50169
U2FsdGVkX1/kmvief0MRWzHFrOodJiXagL87kKg+3hSNAWsFEe4HJLuY9Az2+W+eT3QSwwZDlakVtexEJVJAHzXfCPAE30QC9VN2zJ3nHCj32jOzUTGY7JxG1YQclynOP0PorMrA83rgMQCyPIGqPxmmImdCmJA5PfKIFMrqvCYx0o7yiCPiIG93BmHC4l6u9v8MvBgG6n3UMqrMbmfjFExCZrtcI3BUVDRQStOkuZ5AQegGc9MoUVDdmca8uCjJLokPQNbhYTU/jyM6PDxFgqtJX2tlG/5z+9kr2ZE+Q0YcV/HXgwWcEqhjkDgHJ/Ug2tFP8Eq1Kg064o6/i06F/NJf8rcUx3auQ6ilhPk+jiCvKlttYniKf5q1awP6ro/LiqPrP33EqaHkf12+tXBDQrBM1KjKubHyNU0ZFPRCl7bWCAVzKlfNMdS0UEu7taSXz7txXlegFCgjpQxgsRURKVZMhNBC/f7iKTD+bTMiyEhv3LXB32t19ovy84pBQPW89j+Uub8YHO/P1LTC8+JzosUU4AFrZ7J2UV2pA7FolwV9wqROCm36DYR+uhl+gsGZVHiQUUm8wmcptVnxXUgD2ffdcSJSDi6mBh/1Zj4ofRpMPSpGUxI4vyPH6B5vIV7Yl1e6wrk05jBzSo8/rXJ6Fjz9miK1P0FsOy6FQys4RDWbqGiGvx/lzZ9qmkhcHRV+U5kSR0AZebsmbYGdrmwob2aGVUYmSJtnAwQyK7MW27Ymtn4lo7Suh3mjeFJGARFjyW2ZhQLLNG3Y32FJF3oe6NfQ7q8jRldRK0TpP4esKqG1NRGeDhT9INlikGcDtVaKMAfj6ox4oO4w2LChUFbvSvXblis/awthvtBSTEHaPOP8GG0Wf4JeqToFwjDwacJ41oM4bv/1870W3L31O3bukjSbISUSZllWfTsY+oU4I5sssdVCT1pseJsdj/HfeHfZwwRECGQMpottUb6iF6arlEU2JdKhybfFHd6L4o0ALh+fBegWw5mub92wGoMIsV37GRvKEfUeDq6ahJzfeJwxIfCBHqwqVk5gpEzycoYhGXmkey1uJ7Ff5y3KGA9Zjq9oeYj8UMn71qhc89W+VVKchRaL6ZIHsFMM3JOkuBf0sTH8W4dC5eOrqnEM5L1Qzt4QCNk0P7MC8u2kFLW750CbLH/1FeKkcS436zGGD8p6A/+CLOFDIlCpo4UumqJb63LYtfeG1PJB/FABsUig6f+W8C7oR/vP8EM1ZLCqYvmK4nOTfX83pJsIhctxY5SMf5fdUxMx+kftfqA2o668qIVhSPL2MdV8C95e7NQFZopyqglo7u3qkDPGDWn6Y5YqFk+7EP1bAIQ8C8uODCl8rvm2dEqjyK4zOS55cfmNYONSdOG+7XfHFCcinQ1K9jycvVWr+04ehA2zaTlo60m2R0hlrspZvBdyvnANX4y1dawAVwSOkkWvMJRfqIEF7wtRTR9lI0yq2KxQnj/wPhun6197e7NIj4U6m6aRi7IBS/PH5EeP2rnNy3X1d4HaWCJxLkbRGuqwyeUriXYEGYVYblMHrA0sB3QNlUiUUGwf1UTyWWwslrmMa0XQPPiFlxloYXxlMkS9HxcVrhPDg9NW+ObjiwkWdhFLb89ka/2wGcBSmXOqhyrH/18kB4vS1j2BGH8X5NgN7Grb9Gb0+E8gMVnGE4mfsKG407y211ReZQMqRyEBbV/gN0VI26nO80DObl18TU/vfv6rHyXfPnrWecEwxRbWjhxEOX0EbjRHLe/h1QGtjSA620/nrnHskky+0J3bg6Uf4uVVlKVcJgpl4djnX3fNaIRxR6ewhjnxEcT0hsGdMfio32Gqd6qqpxoTR2m9DOEkzkCFb4cNmYrR6VHAQD0CDtnynpCjCmMkHHnNgtZUW/1Hx2JBF2YFvkKEgm5kLiu4kJXuD7+xaQ4iDY1/H7ao9FMPfWFDPDbMtTKJa8E+WQE2LRORfPlNQbNBWjhcq5J6juy/s2pjwZoO9izMbWb8jw7HAHKZr3uyWgYX7dLTxDthBOpY0qALn2kSu7br0YDt88RzsUG0ZwOkrPOLeuOjemqU5AO5ofSudt50FcuJF/9qYZ1fwBxMcSFAvnYrbK2dgIeXgEArAvZQTf9BbPZpV0nfpp9YmLRkZFPlGc4LkKMzHzO8bxtPbbH4I730XnN75sqf0V6709GTZaxsM4gNfD2/U3nf26rtoWjvr8NA+yTDN5PY7SswMXFWSmqyS2gmrDAZFHtMnE51D6jIdtJ+m4zZC99LcyeHs6djdo+jL1YOCrOdqzD3wT2hBU0cHtFmggUlqkrS1iW4E+txmY3ihBOssQ+/EKPWTZrsGlgsMHciYSwTK2HKWfuzuxsbaeLXyTcgqPW+RYCifx+VVveznn/qkAI1fPBrYknrtaTqKRUX6r0yPqxXK7gc5iooRtOB7FEfkE/9nA8lpXvN0s9LdMl6t+JGSHeKccW/AUhrKi/NQ42fC72zYZIY7fJwh8g1NyITYZIPaUtYN+5pZyr+tHOpIHsOIWAuncwKJY3jiHSOxoKx6gwfchpS4xfy02+KW614E6fhoJlzED6Qc0Sm21PZNBw38YP80hzjKp1Ev9GYGEfMOVy5Y0wMRRi2Bq2kiPzSQrDSQALSsDZm8A55FOcTCklzquHe0+84pY1+mdH7smSOaZ/lR/DaCurD3G0pAHbRhQ3DhYSZfM4iRuW/wLrvNTnRC6Ra8G1yVlEU5Sr3rdlI0yq8MdMxq2nK+m2cc0bAQaHlQxX7uw2KRvzcorpK9r+QlHQwq8t/wNo1l7OatDDfkZVOFtedZE/qDzfDfpxtxemuh0/NMreRmGSgxpj+1Pi5wcbWhTQTTrcopUh96Dstz+rmnCDIOJ9fj9HelK/wJm8MIrMs4ugcwwYZy3D8RdOIncs6mMbS1QkZv47u96EPFRtLWLjAHngriPN/o634FuLnkSQOQTSaigSOpkuubS+Sf2eqrsKvbXxG0CBXe5NFli1N2iha5juPBOEs+5qtvq8aQ46u0CNWpYXwTaQEaBo8xZ/MVe1XqvxFKZRScXakROL6m1bQFUZDDwljk2BlVpU+4PtlIV8auyGdJ4uKkv1D0greuwScco71RmApOlpd/7UhqMMBmuNkyOZZQQ184s89yZVnCRqvPczk1f8TWWq2sce8ZvjYS4tIpIu9dr1waQbtXrJD6N13FiiP2hbpDeEpw78r0LXbN4C7eW+dnsnm6YoJ2Jn6QbbAqP7uuDvjMDCSxTXKNmoLgVEo5NKlJ0J00Q5eptI6rBJIehqVSj5JshjQyYrP+Kh7ZSVUJ6QYifYtm6AzNY+OqYbQek204bLsU3El0Yr8bHg35yNzogcM9nSiPqb8F1pWoEufz6DTCOWKrf3ZhSrNEt1c/2nkxFPuSy2RoqFAYk2rNIQeQgDH6J7LvbxrnRS/POMvQU4plpS2FBvEvdvE30FwJ3ODSs/D9uUmqQ49OlIB1QG3juD6bDOWb+WLeyZKXf7Ae0kq801LRBKxuViuCFafFDGj8rlqRAVGyKLeDSsr8sPQoTNRfP+xgQqHZok4SRf4BPJiHlo1pEisAuZqJZACPd7e0lJf0H3nWMyfKEeXun3q6D0fUkX6r6qtg1s1zV1JgDkNYZICLm2LBkUs8wr+SEE5tjR5C5vocceDQMj74jBXvrXyVdcu8MaNyMu2JNXqLd1FgCLAYnS3Hs5o0sd+xyEK9h+cnWHftK7jYVKbDlEbPV20dxjnfmoUNyl0X1yfHK21CjaGYdLWgjmEuqA1T+5BDfob7WLrxBqLy2zaCcxAW4vbMTSXb1x89fQnHuBE7l3+24K8l9Ur9Un4p9Vh+kVl+mHWFZIX4ed38vnHBnSVT2qUVEXkFPgHOqyki6TTdIRmA2tDu4Wm546H3WDV+nKWAQL6AaCRalgGTHC4nJJKuhOvs6k7tXqV8Bq2npS30+YlzkjJvRFVl3e+CJHlU0omqPiRobHyoUQujJYyZADE5v2PU/v4NKHEs2Kt9qF9at4A5Ap2S5MaBCmshsixoSCcZDptoeUHco3miFjwui7YnK99za27GlgiDMOJqKWYOsKy36qTKwNhC4zzmNfx5fSwgo74h+HGoflFzJMGBow2nIxcMNJO6SYrIXRRZ29Zfj+WZvDtD5M51ICAvAMXHKOv14NFNVeY9wqKAVapHARBv0GjmalOxcL1wqQl6EbRF6l1DPPOQduIr21RQacYa/WZeLIeeyrfcsAVkZbq7eh4pS1GREp2kAWKadPMfQ1jdx7ypqO3K7/g2FnPUvkBjCVcxd+5LGqxIEWx0mSPTGM8061vaU30kBZfPp5HZwYPe2IROAV/ZdIQFCeSAgEnERGgRlo7HrA3NXJ3gk5Njlf2O1kb1FRc9wtUSMea/kF2+FgrS/w+MetTqsFvo/PH8iztjK3HEIXVS3wxXvr/cmfAik5fTTmLma9oprwBSm1a7PsBJvXw6gTDq7gwM7t9wW45gJe46zfSZQ7Bq9rbD3EUMu2AYJkJYjKCotpAUKaaNbnQu48Vu3M7FdxuDIp4+zBU1ZcjhC3chRnfBrhTxu9RCx4E4q8qnAlEB42mmVJ+Xln+hnNlCjFaDvnL8nqi4t/aKNO16f5NcNYCq8+VryaoQxAyMkUGXRfzDsekKDr43vy9cAsoxfeNmw5YXSRj9j3K/bk3Vt18BQMOHAknjEv4MZoTlh1mZhG8O/E5P/yTlXNgJhY10jPOoGjEd0Baa8WHU3NIqrb63hJZH2sfo+foMDwmS0aON5kfeqa3rICNtUZw7KvskWNGE33lgC5ZNdG3W537tU0BY7a2dTKoUmuBfdp4RiPHA9INSGLSi13K+7g+Wy22QlyeNfZYoR8goSYqprNQLSW72M8FufayhC9wZxt+LiPM8YxADXH4zlC60YWs77i/1Wgq9FT7UFGOxr1P0xtghH0vPBnxl0XL5DIVQDIpdIBJSemKOOm1lSMaYc5Z2CJy1HwaiGhBTz/JpgEePbiUPJvnH4/V49siK9fSFwps6ronDvtVOEMx1TkMAaapzOVn/9e4j4DWVcwbTb4Y9Y5KZDPt4xYjzrFzIOY++SXKaDifF/I8E7gGihRKBYdTOcaYNkq2wT09r+s0niONAh3yZRESts5cAJici340c0z7ticeDPJXwdgaOYkzpe+v07f4USQ/RzIKVgjcHQewQrhFLsr+OognxSPAgynJRdT+RSUEgwU5b+WmDPlFQ6i5uGqPjglsJytyTUgc3fvRRriUq4pjdnyGN6ZGxRlw52ehcVpPNRD2dUiGQOf1UCYbM+8ZBkSRt5931JnZ04PuhBdFjJAQrIVMSctAjCFE7st6makHeCtE0tj+eBQASb4o00RDLkZrTojSrYHoF8u6eDtS4+sGiOyOB1NK+Dnt+/suQhYBxJ/WrUsmgoF7asWgG6I3DV8PrB0W6oaeWarGRA8PaU66yrU7gSj6UQ1qsiTwOSzxEIzOslAzpeLLqCJfWu8lpQ8WQHnAiECYv/l2C5705BY5Bs3aUHn3Wq37/WaoPeT5TMJmX7umVl6fpjjT+IqEvV79SzwlGwQYVSPVt4CJtUofPOwDhgNUlkuvU8bL3X0LrMbKvnN2eSj2tV0sFMOEPh3sGNeeCIWgcmQEGkBWz0zR2XmVYoxAVzlE4qCcHesBRpUppr0fX6e8sRq812ZJLe8CREHDxJq0jkoMUtKke+MeryitZuC9Tb0N3V9o63Aece4he+w24OioX7g0Ifx3Oi2ZN5ox3iKBbFyZqW53c+QSUVuMpfdWdaoudYdfUpF4Gn6qGgPeoDaOB6nnY5rtNns2KrMMPyAyl6fwOsRuVGqlWudXq3Eo5ZjUSk8xoYlAO+1Z8EhIl6H8cZODFBMW3T4x+qvhayfJR8UGdLUlh0sid6uih1SIBXsojXznZTuIHg9CRSl6pN1ykU0ki6yYX2FeXWNIGD8I5/jg7BfTHJAaiN6IsxXxNNU+WiOLixhTUvKQMtk2YBgpJyZzrRQzFWO4umARBPiLoBbp+D7stnp7GV+Mp1HnA9ig2kvGZ2Kaibl0kma33UE+RUX9vbhMi0MkPfXK6cq3r/5Vbn5ol/dROqhaVmiHPHAqhy2DiI3DT0PSp9VZRI/H9M6BYtMIy3xyA0CnYV3GZDinxxa+L5TIb8FSMEYypcayS7gzb431xvDNsnUCjHzN51NkMKWxUzHoOibq1uQbdKIuaMQ+/sGpecYx81JZSmXppnSphQV9hJ/zOAQq6SP1Ksu2hcodKtrVA7v3pg5rxIE6hzJ+o49dGxTOMHVo9Nm8Me3qmsa/LBlmVYkjMXD/TSGrsmES7AuRr8olHl4Jvt0Xsz1qQqpW/HyiP3LDQB+dxABUPeA0uTmUr9VdyiDp4I3tjM3nEY26fagKL41l//cXwzVleA3yqufAjZZyC+QiYuVCjs7DNy4KHIYipMqoZX5BeUPBHmYuXP0Q7J3lgGJOCLCLg8kiROVttKo3HWG6lImM0Jxw180P7UevjrUpOkQI2hHD7ajLRU6NLWk3TYcyiZhVib2DT4c+tw8HP2NarCTGy9UShcmezhRawnoSnOY5lhFizwARwfJcx2sp599XauLz1FEtnUKKdxSv860t49eKy/HMzyd0QGzX0KqFk1FH6xSe/Gw67LLe
Variant 0
DifficultyLevel
582
Question
Leia does a writing course that charges a fee per session and a one off $80 administration fee.
The overall cost (C) is represented by the formula C=25s + 80 where s is the number of sessions Leia attends.
Leia attends 6 sessions in total.
How much does she pay?
Worked Solution
|
|
Cost |
= 25s + 80 |
|
= 25×6+80 |
|
= $230 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Leia does a writing course that charges a fee per session and a one off $80 administration fee.
The overall cost ($C$) is represented by the formula $C = 25\large s$ + 80 where $\large s$ is the number of sessions Leia attends.
Leia attends 6 sessions in total.
How much does she pay? |
workedSolution |
| | |
| ----------------- | ------------------------ |
| Cost | = $25\large s$ + 80 |
| | = $25 \times 6 + 80$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/8UOZvA5kvwW5tGGHjXUlZDrc5PH4h581GkOBS23GDB7pw1mOsuhSyNpMbUMK8SoI+Kug4BJjUZaXrrcrTcdMJNKoy2LMop2gy9dv8OtmlOzyQGMwDXf7nMwaZUpGgfFEyUAS2ckrb5yUjehNFa5ejvrUtkpibDHQ0RK1QLuagRz8m8betAXDvNRmh0eHfYfGGgfKscMk/z8WfaH2WKd5NwQ/Ge0VwMKsjBILk3ITS0z6UOMy2EEWLKnZljHs7Bh5DlmA9b1JmvRuSiLtjEzW6nQkb1PQRIRysHc3sqlzaJJb3Qd99ub4dO6rWfPdKq4X978Thrq+FHwJ9DHXbNOXpcn3MPJCR4NXJbDuIiFBMAsbEG7z4Brg1asbP73OAyzhk8jpj5L8wZuA0m8+LD4blk3w+vCq0iXhuiPOx2+hHRw9zcu2BY1htavg3yxIoslu+F8y5Ut0GAdIidWeCotiRYWenUWh7O8piLj9msvvibsho6PzMn76Y9k6E6UDzpNVmNXA1HGcTHMrTiF0E1YdwE1HnEbCwXMEB6+gxM61Nv+TrbdWLLYDy3SfjXRGLQuW1DzauEWMow2LOxSnDQMe758G3ycird8S56XkzbO52akvwrV/71k3V0gsZz87e7GPF+zZUGHKp5Kr82DZB02nF4jG6Si6UifzUwhiSuqy6LlBvwgj8aoNQMm9WsTM5MG4dpMTKeiNFbF1Vsw2jtMlYsNuEBuLJuMfvGLnQViEpJk6wsXrOV3oAOkdxlfwtZtaxX4MsWTVhUOLz1iHKJkNKeZ5KBabz5gXi57DWnX5csFx4iXOG0yAYckDYB7Y3ynm+5hUg1Zv70afEh78/kBoussEqzSTod1OipHBefG35A77AVqS92sbJzy38kikhqpvaWscpaC3/6K6Dl8uBWnHtHF0d9PpGlYQqXTZBZjsNcVsqj9k23XgfOWs1IhmFQu6HoodMlFe0feL5r+uhYiOEf5ag1iHOGNVIHoA8M9Ztk342qt1FPTE56OhHg0sB3ZlJkkRAtCmkcfiGutEN6Uc59EPJtTg/PIn6Og+eT0twodbRHxz8Np7Mx30fGTHyFgZ7W2+f9BioSQmQyGnrJW2jk843bK3Xlnpgo6uRjpm73vRU4b5xkYKUdfFbk6VDJCgERWPgclJ1hMf0nGA44s5vi4pFXoQ23kmPFsI07D9khlfh7JAPKVy1/XKYouEWe/bUhIe925uXOz9JYTtGE3LpfJQVGaTEcT3yo4KPxwAOuobwo1fVigJbYpfSF6WcLqMtDsbF5Qi72APPbBkFySpvf3SwE75gdCVZEJK5hkWh1PeUQCNuhtsw24otUPZs6pRQYXGUZ1upAFD13oNTMLoRZyto2Awx3bprQUpNHw8IBJP+y3LxVhRfkRUdpnYFylsLMcUdwjVGX0jSutnXmzTrRItn1meMw1IjgzwThoSJqwKpaWPLr3lQMCEt0W/BFAnXZ4HF1PZr51cpqSs73/EL8xsdwrAFVVQwEWIf1XD0xsB4b5kDEZjfVUhyBHDGPh8BzA7wrrw/Qf7Zys6FmKXP5xv/ogvf3a6UbDE/2GVMi6EQpN/udiGAEwM4kjs7SNDy2gyVCjXu+yRNG4pCgTaqgb3vN9TpyglkiAgDCCy5SuGOAtTEubMeJXF23Z0eYmLnWZo4Yra9ASoQssY2t7XGTc34VjYTZY5Xd1Ib7knzKQncR4zMV4po79DgAN3p2OcxoN5kmOo1IcoTu08FhOMF8XqhlS/FEg0zqK1xgzPKxc4iE+a8hQfUyDGQJKnjqCiX0QQkPPfJ01842hA8Z8V4wGLeWSIIDxxtHYUYcLAc/U2I+OiWQTAvh9TTpj09mwRobV8Q+ZuDwowG5JsdUyuZBCVUhUvyzV298Qw4+4FZ+yIPumvtlLvB4uExEW+Rk0I4hoWzg0HvrQULwsZG5gQrvKqclxjPnnkcxjvbiEawmz7LULUYbr5H04Ef8xO5o5tYT0q7phWBQDome0IBwx7GNipRqDd+rf83BtD/A4LFXmrRu55iWYo3vUwpub/7wv69U1JsfGwsn4tGHaCM7WWJcOOyT3vY6VIOQZQ4atiLmHjn3v2DuvSIBKbzbNgFQsBNvMPnIFewMwTmCu+l6lXj/cPcwURbOkG/lUDH716JOMgltLIC69j1Xxknnuni91JkLSFKOgr0Sbm5F+JpE+lCclUEOdai1ez/nICm5fm/UOipnTL3XUQQvR2OHVRmo23x8G6WlQNkMY6CCe2Lxo0vnEJqWOdJ6pqQHE4CtVzZPzYkoEQ2Q6wb460pVk+I9PQs0udgDoARWhPpRKLFjGqdDUPDRZl9xUgVCV6FQ8vpzjTF4ZMS6J8mfnbI0hXx+S8n0SnBCqkcsk+XK9ainQuPrwqQ9i8FHdijCtktEYm64j1BPpj7OHcVT0T1l2xfjHNIM2+CADC43aM1je3ADYgOLQEF/IfUgvN1dwNjnEu1ZWmfzmkOiQF7W7DwmBY/IflaEAnDGcXmvcSEzOCTT4zKCkVNFbBLfec//BbIUO/x2SYTUhmCqJYBNZakfyjMvxfM7k8OhvEm762v+XiM0jQIXIj4e9p06qLgguoq5DNPdtlnIk62A5MDc98hDoY6ef+BHUlz05XRsXjMT748nyfuBjLewovObSQl9SpmopdpurzdWS4plwWU41Aq8Dp5zqvT3QPbbsOyNSpWACBloORq794VxtQ9C7W0l9t6QYw5tMNmtDvqVHlHUNAlRt30aRidDNMPq08YCTXiDWwYFzHyEKK5A4q+cvgVvj568TKSJQsrPS31kq7YLuosUl8JNGj5CwwXLCAfRCRsCA08hJklNKtBsgC2kGiuA6XJrplWzRkTcxmPvAt3cl3RClBUp+mE6Jua9ht1V831ZmELdzzJ03pH0MzcCWNUysgfrzPQrWM8AX3TEYRa/JVH1RinxBoPfS001dLRbW04N13Aue52mAkhgabB8uJXUSOZKOcmzHoAPB5gaF+Ya5lCOoKksnlTRoDtieS/QBFw2jviBPEmFeINbjsJWuFZ0YtyvXUUldzZScSSAUoGLObiC64wLnQr5q5fauhlQt5aSY/Ug1DF0AdeZOhDcPFqKEDtCV9e7RkPV7meEm3XtZW+wL4i8bNj/T+dIC+TdeKq3tJKWpkAc6JXXS8GH2IomxUlSKnefbvuqmWXruCrsbLiH3MgcKizd6mzaqD8NFuAAMGNhuHZu9Pgs3OoqNxzmp9DsFVCaUlv8oIJzKCoZDkz3NIjCjualp/Or916jwUGFcltDtDnIAdI5bX7URMAGCs5/0uHmQ0bwU6K35wg2YVnIaR4YiWvN9JHHJx47iFtH/v4cm5pH7yAhPicRwDXaJVkX+WdYa+OfdlKlkQxUdxCB8jjmcLWHZ6/6rlaWSbfNaiZ7uZGqLzjJVGU59V6CslzWwBd/6lhft9cV9l1gz3gCPSeNm6Jge3m/S9TXqrmda3tUxC9v4aKPk75g4k/XC2C+W/5gyitlNo/xgYtpLGpD/uwrumdPzpI9EnWbSMJzRfaee7rMxvkHq7LbMPEhXdB5Mkg7R1IfdnG1/r6iuGrtpuX5g17pvNyGEKV7Lxdp4T7epQPtllT58maakWEklUdPAvO2lVIT/t5xqptJWcxzgiKP9iqsqlUBtKSO27wADjmFzSGWdqAbnF329jACKk9IyCmPEFKWfJJfneYpH88yDncQytq3G/yA7CQRksPGbczYkpkDi1bkftaqI8W5aRwnoE1e8wRZXhEFSYq+nytaOGqgXcF4aWTOLxxVR8AkrYP9qS2F/qWAWcLbL0cXfNfqAzUqvaPL5d2zDpiz5ddz6CxrcEPTzJgyotqBZbyLp3SIqv0sfZGMvOkcIcgbMyP8IzZVnTnL/IxFpIa66OOq2qprUStRJJm+9j+fCnqTVO5f6FuFq1KElsXgnTmR/Fc+1kdNX2tOAnp4JVMKsA55ZJ+a6TA6mkT5PGXSnGl4VvqU/d2NkJLJsNiWcwXXcxVz1TBIFe3B7bFCkGvElbDg69bGluvHlkxhFm4zWDiN4apwvdhgfi+oHTqLXZ8pQk1dcXd23Sp7oKsAAll4epL54HvQsUW8H2ruyJI05Hv17X0ooLzPS9gksthjBQwptNNsfu3NpmRmreWQzmhYewFLYTD+K5A06Y1fo6JGGo3kMUke6OcJ3UIA+fKUIz8zB4jGP0AJSOouIly5RJ5jr+IxuRuyg1HgsaVrpqiLEQW+fRvw22KCnNH0SnzgQ1+8YD6cMjBB+OhruKHZntVIwlUmxZcme2fbb1L1/4hffJeVN7mvvk/P3bbtBQ+824HepCuS2Kk6LSArC7bkwM2UzPzqv1o3IcRqmnG5CJd9hC4IGkFKuCvwipFsBAYGa4J5HY+tjAQmxlT7x41YWYU9wwXm7yRN0FdGTRL+jYSy+bc3pInf/876yJPAGD70sBvsMRCYtNPygO/TD/DQHIl9oMBxWP0Z0FXEyl+zj5iHKAsIznnUCZJga7xSG9NxcH95ACBVsAnLUoZ+Lzh8bxhkaKXLNsccov1H0B3+VhilFYSCRX6pX5A8N3FMCrRRzGSp4ZCYxf8wPqlRNzf0G6RDp9XU6a4QbRfQsmR601bQLgLYlrquk1uOqXMksUkjAyQVIyGsCprDDMP8kyhFuGzcf1tf4V593wAe8ltonBlvfjAUWA7J5Vq1jQtYnnw5hzqW32tq0eRYrU6XqJyG5NpdWO42ldpVAsHmXBbodjMleP2COt02/A2KCBL87r7ZHRo9ftzvbwSkz3plzDyE5GgiaspleNBKgL3l6m9tOHhemu66+Z1AtCglVA5QvGcpt9fy6uVH3cOmz5JesBCmMGXoawHKEeoQ4XyCVOY6TlADnxMhE3RlCYOLARjYGmw2os0WGd/Diu0dsvD8T0EPyxKF0xigvya7ml/WFnZhwX4if3KYlI9Pb4BryF9eMD7hOUouuSkTsNnB4Kz3pYCzXcXNcfXUWW/MhxW/1fXoQMaYBskcwkRP5bXmRgFgk8Gl1qAJBZkyDAHcmCR43UO0Rkl5M/sPf1yonkO/5/MSEz4LGsKPbxY+BWvFVw/bvOP57i95IGOMK5PtLNOqMjRUzMc5m/IChB7gjKSSwo88uekctpPM0492XPdf1fmmI425V0c3mknATymJ4qdAWCpR1ayU/saGt90yPPuoQHH53YJE4uFNUBAkQwFIYpGNerGlCZytcV79Qd/HCF0QJEJbFDF1CMZTaEHUb5aEgwpY52g6ngPIGRBdc4EytlbNSden/I6z0WS7Ba78Yo3kzwtCPfpH8nECl7+LY5UFM05B1pY+AmPrVl5rxsxZCfqhZx5FRSLDserXuCA5GnyLd9nkP/wkdkEVRyui2cSpEGI44SRFHF0jVpwvWNWDJopHEY4bz/sZ1lV7qc8yZmDa0u9e8ikPAABAW50KAC6e7AWkvQ8kLKbqPUSWnSnZf+qSZWVEvGsQ4kbcjSDDsGh7vks4OtoTmOXu5SbnW12UyO5z8JtUFZuVSKetE1NmIP79ZVt0UmgzYzbcoVAg/yzrzRhNebrtRNJuivmI4aob0v8qeUXS6TPVNmWbjevYZfPMZVRfLuoBIh0Ln2jk9QAPN+i3RcfOR/aYr4Z+mYJKf9wpx0JR0NEedV+jNdzbV0L3E0jkUJoX4LUdHxYPFhZveDng6eAUHcQkXS9Yb6tTgls6Bv4cKgz+YP062Gh/1YBOTTZ3T9df5KrlpZCdaO5WybyBAQt/VI/Nr3fq6fWD32kNNKodmVkcKVKCJ9Uy+RV/Tz1NkxxRno/pY5xHHkbAFbhzKqa2fKzPBmC4ckMVtd/Ey2oWAgrI+KokHuMmBvN9F8VO9N8eI6MExsa04xH2KBV6JsKhxD2K3k+A6ehJgWpWG5NoV/YgATDjXxUQyqDbUWKc4gEKIASGid8hPmeA4S7c3eUb5mcLIjGaEBIjjmDu7EhbtZTZXvxkeYY5OV2k2fyT5TAWia98G88Z0tNTdbrL9JtcCzHUH9WCi2twtlWwUQ39OJMP0S45jgkVdBk66MIAUBLceWyZnm/NK6cxfp/yxmNZ9Nmz0Wj6stYPpZJ47WjnidKQQ9ygG3irGa+pHN5ja9qK0ArMkpJrrwqAno2uIQm7aicUurtxTVn+S2nqN1UaoB7HbMRtmRYnJmUp5LIdrZxSnCeJJ8xlAlbuyygtkthknTVnkX809OFMco/Xa4DNWcfRaB9N0cLe4Bb6vb2NZqfoBjoGIFYh4h/4W8CoX/7Di9XlKE8pAnPcgaaGMVbN7w3jfh7HEkcUT+Tm7UYvkEhG7A64gx879bvpuWTXy2TCDunf06TuXcq6O39hSGp68zSzXeQsRrkPcmMsyfazxbKe0Vr33uZUyLV9eCW9aDIc4f8vY5amSUitAdEauCycnnPLTz+QeApwv9PVwQxQbB0xFc5p9PQKUkSCqB5zRfMO16SVBT44Fuzea7hn7Cojsyl7YLWzSrLAkaJihYh0QJDY2VTO+GVeSPH2CMLsAw39isaecA2PQ7FWB9fhxeE6gvNnYTUe18Xl9jJ1Z2HjqWNRWDxjJDxIaR6jWQB6CQ0rcN0TksyO+5ES/Vl29XfjLYXS+J5Jbl55w02CMvv/e3OFJI2BRuBT7EkFYLN/puq04wdvUFuiulu3PqIUptk6HM8rgnY3NQk1RsFjZS/e3jf3gI1yR+d0RinmJ/YbZGZ
Variant 1
DifficultyLevel
584
Question
Briony does an online course that charges a fee per session and a one off $100 administration fee.
The overall cost (C) is represented by the formula C=45s + 100 where s is the number of sessions Briony completes.
Briony completes 8 sessions in total.
How much does she pay?
Worked Solution
|
|
Cost |
= 45s + 100 |
|
= 45×8+100 |
|
= $460 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Briony does an online course that charges a fee per session and a one off $100 administration fee.
The overall cost ($C$) is represented by the formula $C = 45\large s$ + 100 where $\large s$ is the number of sessions Briony completes.
Briony completes 8 sessions in total.
How much does she pay? |
workedSolution |
| | |
| ----------------- | ------------------------ |
| Cost | = $45\large s$ + 100 |
| | = $45 \times 8 + 100$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/XqMUu4U6cV3kGNN1Qbn0jbGncoiFU2NB4f2v4vn0x1URyxobAHD0e3feBzYKAywI30LKrhDtAHvIEnEKoFRxh3hLG2pEr3Xniv1HZT+1BokJwC+tc6zooWtszostwP3jhwQfHw8zkLmUphdSW7o8oQyd6x1vHeM5LZFVywiBBFgpP179HI4bK8hHk7hP1N8pDBGDcQd2IIjS2tZZ2HLETNzF+WEQ6NUWe145sEwQvchghnVTGFduAzCcTa+MXgfH1Sl3WRO4UTWbsQ1KY+stVo+zrUTgCIbWRz8qRE+KjU8nrnJ0nlhLRrOsT3xZ62MqRkhaIx+wgqt7qZIC2zxsmQQTZvMEFaAm9w9jxPW4UjMrSY/hUnNcV4FlZq0gsH+pRurAzBVuu5GhzIL/ArdvbkUV5YB2wv5qOP+lCqWB4Ap/22YSD3LYMVw+LYy2F+3bHz0DS4tfuM77hqyC3NCX6fXtYHkAZfMZgs7bb/ZRGzeeC8D7RjC8P3P1ln97rw6zwisG+oetHUkGQOyldGmZTD7DSG53xS9BV/h8uwtsnHPTkr6YJkz1AJuqSAgy+xR/HJHJrgrQnT3sxAvSTwORU0coG+JLND+r3+5e1EPHrlv0nnGl/KAN5QKSymr25BPd04cixeK90EoWPHBWa3qbrZmmHJ4Sc89f/fqbFVpCerk5wqQlvAOaloC4dIwf8x7c63/kwt4Qe7UcsUzFEXUZ7xCCG5gxs3sHH6rEoI+qnvvhJEtfZa9YQy3ztbhQ4I7SFlrXva5ZSCI44qrB8dK3z1h4B2A5hYzr/QoIl27YGc+MHs5WkFmVOdvDEy11f9NhBdRcWC3SrGTm1+dnHGs3RTuYCbe5KbUNacVUYNQ/vFJdYswQw3M1nCzjqvMtj7uk6smvKVAPblXa+mnuzObsZoMd195A3gyL3LB493IPsXI/nUpTuIOPEzRvjItnnhx72rpY/wjWb51/+ac1SUr2Y0oMdKG0bjj2lOJ8mwLZ2jmMbBJORxTi37pi6BNFsB/HIqNFxEGl7pbCAQkPGVkQSSKETncCPdEGHAQu8uM2Q8xFK1sNSYXHby04l/HyH7Ho28862Mjn+2BhsKoWKiOsPa1A1ObOiHFhwxy2aWb74j/UbQNnXoPwPH5Tglup2sS3o7uqLFjRo5+W8wfalkfYKzcs/zpvcoPpZ8i0rLzsf4AaEi8stOZc6qJzn+f68VtcMbn/jnbcCkMsrqY9M/XAYT6R1K+z3aWHPT8NWKmnzbg/bKN//Mx/N1rmonzCjBfXt6gTsnVA9HywzhLxk/Sa0pTol3PIHP44KQAzeYvR/9VDmPictxDVsKwc06Vs0jazkbnzw3GP+IQlmkz5dRcUc9sAq/PE9P4EBtCh976Sm+OM+2b3P5kxu5TvyEcpdV3XCVxWX01EVd9auQX9PaUzum1RKFZ4nF0nD+MONdCzIc7QWyFpIA6bSqs6jNBQAErWEMuJ4W1KOgj40s8119w1GZFI3Q5/5NMTPo702tBgMc3FHaDMaBMn/mFEJlgz3UZxvXVMl2+hDeI8ClxEq9V0oo5UVPss4IWnWFNCzJhrYnp1qYm+76gzsYTN6vStot1MxHNHLYbmugu18uOZJO5X8zYsUPb1p955NlbW+hcKXwRex2hklLidThOK5TwJDlbhtIR2RZGdBDqR1gQym82LbZZU98mlIBXeRcGPLjKy0hJ1iA4UXf4PQoEPRlSB5Y79JSFPk9ftlfhWcD+JyJXoIaHIcv1Fuabkc0+QqJB/vaImUHT+EX+/Y0aNlIIO2Kg5JzHkoL6ohE/cK6CHNE0G0OVSvQ15bw/+5PvlY+6dGm+d7+vZLDRjKho9W4DqgzT7QfGTZlFVMvFbXDcT11IdizY/UUZufWAPN7cYPPMFd283Zb1t/kGXlpNQv3CMVpC/vqKYuSHCFaL1ZK/fYF+Ie51l500UWDm1MAVm+mMQ1jiW+f9XbiGmwm+73gde98pHk3zIMog2ci5Xa0B15lE2KUlDiox8NCZj+BLOyDbRJpQYJRqph2ZEo/U/n+tLBn1tL2PsEzr3onsySS8NQ6A+rqmCeszKe7DKX5E6NXS9NKtjfIG1kL6opQblsJET3aZKrUXC4EIlhVhLx/K30QhpZvQDngF12jPM0PBg4PfAFmV+Ukz6eRML250EC3OYF4dX/jbY3toH7SHIfDMRNGNhWR5AgAmz3Nj8hkMcxcdtOCWgmAcM0ZhFNVjcp1lYxRC4tI1BNZcrj6RUzi2HBGXC5ogGkIvavMIz15xI0wPlqBeLN/OfM7R4/PNf7dTLy7k/b5c+y+ubxpQNFw88X6nrxvRYjdM2Dh51kz+ieH6o+jHJ4Ewg9hmYedUF1Ok4DmAi/KBbV7SlfpBi3YL8FIcIZLt9FpATsSl0CVM5VAfGewXW0SjSQWwNYtuQ7Njg9k+mVQPBrJCerIM4KNZqBDPUQgov8oKXb4BMhGaAJE9dArkeifsYfIQqqfyRMhMM9y/qzsJjZfsWn9IuzXwpFb3K9g1Ng+8qiWehn6xJLKSYfRAwMGc1rU7r4II7hcRGC5d2Uv0n1yRgEFTWmwNwLYTMLhUHmROlVdPuXMqfBsEaetRya4kiPx7x9S/hsVszMvyi5ySnYdPzju8GvlX5fB3ol8oFe6qtXwrUXNBVK3k3iIkYiP/S4fxRV5QpYB1cFJ9a0CXCvfj8DVVVhI3KJ3+jGoq3RpXiTf38DunXh6zpTaCPfNIWYRd02kpPdT95Il4uR7uyp37GtMUwXpfhYWsh3NxQc0iA/OLEEJBvo3wUmBfymHvIg9cDCEw0bFzzYjFHc78aRlVC6dsuqvIzAcwizpz6KxpJ2Fz0YIn5kaw9Y5Eo4F9ajy9rGwUJdWIkRxlsE0XbnHE/zbpjF7sFTpLYCVkJtQAc80MKe8Z7/frqFSPvNfxPHsYpHMxUXWS1qGNOVSDqv3k++leOZbbxphUkM5nUjbZ4Lit0fHjujG4snBAFss0wWkPU6vTO0K6XpbitcnRNXmQPKfZTKj7en92grqpgW3md7r2lVhBu0e2cD241zJ7bc3H64PO7h4Fc8bFpsYbg7sZABgxnKijS256iv5ugWKehQFvXz2/UesnDrnI8LE6BODCwD6f9jkOhavVB4qzgbhA/WtJbtM1JiGtUN4TZ0tISdI8/T1UeqyNpw+jXGWAkcBpr+YuowOoUT2sR9skWFyLnyj9MpMrjz0dckrmRmMRWsfzy4UG3kvjEXPM0k5pHx/8gZpKbpH94p4jhQPT7DL3WNeaP+V/R/A9F4Du8Ok8x3TweLwo64bq+u0gjUDXxUtjp2xgvz1j5aWk91OnPUrv3txMNfxnS4ANUJwjEz6GRkBVBNMI4Y6Jj3w07zm0IsTXT2JQg7Lgc2ZQ758GjaAtm+oxge4Nv4qXQ6AkCpW4U8KSu3o5jjcy17J/ID+dSChZLsWd1c997IT9cDSuYYeqy2xr5nkBUy5YztsCu46JHStiyyqxG2yoxADqEZqdaPxnAKjP2bbAsAzgtLkWCwaHRPGXj0eYBw72Z7kcrMUZ29qbarpJT3xakyOA6wtA8ZUE2D6jcY996F8P5wdimiS2XIr3M6xURHnw+rwkSEf6SBsRPjie0YxKu0EkQbUW1K/78/GtdNQb98ZSTs8gidbzrvX/GJF5BjV7s5ELph/+83qVaxeafpgdK6ZD9ZmFu8IuueHOaqiyRlrYVnC7AFT7b6oBH82PDHddAND82XCSGHnBo6cKUEXLCTui7+yR3asLy8BsyuD86QCk6dXcy1B0BbxL0MgIDZZbjTA/pola/F+TvswtAc9B2b2oIrsA96j60T5Jn+p0z9AMTKqTqwLgHYZfTVZPDYexFeFtGmX3cp7aLa4yEFbdU2C1Q42lLlGH/IJKSAu6HtGyQ12mOVCdI5Egqz1RnYEWv57/zGYsOAoAGMfOObyZpg1KcR0wSG31RFiXmqHpeKFDuW8IlVu118x/Hd/MKo1oRl8foCHbGWHC7FspBgEYXXneDeU2vaEp0TsyyVgMUn1NOb7dFvTB+HOKybu62/aB2UdP/XohMNjye/qaw25UrRVw1ZQg3rabi7PJNhWlg0Bj01GZcrI5pEug1Pf6j+05neWyWDacd311PL/9ZK2IBm0blf6AtnmWdSJB3zG6tI4FB0KC9WWKQ9NAbDgE0z7Rn3yinWl6Hd62Qos5FQG63VdO9LtSJGFPOVxRp+Szmc3LtUsg/fEVqMsWeT+k7iZrA+Z8ZzAGLaf1WUwEUF2pADyVSxxlEPiQ2a6LJ3UvjlArtVxU95qiaszhJACisbrT4orXoryhbrXtdcbgPIycUkBd6gUfERXvww64oRuz3fYLaR7MqoaBnIezmn9Mt4jbrFCOtLmW+9xb73BJKexoDouayypohOnk2L+FHaSVqncWTcfxwXROQyUz4J35MJB1vc9bYDJJW+9rujZCxleI1BXfyBGhUp913Mei6QM/+csJMMO7CiKQFlmXKa9A69q1KbrfOAAJ5V2OxtAts3NnBzKHJZv+q39mOwTzuM7PELpvElDy403VWV7mrZ3epJMEyXNSVt3aIYaHOTCduH3+eeGJfbXpYRkeX2/uxMpxxzN4Gt084+T7D+IC4YHzKhMbZp6vnukMoUokzpVpIsNOBEQbVo7cTwKjd22eFhVwBxIw/HGCwpvlx/TbR/ql41bdrLkcIWkKny8xHPFOYqH6U0Q6xkZaSITD9B/nNGFnU5hLzs8YOwTTMK4qMOc2b79W6Tj407xgctj8fG8qP8uu3mWMnszrTaYdo+KuCnCWy0eAICZoA4gaxuKbX14jSjFWgBjaaEw8C2JMwDpEtkA6Va27kvUXJNldjccNoXheq5CGyg66vVo4yheOcswuxXn5w91UzhU/LWYwpvWhDKL0LzvgmIwojlW17pdhquGlc3lHr90U/nBQmGWWpNsqNf1TsZaEOCJQ+GXYuOy74QdxucjcGFP+3H4GR1x8v0CkG5zwC+gFay2TDKCCb+6+ujv7uDpt4sMvQEm9UXZ6Js9uA7EwxGry0Z/LNrk0RXoOQN6SXNe4dw1KwjLDlYPHj8Vo9LgOKocngjnbMw6mrCt+vDNRFT408KgkMY7O6UlPoG7EyGpYBRA/MIzsiVKSIqvhQULk+oAcI7PqAy4WU2Fv8vm9ODlLmDft9FfigdaAcGsH/FEF7I0TWVRjBes7L8R/e6wWhMI/HPCSaiTre4CC73/ylLP1DGshQeAVMIJqUEPCF+HA6nWazrl6riJduKEMk0BlhuJZAFFPWzXskZgHNsduNy+/+Emi8OsnSaoHg3R2yD/zR3Owc0K16bXhPZymGgVaDARLlIKZQG/MD+uhtpbBGZMXM97166V7vYKNWZCBsc7WdJ45wOp7w9gneurHw4Bcv1Bk9G7I2JMh68kws3LBn95It2c64n/2PV8OJAG4srn3N0yOKLeRGqv2I/D3FfG0aD3YJ98UZxQuabZv/HQmOPcIZswsHk6HxBf592oMXIymNjnwQLSq14tKGy1TEfoU4mmOT8fUmZKLLmnX/Ntm9iL32a96ahiBn0KAIaZPHY5AUL2vs9fPx6TyxLtILi5EQDcMUdx0LpUOJxe4QktuFzkurOgkJ78SsI/zwIrnda9tIgeNFc+4SNP4nFxnZcJJ2fPPiPH0i35q51musvNyxKdJK4jxr8WqqF7Q6LIm/aZutE3BoRPaYo5zPodrbaLja4MJtT6eIeIcIKQYwsLu2O22DnyH2QbpCohtwGl7thoD06reYAqBPu0Z13MpyEcd4EIQvIQCzdFi4fry570rMp0S7ikl21WwWnOjRYE8Saf91TyoVDOz0bxE5ty6KhSlykIZAtZzfjOOW81+X8OWxT/TV+060EznL8/9QAnQUxbBQfUB9U0MUuGoYhlhbLMW1YJwu0epFt2kkfXonKnAbfYt2gaXqBVTHoQ07n4A2D21NoPQ0V/hMNy1vmDNefGFbPyxW7NEo8E31B9wyA9BZPNYRUExaJqQbOdRHbQvG5nGwE+HBVRdYUjvuI3ACP/9eakYY3ajMgWO4kkWyQUdbKxcMlDd22Bor66PeYS8acZBiVecTDDQgM4pthP7tGjz6tXfePGQ3KXMPcAKxNJN+EYtCyR7xSs43olLmiTYLJFoXRbS1jdhIqpThTIlAegFZN18L7JLUwgVw4W9BofnOvRJy8zOvQzF+7QQ+8GiUCsVp7n2qc/yRDS3BAjkQA5JLyVTCesEkqosDli7TiuTXmHs6vGejhJea2Rprk7X31UTF1J9/uwajYUqRmHb211Q7f6/U2AOq+zkiIRdehTOmBRxUHVmPDUfgdVF2IGG8ZY3BhnnIlkhclKj639LZqxbfnqMursEBWUcTC5AmsVs/CLIi1LSdrufIAanO26lxmj65B1Mq9qAwOKeNk6HR9qOUmAbohKJDryaP81GYNrf8/h+4zBdti5A6Edk+I4Ma++yN8hNRfw0RG1G4seSIYV57s0NpCJkG33iBEcvEKo01zYVQxnGWGJpKyHwb23+E3+7odMf0vOmQFj2+zVhAsTSOCqHhWFj3Vm0A4K587vPWBLJeCwGo3WZTVu5yz3bq8UlTh7imofkzJ+636hP8rWBz8KqiPcJ5EL5t4zUeZQz8HgTod9nlNBHeycr2dz0W+F9qL8K8UOuLXzr5MJ1dABazDo2AXkj+ocQoUbYFJgEPwOqhEHKkibkW8PucNA9xRg4M7pHWcH1ukmYK9cdzWQ3KSo4dSOIEGDa2jvYzfJfKu31TQ9pk7fX+SyhFESn0X/FqPSx0r/gRL/gFLohsvCOkjIKtpZyA=
Variant 2
DifficultyLevel
586
Question
Angus does a scuba diving course that charges a fee per day and a one off $199 wetsuit purchase fee.
The overall cost (C) is represented by the formula C=135s + 199 where s is the number of days Angus attends.
Angus attends 3 days in total.
How much does he pay?
Worked Solution
|
|
Cost |
= 135s + 199 |
|
= 135×3+199 |
|
= $604 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Angus does a scuba diving course that charges a fee per day and a one off $199 wetsuit purchase fee.
The overall cost ($C$) is represented by the formula $C = 135\large s$ + 199 where $\large s$ is the number of days Angus attends.
Angus attends 3 days in total.
How much does he pay? |
workedSolution |
| | |
| ----------------- | ------------------------ |
| Cost | = $135\large s$ + 199 |
| | = $135 \times 3 + 199$ |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX19h4WRe5fuCVY7zLJNOcOxHYaA0uCqsyA4SzQaWTUsT6hgKVi/2cK9qPHm3uvjKN/VbEIix8nladeGebxXO4ppTsdGn5Sxna9jvRDXdjlff7lz8j6epF8Rmhfsp9QUKevqGVrks+X5bh+hUg/BImySA6SW+cd7TX5Wdp0tldbkNprOP4lXXG314kDPYKJI95xAlwbxoNXbbIq6CV4ithKj2pwIVOXrjXorFmC/IE6BmW8hA7nacnAWpOIKAwRAifS25VHHE3zEATsezYU9/kanAO1Y6nFL/K4OM0Mkp08VJWjM3oirTJ5cCezcpibqwsMXDnmMO9bljj791iUMPh/Kxu5fHXJIBnI4FkIkv3wTESw9yI9c7xQkQjdfPfsH9LM9wbZ4DqvEq3mEjnPvKdZLcFADkb5WoM1z9jv7blEapaJpvfj8X50jwE8fvLAGGpA68ksEHXcEgzr6bWlUXlwzZx6KCfJG5qQ4DlF2ZDi2Ez9fPc7koHLby70OiCyXhw5oZm8zZWZZVMj4XAGKNrvsoriWta+LLbgQkzwh4lKMaut6h2St4tNldMwcO9gL3gBf/1arjoXVMcJuauIAI0mtMjnAvPhjB0gtlXnCa4qV9Dfvaj7TxsbiabdOdPSsSetVwwr35MfakVXEYkvP9cN21bqktAW38eu06UnBHq8I4YkkbO6sbBEuP1Njn4u1lE/k+L8K+WPyCiBqnVV453qgAi7HRkc45zGWi+jkiOtg8sC12SyE5JrnbcfxIUYVluwM7gDmLv63xtKs9FKLtjECx8OlUnFlOjt6bnLOo8DoMOwxjb4BT6t430Lz5xrITW9oTvZWL2uJq3X0G561x5MpU3IPIDyyS2zjpkV2mDxd1leieottEKggJ3YOhX1o5fZ0tsQJ+flq4yCoBHVzK2A+qSfcL9pR758cCBmbWX9A7iFq7KywCnACOeqFEz2zLkKM9kAotqmsHl6TJrpRLN3SEbABUwk+yQaNQIXlpKgdDAgP83szJ8/AmIU0NcjJF0Q9ImEU3CZcX2T2T9oHXGBvt42yHFmaxg6bwpXxSjySsW0rZK8ziNqKhMmd6RrG0/Zy+iRg3HQdHFfvzKNfHI+7FI3gM5Hi0/VFjlpRM4KKX78P9K4Kjz6toSK2iwM4LOHmPK5wdb1VFtK8uX0bMjJ3PTKeIWmzolGH7FIXB8HQb0NwpH91vfy7aTkGV2o+GUWnm45wbPQzGZyX335NSedyZljqZHGusJGJyR01+gvz6zE8DWQJg5iLRMbDLfD8PiAifHtSOnQYURKkf82sibWvf92fCbweeEyFaOs93zp+ipN6UoEhw8tEYO57q8cmH87rFtIrIEdNHfE9shM4IsC3yqRNYb6cNreFqAZktJrQlvHhPxJVk3XAA/fj4wnnT28NQ0QVb6kP3gG0Ti4RriU6DDzn2Fzy7gVRtMMM/oB5dDMGTd7z15AlzBTg5LHI1WXvBmwA3i+N3mChEkbXSO6QlCu0ZmZk6CO3KDPp/2TondPdpGXkKsFcOi0HzL3BEAitRYZAtJiX0lHthmBT/o/OExitDRYtcDtQx7VBRrjV3kDVC/39STN4kA26+MqZnfmNsFMwfjzDzDyyFmYHHSHXXyYwMizDII9NLU6KV7F+YY5SPlTa6s/niMiwaJmLz+hjCduCsxBNeJ1NstIn9HrwyDJwXehReLlryZxosoQ6NZnWCdh/airzdNyNhrt1o5jtmTUffa3/Kllv2zEG8uNmJ94GTKiknj2iJHsgmRNvFszIPqdPQaZZvVu3mdpJpZZ3iTLgbLDOv9e/gw9KUzGBDS9osOA1fWyPpMLKTFIosPshRAi0pmev8if0guxmfzdZRqCCJQF1Er1UvIG8m2F+3v7eNF++OQ5ZhssSz7LtYerbplZejpT/LwdbWtRbxPixiaYLIOHnc17/TSB1vln4q0tvsRQBkasoZy7GC3oZax8hPZ/4RqE99BB8MLVryAPAOMd61JY78H2IFWXM4WWvdQnZ0YRtFn928EiY6FMM0HloSiYagCMOom5GTu6KbQRnJnVAp/mkK2KG9rsrcf0Tv0WB/sfPyS+62qpUOgIAjWwMUgkorUTvtfRJYxTcbGW/HseAdUKIyLr1vF+qcnTNpzCKaIMyLHmJltlg/fPe4tHghz5b3Zj1TD6O9HwgR366RbBuaujFDnw5NFHDE7HVT9Wq/gJVkXbqpUOGm6aca5PCprHi+oWBPLSkoDma8reWpXRI7uU2qzTuugyv0iRt9851FYuDjIIS2PErk/5PdvZ16yRfnwPCp2K1PB8RFaU4VvHfKhjT0gWJohNnHRZKGHzu6DxHrukn4U5ribs2mexDHw81j1US0wKXsOnRXTj/jLrw/RmYostih5Q4hP9y1O2/NwlvXOcVYIwkD3OKQ32oFJ+V0CWhJ8t6tcVYjbj3PZ66cnEtj+h++McCoLkcR+hdVMUs4RTWFFnJ9M5j8T8R8w7vSykXWGaPj+6QyCQX99tM99lt8p0WQtDk2Go2SdgjxYEaHwG8aymvqyI0ESBSAlKw1dl58yy1kTl57A4+7Yu220d9+E/kaUeOqbN8rDaltQkxjMf4CS4ls/rqX4jia92T/c017iQwu2drUnVkgB7aJc1UrlxcUjeYx24kTuqQyVPnG6KLWfeo5uP17eeZVa3BXJ0zEdapqav84n39rgVVkcpPrILfxJLVRVlhOvC2hkFzZYvtYXWi5flVSGt5la/7xsCzGvS00W3WGz0hrzIZGr3XggqK0gQ+FSoDkSQFAfC0RhspZ62HjlWDyUMhZZYNV0bnbknNEFiCMCNF9WRv2h4evoaYXCglD4gfMkvBvvUrsLxesfNlmPIBi1wD0tBKIEWKOTBlSkGQ0GkAAHnQ2UC0Hr53j32VqHmuNKwlWwjsPBvbbVfVLg5C6FY5G+B8+a6syIow65PQAiPhovVs8cssGTtHZ6I21Le+aihXGRWkDsaJvWlFkC28vdGDspm1vFC9O3r8KZZKVXTNBqrH/sjZrdBwh93F14uyAkx9X6vOUu1/22ehivW6gskLY/iRfQ9P+5c0J/ZsriSLI5BfgPbagReb2HaOk4FhmQH1AcOw+zG81cva7yed5Y/T9jHEElbaqP8GyL+ubPWmY7qrs02g4NQX9J/jRDNpIaI/8V+tYnry7KG3E3sXy31vw4fGpMExje08nZFXug++M7vs2Pkxpyr1BYA4dfL5ylW08DPcO3badwhqpCvogZDjV6DSGMtWfVS2HPP/zcye8Q7A5hraHTojXT+DISR09f+74UQfj8BoIP2fdEVkfKWsh06T9Os041WiSGSzDOcHGIs/VKGs3qwdOtrouU6KjaYIfBam1ortDEUIaTmhIhnQygJVIannuLXt4Ri0I0W43buRLQOuh7ACQE1WkeC9kTMJsMLiAI6uEfJPO++Wif5riT3v/If+aatJE95jseVLPiVa7fIxOQrYvLVSD73/ymn7af1hZVi4VL1/vNoNnrtvrg1UI2j39FNi1HZQzsgL0tAgTp32zNs8yLcLtigLuWyClxq9yslN88hip5+DYmY29Qn1FfMLRwSooy6QgcJJuIsa3AdE7D9S4btXUXdy6KNZW6AbHDzXH8Zts9Iw3jfSY2vVAsm+rvurJDRobl7X96hYv8kSScuzLRAMDD5e/Bgy03YUOQb9zQ0wOIjnyDgg73vuVlsxUPMBggY7BvALGCQfUj1kHxK0JXYszLi8LWMGg4AENQpr25r6uATjfLA1Rdj9PI1FGBr3S6D4SMaml7UIvDFRoTTe110dLx5HaLMpkSPQWryOf5OeTe1S7Ztx8ISUPFYwAqglZcwZG6icMNd5hG9bObk1fVc+vL6i4AYSYQLBduGs201gFbAYbesfGuVJWrZ6oiRBcPyDbkBa1qwyQEzzMME0QknfsT0cKaDw8jr4T8Cmz8osYc8xPck9i9p5lbGPuhKx/XquHEJu2XyvQktZYUVrcgo0TtxeuGInrumPq+2F5+pRSpBffzOLBNtyXQdjQkhe3b+QlIwp7JbQwA0qMjp9gRVfZJod22+YbON6gmZgZhAahGZSSlozWfjKeBnRG0WTIcC95pHu40KCVVTXnOx4t7J59Z8V3QPhQSHGnyvTDN4n6TLLDcew8csTRXkeZ+gc1bkUGu4BGJ5HOtXxmHSjzAFlV880WCsPczKhBxEeM6ZAjKQ1N403GGeEWpvl4geudnkY/69zXM9a/msajtis6koQM0szINHIsis8h5yS3KIpR+pIg5yPhObv1d7Su/6xN57q0BDEfgFaVhZ4yhilSxqupS8r3/tgFw4Kx5npfb69UmwDgis1upnYAlLFOZ/PQ46MFqSU1+o2we83SaEbBaiSe1+i4HvayPX3IzwMj1b+z609w0HW8kkATcxTLBIjd0EWxxPNKWCctqNRL4wHIE6vAmKU5zIcEmUIwivHeX7+HyGeJrIHHCViYWef6tZ/fW7QoXct3Ve2fiHr6CjycYz2FnpHYda4cFRunxxniQrLWNjMJwjnJXaiy3qVniYIeIMlvTmHa7slRAQfKBLwSXW4b+sOyuwB9Xv1EpJ+9GE0F5WnammFQ6q1LE8YchDl49uNCGROnM+Vx8LjtyEDj4MFKRMbR8HE3Csd3d12DFWZxX6ic018yf/zvr/UAWzFDyB+PoJyfHvka+OcX/wBHGMRvy50IzT5uPmj4cX8J+9KdUEld94JueB+ewcsd1Vr7jHYlSnk2sq0oCBpqXIv0IoycLXvfFLtK8+yQRCisANYfdBm/AFZ+UKZC5wobdnk2VjD9/Fr9i6iSbpvHKVRPUOizZCiQn4S7LRMuCL2R7vH2CMuRSPPpOxsuc4q6E2mnU3+XbRvRcnfqedNNPHLwADdyy4cXWRRTbx/m26dajFXEmwT0DPMS3vTft9fSYJvzgFzLOj7rt/2tCX7h1k18dYBGPaFFTHXDvUfj1rmEb9QiDXooMpXkZvGl1gatfcBAZagpVMu6wodP1jGcls6gXlWEOy1vZJK021ZY4X3hc+YI6Qv4HneCeHKGLEv9szoNU4hQll0tRO/qbVZNy+5W2V9nIlrUvopGO8zdCO5g3ZDiKM5YZzCkqQZ+4RMUWRX1IBau28EU8amEiDMC5gTtIVyChdme8iUv/SWHY8wI19YDhFgLjZI6DnllmiaW4QSXBgd1Fg+EDYZJGj4z47sdeFY1wANA/PAd1u2pVz3Fq5vG0JMdYlOl0KYf7RwkQQt64CkVNhaBwcW9cuUp0J+Mu8gbtAL2fZrSaa4yy+oPQGQCNLVaxme+ejdlztqHUawdmKLmu251dyOVTm+Efcd4c41aLL1/8PEzUIvBBB2tcOO7lORRsn00ImyJww9GZDyPrcbhC0WkUFQ9eRKJ55xaD/HWKCHxUTj0bpXApil+V5YYGLR5XTwofz+7MExmgyE19wgtyFzwmtZJJYYgHK3n88CMix+0wEl5CjCLB9ZDetAKrQ307z/mVsL9U4LPvKVLUrIwtFedVAP5IObq/edbe+RADeWVsTGJ5EwXNEU+qJC2CltHrw1qdmaTkzPh8vZxJ6KXZ29+H82ZTCzd20PeRgFVnbjm9LlABP9+2bsBKY5939VirQY0LacF6O9uxPywOu/hXxsFaZJn6trgNr62o1sWmVFrW7jqd1AP93gfI3LJy0Cromn1cMH998MMmOiVixdoo2cQnu/SBYygagruTP+BjwHjS7Rtp98qoiPQoxep+IVuM/ec0ec2GCo7ONqHQmSDm2D1pz9dMXqTlNFy+h1ZnkVXxQHqwTSmY38p696/MQWkjShQfrIil/HwxHi4KeQ32frSaF21i4cn4Sm5kL8CMD7JdmASLjqSymy6SXoZeQVfkN/SEFR+6oKzFBsjGPpg/dyeFZjvsA5a4zV1bwQPG8tsc4mvk7eafdbK+6AKcLC/WNmhaTstAuxAd8MJ3xWNwXp2MPZ9nhzCIOe3isTyVLQMVeTz3TNKYRtaTmg6USLDSG9qUx6IwaP/VXutQ8tP+xlGPw3rZZBLUFDeWIuVAZ5h2Frh09ByHIHBLwfSghJISVh0kzfr2sY7pmcVI4muJ+69xZ84daoqpD2a7/GhCSPXF0C3CybQBq9sqnETAVXaW92TEe7m36j3wTYXU2x5Yls46ens4Q0fkv7RVLam3PbEWDjQWx0wxw3AlwOndePSBOyx+1UIU0B1f9g17tjZN0msBA0DTvMCHtv/blePnBAZtIJEFYb1/ORWTcNB58q3w5WRpcuRUHjszaPyhyc5eVcr7pTJsNZvIRcNszlYMp8efzQY8yCD7nO6xRdJatKw7vVNeT2/vz/IQJKIoI6dPh6ErpNbEgBUG+hPOvR9bOf00zWgbLoVHIE8jUFpyaj2Z16JR+aHubXWWZbTEvPGAmDnnKiB+wnvvMAfxnzxLE6TGYmbVpNi4sXzE56js86yZ6sO44ecWxsijpLJ+ocM3wRgmjrpCDBDiRbQQjUMkW9zJmdNUKEtDjF8GHcrDKYROiJbvzuHKyAa7hyDw4zi+iRikxOf3Zwg+OaaF/HzMHY2afIiS3xAS1JUBilyHQH8W25ug5R5/LOyGsoE12SmVsI74Y/PMXzlaznnDTgqohGeoX6ZU6J2/AKfj8iEX/N5h+bStv+fsxrR5HShO3dznrkUZynOx//5Zm4qrj0kb4dcCdP7LxOAuHEjItVjGtdmfUahu97ewdWB67UqHcV9FZFvVtaB+BvwsduFfLp9J/kRsGtxs71y5yLezzDIQYHjpuQrKK64G27D9VizzQ/FlBatBoBheSX+ekyHd4YSVtiIzfzMW3jw3vuWACYtAxAUPUL1BzQDhNSegdYTiH3nGrnJifc76JyZJjDgJz4PaG4vbeOtUCIX7CSaDNeWrJ5y03mirhIGVavgF8MULsaJeJOPKHEetlnnePlXGy9yROjYDPik4+/PZ467dbrlNk6x1fzMP2kKcPi6FDW2O6uSybDDkwfE1a6gbhFNA9iR2XkW+2/fvDJtKMx+gQ37Z/BxdC7EsFBvOSb9+infFMTq92qvwzkyUprAtPOSdvFqIrpAesUuQFq6i8mUe8LukNR/L7c4kgRysrD/PoK0gSJkTQrRyDWBqpZO1Jvvl0Ub8gZ2KYcTKxC57FNJOJDUJO6/CVZoUhKpXsEq6gRL6jgrvE0fiz6yfWp98hvv06FPOcvPNKKg6ajLsAJJpXs3cmaMdZvAIPRg7apF/56dqEUM0/0p5qchxz2lSmirs+Nd+otTPPck27/vrOH0rSRnRa7btPRUVPOGjLiSoJZILyw1BP8Q9qNYyW/+18NeHIffbmtx8Arc138NJfZylfJN/myqtdfNbpVDtgytnfZMe7fFzhs4jZqb/HlllsW2FMJt0ECIDSiUVgYo8V/B6AVbEBJl/rVxK7ldY9PYFwN9reNewzNYvfgJRG49Gu5GQJzWl7x7nP9JGsrZN5ZjLmeE6q+Z0thY3Br9B+j7z9Yvw1XTGAV4ySEGAD6yCOamh7/N5Z73CiUcZ1KWpLYabeYJd9wllRk8lmIrohjf0JVVWxcZcLYs0BFI1GP7nw102pfWHksMl6By+HYdUJasJlFtThVmAynx0vt7W0dii35P7Rh5BiJkXD1B9q2iXe3k9UJGrPZzTWPOGOJW3Zjqhs+viqx++8Gwb/U1bVZjiDM7z5SUMI3i9k4W3y6Z+3AHCt7IzWP3kSMGvcvPJDMJVP2WL5sDEpHFEkocZmPN
Variant 3
DifficultyLevel
588
Question
Henry does a sailing course that charges a fee per session and a one off reduction of $50 if he books before the end of the month.
The overall cost (C) is represented by the formula C=55s − 50 where s is the number of sessions Henry attends.
Henry attends 6 sessions in total.
How much does he pay?
Worked Solution
|
|
Cost |
= 55s − 50 |
|
= 55 × 6 − 50 |
|
= $280 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Henry does a sailing course that charges a fee per session and a one off reduction of $50 if he books before the end of the month.
The overall cost ($C$) is represented by the formula $C = 55\large s$ $-$ 50 where $\large s$ is the number of sessions Henry attends.
Henry attends 6 sessions in total.
How much does he pay? |
workedSolution |
| | |
| ----------------- | ------------------------ |
| Cost | = $55\large s$ $-$ 50 |
| | = $55 \ \times$ 6 $-$ 50 |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX19Pvfe895IwHS6rfHokUg+JofXDgtP+LBW6DxZCOx3PSyXMx/fd/24ifu/mA4zRRXPMvBxRvs3FMoTaBUvZ0uknyY7J2Tqkt8k2F1he4TtO1tq51MVZsTaKoWZ3ZnxzzYDKvXClLCu+hU/+vb9bVU0a61dty+F1Kin7/N653Mq4SawznLJn2ZvSavGVHl2hMy+UrMbPAsxfPTgvGvQYH4w015ZWyrILVMzNMV0Lr9vyYQWiIDYUu852X3B2hlOmRzus2YvoRMcTleb0c62VyKOnyyxWahLd+Ai3QSXxbKqez0Ik/DO8k7G3brk/8MIuXTqnjD7AyH6lS+Be7hJN9seya6AwZnaeAL3ToBr47TC7iD6rsj4Reuqj766TPe8SPUpWrS2ybF9Wq2p4rmhAnyZr7TWH3q3+RdMHCA7ZJ30zRFIXRh12QMfakppVlds4MuuAWAJrqN7uppAVbeY9YMNOzMpqKsJUwyZDTqyAqKfatgZZFW8cIUNH2Qs2DjuTORkyrFsbn3DA8DB0r7R68+K/Yr5odpM7lbEecULEm5LunnqeYnB5dWxFib9aREf6dC5YvtvzHN4NGq0lwifZ4jCd21pWq8kBfIOphOQEqXk2pmAoVSHzhGAvOqtpsdQQDjOGk838Q+DiYF6DuYooSwnV0WXUrbZ1UTAA26FI9xXeARH41WGXdlVR/L8XSlBbDmHq9aYdquj7Mnbw6TnkRmf28V1RPcaHN65mTyTYaZzUjV2CaZuW2rkFMjoAxudnuCZpB+tIlESRUjgEeEuaz6+8Q3ivDBR4M9+KqZYeNrfWL+jaZhapjZmViD05TDgVAWSsYbHagMLDn2aHbOAQuYcru0PqvKd938Miga2jc/7UkJbCCrBG6N68x0NrMgwn0oZxybFWSy3LFiszafh1l6SNQwDQrbMkGsNlZ2Y4EKPdjJjwOR69Vmuykd2TvwKN7ZH0kQyCK8yE4NAnhaSL7Qgc0r8mHB8RXUIeF1aMnxU3YqQ6ErqUj4KX8SMD9j8t+78kcsw4PvU5FX6pa8scaEXHeISO7xmI6TSl9KiDKAmuD7OXa4P/w5NvTsDS1t0wnVjvXmHYhOZJNX2v+Q3LzEQhwQjCtp+BT34K97yEbUuWv4Vr0EyoBoD0dgUFfmRRsnRFw7ZADbyW82bwHBloiCRQeLfASW0dKRMXd8Q0/MoZIwf02p5l9TZo08tq7EFaT0o7WApsyc2xVD9CvjYTSP/0O2M1qomoNgjBoVR8xe3MUA4aw1bs+Dcv7JjgT83aw+3gENKQygGaJnJqxlyCrYqkBoqv0g1L0YIzRkqGXjIGGsbxsmn1vdF/oAkqbcuObEqSLzaFnrmgOgVHoGf4d3o6TIbXp1oi2/0MkA73OEYJP+aCNlpmumC7KdV1H+YBSCukJjvn3htO0FClEI1gtZQwQEL6vr+edIt50GqUmjF1BfiUr4qumJ+vYvVDIUpHS5Il07SS8qA/rb1EDev5sOhgi61K3RGOoTLruAEQ+eu138KnqDvsxYfp+GOUcLbJTgAEO06l9IO+hWksdjPZNT/qltoCSyYS8sjqRrnmg1/Gzp1gcuIoDVaDsphvbwA3quMsF2uzzPhfJarjxLE40uwgi+cTPGBp0QkPiI1poZxjNUELzxsGA0xKkWF/QAB7RmHk+f6EzAOmpCclI4z43jbU6eowNS3VadJIH0CkI1FWV5GhWpvZkJvvYSJUM82vIHkKPUj4V+Cg6VKoLQW+8JWvusFmy5gficQeP9ohoQ1gun1LmEEiAdAGFBxORazA4DjYDx3pJmcy1aVxGNQlTC525EfVD8Fes3qM8Y/95G1ozQSFE9c88mt/osHu6DfCqxlndsmDoFSVWe37Linwu0XNCElQH3L9rKtu+jcfNhJ5ewEX1GoF5ZWqsV3ThIAlyRCQfSizkyaP7lsBoYGipW869skOYG0H39dCko0N+jhuyWE9AGxrNyI9w1Hx3g7qaU8JuRQs7nQC/ShnHSMjvSi4wbs6M73sy/Broxo665xUEqr6V0lLc8uMJdlZW0Rzv9S7bbksSW0Yqjnk6j35+A8WLap1qE+2kO/Ok7XBhAW6B5AcU+Le1AxJSZYMmUlHy0rYwThbhSIhTFCk9uSyVBIPHHNBwNs71P/+sSb8YYF1iMrMFkI+jGZetTQbfE0O4zq9Cfr0pyeu9L/Jh+OKYv7t4FsblOyP+025n+E8AzQ8yRv1VzdOxVrVVbAxbvQeBa+YginLQwqYOz+5Bpl5Y82ZSn0SiLIPbhcEoE73N6yb/kysaqyYPau2xQUDgSzy1wpxSV+MjPK611rdVolwQtVlFY2LdaGu+LbZnixEfH/KvP1VKigCY9mmIp3KM/vaauGuLH0M31IsXXhOX22vod3k3dd4mqZCaLdLorzOYK8qkxxATPlkP6ELDSJhEWtocOPj0GKzPm+d36EsajimJEYbgo7EBm/9NKSSK7GrWl52IlUBXG21EZSs4P7Rfje38buAxy/hsYFS/s6CAnrd62gngu2o3fAS9sd/1ph2XuMZWsoYCkFuDFeViYC9rXhMI7QQbmd3aog2ylaG4C+T5WRpSxHXojneGr/v3UIjjvXFEU/tUI39pV9NEzJVbtNorr9lDGB+qZdZlnjb4JPBwfQWXzzFdMnevE9yM3sfxCG82LKiPLhEVjPydTgzgTpbq3hKvwf8fJWrGhLeVqDC8+udpMmT+2uPD21W2QtnOXCS0/qAeq4KgrwcI25p87MPGx/SZGoSjax4+znX7vB83gbHkuFrP3dvI335gBGMah9970GfcQTuJJ2JJKlCqByIIK0D96GV730ZLP40qsRgfu3jf/Vh/wYGkWU7n18M+kxiXr8gbMQjFb8Df1/u6u8RmaKX/917hOu6OiI79JEGqGQcHp2120HSB7qyacF1bGUreq9qNAYepZiogQ8R0UAG0DDcj1KFNTLLXC6/SVG0vMN+09RMt9uGfkMv++QwlxbLIOt4xcLw4cW8YvITflwQCAFJWUOkPOC+cd/y5mTQzvHJSyZlQbhE/0PNZ7j+NB9R1c3nxjWegSZVl+f1dzMYwYn0g+SI6Y72E634O1CWtUSjIcnEvuCJcUS/TykVYwBUAWw+dxFbNMLxR1eKEJMPOhsBN22OFMk1H1S+9k/U4o11dH5AeVSKPEmheceAy7dx962vvfn54G/jFhazqHdcGMwqh2OLkFcu5+rZaUr5xzkdD6QGWUiGFRYeZJxgIQXwQMW3PxhvtnHF+tWhYgGfIprro7hz96rVzdQjzpOKlXciQN03rwvg8Pdth7iE9ojoDQ1ff7IhyAOSAhvv7rFoz0XdFvey6dMSoroEB2hmtHu11mIKfL1oVuJPkVnIezY6q8DC4nSIciT2Jn50nr/gIbSGN+A/oaFSxb9iKSG6kpsibF/N3ZnSNMvbk4gG3LA+TysWjl8+sMBQsb8oJXzNA5+R4MYXeGFADRDD3GpopY9t0z3nyeIPVCej7prrw//q68UbiGhyOdr5s6Yzxd74eivd1E/4S+biE136hNgtOmEE0qCfdC8JthkSyg9L/j0pgOarB+oRFKTagT5CrsIWtTYV97FgcJbinrXduBGwir2LUBIZpPeYp2smhwExWUO9KLhMLRyOj643vpviugaGVP/BSnci4BHiRcA92iwRecuolJciE5UBBZi7/VutUNpD/G75SEfPVm7Zc70vGUf6an2Cf9xekO2X6B/5zR3iIGJx0aJrZ0k93thzW4H0uM5PwO9TBZC7M9PhNxPaElg8s6E/hZLj05ZW9jtnCGl999iSDDpafOaS+fVa0HIeF7FMI9/Jltb4ebMCcL8p9RcezRZdZpT/ceiwQUUvqIh4yQHa88f918eHthQHRnVrTf7wlyOPVuD6JFjjXmh11AXRmW9ey9KBr6P77VBkizNWcBxWGWrTDVggpfeFkEuco3udXOIU42uguOC+VUdawtxLDUe2mu4oFi9t9mzeml/NmOMQn4wRHedHEMp9thdqUmTt2Osw+99pagO2Uye/F/6iJ2dn3QY2rfICdICNMBcEb9rx4xavcN5+/BbSU6MLy84LPy2+sxA2vENBHH8wZmzDwTtlLxiRMGuM+YBg5SdIz09AlA8+zQYECv8BOMOAfiMxjq1/VXo/3rQvwDdQ79bUVLkPRZSdzSeEvxmDBDOdbsZA2EpwSl1nhut6Ozl+MZO6U9LgRbfXoXaTVVG5/kcegXHRlxU/Ey0GQ4/qmMCE3xguWFmSfgIMLs6NM0+Fkd9uOEKEbtKjbhD9jc6xrmuIC7gfEE1FhpUjaGdhTe6zyypMx8I+ksegCy6oJh7FMoDMudLqFY8E3NP0Q3UlsaYOua5Lmygtz5g4I9hohpWDxMc4Y321orMw+s00YULeludmZAy0O+socbyiXybWtiQLHWCrqkwzXLOdlA8QxxzAxlBxcolOLc5O2lsT6Ba9Sc06Njy+iKgmDDLsONn5bA7uTEa0M6qSvKyKUFVgPMkeEQtMcba7QV52ShaXsTkrXWq0BC2j9qT3db8C2SYQfU1V269l5IwsjuzTqF8qoO7BS/oT4nTwTecq39PDsxiADqA2x70gH0HyNnaS5MGIvDSyHfSHhuQcculqIVL7dhkTbZum4lcTWK/McpgSExFsano2xEAWdK70wV4RtyL4TvAs2FkMLZ2MTOrmV0QV88fYUsqcPBO6f7FC3Prer3jVglhF+CXPYMBz+5qzCkOzaV8tlv8BzBH94VGPalPBBxlauoxp3n5o55sgEEBuupV+buk8yfCb/pgnE/v5dzUP0eNNT2GNJhbCvCjoAWJtoSDWzjBlAHXVLemJoH+kKjFzYaCl+Gi2sctxpgHriapAkwXNYA3cZuqvKYF4FNj7D+VmLzCqxTNLbbPRuMBpLvhLsf+U3lkGj0PbyW4DWLOTTKzKZ1BB04C9SV5sTFVkcjX0QlWkzpl20Mec3TSGYOdXPV/4Ymj+ZMNu0S+eN0e93CU1x6zVIS9RqNGLrrFerUvp8MSX7WnrHVyJr7Nf2BYEBe1htsRbVStSlhTruBmiqjZHJXw7MZVva+LckKGDXLq1dk1YuNLLLjNaH5D+6sH+b/Op3cMvdmzHLunPn18BoARWWViVXXdYH+6vGOMfMtTs4QXJyoqTAdqru0U7e1uNo5PBzwMf66N2mEMk7Vsj65hG9rJ4YdEzQ3hP+ib0NMOynA5n+E/2BDZiwwWBIB2Lr2ZohSlc9qhnlrl8hgNOdQTZN4pZmmwzRqGXTi122B1UmpVb0Vk/l23+wmqpdXmtrYD26gi4iXaqgmpbYjAx8GSui/Vi7fqt98dvVywae4fJwAB+MjAyYTu8gg3SawY9c4AS+eGVYtfmNQrOeqgCqIIvA6js7cVDb8Ney7VLF3vecR4WJx2/H7VqC8JEikVtjV2Fg5YYbev9eaofwLfhF7YKbIR/VuATOCJBSCT16hlDQp6Nk1j76MXfsO82yNlr1kICrBCBwC8iW7bZJR+Ux3IQLwniH0Jri29pWYgu2KjNmEIqlLIGel9zOXFzWAdRyZQ5FfaUdX3EnwkQjT+/GUxwW3eDE0K8OGJ8yg0NrwmNFQ8QWurrNekXvGm3MsxEvqstTxO9hIr+SbTjcg9uG/Nu5NZJ/ghicT6o9cmnCjhrvwX/egQ3lJzv5bLgJPwKTCQYm70J0nOxIoXKMvVoYSXdeXF+jF/6Pziu+7HoX3JXIIAWs4tbkVXv2GLhlxCqzdJCTgRX/5b7/ZZkXVG65tQMLo2Zk/Qe+hXX/ro8nXl4nIwXlhNXMS6zfzUtHPM4hFYmhulryij3fULxelPsmvjS3IaRbCUuagUA+Mg/AwFRr4lw/SQHK98ihbiiPcXg1tu/kO1LqeBAiRXs9V0rjUXxL6+L8diW1iEz0BzuUsFRRuRwxJZSvMgnlWI2VEAx4FrsTidYb9a5Nl/yHKPWNVTO6/Ju9GTiajrtl6kVRJrRgZLDBGWXqFTLih4/OigZGG/LC0MXWud6DtGc88k6UC32fKQ/JM8vAOhpDeY5BrIU/SLvW4YGpiQu3SPjY64oJw11VwM5F+1iJid0NGxCUnzpp1UI9FWwyYnoDo1Anj9vsRZsBNtmI/1LUOwDSvYs0pKZ+3/7XYQUCvRLm3+aJsqXxoezNqlyyd6O/I1jPkkOLn5b8swafjQZy+1vh1KLIKkFC+u4iDqT5/TGcsybFkl+yWk1kRPYfLKSyfm/hQrU9t+Is6aAI4i280K+v1ZfFvjGYQ3eRfxvfyrro2sQC7cBD6zZ4rWuJVXP6y7rRpuudazQNxyuDWA8G52IWzyhJOrUrejM3S3dn8aih3VZEN1nwivd8M0jpjYbvzBYs9OUrTD16mcAT27dGzeT9VQ4xeXGZ5L0/WpShdbCgYE4QRFWUz10gAaTDYA4vXKQQ4PNC3cS40pNdQI1QRkRZZglE+EoYfZmQ57cd2bMi0on8f3wu9Sa2VQneCICyMHnpeYnX9l1Is1JAACF6Z6IYQ8xMCTDn7qFBKtoVbRBSb++hY//7XyO6Al/rq6DdUYLSDlIzyFFX9Qd0atCHXC31iHAaW+DjUMiWAkx5JUXuH/LAkBF/Q6vfOy1/P+SDdocOu+AilFtrbbjYpqcAsvqaiGMmsFBdiKy2yEdhqtFOLKsVWycB+KGwjN4pTTiZK9JgsOUgk9YXO1bM4tBXZure1S0XyZvacWYzkSxn1LgGUs14TQqwhgDREhAEVAoaRDA7Ix462BpkW87gYgl7ziorSAlnQLp/nEen736wbvtidT7ggmiDon6eIbrcyZjFbHXCc9X0bzNZmpUpkSRP92n6xdpaJoMsRY7jfzGBKFA1LLkDeEtDxMQw3dlbo820dlQrwb3vKac+zbHREyMOwf7u3u7UN2crstkmlIZPtcfr9wMWM3lki/ENCa2JAuOeA1J3ZMnX4i6+kESUGR2/aI1bukgoYNfm8JZkzAni9qoc4cBYibeyuZiWPWM8Hb4bMi4UZxPjMvg15SoZkkp6U4MfWkdLXXeSbjappjteE/ojp0wZ7M1EVX6aaGPEX4H8IvHZ6Yu3p1haf4InC6vNSLo9Qg2bIw7iFOHP1YZcc040FJi07U1uwK8StFSv7yuEfWKNhjSyGit1DrbvU519ewqCyEe0z+nrxxZKYhJPO/LZ2LRaoNrsdZztvwArAI5amRgB+KvGPv4vwU/NBntBMNZgYmeRPI6p39z2L9U/aFoONDKel08LPvV0QdjL6aUKyjQBI1BsyInaRJsczU1IsvSFxO8B5Kpw9QxtqXKFy6w4iNikIwW5J9vWRb9iFlfeVHxaIWdPm/DL3zVXYmeV9c3y+szbrwadhMXB5pxyZbxr2GkZhdjKxEVWAb1rUPKiVws7U9eWnFAlrLh2iI0Ntd5ZD5XG+3A2uKLpxHCdrcRmD6zbRZ5I+WWcjj16lu2Ldm2Eecu21DafLhI4Mo/ItNJ9Km3UaxE4/e/bRQzDsrGH9yDYD6olBY3iJfNJMY9oIlotVzYhcvJa/mhD7IisPayAitvGemLevVXBm6jf04SWvbjhqvs32eSzFoE0vHPUCHUltH80xBJqpUqKBbKQZpQmqRXbQwGGp/CurZQTz7Z2qeaWb5FwUHhvruzYVrsIEcZKJbUGxL3rKY6mDRVI1LHOueMbNePTLlO1qar2hsAvtLPcb0OUrrHyWX9COck/URkoTK5dBD+fJsfQYDahjtNJIlPwUH28e1X2fDMVNTKd+IoqrNMJU5on5K50loVpL2r6z/f3aoIwDVOhcB8EA8=
Variant 4
DifficultyLevel
590
Question
Jo Jo enrols in a graphic design course that charges a fee per session and a one off reduction of $100 if she books before the end of the month.
The overall cost (C) is represented by the formula C=60s − 100 where s is the number of sessions Jo Jo completes.
Jo Jo completes 5 sessions in total.
How much does she pay?
Worked Solution
|
|
Cost |
= 60s − 100 |
|
= 60 × 5 − 100 |
|
= $200 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jo Jo enrols in a graphic design course that charges a fee per session and a one off reduction of $100 if she books before the end of the month.
The overall cost ($C$) is represented by the formula $C = 60\large s$ $-$ 100 where $\large s$ is the number of sessions Jo Jo completes.
Jo Jo completes 5 sessions in total.
How much does she pay? |
workedSolution |
| | |
| ----------------- | ------------------------ |
| Cost | = $60\large s$ $-$ 100 |
| | = $60 \ \times$ 5 $-$ 100 |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/ZiXJY3F24nMqztF0CYgo68oDc3JOm0TRyUlBcQT86FKXhbeHWeJp3PmkxrHo0c/wu6Scu25yRQum1npqGB8vR/zLzIF9Lhhp7QhA4kA+I0JI1vNdqCtSROi/q1j5YYjkK3n7Ct28Qy9V4o+zzCO2y7j8ADvvfsTCJmnajHSeMYaMx+aEu9li0g59BEL5DSr+qpV248zB3OGG1shik7b4OKSa9EOXLBUK21w4/V1fGjTuVJOPeXSDKh6Wh+N6XKFxl/Q6PNhiD72yKETsPzc2uIK4r3FTdmFnin6pVz1aQc3K9/o0ve92P15eprKCxw11WXsXqizCgigf5diNTlehLoLLeTpYEMN85yDfk5+C4kmr2uBjsUDeK1f2p/nS5JiEp/w5JyfDrFOqyM4vpQmGL7K51Ddu8IjyYXlz4L+hgsgMsNxxRppOLkv15wV84sN7OcdGXRZaCX0W+n2+GccoWr/7/Rug54fyE1TjYh13JXCQfEruYNJWbK/cu34QnXrFzn7oc6NM029GTmUZgYgAQps155Wmyk24JBZH19/JJcyZec1klfwHWNLOHwHqtL/yVNCxWy6ZEXvnLMOfb+ZhuGaOT0kBPrQBFPjgnlzt71D2LFLu3cgYck12bxVGVjUHHRKCFVg486Bwg5/Uq0Nj0QufRxEca1mYWMcsOV7DOLzLlkCdGnNRKokMMgbssBgQmUeokIRccM9Bji5Zn4IRpIw1buGEGjrG85ILJFictGrcAoUJCDhIavZ5hWgoKVNDtQ/sR77xJYJbJvNL+dNcvt6IILIH7kEkzBm4HJwgPYa2W2u/dYSIC/KzguOyg5bQQGZctPzqowg26n7alzCPsHKVkkLP6+gUNoum9P0Gc+STJN39MgQ5c5BLTMp/WmqxG1b8R3dIm24xJtbNh1SzMKOniYZC58phc48ux/wKB7Did7vfRaAPmTGNH0uCwAq4Ersn+Go01brRW2mEzqyNgX2DuwSAUby/ZWNJWj0pT1gNMrJLYBWHGcyfl3UTWpwbjyu5n4W5sm2gCYD6aodiOsGp7EisIuubtcO6oJKhPXac3FlzGxO8Ezo4jXZSu6Al4h7djehzekWL6fILWRMFX08EZAHiUDpIUifq/48+Ewk6nMquz5YtydkeSjXXM9nnYXqjtxMEtwvAadab6um3HEgsW/VgtSha+xyg9yDDS+UTTbGddB5E2EM8bchiHu3fFSSTvIvKTFL1PYYHz6QmUsMlAVhKtgAJuCARM2sT8+CQ7EVYufHqoc85C8OMZp1WZMKMyYikOxzydi0mJA8YIUOXdoN9ZP2mvH4uqvIpnn0PVHBz16w70HNuu3tvKmn89ZMiMwCKqi1/Bkw4OlHbXOE0sbqwgsALSdkrXHQlsA3NOE0QUjEcO2LnZcF4w0Pn8b4nmq7ntm1FJtzP8uG5WtjK7Mw+0LwixYU3HODdoRouMUHv3M8pMwKmBoz3mNJQGpSh3ZwtTihGcMKNashduJGS+4G5zeP/gdXtcCCm0FcK1fU1nQTzgRon87Mw+iqzuVuF/6HnIE/BYc3naSgID4bdbuq2+jzK6liGjmWfRIhpo6WbuwIWfBNgnTlafREIpSHpRBzzeHB7MrbSBe30HbHzivjtl+MTiW3Bk/vo64SexEFlXCF/WL5pDUngg24G80Em3a+KaxMTShvS0pNBvDnLJRRASPnde89l4tz/drKXNRvdmSQpo8ES+RpiU38vjRMboI9sU4YQeB4j1U4tD6ixa7/T9+FbUVHJwHiVvH+E4+FWdeNhb/SKcQoDXGTJEHrGl/v0389jPA6RHBLz4+guNfMd/FF08w37spHyEsQ9yobN84fSJCtpurK/37zgd5AIRyqiCswcbl5xQvPvSZP6dSdwbGSVzZZF2y6kFGl+z1/kqqcMJMaVnLV1ZMOoX2oZiQeOH0B6c8QV2j0udSi/V8APQNvjFIkmJWoIGxdsAdxRK9h6/mGJbLfbOG67WG7G+F44Ks8BtsCZ/JujN7NIZNOD4mfTQYrv8vltoTbGDhsX3NcL64U2DsXXJ6oI7h/innhAGMwh0DzgwyEz01VWhy+ANbzMYcCaXd1elNeremkJqSataUzWniqw9ztiTHcILlHEF+mcHSx02m0/N9+pqywqF1z0zxbSIZQ8pBriwN/0uZjZPmMRy7TknXwpEXloLfW67Ij3SOICdOPh3AdsC+Wy1/8oMbBhr95Vjf+HlH6LTHvwLTU9T01aHAr8JSAraSA+l3Pf3+Woc/khOge98iphXvKRNDKUVK6uJKHibCJcbIWLyWU9oaI+7E1qIlZntCnuIQoQgZ+P1mst27cFK1SQvcywIDk9pwmGEvHjIhP4LjKhSZwHf29TJushc+po+Xgh6lTuWLJKMF53ZOk5zS7m4oV7agZEX3h9SbsALGzsyLsshQ6GizCPJeY29hPprHokJR9rw3OyqTu68Ou3lsr/1uRQI8uLJK773+pV/k6BwbW9oIIZnyFXBPEwvvg93U5jMfnOSLvmzc2wgONXdW9X4/OebewjE+Th9FWqy8GUjaEhkjxKbMnj+LNFCzdfWeJ+PoxY/ZBknRqTO0SIGFzjYwXUcFy0/BgM5M43oksicor7PurwCxHdOdGL9VQD2mSM3tLaU9f5HwJOBxcIT0ab2jKvRRiDLz0cXyxirdFNdk8HTboeBa7fcupxo5W3AxKDfeFCzgQiwrgF7+7m1+3hD0SJwf+IeIQfvStmUE1RM2fVdOIU3Zl68tYX0m5wS551GaQcHbTB368yuBdjzImlYrJ4lULt7WMk2OnLLKmCJOAiVzkgfsYSO7a4e+3qT3rlMq3EhZmyKSjTvpf5Pj6GMCS19fDNWJg1+m489E4TfjiVrD6Tvd8jlAA4rHoey9+HbLGr6iT9kR6m/SZNKE8OpJKKDO8ZJ2DC2X+jYt+iLrGlPGux6jzt7bk5MAEy4yQF6z+jh0im+MNTZHn9nkVzCCR8rBYyD2jKtH0rwS6MkDNX9DOnPfJLuMfk14L8cahLMNbNkKq49d2AF6rZzWDmi3Be7eB6lnsEXqxQjcZ4BxOZUlXC9VnJ5AVvlwA8c84GW02g7pZiEh7bMXht4ieaaSTgQmRRWgHJ7lVh9tSXmmbfovdgfqWogwZ5Fh1+1V69b8csFxkwhVIOjvxEVqd6XDumRHLqy8g/ZFKMnioTuR1qOLe1IQmMB2whFMZESVZac5KDoGbCvrYzJ2TLreHlUuPjaYHrSIkja0QfngCNWDUnv+RpCcHkYCgKuP96wrDO+/mp8MHpMTunQCWJJIW+yjSr3Msso9EBm61tpAeIS01DbIcP3ZRZrSR0ccAK17pJAo2Hq6T48WXUz9MjyvVBpyO3M9bPUhZ6ZFP1D4b5FcmS9+xlG2EUYNJiPJ+Mi9YVokwkEcdeYMNlg5t5J7l5SS7/4n22799okF+Tp8y0JFU4m5fi5T2JUrcQk0Sq7yCk+g8q5ognxtDF8qbUJSih4F5rz01kVsY7cev6G3zeckUCfkJQrm6lzLHRiLfc9CVXn7mA6HkE6XcXfu6UFEULjZWjCa/MAvGHJRBnrB6xQqbzZiVtRbT1gZDSfI2Y11um0bSiTogPPCmDnDMKiP74Z8+9Lca2J9EbtfQPHxNM++T18pLXh7anpI1zY6Rphh05GZPh/OynGzLGyusRM+kKSl5hPoZiVrFCCwc+k5E5sxqPzzX2nrK8mcQV2d4KiRw2rW/6BK+cAYiwX5STey2GVFoJH0zcstZslT64ZCXQYA16y1FSUA+7H8bR91lcSnoJ7nYrC4AaWuuaMVTd2gBgPJ112yNXrzO71lWYQs7E3gYtHJFFbu9vyIS2q5txHpLm8JfT9HUKI0o34Uj2/TzSiRwi23lJTe26z5+AGXMoK7oIhSZ93q1BSxSo9xi7alEnjr8sW44AD+fsE90zQaTbMEMiB25V18YhKXs63WhMfX9OptorrQ7j+mXFQAgcao88rxf7j02JnncjNX9kZcAJdGIOt+Fir2EigdYCW535gUgJQYc/ZPGLcYTu/cRuClXbTfJDEx5YznZcvSjmhG0zNtEJR70AF2kQKpOGGwatKe8ha5Lqaka7LDShzaKYJoXzXAINqBvUJfRr4LzXHWy6Zi1v324PMFeH+pwh/wVsPSuQxaIL/NQCyKlsCppSXq6MUbG5uaE0iT0UJ5zK2YjOcKU8VklaXulN0nkziEDo8Gb5kNDgVpaeZYE3KftP0BJkswIv2pRkv2U6Z2z1ohhJTu3ArHYxaqOmX8nT21N+klTozoqIsbNgGCkIah/olsl5wfNT8bTUq0yUR/VDfx7BmkgdWG7raOZTaicHO/Uev2QsNIRTSfundWc1S+cCJdWbsBSGKr5IkgjEsaf57e12HhQwT7wLcmie4FNbqXPh420o2PwYgOOyCnvbr91H42L5/KtU8Lq62tT+OS1wA+AVAVgpIuJDCeLzisL5lNWPUK5g20+cshmDdfeeUdloBP0WUCUo3lW0NRwPdSojiDRXi3Y+iBxxQOr8V4VjRTNidhHf3keLqlYavw6SfpAlxE1qXWccDmiLMWtWTgCatTBj49o8e/32Gso9mzOwFAnLrbCJEaal7Z2Ms3FLGu7dKx9TKocxk/knAFVMqd3EjVDxIwjunXRKlsZTDZos1eBV6glSMaSNXtj2KZVDA9maP8z/rgnsN/tQZTylgBvlzirQuQ0xyDDPL457dwdquzZANrJPauGYDc1gESSrMclNRdtJ5PKzrftJfuTPS0vM/zOT1wzzN2y4NX5XmCttw6KQPNpXMHwYUbA0muYlNLcFFCDhC0R7V6+lWDoXxGDXtdX2TWSjl6P0AFfbznL1IX7XeCPNKGDij9rey9rh5RFUuxt9qAg1cCTPq3KxoIhsKGws4XfJtUn1eP66jilN8OGOGQXf7rvVB+mFIdYV6SNfpVTvky4IXH+2D4ODD/+9NXHhi+KwLBz+7GV085jh663042kiyEUNng0V9QjYtjazcoYa3//ilbtuazHSoz9kvtPWB8vsrgriE/6pJcNA0deQ3FowRZCnuyqldn9CwBD6OutQbHPmYbgD5a2t0eIdiU1fATPNrqBhmmZ58AkE1LsvztFiM+GD4EUm0Ft89VU+1LxsL5YaFmOx5GK2r8ohkv8CRYlFaRAxpJH6N8m0SFfZGy+fV5o2S1QkBTvz1Evo16xMbyjtdg/ZH8QIInsNc/dF0Vtetxtrd9HmojgdPR6F0MibAx9r93Vv5qyFlr88LTfDXm9OXcXKl3R3gYBrN/7J0rSazSvvz5+QvVEtaTbSpCcUVNdZRuBZucjQJSQJYAkUfnkCER+acrWr98+q29ZeXGRID9P78W3KWCbwNKCsfYlOh+JUia36xl0t4+DQRREiR50BLRSo9/8aUIN8oR4uW6JSsxUUWwfYHBhHHrWcyeIUjoOnW9UqUzHWRnhKtopT+Sgc4ZELG8x5D2aSd7qyTpP78Nsow0t//AsFAQ7TOdr8YS7etXBa0C7oLiP3dFa82j0omAQANbQnDanSDUCXXdK7rHx6pbSsLtP+NJeXMGvCvR1wpsqe6/0X17JVHOwSv/tQCMCilsHBW5I5vXdifR/Vp2xGahpEgA7+OYqKR9BUqyUebovPzRLvRUu1v4rbM23Lsuu7xxs0/YM0Ufe7XgbWlE5W/cjKzHEwMfLmN5RAW19xS39Aegb4c11oZGIVNdLIbwisoBWW1j/NAS5LCSksRF4ykKVUChx9GXRv1+tM+Et9N5sxibErSSGBHjcCUUkrM8ACZy2tGD3Opu+LHToXBip3onhoYrONwRmJvpfcxGqu63YSzJDFEAJ1wnnVv/w==
Variant 5
DifficultyLevel
592
Question
Benson joins a rock climbing gym that charges a fee per session and a one off joining fee of $60.
The overall cost (C) is represented by the formula C=30s + 60 where s is the number of sessions Benson completes.
Benson completes 7 sessions in total.
How much does he pay?
Worked Solution
|
|
Cost |
= 30s + 60 |
|
= 30 × 7 + 60 |
|
= $270 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Benson joins a rock climbing gym that charges a fee per session and a one off joining fee of $60.
The overall cost ($C$) is represented by the formula $C = 30\large s$ + 60 where $\large s$ is the number of sessions Benson completes.
Benson completes 7 sessions in total.
How much does he pay? |
workedSolution |
| | |
| ----------------- | ------------------------ |
| Cost | = $30\large s$ + 60 |
| | = $30 \ \times$ 7 + 60 |
| | = {{correctAnswer}} |
|
correctAnswer | |
Answers