol+wbc+fsyz793CcpgLSLj8K1ucSbJdw/XC0HON4+HarRD25hyQTOgm4RXbirV+azz4wCkkAgEE8ELfpKMKCuYLJ3qok1c5agpwS9EXrD8EdnRMkyDEI06i4WQCEJFKnlF3d9HrFYEVGYIBUdxRNp+5hcuLtcdTpw/u44OQTbVmf7FyXPTtzeBpj9KfOGuw8oKnhcol4SmqGUrtiGZ9LG8LuNwPq4KaYRbNgYhSGJBeWZ6NxwRMuJDec258ddlnMHP3glJCQqALp71rD2CBwRPzV8AWKez4pZAhCD3l1fsBi35E1XW7z7QtTb8bt+uC40xESX7BZw5TmrZgxh5GJTez6A+ywiK/bFTu8DkHXZMN23Rh8IfhlpanbztWNpNHOU3Rx5ARsM6rWCFSQqne+9mZvzuKpfaW8TDK+ITsCUW9H+zqWWSAtFIKnK2tzxfOI+Y0kt92Wnc5UD7w8G1uWt7mQbSWLOhdEcxqOsYwjafIKOy7C0603A1yTGNq5YD/pnRacxTs3xROwZtglZm0Qjx0cX5OXoK2NapX4UYnAdZxnKxf1HNwUlug7QxkE0KDkVlXA6lIsRjCzw0pWs4HdqJI3TPGdiqk2dMgFC2doO8+Kmj11c1gQ7ewLr3pYYgUtonR6ifeus93GYkR3+4yI5ybASqMY3ISpTgmceODG0sPUZtp1T5T30L5yTPZBG6nesegbiCfGWy7DSDlm/l8GRl0x003d+dsOQxTsVyHzp0GkuBVeEiuywPf7Fl/aJho+oHg3VKnn/IE7uhgjVG1Wqecsok1RmGNFqj2K8TyWLaNXzwMicSO3DnRQw+uZuez+K+VvTmaMMlF1b+YvGmu+C0XtU/Y5/l1p7hzeWUwyc0sj9EdNCVh9yznlBLbv7D6Cu6s4PiyKd/i3d5lCVt1/83ySBwTt31zCEN+9/iydyXE8+dXnh3tl1eoIfHmDWiWHpj2pWEmUl/v2/zzemYqm7Ke26QmT6EnaV1F2BdxV2xVEJhDPtK44Ok2S3EhI4/l18ZyVYQX0MMvYFzT9kCkaed5SjOqqIIasM2WS1ReoWBn+rg6c1znlqPni1XltTLJ8ynDctatgdit6OIIO2y5T24YZKjOYFmZtGA/gcT0krEYcfE4LBDuCOt1A2MBTpPG6ti8vbJjw2pJjjB0253fSS7Tq93blfBEHLf0O8BA4lBsinq6hXfxKw6OedzPM/ppRVZ6wQtMn9wg3zRC2leeLF/QSJnEWuVShNpNzAfemZxpVod7GdhsAnQ0WT4WdC03GTxlEH57ghciVqPd5AnpA/tuAqA0saBg3eswU0fjZ4WhzO2eaonSP/LWZEl+yds+4a6MgsJLCWUICCAIA9V2eKjIQg3gMer9zp+Fxdv1RMLuExobmKOjYvIXjCZ/jLcS51YT+LaVqG4lQ9UFeInCRkMvIHtEZtGP7+o86V87NJzFHDGjfGoXBEl51Bi8Llq9kouNIPbx0bXdH6hcHh15Nwiq3VhDuu90TWO1f2nO5InhndPs1Y7IQXpBM0dOmovXznk4sACXs4oDaYhvmpiAT5PqiR66ypO6ezrDQmo70/zXEfm7p4s5K+mvOdUgFjUk8xiK1NBccx9kmsLzBKmEGTI+PxBUqDAycoonIRHneVncBMDP2nOm3WMsIEiBicQV33G19a9ySRDi4UWaGS7ToZ1lV/W+IaNil8FwOGpnYnUATTvHXn+7jRdqHl8l9lntk2RaReAd6wdB9yN7VMvJK/ZsZ9Cl1/AoObLCpCqr48ZqPLsNFt4FkfpaG5bztnAn9XFgJIideT2M0pkMgd+AfuZKBSuL/CDtjIwah6C2snHhqxkMqh8mP15Ky9lyrpZ2jNtPzukZzZMwiKebjCl2SxYVbSyj5Y4Xujkkaiiq4YLbBC3uHfAqnUyk/7FKJBXuw1lF6OmXbRWRIAc/c2X/+a7no66oJlxuUiAyb7x0MVnx22rfx5ZesGifpAyj25qAKn4YUPAhJv5CCkDZvekEgc+HT3nXZ9pvyY2s0MAY+UtwrhZlQnjyFON5lGCtrokAM2UOgbiP28xwsy62No4Zd1Za/zk0XzIrozZNYXlP8dpVWLI5mAn+56AwysJdfZgK+1Nhd4yAzDixz3BRmszpuIYuNJU+zR3IrM8dqItnW4D4e7ckfJtUA+x7QugAVxIFWJYvJb7mHA82k0+ZPYR7psLg1DsSm/0arnzUbB7PkgM8z0xvyzSsUBANXfrFuSO0FwbHmrMiYU+/Y0cyKMLpZ074xpTRKGxUY1plWgRb8QM5RvvVQewZOLyEws7NC8NwZWtDh8+bPjr1bTDsbhITb98ZjGYayuZd6PioTt2g5+YTb827/EbVWKN8hFgieHo3HUI49zNwLkUOIiAvoQ2uWCZoRDejVGFlwl/luQCo2IUQ8CiN82LMvUg5bu+g+CnAgaUb71//wof8oWm/PIggzMeEuyyE+MunZ03zLW2yu655OVXimw+NQl8nstx2ZCt4Km2YKKkeycs11desdVxu3SFpn22OLnMCEgjwmp4sSh5zr7kfuDWL9xi1PD5ViJwCSq67LhCfXGojVxI0xTZjfEm5oLR+K/mcSLFZcb/DNENY9NLM6XkAqSaKpZkv4ez5isqfz6gtz0DrKWGVLbD7n9ULi6b8iTiZiRx/D2cgnh8fLV3AT4D1MENJbP8NK/HYbJOuoI6ykq4I5h1CAfT/ZB2kgVSQ10DefPjP7I1RxLyokuOwTrRAd8/sbF/scJJjfVJhr2ykHq30WvqhrSu9oWGFqqcWPlSee2S5XI6TanD93VPde94gR8W+g72Ung+GsAJZdHiPrnQauLw0xtwJh1K9gMaiS9IcObojYK+0abdhSsA1WEhpqhse6YwPO5dFdtrxOh8Z0yP052BS7acpVAJ9WPTKAoyrYT39dk7eZVBJMxniY5/+yGc7rcoCehrJ6dfkyy/gR1YlupGP+sr5CTt5eY6tDW4I+CfI9jGyZVTLgivs6Um+eA8z6vy8lGV1EXN+yu7U6ZsYXZjcJC3LKJbFPunkw1E0Ag/keMkYx+XfjKq38g7F5EI7PZ2SXFS1q1NYB0eIwqwikSs1KU9e9lehqubcz8Qp1B3RZYST9Riu1a8ETxOWKtIRU01I+kCFFTV+/dEDhbUwttImlKgAogCwxDzO9qiceXLQWGlsFFbuvS0Vwm7VyXkezvSkgR5KIxAoMKtS4oyZVd81iGxm+7CnlKPWg+NJl9AiKlL/k3W0XIOZSfW9UD32qSNSgpNzhdX2mWi64ZE5O3QLkn/j/ANN+QpqPxvV+hSNj/buuxy5QvrNWO/RQVCSPpGrT2O+5tQjlj161zYkl43KgXxXnNfHUB9ptKiSSiEbhRT8XyA6iXT86tA1MdUhnnHpET60dGSaR+Q2dzo5KrVfNRg6KHMABGUJLkvbaFiLZf9F7PFAA3M34GyaF7FkJdLoktuxxuepyNH/HTkz1oq+MUruEDO89JZ7Ol5OJMjpUGM1lGUQ6MD6otNSLSdKibXoO7EyWzYY5aiBfpxnH6eFgjH3oK1puMMripsKl4d6j0AmCocOytqD4RZjE9OfGexMAl1+bbWrTBd4o8S9YMsH3L1Jp0IUF0hDvO0z0R5mm13CX1gwte0mSWrulz+MhOHEz5fUwJkEyP6Kp9IsYHrzoMBt4e9it86wnssFrGwD0eMquz33sufRSZdIV4l4M9BM1Z4xm06tSQfnA66aLbrMqgnK3qXYV/ub8UqgppenSPhnzQKPFtvczpOPM2/lJK1UhGJsBMaFWPR7XBXWlwGQgGkByULIA4DGra2fklrA466I5SQabgZs9NiCwjM0rPt6C3vr83lEdN++yfk410ZBrRsugHyGfq0/snr7CpuiZj32zfdUqqiH7ekbSV4u5s+1dLFmp7I2eyg+yLhhxIYDp4gMC83vHehHd0PTUTEFB0UpZk0oRVGHhb6jTDJeJCjJj+z6UAFz4NX+RXD/iVlYHDGVqYZl/IGQLktqfCZABIz9I0R3ttOh1QUASbtKMdgtD4un0AIHnwDmA07K+mULnC1UyhduvIIu5Nz+52MNL31wxv2AjiUc7c9VcaZh13kCLNHW/LAg7QLzW3PpCDnEzK5uHxei+5KwamRZTHD0iYrpbIHsEYN3c/W66LSAzd+VjHBQyD7BlkP8PinEaXqTk7FdaNnxlLLcgxNBj9FFV9AVi3EAdb1isqyn/KeLJIQw2NAIjSnaij9LcmbeaVg0nqzVmCcpTf3Eo6Vqa80x8TXmKAySWGxiLbLf9udciotBs7+yE5IXS9FMOcr5fLWR2DoaNfRr9h8Wo15IASGvdiCPl3lXeJqXYplo+QCdLXtb19Zl8A7eHy20Gp2jVJou2Uf+OMxmPD7HNhSbM7g6MT2gVla+7cteoMpjE1nGP7ew4hTanVgxrAApOPtrK4/KIg5lKYPmzWRT5rUnHt2CMOK2b4q9suvCA1R89pafVCBSPoVUOPYSX4W2A9z7pvCzQQuW7eQpNAsA3JGdRMEXk2dvW8B1WTNzepcuVswbCEerCpuUb+GMFl2Xxlb1MD9C6D3yQrU+7DBIqb6ZQTmqcfHamCVEOXkwu7WOSr8+wBIIaRDmE501oUMCHHRCPlRqaMyN4QeePcLoie6chBP9fEknx0l1jvmK1F7cM3byGVUZOH7M4UXObxmv/xrD+dtIalr+UV198fH+sC9PElwScGNvErL7GePv/tqHMjWsjgQfXmIZfOKnLtiGd8T1yli7g1ECIQE+Erm7jCt2yeZNi9p1XQ2PCphSH5anj+7vt9u1x/RW0UyXWTzmErBTG9MXIU5QgsrExBjiesZgY4MqzKUs+fknrL/DE6VZBv4NK2/+ew5PuHxbkPduwK9qrDrGkPgFvm3kv3ZCr5r83vR1T/ZkU3JkymZwcFVA6zbzb6SSiCzjZ1kIJtkeqjUgFWCHpLh4TXBauToZ3EvIPKzyFUX4cduKBXmt2duzFFBo10BSAxISTVBr4amkDiCD4vDs4uXhzXvSanaMtCO86c+foFXkylMnpU/POLaUuD3synUw0wh6siE1dizYKd70I5+cD8vFxceIogewSo2dv4pIkuZkE7p6kiT31YaT6pGhl6gkPTkmzDQdNT3XQVtLr6Z5hUIo4H1vggYrBAsiqLRmtzA7Okygusk/AciaezeoacSgpSeETjdji8THICUZd3uf4ePBz9dTC54PPX1kwkEEszo5jWPR/B8VbLVmnIg7gnlOEG5GQVriz6OHIhtisTHYJaYqpWci7cFl1NfZChLqHNuEHtBf44xSeKbzMamY1R3/yhP7doqKJ6knbbSaadT6w+j52u2/SDluvX4O4BAO/gNHCAXm8IyoM0OsAmFmn2bWV3PKBV6DED+VLscET7El/LSjH5mcEzlLAu4pp6hrZ+bQEa9Bn73ar1l/J2IAHoJsInBPE2uh/LH9U0cPFQbXyef+epY43/PIJxS+wH7qn5TUBwFKyVwivoiwEiH1TCvKFoiCHjo+Mzz23BaGITNRMG9a2AhA24s1em5gzE0VuVAxkBifTpc5569eDiv6M8uEWfDyq/Nw3p2uSHRHexnEf4B0BAUVloKuSLdatHBVrN2+AivEN+NrjLak2510s0sIzQ0qgKr8yz9SWbgPm2JrmSK2RJpj9OpQsTkoSFcn9KStSVvFflLyR1yaKgN+AgRNtqpDTZDO9UmpW0fqWUlzN4tbBHCn162Px4tjTIkz72Wx30X8Ae8SL0jDWTVLjQbZd/lGAvE39WqQfLr7j1hYaEuwatj5vwCTXb0k1MPTVn1+lFYCN2qC9PZvmsr04ggD2fu2X4EyT6hsow/Uhd0OYs4QGp1FovLb9f1ZnzHGL0glpKUSmh+dYOY8FF4UqqCGMHznJkVeapZ5LHKQUCDCPwj0KRKPFv8tfbj0e74tqaOxGBm9OdmXTvavoGQs3zaUuYSz3XWGgFaqThWz54PLxdIG1cbK8ZEb88BfzGa8qaqDzfrcxKcofm2IAepYQ6no58IXruJ26k18QAt3UHvajVZJIyuw10+0aC3cZGyXFWWXmFxRPL6OpET8SyY09gziLDe0dtGpIN9TfwJ3B1o28OhJyDecWMapgocekPFHNkwgX/k0Mf/PF36CCff4L4ZO6xoFEWQNFJXlXkVAsq/omzrP8B47hipmKIBuyUYUNsQYEgDcId8vAHn+vWd6LZzE+mfqGkGozU2C8yO+1VVvUqz9CnaHTZ4bexB6X8oq00+DlZuJ7naNGfnWid+KQUv9+76857ZOqQmDpR+Mbvld62ibqWVYEIlU7g05IJMpGiDKfyDxpTZ7m7tFla7ZszMksDi9HHV3Tsmpl7Wgoj2ztiFvqtHsYXyzg1IdPzbx9uZp4EIPbJZ0K17SAsfVi9ojO9zYCuXYh2DluOEWDq4tq4u0aCmrGHVeLIOPJ/zFJLuNY3Nqrt91a+8RxiuXVIbWaxpq8l32/BtWjIzCN5HbsiUvO/HtVzWljjCrn7Rj9Go5Ivr3NeCkklmI/4PYF7jdjrbxbXb8kQhZRMASw/AWaxNcv0+Wu3hh7aXsPm8PMl+05TYVTbZtE3m/L8Ncg880ixtiVZtOvMGiZPw/RGJ9V9OjDJqFsBR59/W51ewmNvFEvd4UBF1bJgL9B8ryhIkRPTxph05PlDZXjL7dec4AQIvNOi7h+nBpw8pAQwK4pfh0uXsoIJDvADhFu+SHryL6nMsVOsKmBAI4M74RV3iFmyu+wu3V9H5/HoWNJbQjVsvhFflJx63QnqVF4WBYHJcJuCKkSV0Ky0e3d6683MkLZ9zMYc//tNXQt88kA4PvMJ0t2UTP/rk4ykU1s5MGMpWBdPV1zU7vTtx4LmB7Fwn8+/921bn+3O6FZTszsBLqfxUGFi1VqbmMTqahpamhCPd8IiSVTKU/azt5+2y9EwcwD5SCC0IcL/BqQtQVmgdVNfv3R9fVWsPm66Zb2kXX5tlw/TQUxNjZ6XrJe0iD+Jj4WC7pNL71us8LP5Bl99iDqDqbuW/dGLDXJWbYWXzQUnGBy9wUidUTI9PvARGTZej9wNeRsDWeVtcT64T7XTZ3tET3yuzire6VV+kjZyUGS5rPyv4FzdB1nQG95oYvGY0I2FgXXm1cEOiwS6YMfY2zspMfWFeFUK/8zmMd0Nu0SJ/r1GIqraDImLQdSTU/OjAWW1cFaNSED4YI3NurOf8ZnWi641h2ynHpvNNpcn20KNmuU9MY3tuLw5SNJuLin00+rBpnF8ZgnkfZvBOW31fnvNBpr8qP4AlinbEtx0OVlrbD41x2v6rHVfac5W5KnBcRsU4TFvMn/IQuGoXtJEithRQCdsICefyCu3Zx7Otbi9bK4r+bMm/CgbKaTW1/ujyTbhA/QNBoP1J5ipRMyngK1MKdb6rUY/m1gZCXIF7Tb/s9x9PbLn9uFHMed3pugYNGQkywLJkJMI7ZTtrSYhquCw0AYjwHyY8C/KqwZwrG/lr67yAMMUaU1saL/GNkMImlfihOEW9Z0VE9EGjN8DZZ3TNKQ8vhtO+aH4DBWOZnxWX8gnSEZaCmj/I92tKF+44+U5YfZI/H+Mm551uK1lqI1mOREWxdCGaZGNiCtxy6oKGB05b3kQQsU37ARrUuSIgTvKFE6L20cPjSax7+Yc0LTcWqHqdh5QT11H8T4uMH7eL2wEmRHdgzai1TNmkTicXUKQiU1Ls+vNP8+PHDCpXJNTxHpIQELHBYXYHRQAEe0oPaK1Hwr44bs7AeDVOChTPfTRcM7LaMFosdOd36b2wifg5r3KQZX7bhiDObeg2LaoV1U3aNxjMgQ3D5lSMqCHb8XH4X1+6QrxsylGhhzPyEWtrXVeUBSFA4DmHjuS0LxXRfENUNHYoJIYBiPehAArYl/jo5JoKw1Od9MnczP8mlIu/96Wp6NjjX6BmfBNwwkWd5T3oOQelUHHatW/S9YTS3JizfrNK34TXR2LlwfWk9CpDLBvWFiZcJ6/N7WoR6NMKZunh2+46mn+Fv3NEoTIwE1JHF7a5phwBpeai20CbrkYXU3KwyoEtRGcH7ehLEwvhs3aV8tcJ/R3G0cPgOFA1zJe5M0asjM0s0AF7fYSdepaZE2vSJQXidooItG6tf+EiVJtllAaNzU6CXzpOA98iWBNXds3xpt8I+CZYFpP4udlQei9pE5RRcbj1VLV1dQKaeKBDFrKbAargDozcDOjbZcFyb9+XYpuXdsLZ2tHUadbXkQucO0amSaYZlW+7nxiVZ5++Rs9DDi+bDyrv0sJ5j4DYTQd1sRlSZakxeMg9NXN3WUB6ebjTVyYFGwWRFlS1g/G+DDv1pFx040Lsof1ceBosswE9R7mgTYlTZpJpiSIjD2dNE5RK/IZ6LN0dnCtltKtwY0vRpgEtHyO19q4Edk4qi3COnqYyjCe0EjNYIdDsPkNxZCODynXV57iizi0Q7OBpKg5BFTLd3XWR9piY5m4Oiv9G+03YXgUq4qdApD9dzplo7GCTe312yy5U3BqpHkZiSYqjC1se3CQ5k/Q4VZZTqGsGHh/OO/dij9PP26Pi7jokJFUM3NZzYNwB/bneAtS6FrBzAgQ42WMcoKuD8C3vzvLFAJ4hI3eAPOhLPtc5Bigp59jnwFHbJKDmIYjeRjVR+GUqU7rNbDjlIhcSbS3D9ZKDFgOlsTXOYKXI4pg2V7RWAc7MRgCINV+8DyknSkjSisRqgUohh86zfRrqnsEVeIYoxUUMIUUnRORJGmugNkEANZEmkU5VI3ttghaWEtuKnyw8qWL7BXRI+qTsr4zxlteFgOQUPxBua40MlVA7rYpEV2Fs71vSG1tObcOVY8X1SH+DOrzMwaFe0JoyQow2bbCH/HKVMkKqp4TY4h8bdzx16owSfeMheziHqvfuotWyNZXmfEXnwF3HNd2O1fx/7FN4b6R5t7hh7FwBz/uETSmA7dlSJCN+40scHRbEbjafyh53LkIUFyNjoLHd9ya0dL8vITV+XcUdHepi4qtgj4nebBqPu0hfsHmFE+cZQkIpQHFG5PvVJXS7+FKur9HfLCjyoNQi9pq9Es8KXKyXiCckMigGlJ9/ha6XN+Gx/isUZ2h4ZW/KQ5Z9UEW+VgQ93RV4CIgyktAFmJvw+EOqZkWIzu7oF3JRXOT7VglNcxlJRJdgpjSk5BZSLvIOUqlIz7j1CELt7sFvIoc3jnHT+2WRFHEL9kqDnvAZ5sIGFCp14TCF0mvHScB1YDRaRNryfvBD/qojfxvgcm9WQCHJg6Ht/vorJvr6Y+zyKHEpOiOdxWQvsQwhnnadq8B/bPUtv9DbQfZLFz0Yg98plkw3di5CrzdkTrSGPpXsALYrdJNQn2yRQIjWTZlK83TXNsDeOnRlq5lLPIBPTkaBYWzqxqNwWsIFSInaDerRPk8d6CYtudgaFv4aDISSTESDuDUsRmfHLbIUFNjFF4jrtRsJjykLg2pS80JRIWlz8V+ybiOt1vlmWHaSUN77z9zUFuzAPK+9AFYw6Ai2hTL+WfI/uiDvmdPWvRzXJR6R+Y2aQdtUEp+OggJf3IH0XMRe37NM3Tcf4xRoNb+D1AsmpNzy2lIbYCiTi/9zFEB2NT/1h8pSKL29Q5tpXa+zSKi1PCvdKkQsVwPoXRN14rW7XYM8C+f0yxa2QqGAVTuGV4t0EOgTBQq8nLcojJdI41SK/E+rmMnQ/DWpIqqMIgIFdBn5ly7PRDCJWfFgIxp/vF8AgpqgxivU8EERlyhOD5SNn/G/VsHLT1eikDm/lB/ZTWWhGiYYvP/Q1Tz/o+DEj7uFMALsZN+/OHCYF9kelqrqjFumcofDZ9Oon7dsaLy18UdInCsSwmW8+kGMnnZv/NJSYz8uGG6ARenJAso+fKJ2hiL2HFGEk3FIRnhCTFfAEF8D3/grGFpvLWxPCFCrMX2+tVKATnU30BprvS6VEqXJJUdmulGRRnGlDNpKXllRX11hck8mLGlmtloyqq5q+1mQsYiWgJpIeiGuq4+X4IaF8JznTuINk7JS2cX+Uq9Px5l1kRGZfkIzslm3/DHLr5PSDdZ95g5TCNlDMT9Z//mlZYKPauIlhJscA9I4FIGD4zErvVafoMYXZ094/HFxqpmpDxkekQiMJK7kORkmy1zR06xzjy6xpVvrUFIEAb0xN52XswUZoUzg4gOvCbj1/blCCNiDD3gevuBENHYx4urrBIOJM6xqHzy686Omoa+Aas0oiVXschXHvkdxSyoFj0TTupRQQuvqfiUMWIiYNr8haoxB14y5dJpXf1MRY4G1jwZtfyn5MYaC5Fzgi+tkARCKr263lbceV8hqzOyPXyYPVTTEmc5XsfZOx5HaParpd+Pbn4Kme3syh3n2Wth3J27vba2gdmGBSgBr+UF9apFr2ofGaLGglauuN1i5ebiw0H7lfL4jImBvwSIO2A24RT3INcJR/+///NgPIeW472FA82hPRZxIvgqs2CMqHkCahqHWL6qBYT1fBqdWPdprfspxwfFc1bV7zrAgnyDGIbl5L3qxT7DxHLFeWxB8F9n4PcKc5576hqDTiKMClbpqDCSd/Qu/Etzxhb/2mzQJLnglNEw6vCEAHsKa9ATXhed18dHej6GENeZGrjB5FOjhl0WUQ5Kdpu6aLkeNwsb9H0ChdfQA1Pm3JJySNEEgwbK538qa1fhzA/W1/QYDTtQP8TtiLH8WT+A6sW9ErTTq7w0SI4nvtzXY2/ztMElGueEosOxCMUddFTnZeeWPy/G7bUwwuJWbUGUBoDkhMRPLxhFg/DokCZmxfluQLNqDqgB+ldTw6FhynwpxrphLi5+kSdi7MHOhl7k/L/JwRRrKlfymex3YSSz1d2oiMGbyGlma5m+QfTMafV89tfXpY1lf2W49d2enNYnX8MRUsNOwJkl2JuX4CzRcXvVqryqjJQO0R9Au2fTgIQPOjHVsGIb2doz4riiNjIjKMYiwo4ZunFnyGHrMrirWW/S4LGXUimtuErYsamNMPs7c+jWK6MrJrG6Eqk+9QM5h3bJMZC9QGJMyLxwsVyCoUXSpda9+hByVmAeDorf7q+A/CVbCcxL5CWg6QWVfxqeVy/2aHSHkJOkJ2KK9Na+FUuAILJxeMlYDQ7wZM1YblTsSdOqKT5im9dbGFt8lpqJZnnS9pf7oqRch7TnApqNNSMzCG1V0SLU27AMGrjqSa+o9ZWPMjUtYnA52EyaOHeVzKBY4LuNgxOva2AbmY0S7RNkkvhr+mh+Ei5jP5H9vgQMCzBS+md+1aBD5oVMupYYTmkgQuMvCIgPQq/W6fz3UcuCpuVPz8/5nwmbkExn3dRcxPlU3V4IV97qnCgUf/s8qXBerUw2mVjFJV6IWYWG+cg28xDF1IXigy4OqGXGVQw0b4w/z1UVRequ+Bkgvbv2I0JnMdto3D30duh9wrx1sph9/BdTWb00pMtRzT3i9ur7s8/t4Rr5TPhVjIUXh4SjkHVyiPfCaT/bnUCK4/xM5/VbhWhyYjR2v266uK3O6EFgrtJZnx4Nb+yFLC/2N596T37jAjCHV5DPOO2VN/Jw/dOpPoRjBLa7ZRIryewTYBQ5EMbbBeFM6kLE7mNvek8ff6leLlDdHTsE3ocy5mG66MPiOXOlZPTIB0ac5mRuZKkoaXx1T6ULe9rv4ibRw/SQapGX2pr4drkKBjbGEdu5LKdfs5cAc+XlgMp8nxVQ3V9BGDy3l7hXDLGlcKC2oQsJ+kUirs/vhw3D3zvJDv3N7CSynCUicq0q/L+3hZ99kTeqHK0vzx5H/BP6K74ah/1UH9vxBTbXCRajsmCQB6g6FMr2uqil87heTsY02JR75DusMy5gb48Xz9p21ymVdROqfD6Dm+Ah0v3s21PpaA87gC+XBxX0dKvP5PRm7yD4fJPe4EijnPCsXnxLHvx0d2PrRomDb/SqC4WrlrzcXDtXYeanqmBlo/dSC+6EI8oRPVW4hUi0glST4Xbpdz0hYZHwoMn5Ecg3HkxcJ1/e1YcE1B7CmQab0XXdItW6d+hOSk5iWyaAo57U1qXdShysrNBNEgTQdjQsXQXMXEmxo64v17UeOeTpdtevcHPXJdsXHMRhEyFYVOCOLql8EKQlXGyL1/cgNuUhPvhRU79SVXtdyJbrsccNqZ9RhMcRFn39yKCx7EoztfOUmXvXAt8bwk+YV6GAblL5EAQwdfZWbc7V2nhUQG+0irPOEKJbDaCf4UtBL6MgBghaylfDdFpGM76p7CYLwA+Qbkqof+vHiogINrq+XHu1G+v06PaEO++GSuV/OPvWqNtfwtR05s6keAVw09u4XlN4lG3kMuIappFrqKKZFMw350ukVTAFXuTqHT+ZWFV0K225tBBoHLEbxkM29DwyOU5X/i+4n+IM77vAypBs6gXiiHGxMAqt/EirRKl+apkSPwD4PHjhb5cYDSCF93fxo0mJIoAqjWpICmidOY1BYdHK0R2zWBOvwRedKN993hgfNmZBZITF/bnJc/sPzcTmNKFAo9riQ89Ifl1YGJqrLNEoAqE/7pC0nMwqkdBOlgUBJWEhntRMmj0RLAtQzoAIVqnqHf5cwuTvBBCMaruwrpLqyTScuI5GLlSBkqW+ufgj8XnvEJNLk1MMEGRhJQOKCsxtH4Bf35nLTJfbcGmpKOfra9Vqiw3kV4bPS0NE4vnrwHLafIousim7E1IUJ35khe+0Z8aWYU2G2jk5mwzLOgzKOndtk2akeKIgsCR0CLjkNLvmfrSzcCBQly8U8868ZpWtUQ2XlxWA1QIhvR9hxZUJp7BZ5wDKVqAclc0MkbsI6Egsj7b6gAF7/RAu2iJNDnRz5Dlh7w/hNXXwKk8MLoyYIKjtfaKe0BIf/vO+CRtxsdepwDC8poNXGbcteOD5XIFFrUaTyK5L2oFKfUrjx629HMws9t/gucwWKqM4Dina/kUbDr9jVsoCMv1PSyR0SscsrZezxqaF4tn+BwVezisvrspageX4lnbjt6RiSfnIluwsaiI/v7xkbXvIOL6BdIh0jpmo3cagEttg2cIKJg/Gmdv7oT1PdmlKbtmg+bmeyjU+7Tm1iDNRpXaeh80iylG0OHRaJc8uyZvHQqEWSrLn/E4T0VIv664awZ/dF6H/X4Xb5aDnDyaN01XJp+eZrF0XtK9NYvLPcQE0HyaWlziSdiRfKK7gUpDeTAu3RQD2CW+/jmrWto4nUfpmKZ2QWgVbVT0QmKYgmgCBzyUQfSH4Z6I8bkoQGvyyi0BZRz87SL2fHV6i8MZUmcRCw8mPFXHAo9Mx3PlKsc37qTK7yQV4SznXcpR80cUkDyuCqkZRCxfwU5P8uQtaLwcCNqJGnhxMFfrVFNhY2GkjttLdMiUbjwUg4UmNKF7Jtwbo+RREGi91zMuw6O+3WtW2mbx9xQ05krgME6F4JOVngW0ASyIZEhbW3PY9TSQJrEhZy8Tukz6/N13QJmZ1qnaGS1KDLILOxnnyKslqD7WB+8OhpT7nSOOFMqDH7THCZnSSp8Vb3NP2wQuSkFtyQziF8qrp4VQxq0MyJ8erFKRL4pG9XIqX4XSxYIlBmHEa5uFkw5Of7dpvvw/svZB8is2wMPi1ZYmOnn7lFAghlKuHqu3ICsQ==
Variant 0
DifficultyLevel
539
Question
Which set of numbers is arranged from the smallest to the largest?
Worked Solution
−3 is less than −2
25% is less than 45
∴ Smallest to largest is:
−3,−2,25%,45
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
number2 | |
number3 | |
number4 | |
correctAnswer | $-3, -2, 25\%, \dfrac{5}{4}$ |
Answers
Is Correct? | Answer |
✓ | −3,−2,25%,45 |
x | −2,−3,25%,45 |
x | −3,−2,45,25% |
x | −2,−3,45,25% |
U2FsdGVkX1+I5NpCgQ8SN4K2feiJCy2maM8/5mvuwxvRCttBvzr0V7xCpEIyVH6ZdvowcAtswhTVX2RM6T30CCCUrhtPGPGh0s1tr6Jg2KrpoCpnE6OmqlMolnFP40nVbTfvWHQYz2M3ksUj5hm/I3E7ST1uW9KnoiTouUsZ0m3rP1WtNiTwFy+oyXYGaN1boAwJSUCjhYLWQE9jnOQeJReRA1aGaCU/WbS+Aqps2ZGi6LVYG7o8MwNRWbWI867zrkkwrwwqnrx52K1hPkeJ1/U3M1c6aEWhmFG/jJ1eIels2Gl/8i2jB4lqzX02+EFmNYni8WHSavUWrUpqRWSwcTQps5jOZAntjBmoE2IzoL96ToGj9vbVKAYNoVNpwycKMZ3uQ5/tvMp/sEcIy5q7sakcr4qx0acye6jIRmw2s7IRsx9PT4Nl8fLNe3DBSgrwqMT8+MHsiAUBxeH6LLzu+ubUsrTvOkjxNTRPSgFAkW9Rg5yUy4SwFYdc6kL9iNEiA8DDAtcYAapUOhFS8nQYljVNfLZE/VzGH/nx7R1EW0Naun270OvRU3pDHSPW3uAPRKNPjLzXnB6xjBDAVFM3TR3+qcjQP9BdLc+HSitH4VW5/qD5lfswVK/CvQ7eO9jvnSjUfyEfxbIy1BjGVvtXmkpg8NvdoPUHFFXglE3QAId13o7tm51QQ9kg9LZnH1LHYyr9EhmyI+O0QNhHvUnBoaFKn12x3ijrcCxVBoEtJzUxOmYXLVZGpqJAaQhAcXOK9xWNsKfzOorBBS+qCV3UtKXz7JP6Grm06Hwx5Hxqwrwn5kaUMC+2bTrSaYcdwtiiiZYPBsf72YTin6gFE+Xdu036+tO+eDSu+oAMaPZcZaalPPWl4u9IBvZv91134xA7hSMfyk2LhjgD8+FDK7D7knUjcJlW7yvAC+qKiHyly7Tq0+q3IFHOgyylDfWHShEmiVR/IUNCSsl9gntTwMa3hglQ7sMAmRKQhHvH+38NY88ZLyl5ncaySxJja9P5ugsXoc7GBZ+WqOc279VddlM222q6wUztSDJuh+JcjnF0vDu4ESvsw+hSJGUSn8uUKxDBcRAGJ0KaAW5A5sZrv06mwo3AB2d7oBaCEyaUllrDozCYHSXGsJ3cCei6UnUYMU+BOEJjVhNuEBgAt0NQPGbDorEtEGnwv/Zi4ZcdaxwMfAosv6tqt0IYAfpmf7R/4f+mwCWbzWXwEjBZrpg5TFz3P90fcZbo8unSOhAKcMNZK5MpuJ553ML4LYCGm4Q9iG89ZkhYZrL+I2QYtO+iBzWW51QvtFDVrpD9ZB3kYbKBHXrH6uQhJDZqX2v3UXyxiDcRA+ZZrsznDBfh67Q8WpEd/QDt4T4FHjNgulL4jjMSwaP5ef7qfvkV1ZxMaBUOtaxi1UbVmHMq271U2Mb5VLmMzsys8OK79dzBMNT6uUJ/xB974VU3DyiiAQ2lzzLFPkbn2YhqNtE1yTefMeNE9eKh0XxxKgpUzNEixCs7Kv16OlJqkDnDvVReXZ3KTtvJ3duwRoK7bKLFwtpkdapkcIinPObL5KPbWV/0wwJvIQr4WbFZ2TTjLZbITWkReNDWcUYCSpN205ODeXLlK3kO3Q3ayOktEsfRLF5pvaK4gw/aaK5WO0pHJuab8bPUUiajKmG0eMvRJC3xZToO15DcOrDdETwQTX+xWiM9y1ajA+29F66Pz4QKX9OPTzhwphJxplwxgT2ddJwr6XoTp35LzH8NZUsPriFXzC+mKINPfdckjJb2M+rjG80+jywdpRB9nwFp+FRofRxbp/eseU3WYwwkMyDsUWKCdbxOQyvOT3OCZosheGVCq0T2lcQHN8AuxxO3c4D5MMpeTgCm06sSv91Ku8b+autrnjisL9tkpwRvCH7ONdrdtkHvYuwmG751l2NdG5lg+clsfZdy8MwvzFSzCn+rHMWdCOwlRcON/n717/7ksKL1HSZYFJDYrZNrS5fJdVk5UG48Qw92p2Fl8vZRAc7qHmLkLbBsxxkeNsn3hcDNkrbrHNLxhEiid/L8bqTwu2d0+A4gn904MNQgu0MIfWYU6vWpyV3YMNkgh6uDu110BLleJAYSKUC4MVhAEu5Dlqsv2WtVrnaENY417rE7Z5RcnLBZdlJk8u7hCv8caVjkeQY25Pjaeo8ZJn09VWSS/auWVQi6rfzD8DQlC5OGNZ5LXrWGnmrSqi+3Rf2Bp2xXLjx81FYevQyTO3duysaREsx2dlIp6kZ1rgUNg/R9KyUqpcpdTH8fHE4FemgU+jMEP7Tk2s2moV8+ZWAyeeP+e6oo+eHAc6oYbh2h8pAAI17wqT3y3hn0kH9TYHE08NAJFyOZ3WS+u196QHRJu3geEvyVRSaJIHU5vnFkrEaHwcjnoDjSOjqgmxOY2Vq61sk1g69VKhXzin6RYKh6J78lJDumP1EZ810M2MBgRCikmtVujPgasgNkT7XdlqxKYedTkbn+ct6I70c3dUILHYYcx2H6Yq3rr46RZd+UvmI5tnyIrooLDtvrLWm1BjPFgzKAsmQfRp0Z1cqX3vl4U29Da+acxxPtOYjdxzzfJyyZl4tOFWQJg5X3ZadlHuvvP3SoKoixRAVuo5tX0wdS9st6SGzSULK/6BDgMdZ5IuCooByjPrpx1ngwCKiedFvOJl0Vn5iFtKyO6n9sHy+1gNCkJWepsvLv6Ih3bYmDgH/IZSThHgnL6wtuw3qTVaxcKr2Ey55Xbxu3Ie3dhFbCZ/nLLRq2/WyDpyA76of67WmqnwCZu7wPytrBIQJDLqDC5j8YzKyB/knHR78Qx8ZB6/5vH99UMPNdMd/GsXAVnotrkaXMKJnWwHN7u7UVn9a3cwvvsdi4sZEMo/JeffbJtaywBveiUNOAumTSsYX3q+eP4wdLREkPapF+ywxFZP7WzX4DUceA+EXZCRfSZePE3nQl99gsFz/mL5KqfY1KBQl+arm1xX06Qev6R61Y473Nu6geazs63EbK2SjXyCFuab7wl/4N1F/bxpleeXwwhfQATuB8o5AuYtxHykcpL5LSjnLdJ/QNVp6ui/KOFebxAC/aZLSk17Ru0KmtwQavOKY/CBQstJ3tWcK2yyqDuYhA0ce7TCzjQ6n2VIBmlodUucu2BWJkOkroNQc9T4dneKmqgu2SISDsuK4U7Rwvqv8/+BZjatlvRO+PoFoGpigW8+jFWwG/YqH8PC94MpiVm6IL64ix6KxIVQH6mP6iLWtG8seKgrNssSM0W0VD39mJu81PpJ6ABCXkow7TKhiOfrB4SUlPd1d2QsIatXf0AafQd/avQD1aweSFkdUHsIIj2Zu5R3OE4h3kSRxrJv7kMLnaYbeYgFop2sZ+KLMm3FNZ7nQzVLAB3f07GmrP1faWs7v/cvyPImrzA6IzBjXRMbOR9nBWIvHxMBnalQB/t285GamvXqrULJf9G2ZewOiacn5Xc1BiMnmeEew2dk/HYg8md2jo8HUwUikS3msWvHhxnzGMvv+RWjVDdyL8sNwtkmQIAxOeW1kE3qtD8s+tpuQ43qt35qjW3/ED7nH9oSBmvSnLj3hNgR921yDfIs2Nfgp8Ymsrtm27EZZnSNVHyxTq8xG04CBcB4tocPHHyZSGrjFzXdDWVE+8kFoM6TfD/BwJB1FgYGk12YaTNPoBgwDjbdqrLdiIO9hJ0pjsSVi/B2S6bbNPZpfKz5NGpqUWTLPbyzyiYx4KqNyljF/PaFlngbaoUaunEE4IV7EVIZHburyuGW0ZCVOGVAKY0+8+dHK+Ze26R+WEzBDEz2TE6bXuqE63vSyVgm96pROwYbkMECSG7hktfc1XMytoqb733ASpQpzZLqgoq1gXdPxlsePgJi+ZcbTJfQ/kYcj4P2WJtZ9jPowqJEVYOCpKEOsUL+gBXXK9xC2DoaQCOeFv72PISnfjX3NLt+11VwBZSwhmd9NtX95uL+1GQW7xVD90brr6QBttHZ3T+p+YjKfZt++Oeh54t6XAeEyFTwjh32BQE1nHanqCjAXanRkwQStFlv5IILEsAPGVUjTyDxV/1+oTOXJehlkfiUZRZJ+Kz57sQzi/8+6kXXBxQ2n8no2cK2ex9gQUTPR7CT27jV0YTwF2hY1cr36psoexLTNThf3AktSSnzZ8HHNB/cdhXnL/TqrlcMXDlEhNJkjIPutZkNAifDsZ/wAkby+APAig8NuR5vV6A7FzjCzNfo0aBnMeoTb46ZKYXgd5G+EnUwFvRTMrkEkwsS9p+0xy58wBBTiNioJnItAZkv7yrbnrMCfchK3VwdCTnx6pxPGvZu9g3GWyy6mJHQoCpIiC8oIrKBlaRO/TuGQtINalShKjdO3w1PDkN6MGgsXtSWw86E8XNiYXXkikKJT5unzyGKiqW6zDmjsj/65kCZT3FVDJYMmNYLjrxaa5HllZy9SPpKUsxxkV0SoHhoYcMCvxAiet4RAKo7xgyQdO81rt2ehzTKVd3x5HNjU1187wDjm+lFQoK7IKRH6v+xWAtMrUB3gwQnTZ9HWCRx6uq9r+Ijm28rWla3/X0hs+Tvt2LZMJpSFL9xz06bXWoErSO6uBQGlV62x3KlTtX1d5AbiUoSg3cf5A4Wj7pkyp1EtyUDn7z++0a/dLFuDDOP+HB+k2CfwttEUZLyRBN9Z3xmjtrd6XLvm4ZGZCFIzyo6ieYIouMa1ahiP7a2g7yi44G8Tn3DVJswLfWh4FdaL/3QwiDFpUZmr+/xQ5VoyQaRljPlwkgz0+xfR2Yx0pv0+3TS7PTK8iQFEzesVIxiC+qJPSK+3ofiWqf6jHRXiIfiiZt+4oImj9yzt2ujtpTOTI/It9QXDyoKbmlpc/59+GuHMIvGzr3ivLErTRoQ974hJG5Lc//xc2rQQI/GqjWygDDMW6nqo7pbs8LMknZruv0H9hfAT38D7PQnHJFfT0Q/9J/gm6wY8WKX1p0qkJ+Om6siWG2sSkuxBbj0Z8UQw5qzHcxV7tw1vb/Bxa4J+Es4+ap8cfDiSc1/vRN2z3IsSzJqqySRQghI30PfvCYTm2EKbFFxYK/ZiT0f5bfBPTr6bOmPSEfhAamOQ8p1O3JXIVPgWDL2UjAku8sTz7m++7YB4a4ZzYRRockKG9KfR98Ibta3Ualnf0yynPBL5ONSMGlOBZxUx9Rd6kJ4eso0j4ottl22AfyZL2oqldvFkMIXgohxAoutV3WtLu3FejzfUHoERM3ZnIwVu1mSvWlJg1yUoYml2iRavp6Rom7mtkEb9zANMjZG2VDF9rGjB4DL7e4jwR4wayTjQUQsu0eeiw3PUanTV0SJP4sNR/idfj4PuPy8P6RbMwl1IPQdHvrLYA/ay4L8z2A2TN/zehNP9v5lzjc5yO6NCCDgSjIktCq15n7cGFYoixQRYAzI/ai84BoyAdjXoM2hKcAYZBNQxNYhWAELsIqvaqkbEKLrSuXhXyGjpWmHrqkOwxD8Whrcw5vpikDVXHmcncJZ5pUEgti8MDdJiGNeHG24vZRRIsNKzk+RiSM59LVVZW96/t1Cl5+3hsovmWp8gLxxaNm8voNBxu3V+VOXx72DXYFah0lVzVdq3RRbxBSzPn7V1J5BpwvmCQDOjY2qB1gmoc+b9RUyVMZGiQ3BEwD0qDTenhZaoEnzR8y47iJU704japoViva8ZbK47gBAuOVoUMYmSX+9Ck6L+CmD3unhmxb+KfwnVDUGZtGNJBpDhRRzpBX94SUaHaeXLE3HCR/eJuVhnQs+7ecbjKBKND8DjRIFZqFDqQa5uh8buszrLVcuMBsocmUnUPSpiB203rn4kA9czYIDOAqRjR843SHdzqcqxULe0wATB2aDFppNWLxX+Kzuv8xjGb0OCR0suMQmb+Bnq++oEo+b4h8WwwDaoZy2XYysuGopy7eyNlnQcvxsK/J0eqvN1mqlaX4QPLrjAWdpIaHF8GW5YamQ1DkIYk7PhZuzxjtpDpBdG9cZ7ag1OuoS8TlUdIfFkg83PYA8toFnG4qkRBHPPdnzPfGRcrsCOgQiN8BqmliUDSlrLbVvpIH9O4l9GKb+lGYuV/AMMu5w2bsSfGG58FHQin+PL9ocaJFFt8w7I73aHQmGhLXD0nUcYwLDRqR5N8ofN1uOtPDCBSRTxbS844SpdKdZKlAZZeUkJ6OJLxMnR4lnu8457W5fxyGdHaIMd01MdLsIaGJ27LzSShMZGQSbdwtnss29VjJnb/C97p4XDOUHPfWykAVZMlDyHmUROax+Kf2Oknvhw20AKVsFnvvJtgSmWUQ4nJlRCEUN1LzFS3yz2uOxwt7g+dCHym3j/V3FBejmkxO0ZvJzrE1j7ZdhFSMTZj0YAYJ0AMLara+JiK4FODx8Oh6djN5AEaJy1ItRK3I57bThYVXjBeaG+ct/IiNz4h83wd/91GXxG/A4ZxK965S1bSDhEWosovLy0/jsNA9+b/dQsHQna4mVznC3XOcP9YGS/unm4s3YS0UvLShKcl02X51JnGREqpYgui2ieiewJ1ZcNkn0WdUJ3i6eXsBvZzJfyKubnTvZP9idW0mpVTM9wcoqKxoX2W+ANYZtzpoRsSUKfRMPKZjWkAfddfbN8CaZq8JuceotqmdtVSzLDKMvgLELS2pppXAdxwkxL5q7sj6XZB6qh2ceXzsMSam1Y/hZeySlz8wqi0r7kQrOmDarDCaZ+1P8LyuJ9nUvGyjcdst+bl3fbIvZgq0SZ8xHXOjn6oOnfl4t3mu9cuPx10tp4VZi4WP6owuQfZ4lQ7HZ54R8TdbiL3ThCukSCxo7B080/aHUqYtEdGWJ4koPVGYpcIeKg/apL/Oc9WP/W63IloyMdoz1Vb9HwV5UdSpSp7HBWbGxQFWvYwX8btP281E1fAOXEq0naiBQUcHWCUX0cUIUO2ELNpcwZBM7Sp6rX2cbe+ncL45xP5aty1cS5TH6/6qAR0LO+5Rz8j+wnSRmLl6DUgA2jziyAsZtIediR3CcZTJtxiGncYLD2dQ1CZQP/zTQQaBjHr18Y0QtRNbg+EAY7/B3Fj9em2ivIZvGQXnVHEqbvLeZocs18q74PdcXNvoFZ9nDTN3Qrkx1dVu7JFu/EM91NgHaC9McWxkAjUdMYfKYAiTioJUoVY3PM0k3QYQmx8/SSzYbKy4K/BOv//HiWjBCCxaUvlu0hZJ81VsOVazVI1r2cryeIJKw2BzNdl3WsqNaJhXANAYhODoJNnUi3mVVQC4jveDtubb+2QUN+49hRhnuI1cMqgLwHbWCKMDA3Zwhc7DgvLkj0yAKbsXyy6ImzJWQGiyNkcBoLRmbKf2Tf7e56Ys4gThQ7ScfMvrHzWl1vXFMe3KWyegyYcB8ELQN8h3lthHzDY9Cv1tY37fgp8bfpsoJm7L7STOIxn6WkLnMQSP5rDdtAOEb5O27fB34geyf4KvjG/KnaPmB3D1xDXdybVmJqNSsec9O+ZKY1XqrtG//AViGoEKfDQqE1Vgc86hkd4Ho+R2YUqHw89VEek3WMfYpNR965HGWLyUV/J94Zm4EcipB2uGcFx4ragfy8S9O54OxDzqks2I+3oAnNBpriZ4fOwC2kbezWkBGjWO+rmp3uh7F7AA2Qjdia1+FQR36mtq54gjnComUPlsyftNGWvbDHIBoVNgG8IGmPmhpghs/n9qezB2ZtuWiGyr4kpR/5ARE0SgOmcrTPuVBW4LxuDFf4mxMCZ/jZCwQlcdE5EfYpuwz3p7VUxc3/T1QOlwWj6hggGuP1ihBeLdVLBgO5bDHeG1eR0JTff30YU7LO45sFVk+L38jIMHlxVSGkv6K/bWAmJtyMJImbSOVtV0/flrsfZK1IqsZjmtI8el1h+L2+izdA1T/r1djtGO6fMq/FmlvwRDZuuIJ9/MiQMNhjzhqudMLo8y+Gc/5/wa6nPdgo3F26wgSae8SVu6/29dzmoGtIiHc7GpP0zLrj5650+oSwp+6VLBxu3UexBph6JnK2HMquJ6Os7e0xqUV2w2Ib5J/j26M7oPovJzcOCkFA7WolVqddyJ0YmXaL99A5Vte81qK/LSKTEOkMcc7E2XK772/xIqMd6pJLuVntz6oXWnAwcWkGmRVnECWffACewAYljMFL3RV7ILUVU9WAGJlz/c6vMmvyvAdc1+0TC6ZSmiGFtDJhwlujthZP8j+Pemcc7cIrxAb2J4EMw2Hf7jKXcRcSH1usfNaUb0PUEPsGkMdPykJBf6PDwY/ldR5sz3PmoM7640jJ3KYM3Y7W+iX2srAli41JpG8tamzRhBZl8ckWtvRRIVeuOrMuzE9wYsjjnIk0X4tIjmYVLyuyJl4qd+CNGd+AfZVG8jHZIENovOO1NW3uvYpKnl4fx3dNQ0aZcTdpicEE7z8sEH2VYRwRqFtEa3agaSCd8RZ2BSrRRdT2oBMLKvIlg2O4E6Qh1Gr7mcRhVYLzLJaZ9hSw0QI2cSj395ncmzD2SG/PK0F0wkAmvZ9IZZe7W+Q8Pe30+dXMGxoS5vbzRZLMDe4Ht6ZT9nOE2zxjAnfp7ARNKrl60ZSn/O7pKxVTAq/MBSlis+O1PME64bzjIPwQYCEmZGdh9k3ffqqKw0QCWTGGNt2T3pvRvK/gGZlg4fIJH/BquBQrdqdJxGlp+JGXySUuSHBJNCTnShxzWhMGC316JonaklVuOMNoAcSdJR7r0YOJmCBkFeYqP4tCG7EwcBBLrpkx4V3yfQE2nhVsCMeHDK6bBgAFf7HUrU7ERvLaYLM2j8gPFvmikOhWt3sf8bEiwrORi0SyjHDlP51wFKQm1WcUWvnNjaC8jEaaWYIwmXGffu4i3oCNuWvKLFTMlpxijQmJTvRv4KmnKmUm9nuKiHB8cJYolLAks01/+Kb5EARSGHLKncvdWkCyNLRxJcVnpt+2PKp3SIuKC0ONWnoEpZ0vqxeAKz6YpZ5pCIQ8E2JZY+Bmv2qDRayM4RK/g1rYFIa5w8fUN1qqRidiHoDi3j/O5G//d25NZbJrhcWMTLPCGSSkgSAoYS5JYxLujb7rOgbQCoUjsnxtDXmGIR47QKGMk7yvM1fQNHL2oW0N/o85cCjKypF8DuR/FwD+y1w/PBIfgirQd50Ww8rnbFhDYMQpaJHFFQv1LNwRWaiyxqUq7l6DtPDYW3DoWeI4lvWGA1l3WzR0a1qMRPzphAsSI6s6/zHKi9hgilsQVb0AVGuZVGWGYASIvVtj9mywfqEfWC+aAkvRhpDikARFP9tnA0jBHm5fHQ5EiWGiaCS94/X/XTF6bRSjGCfweQIOqgSt9XLEpyc62uvSPQDHYI+il9CsJLGD8Gw6fhyz5ptlZqjecA3+4nHIEFKum4T4RL1IE5StmAlXOdCY+8gYVxs0dXqXXyQ+gY43gtONl5qDOcbgegS6Vm3zGrHaqGL7ht9bqC64fD+7fBGGRryn02rRAodngSYCjgNJGH6kiY8+zC2PuKleHDf2GcKJuZQQfheUMiv6qDVz4CIUdYDSxyKF+5EIKzw9EUHc4JVj2YoaBRxJvEimi5AcJVRCISFGNG67qBHE2dgRSf91uty3/tnqZ6XL8ZGixD3mQpTniUzG+QluZ596nRAM9P2KkYrQngUl4eZL1WvG44fWScAQFXg3w0CQ9eoNys6/NfKW3bpHzzFeJeNlAextVmqbl4NU2KmZTntCs2P/NyAZZ+dGOcI9kgrwaoBr926b87HilVCY2apnK/zfonuThB8ToPMqXcBMlLhbffChp2ZNe9vRlO8cNNhhL83xjK3gRJdNbw0S0MYX9Cu9hTKiHXEjFpIuXcaCel2LBjs9DEAaj5l6k5pfcMuYFl2UWtZYnPP8yGBu7/3WD1r5uFNO5nX5lSTRLyEwNxN0tSGHgbhJW5uL/hsgvm6iwmiy55KpgwQjIUEZ10zZoZmvSoNB4eMeRJ7hY6PPbtGUqqPA/LbjyAeMtNplI5eY9Ox2Zyr7pLQA814qkhNVJuPTzeJSYFN/ElLiOL1ytCei/1mGkpNHT5oOLytwVOg1MleKzAFCBdXp56zJG1AeyvvClNRpZJnLH9ValTmhvMc1VtDHz/E2+MuuewPMPmlL7jIbMPElpafdaCyLmWrrUPSCBiJzLksZaWK/aETkX07TbttfQaqsi4bqzflKtCojTzpuiiv4oaiBzNG6gL0iUxtu13aNHXznyBTgCZzjzj4Ce73kxOivNr/XIUQ4mVpOfcohg/tC8mANVV2UYtLqdNh2rij6fWpiUYBCZxFQl1HCItSywXnSOVrvEoBCgSgsuUpiCBY6I19e7GMbrgP+PzynGzUn7AUAiUeGOWOWNxxTwiS3XiqgYua2N6wddT0oH/H3zzUtTWkSAJQVcutSOifqfy6EajdiyX5DLmR5vTUoxhU2PUsxStTGb0Rd6tkThWswt/5HXrYAGwctq/kLdTpD0zap/y5BJpRcN79k3ZW3/rA83O8WsB2nY3AHDHO5m0ce3F7yfUc+OKTIj8hjCh4tMgpHF8K1h8P5Oc+KfST8WZNHYCZ7xbGmtXAYvFl61TQuLtskklat3NpWoGnbKSteYLuL2diC65EncpnFMaJhBInt40ZtdiByZpUR+0tSKTdLi1WnLXPeEcOeYN22oc07KZSMfEvN28C4DhQSVWdt1NSLtHrU1bRWbJ0B+jQ6SFGsxjb9OecrkYpB+ZWm1TGD0qyfUJX54TV0cd6EDJGB0FFEfjPQsvbh/zPjO7/zDh/pZ6q/iNlWTL9OR53nwuJdUVpTUu9wVGofsdZpy4kbyeWKJRjML+Uco8fwwRVPrRrifYHzBl5UnkTsOdjkkDZxbZzWTr6Jkqx6mcFrLi+yZfURCFuC9wbO7g0MEniA4Ynrae78PN0qOAn5atVsvdQrz1g0BTIsqFy6kHF4eNKwI/JgXdfEo8qBK23zOPH1ExvMOv2gKKGw9DUralPX0ejBxkfX/bxqnAGb3jKGGichl2UqCUb+cl/R/cuqkf/8FXYKvGrd2WFJ2x1t1ynvWpBgrdcV/2KU/QM0oWD+8kBhrJr2aBu0NbcaRZiKSI3Tq4RPBJI1nGBLxvHLY2sIfHpdptOOnaM7WQ0aAbHduW8UzLiyd4Nl+j2hTW0oHrJYSv387QuPdU7/jmDcw5l+94GDPwvLynkRjKqmmD17KaptcnPFybHIxktDJvsSfeiaIhWp/bqXFGsEGyvp1lszg72MrIANsZzB6mu7nxLDTRDzyKBscU+GkiOfOI0hzlfdKYvDyyu1lFR3BXw2vQWs4n6ZtUixKgdFB365TexxXNVNmiig2ptXAlAhOWn8aUBp0JQWGUJiiqo+Bt5htZgVAStyxLmE46jBrhJBY80fzsbl/pCWvImv09ETAR1jrVLgkXtIIpnHHB3tWu4bI+xezZ8yE6liT2IIvWUa+Fo+Vhf6n66jcmn6kD76Dz07U8a0755lPUyCeMuTQt+Jwqy5ZYVo0UzwArwAxkDjwMNf6l0iIj7JQIq25KkyPCEnkezWDFwTEp+HefKPfbplZnqjlmr3VIKyUsWS5wlSJs8IyvHBQWMLscn0IZ643sd0JkiJtNxuowO7zVlRYjEVIf1cUq70CTiJHonVH/4qt0VDIQoWWTPA1HJi4WeojZj4yuXSM11akghVPOApgcoX/AqAnK6C0WEK+1cr3xvV8npV1u33Df0f8Np6meJlwFEkWRU8uAxSBHvhW7wb6j5XUAGI3pcTcTj1S8A6o3XeZso74s+uu5rc/edBRMVsdQnCEmchqmlji80BtMsTINbEchOQeDpfofLCVvT0DmPoEFgn7tye7ZDYGcPl+qzh7IDUK8ieQVesILklSs9fcHzmK5HFhrqRvhp/jtgrQZbURR4NG2lOj4ZxWVuGlCbiue+aNvWKCyeDPqM/N9A6TdOMOym5APsaWiIHuVEgmXEhLE9lItmyHkiPy7FNmRIClm5wg/sw++Ah8f5J4dJco6M0ib+2UuqmfZJZ/EitAacwST33RAMJrwZHfezrHFSaFGaeLlFdjCnaT/ofPf0cVYOZCiC82VkOmvYdDBtcP8iy8umF1bnkLB0SA7NpV/ynA9Bywc5I/xGz8J30vTfG9DARREAPrtknrPgyCtJpLSx7Atf5fy1X5rp03S1azpaZSQdCj8HtcsVz97JKLP5Dq1zXKK6li4xKTJxAm5L4nIdYfcOMFhNP/o3i8Hb/GYzutGHyiqrf9NTGZUdU49qr+MKDnWblo1uYNLPyF5Y7YvuwnhuvPSMUvipXmi1r1r3PeoS9jW20m+wOZg1GE/UVzEHuIKi8BIaQXcsiXDpHJmF5LzLW2AexrtpFw7aKc981bsbLeIF8FONt+JJFhMeLBqbuAojy4nvgZ6gFThCgnZmExH8BElk9N5aOx6g6Ei3hpWEdno+l7Z8W7adDtOJmKSI6ec5kokvmLe7/wzsVW720hqPXkpsQpJHXyL2UtW0iUp33Jxzkm6H+1dQuYceOmt9SWb5Q/Fwah/j1jV+6//pN166wJTf9yU7XpgF9GGMRJZnzZBVjjJ96W/WZqwaG5Fuvffl3S8C3GQGXWSLQYJz+049GvX9VZmWqwsU0CPpJHz1Uxgf8R51KhUy3NczhJ7NOts9glfpFwhu4KGxDwU3akwCRCB+5kM7ZgbDZluB0reGdzpN81JVv92sq1HDSBIjlZhgaGAr3b/A3f8ParTL9lZmUHGsnczwd7sRAD7pmK/tcpw8zHxtWD52gH9PQdCq9LQwWwPjULrLmgC0DIK/BgNQQxl6wS6D1brUFfxNBTmZUAWQCwY7EYCwLdYfdnQR7x6sOblxvmpLFVqYtTAZA8I/4f2Na3coL/hR6ThYi5jo+VZKO03etgfU3hQXPU2WhrC2DC1ezJlmf+vvBqqW99eMXDsjtp3HOdlQiXZ6M9+g7II1KJmmvkyS0yYKw4Dg/wMtG8U6ZMExt+6XBV5P9XBuuzY/t+y2ueqpj829IxCfx/4SbnHKeZbpM4E3eP/gYY9o90qyJe3A5nnxO8LHgqC97HKKj/S6nd6kDsPPX3sRkQ2Did6+iQSCbXYbuBiGt2OfozU+lE6hpuXNkbXBC5+8NeIERXX62kCSwIAwWw37hY64mto1wedQn6PJ8r4iJlPlgNI11iQb/X1jgJO7QYwxjuP3kGkVFqXhk/vUi66i0pvL+4VvljjY/TeoseFtHcYfTjxpBhV85IJymDR8d8JEXrGx4AOqk1RVT9cMyTHKS5UNdzOXuxvDIrmz7eNQUs6475pFeDPsO3cVHR84S4hOj/pXgpXPiJO6a8DHsk5Q/U8bah7p84AY7hJaAybV318pVmXlgu9Z5rBsAnoDWxb3Uq3U01Qfu/l5fx0F3oWzjfqGlPPfDrmtXydkIUwimyjzrKNqhPMT9YVBvUUxaYW9iQunkVsd2ZviYK8RwGWLG/H8chZi+qmpNWTaJfzo1RnIZWCcFQBoqQrPQjatdPDkv5xswSfYwbGsC43NisoNuCoyAFJqRwSgP7LDUMIgPXSHA0y59m3ZVS/fvZl2bHw/BZI4fsROPCwlC9quFjmruZ9YrvEoxEShQ0/j38qw3M9Z1CsRHodE4cGWi2+tEWSKcnp60Mm6wgpy1+3SUACAw7hL0add+kYf7qTIFlhSF+40fsXR3R4oRZMY5A8WgtzLR+kUlf4NwlAcs+LSxUszWyiXoufuvVMoMC/cVj5yPLT04S3GJThHkeBQMEPNOeHGwYw0553kmSveY0HKPJ8QvOT3B6f0YKqTEqQuDMO2YC4CgmbL5bVLZxnwvH39daCnimUAtr0o3kZmBFA39MCCQXqnuTxmTMIWIy/CzaxxpT76Ee+LjLQOiyHv1tWn/t72mX60cK4gxpvIKsT2r7O21pjwv/YlCtVsoDyVVBzdHeLIz1vvLsVmwbYb/DtduizFCxD5fGVMx2RG1Vz+OoJewNoIELShBYDvE/TmWiDJIdM7DcnIZXKNBgLyDMcmNesCpMhKvdWy8YVMFGWpRendMQVBYVAFIInzAqcE79J3xE9B3pyEjxmz0HF72i0AGIRkw0xgTeS//diEssbIySDL9XysUaJsnIYPF07GqtO67WblbFNA6rKGN1ZPUJq++P2SU5Deu+tVJ5ZKlb9Fl01A9jMI3erDqB9zNHe2gcujAgBS1wo9jOV/3QBvlmAtDXvxuO3M8njNM3R7h7TtRfrlb0+Dkf2R58O7sjSoSYwuMntys1GH8cyGJ06VM89nFRE/8WusDJ6fYzya5Ztq5X8Pr/eW+yPw9yYsg1WEt17kv/IA0umiX32badR8IYY8bHWQvJkeeiB+1KVrJjQ4yhZ//gEup2EvPYB3xbXPaEMp57bOeYoybwcVMMeFe8iDClsfC+CQUlqkjD9wtYUPiKKW21mj/yvtKAsQcC7sJsGtgNmDLAznQe+dEjQ1qJXspM58jzc/OEPM+N7t0dREjzlxx99x08fSdNdOOuegrUagNYDU9dGgHJa4n0PbJCOM/x2PeZl15a98WAteHosjOszG7/yms/DFdzHAkSnzsIdkiX8opk50vy7XD/w7drh4hN7u5M+66jcBx2GNdQrxCj8PLIEFD5ofDKsEoFVl8/eVs1qKL/ilirZsf60N7Jy2I8apx7Zk4/IldLUi0bmW5qplijhz9qgTzjoaZsER6xzhxoEHo37TXAjEGbt0/AvbEZ6ZOy24E01Ov/RD7TSQlhk2JiyUuDNxJqd5UJ+/pktTzFascR1GIpM7SZd0adaNDh6xd0ozOPHGCmeekOsFhxXJCPmoJlHU2QZgxsPScYt1IvUA4e9mLN0NkzPdwKQ6VYPm2vlLSTq6ogxWtnv/8sZiX4uWnyX5AYJdXH3fZkbyt6hd156OcN3kQYDVQzE+uO9dSxGdmKR65truC2k/ZZNOb+wYJexACCmL2AksNWiY0Hs4PG/9tG3VikmNol4awVa9/POUHK7kbigs383kwUzWinh9iPVjh1aXDaHX7rFVt17ATBC/SV32pXoizXQPIMS7eJch1DS/eCKFcAhMGc/aSZGXTB4KbE0ZN1GReTsMTypgEWaUbwlmegjqtTCjeIevmWoKz/53O6tnIjDAeK9xohrSGtwC/so/EvanClQSv4/KOETd0sZUFJy0Lye16DK3cV3DCdBuSrrkzs4CsuZvbwB17J+Qh9wIkJWMeMeFOwgQCU56q5j83Qkea49iXxHGDQ5CbWhNTIsjjNUK0K0GL/Pj+VZHIW4+spUBvxRX4+quh5acKq5dn+vt2S7Qc40Cri0HToqfM8S1V6c21ydcuWRfx8Jueggm/SoYRAKxH3rChVXS5E+REz40al8QYAtA/JY6klYjUvcvG5tDxna/ZLDtr1hEL3CjiNvjSkU44YBCWJbNQ3Z30+hxR8gDdXO329u+m9Y4ojl2u3Gs7xXOM9HAWgBFsooU4wIjbntt53dNv8Xajj4FTYWmUe7KpWVDm1bLvOnq4YVcDRNpt7Fj5uQAKRiVGrtw08iVWo9zmUTJZ0zXL8LXLHyKGi6+s6LSng3XyyDoCBlbRP8daLDI1ucf29f6QwwrS+X3d32ul3UDGNYD6iQMsK6Qi8A6Fapy4oL+OXAFioZR8LT9HEfzDI0D/axhz45iC2VeKQnT54Y/aRlBxXCS6DKGb8KwVcYswcCSYwUIw17i31MrntE5oT1fnLUk3s7eJXqmYrEmqVRFaPeavdbQZOZ8yxWhLVBGOlftxCyLNdWHX9l0MQAnCoxCXcB8y5ZGz0VmmIgb0oVK6CYpEdId66c2/Y/LWOjJ6jB0/i8uvWmonj1qb3l8WLmu/VRlBPx9w9ceo4vH2zCVgUnDCxLAF827L6S6D8I9sS0qPwWpZxCMc6PFtkRY7hXp8a4D1OLF/BqodSvQJQb24GIBYZnUHUdDqadR0YmH9vVihhCE5msRT960/zO/87pchzJCN+lD6IEdx0v/rnh5wVe0l9/jf1tUCYJMupzCa0HMMCoiPUsSdwYNY8Qo264eS2guOcoDVbKsG8ckeisnqr5GzFuvV9+qnmM8ueyaPsW3Fznev36vj/qk1Sn40j2gOfRXNIAQi2r8e16S0a2Yd0XamSb0QbZ8oNB+b8M6/i+H9QbYhirNvXroEhFB6N7ef5UR+8ZGqwD7qRVWaheeKcPgxNkrlbVjqRdqa360Bp93TRQ0uxHWH8oaj21Iif2Wxomn8Nkv+XBuQh/dlo8t1eS3qePXHcOwW/OeDSfMpGdDw/n6ElJPDamcOXAIoV/BQEQILfwmqS4alFSDp6h6391qH2X2hhlRMSGZ9QTjBq5KR3RzrTYMmHNX/nLVQitPB9bquthuwbAn914uIdmz2NJthWs1meRv0yfEwkbb3muJW8r/XuAuuHz5zgf9/SU2LCPP8Qxtx1wZcTg+uuAD1VXfCUXuUWXmvdrYsNPKUSsXUzxOJQIak7vRkZlh5ZEvlAcKI9bcRlNYf/ecrPr5WNi9QgllqGayhQutmi69Ure9txuvY4KZv/qXOI103UNk0KmdPylLPfXu1meU5a9mWcectsTKTiUADY+CCJv6N4e3T77UMs0Kx1fL8Y6sPgmqqA3uPZJidZSNAGJtq4jrKIgoUXpPbC9V0rtifrKSJs5ierAH3kyru5z6nsbXa39sk6AZObbcRACgQ86t0tYntv8q8r9IwRYOYYzuYbzzSDqARcTCFrIgcYIulsOt6eILvaubWEICTXTHdd5UBGOrEADalJg530Xa+jqOZ8MWxrNGsEPpsXMXjg8LKVdYVsrpzJiMxrcnLb5rNnehTe1nwCmJ0KRm2mbp6ZUVf9Fs7SDJb3rnjDfPi8dWp6RwayUlHSK2U6tp4u/WoGmEOQkrMNwcIVKp+8k/cn4OM+k5hNLi6h8CB4w/GLdbQHchLuxEtmNGboaUXA2jW2T4Pkuk4n/Pud4oZtz/pJmhe/ixQhO2tKTDuWnG+9cOE9zBnIujzJ/uZt1NnPDtdBHr7qkgtWyzfy+3+Zct1MAG/Usguhspn2zTVafY8n9TA0VbUa5gVPXBF6xfxrmRjtQ9ssAABcZAv0syxGsL6tRoOHaIHOVBQr/BIuZV6Cp248+KfTo5JPYIf+x4FOwoogWN5NnBO9EuDnmHInEvGaDwAdGH++b/d6nbh86KoT0AGNjKF0nvGu7CiKvRK8QSNAHVqEtGV50VHff5av1Sp0hberLuflfnCXnCupr4VrUDh7uSjQ3Rpun/g5LF+QKD18AiE6IVX55EwAM7QpJ8lWn0znqNh71FyH60RSDeCv21nIrnDua//fSRXUS08aXcRH2KUkU/VFbLnXiFCFvEM5YZvEHpHKGU9/LEZFtReWPXvB34bUjDOwW/1ph8KYTPAvTAmJgqhjpJEOQkRsDjH034O33Kdk/FwZlXbEKE6QHxnJSfIn0c9+J3n6RHO0kNUgFi4Ig+aIGMyKE7xxKxGWHF0vBuaRRkwcVMNnI8yG3gzthesZ+h0LGkH5NaLx6PsdzJ3cIfplg4NaKV0GD9Q0hDj6wD45xC5Wg5VjqCUXtn9k0wWoo9DnwKCaHj3JkvpoZaf3rjU1tcfzthUETRCMFgJdddBZxX3RZTduwo5GY82V1amV93KI+pSuzGupQxL9vKKBIwEA0TwRR3WxZbd3krOXXgr6bFxzuburaJ0riFzGCjKUFnZUz7hPwu2zn63Hu0uC9vtpZ9HqdbqIO3R0S7H8ay/SIX9rBG3glDaj75tD31BXi5cwILqbfzmIuGPuIBX6EFSVH9+oBLWRL/nu36pLcLy20lKbYQL55VHGQkEV+I9N+ev/4Jg9V+cm2Itd89HMu3W1Ed3JwKZXuvfKrlc/T1x62rc+e+oFuNSh3rQVZQaRUbicxditpuantCnyejunYr4tpXPhwpLtf9PGAKuA+/9M8a9BL7r0z9H5DHIuGg/64FofNswUAZ0byJKdtuO3dSSFY/nKUfAcUs0JF2DOSIUGAmh1GsWETs9fDrdQygb+FKRM0SudqGsG+wLw9wuMaNR0GJSNr5rowwRB2Pky3ke3+tRcGd1XVQ1oroNsDps6HHW4E4RFoVt5csHfMJAWOw9ITeuJISGoRXeioJEtbGM/RvgM3CrFces196L0HgqZSYO52nwmONkf+KFwr+DB+P8R4sYEmDsxrarSNYsk7AjbnNa0zRRfyzuDx3lAllW5lSRA3zTmKCbb0WhDwfnr0VWkivzM2+sO0koA6vi79a+/oYoCbRgNWTlgAlhTuCob6GwCcZUtsBtulNV/ECS8zGfVMoReilstC3JDx7sITppfsCfAiJjkI1Mkt5TySbTyNiUbwlHpTzmoseepKW2U8h5R8ggIpI66V3er177b1M73ruCRcmxxQVRO9uqauwCcqD4Rf61aAkX532REICZy3EsgzTmG1ZxdsNxp66hOySj8c9hWWCGII8pU4JtaqeAvvLoqu/FMv5FcgePVG+qqLPfuR/KGhitvYX0wX68aZA+ZYc1lHWmToqmyCJYeUYx7NdlxNdGS6egTHfFbBnBZOdxopne6VxvbAS0s3f67Wvi4DuMtr5D9qtMM8MHUIvujuPwSDWEoTABt8YIZ8hmbT4QrNsuG+qfv6vRQcEPyXf+tLhH/MI87S9nVFk0tAQuTQs1DUX99zkL16ud80Dt3/bkw3WxNbNwu9rHSKeK9vQSrfe0Bx4cRylauNcu+w7m6ZMrQZzpsPtUG5YSEt+YfuWeoEQjOBSRS+f7xhr0nYqRqgI2xDxj1A9ex9izN1D4TKpZJEig0PR8QLYDOlcYwmeHkreoOtlH878ewwTwf8rf2Fzszr0g7sNNBDnwv55tizKoO276Y9pvN/XIL2XjPMVkCcUbm8BqoT7toYrLL2vQsH/YaOp5P8k3b0g9vGMRXYxE5m7o3J5M7bPa20a4SbUfWhDY25QLkpNeykQeh0mUadi6sCYkT18Zl26laffWhc71WYBq/MylR01VywKd+uu5nYjY3IcsNcAZ7q6G6CSDrw53h3it29ycdx4/x4FiLF4nT7769IvOOsRhbTUAwQtK+ehlfqSqIjqaeMQr0a/giYw0ZmlJrgNPa8hAfCP8S68wttP6bfTSEqgX7SZHkO1DaAwNjJFhtO0Vf2JLSi4Zm6Zw64S32wjoMgu+ZD45vLSDY6iWzJM+eFBU74jyPSOoKMVcJpuzHXKl7+DB05MCctYttUuj+Rb4Xjje1z5AQ7RWqyEMyKUXRKQA0psDXEdSU9YuSlJKdzo1Zcq/9IdQUSmK6CiUzIamc0iqqtBiE/GLhM3b3qJeBCgzGviJhiDQoYWkhSpg7G/aV17sao1yvnVB+d251T/6YqD0Kc3IYjoJU4Jxv+o02k7wLvdBvAB8ZlI+NVyk0jWXv06Q6A/eu6YyqZQvwWzDvbKA5bB9u26cL59C/JXoNoWH4dMFecPqk+o0mN8TcNYRiKdzTwcxFOLH5KL3xp/fzPZTMfLIMNVmsXE2ULXD++76uhwVWrNUpe3W01HvIld+/Qe3D846b/EcsjmBYn/cnR+WMks3o0VhMaTlEzc3heEbDalf1D/rTI5ZYvtFiKLiGFhLCbEwYTVnVtBw+EL2z73BoGiu0T43l4pJTPwp5sw20AdmC2BCpFCXJZeSBCPHZ9n4UMmzSO/J46uJQg+eX/8B/PfrTmMRzqt1sgqQSuqtzXFrz+s+xo0JZKOqCPIZJHJT6wofuHPT48v7jSajKxpMwqeagBOAeN5YuD/rJ9wHGodJ5KKCoJQMIByaAIJ8=
Variant 1
DifficultyLevel
539
Question
Which set of numbers is arranged from the smallest to the largest?
Worked Solution
−2 is less than −1
85% is less than 35
∴ Smallest to largest is:
−2,−1,85%,35
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
number2 | |
number3 | |
number4 | |
correctAnswer | $-2, -1, 85\%, \dfrac{5}{3}$ |
Answers
Is Correct? | Answer |
x | −1,−2,85%,35 |
x | −2,−1,35,85% |
x | −1,−2,35,85% |
✓ | −2,−1,85%,35 |
U2FsdGVkX18C4XOeOgCJ21Ek22Sa8O4nkPPTAC2ZJMoy8GFj1v7wv1ldbHXyzffuco3TEwxRX6oHxJpwXshzJZ1Eum4/9yGyYCxrtD7eALNC7yrHPBJO+lREJ5l1vNLVHO9tVYrULbfG1LT6kXOkHFcL5qJft734GjXJt9Ky+3tkROgP+vvBNgVsqiI0OF1F0wsyZSNSTXFmTR1AXChlQ6tQEgY5bXd6acXViT8AHaPZwYqkJ5T9fCQRcrPsmym/YMPrtBcjbo1Mx4D7kIsCYtxq590wJ7rolu4nvH+bTRbGJCUI7vhjIWAXVLx/wPiLVfe9UW0YFfFZl73EilX9zUGHOXq4h+rgqccUscDb5qTSfYjllnIdwg5u2ANn+M5T99ZIYz0jjVNL1WqwAupP0zrudxzGeOsBaRrOYpOOxjVplxflnxudXiovP6wfKnozZ+tdE3tZStdM7xdcfJCtrMzilOhoVprTKgY444UgCvGM8bJh6VWz8wvCEl2y/mmPkXPISN4RYvxKKwEmxGxea9YhcUS4BjeXzhOJYFcrZKYehTgCwrVWzHxyvWL29F8ABy8j9wuyOj6b3r7DZB/jC72ZtXrI8QOqfJoP7U6IAEcksR3xzeUEAWB0j3eI6nR08zzSX//jhzVxPveM+Lz0COBI8w5Xu+1l4HGJi+DLkpNPQ/mdqZFdD4hXCaxhsquEbPiuDDHEwgTti4v3P6GQUr/2mCxckr4SZvux6ih6XDF1bsVtjo3rxrQUpAvV09PD4RloHa0V/ikcyXIlKWN8S6c1UAfgvjjFvNLRpaOhn83/B/biWp4kc+xwMExGf5ZXs5ecEFEZb0kJZkezdrHef9dELA/eFnS33NEtq024BuOwganXFlmz6ei+U6KQVbgxRMvj9cfODc6o0sqp1hUJAvrOVVZnkv+iP6p+jrs8NUhTa16qwBQg8LSKUJWojHHEyvWd/In5XH/vVcCj2OnuESnjs3w4Q+ApRlrwSAQOpIkZRIkMdogJQE68kUiAQcaZUMyBnpAf/lx3w0lmmVfIyQz+vrHyKoiggXmVIp9P0KMDr63r2brPrWA1JW2BwkaDDBL0974P9DQT39bH7xljbKIyp5FWfP1A6NbfnIcvng81Oyk0N4fFs3t74/x0XC8mZEDA6lMl4W3kXt4JkgcMI3H0KgaizOY39qyHnTYQ6SN95zkumQpLFykfeGaUkObtO+hCP5P7NLeOBf9pnw05kcRniFElfTxgQK8WU+BBy4FTqqpv12hq0C/mEOL2Fb3SJOnQjaKySAFEIluUJAhDVWJ7LIOnwZ+fTp+OYwfZZYPeFU8B4GOSzvB0zDCdZ3R+8pwL7/+47uMFo0UsMhJ8co2db/TupzQ6mXrFfMKiGJAF6jq1ZFNNdOH6PqUY9W7hUo5pPHOtNR7FDeJKCTpptKE1Tl6effdwV5Gyqo6ulm525KuPfFNlX6LCNunRqgbwrXE+ywNFKO+WXf7lSI81msIF4nNm02HkhDXXGiNL2BBeoGTPMp6iYKcDDCRi1PxLQyMz2YBnB87S+rwE5zuj14ud3WW3LbpW7Npn7R2Ty/N9vfv+Vu6dQ4idKnZUfDbtmb6b9mz2r3DJk2lYJsnm9hEfFMxVdrNbVlCJoGLnUwnRrHGhfPQh+8h3eTWdz2ImGAKnpaQjewKGAboiNIYFWAdvbTJmuuIt/rbZSY+U7NRiU0/Fo3XgdZergwhDTQVlCqSC3o6I64RlqcpKhoHtCfyMTvw8VWJzJeqxmc+skyd3EvK2v3tckRqU52Xg0VJIxsJSasSQGbg1N3WmcTaQcjWSaincluIPVRJ7muBfra6a9WvF1CTq/1lKF1EFYM1VB3NCXaH/8NFPrjzHZcr9rvItd+wLXUPYxdcOHE4sUDwGgM1MfT856dbFET9k9w2CS/lsGMKyVU7DMsRQ+vtgRn//S+A2L1Gw062aNgegO5yQzmh+C5/bDeEKBouyKunlGz4HR3Hgu4YTUPW0/TYDFb4tYkuwPkdguHdeqyzNWg5EgXXTeG6LawViFaSYL3c38mJfT+PCy9k8MxbKmyOB3vgpVbcpRSS/3599egRI/6uGq9iRjWyD0g7ZpSrDNJuvHL+dMCLdNhHb1BnXAkOb+yrZqYk5qk9lh4hAQfAE2F8LuOQhjvOnSxBMVIgb08BHAjSJ6w3APwty1q2Ca59g266jh7ZsdbCakpfDSZraTOo5d0c19FZjuGEHk+BozQKj/cyxYrYB57sy5DKrAwH9aPU0E4YUmmXCx2uMCA+cpoLzALYfdZp2MRBNlQAXaWMVo6jUQ8a4oR3IBvQ1ND6bS7zmufvu1h9+0MHd7Ui5hCiwTrxn1xQ3Yn84ALAksq2ZsX2ivxFiUe88vjqfWVVF7saaaVxpYcFdXScHo3oZb/JC+Wf92h/agv63yWVAhSKW7JjyAvrDfr5vQZlvmLchlbrPKno3vMVt82tG9N+jSATgSwbtMgWN/hj8Ty7n/5k4ZGA083lDQ3ZfBfUZjp1MNKnOGaqNfyuDDHvjKBPMgxqMnKJNlglhOBx1Lsp32dzu9q3A8BD90w4Q0j6avcDEFkWIl17PD1py9jl5avHr+AxWWICjngLLKdg4SsRHBg2S7ftrPpeb4dS4XdG2GAlFK2KImp0ok3rcaLMFUF4l1sEWl+sShR4F9xB5vSe7woHDa2mcwE4KjOMT5CXQCC17O6fzOStwDvBRjZG330ACs2h6Y4Rri2pj8hSu6Ii+Xasa+gruTpzNaUMdOFW5IgYErIto7GK1R0GnAdqtfHANMhPPnSwsJHG9XpH8Yp2GY9CZ67rNOGnWpU60/VZFR2MB85BRpmi8th+sZMHx1ZJFqgSFtgJI/rdKRzBUg7//dXijwUbnkPX3sz7+9r0Z9NznVA6DkGgqRjp0bD7ymaue6NXlJtJrMZIUcsXz8JfgTMB6Yr2/X6eEC1wdcJUdMTrtiGSWp5yUOhk6iO3EzKXvawglaRDE5ee9fm+XjrkKp6rJANX2y6C30w++AWEQZn/HdebJJ0/DcDvCLLmetNnkLnv+O0BZCi3UpIR/8GeLtu98PFNtKcbzSzprL9NKQkeU1/6OqKWpMFX963gTtOu0SvoNprwfRVDmWb6pbyT1RPyAQP+xOPPupBHpucCPb5VJZAkTJDFaq30phg4N93XO1MEDMSvF3IwB7pwqCBYY9XyVUL7VKBqRuNfuUvGYd3czeXtbK5TcnAlJulFxsbXNhwrL+1ckGcTSedewGtTAL4GOP3qbdShGDBOLVlHGFJgDTE6J61XeVYm7IEgLMx2m4AvzYXALDSZ6MJeD/FMh0PiS1nVm3dskdM3a1MOEN1MwmKcUYlEbmXGB1B6qtCK1d30X8dM217YHoEJ3rfoDxN9HBOOnG0GTYLrTy0IShPMk2eKck2Nnj2Ypax+rbZAjn/+btdZZdtkSoI288CIRw8x1D8C7Hdqf4diCgUdzvth53VTAq9QIGr73YO5+OX6j4kU4lQynPQhHh1Xz7KZ7NtMYvSB/9nh9VMM1NjLMcfZZ4tEeLjyrDRsi/LQum17UlWXuCDTpU6rzOZk7kf8JCu32ykj7RhSYs/NWlvmgEoMUEmc+iIeOPpVROLRSZZeU9rbh6g2MXVJqB57bfTITXfTmp0LS+9PfdfWzODh2/42Zfm6GR89wVU44RYQ6TxLddz8ar7BG38PqIIsL9Xt09IMONfxW7cZk57GuuYu0fkRAg7A0U+BhhC10b4yiVOzI1tJ7Yr0grtouli0obo6W821B7OaUvTkysSua7V6VKbu3ZpXaDLRhGUcKLUsML5s6LjLOx2C4/aHKtGh/KhyUuk31EcdI+cbyqebF7HwnHh5l7fNfdWGLIJ77vMT5ila7QHoSuGqyGkDKujbF4ulRAgloYy6UafkbMkuAQsMJBJNtOImkuc5uxcZK9ryjWNdRhCaXnATNYTHbLE0xRHAJcZO5cgJynDu/7OTxxj3I9izZhO3M955+dUINuRU1cQndRcvKopxxJzlOVoNFmZyrmPa/hNcOQlEdy8eAzWV+trVRwqN/9DjOY0ZujgrjcYGdfTIXp5f8kh+qQefgf0BJppTD7tj1GJDgxwPMW1oqs8dxhdznrePXmzaeSqnLLsGqwa24EDzJEKyezjUMmoJ1v2mUqMw/Yqw/yxAgX08m+7EC/bvAy6C8m9PFwWJm82AFpuI+4YVLpjFVdzkzBRexHB+A2Tq/aOWoXwwJQDVZ1pmVEs+3K6xwHsMNQ06DicXKyxiSVneh4kU6ew8n9bFbPECn+KjY0DPownzKaDw1P8iWmmF5UEVK3AMO4BryukMxdD/X0lXrVWzC1VaP2pEZhq3pJTCtQUmM15hflrkiTdkG7UL3kSLNKGbvXaKZZuEnhsHASuYB6PC9m2C1x9WLkAU6gOBoFk49jMhSs1NIjEd1KQA/Z4FJRam+Ym8Tb7iidRRMvDgqzxc4k7jUMgVCMz2G8dyLqGvO0nMCwVC7jJYZarizNNkuqDS/yi1Bl7W0R6I3PkZFWk7ZYWE6Pco4yxkFUPpwRBwi9uRy3PuC1WiFNsJcriKUa92iltNiPovtV3FgldELNXRmMyx9TBNLuPeGylYLzg7/KZ4pO9/Qs/G6oTFBTta/RNc3mL17scisXXlvy892GXWYvXD/xcrQu+2eV0Ij4A6CdiP3cwfkZ90nPKmEK3Vf9DrFyfMfw/fbX2zf+Ls7bw+ZLV8yJkykOkxhXyygVGpj3hdY+fr6xCVtgyPZtQRgTyzUQS1h2ULmUs5915leh3p3r9JyY6PtyuvazsGILNUdPA3VUjIEKVx325YIVnLBOxE1YfL6+Au4eS+8n8XJfwcriVj4oG1R5GWNcnRgiH/Ggn0Iy5rbV+OXP6RxQkL8P1v3oL8tZaKPUdscXrAy62/z99b/n5+ilMts4HlOKyzoTwFpKp8c4qhzPL8Hxl5PaSafjl9l6WpiFpfD1kP7E88AF+8TUiXZvqSznrA+uQ8n0U33jdoOhib2s/fTZErlYlq+Sb9ZTBEnxiV3PHhMwhYbcV3ge3246Ea33UpsnR1GpZnXaFjxPLDM3OZ2BKfsEBr6hQ6s9EJSsliA6uIYjG4mGfr3Ptk9zuT8cNzc9Nn+9p5YIxerFHe1oRoRB49jT16IAJLOZFyjsgBahYeAG6wTmz2pRH+B1b8IV0bkfMKLX6JyRcWt11nH1H2LLFiH3dsGfNY82aPsr9bFdg18XoR1RTbfomRIlzXHGl417BW+Tp4gUH+SlplGYAPtsQmruwIuntNePpCi7hIyr8yB+WTfig+q37H3M05t0rHJ28+rK/nnOgqboc9UzXI2+E6P+7K8RFVvDlcq7g8IUCzNW/+qeuvcwSFDGmGczBGZfBxnCVRgJXFWRqtCP9J5rb7ukP6tnc683BlV2k9pU1ZI383j02XS9+WWa7dIZoamlP5M13e7Y24zwvUIWdP5KtoiZ71nihYJ8jN8TiJGCt3jfK3I1xVMZxhFjqqinjTAgoI39NbO3v9YBdJ4RXr63Ey9/bM8kQU4xKNvszsFrpYYWvzcK3MDWnUkq6y+NzKKw5hBWf5+YNDcdfYComwqzSqP98sobL5mk74MNtfzR1DAg52nIacimeQhSpKIij1q1hFT4PFAnckZ3idFMYKUghU2MBn9nJfYtFnvdLkKGAbM0G2EpNqul2KxiYz8AnJEZNeqbv8HXXIWatW+bkHjcyPE1R04gm0ENtYxr11h71tY3ihGnhAfuMJOADqtfxis+Vx4UV0oSPSbcWCM4uQovyg1JHxNA3/T+mFpsSTKup1ktTR9c19shZNzGReqrXvQyrczmsTR4hsakXaA0kxmREH+VO8eFl5IyoEJpahFch5eYqHk60fuGZxKDyk8nGHano0DZcuZhhjw4aDht8UelKBXE61aV9K40HuK1dKpkHWmctL2nc4uPonxrIH7TXvsSv/Ii2ghHrzwf1yDr0CzVGl1zvKRYFJHP0y/X27sDt8etNalL+5J1S6DGYD2THKP23wJhSqlNr/SCcsDi9476BOPZ8ETTRfERewwPw7zthS8V/POGqE/eejQBKZh0nJ7rp07Js2fVOUztrmwOWNzh956m5LM49hvSN+v2vz89UVTe4FxLb/31TrVZ05Bd4zlHz/0bqPt7yrTvrz8EYmF1urUQtQ4YVmj6LAeGBqLxLQeo8tpOwtMg/d2+CsGw/4mcuONmooiJkCSaMsONSx54zIAG12DCVRnCmgovUbJlJzTPtVeCJof36zbdwIggW99cudyYncoCquU2itQqTZZD79yzg/vZgg1f65TbsalNtWRL23XqwAcRXA+Pt8KnL9jCeC/KoMKqGW5IEPYC6jd1IBC2UdMB4uxvVm9/39EhIzVMQ9GWmJ84ufp5jTC7tyJAuJnynMQXFD1AmaJQ6+pidZCXqToJqdV/cO1AiH0Fq34r781Qr3Vib5NuaKAQDG3riW/228VR18guG2WhTlyxN2xreBi10ZSO37CGAmPMW7dYw+ZUcV3FUJ88u5kZX+RetoTFxxkG4UY38vxNNAGbT896RNeKutQT/aBAq6nxiYSkBhQH/TWQFP5wN023Iwps8DVnDHe3v/UaC77nfhz5IHAuBt3PtSpJAjQGRRP036G+kqPhDcnbZTcMJRTExXvdU0Rr664SMAzokjenmxQ8hfazO101xDBT//7kqAYMjzSkPTTqBUq3m0xggwMqUSV6CKxHl+NaqZeSPuubpMYXLgPYEpEmC4eJgQeIODojvpZOR5cOKZD85E8YkAhDtWDe+Ffm3q1fwDZRxJvXbOmSU8Xq57FmU1s9vm94xcZ9zQlGcrhrvjMhdmNgWS9VrgvchPtdkg+B3EumVh9+hThbySeF+0Fy+6a/TEureUnsr1QbwfkRCX+E72aUxAMefKTI743J7m5YSk6vORnOYtTEHsG76xstcq0yN0La5MJU36zNdciE5f1It8TcuHdhkRoUkY0gc3Nce4LgjDecbqWFdJcBU6kn/nOASlUFhjtNf3HaTIc5usjFyXZgMCMB28jXFi2PQOYLk/mlA2hzUxyLvvoWNFjhaWsCDIkIvc1iSSMZMdRBsnG8OwdasKL/2GN03GnLdqM1hTDk4lzVZkyEw2A8i0Yffhhe3BXlBQUpcrDCz9neCdKnG9ohrsgc1AV3GlED81Tn2OCBikaeh/WJsubo3645rrE3Mbl6ODZG2D/GixrY0BNYtzRqI/jjLJ+WLbV9qR9qkIauYDfywmPCUHEctuZuJi23MUWeAv0s1zCZB7FbYUPKggdSMwp2MXWohVLm02vsyN3CcVRGKDvPcBDI/+y5eVjSP265kNKC/Vxezxg9uv76HTuxxNhZTv+26no3h8NLT9FKhpL7GuaQwfobqsQDY0d+bW4YmZIhJXqi0ZSprg1tuGDN2QaJMDMe1ZRno6Pkc+G3Vuaz2CdDD05H4B02qygfQG7Naijb92J/eDQj9zJ30btKDykh01fnMGzWx59XAmU5mFjnowQxVwYAS+aqHlQjQGwgCVJwDBjK6rQves962cEQVT6e1HZQnwuGaQbDx0gBVc23HtED6hapZbutn3LjGvCxQ6dU1sMU9ZXZI6O+3MM7hI2ZE18emZPXsdA1LUTSGAZOnHz1zU3g90DCGPdiap0FP2w4455B3t/WqjlnG7TY7O1GQjI5wn5DeD8u6fMRYtdmvTVlgbDL9qbh+54yOaXXYCYYjWMEzuGjM72Xj3X7kI4KZS9Z3exyiwgQKaxvylZJCrDubTDNLyredJp34hhaG7Z/k+BmklTLqnRZlBX3pMYIchH8dFL39FRutCv0c2iwO0AXzhMLsgarlEanj3GLjwOjoWCXgT6JuFVzvAuuEu5ZzW2dLKU8vY/YJ9GvYKkpGxJ9ifZhjgVejMM2HfuHTb4awzSoMv1HaM1Tr0aTe8sPXWjklm/6dd6t1CFE9yrmJPb8marcT2GBKnOC1E+L8qNeCR6vvlpkChNZqcJP97iT0eXtCqZYRIG49J4q4urGxih/I7y51BTQdGMIaeAFRVlBoa1a1psupTcHyWieXZFSn6YhCbzmoeYNk4m7N8jKOwt/7CbNFmiQCWcCoL+SAS7tuRgj/9O7HPeHLhiqnh0u/oSWO1RlksXwW5DJThC7GVKHW+MFruEt53zvpS4v1VkknYuzjjxkiFkgPc81bTW2SPAM7ebJY8TJIadaw+rx0e95mFWvyVtyCT/LjeMNLRtRR3XbQ0HRUkzb6chhYuMJiSzVtKlIw8LEAC1xMxW34/Txm1X6B6qp5hPb9Kv4c/eeQPlCnCUyoLV4xryPPEjwKhEQ1W4RVQxFkUQsk573uUwkv8z8N1sry0U/iWAc9vzUynqDjLCc80u+JK8vJiOuUigvdQMbvWs+G9INCyWwqUeo3oiE3d42FyHGw086bvx4Wofvs2EDGasxUhDZCd9B9LyN7WteGc53QMJCD9Rjzoz5V0m8dlnFdruZh7rH35NR4pYkg0OkcS4fTfA2/TJCfuxFJM14Q/svrII1ShyFY8O1tHCjJBuKl0D1Etzfi+iUhVx56g9btnj4ihT73saEpXXj6a8ZTL9uLRVyrMsJwu6EK1iKEhvfuUi5xjN0Tlhk+8m2BzyI4vF3F5EsDqOw2m0QSb1n528wwHslZWWwXlRfUokT3f11yTJsZNdnD57RzhKuW8S1N13xPFU3rCSVW2m450+4klptWehz58bdzJfp4aarbGffRh7pQeJLghf+P+jF/uFt722hpRvitt2VvjsmOeXfK707dlYy3Z3cv/isNnsnMqyB0jndjit1neNMXW6YImziRYxTSt7s98fsCjiXdafeoUPWHTBdWRImPD9P3Jai+YRDS1gosyl3GfhYu4vXazU8dLSjjJnFOksON8ihjVKFFIduHJmfyVbhKJxnXfc0HkHqAyN2K4XYiY50+9BW3fhzbRA5+rH7Tf+PgJzl/7vSuQpskMGcIhMIR932KiTOrP6pMy7vT5k/HtV3whtcUoCZKGuncBfOp/nDlAZqgz3vHRVif1taS/h9WYxOyRbYtFtdPRmWG8J3X512yMMs/0O37Cic9C/Gupb9RKBhdw2JZWZEfgXvQ1YeiCgQgA3ABsmNHw1Ap+Na+QP7NudHMkxR550vXdmIiD1ziDr8twQz5BemNzcW/Og7vFm63k5vGT4gkwT8w9QgLzqAyVQtr/cMHdlGcpW/nTi7mpVFUutMNogsunumSfBHwVtMcnMHIf98oPv1Ql9umYXiYyYL/s9k6/UdCSKlX6KaUHFcNhodG+2MelWe2yk5OcXop7XjL8Edt0UjokCjYc/Js5lFe9XvRw+stx0dCDTMt4uQSQB6mRwKg9TF8reBVg1KDESruRJsek8ShbWp7oZyRLpGI1XySnWkUux1UJCU4630oWvWp84sGmvDntD4id8sGPINyf6gJd5M8CnPXoSq5QQrbXeQ8uCIFN43F6eM8xlPR2CWSEFRJb7bm/d6tXo17Qaz9gCykDMI1OEeFhcUx2xju9aNCDSsAt+OVBSp3MbEc87XyILvPhaDsdBet4r+hmIB1jeBO/gjAAIu7H/e9Q8VRyPq3c4lsphrHLey1NdFAtfLrOB4RO8YiJHxeJVRupLIr5iXwM54yIK4BfiC6a1BBm71qQlI+bbaq2pyt768bIG3GSaGQcSP9OAI6rm+H+dw/AUSS3+V6jSFaFKfW56WSEZn+XGoIidjPwTOQNQZ+fcr716Oc7Sv9Qky98OxcQ77J1c/i0u2kvRwb1o0gYzeplJmMvLladH83UE5dslAciRVnUVsv3Pa2zQCuqb/xSntVn73KDYAmll+uk5YBNNHL70j5zljH5DUOAPwpLnG82g1tvxFoRrcHpjQxrTkbya6ceDtDrkoT4E6DYA5IgUBFDMNfMfEDhVlmdeYa1idbWNMqJI1XhuSrcdJza+EXZEziqB/jvreA/P3226O09+LnWYBtZsUCyQpAtJpwFeikr92OJmEmBqBIyCNRyChfszgaZ3t6PahGrkr4Lg58es8grBy/+AhjTDwk7KIuRxTXorwV5rGwkP84b932vpu1/Y28F+wJDS7aI0UDJkGRTQyp4kCUrY1QVJn14+nhmgZv+pJhgHA9ftkwSIjKcNdd1uamzl5bV78Ib/1lfdbjfBKSJT1HiMSIdOAnCJ0MQWNaEEdpiRbbhxjlkv2CjNJ/jWH77enXBpg8KymVSVuddhmoeQucaslSUxVReqtqB0LpNJJZW9Z5rd++Dr2bBipTjOAvvVqPUkK3WMB2xGHseZhyao3vDii2KWgcLhK56ntWf3PpsBqPq7/d2jXA6jIH5qF2H+AjKFX1m4zlF6GzQ8fG3z4C5HfOZ+4hEGHMDcvZUv7ew10Zt7OiRmR/y3BVakckixtwk2xlqzBgTX0dOSfx5pYoLLee5Nh2FR9m+CbilQBdSbiLWc4c99FqF0xr/KAthcCJ1KTjXC0GvVB2Yf+F3QZhX/7zxtWbjRsye8akejYffS8M0YiHpkUrnUBDtHVCGpwU+SsB90yuSBS8wFAr+88/2p0QY1GE3qeBJQLbzRCZ1aOyFGzFrIyvot9pxXL7kq95Lc/M21UNVpDTtEuOFwS8mZrz4xA/npRbwC06csCDyKmU7LtjfQjO6QVcwiduvaBxItxfC4z12VWOpPHRvfJjF6SeQ/5Upreucf908/V4MjgZ3x6p56wB+xWhu0bMch9j8jiZARqI903fY5LbEapFzpeK8si6eO7RnMdRBPXTZcYnTgogSRhGQiwqjn8YoWys5MoPBEHsTIO6OUjvA06jjWjh+a97gGD788Z3nTL/EgvYVSF7tIYU7DAX0UTm2ymlF3P2SRHMB0ZHwEzqvcDvPgUpDa7Wc2fl2+5lP3WANcKT9fk7om9sxE5WS4ZU6T7jRON7HThHED+6URqN9OGdiKPGIgo7wHQwiwF40UmlV7kFvpNKeL7rrMMIBMR6hvkWEQGolxdhh+igI3iNiXeFbNl5gN9ZOFCIJ6T/FL4KUVJYgGuRmCDpuvoCJZqsUBREcAvvgAD6JAPAhZTCbF6itXnqmJkSN7NPJ5Hu1Fr7r/sR5MPiKt7MOKMNyW77ns/JLUQ8TlBLOdjS1XcbmgX4RXDV9paeJBItgSLrz815h4LuyGWmmrPKeNKcGeUNDIQlwv8F3sJ8Ox3iY7Zvewm9kYHQ+h+qDJaLmlQny+3vTeEHmwoUe4R/jCStNesyYABhf19ne+KIGGeEgA3HWclSP/3k/I1Dp5CESUy2s2/6EXrbGDPTyR45zJJemB/MUWaEnDdbG+7vJ8Y60TqbHTcs7ktYgR7NLWCGt3mg2YOPEMjD98La5Sq0vFhC/xvfVmQUP36lDE19HYOzdhcCXEUAY0eTnHz3Txjz4L1bEFz5K84GdArN82f/Ah0Q894raqItedODs73khOATDxujjWdnCFWV7u+yCNLjWB1YmVJwJtsagbXwqUJ8rb80i4dupxm/chqMnq2LaSvv1ls4Z93PZ3mXE9E7dO8vxpCDD//lWg7/3f/8HVOXmmXPVWJzP5N2DmPSh1c1ScW+hgsRuzC3ZW9OeFO5mvDpEJqhl+jYAk24lKrcOyV1F1/gqO7Q4U+xs/r8hdVJzdY7UZZi28M/mVyUUrKMSWZagKlJe6HO0aQ3HrfaVBmIUWjjMj5hjpnnmrX+WtWYTefrfmf64tdHi1obafcv3cscP0/0NrW7XxX+5KbIt3xyLZYzq7G1YNNJFpZuoRCPLIkfipbcq6sagx6iAe6AVxq94yPIE9u2Hh34261h40T6qbf+XbdOkrU9tXNvPsb1O0g3x2R8Nig4YqADIH66oyOTwG3Q68oGSW5tQta10DFY/TG9mh6FOVm985n0BPahukfrNxNcYU9/ERvoktZkbSekKoq37jn90S26F/cQtOjKgYfusStF/BLSKFX9iI7miDdRsS9XHJM6tF+MjmcjJCfTJiv9ubzDm9RjqIF7Ia1pKYusMl9Ykei5C7EbtKXyARksuQ9cqWNixsSbbwQbJiIq4MLS8dBCy/VVAStWebD466RHGxTPyKb8Q40j3XLbzUYftsz1Uy+fWnuOxurA9++Cu6Ib0ZTQ06N9slEuhuu51qwD5a+/zVYPyu/tHfETYZJnCrAc+f4QLaTviYdOjDVI4fagoKzN60ZPFu+1tLNDg+porqjO6f6p19pcMBE9i2ZGrb5PTH9SVvDX4i6zctaDuxyxsHOXwWRrFAImFA2QpARJbXwA6XsFLCSeRfbKYHwiz692O1hy3kirTRWV8oCfWvqN8n0q0jFIP6nbRR8U8UvPmNRvjn6A8s4vklmG5k7dLqh64/EmSdum7wxDgu0lUWBVz8M+Dm9rBajBIwT4o9zXLHHinR2Lx6yfr2eB7tZ91tOJMz9/tIaL8w19VrXxBbv0Y9cUDQiyAoBj9a4+jpSuACumkEqgWwNNDev0Rbwc/h+L8wzFcSMQTVk5py8bmQWoHn6EqeLs/1jTgh81RzJ6nAckoAD/DrSval5iNfUXYD2NsIOlR9JNLlxEWBNJDFdlGXWtDn9E/15GEhbLQtCklBBOJ2BK7PWXm4XZUBIUthNWu1f6mBtOlPBjAmerg8riH+LvHCpBazP3cb9wmJYfhHTCQSu3exiAwEeuMLmyJFxfED+iApnNXFPQ5hULk++/pyNPWE0/nuhdvGCV5a0w7em5VML2TphKjFi2fGhoQpw6mh47P3ZIAD7sCDlpJhiIOD8LsPQ9Xtck3f4pAkM46pc6ydNpt6lS5mfKaFllEM1GX4B3NAv0hXhLQ6u7qsMn4vh9qX38rWDwwHeeD4UrRpFMhDYdEFuJYI+HqORzjodKD7eUDvwqRfB176ogsiHBFHWJbCkRg044/o0V7j/2V+Oc2t4/u8z+Z9T0jQa0YmfVX//bScr1fnC2ioqnrqvrP1417KQ2/07Bbda/kJSHxBjfqfiXzKMhVATAKngHSW6QxfXR4M+NZc6u2aI328AQkg4LNXU1+VO7KIukvX3N1w1CJp4765qj6lGbbuofJcaVIK4cnQcV+rnMgS9UukRd/CL9UxcglBHebFuq/c3yd5kyz+uSt5c/led7+sulnDxkBIRhjIxAEpM2SxznY7UUFfZIR6DUOBxpcqXBUVn/UK5KR0uA4wzQCieok2PEDWmmxRAf+04CFjXEBsbkl7DHnXItExKhRlaF50xZ5QDMRK4FRManhluqPSMC8u50wXDKWjPj3VNVw316AAXa4Bg5xaVByr2j+AWdKjV7zKAX4DO4zfuWVVwGvxNmgoAq/B9RNJnNlrnza95S/wcgnukjwkhkhCilogWlxvIgtIAVwevCT+LsUvYTRZ1c4g82NZEi386Fd51vowJirhD9pA01EFWaSYLfHtNmhMiChbPc1iVnVD6HvtPOLcEjlSY1J7ZVM/nCDt4h5GhtsiZNanvffzseqGK1UrQQH2H78hkvsp1baQXhLbFDXYUSu728CzmQ4eDZ05Bsgc5KIzx9wkdwlKNfD62Gl6ANNQMbTzpZQ3J+6ZYmZtU9zD3fXDObRxuHF4/dp8IQeZAPWZGvOerD8/s0g8jkrZTpJ27HmieMdNYbd7clbDDR9CsuhWDeC+4IU4l+sy40Bc54POnIH+Ty8zENqwxTtBseEArZnU0M9wBxJG6ZWrixMriIziC7yQYAqM08gqq7uE0L/bjnBogFQhgFkfDT4CWkG+YtdCa5hwzbAwIQ8B27qPRaz4aap4teKIN5ggLJfeBgKAVkXANBtmajO9GWy+WgUKmvIPjlYIMT/xd4HBZoLvEoVm7vbC1ettNaLS6u/ijkNbbjXQ8c0xhFNPk0iM03KvsGx0jBXWxGg9W7ozBJUo8rt3o7DoCvkOxfXu4EeekIAxXFIpn2fyOMfszJEcAHzYt71XZOkvp47+hSeMYG3OKLyh1nBbN7lse5re2mRrAQmBqzW1B42GS34x3jIYkKSv+jHWhrufCw+GRH1GzccNe7ugAUJ82Lpfo0L8OoCdnjR8PFBOcDdRyh9QmPzjIGM7MwgThT4w3/tgjYhJhHgdT7zTR5q1JcnCKSH4p8t1GJtJrbHPtlhH+KCokyNhTD9B3/GKArMRbT3oxZyJjsa/5LuPGKYW7beGz/UFBi5JjG55E/4xS17TPv/YpHXv/cZp3pR4EEuHk2ZU1GoVJGwv675gHW/p5qIVXABIjYHB9rObvf3OriktKEnZ4PtWWOZSlz36bCoZLo2p+0v76EHmxejTc//rI7OOpIsxMOIOjMOM31kmmxgbUmsh3XH9muKC+S4EgAifq3rPGOH9X4IILhOpDNiOYsq8VGMUE/tYtKZ7at6xNonoFbmY7tR86OU8yXRzY9YUTJtN3FVcis/X2X6J8XanKg+NXExg1+iAZRk4YXQNNNIzhCM0QFWq7fUV6T79eqs2Wt8lx2qxSuu8D/KpqOnf9vghlxxypiC+tZgkTTBVNmt1ulyTY8/nT5+vxWbbvrcyeTqQ4FE2swM2TnOH+Rdi0tehSXurDr2qGkDB51iOetor902SkVR58VcCn6rqWwRSrwN7vFgDz5OH7hJz6Li5TRmpcssxt24IhVOUNOYfaGvJ74QBcokInSq1BZOPQgedjQQuODZkNK6Qh7IJ2t91jQDwOeXkgv2gtN+1vN+IDKwnnqIgIkyEGdv8Eh/0DNozZnwyacFCiI1AN2p0n4j7zduNB8MkqA/ldCeNAt8ylgaw/rPYkZE4fzjIoLMa+fj2n82sKD8AvZThceJansMWw7ygxeRhgTDaLxxj0sKTto5JoqhE49jIvfElRliE+yNYbAksERhnyx4B/UH1CS68xwCj0bhcvtJjVuWUXMHVvtpvbbZZpp5YYUU+Smnp8DSettG19oSwjsGmZAP2FK1rO8Kj+2FmZRifwT0JRtY4Ms5jaGlNxDuvjyjpEzDne1aKmJqeXGJOl/C2UhDGjf8vcPdFU44jntmdfq6U0uwtVNC91CH63X7D8JnEp4KxK6s2dpz7O7BCPHtEo85hZNw1cr1M7qUBLgNVofWiK6AKym4snvFiWV8LJLr0U3ah/snIUYiAG7ULuwoavE73eAdvlX3tzvlK426FSqCHY+QYggJvPWZl2il6q1VJX2jII96IQ5nIHuI6sc5TG3n4Q70bX5kb9WgagW5r4+QeUcktCYMPM7y/LH6SVivN3tKe2oMxd5MryzKp84CkGBMpKm7NLtmSmbOn207d3+lJLHla5knvhj1RsWce+5zDro5OH8EC0NSZV4KMuc/ohzItRfHQFoLm5aIULj4AXlMxwvN9sY7Lc4bBMSOGMj2CNKWvdHN8hlvtGo3+b5ep8967bvZFkhJBtlqvpgGxa8lX6MtVIz2qc2QM9ZaOh66evINS2WY6isnuS17Ko6mfaHPWDnUwle70q9fU7rhnmAHc/VSOR1i/1+aZDtvbe6W+jV+M0lbAQRIAOMfgjbJpYVxpmXdyjY94+XJ/k0Oiw/im2kPQZmy7ki5sxNsyWyhILcldwiVZEQldrnLECqRl3XAzwgnK/jp8Xpjl0Tpwn5cULTwdlZRcf3tudkgA6PmFcHI8VAKLiAfILDnAu0c4cBYHjt5WSilGuG1e4hy3WTy/vXGDI1+mXIpGgseE6TO0qQoUYChF+OYK67m85y8dE1yNxKiNech3X+VMG4MJ6NYjXvqT2iV5XbN21Nie92d2eR4VXQP6Dp7sdCUXR2PUF0/snXBORnAP3zV1+QudMyd5jiU5bJBUNMZ6kJAbnBXVmPOhwrvOJFZbCNjoxMfgXkPR/zRoVv3P2mY0AGmVgwyfeyMyIMEMrzupO0E0avvMHSOxVMh0QkqIJXjmZtRi0GIEtv8mQc+qhNzRFH9YgcH+uqnMSCqiCc2jumtzbPC3DHqoShcsp9jpK1ZyCjZQzIM9A4T2BV96G4jfB0AOvu81YnX3fcGyYkZiYbhtj6q6w9YtH2eVySIzI4dGCtu79Aq4wrtKlZWhoFrXEO54c3a2nOftJoxz19X5aVwbKqrfg4TwBiWmOJHnc8UujMl8YR9xrBz+WlpK/M1GyGGlqEUhEinnMBrPm3O3Hl9kThl6X/gQ4jYs3P/pyMD8Tpl2drrzcao7mtD5zXWTacVZTiQfbVoYt1168J74AeVwsNzMSyOwzToa4rj13FnhtajXZKBPyGhrVgmFraBD4kHOjqRO5+Yn3x8NeXySZ5GqRqCPrSfeQYFgKLIIGnSGqnf1wSLVtxsxI0IBICvoqKGHXTy12acwLg3LoZ72LpqX9riA9l6YSgYMx7AZ59WT7N65yNPWF/PXUix0C63rXOxJ75lrjyKdg2ddGWJBlbzZ6cHcIOkYpnADKr88ldUB5mpmLFRFRGfRdjncMt1otVPiXRyHdiEGiT6+7SFEfxNJbRdOklMnjzxClwGZnNYS5ihoVx/IGk4V+43yfgZ7nWtgSSO8PSHHmkx/pwyXmcQIUIUr5sUh94lZYTe9cXzeik9ebJUoI69PevRcSIGP0etTaFduNDmRCiWuchRQeBZt/o22neVsZBOLEK0J3RO2vP2STYpdayQ9WZV4pc/9HbJ2sRPlHY1CaZ0cnidnsOKoTOi8Tg+ZQ4KXqgaNxN8CHXRUZ3HzEkdvbpnf9qgDyhGudyE36Oa+tOK5Hr8vrdF/+OZ65MHpH1zi45H5W4hT5GbrtCqmn7Hy6f0NPMiSBs6Eg56TKEEAr8RnV/5qTndY7aibUXdo1XkorxS9tpNSHu94YbRsfoFVgozNbjB62U/zNA7/0/4qIKUTszhJlHiGHJ1Q5RKOtU19VsRMWNGq7zmjx31v6bRQ1w1R68YfajeGnXU+pYBL/Pq1EYd0saCk8UKjfxrX7mOKLHlDYZ2Gn7ZESCJ8D+oAJghD/u2VNtONUfX9qroA3jYlNVsmbfV/FGj39YDpSvlDqlc6RdUR+AFElBJttNp1lwkqOq9ry72q8JovXlScABNrBllCJXC6UDJue5K1PjVZBLoO8d4MRcBDl4/Ncr3+q2N79IKBAcGPzsiHMMCO8w0aTqUhmc5rUL7QU9Pu+s46+OrJ9zWEIzTkX8Yt4LOdkU+cYGCl6bK/SEe2mLa8KhgxITuntqUtJ4zyEbwuEhJkaePNs8RkAS8jW0BGbP9cjjXKNGIoFfnlDI/maZ3ccq88VnZc1eR9sQfWyJyCPrFo/+ZMiGEFn5z4XrmNkeoKYcCaKSl/vMTX3Zb9iKJVdIkaOEU5JM6tzFZJHR1t1V8ZHjNRIPRWUwCXHWEpIL3zTFX+ov/ZTSgjhrM+KwHaNszpsjIO6Sjl2DTsvm9Bc0tvxrjejK8ix9q9/zk3b0IhrFfQTTkGf2BKo4PZfn2hD74t5fO0A/Pj5qgsKfeWH9jmbvP828wh6egwUseK1ZOR51puYzcMDq9cEtv9I7ox7PbFOnC05uz1KKjzZ1e5dVufc2yWuQxRXVb+pZbbMe99PwpyFKQlu4gPavoapuegggI86yzu4crh+0taN83OVVTLKxdMuN/lNmIP4a2CJS2NL5cxX6fdeJWioCqbD1hLn6i5pkCz9oFTYJxqDEH7fZCG9ozcwaLvA3Xz2ptmuYyiIt7BXnSc5uFinvvTMLxGU7fKc3IJw8eUKfdkkM+8b8w80VIOSGXmumhtu/u/D5XVvgkc6XJtkH7eZ6TBIKlUUZkUXzI+yqF08ekDwIj6YJBpfvCy3IU2il/D++DBhA7bj7k02xH5XNiq73VZVe1i6gLgzsVO0ixIP2yG/PqngQtQBhgYmgA5+gEieH3EmUrXnR5p3PHSwqS8/Seo80eK9dEhkd+bGU9O1JrV7XGoK2YaBzegTAJ8bFuh4tgLICm7C4db0c5pCh5MeayKGL0Gnng4xl+apzFz0vmypBI0L4YKQ2aNGt5kcgiqi3mYUOY9u83pJnljnzD8CgZCBcst+mLc5QBr7YyVqupxfx+5D55QhLe6K+xHrMKCp4l3irRXsUEoYKc7UqsrloyutPQXJdWbSRjLPGiNr9xAKVdNiZWOgfOPO0XaHAum0m004xshfNl/yM6usaZ1qeXw4FOKc+QcQALTnKLS0OKyZy938gr/skIrfLZyZRiHB4CJg2QPiUD3R2Zq4dx0cQHKeIwf+eXUE/fsWdQhYxioikIWcskvanc9RA8bOwe2y6QQPKZjfLaB6VAnNjYnP3Y/pitHBuewsLPNJp3OKGobE5+BjpKDDf40Ak84v07nhyC4QsG4lqVIa6IbNEUOS5UrNrxeoWD76FYp1r+l7F5182L1ppW+F35kQHxKNMO6ySpqzx7ovGUNxyg2aYEXEG8QW49SKu8ZNCv6t3f+RbuH7mL+KshYu/9f6gw67X0/K5/PbvEubURUExoxhSpLKAnIWgw/0/yIscIjwOO4mvt5oq0tCgEW0olmNiBjdg2iJ0pV8y27TtxNmJx4/Gc/XVnxksXSmQhLsnscu2jaJWB1hEu+nuy7qwXHPgJsnnrrGf6Q70hk4isIfTV22uQ7dKqeWPp8vifutXL1Ejvr87R9+ZwtoTqzMNtIf+gjMNFyiGYqpNXehyMzr+/z96/wQpWJM7GxBVWKq2yqMguiNklL+1MbXjCsB/memXoYOCvQL5UBLdYs3Z9PH4CLceW+z2FjVZoXjEMNg6YBw3dN8yjUZGKhFwLp2vWR/eCjPGAZXYCni4nISBBe89IKKQ/RAUZi5TuS2r6VxpJDcOlKmjofrk30+yri61SfOWB9GNkjteE9wCt31yzDw0DqMD73KBdcNDrjBK8FyZI/slgEith39dJq8KUMJJoqa18urbdV4OQa1uhO2zu2lGDtdGTzpjOjLzQ1MYCe5OhgOdMtA+vN/U+2zE+WrhcnBiOH7cEc88qgqBVh32NC+wxLHw4Nhx+4LCeefv4QG667GwKVIgXGCWNMsd7r6JhqpW5R9R07pvd+zudaQL5JwTLv8szgsy46Gf4wCuh7fPgvpGKnPp2OzXQDmFK9DcL/KM779SuhAJq5Q4dhXdtajPUQ+hc3zHQO9u4+twJsAey/lIw5/NklgmxHsAo3R744mXKYmfjMM26VSp/iPpIwyzOsliMgzi+ABiaVfdkCnkanE6d6QFYp+7rl0nOoRaak9LiH3JRx4CSUydpYryiviuhJHf1jFBPCRaf7VyfW6woE6alEogQuqy6VpIkUnqkbsdVUreBO8SR3QbUXSmDOq42nYXaqA6Iil4f4Q6ww8ghs6kCjp5PuxV9JZJtzuZnIOLpLd0MdkwaOd720Qsr8akMC1aj10NCYpumhznQgB+Kv/a11r1gjNcHTmWGbdVhpOiEEcIpqR0MAdak5lf+Zlu+G6VhQMInJwIlvYTR2xMgAnsZ9KYjsAWl4ztSeIPN7LDDLpOf7irUnB4U/zAYnw71fHXdM4RT/sL+8Z5ga4S2mhw5x7sgXUzICgG9y0RoH7xTdG1rS30u/5RVKQcmR9C7RsIu445/eDpj6cAaDGMsqk6ONQOZ9wXbKJV0c3IiYgPmhtfss8WbR+c4LFwbGtE08iqBz9iITwlQhJSXWMm6IMQY8cwh2JfzLiTbBQHMKX0zF4P6ZAlLjwIk8eIyyH3a8CQiAMt8EIbZc8myAUX8v+QpSQR7DJObJ2RT75XfuR38aXJ/mtQZKHlLjvAF30u/KRIgQNwEZxQGJ3/peQ4AmuXu+Imy9Nw==
Variant 2
DifficultyLevel
539
Question
Which set of numbers is arranged from the smallest to the largest?
Worked Solution
−5 is less than −3
10% is less than 23
∴ Smallest to largest is:
−5,−3,10%,23
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
number2 | |
number3 | |
number4 | |
correctAnswer | $-5, -3, 10\%, \dfrac{3}{2}$ |
Answers
Is Correct? | Answer |
x | −5,−3,23,10% |
x | −3,−5,10%,23 |
✓ | −5,−3,10%,23 |
x | −3,−5,23,10% |
U2FsdGVkX19V4XoaFtv1PALt+x+uQzt60MGFV9FDdE2ZMPD6oZOJKgMVCA5f5z8kWF00l7FeE2ggviAeRdvYTDu4fgbyqVNxhsiFAF0THv57GiVVmm2nxvkDY8BlWaQqcNyCN85D/Il39Shnf77E8OfYQs0LAUArxVi2Qr0wYa+enuvtiEakYRfZLaSibI/c3tLTxzsFfQrKroZcoN3sofZHMbCGvJ9GIbTwZmL/1SToLnVmM7UjfQV2q3Oq7WJMDm4Q6yJTo9kcw5XNWjwJPmPgeRP+QsAnBD92YW1wFaiuqBwx5b1o9mwP8/VRiEAWSpS9+yK//wXUlphoo8UVTwZN5Spc1Eif381umeWJIfS6FH/0RXK9lxUEhwirq7583Ai7DYjeuHchnb6tjPz+mL89nx1Xgun9ivM/Ale8U5T1inrHdCucCtASqvPM0qiAr6R4gQXgaH/O/BQwbZxQ5iIuiBL04BNUAPC2h98rtI00s0J0UVLjjmI6H5/BJI8ShDMtKFYBPQb8hg0nL9vK73FgNxA/KQapcBNhASx4bfbtr3o1WyvonqzdFZmBWkImcAn5rj167QBhLSM/U7zJbG4rilRIUon4BsTlt6RJxxXM0NYZK0cwDrVEE+y3neHSwb7g6eCMM8+MnuC/nstd8kAjkSzvf5CxUpPsdGPvxSNIEEbcQqEFB5ZrpDrLDLmWuyV0aoSjunrt1P6jupLXhSEtVG9+3ViVukzPSOYfAqPHIv7GcD4OJ/+S8mDP5IEAy9JZHhLw2j5xXQq9P70Zd2U7c7zci3Valg+Fb2TYqFv5C7uK8Wt0fGLfAZ70DOAe4z6JpmwiCpdG405dxPgJvTZyfa1ZpjOYamElQGN2+C+Ks07PbNaXQmvVMNfhS4qQZ8pPEOssWrBRoISr/l904USpvP8Xolv+WW90+1pqfY2a+AlWyYdD/e1Pu65M01nLv0cnPQPil68/35e5BtdRvY5QIbdCop9dkX0393gnYFCDeUgvLemkW5m8jO/uGkpwm3/aOLm7CAveBOdXiqVEOph1dRPe/L9A7vpAi0GkFRIcYQq0KxLQ9oNNQzRpNX2h0rjo2BIP65H+73V/c1HqvP+sG25PezPAJLWsrLkvGg5qc29dc03Y74+9N7as25YlNiDOJVLojm91Wm9WaNHdVCnN36k2e5wPi15bdOwsKkfe7ILRXo0tNmVwIhyH85pG5AlRRRSLBFozZjjnlgVTjnufGgoyqHuJh5pGh+MHZuKlkpMn7EaN2zVQk/MKA2VaeeX2s5irNoayB4/yWnvWduYBs5dodYZsIEcoNYrFDzwC+8aJ9ryjkU8J4q+j3kNgjtIZmpHHrjsbAVNgyCEu55A6lSoUqMwGv5vuwkLQ5aJEyO9wHpA7beFys3Vye6N8SqIsvxQ73tQOIzCJLa5UzfsJmy3sIKjuMwCm94+I2yj7Xwjb9lnGchRkOVARTVJYsTi7dZJikQwLk/v4rBahpjRnvvwWMFH8BpY4ir8Li71qWnOK9QyIg7PD2GjEjVQs0FyYHStzV5D6QzfWQ+bnkDuS0olyLyzre884+rrVXt6KByWx7vVo6Mq66uL94aE6OOF274rk1in37ZefYuwzw4He/p/jBqnJs1WPC2k3YkXE9LX8KCj/4F5uiY7Hi8NuJA7Twxjzm2hTvYdgIm08V8sxCG9DE0yx8EUxpbODBrDaSxYcGYltbwZkI03vYFMTM8MixP7Lbrr7ZDY/CNWOzVpnKlxxcmiia0MAq34YvY2eO67WJEzFcdRBm6eHHf2ocwuJKxNkYYcjlbNxKmofW4CDFkmSyg8qxaUa52gtnUtgLBAvnX2DbZIsTS7inHnIB60v2gQ5b1tJLD3tuplRr4gI3/BeFYbwVHSwYrWXrzKN4wX1O85R4YK8nS6h4dQcVIs7QQQVSCImnVldIIS6BnN6RKRuVuKalaaXQXCbVqpQWjcylqSk7CqJIMqG2jKR3SAcna6SWuwPt0Z5/ziuBP7pYlG0GO5jGF46HggYhfp3xZQl5Bk57rfLdptmr/UpxPJ3F8RzZBIv8HMdIKG4E8PBuNtphjNMiQieyWiaxJ+BA2hWjms90Q26iBnKG6R2b1lwmRMJQ07n4AXaey9HbVfmpJPd0sruhmUSNY1p6wcvDvZSjj3z40+QBWenOXYgXZlaaEMEiX1rVrQfBclJc4tRX/HxcL4RekjRe+m8ZRdduUTAwbUs/ytWfAm8uki7pqcHKzRFI/NowuXnN/whkrTuRvglBIxTR2AnM9KTg5bZSdgm84B3eKBw6c+0rx4COtIAoKWMYngysiM0PPhP3kyrtflGRGtiT/Nghr53zhz0aGZZwCJEoQZZUjaA2xzVJS968a9oWUAsG7+Ywm+oBmRT3dXFfsSAY2thfLbV+0pvGBbxxdSHF6cMecfgHR4TbNVic5toYT1veT8SUZYGJrAT0ow7b0ZIo5nJkD5njoXzuer8y00Fo/FKA//QpBTABbnZEQJsspU+ZOJJaBWZG1GM60yIECBi9ncPuRokC6nsrgsY+oVGvUgR3yfPT/YXvM4Im7Cra63kpyJ60qXYimdx8EGOhoX5d+WawShuYmELGkLvZvz7ppr9v9Dn6qDa6MlbJ0AxxAk1VCz4IFYY4Iga207SLNBIKRNZqXIQO+Fm7MqrUIvttnJDboMFuw8LqCELmKg6dC/wG0jgu3QhvfyGwFnAt/vVUukTM94hwwnuPxKkkL+gW5YqBt/GG1K2UkwDWF46LfsgoGSiHFZJ1RCg+zBhWRR1ze7899y1DtP5aSth3bQKw/OB95HGSvZsISy3B0jVTOevFOKQNsPexoJqspxC1/6JXjcxOoEH2T1Y9Ry2w7WSwOxZWoqH27WvekTmi1i78ViEkCF75jt4gEap+7/thCHkLvHmokt7MwGZJzmsq0/9DhEwcCHpQj7RjclXdY2g3MONWaHM1oK3vz+gnB0tNfVcDI0JcbN544Gzm7xddbPmE7PC6VUwaFPg+LQNkz4kfEgZ9UXDrQcnyhNnODSpXopBr4TcztpvLaMmjtBs/GYeHbs6mjxIsrL0wy5YRnmqo6nWJvo7+pAWvJTFdq7rKjr/tNGsWg6BHDDiuzbgBzvqkOLndZgYCnxnIYJGAj/EDEjoWWbRrGsqzaoWOSE1o6qV2gV0ta4cqJBZ9xs4xJ0UIOtCWbmTekfuOek3u1vzfBs9+mHyqlCabtH8R1hPKF2pm/MvsEEaznAS6a7DWfR/hla+oIzAUYTCjeo+jsycyxQLps7j5TgQkWLmG1OnxEvTPHZ2Ji/VRBccm4aD2zdxlepXjgG2GPTBFWdWfZMszOPN8ZsI0ViLcHVuiZxH5j5SGvfXhcaHVS56n2aNjaGYF2VXV3EfGTTK0ywnh4N5Iacvm+RT4xRIzl/1QU34nKnlMxqa4p+YMIhEwYZiZZWOfuWBgHKTwmjPcbcXKbtOnJCKiUS1rVBdLcgBiw92OhCVGZW7wAM+1CytKfrlytLmtIkEdyRxbXActkqrTtQRpwOQnm/A80+u4VOiDUNPTXgyycl3S/Wg2IdAGY93tXecnyIVZ8QF5Miumrq1gM0O5gGHli9JjsCeA8LWEek/Xsm/bpfh4TOHa2FCfshPEI0PTTjEAGE/pONkED5enIdVSLaW1hP2ZNcAxsu2X9uXI141JdmvMcisiq2QeHWUzaZ1L+PJUfa/RSULhQiv5GcuklDQrP0xtRNLSArB5bdz2PM6LO395VjzDrBJrmejk62MHRh4Ra0bHQKL6TLzj36skI1GeMvW6dnZ7vfCVRg1Ral/PenSkAO0Ft3u5+45BfB8q/yqaVGxwBuTpHVi9wD9iQ529emsfM6ovdNxIUHSSqrlp1n0aQKczOvo+DgajnhscEHBG9N1/vZF350coQXpANNUWOgZxHHqX/csi7c0KoS5AHHMlXaelZPqQDFaNLVWVTK4z80wYmwl99veIwdD4YilHWuL8JmWmmUWV1XM+LppbFP1X5jbGi55ffQvK1nHnIaQ4uPOShg2a4jHXRfD0RwZBrNmVxJmmIPmshFXOqBCdSD7HaKZvN5+pNw9FQJBOPyb568P4rrw81S9WpcLhx+2cWVGGt3I2krZG0yqZETj3RFzBeUyOS63OKzvkTGvU504YZ69UzYLubX1oY9E6YyCtXRDyJ1vb5OBnbH+iNKbY5TO3zce4tenrshK4K6+HlRmQx9n4Syg57S6xrmMcq2YNMmi36NLe63/m7BxodRVMmOqgvqVLDn4ClvyKA7ixzIi9bafDOxYxAvROjMjZI9+nFHoHlKgb7nFCD7szYB5x+oxgRqSg9Yq8wQaJX0FARVGBAxDdD9p7+LnMGRRZD/CCSIl5u9QnhaQem1QqXYDCjJ9lssWwOhq7SpCWJfPKJ8vJPKWdVAvs5LgwLl2FyctDwcBtJopVimHrzP2i6BG/r7kKV7UP6JMKvjdHl2g6SfIX5x27CpWH2OY7sioIxXkml8z/ILH5Ltk9jFJSzn9JoL8PoM+22xWU3f/FM8oUodj54DatCKurzD3MmYh9JixbOCy6270ygzv4GNa/X0cYycUrv4PABcHvXkwC7D3rjYUBElY8EWJ5bZQEsGM0luptOmZoQaLSlrpM8gfikYOzPoOJeipPOok4wR8zbdWQ7sKzKyX+PRxB7XO75BLNsdnyDq/a5e6I1CQEYGaD+bkX7OKyHNBdiJ6htBrgGdmxCCUjfsgVw8hdEuSuabuEhJMiu7V5SLUGnk+5GW8486UWuUL78BnDG/kcFJDbMnbQid4B90+azR0YNqni7GRB+YzhEjJDey/u5QWi2il7IsbbLzI1yGKSgbyFZ0UeXrzgBWqvNBXs8YgNWvseHl2PQgKWXijB5KGs3Q3xBlKYepM4dFK9bz1GwLQVrfywO3tD4GBkPWbZw1rBsA8vCiUs9DdQ6qSkLuKeiSamwLvWHc8iYdWjSTXVFTIthuLl5aEPYrivf6zDHuS9LHqz3UqlaIESlkc0KQCALpChV3wi1oBbZQHjdOeAsjl2vkfV75Ioixim8m2Gou0/5KzUPbMPYI8+nfWFK0gdWd9q8G3wSSqDGq/4/7bzhwn5BTuEs5qeni6O1y4Uzp6E4eiNnSqC/Plemy338uJ8DF824jGUTNWttFOIGrHGLguGURhCjwq4wHAe08U5wEpNZH8FKhPAHkB5A0Lf/EwTvmCYty16X+YpLc5YoQOuIVPJ2css3gag1NoBWOVSp7xHzk96NRz5UpU7BQ4wtgNlMtMuMvkNVL+hr1ydq2KZSZaq1BmHi+bUK+x298RMa8KY59yTN6selDF4C3bYVb2oKC2T5EBIXe5OIkapY42Tqll4jJBfrObcUqJP0REnvqmipskO09z9GwWjNlxbCSflV5ZVsgcb0O+HeDp5vAsL42kEZdiqH84I+cPKOK19+W8GulQAXn307rI2UN9bEjyXgx2fL5kSl05I2BqAa93vOkliCXEuU2UGZrGH/euKfAcd88MglM+d5X7x5j22IjqLt0b5gXbnWX+Grm7nQW24BJryPkaKpuOKSFfoSySrXhCWG3Sf8xCY13ofPF+8dBb3Or0iBs8hfzkWPx1IOT3a9Xk+nE+lajBgit9kxQ7TJtgYpCuFYtlckD9DHiXAHHX22avN+GvHx63FWQV0yvWqU0c3WjJu2ogNqHW73ssNTB76tnoAtRVQKztqNHuj1lL1H/Wlx56vV3HQ2dKFPK0HFpEPQ6u/n6QtEoUQnmk7tgZNFp/HQ5ho2hgQlQnp0LmKPZCCb5PmX7e46zIKDk4+u0gN5K8TlT9Q3P0ygIMxJKUJ2sGr5iS1hjEMXpXf8HBGVePNa9plP3AoduOEUpLIsZMC/4E1QGriS+bF+s7x/Os8HQVzeT7LeqYAvBtUTmIzrQbBP8OIsqRPGDyrL8forXUQc4WiSE7+iA5SXM6M1ppPfIZjOvsUGFA8r8XC3aeOgPRk5t6HdJtbwkteIdvW4k2Obqm3kQq7dvkbe03keu0JSJ1TBJ9Q422P2dGhzL4KrWMkdkYPCOFxXRGUOxqPOmmNSrB8rKEXrhpY8IBuK3Jvlv8pnmocRTdMoe4xMMVZnQLsGvk5fG0bAt9R8NEE1mps/93t7F9fYd0kGYmmD2+/YvWjOQ1sDcqVt4iptFe6t53vR6C0IrStFTi0OXpKave31lqf/hG69zyHFIbF0x2TEWSwNPWIjhL018l7/NljLWW86zKw4tGgorbin+16Rrjdm1SF5uG2WV2llJOJGAL9cwOGm8P/P9WfA/oCBXY7JsR4dGEpIzCuzxM5ybYfYDdVeyv5o6t+Don8Lyuq63g3Kuj+B/ebmzRhlYdMWCjKOwBIqeffXO+Ok4MJdRigsGTK+/hHfHOwrfeNRta0ymd2h1iAyAG/j/R7T6Mtv+5X9EaNLuE8J2ROCzczZLJT3RgujMq41HxoH5C5g+LYqoGJJBrmvqARn0GnH7oebXfsfBtn/Hd7+qFzVliHJFhVsClBn7U1k6eSc6flrXngvwfn0QSVwdk9G8nLfhKUX+JFjFXAed2BCaYjABXfBuXK29mK2iAz/kiGhd1YTQMvz1zWoN0uMuMc/0kdgSzkWSPx6EuQIEvQhjsmSIlPqey7C2EIVBNrSzJa4kC2s6ZxAuwBAQNc/W4S5KzUDGM0Humze5NdS3uYY2WnhFeYEj56JFVY8AS2lJdwbeP4LRCWOyIjYPGHmo8IFG32cgKFdon3Q+/FukA7K0BERQoQSaOHaZCyg2eV/O52UWEC3u1cT/McJofLk7gZsO1q/kti9EBMLG7P37HLLfiEE1nu6KoJxQg1l+9J4WbtELulKw6LtgL9FujEOQ1ZUx+P5SmsWpQYF43rvO647dIVP9MinJeB1HR8ap+MAb41ouC+qbnQo3KpjId8fxqM8HGNeTd96GT6t+hwV79w3ZDDoSlar0j2hViDmEH6DLZFE+owzFKH7sH5+DllHmvFAi/wY6nTaOdvLNNOCQpRPesWXSk0jNGqR8YMgIrMV6o4M0PZLG81uhwekI6FY+5XBQIofsKR5efgti0MOT/Aa5qoD47PGEDEA11bQO6u50NifigSDiVpvAFrm92zA6ygmybxTnISwhLstpizqycAihKvczUOElbZ/2tg8/e4IAJYUbMRH+Yz6wl8OAo3wcrT+XkPcI2N2k0hl+m2IyzrpLiBVZJ+oAG1obxcBz7qqS5dr+QSXrtyTTDFCDlXLgAwNsWu8onf3ZSfA4MVdIY0Vev54+xqj2EXZ0G0epXa6ieeLs42yMVqUW6BgJ1ZbSSUXHRsaVMs2OAQeyPOGI4i/EEZejkNMqgpdH5YSGCbtkWSaYqehbTZq5B4JRRnKqkzRo9T67wBcAdHKuDz2r8aqHCmfKqO4YhnuoV1BY9CeBQZjS/Oh7ioR4NcsXywgZ5S6itJasujnpt4I+2WvBkctxDUnofIzYp9YgjLU75NMUPyI1GBUxQq/yJB8WaJqkz7efDaQ6ZfjawC/eWSgPxRbt7oukX1xehBzLWB6C6PbxV17vL5f4CoaXAsdrMJiwG2gwY/u3KnBlpvRUAQOOyeiPy9iRTyvyWzVEvPupEk91MDdrN1DZa5LL945aA4cxdWDqkZNwvz3ktVLangT3Q3PUyAm1Ab/NS57nN3bvfdWDmhri9/Am8dJWfaErro4FbAuNJjtXWS6FshTFTmKZDpsNI9emGzujpkPc8hiw6CzLESUfh5hxbNIf5wY27o5jSZptXwFICU9+WGFh2qInIBF7M+W8Po9cbenLsNubBkaj450DJtILhLHPPbwnIotAuUnHAVULq2GWZ0ZXwGp+1g0TRy6HI5PdJ6a8KuFMTHoev2yZ4UUbdwrAi+lWiLeNzoLHZkJ9veWAxwm7d746rNyniM6/KI8/SY2CPSq+/k5G3NPIps888x76wONnglxlsgDDxLX1I0WVjw3aYt875nxCe+XWxpytFV7sW14Tnot5vXgBcMKXLjqU529kgoM8XWqcUBUpcgnY8LaN9lczF+iXu3bAejYWyOaBb1wkjO1sEja6m4nP5YtDpPshMxRiO2y9Lkw2w1rXKU6178sSiZ/Jh/KVaAtEwem8i3a/THlRk235bDYpe1zHQLeauqn96br6/ErNt+Yh0386WkFrCGfjKirUu73DLMbhSK/T6YPT+0IVs22uC1RbGYdzZlUBnk6qkfVOkpBUJF65yMUsdajarMgKnXchSRmnjWwCC8i4LJvZGH5lINxZveM/ztZ2uLS3vGMGAO8i6GlGEVzFRY9VvzR1piUubKPAFF+KX0ZZkWejha9Wvp0LXgakuWiIN1xFLav4oCwNmgKIN0iyRrVqWHygaOCDbTqH6z2g5QoRzs4gCSfURsrBCJfGdNuCvhVa00B8Hsh52wcwryDnIGDq138jDQyTeb4J4ZxUGw1Oy2uDIDYRyFyWyHE2Xc/iyPmG0P1ZQq/eZOnGLsGJ1nu669IbkZ56NHx6r5+YsHDN6ZJWZueoYAkYUZtwwjA5a017XWkEpi7JkHPxivFrKuDwmqW+QjaNCCWuUyJkJ4vXIDE1aZKQPs3zc5KUBiG/3VHgdQXFtpDZpEmRD4VyRCOuZYWpkba+7TKRWx3WIOhC7nFPczo5YIxGVk0nSlwekptqabKZT1kyF6Eob0TCl9hxg5bKvPcJrGL+vDpN5RUyHb0T0rgbrH7g8jOw63ys7pH8O/VlcFIn47FTRL+hlFIB1G6jLRW6N5isPYR6OXeX3ovEEMA3C98sUFqxBd6Xg0HvZGnWGf94nKqH6+4rdFDSFqYyndw2dhuzKq4PWX56EBdrVCsX12xQy18Y7nn8GD5fwo3rnR2Tltr4VOzoYeNdTGQjq6QGSB6oyCCkIStFN30hZXfDhzb6U1MBXMPkciz460bJuAMbKdq+PHkxiLJndrQEZMMz1PR6diLzhOdT/3B7FAkiTFQxRmadrRLBscjuxhUKzJ8qbqejXXzM/kGk5LSVY/NA28zHVn/1Sl7NU0Im2UX04guvKb8EiHiK6Xy3Vz2n2+6I1deVNXamY95sepD/MxQ39gGK7XF5BdW+Qrm3Xt+K5V/iezNbXpftCxtbrX2P349krbifcTLfqYtnqxIyg28v0uLrTJ3i8z67gPaXT+BuKQRGwTonQjRFKjyg5ODLga+2BFfNA7FYRCAZ1U6EdGTNdtMznK14o1gHDvu4gtjidMnYx9kOEE/DFDCFxF+uj5QHZFsxjTb0uz5w5M4Aoiv6annisLHRyjIEYw53XgmtsKuRYWrxO8SZyPIuG8fzYwA10jNFnr4aVuT5SXhQ2cmQApffJMrgJOm4b1mrp1sarEzcVfAmvtw6t/OG70DgscfZ5m98LqPkX3FNG4PWoTNjxv97e337aUpayIDefieZ1KfGrhPr5iLUsbY2khZ2tgVKgo5wYpCmwO0O89my1cfq0Vm3v1mmiT61khDw1bg7ap8XXe8fFeeXEzqSbT2VtBhIIcWzDt+08rOX8+t3ipTAn94T6D0Lvhc/qN0IEsJf6o3GPi86HajSx9CgPbc2/5Vk60Tz36O+IrHqq1WLAL8mUD2rgwNRO2+hZ1SM3GROM7Llurg1uHm3a5H4FKj5XfxIZ5dZxLbUyLZk70Sji5IQmOxEDEB0j+wwc/U8+WKfB7N6UrZANAVx3scleY7zOUNLyjodZj3mw0ZXu7KU8ErY24flCINzAhd2J6CAZ+90+zAtYcXSGKbPN+xgXTxqLwJ+KGayhobOsC58iPOgI26KDK00rQrDMEBl52Pjfa4JlWj+J6b+lIKP78rIr5QteOrNJC9QmB4bIFRx3BeHl/nDFD/J74BFJOSxWhXQq1yZHV4NPfT5aVRHrWjG3PZigE74Jo8NfLQvISyMBtRgvkiDwViRllUhSDMYTMX1R2X0KGApNfypNFHr0dRwYQVj7XyCRWyK4kaN+onjAPznsmOOJ4tJL0hi5EkWLaTOXhheanz8ghcshBVOEV2ok0q+IkkAqfKvR8iTUYqkDkg15c5AG1hJQI8UFNf6C2sFn1dRcDqe/+y0+a44+wy1xg6WsMRG982BELoiXkBOj4+6pI72SQ9IT1fjyrY0h9AY3apDEAe0L/iYTvKOZ4vOvf99Za2/mU/fedxlIRZd1YV5+bC9+Qu4zx4DhjL/+hoq6G5r2KALsjjwGxbxCcYEvuyNblRxFSxm22aKreB9ooMFTIlDgK4HfCmcNejh9rm/eCsI8h95gOpF7F/tyrlRIANJ5CGAXyBTuQAFSfv+iqoB66u+KqVhDgSRHxEkHRlE0N90OHu3TRhMlpNb5qSc75LKBTzkTzcTiJ+GUaLc7mM6yX7vf+wb2IqqHEQpOl0ibSEPpLENEkYZ03d+JIjyhBr4/3eC9rDYD6rV4nrM77C5IH343gE5Un50Chz/r5huRUWTKzK2gFBi2yBWisJf4zqb8hEIHQlu45CRoCY2AQrcT0V7lgU4uKrkkmtFV00qyPOtMflwTo7xWUqbo2EfyCwMhgDzmhmGRXceqIqNujcHckmJCTu+Bj81/G+E/CtTiI3w8xYa2pi1lCwo31JHFJEuHfPIN7GeQId9sLwqr8x2BBRj3mI/DR4Hdwz0jKnt0MkZUO1hCt4XsEq3pkkMHOjPGHDOTs8qHFWnGbK5zF6VMuetvczixznA8RIJcvZfdWan0eAjG5hM7THYd66xOSWEn8Gwsj/Qsu4z2yiqNRlmSQHdmV88jNqu8vSG6ByWHo/23/b45Zk3Pn32/V2s7DyQrwemomHf+S8B8PDjsFEc2rBd4A2AfteSWX4gOyEHBuFLZm8PthnE4HXRLQRI3jPOiA0cu/XfuNxa+6DAtzV7Mfj5cYOznz0SSsdPOVQxMKvvMeVlankIh4waum96TlaQBYh9EqztmTxCZb4plHYCN8dsKfbP/i9kSTCFzboQfhp2ZtYT24iAVROsk5MKzJAnlP7zqDtUQtfYycTDd3FNuRypV+1zEl5xhRzQDPyAAXYasHLXNpn0PhnBfP8eacv6j/x366tRmiR3hIgEkRIslKIEqRPw9Vl4wfiACjtIm7/w/eCct2SUVw61ZW4YAJW9UVs+2HoHj+0XzPhl5im8sbLCzjHKaDzPi/SKf2vgHUv0BrJPPZIa2T8J2yMzjy3j8Qy9+h6JYUSAoj448yYdpNZU2+azgH3iYaw4rZbiZggz9jC5Frh5Rhe/QMuketUcrI/ubmucsf7PeQcXHqg1gRxyzGj4R0rx9qulGcX/SJrANBLtpgnWvlJc14NUXt3PX880/c3DF2aiOq9GDVlUFuwnAZ3tm9v3hOZouC+n1AQHn+P8+RruYZqa4s6T2PhqYR55T0xNjyvjgZQdMbuv9CJUj6MwNuzuO7DeCR7ezX96vEPKqZ136wfWsMLmPyHRHWARc8pfGrzPBsdHOlsNRfosOR/KFyT1rK1BrWEj8Fw7PXIPOVqxM40IXDFxj9mL7bZ7zU3e7ZRyypVRGzF4IqxC3YEyBR+2MubRRLEYRM8vAaamYfAMcq3xZO7tfgXlVLf+aw8WtFvu6sis7O44eVnMTVGxdL3HB9+ZyLM3MdUDswuMOXqVXh2CsCxkLCS95GCEQe8PH4OhFsw5CFdGtoysbHQI/VMeX6qxjsGABTtixIWJ1uHivV+Kf0eeAUuElryjQGf1RgdoBg1rVZrw6FDl4pTPuxINphErlNmCb5dR714TBJwANayZsrlwyESOh2JanuI3EXnvKbeaXNorKQQYjiN4DABZvkunSZl8WV/IAK8rY3kvAM6V9Q0XjgGoEBP9c0cA6f1X3/f9Yus2UvfF3cxfKW4GNZuGKqLKUwH2aFKaXh3RConh4zIvvPMcDBRfokjMWEQ+gzxJmAigG1Ec9QfxLFpOLclWLtmN3TUsPXWdJ43JmHOOunseqiAmWGydllgWyyE94ZEhs54mbgXplKMgeIu3UpPf27ka365dnuvROBSdyvkzwOPFVrsi/cCWmk6vBO2qI6K/dsL3dU2U/H4kl/v7roa4lNKYHFRp1L/gw2JamMCVX9HdF/RM99oCo3CRH+Fh9txO7MTFFl8DWHOE+J2ucpG0rZpVN6D0otONiHp79kXd89IYHa8Oji6jFjaBj2CDZPApLI61iZUxH0l5lj9zrldMLlpLqCoACDIchhZuu/VeL9Qvwo517mxKJ79a3FZ0LIcE31pn48wgsUe8hBKlh9B0Eab7WGBNJD+08jyzk3o2emEOeGo7RpSkgp4aUSAEi9V2y1FGnviZvsDBbcrnHT8Qyy1V8cwJ4WEtfeFd8KVMUc0a2z7WkZ82y4SF0Efgh8ScT7OIc7LNaZCkxVjnojd/1xyqwzxr1LMYNY7rtvEKZVm1VYXDJz6XcewE5f8XGpw1nAUW8H7HU9S5HKEFpQgjS6XjAYZ99rn28K/sLrKGwgxu+L+YnRyH9XziSwBFBCeiXHVcAw4TpfBIcJ282Njx8G5W/WtkfvcaVJ+MfFzVhpb7HzEqHUaF1rx+X7rSqyBMOZYpDG4QuURAH+Z5z8uhiPa3RzBYTgR2BX8TvHWvly69GVj0Y7n3VIkBV0iCpozZ3KpZD91un6xmvGMNTHdFsz/7LfXgGYpnrwVt0kmAHmhINQjLGG6m4deDsWesacbTNlkkRLXmXDkklAZh6UeGoItPxMNrMDxpzjmZbl6EY7byR8F6CencGVLYyRnBOzzIvr+uxL6EaDSlvImjkmKK/ULvtDeDCRTTjlq+zsB12RDmXNnFrK0Ods821tIfdGdeE7jHA3YqWiuBek4m/Rsn4FGJdmsUfZsciEv+SejEY6I2GXLgR+7eIshRRrY4zLAlL2UiMKpRYOZ0+vPi8bydE/5J79m6kqfL3+POQWJGjZEF6ZR8r14UIcAKgHso7S/PCHwSCl7D6wsvQgDxnB7HjxUBX8TL7nHcJYn+QlngdmXHBIdERV74KJwtc+RHdd6pZT8QE/9zVgBqXiL/b/4WO7ZekcClqkPLyMECTzK9wdTXe44gvJt9sPBt2K41cR5s9iEX/U5wOnO4g5PrZ/R8+oGIwsrWGFvH/b2iDkqGwCKRMe7gHPgBHhmbepdYX/dciOjqMRr3/rhiMqLwk8PfhybIcMNht5gtk9eWihhTDBsOmtBG1sltIa7wNQutuBp5141gl19ntp9hc0K3tfWpNfwSWzQ3Y05cY/n8XHYGLvk0y2XCUz534wPYvBeragsIuWOVfBCBobJREL/4cu7zSl97HTOyGIJ4l+sx1N4RDKs9yCcawJt/6lRDLpGs1hgAlm5g3yCkfXhpCW4JM9WHCuw8hvIS0iIiy9/7JACuVwbeBK/jA1ztxmjoGz0+yfn0ApBmDeoofD5tMoZsNtQkvS4hzH1y3/aBumdjgwhpFZYryM9Zg6MFEtN+w4rR73NR/eiIgyYXuROSaV0Z1XQj3MNTvCSyx3Qyha6Z1gsLwEkSWUY5aRzOUnKATrw0NJDhpiyKZNO8iP60jp3wD12LbjdIb+Cw04NGzwBYKLQmZQN6c4DE68bsWm+nE/JkpKg7LpEkPQbGhJljWKokKwMKqQuLinw1ypvC0YnA27gYT+/mxvHNXlPwtywBKjcwF9hxdSYmFdi9NcyOTwHQJ26Agu05O86SNWgt/udElphXdSQKE+mB7Gs+ghUJMGQWyZopKIdBT2XhwTaiwcwOZ0Qk1/hQ8e33ZnZmIyohJ1Z/H2/8m2qh75WTbKIQ/f+mjx/My/TxZSu2mFxnHdz31ZMmy8RUorv2iE7bqWDn6DOe+qw/6Gb1+CWF6Q/GqkCuc2orJ0eDpv1Jr6LsORoVmw3beDKi/DgAjoAbuP35OdLb6B/C6KAM2O+HucpZO+HEIk2hkeauXsefyDZOKtnqRoKENi5AbmOT6UYi4LakMJzuSW3/3PjVVuXuSnYzDVaVPQZMA7J4K7icnGFAJ8QlQYAvYLjRB+RPCTmQ2ixLKDvbLUC3IodUiOIrEkGvDBLrYZpDliRR2p2/E14D2WU9K2fMGmry+Yf9aEdHeSgTgd8oEaE3KjNhxnm7cWc42KzE+IoEukkDqRTtSLXVWWO5c9nPkg2Wg8AUMxeuOjdX+h+Wtp0EhCNLxoNdGGoXNu5Omr/6HKHQTmoALWblGOufrSYyHhte9DnB+7rUFo0kEg+RtN4SOucwISky8IovvFolZ8TUfY+P4wt3x5MluoUz2TerQJKrLvN1lvk99xrl5+BYIERmQjly69LkNmFJJx1nH78b87FXdE0EzESCVGx5YauFVkXh0EVnaKDAPyMRdRmwjXHmFTumcCV4YIOrVDg2NctOJf4ImSugHRvrLscZ5hfHtHs/5mg98LS/yLGneH0+j2tThZbDKS20foFF7m3sSGuI6Rkq1i/dq8J9/COVI6OJavGZ8Ml2fmcDTqvWQ8Op/YJtfCF7f632VLZoeU0KjESXjqPTfnOYGWaAOg/L6KTHZ8psx+i1klmmOwfK82Vm6I1kbyGbtw5GnDUvVnZ6KS4ltrjCuwufTffmuSM0Dqg2/XghZagy4e+S8HPxmpFiM5VytMQNbOdojp/QbH8/4vpy0ntW/bMlt20rcR9RU/nfKbiq/RRzonGeToxzZAzW16xJFLiRQFZYXCB84GgZ3bLVTZFT3YaCk8W7czLC236GHEVjAtom/Sk+1f3EVkT5mLvnpJhXHXkd1Bi32mM+XgBOnjFO2n+3HR0aUuzlluhvG8usOW3U9f3IZ+v8NxaUjVuje11PktyqO6ii70b43G9596JsJ9uBxUeKkXqKG/fbmjXxAz3WUHIUkgC6AZucfpb4w4AKfW/phx7U439E3mgNXhM7sRWRgVBH8R391OnuawqPdr6CfQNvEQp6VPQ0RZKldcjKn1EZxsyGlh9H3TO5VmD9DOO6qCyft3LUq/lKJkRcjXqrx8se1N/20R4liPpotECQ6gSFWjXMzaH35cvnJWdRqaiEiuKiw/eU0j8IU3MmgYHAM5rN2OWd+lpejlh1a1ug9WH9nXESTuIxC2o9iQuHVGnISqcdh73Jghnc/AHcsTyQVdR3D3jkMFPCIH6ag7pH8juOxBNkSxGcByntv90sGXEm3XT99aqVMe5yyBDUYWj3ETA1OWROJJxUZQHrVkNlk+yqEAjEfydj7Maz2sQfDmcE7rEJBxssB27SM41xOG6FNdKZ+0kx5qjYr7KXdJSoA8EJFkZLQaqKryUu02D9yQh3ylzQNhebq5Ni0mr+fNW8DuUKj+N/4g5GHUQeNPxmGb7Fxeru92W2wxWZzP1Kl9oA36ssEiSZkWC5f1T2IFB82+KW0DK5u4yoc/W7t4rhsXAnGT4vJaWfA7r1/AXVDpduSKGH4MV8KQdBD85PDqSj/UpqPWSc4xkP/m+aBkswybE2FXTMOfY4XWaF4FQtsTwCi3IMFkhvhD0imgoGfxx33zLq+gDR+u2GAIv9gfJifKeRNxNPhA9SzF4WqBEYoNkjERtPkbnEgdCtDPP7GKydMBwYVAq563O0eUco0RfH+V0y8YmysSdHT3fzxJ95YdSo3MsHq5kxPBwBlUMU3OM4NeEO1YxA/cAnS7ihcD/GO/5+bQzeiNI5j10Y4CiCSmrKoSKN5dwhCiIdUgwyGny9tfrWBekUJ65TyxnLMlO0FpYeaXmTT+/8tBJdbaSAiFG9pY/wpAxz1s9oUjDqcEwvZL2bfQ5MTRHcm5Z9/qwoLLg0YhjGmZ8A2gQvHYBunWh/dMogG+MR/ihtxQrLUEI3kFgbP4osSO8W37Jam4bz+mt7eFTUtE+WCXz1dSzKAMdrtYWSzQUUAsJdTIR1r+K9aRqFlsGQNcjQd50w8KFFZgcIWmvNDV7zA9anWw7V7+XkYekUQcrQVj4ZHiH4+bVQU4KMysyZbHZhXWawne2LFTLTrk56mKa0L8b3c6btauShpQ2AkNeU88HzN5hL9h+dF2Hkz7Ejyp5fcaPIkVQeHxsqe/K6156zO9M4+oNrd2TnJQ4XhXzv1o3Z7tUlpASvwTiqkWyZiAMEJl7xH/jpxG+GsRrV36xwP4Rj9WvUXAfa3GqndzAg41lemW4Z+nuS7Q4XWkmMnNpaINRxC0Ji8tXw0CTXNbTd9SmZyeK+1eyTvUe5pEgNWlwLJky6rqErwaNTyrXRjVApFCFCFnS5AjWMqpHtYQKeX990Kn8D3yH5QHXVR8o1vmv0PukDpShHbim0t7dKIiJgsDF/NV8g2JetHas1xyd1oTtcZqx7cWftYqQhmCa7ofm0YsdQvq1flj1utTOw2a9MS8G/5BYMBajTwiZtvuWn4LUxxY7i3Kxvurvh3cQZjFfAeCygA/5BH78PiNTu2OK5A2s9ezQXkdCB0U4/cE3U2rHejBNyX/AdmAtUklfnvFqvLFAV7ETA6A2oCvwQlGJueqEiRCJGcuAIGCavOx0yHlX8qr6wGXsucDmFQalb8aYUzSp3gK9z5WscPj30sRhgGByKTxd2BTkZ/3iK3GYskJcmgnGPREOxNbI4KUxI7u+ED91+/Cz8lBo6Z+pWkEy3Ul89eqYAQjxdL4iIojzOtL2/TjKTOzOForYwZdHxwRQ4Pr4rvU0eSVtzHNWXkrL5Bz9e/Mlvt6nEQEqS1UZjpX4JVWvkITYzr4QPhS2s7VrWRYETM4ldJF9xLZplPovjqMce9Moc8Q3dnz2D47SjSgTVPWTzs2P7Zaog3qji/826ADgJDZlQEDWfkme+3CWBM+DotPwFXBj9QAwqlQz7LyPHNmVU2hpJSCF0H4P9KCi4/pBykEGtJH2d6+E9IYj1iQqVWLq7fKevGuI5rPcvvad+IbrDi+MNhEo7URt1Qt/+bsIKTeFSo56RkxIg1oolkGynh+tFDYJYKrC64kJBo3Z4TVhAU3OMM1BMk8BO8x7jFVQvQv60IgdWtEZuadlMQ5OaL3Be3YIX0lsRb6QGAqUXHYboUzRcIN+fEKOmqjQemhtaWuNopCwkvnqluKlvK3PRhtQtgt9AIjzrBzUccBPbhILFNBQq6URbC39kAhAR5dldfnxdP3kJtDPHG838AgXZQPhPi40Ls1YO5he8mPcNoO1il8V/Sqfhao39ix/MA/fIUK5TgphdsrhllUIGoKkyAU+Uk5StvjaEiyp/v4Nyb1JGMmLfEo+Y1K8r1iZaIh+gi/5LMEe89vfFfCUsiKzncc6BC5Q+iM7qae30MZLqmnboHJLPBGaC9kxzjHc0ObtwC6EYJ6JzwhEbrTgW3OAY8x8YlgQkTduXknmhxPcf0UGVJsixPurM+q4CUHgwpoCa1K5q0I6gsNcO//VTI+8D20i0qdVj0GuYP6kAo08o3VdbbTiq/+ROpuXeimSQplncoc4dTr/s+hI3dApNIzNNBdUH+ukX6v0U0xuLL07M/u9KdihhcIHwD0X+i2IAzK4ZFYalOpmZp2BOAKymWsD2WhtCd3IPHslfMNnUc0nV7YXeajPPyLdbCOsKbk6rlENrA1FvJYO4knln7k4y/tVQZ8CK4jE81ImCIiJZ7cET2lHTdE60lPTGbO4d6/E5EebbzHznOKhhk/cNheye0pHwn9aWDDMxk1oNrkY6eU0wrKb9nGRp5ar8so/Qaqa4s7ULY8001fF8JnGOYq8qZmx17mmiZ4hy01W6mazaQV/ftecldMYWVpvc0HxHqPN6Hdxk4nEuw3r62rL2kaeoKPBtExQ7gK+WV5OyHSO1S408DkkOZUpV+1OfswjPXABf7kJpSydYlv8xCe2VXvf+UnuzPDt6nTruTF2EoyYs+rfPTXpnSrW41o0j/XEog5SRteVuaLMqqcWzKTc2Q6iM+y2Fes75pPqawGTdene3twdgUBRrzEan+82tsx7ZMCbTH5U9rEUoARUlZ4tu7EWJND8cwvDvuBfnjCw17iwX+bSgeNWrLlAFUJQWFUWD4AUcIrkGuiydJo0Q2bjrIRfBxMnke4J1oKMyNZ5wzBauuoad1nHxv5HGc4aO6bQVZtfE1WKgEqqiFURmcer4TBCeN2VPesOWsANyvS7Z/wPvDuGmjT6fS12qClxLsH7p3YO5rKflh+Sa0hi59WTWIhLtUYfq+Mvf74FVdtURER+grFg/axLjLtYylq2NROYChH7M25p3K8q378uJd2PWzZg9+uOt1EPssHexJVhNqYSHd2hbHi2MCPqKam7gS2G1D+++dms22omBdt6+XULBHmg4dkZbNCW3vKPWNbAc1uNtB6xgJl2M6Cxg5yZyP7A6cqVz2swfqXrzA7+AEaOyWeZXWaGR+J5Wv7StX/WSAq10lLSrMr88yvJ9BlJuu6ToEolciIMcwojCluud6R7WtuguVFi1QBBISbK91PMwBN6/5AiIGD6Yxhezk/iKsiWV+/3vVldqjNE7MIUyUypnECb2yB/taWP6IARCDltdyVyZtEQOA4NAuY/YVhQZ7xM4asTlnDvhaEb7jydkZy4lOFiPiSntPqsVolKWIf8hpH3qRqPi/Matjtm/GY6nRGtKUFVsD4elfsfhEJWpuBhWL3d0c53SjZLYrm4nfq3pqIdTXauCj1z8mtwMkdXBrohy+vGvMMVxdxu73HZdvFsRtidEfO7c51WyeRUxmB9a9wEThdD/k6axwe3IoBtr4oIEi3Cr/eqz4zP1LGES0/aJumTznPA1vY4rwhDRHQXWaDRTsEqTKg6QfzJN/TJ0TkS97zKGuceYPdvYn7pwPaYzJ0HVRl87ocAuHmMsFrGxHiW3SjUCsJSf7mIE35ENPyUTMs6Isw+TeIbNyp0yIqyKDvT9RaXJqHH9PXfZud0X7+mbZtYOgCaNWnIT83P7z0JxyAMzwngpmqfYw0kG9DPwmmQ/5BkhdGqRTHvv6QZVOuPeMzzSAJy8kJLI+OI1JyZkWryyTD/gQyrBYF/AJj578JEtEF/G8a1maUVQ027Rnxh535DZxqis/mbMXAM4uYph86iHYq9ee0tAaRPRQ7HaGhgYcMsr1DxJS7GIvh6hIAsNx+DTCt72L5FBG+VvayOLIqfUvZDkkD0pzoqN9riye3hb1zF7p6UmhQ9aON+HY1D+9qOzTG2nA5Ubs/gVEmxYF5esT/yXXAhTsag376R0sSF2ZYoYnsTFb1qYrofmbr5v283m+lqtFQQhc3e6cdjRePU9Ns96GGNPun631ATFHgdJinxybZ6Eulvj+62M34/9dAK/1lJOzGars7+Poo7uJctK15k/Sam0pSHHs6pwU6r3XDqlLjILoyy7qEZAJvSrRH56vAJ0j/y/kloh26eI5kt57fqR8H5ChBeSfWe/8CCCDsRZEOPgIOS9y5QNJyi5SLj/RajUq7J57LMGHYVB5KiiHnI8OYjYAP88Aj4EGHzwcvdLBSc9KjoA6oeRzZ3yp1ZQztZ84wtjFodhWttd6/IE9K/iiNycCYd5WZ4iHtDkDUVUlA7aYtecyB5RlsO0bIKcUiOEsKFaYLKT5UBbhb5VlmLMYNzXciEwlK63baI77JW/n3qVOHFvWXJYTaOvpMhSyaSFIVj/nzety0mYWi6CxGT7LdoPvqfF7VizYTWKNB5GK8emi4kj/IiheASwDFgihk12NGrNWMlq5gB48kqFWxvX0PxfSaNyrZxYEJy1XtOu3Q/LdziSNptZqudEwAnesazXrDbiCx9vsAgUeVSAUEiABorpFGe8Fy1fG82L7b9gcoGIGTxdIHg==
Variant 3
DifficultyLevel
539
Question
Which set of numbers is arranged from the smallest to the largest?
Worked Solution
−7 is less than −6
80% is less than 45
∴ Smallest to largest is:
−7,−6,80%,35
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
number2 | |
number3 | |
number4 | |
correctAnswer | $-7, -6, 80\%, \dfrac{5}{3}$ |
Answers
Is Correct? | Answer |
x | −6,−7,80%,35 |
✓ | −7,−6,80%,35 |
x | −7,−6,35,80% |
x | −6,−7,35,80% |
U2FsdGVkX19bRn2WabR5ypg8YjUPYEsSkqReBITKaLc8LVKK7KVLgHGDXzUMaAusQsnnIGAe1YPHuia5sV3d+GhD+HLekoEJvKoUVXyv6a9BXtHIw4a/+wxzpS9V5L1x3ZuWZcQhzEzBmzdWNHqdxFzyVTpS71097QJWp/URa1bEAOfziEry7HCYs5CIVgWT3ZdI/6E3Pj407YQMsRLl/Zl+SG462RlnOFFVOd1FlhCStfkfd15DDps2I4qu/Ou3RkcfOVFxqeikYt98H3hX7VQbH67VXy1FJycNXGRTw1Y4mSTXYIZCbw07w0tutRZApOJi/YzHKWAq8d3AwCCH21TmeUnBrniTu6WlhUzATGViB2BaUeVL+WF2Sz0DmH+CviQWR/4iJ/q5f0Go2HV7Ld6yDhM2j+R+PnsJPHjMWe91fUJDrr9ClWk0XIY1yO6nFSzUA0mTqWZ35qBLttm5aa81Or9BTy3UeJzX2RjGfvE9f9aJhDXCR8TyfycNDSimk+M0c6vvAExg/zDIPSp/C4W3RBwsvKK6C3eeL2hqnpWhRl72g6QXvap/vx/O2gzdBYScWkSNycJooTzLIjelg9OSuwTY9vE24c7G/JwxnEo+5RF/hhX5xp5+cSNOq+tGDWu+0yP3D1Y8vZA4UhlIMODzVJwFFKGPyRR7ivj79sNXaEoQhIa6X34fqYZB9IQOD8jgg+WKXOFR84N/FwHMXrHrGpLfwSYanpxjRYU/GDhDJvocuLnPKjCrxyylazeEQrxFpiIIFwSeV+mWrAa0iRZh77S8gv4Upmy/29fnHIlSvgpSBOF9EfNL8lDGZLnJDdDdKOuMp5Csc2IeTvLqX2UDYkEPdcawkcoKYbGF0UeI55ekd/h7d+R67LJGgMsRwWBrGdROK5E2MFQtUmmPkpMi/fuwbKfB5h8xco8cq1tV7xB6yC9ZfLTzaXZaSybsBZjcq/wpIiBjYsfxBnTb5EGkO+EM/NamoqUWE7Bw4UHs7NwRjLk7qI2JSy/vn/YR2ksRIENv730m71kaMuApnAOhGhKAR0Gej3NRLQLb25T6ff6GR/iEKHcn/spl9XOV+b4jJWI7LiokvRE6y2/YSo8WanQZXV20D/XVB1ZHKaWuLqjUjXzun9k9SvLTBAqCYiv/u81OHBBGVX8WdvzXLKay6vmrf20SC8xzendaAsk1aEfckXa0wsoDM5gZksmLfj7aLrWaJ8YtBSrjnwcSb4NzXhf1Pdd9XOn8nBBN0g2KSKmuSXCXnFBstCU57D998tJ/0A6Zro02IDyNlYGwFQPRX6jfoYqJslobQsTNoSCBaffQigsKwVdMjdby6Yg9dPT50eoCszK03Ti6J4G7WoNFr8DIYYsnhFAvRSvLysNCcnA3NOhaY+HVJRyp11EvxJQoiBvFomG6b5zpsEAL7igDcAIqYG2Ija0dqlQpY2SSZJgcVUq2KCuFVfqn9UE1phmg1gbPEZFof1GLR/aQTBfSofKH4UvEXiHbgsY+BaMhtaZskHVfnqaO80mdFdP6G2+ejSyNdMFeePfuw1hsb5OSfN0VS1nfwj2zWAhGjC6B30WddJ4e0hjhGUaueBR+7eJu1pSvkY6mWlDIivJphQJTyXMlATZCDUw+fduOoEBHBBEmsugYeFk2GcPO5OlGPrn4GWlsOXifIRbiZKJHDf6uryAzWsVaSVOmjwJP+hVj8H5I05wg8mIFyFgRdjFDULKM8bRnm0mvLUCE15+zS4EAZ9ssxBEcZeTOr1EP1gv9oSRhz9+asdbnvTPPIBLjQyK3QU/Q+5thpeu7Df9IFQ+wEfqbFPrKUzPpnLYMJdi4IHtjdb0qeI/kod1e/hIbFUGtcn4/xCjeLECusBiPQPk7BOjlgC3TbkxXVu6VMmaGjZ6X3i3Mb7AZgYWKRudOegBT19S4SAGwfOJQAcXEJxRwHzWoUKwHn28LvN2xM65ErHMoZ/Q21CQ4UiburTznklG4a127TjK77YMelJtkrq1BhyXBaTetQhgeOxL+cvoZVlCiIt9qkEd82QB0qSiwgOMRhHL+ikP43bC+YOEQyCfcimodvNTGjB3Kndxf/TeLTaJn+OyapT6+1DOSIhS5DNxhGpkGTiKB3fpSXZXLfFA2OcHeX73xOMYbtroUNA5gQMluVjWOn20CNPTgqlaltRpa2xxk7tDfDXV9IxtChiwfTP5OGgdtZTiy9q6Gx5N5SZGo5+5d/90DRyxJd/SuideRrblUeY/Z/r59C2vjeywQTPEMUVWFDl/rLwDxzIa9LcpvWFziPKMti1g2tKJE26W/l7pRHaQIgmVPxcFIbA2g/PVY2E+3BdqMs9rhwyKzm0/m/pqk3YroxQ+4ZfglptEvOQ366BKs22lejwqW3CFfCsCQiNK4vX/qUya/hihGttJzcgujARz2OhebcBGr0+iP67qCbfN0w+J/c5RmRjQlp07sOtl13N/rtct/qPnqYBrMXyRhhUfytD3wK2KXD3S7PJF8r8gj56w/yjfIy/C1TvGLNQotGwb2l7l0UMhx6yXdw0hC9rITIWEXr1et7Usc382sXa91UH4BzJLJ+tRsucG0x3Iwp7oONZ/aSmM8I2Dtx1lLwZBX7uJ5tSRwgdpl5sWV0Kcxa0EYmWaR303fbV2crobgv09Pfx3SmvCdVJl3Gb+u8LyqWb3Zu98CW50orF1rtNsM/fP+K3jUqeVFjQ5CFlsoCSQoZvn7YHXV3ezu9i1BmbLkC9yWLuc3Aihl6WQ/KyRhZTfGRVoWG4OYZT5TSQyuFm1ZjFNOvDX8O65j9/YIM+RQyVW8Drba15Lb8S3kwmF70Zo9pSSYCld8Ez14RbEiukzJKJ8VZ1g6o3Z9jMPqh2gm14g/rm27GpPzsrDQmCZLBqhtXyTd/qVEowPYpKnT3G7PBDZHLDLQspvQy3LvWarQoAribP5NBfR0DQycfgdWFCDkElsj0pGnPQRkDZohahOx3RTJ0h74FihJJ4vE1Lp6Hnqi3lTw0I8aMuX/vbpj6GXFDThjb2Do+qHzv8qkSbMW2erJbHtQcd5f1GJvLMQ6p7qv0e4IlgFuXHLMw6rravgG/INA+sfjiDFQsa3tL/B9dQerl92rJ4utkQ6WVzZ1OFhivN98FWlUksUKHrSn7hHoRhp73QdOqCVfWxCKGOl0QWcVNc3PHCk0TuxLQSc3gpx0N78gsI2DimiOwRPT0ojlj3iNrKmPpQ79GpZoCkZkK7WTc54YUpnO54Ean23Scml86xJjSfXMaMayewq8ac1RybqJmgjJ6Br+fFiS8GZDvpeBdeRz/DUp2nRzT5GHHqZ7qta1PZxaFVzXqPYiugLUG6VlJBtcvy4FmbAKCxm5TZFaorCbZ/ZbdJ0bn9qMGsAFGDmHXeEaFa4qW51UbUyXLJplJe1UZFxoKMQBeD+3qKmBKURkTnMl4A2s0Epp/Nk0pUZgSU+Ic62yGNVOyoKgMn5fNnYp29vuYeBVgr+HXk/bP3bf+WgRV2kM8H/atOE+dqTdKMMd4rDlTesW6oP++g5diDMXtTe+6yKWIgJ2SihzafJQDUoyqq3wVdxUifSmnq0ZxVHEeNS2uhyqD/f39huLcqO/Eiy2StrwDYYAjDqgY9EAy81d69XwkS4L8o+FtFcLSndPfZqDS9lBcNyKSixvPWAB1/LhaWuwBXdufkBjHfFhcBSe99pQMl1RVbcza2Y4uR7UC2ni/Oe0D3FxmmKVESy+08uv+2waEwyuOVpbbODtWBE+AzmvYFVFmdqnnmymFgSr7CxCdpkTefEnC2AQw2zw0/PoIknVFAQjY+PN4Lxdiq+x4Ff5LZDYj33Bf5rlKFkBqHiPJy23obuLL1aOrKGh3xvVQEdhVchTcNvH+3S7m9kZu92g2HekXJdRVH4Pk5aQf+JH3vjIAiLK+xLrLj3sZtqJQT0s1NnkwlRVlGq59JS8R68OQHiITlGV5eJo3UN1N2ccP+ApkUM5XkazFJI+L5jAF7JEaI4FC5/qF07hmwIORw0rUrfZG1i1Q2Rz4sbq6hPaZmKgaLVuB7ELhc2/SYs35YNCpazfg//bEJR7xQZAeQGSDg70PdLbjqMA2leFkNiwcyapFxnj6+U+LyELTwhfcuGm1VMvlPEqJkIYBQ7XKz5+OEcPp+e54fXffh361AAYkGSecZ7b0/KhfUFqsOGqZAfvEYKbXLF2SfRg+0ghej0dA176Y7aPvJ5lbsHXrQLB63aQp0Au1hLwlty5pr7Moo7MueJh7mhkyoLHrSnc4p7yE0EtQeRi0HHDv/uzQr3nQS3UWeHBXtgkoIypFlpkjzTIYkMiQt5sDfHWI6YssmLvfjRNiGzDOSAeD+IJlmCj73apEFGKusNa7PcJDVU/vrbSvLXr8nSN110yiVcSXE6/YnNG8pIiZm0WKYyKYOxxV2aG+bsfxjIMdsnni/LsLu8Pv09CNYnfKRITFR6Sxt9II72zTc2HbsF4vgyGsZ91MV99/rTd1wddhdDo9Tkwe+dFmc7h9rM5/mAgLfdwZ0z2Ad3ethMqu1OxM8iHi2fjZ8a/6xKdsXn9HuHqSsOQwrl56NF0aE2KhBsg6Epy1L/Y/7jAeRMwheNqlBftQqJvyG6MZCMegyTM8GqsDIq5mZgvyHvsXkS93+v8JpJiUYOmx1gMuV/keUuhlthQ4YeiArF5mb5ZiOwr/XxwPClrDhHDlsLINv9PP4Ml1et9J5erDZafri3I6Vj/fvi1leVDaPWwCUIanWsR7MYSNdMpc0ni/tni6TryyN8gg18VD3ymfiiXznMKHLt4CqNXqghp4tdKx1ivdC9wFDo0JdhFpe9GU9srvqBkZFzfjNW8RqWG8OVwo79YIxvi3bAliocyFaWiwTgagp5AaYSa7W/c/eEXI0Jffs5urtrFONmGL2jVcRkQebfdXGacBgMavBOYKARAQUy4Ytr+gjNzTSJJE2mb9dxssEQvrflxZal7jq6ZFf3nAiQ7FaITpii8lew52CA0+sC/oH7YCqM7g0NbgZ69A9XVhW1//2g18tybrxBwmiZjFaGOmQZ+xFQ1JmfdBqoRCMag9/JzbbeO4972+c+Gh2N6w/fBbHEP40sP542tGzAeTsl3VL97Pcr0rDpPZ3ygHnfiZYlCCNj2KDjmiNEemGgv8VDFkM2jmBc6MrJi7TTthhjAfy4TloRAhqY21+UpupGeZBA2OrIpDSlRnzQjlQClGIq0Qol0LmBlB9iQifsKaIzfGDIThKno2ca197+5NJrZuf5sVga7bDdizorZn99uUh5mZXr3aWOTy3AA4FoKLsQbZfW4Ybu8GVZUrPPrRFBoBce1vAqr3QrFOxurjQoNQyerTjF92l9HA1D1WXqyl31HVTAJOKwsHA3c1L2EcuhQb6baM/LNqUzgQ/Et7Nt5ZfU1PtodhYTmmtFvqNReMgZsSw/fU+qUO6/pVJaPS459sqdiQTEAApVF4GiAWtehwoifpNjcE4wW40hzlM7yG9sTtZIzHJ1/9wjk4LAkMHiSI7orJyqcl/wZVMXGdzn22fJg6UQMeHh7ZgkCULdGuHS/KpeufYFlxv6NDLuysoPT6Ad5k5R0U+CIwSzVBIzx2CiCwAbGYABW5qsiLR/g+ZRsv8aV9+AHP2iBk/VWY7wwYTEvUdlfTWEHKGNMfzMIQEdhpY+UCeiTknlC5snvoCflRloL9VFwZJcRUVjKV93yJTLULQG7jb2QuxCNMfAPzjE9WQ7V9WNW/EMJh2PQAfNXpy6CWQFawdSkXDt6G7vOJ33aIKSnj8AQeOXqmuAUm94w46I6hn2CmaiXYahWbrdZO+/+2CIznkDm+mw6a4PG2L25cm2caXwpuDcf2LWHtxh483ty0xFXTiCqZplLhG+BFcF2FSB0eMAnG68nBXfyFiln/nvw+HI0nCoG4OZK6HPgfoulWVcB2hn+Qwh1BjuQseZ++S6OnQf9+F3bBuNQ8LFCGoHfyjPx8bKK9+TpSnfLfi8INWch1tank5qWC5HDOxHVYqKfHWECOIQcXdF5Prot7luQ1XAcHM7CK1VcFWkJTTFNI0nqIDFTdtTONG5HT+d8acaGe6fZjyPJ3pDReOvijy85Is/jA/5aSJ+SlRv/5fOVwhQC4c+C8S/CQm4QxWJGJkO/erR6IwNL+ApqNKT33JxgFHQcqoHmUJw9gAtTTpepSI/epcgTztn1Cs7p/mNjmkuE0sPPThpcRd2TEvZxW2Ml/mvMgMtW5RaWoktbT7v5I4YOUl2QsR1cuHIf9JYYHWTd3LKiXnIVJNJNgUJwAazz/Yrnnf1BnHurdq26EVJrZGg1fyih0S0V8L3Kf/FfnXMqYQBjWkMkwy41CbvbN40Zs+l0irVlX2gKag3BxEFTzztF07YlySRtS3TZ6693jPE/tYKKo8IcfnXmfhzeJIcEIIJgZ5F32ppY3zIl+wQFB0iHOD90CUjqnnawjIrakZ7UGrCPNP89CRr8/+r/Ht2dNV4DdgtsGpTQZtKUqeUJwLBjcbV0zbYRCRtEBfij3jucJOV9qUfH2JT3ECQ2bRhjdtwdEU2aitjtf2aE/0BPnK44s/ReRqfsNx8REobkytu3DOib9SJqm5TxvkxNZ0I5WndDkOFFhpUb9WRsVkD1hhlSfUF6sse/Nxs2VlJBXKx7da7gGGW+Fawh5fggfpk9rZ/8ByeFSZlkNhpC7mm8ouEezdAfgVkt8c7UgDXt6gRLh0zAbL5mMS7vxVGqLRaRl9ysb5+1DUyvVvDNFv76RiiX3WUW1rDkrrZ/tnes5xFRP2vuPAjU+nnzHKnkFDeqgN0q46Vkb1xo6NLg5oZN9TEpe4gkrJZZWc08INvooYfR1Es2bMa5gDr4G4J9EMTfOuy2gR+Y0sgkA37mLuCJo3uQ2Gw+8XTXk5prNOeOtJ9hKEFI5uZHxetmZKRzOsoF3Z643KrzDtEe4ER7UfVdI3qhjmRtEvAW9H4gA7mdy7zTRMLZ8DZ1MESEIpQs9E2XKpTD9/Lf8wxZNUq3FUa2rkueBlybxyQOQifUNsMkKEAquUJuG69Hd4Rgm2B7g1H5Rw0XP4oXsCy9NLwvBhbABqV4KNyMy4zS5uCm7IB6NW7q9XJ1h7+kgTMbhNdcA5sGhtI45mW117Ytogxg7lqkXBwcPbpbTXuIRKeTJWijqcRu3aDK7lwOZWtd7/IdlD0KA0TquJz5vnNSTcx6kiOvtlOvMIVo9RFOBvvIhl0MtotNHLYdXjdx86byLvLqPllrZyOoPn63gPl1Z2IzUmv7afiRou4pHpQgGrJ3C8FiHWxWQE8fi6edgYZBzJeMaIcB1EzytcYz7aiEPbn08tYHVXTUYF9kvpAosBRlNdp5Z2+Io+va7GvBly0pKhIRmYnsmEIP8jAPCbMtnyagHd4XNyW8IRHUjjcJibeJcOeJzzMQBu+A/WKqznALSLkgqC9az/ARMU4pB2ixkLHg83IcQUkbbX9zuTV/Emnenp9gBUnWw658yaAXmpAD6yfOD/EQA3mYPqAVjpzJ0opLg3d9AEGF82H3aTNNrUVoKsJ8+vQ0wYU3iFTmk8oBE6FWo2RCQv9hmD+Q+An4nCTcUZmECeGUMe6Dy68/8uy723rHxDztdiaOZwPxGdzlnz0yP8DVS+qOoLVrvaWK47ijbjJWaI+cVgT9TQMBi8pQWLcTIUtEgCJ6AxocQSErwxBrdX9Fc1ds/+MjY1V0QZ5zTbnZ4MXlBKg6AcFRZ9Wz4YMDH59qnjvbH3cwlOn1cDtvUDy8ZfdWsvNvoWziFtnpsrWVpHgau6NekPbYK2P+NXQaRO1dM5Fp+Of3KiSBLIHtn2Y5eta25fVBScy0+4choPJrRrBNDlwo7DcPIL0wJLFrOERv1L5VLWjlhDc7EpY2kbUcVw5WpIu2E8aPa/N0ws04/2+fvmIEA7zHjKhsa51gd5ymsM957Fi+ZNaoV1nFwe/ViQtMsRXquYkWnzPFHyeWHByFL/f5CxXSlA6jtBna3QFWqUX6tCVEf+wIxV1If1J4qtg08Zb+TYjcIkd7AdwWea13Wdszu5/QAmAKbP4nAVUAdTESpbnXYyIAHOQn5+868sOGCULHMxYwoaQ+oCXjaNR2QQnQ2Bjq5/gCwYZRV9w0I+0Jlir3yapPV9pG60/s+GmsjRKPRwKOiZTiNbhzxNV3PpOy9Cjc77Fc1GEK1Ert2sb8i/yghuyIsbwPb6mlAtTyBJSbUMsBcdpdt6N0sRNmZipx3DIvJ+UQ7jqyuxRmo7YxcsHP/GfE2w1dgiJ9pmp7UzxOoE0BLvwyPnuflkZVRvINdewe/Qs9n3sNAWQess7ywrOAVqS6Cqe6bQzfgsGM4oQd+XTrRhGmv/BUZSCwDYgvbvNjbqCKTrT40ozesYcEBcunDvoqzB7v6y+IEkLU36aHv74e659LWYF4EZEy2v+yNf5CX4HwiUQkSv6K/CQx1YQyBcPWp9pvugm/z/KTrENAvoXsBkV5mlTTWRAT+RwBLraeYpTW99V6aVTg2499N2OZU225AsdOjXqQPeW2AzksX6+gnv46xaX7Bo2qTEYTS2HKi+Wzxx+06qh1hlrn1IyM3Wi1vrPwTCovF7sUEP82Z+gtGdRf8FyLxY3ftl1/zWl4dTOWu40n6dqVv72jGFl9sVaFsuVd8h6gDDh7ckf71EewEXFZLDHaRez15GOHyYn6fguSqWuP+ye2lJ8M4SuefpOAfV/gLuZAHoWCsVra6pjsLUShttxTEtaLEzXqppUVhSwzmJIUG327tkSSkAuyAcdYDTNjPX8aDXSLbjjXr9vKrS2PQfMsCiTHZt9wsgzSWA+CzhCezOFEAab0fDClodapDUAjVsXbEE7T2AN4tGy17+0W2DUuKukLzKntqzAB6uMeA0UFKw5Wh/zegZYSLrIW2RwmJCFUio9DTsFEJQ8x9O7+AVvzKsyvgeR4MRK4Rjp5o4y5PT1ELBiU4gAxOo6ud6iD6xShITSuNGGsgZOHqQiGXbtyo2R+Sas7yx7TF4xQ1oI9cmqeQwnZhuoHR1jk2uSpAQG1vfR8NGQDuiZmEM5GcpPhzWHEY4nGrnrdolbWCNYGpJKwgLqFSTLtNg15+LMzKkATEeQRiNWw0OcajlFDX6TevkSBx5EWbybLe3YN6Wud/gCsyH6CHWKmv9PES71LQTlv0TAyPx0JieVj3BIy4vjYLbqFrPgXrPY9v//yxlfO4A1nH4k/Z5+fS70mR/VGHO2TYO+reFA4O1BqpU2sm44sPlG0LoNjQWTg1vpe5xQp6GctEBjLk8nGJcWHhjsBQ4PkQzsVp5fWS+1uaWNDiUNAyjd75C8YYQ4YQqyAW153Hw7eNwelODlcGTJGr7MQnT06nKZNu39NHp26Pw9XnUrk6AGXw534B1r+PABZIUophFbyWL/O28Nndvz8dhsfcxjs7CGCrC9yZCtWo+P3BryUlHFljOu6CowKXwybN/VUbzF1CJcLUY+5rjE7qCZp6SA9+ACPmG3YQ1L1KfcNy1zz9R5orKY8JNFYuSvPVVIVxSuoQfBbVr6LBTS93RIolbLNPdzXOu2Ml/PBfC1daoxSDHJaBm6JJ3SYVNelcyzpcG5UbDkoSYQ476ClxWOMkhO8pE30AmUBcwopzMAVhlP/Hj7Ni6fOWm6fQ7zfpZ1WWsXOla3qORvSL7gFXi7GtpHCZb1xU/gmyhI5BQnmh/HgU6q6nzyEnY2h1OHh9oZtoRxvtxsfL7BPjzqqKST56IvobicBW4zRoBnrNyV5fRWbFY9KIlDgTi51MVN+/oRMrUFo6hZUujDsgxf/eda+N/R9GndvExs0aEUEwhzu53Dw6vzGGTLECF8OTmdAlmTJRo4Qa5dEwO2s6KrDHJHrY+10sdgt5giTkY+NFtYBWcULw3D80NYg6n0Bl/7n6fLNWmTU8Fk9aYQ9FsXy+9nAjAXQdjKq5K/sHew0Z3f4zt5hkUk86XFxdHWkPOKw81wq+FNbkAM4VEt5CF9HF90Du9pJ9p69wBS3LEzIzcIRHoBPzrpVJIBpqoJHPaYYmmsFtavBfN41+J5/fIykSyLCN8lzOnjGnpLnOdrsM0eOb7puEpdvQZEcHyr5J6B0qu9zXCllq8T5VsK3ejiQXUjyBFzgsDwKvN0a9XFQkDJGP3QGhq+v1vh3SPf+I6BvZRx2TczBOu8uquIEtv3QT4XQmFQeyJrkkRGaXbjpfi9KIbCzY6cCIW/lOvBi4ksjj48m8QMgsAua7ssj+zkxSP8l23Yj168ZwbuXRyJ3evqjfl7pAujszu2Y+PPHnsxi/7MsAq3lm69TfKwYEa2DVuIAiPmy46W3naR7Qmew9UDIgMR8+8tk+aiJVDUGr37FzD1ifyhWeVYw0Krq4/y7rK1imp46fS8lOSKCqZeooAiiep5jS6DipKpRdBcKp2Air/VUT8AOVPlX5DbSXzeWI61plAr5ywz4Y4ZmUyHjOVol/L8ACbAoMdOJR7iOw5FrNX4OVoiJtWt/vbHq4aooxTp/tDMLfsM494/EgO/gwMNRAiZ1JHPXDhzvwLB7IGCTxOg5CmyVstuY/QHv2rfvc6L5KcavV4DZmXOOzGYyumTNBHgMas3Tfs3TYK89VChX8TBBZ1T74An6iirQaOWc6egMQfu8J7XCPWg3GMhDpLsLjWNhtL9hopronNQVZU/R58T8yGF/qJIEUMO28PsqWAHkyUpF5JJsrWXLBP9LZS1qeYOlR6x6EzrTIWvzUREJZKIQZiS0mq8sYliTX2SvrBdQqjpAUAQEoAVks+RJZ8ni+jAbDRMrfMq618jjoM4nEC+pLCQOLsIzxJ+WizjmXJMX2m4nWESGOzxw7jhczn5Vgz3QEKDAiXBwNSuV9GKzWa+BZ8KPStzh1rbkcweX80DTd0jYszr8mv24ksGZw40V5Hb8JXE1JtRz9Ez4VggDKjboGOlAZcvB3Ob9p7CbkAFmHPkecuma9gnXHLlY3VsjXdPfrRXDn3yEfV63EBjy6OpAYOOApXi4EINMFvy7Xy8bQfvHVhgfS48JSTfO0WqHdH9CSj3Gu4k3wCPNrDJsCrL+y6Q+vhbrq/JkVjyyYsaFl20EhA309xUblt7AZsjFxEOJKk7Dn0UFhOhXeXIDECnhws0ZKH0XXqnMyD4N8ZwcGVwWYvVT/LFAIxP/XE+K0sAp4O/uNNcJGuZiH09lt7Hg+AzVIkuJ09KRIuvewXcMJ+8tzU5vRo1baFRgC7+2cDXcFFJs7gKxpAdAZqxiWmKD0RZUxqw2bRMCGKAWQ9IVnquxD/PbsiO7nnxstsNTG2bEHK8zEpEkFYKl9ItGsp02ZFZnz1rjElBobeltgk/1ojh7XezOEpoepeleItXrDxfX6yXqYVWUobn3yFGTyKUFHTOvjLefkXMLfSnjqOW4g1r2PxnI2qYMDI3r8IM/UJyC/ASHRZQ5ea3hY7gr0RyneoJrsiUJTmUpS+lri9ivtXo7ktJvd7kDBdef4M3wtJDGam3GIFykMkO0Z5mxuWXDSSA2HEj6E5jTJCk5BOoXIYDDlCoveM7RZLiw45HzhRpGXb5mJyL8AP2vDqjN1YtffI929Nqj4UaLb03mBz+kNkSCfIzhATG1hhYu4EFPdtZLohEh3FtS7BRNXc2TyLCb4MZg3qa6vWjgyvl5ZP8CspbIxOrQcx39YX6jO2h4Ofj6RHvEwpfXHqBgYxIgsDe7TqXfi700ziNWhZBzldixiEngM3wZCdMlohgzxuD3B055UL6GCZNiKk6p+w5NThO3TZnORdjgPqMvaAPGveekMZQ+2azmzVaOguMx9HQ0QTK7GQxQM/jpY/pQmd8kXgYU763uh3j5BZKejzTssFZxmV5VuwWq3i9ItutEEii+icb23dglVJxcYoSfw0tMx8lXP+iu6sUfp2ac3j4M6cczpp3IrYRpOQyxpHH8dvC8GDArWbrgSB+UN+5sigP5bQ53l0RnUBt/uPMLMHNoN09zDH3y1Wp2B+b+Q9S9G4xwQEnWhYBywVJINbnRd+bR8CNbA5kMRtAXUgEK1pfZy366LmZ8IHaK23DPknVWo/MueTnIbjaIJJCj+q82xHV+9eB53S0Knupnk+HqS5oshtcmHS9Ylz08UC12CnyJy/iwDc6fpf6MERfYKg9ygDJ9lDZF3rwlCl6TZddkcHAsC0zGfgm8LzfADCUA2Z1NOaVBKfeljgvgvtirLgSLB2cmtQd8kjoBIxrcgWErofNxzs3wrFO3XJwkBqmonJ52hHLellx60ebXdbWwWnp51fd6Ci+zCCZzka8Xp1t+nBAsvEKYhOjCwznadpT4DyBQqLiCIfTZYXYqRRk06fcwsNZ6DaHRA4y2EcWsAz8mrqKG2wzSlk5wTtTb5I/Ru8ItkfA1RxwGhq5/BcBXTrSNdaKz0k0BEWtVPbP9pehcGES0OdkkZ4qMHqSFC/dovdQzDz/1NNLAzMHOi04izQV61m3aIM9YIYLSfZtnulYrS3YCETDB/6cMW0hM2QjoKZM4tSPYkV7JAkKrGfAstMlvhqZq/IKcJeKNoGO6Vw9rsYPfp959E3J+07StOTc8TIQcsjFi1yxdaPr3w1XS+Jtn/SbwdL0K9RMyltdQBg/8Vx2OUXlwlWeBUrPJZE1svC0uJ9GDNmQXypfpKWcHQgNKrEBYSozCaV/AicErhbfCtd1u6JDzqloapQfIMM/VYO46cHuBe1xpuL2qqTIN+nt9eNQDqSVjcmAfxQbycZPtzc0ilgTGRjP5csXyOx9Ezkt9H3kOf6250IeejR53piTuvrG4Rj0JYhT987PZqVMV2bJ1HbH52TzocT2nPLGB5+MNY8EopMiEkv/5M8NAVEzqByG8t+tTRtxOMuvjgMmVYsKFwH5UstgooWIJ/npI2Ax2p3Bc3QIOo1rnQ35nhWI0FfUABMBhsuQcHoBhp9DEZTovNMdu9SAOw+cdlDtaGvHVpezwrE04IyAwMett+qf+I6ZyaXpnnxVPMBI+Ale86Htk3zRNaUBfz8OkB5w52Wp51o5iukI1x5HN5/+mc/AtKH0QPWucCal/wXYh44GWU9ycvOBrFh1vv+SHm3fDsfYXj73jdvORg5YOvW0F/LKB3tAHUIXbLCyuIBekvJiOYdR9a43Muz/ptVKWTjXLuzej3ZRJ7+TCHPa60KKVzcDL+PpHigORNJqbKyfL9Y3ML73zrRc0o/OB8ZO01cFJ/jadCDiEJq2fO7jYpTawyKm77I4greKCviBrnTyMy5cOV0Bd6zMMZVoW0DAgG9rQn7jhXlyTD6rDwxG4Ms9F2Ut+Ui3F5ymDLTBqVgUHoIGjH9A4seJv7VZhi1BdVIALlVylmlIYSfSSebVncVa6hSI4hLrdouqhMUssxK4zxM5by7cWM11gAjGDOG/ZQFlA8dhzmdOHZZFDR1CoEMzAwHFkMyMIWMti2OisZV3AmIAdiIFQL1SHhuABbIGELZvfQwScG0JrwWSoiHykJoXRV8XA4S5SMBvJxd2K6BglIRMMG9hJT8Kja+ZdJ3/EUgbxvTWCelYw+ZG87wGsgFOK1jKe0iJhOznn17jp1B5UQeCCSSe9M+eVMic9FUSqrrXVLiu5AifAKd/9LZ4bRS89t32Pv31pioWRNlF6nzE5ss6/Qe6eZYHrOCqsMbLbD05+oHjZCiAFcJR/tzgUDB+CArtyIzQ95shXCkXkCchi9bB7kFRWJAeTCUr75TrhpbmTR6vi2+m6ml8L12ks8+vMcsLBuEbGuN1NkBwc1qMY33tXCMStAS5FU+wvFLmL/eiWE4R5eUrn9k543co/nLZXQdDbMzMaLi72Wo6BZR/vRsQmd9etxamAqjxYzGgeXcpn81vtDFK2Q6ZWcDHEugW4+gbrl/hV2dvlIyMmtq05ACSGdjTMinudO4JnVNg5jvfQb42Z4+K+OWwsFDBmM13A/5Fmcs9rZvPAUMp660DUVCWJuRRHn9iLbwRGxio+SewIsXtQcvetw+IhUy59N/fwipvBRmfMx9du5dX3LP/71cf/FXTzlPDuB+FRuZjEgPO5LzNzIojhVnRiwJwyJpemXXXijwJJr5oQiuGd8ADJc9MlnGq8kJ3zIP3I0w8zUeQ7zRAoaVl1LcgyiRqB0YMBwoeD6JNftyOnOrU0fvM7K5Kxgh1ZPrYk0JkLZvWsW7mH0rPPssFrRS6YK0X+TMtSDb1dQFDuDFyVaJAqFDScbKQ160CcNVlirvNpHIBLCTKVIGEAvDzXq2UgNDvaXY0v9Od/Xa6FJtmaDXMvzNaD+leQIxw/1Tzxjz//bWvEm1AWpsFFtJaaYT0oE9mXt4B2RXoPsfhkmbEqq9OjoeR3XnNEdtzSlslAgAJBRTNUv4EHaZgrC6vvfJDmC+rG7nhY/aW+SfQZ3SlT6ILe2igE01bRvkRb4GIBbJXdcMbtO9b2XP78xPT+a+35lXBEOi9ab5xk+sdrilgrP7UW5Cc/+5gJ5L33ZVHS0rAihOw2EmFRqxckL7vrg/UjQPmA5P1cFue71RMvsuI6vHVIXU8+aPmx7Gohf5jKQIMXtfKqIV5+PNVXej/eZSfEO10tZwk+jMJgmEBneQjN8pI9Df9Ql3k3u8W5nHjUbSCeEzGVa/WZR/MpOHCMspXQWNcqz2G8D/V6zytB2JTYjE1Kb0ekF6q0UXmbCPLDNMJDW9P39mSJrDWWq2GWFhOuqIROLGhT2euZ84XKVO0SfCc52DaTaiQz3rxs3gsOdO73j3VbOJ/1+jUP75EHUHn4Gh69nu+yYzAZND68pMD+R0CGxIZtUSncPw4L9ylYcfZsoF4vW2Dz8Ec8txp97Qudxabzkp2FRLDX3NGn7SwCVWaDTw9bXPUITnx7F1BxnYYaG7rI/8eHMOMejZPCty/TLmqBsAykw0PzwXE5zas4I5TX7weWJ2QbRn/MmoDc7TWnUI6/ahN3rU/d9/g0q5BLYzykoCx8SMWDWgfHRGGbCk8MnQlzNp8bFCyW5G9nAgVclyg+TrPbwbNaBPNinHsW1TAtZmUpwmbSN7KmcuJlZvKzgH3lMhl2GMrqmBCenILaYJyA6Rxne/kvoInpkM668BGNz/RiZmz6fCi0Pg1FENQ0azfomc6AmGjYxdUddb3EspN7TR+tyKTmZm5mP2AOIxEj6SbKxsYGstBJKCwHWDnkPYW1ipv/sOViuGiUduICeKQFh2BYTsFUORSDiz/MC2uejjoHM6sfDQD6to5OV6ygdI0FyFrYavJTtTCgl+HfFJmxfhwrdmHBZlE10Zek2gIwz0HHumh3A3d+UHqFD5L0gqgo22BQX7Y7VoUNqYI07t5iDKlZJ4xZ7kCil95mdyIyaezYHRxL7jfpULK7Sr1cub4OPB+fQxH6hXDvxu1pEOicfcVj/lwLmuIBRlvgXVSkOBra7psVaTr2PprTyTJWHfGqfT9HFW7H/5dUMvLZWoKAavD7m5ogJ4BVJ/r0OKku/Zc0N6h0IiF5FVBFlOpL8Di6Lr+6pfGqKTDpC4LEQsfNADbG+/RmSRmYyKOHUi9V/jgq+GcZPtMlrGIiLEhUc/K4zHYhVcB+Ixd35bLXZsUZTSe5pOJoH6ZB3CkOY4AswRP9ZYf21JxdjLnqUDBCHFZKn/soDfrvEkeIJrNHADvxSlimeUTQE7TRe/hW3SRgRw/khWkXAH66PfTE+GSHtK5botZN0E5lQ4LHJ1+DZCHa9KZl8NkTf/CISFl02TbR1JnM+GlVHtxAY0K2PphkIOpz5zBUQhYGuASheYhppY8kVC789WdenCsGyITAE38tBQBdawoKdQ9+K+bLJfWHnUog/3Ya0JYh5eJwM172RkUcX6lfhGD2+gly7FVWlg0v4nmhZfF9JL+Zso4fdppjDfxfTcQDyFokqYMG1VMl5Jn4NgsuQipeMSKkxCvj0qLVePl0BJSCYD6UaFBbdGVozs+Z0NyjJDM5Vn+iHq7APo9mX2ZTjw22DBmgnciGqTQt0Ej7E/4RrVprMzs8znPbQXNgde7A9FLEOXSTZSJ/aRYZoUPlhg1tJorwF2CKUZyyVcfRwmX9JRkFkfAw4EVDu82+0L5HFMdU8/k5S8n6xB8xSW0ryoafWxsU9YtRMUNUwgJT/uomAdxYCpiTwx4md9lzulccAIyq+fZira+maLVHpmBY+46JjWTlHtzWUNf5fX80aW8E0jyzbAtIjoJyjUrHs3jRAHQ29iIcCMds/BXLTxqpEXTsbjwbvqxjCI6PVq46bVT/igvxVxe6FGfiEKGZcU9cXCmAbImxaXwHzqwb1e4RxH4qfP8YyWPKJY9DZVzSC7typDKrLn+Jxd29F1FtS3M8Lj/2kt3PtbX2fcbXcrq/F80glnru2ycxHHPp7ChJqVyVJq4+Ucf2t1K9N9J3oFjHj5HBQYK5TiDeIkH8IFQf3S24ibi2naIXgrU6yMH81qQPaPAZa/oOHsmpUE6duiNeBR46S9bPsSmdarCLlvo0blN17tLniorW/lVqcxQWJKfkTTGF9OvNp5haXcXU7RsLZVs86xCVbALoYckWOHuuRuum8OI/3NyT2dCBm/YbbSuR8RcbXx/6FWkk2FNCxY19+zTl+f+rPCvllY+ucXJC9CHWz9tP5NExS7HkxqqIZTxFZP+okcLyz8HiMhFcUULORQJ1O3+NSPyN3Rb2f3TM6vZh897bUskWtkLXEcYRFfEKiLPvSNya69Fr7oXhXprk29tCN26UHbDmay3O90owhY+PpNGav3iDOVwBYme4+WnVdW7OyaaR89KZDLrpuTtcT/zFa7glVh8XQkviCFi6D3TyCBW6XPF5exAAVmKq0CFWHvvAMVdHmViHsV6Q2ED6WBNEdcV/FUYJOdsoCmJFg/ka6QTwV3lBmVoTB1wnU0ozTFzTdO6vtX4CMVj2OrrW6N5HtW7koTnjujLrACtQYOz8BqMkgBJw4vrTguAHIscW33ja3QpZzBDb89ouk61MGn2d7ndGKcMXm/PhZ/pxwLN2D6UWFFNRLBp43OMlvBhVUKsBE4z47ly2OcSmANMH2EGv1p8y9MFdyXxDWtQ5SJZMMam1zf6CqbQ6JjlEV7iNL2aDb5O7J9lPLrqYHJaskEnsKSrvpvm35YZWq4xUIeaeV2KD8c3u8due/WuGDVlLg4QrhjP6/ofLQYi1X5Fs5kVIeJ1VvNMc7+xf4aEvWeHtuOdicCdpUM9uD/BUzh2wiliTiHuqbswxeEU7rAfkcpjwqFkRT3vanaQKXS0H+2DYhOk1VCCqLSfZU6agEETtGXzn0yO2kSacxu1E3QUHN1Zc9TYQrL6byNJZbN4Q3Ja96b4kRhmsVdMkHpoblVsDzwo7CX2oiwNk5uI2uNDDxJVx8Db2hYrm6rEomVAglxcZIXkfuUT0DD9a/Lzt8ZSim6QZRYOxdrbNAMuF5yYSi9R1ys/quCph/xQx59jG1AdosCuBtAHMcPtccsESDJ5/tdBPKESzkpsvEewYyeWGKs43GC38AP4hZoPFU/x4o0vnFxB7XRt7uMy+xl2kpbVJ2qDjr7NxcqJ176mBm3LyuVrw5wIneOwBCZVqY8aFpdypDVqjzJ4CRt2K9XiAXd3U7TmsT2YhYDrUbBCQ43F/CdbhjZaUPme44fsuZ00BDcx4Ysa9M8smwiiVeskjZf/cAl8XhYAMlyRtcLRhMyZJzmWJEwXa07FKUCa+rntmjZsJ3bwg/fWEIKMWHzzGzW+ah5OJFW91iLHULS3dhCtA/53kgWLlyViLUfWmfnNxeXG4L4IyDe6r9j+XGnSujw6+4K0Ep9jpanJOYkfjmXOPEzFGdowwebjhp3yMkU20t2pK+n5ulQviWEZnthg6d2z/IH+2+DXj5+Qe43TJMVAqMsMGfY0y93fe/HxOsdKx/TBioknsLyt2gINou/Rwa74+77sCtCzVWNupbgerUHwymhJuhVGwOucudg5QUKf4GxP+FxLlzwBuorzPj26VE9vCRSH150HVfcP32l2GP81X99IYjno8HnWE9Sy5mVWNSeS9ynSu2Yd70rvjzjkKYlgmgdGMERPNbETbWRV/h9OQ2o+bKb6HZHB2ItSF+WWOyRBX41XeSoYGxGlfWJQkUPZBBeuoP1nVffCtNjf0rr+Dscwzh4DGR0GpJ31Am1+I52ySYU0sSNRwZnQRREfpgKB7E9FMumIpfZAzzRWWO24auoVYeznqiUP/e9+Cy4bUOFk2cyS4at9R3I47SR9KoKOj0VxbdHwTUQRiN3oKFzwexFksanhzwrGxXPhV4P8elF6jlCgynVDgP78PMosmltjolTBXhvK5tB12Kv0bTHjCIDy7Yz80c6b4+kvJ/g3jGL2CUG5jHKS1Am6SCZS8xeKI+KjrLKiXeNCKHZOIIStuiSG9M5giA+h6Oq10S6/bpvJzm3QzNgzwUKGxj31YUvUxe/rvoAILp67+z5KStBrjpwt6tcRBj9LGl8ucFQtcVdMcSXEr6sWp0PE5LtpCfrVWBDKBoies8mcfmylI4xhi0r9wXFKuvUcrxKuZABf+HOXyi14Tjtj6lHktrbz2kVh6rCEb9smu0rpVFuBf6ppRZeFa1PLNhQbl+fDQxOVwaTMVcBiWgXPzeas209vHOoV+LYgq4UIYd4PzPg5Wq6X8nmgUUUzqkFLHhwzbxWcG1lysgX1WJ0tSIc2Q7dOIN57dMwmluZbbUOlGrUYYn+s5mr5lZpJ1FKDhMlpfW5L63/SdE8mtT7S+Hq1n9GTH87rYJKamTPI7Zr3Z9o/+5S9MagCafv49V0EU8QN7WRpMAydlzUbYiTBCuHXwRZ9KxnK/FUJ+QMMROr+xJB7/uep5Np4/ZtDZC7zdcwpi0KMvg1/9mEiG2kzNxE4TXp8YrMqc5WsaL3QfN7qEcdo12v4jH+eQX1yt+z/tfIhY0BESbREyQ6iJuiyW7Ig6cH5qyepDg1OGTtMp5V0KpFW+aMCUyCd+pb1cKKVFv6e8NuqBrM4GkJzBVuVy8kgudNF1TjBPt/rQcl1u3XBa6Zz+ZVDZtlsWhwCgzB1tpyXRMzdWUVgsN1m2QrlnthPN5opt4RSqW8STMq7UvBenogCebgFhqmK1dSo6yUGv8HrLveh/t1s08rOPG2iIO7oEwxR0lugj7q2URure9honOlVe/r4bYtKgRkEF7W353XmWFn+gg8Vs7Rv0XzPmIE8mqrMk5c0/d2U+maWm19xAOSP2UpUj7Ws3UCWzz7U1TwOuWviUVaDn5jarwLhxRgfRVuMBBTDv5662+n7T35lpCAgW7J4cxluAS+aEqkwY5cLlyOODi3sR0+dHe97FR3rDEfqYa6bXBKyu4ePVgfz5gchiyp88X58K7PTtR9hL8bHexBB6OPP5CPp/fluYrYHNOLLnIy3Qtr/zx8MQ/nBfb2xHKqzFNAG+akNfwe5fYoQ3RrrZlC1SQPd4m7wccuG8Nni03dH4Q9jUQU3YMUC8AY40SWWf2vYjfoRfhWBq6rhEIonnUCOOP41simB4s9gP8NwtkKEBBIq4gDOjD42nmiRJYNx2Fv7BDM4nzyKky570YR3coxkSDqYNfdY62Co3HzV2+RRaFKLDmCmtD9ieUtfqGa5lspxqtXv3vuuc7usnC/BRvD9lBIOAbQw8AW5iBw+uoDrx22PQhxWma2U1bftgDICkezOtMrFmag==
Variant 4
DifficultyLevel
539
Question
Which set of numbers is arranged from the smallest to the largest?
Worked Solution
−5 is less than −4
75% is less than 45
∴ Smallest to largest is:
−5,−4,75%,45
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
number2 | |
number3 | |
number4 | |
correctAnswer | $-5, -4, 75\%, \dfrac{5}{4}$ |
Answers
Is Correct? | Answer |
✓ | −5,−4,75%,45 |
x | −4,−5,45,75% |
x | −4,−5,75%,45 |
x | −5,−4,45,75% |