Statistics and Probability, NAPX-I4-NC20
U2FsdGVkX19qCpt6+rjEGEcKmraRhq+tOO8umcM7mNcoBUEYCWsTOGSnb6KHVm3qc9ld9VRJOe88fSzg7WLtqru7+DTu2rFvUXUpW3TXfYCVWHCMTKTXgRIlx7F0K6t00px0wvq2A8pWeCkEOpJiDMHafcA3rDThS3rOELaztxnpPSeHfMrLvIkShC7Vu/Qg+VMLQn/ajBTxre+kPY092jpveBzdjI8um9M+fFzG8WFTi3AnCmOu7CF1qAfu3gwiOwF/9xEQbgX0EGt+yHwut5awt5wojfDkFAfTxKNLv06N4JbopOxvLE5oR6PbUQxgRTJaP35X3QT+bhvXUG5rhkmuYTrVkeyJ4+lv271TOnm5DRkhKolxLnHw1pgpzvD9KTXufLuW6u2MMRrLsuXJT2rr9Knu1YbyHcrXQua78X3lLykXmdCofMBZbmIXXTvbfHRCKgbDGSs1MpccpjwIrE9rZpLFzppXYAHZ7FvboNAwKq0/BhFUk48QbrDAXDP/R94py65SHt9Qos0QDqRE0BEDP31KAYP/acZIQSnniCKVRolzuLu/g7/vX7cozlL06qc4UdNKWhQVuBobKMxOGS2HTj5YbCQHd0Xd1/uRWVj3t6vlyzztIfNYh/Xop4EatX6vCnCdaC6x1DFhQtqY/XfWuiOIXgBwt+ag+8VcgI6ZxP98H0VBiTMUOa+5wmL8tT/+Vq+Z0nTFI19paRAtMcNVmWLXFuLPb4CgVaINpDKvi1uaby4b3QRE8I84IT8qWiRuXchgtKOKkD00J1GTj/RVirkts23Z5zLRINCT0Dcw1a/Nf46K+bl7ivCs2cq5lh3glRBThQpHPQHartSihaJ5Cg9muz0dS9pQWPHd5RjVUl3pBrmzDZmS1ggOj8u32X3BUOMqHbthy0SsCDrcPzg7UC7HxrbNOdi3tT57lUMRmSZgqknmtpg1wfP4RMMWBwanEQbhgKT8/x91AercuhQAgGzZLpmwwFdkK+n7StqLC1hLgGmdx7sfzjhxs/3o6/yTYQVCfMeSU16OKfUUoXZL6ixFCSCsprctqnVUo01fDEXFz4EdQQK+BRHRWJmSxKbKGnjhmTcc4LXt54hGd2sOGbidKH/1Emo1hniHV8V60lf5H90a1rI8DEb9PpkK9a+j49Lx7U+3EJrxlddeKZj9rHvSAPzI2d6yAxqtprksUoQJ9par+sbr54XTzcbb2D3FfqwrAXqFUeNUja2zVvv26h4ZFKIB7vbTBxyAAcNblq/R/1AbaxbxFpolNHknIMAInu3+gPlV8BKn2AAkHO0r4Fs8ymLa2jUALN24sNTDTzC4WVpaYBAmRXNAtw0GkUqM+YsdupR4AgWKgwbF+V/HVVvXVrqyyHCD3PReGSn2dw+2A1pvW5fByKuP1We+zRiH5fQ1TcQd9z53iBAW068LXGcHqQvrRdhxACo0XYgbeDcCslTbrI+dtw3gsup5C7068edpThkoXUWMKPFc651HHMDWqMGT6zPZaOIT0J/bpsftVKPl+lKy7wAldADZdw5KuStbFzPewal6n06w/CAilnMFd/XaGr1E8U+THy8dJw5VMlHPJBb9idZvIHWWCnj4NwSbhimTj95GVagN8tdqOQUzK2TPPE7GyyvEThFUlRDwddxW+aLAkrh4pgDlMYRp6A8cLCHcCOWGw1jr4Hkdsj/h3B8r18dakXbGqJ7+RBLN1Tgsbjpf8CdQx7BdBuwtCwbkOIOu/ZeH2haf3NQ3K68hQj1KDNs+YYiSkCY4ONfTBW9V4aOT+1QGpzxn58kSypGi7N7nHYuCkyUfziIxvKy/mApfQh6MQAUBB1+qgxECbrt19rAu70KuIfDYxEEXBjE0sf6rXopU2Fqfa46QXmJwQEs0cmGWkNK/iHUNs2Cba/Q+rZPGG56S0I6/cVcKqMEfu+vHkJ2jJkJEsNNlXBmO7aXj1dQD8QlYYoDvYooDAd2KwDQa1ENF5bMcZ9ZCwDaNDc5Kpqtt2JpMjlz+CECOYoU02yRCacM7WhuzoOKzzK8IVIq6ZMStj54KH8JyjE/r2pYu2awhoE6cfA8OXbnWlqw3niNlmIN8tIB9hppacdBK7KSYXasPBFek8LbT2WNF7fPFCVR7V601yOMWM9LcSRpF5jbt3oALRkffx5mernh9fr9cELqM6hf7R9edZ2O+N9A1thEA6SI+5gMxX6JXvdxh4EWKYP+WjWgVlCRmnCLdqtViKIdJeoQqxD305ipxqFaUlSXbbIV1Nd0sZvd7SepZG/yRjEeG/Kc1mBXHS57PBW1mZSU6+Vnohy3CG96VR28S2/nuvA2O/0BqXbWP35n05OOTwcgtVfeBV9Xe3qt99r6Xg62nHNGdfAMewbyjsCmjYJZ/vGgIE1ohDDMxMpm092PHjz546EkYtPg3pGRjMtcy3SP0mrbOia7ZeXIewJl5dv22FlIgRrdWXNCsXnPZKFiESi9kSswxSbU2WYb9S8D+Rjt9rUEEgrFjxXN4whDCH6l4IvvLe5Zt7wwUImwOEQpePuCTihVvC5rmoatW3WigXfgsxDoR6HKxa+3fIbi2s7Ignptq706PaKfAn1pMJ1CIX3zufsvKbCZfHLxQFTgrDe0pjIeiJxfl0UnUmW4hW++LcJKKC2UFM4NACimOqTR5dFh45e6blb9enaPrzXzJhwlvAg+C+WwPQMWVpXSbhq1HvEuvvL1KCVL9LDKRrBAKnucZ4gVC9KUc6tO6/GjRpLYPiZWrt7iA5MN9LTMQ4aQyDNMfwQEvbTAVNnNZ+F7qDKXal5iQgdU5u8+gJa7SQJcSZe1zTGRqMjXg37oIHECEFFyIIsmcfz4cW5t1BiADBD79DMNdG4wJD/XWV8eJrExYpcLSQX/nw+u02AAvd9j+u+eEe55oCIxwo4tkPEQ/glMXPtuirawdDokJW1Qj52BTtKuC7D/jMMeGzg4z3p7e8ErYiZmhgg/5IWbMstkh97hLI6kQ9aKxlzMddHpzlkrYiW8zOuD37a8ZdlgPb322QG/jGNj+LELWMZr5LB8LXu+Rte746TnD6G1GVkeD+JlCiVleU+MQvPyGf5G+9HC87FpazpVJdOe/1wd49bTFUP7jP4Bjy1SUPEhsVLpcA5fufr+JRgmjT27UyJN+Xc24qFbjkrz8VqmUrD6qJx4HS0Z6sch0dN8MKLF+NNGjzuYXBRC4uGrycjtFNSnT6Pk26/zd5fk4gQIJW5x76NhZouDnsxtCCpfqPqFUgCboHAY9GiaJZ3BcqZ0tte0Ir05FkNOGiR789w4y2mw9GTKVPMq7sFBck9EJ5lGvrv00A4Grn5zj4V9uFzKYwMPp1Hehyq7lgInFaDGSXhAPZ+hBlWwjFt8qhX1uyDbKGf8LewSCKlQoglOt4U30M7TmH2u6bYnWPmFLDGG3h/qw2y0btVFQPK+s/RmYPQUAAuu61puA7CKiY3lxQCc8iyRpVecQ6mrDbTURnWnhcORXXpP96ekJY8eVQd2r4p77+UIfh1HYX/tXAEU1Za0js3flwbVz4NQ7fXzqMRg14gNVw9gApSNnw78r2LTPr3yoUH0WaVk0rZfcv+kSc0ccCZLBN3tu8K3UV91gURpNS9N0RdvNtK9Y47onf+W7pyH2EGOZr0gA1jVY3ndFA/6PhtazwneKW8wNk3KdzpwxvS8YrNy1twjZJOv/pq/kqzxjF5fWL9ZFGMoWwqUJ65LVC1yqT5iw7lmdc0TR0iIYVQ3lF4n0nYFWPH33F0gRwUe+4DCSa3WEyFcY54ltG7tE17Y6nQbgF9Q8NNgbkRAoRW2a/w15kjABMosBt3jM0QM8v9/7dcEjk1U0Iwm7l80EHpGAAd7F1LTCOl+fpUx/LhGy8bt6gLpI1+wlvNdfhPkoO2SiP8VovLbbZ7UU9RWBRWSFYrjF67JjW8nCPSwj3xajCC2//ILGzBRpvWAlqDSqL8y/y54luNaSCjqMnok7FS7mU3sUH3k55fqP5D5yWRkgWdUzrfdFE4OK5izRqOlL7v9rZqhYeZyHt5YEYSIzEFCpnBOF3bYRLCGks0EzuleNQePChiwiYz8s7zVP6LqJ1GRSrCkTR1CgG45Ayb0UrYmgWqT5s2AgwnxlNddTvaW+RJg8+pQOLB6IyGfIH13lyquoLMkOUkk3kvE9g10Zy+2SzgvFN0yrRH0r0b+3JdLw/ESTkQz268u4gzvdBbbLJdsMmObvp9mzWIGaM28czDhYbWEwCUZr19YVnJbDBR7heg1RvFFiw3Tz8lT/88NX+h3yAIFhc+3dpRZKju/Fdn7jBtd1OEfsL5A7U/Bp7Sin0J18vsleREsoQcKmrdEkw0rHXreDNyV+Cujn2X+dSefoBsAitl9nNW7Ua48s5FeZ+M6qMRGbtUcKVuKQZzC7I98JUCk/7AGFySoHK1gWwJyMMFbKL+GU2J6TGa0H4pUfenzTcUk3Ry7zwu3oBIGF+i6rx6nYQDISgzssNk85NEb2KFeYdk5UwHjW7aBMlJSxJnmBur56+PlmUYOKnEGfsVdB+RVU5co6p2MAlIndxq4CuFuK6rt0y1Zz5qedEl/nD51tIi74LBixJo8xXwQ0+q/LGZnoiQPtMmGtl7qdK1UQdOnt7Z9+1ZtDdP7RQ/NhePzxHEsMkPZFdQe6m1JpWLy0+b3NvqlS1aal1wol0fWVRQ6cp287OdEeYKptPiciZ0C74rKHmVlfUedKS2CXtqY41glh0b+E90Cl072FESs420ZwJPCChKvxuRvvL7MaCaNhJ/jdyrvdh7lXGBimN6sD/ghmsA4Utpi/hq/wdfFZHGR/21Dr3ZnxaxtlT6OboOU7PA/Aiikmyq8zT3Lp6o/fAAcFdP+oRo12klKc/2ekHxqXAj4+iM9QZ3NC81XqlH9OzliYuvE4k3gEst5mcXGLqAv5sYC9FFdhhchf13CD67uPcKr8bF1TxSVIA6qkPIjkL4jJNeuEEOFgZtA292wbDsWnxNofWCUHxkBbCYrhnxZO71rgJ5UYi5ztJBF3RNSNAf3XXCoSjpZvyPieOq+z/aSKISYDPX8rzPH94Cc2dH+kYQ6n5fIsnrLylVrY8UqmYvZGUTEYInhFxf88EQCHRihE82O2Rd0jj+eL4k6KX2fQEc6Oy6McUQ3QpI9Xm/VtLRQK1z65SAiXU9uXA5g/3ksd3k3v3iMVNV0T7Dd3aTRvGjhk87Nzmann2ewy0ouN0buhB5M2+GPhCoSyMtJ+qakZNKO8iFn8rC5dFgndgpr5VSkEFY3aXnjFeM1NdqnO+ffjlypNCDXp8xaKY8/AQTLVknaXwVn9fBfo25fOH65lb+6lg/yRTojRXda1dwnkM0cg9MXKqVS5739yO7nQ9cyT5mlBTsK7R4h8K8L9e7m7pkoyx7p5+HsMDQ6mrC+rebruLBblMFI020UOwXcYOc0VAe57YwkDglRQPKk5pMwFNhTKglU6BQax6R99W4SVbP1aoi65bebpbzPgIjI8/Jr3yCdvz7pgJjmz+mB1rz9wZVrb4S8cNybD8jPdHV5P8Vc6bGUBp0kmDAyKi0nf2nfRBnqpklIaamBLcjrFcWW6vIsZ3gHJDmPOmrm++ic+fuEIwn04QdqaklkRoR8zi7Jh/1LNB3b9W7CuI6nxpospTuC92PghSkwtoY+E+h59TykS22pOCfE56NV+sc9Sq3BEFsi2yOCjFLMaFq4IL/65QGByx++3t53Z7+FDUH098jKTkjT+P0TrF5Nl/dFeDE6HBvlnrsWNJvNW/iUK0tlftNx0rFECwv3PQjJncXjo44qc2ieB3wQlkSgwXgRqQpKnh5R47arH5oJ10MLlZkFHy9JYr6SGNqPNllE5dauU6+OmbY/ZRfMGn7b9Hwh6cmBXWm7eqTUyUTqaacJq+eyftqaIz/BjY+N9cuRsz1qt3lV/WFqvHK1DAFPxYd42fzSCerwxAARfbtDKzJVaZD42T0KDkY0xhIZ+rCHLVoA5ahKAuqWt2XCQhvtN6iFh74neV2C2FOBMLSWiRVjtqw+4kKLSNrkJOwGYZJuoXyv4/gsH3g331Cyz/2UFZvvEP+nVYC7Rb7Fmm88bWhfaUiPWSj1VyaMii9sClN//BwIbe4bp0gWvWtyKJTfTeK7cwAwJ8ZGFsgcpczErIXNwIsB6i8bXaHC7v1XCMBkom6qjNwrkFJFrJ4Po2ne3QHJO3rYGy8PYxb2mi2LenVi7yX19ncMg6kry3NyLxUxR7BWsDgkdhKKrfHeppFkiDRXq/9pJMCmJR12Lv9ArjIyiEnKoQEROpsEuyIHApwmEfK1ZpcEF06Qt2FeuEHRk6/rU4+gVwV4I4Yaa0NPXjRovDYmA0zNltinZLJMuugCjVYxlcBeW3F+WjqCyAOsso+4M4b8ybUyknaKC5CpjdDdhywPdmb9WQGJcZpdkohRHW9jder7JulL/TkQ8lQHRy64xdKTLOhBNcMxWEqd9NP8RCWzuw9NAzFNqfOOqhyQWb/UsWZv9Jiwy2ej+Tq8UhwURPqLS7DTfApnzewWhQZHPXrCj/PHRJBOkqxjT+Xi6UI9Ud+VIwBdRznjk6H/c50DqghBQVQnoStz8q1G6o+zZsYU7ZQvQwY0Z5fptngExERmgehTe2PIv/AN0J0UMS52U4j2hWkirZWOb/AaUwd6th18p9OS3jwAqrrXKSlSN54IxGsbfcbqNfW5sSBrd5TLH8zthQKbiB4sZoK32i3PstKOoeGOj44ZtZN/SY8/MzcnY7HjbuR/9gJnwTwlOdtte4QHVeaX/fZufCNJZ9OKiTEbEDvPpoJG1Fxof3Ld/pIEcxavZqW9RHI+BZFjUiVwtgBTaPkUDnlNE1Kt/31vfnPacUDWsATB505tWnWTj9Xhk95MjFOfIKVySsqvxCuw0zyeOg2/fOKKrwcrSZ890ZX1e2cCOYO+SzzYka2agIpQUAJ0np10WnEw4txV5iZtYOa7x1a8Yz0JW7Q3BsQSFVG6tj0TEkWJLnyr0FMXuppADAuBaCsKYNm5KlbG9orKI06KDcj3/LNMyTBqvLqEqH6VaC9MUTXRzdoKlpI9hYo9eGySqVj0KWE+mxCF0F0enmreOc0CPwdNBYzr1m659DJRqtRQLWTQbyMWshJ63i8+Nkp/A5GH9U6WZ3tUGK2vdtquYIpOk1R/EvyIBkgRmLZ4HAVQnrLIaAffOJnVLqzPg/L3bSdSg7wCF8crOuRzLhDNU4L//xwLaodIhFx3acHK7CegC3FvvJy4VHw5t6uQ0rdpW0gT5q3/+1nNxUeIbWd4nbkifqiTI6vvRn81b/wT5tIOT4hJW3ZhmVj+bYnofokfPW94Gh/f+i4jt3DhZ+IRSh4WeDV95OSLGK0NLbJpjTYlTEdNmYEu8eu0uJYFCT26YOjoeAqbz7qLOiGQ/ILMUPycDTOmSb/8AH2HlIH55OysLG9xJkT8rYgF+hFPVYrVL1adGD7hEXlUUbXCfXhxcQ8g1Lp8+C74N7agWYTJYsJ3p3nVKUJiSQKmRh/ZUdJpvwFQ=
Variant 0
DifficultyLevel
627
Question
A group of 85 people were asked if they have their ears pierced.
This table shows the results.
|
Pierced |
Not Pierced |
Total |
Men |
10 |
25 |
35 |
Women |
35 |
15 |
50 |
Total |
45 |
40 |
85 |
A man was selected at random.
What is the probability that he does not have his ears pierced?
Worked Solution
P(man has ears pierced)
|
|
|
= total mennumber of men not pierced |
|
= 3525 |
|
= 0.71 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A group of 85 people were asked if they have their ears pierced.
This table shows the results.
>>| | Pierced| Not Pierced | Total|
|:-:|:-:|:-:|:-:|
| Men| 10| 25|35|
| Women | 35| 15|50|
|Total|45|40|85|
A man was selected at random.
What is the probability that he does not have his ears pierced? |
workedSolution | sm_nogap $P$(man has ears pierced)
>>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number of men not pierced}}{\text{total men}}$ |
| | \= $\dfrac{25}{35}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18JbiUEZbHSluqOe/iFlvfPc6k44RgHD3KsS76L7/uM8EixFBY71C4f1PuPRvt3YQyAaQ3Mk8viz7/oKnwVeY8aVuuHSP8X0t40DK6b3wmNzbQJa9HnFeoEf+3WjtWOSfFMQzIQTkwiW2jjpjTfa48svFMQp4krHofu+ni21L2qz59dZ8e/beghmNhTdeQHyef+fsTdwCPA6yN/gHCL0IfHy5v9e4RRC/obY8eFWfbbt6wRVj59txsxBGnJoK3iySn+Z8+YIpFqKMBT290v3DGFxiHM3t7XRROZNZJNeyBJ/qKDJFrB0x8gjYoDdEdljFqkWe1bbuzUjR6U19PPlRXx5UtedO9DR7N5QNFDZO7WEdsBkfqYawQJzLjwpESOaTMhk3vWYsS5W09bgjO+tMKYQhKnBZPjr/AY/ypVI/V3EdIEUs3+GopbIKd8H78HZY1ye8009QpjsE+Tahlri4yD39wL9CA+k0vEsCne7yqsRWzyuXWIjnZ4Jh/pWAKKsW8OKevAdxbj/f2EjklzGkOBqbheqkzFqvVo0kXmIChSxk81h8R78NrzoaAE2CmMVmxPOxxIwtCQEpKEvYBcV9Ir0HWpOD8ZHbgPjUkORJxgyE8gGlf9bYoYKIkvMRep0CMInYT6tvQDlVojzvVpwRX5Ds2Umc5p/sgMa+xTA+GERC9epAX2f+qZ8RZxTU5dlIsSiDHZFmYiECeCrpwtO8xKmWMQBiLGTOfCgkpVqxn0NW0WtBQE0XAjVpe3ZPMNCWAVtI1offTxr6A6WJSDEG30/z8eLRB3NZKDiFgJSRBzpwv69FWB9YjCGCwQ5flCtaoptFUc5EB20HckKl74fRcr4EOOqjr8h+Cs3SMiC1jPPR3r5IghDBpLKVG2e/xJN8hoIBAtiMZYe+CJgb2wZxCE3PdMtmZbNwmpYowpg/gLurtMI6uGE3t2PwAlx4x4eMtwPgrxQQxhzBby0hJGewIAxuc5WM+6F1pL/7Y3aS32RCdH0/4G3XpjIHQlStz7ouOZvDVXh/XdSzYCirGPRuV39J7MPqQaRbCi4zajWe7rUwPW4dUNb/TQHamCbnBm4VoT6m3boF6CmI8Z08hmhcx5LZfziFtCU4TFLrxfxuWNcRLgDBB0RW8IJUUOh7YEwjxiWVE+qmJCA4e1WzPTz8LWfmI9LZjeC6kcsobmmpumFPqQxrDmPkTIogsMsqRgLarFTkh3YyER/IdYcGWvxbHhjuE79WtjhMqhExZPrkAW1M/EFaLa6uijtXvl65rnu0ATzhwvDLX8eEbtXJhnKItPkCNpEErthYlslguTXSZshBbx6nCBeM10Ju4NQD38kB4oce6vOs3flGyjftYW6qixXOz9Mg/6ONATG1WekHHFWwxLRoYg/JElbGQzkPw1j395rPwKCnDf0UVsqgADgo5/OBjRknfw0+W5pOyVk+GbjkNcPhCbwsGTX5s8w9cb9q3fxBIY3xKnrNSxvFCwPIO06rSpDpisEe0QKhWt58dcB25zgmkrOhPKMD+93LWseCtsm+6gHqYaTSJlUYTOa5tRtEg60xv9kNG7BKlC/TG13V88u26LV3k5leLNXhnXNucpNa6lR4Jt0G1KKjdi7lWMaKOgLCSI+J2SFy/EH4iUw/N1zX4hB5J3Bs7GAmORt+vE7Z/RESCwUhTIgwj+nXm5G2cvAn1bOpNnUTpiJ0ciks5L2+Pkggdvc+tUhvHZrGFH1OxHoSyWYMBr72ywLTPVdXWtAiEgzx4lpnQ6YRPjaf6mYeT2i8IVaJXMfamBy4B307zpeb9U+ABA52uSGOnG5Smex1jgxa4gsujDK/88j35sHbfHfCRfpO4hz6X9EijfwDvtV1A+q5Yvj5m9LEuXzaUeCh+Lsms1SGN+9ibK5z5qVsDde5LQDPJsq/a9ccxqcQnYkUEQxzHRTmKSc/3Fl7vptn4vCHkt8S1NTyQe1nL1EhRnwNs148eWrKuLNu/2O3B94YP5uJc97cLEAuqWDUOZ9d1eb189QtGHWS3cPwUxoduvhVXpo63Ckc26zEp/GUFeRtqLLBHM3QZ8X61TW9V8eSHES7KZVvB5o5ibJs/OMC/3mhOHTcfC8Xiv4iZquLUE+j0TOKOerDWPEMj6nnDLIDByN5eGYLs6ENHQsmCo1m4YxC1uKje/UolQRpz57MYz37dSP/avaWtQwcM7ed7WF+zab3aQPeYzxcqvZMLSeZL/Y+LtosQpjqq0scQO/J1WNHWvF1C6uHfPPP8ZdcG3H8n7bkbMZdUnE2vlATZazxPc6/8yjaCyhJtEUl1IZ5pcYqxThPDY4HpHHBNsPfiGTA1VgFaDiq7x5jfYAF209ziRl0/HZiC0FSoJNk2ZIbmP9DNOt2/dBV1CCNDUrc5NmmXBwowhJ7kCi4PLJZuMCcrNJMrco3IoPvqquH/i2mMXGjRzkr7vQZhLjwZnc5FQ/QbGpMfifWMgxKgg1TYu0SWPtTRXrEGIpVYTR3FxPR3+bl4ro5WnYJYipnKYl9XtHJOi/G1KBBoLSf6mXspGW3KKLKwpQeFcMEJUmPKUTWEHRMtd2zf1b7PGIhjSjAcib1mQjsK7dcVLvkX+w7S5B0NegzPzaTidNFiPnPR3jhQqtE8VH3Sn82sK4i/CNka8tRl76Z/IJynDgwez+fCDk+YVVRTr8zK94QvxpyQznX9JCyaBbze6To6Ro5zz6uy0z9brNCtiG6HnjNGI7bA0rQdjqVk7F3J7Ae/uGsPEQB18tBbykMD7GDcpBG+3KuGISMbaIYqHpTrd9PHAgS5MDZJSwcq4roMOfIYN6OH0XtvaoWrXBXSu+MGoxr6m93wY2ABo7IGhLArkWWNC0WNWAvbXPeY22EJ9tVQ4A+C07QwKWHGz0LCVMRO1fJaDb1Hw6qr/bhWAW8r7z55Fa2wHzPpz4J7a0g8aa44Vok0by+ntDr4iP6GDb1XnKlf7oSOtTS88WGJssg6UgxgBQIiNX2hmt1BMeSnwbf+MC1lHnG2zOZkIcmvBK47ea7+J3K3mrmu6i+zgcI6ivgJNI3thfmlXMEU6cnpOYGyBqeDReBjCJdECl1dHUvx48jqBxkJ20rIG+r7uOWPE/w6sfWczvIA5BHQUFmoJ3waCb7t5BFtGhnsu9HK1DESQxVSOMJiqJdEKQxjTowKNn/BwZ6dutCfjxcp9ajWhvAnFtLESJf1GteeyH4JyoXBogZagCmfyEbxarEEjOZ7jS9UZ/i0QyhN+oXYOlUbMRbQwU0LWqRfIbtEmi/CwOU9qB8x3paiEkPM46NrtDQ/wgHgEev690v008EDczdoZri4fsxF+bJRFNT0e1HJCTG0IELUdnHJbJHux7vYDCI1pcyrgd2zcXi9o9h5B+Ck+J9JVDxaqwbQOB89cbIAgl3yEoGmxg+SS2V/LNG87lyO/IjVAv+TX/8PFXgACZXcqhzy5mFb1UBlQ8A0SViu5ORMSR8c+gV30xhZ0p3kJR5sm8fjpo8fhzd2JovSW0IN8xZY0zvXYX+F4O3Qo9Z40S0yf3yhtwAW1Rrar7cZ3kOsm/47Akg5JVQUxcxnc4vzOOdh+GfPVf+iyT5Kk0sxco1OggNTg4hMbX1TPK6YL5j9rvDGXA2oP8uNxjvgy2D4XWcMTZxP5geAX290QkDBIkOv6jwU0cYQZvArvXEHVjG84AdE4uG7tS7B+WuiS3YOxv+7xGHREjR5i85/v6mb0QJSJ7RcR/MfWjIJBhlFzs1KZHSldz5pbotxt7M5St1yTXUbXHGvAO+0L3elC8w+9IsaUSrpkwtB6IHv+G7R6XPCN4DrvjLtz8JGdzzeW4b0hy7vghsA5FO0nsIKiJ5SHa7FVGrMee94GSuy8VnSFxbQmJxLB7Gt2ntqCgr4lw0qnYtgw8ei1eksPTBHquns3fWnGS2WexaWwlvuFmqUBToLdXYxXZgFUeSK0uzCgXV4FF3jGrP/yUvxUeTnCRZOUW/zsjxESA5GnVB45mRTs3Gbsncw5cXkwfnuWBLeCJQEN53lEolTr4ckzT0+y1Pox3r/UDp5gnSyKNRgXGU7krBjqsrhf1yG+9o1klEJ9Ee0I6ltb94WMcPmyww23Hzq1/SRdMbab4OPRfnxJO4CSdOipOP8W9wXmlaeF/qDa4WBJLDuwyWWZVQLbtX5mxh1pWDk639ZEHyUlHAOQvisUbbpoK3XJFUU4XZ578bMAcm89c2WFJ1m7nbtE3sGu1cVk8VBcaQ7UuHEIcON+okNtqSvU3dDeu5XcbY7gxNz/BMgxVkyWPm2wmFpvrr+ziI2GcRuArvesGYuq9747L96qvhJzIAq7EmBRQs3Tf5NDZvWyigR0s2rQFlOHl+gtGSz/ad8SoGQJbm7YJs3xR3CSIeg1NBaobLw4/lWFclGHL3aO79s76mLUvE0HLO4Ycyt0mkkwxFQy3igKpL/u4qZL+7ZD58wP6ov6OGk9dmS3U54GSdYVZ4VE9vqFCQPZ+FljTho3GTZHQBxVZw8yMiObAae3bCk3Lrz1EX5K5hA7GoL/K3frOEZN923L5g1dZ9HBo+zTHwRTadkNUwcyW7PfhRP0+b0HWM2N8iFsQrTg+Srb8HIU/X2KdXP+vWBRtUPNtkjUs2ZhABmMiGNGQLS8E4Wrx3su64bInt/DQRiOxRQ9kmrih7WzeGDtYNjw3n7L9Y8BycYSO1wLh5J92HTjSqWyozPmZ5bJfOxsfhbM5FWOe6/XXh2niLhdpST5XQIEn/VPmpkuQJU1oRtpqL6iLUFK8Jp9QrIVufHA1O1N07d//xIZQYnAHEWEZuY6zUdxSrqWzDbtofzv8CmvTb77lXREL32oNxNHSLsHphAGgcXEwuVOVDhEOk09cWv1X0X51as7dKlMM0QzDqP98P6Zqyo3+AZp1ZT0CJPGpASvL3qfnEATOAxHmhy0sybgYoPWQAbslsUnFiAP5bgX+fxxIxFP8uXhC0zqz7tLM8pIln8eb9QXKfoIIYYs4JJJ2I0duhDxVy/+S87weDyni6U1cOzDqjunqxexsuX6vBaWIlhAwM9KsK38hJlLdcXqJ+t63Pzv7zG5SDDF2QXt0L71gtQfp3iM0esdvAa/xbaodyMawdO5k/YZJQywkMVxw33gx/V9TIWAYaQMfaIF0fw/poViBQEt9ZBFErWGgsJ8krjPRFxpjPQYExRezkk4b5vsWP46yJW0tmhrb+5mTsWdddgyn8DQYmqehT2cx8HZRE95OfojKvGY/8l4gnRgv2DCaMKEwiyxHWjcN3M3ULhPOEqk7LCG6jkDWRllAd5nCZ0hCR3hUXgB6/bE5jBZRuFhRx64Yz7/vPMvGM9NCrisX0r0JUY9EoMp0/6hbbBu+3wX8lx6YnLCa5MTJX0qr4jMl+xD36yTtM0mOym4pcgeBt72u9GqWUDsu/vFRPbCYSiM30DmGeqhIroTR7H37Z6AOmtIUu0idJVSNon0MZgXvYSzumXZhHW1VTV9FXF8m1Z+nug3r1wl7iJu1v3buVcCfAs9AtaE5m+KKHNHHYy9geg2FUD4zsBUMxvPHOe7bsk6+eZQa1Don0ElJ2t2QA5DdPL4j3uNEIgbsLPnclyI/VkOq5zyrqX61xQL8z4JKQdXoCLvQ8XN0SoBXNZwaFwFCwlzznhfX+Ekt/cRsG+lYVs+ac6qutLk0yIKqnCPV0oloapUsd9fvfUjhVdSnyZiQWRMHO0ZTyToEwkh2AZFSNG5B8zoe+CwSwp2LL65VTGr7ThnAr9mHU6zHdLxIXhldQAjyh1hc+nIeUmoUHDQ57OSbpJiZkYENWq9tS2RTeZ5pwdBQ9kqJfPXE76/Ad5Tv9cmEVAozmZjGJCvOxmeR/wOEaoF7gHkihiXC/V77a8WPbNuPx48ZEPgs7TP3SppQv3F5hX1jCd4ZnDWPqgZctiRiBqbVxdbmiTzfjQS+cD+sGA4PMm4exoaR3SjCRkBIeLs+fTtyEXgwFD92ol5nVDRqwem5CzjwxnBCWoU3qPMpDuXxNFdpFml7sRYWM1IH47cUuTPbuj/3Me+x5pNKKmrhtEAyvhTp09eyzT8Lg1wnEgaMuDHSKpQC+BYU/+5QrSv4LiOHcGiGnV1RSaVCNDC3czhj9Y3CsERHHvq55hgML5Ge4LAAMWNtbcOtvXUh1/9+EiUryV6PKjIIlpmUYV5L8pV8rjYwC8XY8WaDZW76mOifdAx/ivxvHfFd1jxUusHkY3SZPoly1lZ+RtinmA1tPHO4kefqAq19r092PHKUHMKAEOkpGAZPEOeMH7+AIPtB1E+J5cdfgEW3ykdyP8/Dmy7K9cfFEkIQarL5Kn1Hnbl65fFNHIB5XbvYIbQeL/gixRgHSTiYudgCbvUKUSkyrT0LRPeNWCBCwC9ua/8lbT6cFUlGJpKZnyV9BSN+WD3nAr/srjmSQ2H9bhz0o0UB/RAaWzOXLQPcfYpT3HnQIGCU0js/Gfl+PrM6KSvqRXlO6NIvY2MrRKDUoLeTcPTenaku52M6ZUXRThTK9itntgVLNNeSVQ4s7/O67L3vcdBVl2TegWFTEmH6+xxAYBnETd+OG4mhvcIRSqKoLTs6Ove9UBOSKwRi4pwZlwQJguw1PCK0S44cWNWUnAoPvnS5+cI+OWgmPOHgv7tbwtsM01ixP9iMt4ZwhbQ9nj8GK8z55+DIezBtSk8N0Jsu4ODZnFq9LEnwf3mxMGmZIGuSi+CmG4Dscbj7dLZdfpZG7t9j68JEjqq7R4XQDvnCtuAfMbl2j8gjOUB36oQupY+5Qi9MJA6+fCUXgj1y42lgC9HXDBed17qd3iBfEEqfhFNqzihO7CGWFjuLwnaRnMsDtCaOL/BPcmxQJTaUYC77zHo5o6BbFz6mBCGaPRaYgDdafKCQLwHZiHM/QuhOXSHa2fZQgs7B2jIk3n9Bz9Nw7iNQzbkU0kzkQQEfmnW1WBdKo/L3c17HGnaMxrTr7/Bh8MvnljP3eJ4AHHGjpEYKWoqti23dviP7SEDBDUPkyOH3rhvmn2+nAL1IPj7oLSO3cQ4J87um8T231MF/O38e6FwoxfOBkEcQuwoTvx2husv//2xGlRU3M57OjIGi1RKViM6Q3URNw1rU7r6fA9bRbqEMRMf5Qc8MjcHJUiUhSKBnnrv5B36gMZQMWtlg2oQHYTeoOnpYGZeUCTMjn7zM+Uoyk6mws/gj6hgv4zOAUR27C0woxkUggJvPGJWA27UX1Qxa/XXUe/1grcxbLzNe+jqWfH3YoryVbaQ2mH9EtA1uasGVKP2S2bbj/JG8UN72xlXhvF4XDedYwz65gb/HEOm6QmvW9Ahce+t89MlzDqV3RZPC1TiDopG39YberfDf5HdTXZgzzqQgeHLb6iqs0z89Q0NGpRlUF8eBeamZuxvZGt83URbKy5SvlEGpglt5//F7BcMCRMxO0DdEMwiYP6fvXaY4wljcFMEpv0ecrQcb4k175lW9ndksLxHtbR/1718BOhfpn1Sw0n4BwA8ypDyzElTeXcH2Jg7bokPSGcPWdAyd2uPGOpoB5CHmJ0QyknWCSXTzLiI3PWstcF1uYUlpuistix1swwMts2OnfGwo9fgIbryCImGn6ZV
Variant 1
DifficultyLevel
628
Question
A group of 65 kindergarten students were asked if they watched the cartoon Bluey.
This table shows the results.
|
Watched Bluey |
Did Not Watch Bluey |
Total |
Boys |
21 |
11 |
32 |
Girls |
27 |
6 |
33 |
Total |
48 |
17 |
65 |
One of the girls was selected at random.
What is the probability that she watches Bluey?
Worked Solution
|
|
|
= total girlsnumber of girls that watch Bluey |
|
= 3327 |
|
= 0.82 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A group of 65 kindergarten students were asked if they watched the cartoon Bluey.
This table shows the results.
>>| | Watched Bluey| Did Not Watch Bluey| Total|
|:-:|:-:|:-:|:-:|
| Boys| 21| 11|32|
| Girls| 27| 6|33|
|Total|48|17|65|
One of the girls was selected at random.
What is the probability that she watches Bluey? |
workedSolution | sm_nogap $P$(watches Bluey)
>>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number of girls that watch Bluey}}{\text{total girls}}$ |
| | \= $\dfrac{27}{33}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18uUHwqAjNsew7+X4ChodaqJHDoJiuBCIg2M0aprYKmkC16BdUKuoDVSisKjm7lb6x9q7GYNAa2bi++vEHmGL+vp1AsN+VgeOiIUonYRdpyyqh+yqlN1wZkhpETBUdxPxQRmU57UWpK1v7yPNh4y2zK/3N5j4VLxEa+NyxmhbYk77QMXn1PJm2OBWD9+yEJkDogEFvquoxOKkPHSZBKH7LXBTmwiBFe6o1v0tkUrUfq3TkIATbxqQS0yxy5aD4sGwf29+QzcbkhV6LSqcml/nW/mOERNuM+tbDzWy6QeeJKojGBooffokpjqxyp2dXImuN9ffAtcTnuYh6ZZwp7rqH4slNMEGHDEh0/E+w5fY1gSf526GjetprAzY8yVc/abV2+ji9lyJNF7aC/XunDNHhMt2VuYvFSlIZ0en50tHuihftdIi5Xq6zXThTsVg46fRgINEgp3WjBb4uALuCkiAx791u4R5Lk2w4zTOsDNKMX8nV8vAVKy0EzqKPzIifGl8mu06hV8kz5ZT/Bbz22ohe7oo5uwsvlCT2syiiUApZzmN5hra0One7GK/1a6XZWGMrGho6PU9ASJ3Sa7DgmnZ16FIS3cJZzAoNA1NYV+VupaZhv2gDZjCOwV/ZeGnrRUY553jCJiMUQDkqYBnyn+gxwHCK647qWwmYYoWhpzRaWGu92Pp4wRZRFp/DlL97GY7cvzZElOd/2w+6OHsfHH5La5y+a7AW5V8aoeDs+XK0wk2DAqKBVnRvaVIiSVjJJJ1sfDH5Y4DFQA5YDATtG79jMbr9dxfGn+xnh5yDOLRAGwfjoBoC9GQM+ol888yuRwFy33vySkQIh4xq/AvlUXJoOz7LRb/6bOuEjMwOjd8gnTophKdcjRu7VZaRZ2Y/IhrIsQOIz3PriUnOwgXxAFfOMWx77Ew85UX0d+tWvjTVfYCnxFF1/PGuDfXhoXr7S10BT/q1pocKwLpgg7Q7uoOCk0vTEWbSGCw6kXi8SCdSbeulD8TMxwZt7bXkLy//EXlIdGArAfrjQevkYDnrFPMYHKrPbov0F7bDPNDm5E96OkIWIdGWULoCgebol9fZI9vKA6ahBdOfBXVeZkVR9gO3NaQW+smP9gwYL8ZrFDVLRmey6Y7+YoaHQtgzyISQOcD0390BSpGdgSB3oyVS2sLFl1rMzcGFOsdmbZvxuU9FfcVRiJKavEsA/k8dnti8Es4tp2lO0951kSbAhFhLFJXgKwekSqIwMQ7fLoQvzmm53tXazlt605GrAgzGYibLMRAlgyeqz2IM9voUn+m4fVS27AMPAvYtRsk3TQoaeIswPdMOAm/b5ZEJOa26X16qTiwC0IYngYq6s9ft/x+rNBjfAoruS1BKTNcHsIzLK0g/2UpCVPxr3Tu7oy56iPP0E/tMKYgLHDXv2Y/U8vWf6p8iua20RtttEU+Egma87VY+cpj1Ns0JkrkvRMsGtl9vJjcomL0V6891G/88kQ7kzgOh0be/N8f0JTuf0Mjm/NZwmmuCwbTy7wwzznjeLOJpeYfugAQkSvMH4u5zFZn9eerjhI//wwbplGzXYjocqPCxKxBOkThjJuuEUFtLMaiAQljsD0nvgCCaTSXEi4SVG697d8dAnnEhc5nw+R2cfDOJjW3IOZzAOzhCoyeP8ZN4SuQvvQY/36Rqxgcqvw7wYGRt935CryGiBFpDF3yw+OD/X9JdXbEMEOS+BrvhDPEBO1qKghsyzM7uPGPZ070rvR6CCBXu5xrHlhj2QW6oD5NtW3Xap4dUFDvVKHW31X28rYydwUIADjJZmOo05EQE1KZ1py25oya7Z/rDBrO9KqWIkTtE1H9Ucn+DbADTWj+7nDKuk0kvtMWQUrUTXTcbv/wj3vbIZjtA2uwFohnEW5mPET5txF7Nbu/g7/CflE5kJebzZZRWC+KmWP0LTCBfWn8z/qMBAKrBtu0idQzinBB5+GK8rL8GFqDYYHlaKXsg3OlZEckmgLYJrwPL1zqVq9Vn6Gq+ZXrHbBAzk8HbLWWPh2Msy6f6hObN1tbfVP7KdrMGwuR9mTTwAWsLDI5yUhkfH0I1ZbKMgd7a6FMy6WwOAAS7CAyqGVVI7D9Xxfvxvq8tne1OrIhAIoj7BMO+sdGzcTTIouRjpeXkB8wYXtVtenKejrs9brT1vCFTAN9y17XThtyBpT9mahI/qhUW6maFc+N1qHswm7BkqKeyYHewJD3pz8y1cF8B1NsWzDxHX2Uw7KOzZT8LJzMgItwO+a31aVtmx0z2Pp7NzU0rsPIe3dN1fNvo7vOMq6UUtYYDtQNDhNAz6lUbwk9bGc3ukHcUclJyu8/PIazjZQx7FJkrNNdhQoLmgM23xjfz91x/pyPmVAlyXwSmiyZ0f73JSOwKYH+mT3L10l9OKiwgBWkoiGTscuKkcjyb+sJtqzQRrqtXts/VHMSrAs+QIcClpdaiG8Kvjt3kDdL0koECPTRnPQ0UTvTIWaoCKx5pDxgp59Gfp9/U9je+3ZejVGc3z3b1T2EH7vp+EA3LFtbWOT6rODxCq0qDFD8svwHswMzAaYFqvzIdOHzkITjcxdzXPSPhcoMgEADUXK9KqfQ4WMTE3LIZNVWBDULGTIwr0yVFEQg2qNHKkPypeuf/uK8Im2Xc6O4mHWZU/UHSTybvFRjfxNUtq7aV6WmP3R8VgzcwpduOWK+4Cbq7U/9uNGXUrXzsmBSArjZnx+gn3UkA2FqpbURvAbeAzsWkF8DtFhswTCl4KOuqekc/LMWejrBKmFFbFRhsmQWBlfaAGpvDR6RgTwsXN4LOsq4n0vvI9zoki9qCJzRnvCrf+wwM6xKVeDE0U2W9vxFWfjh7TBev1NUpMvHLXeveKKLnQGlFk6Zedmseyc4nfOdn3Ejv48vSJcfEBLk6Q/KoXN+lk/0gwI5xXyiQuwIYMtbM06Lw8wUfWyG9JY8KEq7BeXb3zGbGIsp3PEnpGTkCuusF6a7H3f1mymc2j48vVFG/NgzipqxftQlioiqoSp6ze8O76jBFJBO61Xuu1cS1AXjTvXWLC39/QPvX1T0IR6Yn449pvpU2QTD9dSIJdvm1mw8YaaH/S1rzqEs47IYHxjUwA3fsHiLVnKk2w2G1U/ZD7lJeJ1NvRL3FKi1vecp6T/OmIsPAfdXBL92qJtM3Ceb+GIXM8ka0ckIZuWCbj5tAQ0SDD4pv43FMEv9kla+L3yd3Rz/T1KKWTvJX0zdvD62czrerk68VsffHPeYZWr7jlrbR42izxFRER/hEsoZt7u1BLxJNHccZ6skHOuGGkQo7ylVNYbvtk+aTZhEkix3QEiWDDcbeED99fwodeMj0iAY4LSPK3g2l2a6kt0n2Svt/psnwOY7lGLkqdLVcKCcZL9xb1W8TIUEFqJ4Gf2cB4ojh1W4jBMNMEDcAX1UB3BnwdHTAajaPo2a8OGL86fjbcJyxiI2T8oTVIPlf32LyaA6dGZeXyxW7a7cxGxXbtIAHyk0L+I1hFwjv7vongYHYggjwRDQFHcJfhWcqhoOChwMlu3R8cv6Cv0Puxj5mBvLEq3yDRynvuzLtvkKm6lWXEcM0h3/N9ImxNt1C0nay7s0A3wPBz7JyanA8OQDK3xzVp+IfH6F3+w7NMjRxGG1LYniVoFPa0tk+CIqXY6jo7h2EkHH/lcZ0vbV8B6DZbaeJmh857H6pzKn+Woys55RVFtXsKNTbT+BVXNZQgnRobWDCofc5RnPILB6gk5pDlQVoAilBhSmtspe/1tgRahdPANy9NsGIx92xs3ZWqHz5gXWaijXpDhbEpgi23UEvAsOn1ZaOoJPY4C9EWIWOBwfTfwyMVbrHKeS4yODK7h3JPjSgnP5Q9k5YXYS+eeEqM7wc1xIRjQgOE8UUHX27T9P4sERidOhRBlNlkW1Lcw3QgEhOupEn7BeR+dlPF1qwD5ct/fV/kbmr322PZfr2Wn53vG93SEr/uW7ALsz3BF8MtT94EPnZnFPg3A1hPdESuW1xWeWtpPMSqINjyxeGC8lSdXVjr4YXifh2RNN7vNxZIEnnO2IIVhOhFDFdQGz7JJUp/t/YKwaOZr0GaYGFOo2OzR3QoapCdgzNFag/aEELv7B5BI+nc3eGwIEXHWyWNosDmQP7wy/xlmn/kIw4YK54NjqC+O04Z0p8eX0LCThGkz5AnSQcEZvG2GaC+0OZy91u1RAwfD9HOycpTW8RsL0FSxtuxxe+tNQ9nfKKOVfHPs7PI5v/yZv5aXmi1RalO05kUZll15qPzFjADTBVHWcv6SbEDbOaLQpiF6oT7XkpDl09EYn7qhrkcEq3uEcnqR6NLS5KnSKDDRoXX0em6NFaqEXVRB0f5JQNlf98kSX5HklwHvF/j/tYtubihYVaBlUiCxj9dbqEEyKWZsSvmLD5SGSVNuWj2/A0M4VRMn/tl7VFwkZBACf6GmJaa78DwhC++pZ0+rupzc2qDK6B8a/iGLTdZzFrrVP9TWFolITH+INyMJLFrH9wH84w9LciotzXlM2uiVItILvctfSdygB47fj6uz0S8A8Smz8L0T+NU5HZO2h0tvL2lPaLEIEcQRIKT//nZ5PoI974PrGI2d273c5E2LbFhQRHSqKsFKcF7DAHkauzGrEapJLdaBWBQNUDxnnt6tPNBHwdNRLqmxaqJZvZ2ih0g9ynpYs1M2fPlpUVZJIGAhEf1pyb2+3c65ACRApSJo7Xqs6MyhC912OoKYkkgsZrr2YHIXpaLxFvTzd6YcGL4q722eID+D/AZTuQcBMLoBfH55ivMaKjvUzZkDVC95BZmXMyq1WLhpGgDE8HzSqvwxq6kbVMl5Ltarhdcn+2B7lYfvkMzXzfFJwDDFI6QM4EfuSymietiAvwx4IgvdcKom/sCDmdRQj8DFX4C7v8jTHtFn7G96AhGCK0wsigP0Ekxf+JA/DJFLfabOtDH1I7V/ZSmayvohNN+5RrXVXsTL+M7TwM+DMxGQkRc2B2DLAhjZKlJIV7WXsH6RAxitrNGqDPNCgC/n7TH285EDtVCMN79DAPpa7XGpHI2TfaaW6JbVBoJCjOKPV/JB8+JaFKYv6hzFpyjTdaQhlP7k9PJ++LDHg+rHbkoISaMaDZWDPT1YMjwSEkdXPgWjKh++QfXo/WfCXiZxSrNhs/eZWjwdLHMG+81bRXV+ucZToat1brPU7j1ZnaQOsuAdyxA32V92Rz/w5cjhnWOfZkdA6VRDbhOJj1pqRQI2TlPKjKbfrA4tjbx6AXQ3NGU0/0i8JLbWHxCbu+d87dsphksggyEs1Qn5uJdh7ab2AIkpCdiBDwZN+ESc/vG5tNAVvlnTz2LNQjscrnPG3JF7gaA9IJvXFbK7s+Ztpd5s2J8cQUW60YmFhQR78BMheDl9vJyve1FQ/jt8fTYsMKI/Cq5itGwA/A+WRDHWVv+u6Y0MLb9owjLDzrETuZkiXfICrprF0l3heuIIRLlJa3D62fxXFVP85lK0QCrTVBrnaxcLeCZPp9Jv5LK8ae65gQt9M9gqKNKeGX4+fvllfkLgbgAdOEKYR5fxlAm2bZ1t7Ms+dTKtO/lz7HAPaDHQlNVijhXDpoehHgzEZMt6fIDQi2Sl8EV1klDwVwplhpm0+kfdItZ/n1eaMqO658xK30UnDNIdbF6og3JyEiayeiT9ce3SdKJlbEKPuISVjAyAiKvfBD890cW8WOT813hHZZNku+peAFuVbb5zrgN1HoJm14Aobvs1uzG575geVmpykcU9Z8SM7Rt8sqnGcvwuBLiPrLRiOck3TFn3uSTXVcczhbnBz7NsHuF2+9hecO/cdv2CKjdIvkEoZxLEJwZNcmrNQrL83xDqZyQC1aefBahAS9myHJkYAKF500yZ763tcKGxBrKaWgzPyyK32Sw23hCUJ+I5/kVLjls+tE57GcHiGQvIxZgfgHXEUlv6clZa9sRmzu5PnAieIRzD7v6wYwnRcz83jE8RvzQfq3zQaL6MKTTxDLqTH5ScI0zwB77yaMyonZwynblKB/oabapnAo/0eK7QwYP3Ex/hV4drhMTkw/Xlsk1T2SxpGKysRO+hmJquxMlEot42wAWYwmICrdVcGGLHgtAmXoTZwh4CjycCFtQEJOKr9o8BoeOufrRAssuK8EB86Pn+WZ1X4SJN2LfiyhvkXPcGEIyzJSrm9R/GCUQMb91DMefKwEIFk4MA3UjgaQPLjxjO7NJ7bVors+eYprOP6dkzL2fLL7mFTR9w5qU5fv/FXYYHn5bN0d52qloDvLdd4JqIvAB1vGR7zj4dJ+rK2P7JHTNSLpxxzuAOYSRvNprFGiPcpFBZfQrFO0225cwJHNYbo68JS2xKyd/0Z+ZMZrRRlFCC0Wgcd9I2Qz+WcVKbWmC4GqN2+ZaPwJBsPp9Zt8NAVddl4d7KZuLp6qvvDk6SZwiChlYQyupeQOXoxdQpOHw3CuoWmhFS/oaByWqLvUFhfd8bFywxPHYoYUPvKb05QcIOAeHPpfR4U+pGgCxBKOXNXd7vpM++I7XPYog+cVMm1yT6L0WXwWxf1D8whaWClJv5SmnO2guZzMBwgu6R1kN+UWkh4VqqsVsyNfwuxQ49QCrLqUit9L356yy1AObr/yn+/FZhs85q/+uywE4jIn5deFFPPdAyo9GP6fEcUo1/bNexDcamxfyADjfhMvahFh7uIdXVURI5klV2y7R/r81/mZc9+/mqxe7MG/gv5+By0/CnehKaJH5rWcg8JH1FXS5hjZnBfK7zS4rEPz8u3r/gSBRKVS3wtIrkOG+j/NbsS2YmoDIvCKVP+D7TTOzTpbNWTCh9C/oMInKI1stVpBxLwKZSMGaQFKRJapCzBs57nqjIDnEC7NlZUnoHPtjYArqaiwmBxniwwL6+nYqXNtQmrFe3KtIpFpG6sLZnhxFH6+AgmBiUnIiwZHnztqWtb6URX+0h79/5yernYatuYAxi5ChGukRm0UyHCDAHFq3B+F/PpX/dvQdoZLQ5y4g4sZsr44drXWs44yez1tgZVTmLMnl83SW4BByzhnXno+KCSiLyqwwqynbvB1ycJKAov/OGfY2suTB9GhwrsmmMsJcAp1+mT/hRzd0pN8vx77JbaZyMgaDAeA5Cqn81BHyR5An5fUbHHR2j+Wzbd+jx1RzBFvOxYdwnXRohEwWKi8gKTPVRbZQxp2d48VRCK0Ps9rwitX5C7WQOQcplHX610MrsPpQ7SIole+VPVaqG1GvdQjdoFS6hYg9iLlNXNLA9UsizNTRFyaGQEFuUkVGiw4DycEzrEgkiy+2PWtCpF4jxWjWv4zWmn9NKItfWrPgxjRLCaXWyXwg+FKTdfR/lZYET59gkZNUgnyDkxNeQl9w3/Pwm8jocpx343TJuzSx4hyzAFJ+XTf5WNhNcZO0uwbTu5riISy5GlV53S4jRf0j7Cfw3MbA+a4rGu5o7vnuQyLKuMp/lpOD5KS3NhVE+wz0fatm0RndJBI842iBBGD12qLaMxrlwiT/KlTWSK0CJstOqQVWX2MgGFvG59RBC2tWkl/TY6PRc5fz
Variant 2
DifficultyLevel
629
Question
A group of 55 outback students were asked if they owned a horse.
This table shows the results.
|
Own a horse |
Do not own a horse |
Total |
Boys |
21 |
5 |
26 |
Girls |
23 |
6 |
29 |
Total |
44 |
11 |
55 |
One of the boys was selected at random.
What is the probability that he does not own a horse?
Worked Solution
P(does not own a horse)
|
|
|
= total boysnumber of boys with no horse |
|
= 265 |
|
= 0.19 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A group of 55 outback students were asked if they owned a horse.
This table shows the results.
>>| | Own a horse| Do not own a horse| Total|
|:-:|:-:|:-:|:-:|
| Boys| 21| 5|26|
| Girls| 23| 6|29|
|Total|44|11|55|
One of the boys was selected at random.
What is the probability that he does not own a horse? |
workedSolution | sm_nogap $P$(does not own a horse)
>>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number of boys with no horse}}{\text{total boys}}$ |
| | \= $\dfrac{5}{26}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18rLLLglCNm3NS7azcbLfTpSz/NXX9SrwgMa01NfswLLdIsvCe9rl7xKOBb2y8nuboDfzfDo74jD8wpeWdm+A3VFQH3vLs0K2eep/qcEFZ2/VoTrxzLgqAU+o9U2nhCQcEXaohlgy+5RuF3CJ1k/uPu6uTtZiB2591ROLKReSDz6nWdnh4JQl23BszOfMENBM6t0vZ82mReLS1TnGqG43ShM0oU6hDhIChx2TvQ1BE5mf/vmkcy1cAzblaoN6z7s7LdiDTpe0cBfQsRRW9A0BipxC9zF6jXaKE/ouSeFxV4AxIwS+V+P0guRn6O+heZGSGtCTHFDitRlgjzRsLg8m2pQgs7DNQGqmwfARJxrYWiM+NhNrmFLEUd+0F+YHf0CbtQ1qh6+zDWta7g+HL2GC8AIgOoo5CfFM6KBkLIe/v/URAxXXoiKPHry+409VX4PAWl3SupWi4Kx/hpYpO/C5idRdn8rIvosb0E9i/VB9to8WdEtaaAOIGifMm7rRznuRAR+PrQvJ9YvJPkhYNz7nzLYFYLHUZfmzCXVkXzJ9TI+esTOCwMTMZ7l8ZTRt8gHDKjR86wMRHuS3Qv/atI3wDZifjJgemwtgcgRbqbf/oGN6CCvUMWKRZSijkb7Gx4cJn4xOz1oT6kaPXIW+qi9hV1tEL4xiP9AJ+uWO6H7IjT+9k48Xy4Uuvi8sdgJUDuqBxvteCfYD8RhNWwvHQDOdCwybC8Me6hYZ1gW//N97swUfNcza28/QZ9qs7qTzSL/YIMpfSYtZc24Sc/Q1HWk2dOC2FybMhi7dRte4nDz6enxptewvlSSMTPWTj+4+ayDYKpjYY5Nv9RIibuiiS3KD16B4BCZcP9he/GKhS2vodXs1Eaf9Z2QngF4ResnpNTRb4gSUGqBTx2XFk7mTTybdf/Is8jsrrGRQx49Rtnt3MrjGi/T+KZ50CiJ+JlyILtTvyplVbialKlQbV3ibHaKM8Ou+n4HYnEpoVSW8lAGoInn1SWjKMpQbnG27nPllTd/K8ghfzAIgpRBqNMsl5/x+KbJxmWRBkkYy6KunLhc22lui4qfUEEGV3fM/RBjZOFbk1nC24WSWawa+3j+Ijej6xzgmCdoH5x95Pr6PajdbX+/UXE+yyS76573kDENsa6zMNT2mXlO2uJo9aUVwlr070dh97w9f2thsOMEpf2KdifqHwhtlC2yWaptFjFXjlH4qaWD16o0JnYynFlPX+IFTBEN1/ZUCp+DHBWtj9OQbK+ErbrFTJ5OvIAjxRiFNkL30uPveLfi1i9tnmA8svcVj6QFvKsGBtvxdM4MDqNw6+Zzwmggb52If5zmYL1tFc+DSq4+Tyynli996nql4Rhl1Wqq1h5vrJPqSMJwH7N+0hzUj73YY5vrb+KSpT6Q0erRhTF0BC8XwMln88NGgaXv+HpckkqO5rNdIrlklbprItN3Ajx7IdxO12Uw754kHVt9ohROPyoZrVdFYhQVdmYAbgKe6H+UwBKAwRzlYZr6QJ0cXPRoBWORRv+uzSock50hmafl33jGaFTwdv3PyTqAEjcApKxkIY/6F/Qq1NIY8pFClEdfVS2Y9Zu+8WdBgpN8SIXGU4i6KHboA0u8IUX2PPjWRcJPuR9ycK4BeEAVVRetuZ+h1JuH/xWzhbFuNu/JbXGFuDAm2orBDEWjGtBd4SM5UKAjiK7+waxgpY0FT3nwsV2q7X1cpGizx6yGqjEA+mQwKw9GwYsy2KFegnrkKw1g28kEvhuDfVqw1rpgk/3NPIOGPnRi01rFO9tDnYMPGKv6MT5JTjTB/QIbFv6nB+2S3uIgaNEKu1BbFD2rTDvbKq70aTx5HeJ+TvDBBWbw0cZzesLHOJO2rjWyifZNTCWloSkIl8BlvL//dWerb+hn0vaUtjBj3Dkola1XP6N+eUs9JDEozGKkXPxW2WT90+t6QmxOtP2K3LTDYtwExiXwe48XxufR901dIywkmnN7iIkK6hmroKynL6OjR5vZnfSVmgi1N1D1JPs8YDmVfltnQrx6Xr1vYBJD1VsWT6e6f1EqMQnNpYhv1IoIfhFEZB/g6US1JOPEUCr+yc0uvme/hh8famOUY1Dtjn8+URcCypeKqe7P560xtnrYvYx6MLdgZGSZUuB05ReVZxfshxbP+N5AUIgxwWDa1rt4YdlIzqB2yzyfoioUuuojGwKEuiEwiUodVgiXBGl0Qm6qWjmr/qgDfwRGc876gO6QiTWBqeEjlVI2qd2SfwsGQPaVXRMl/vdyfDQ1ZVya+tjRUrGWkAWcAS/Tco5t6f3NdUHYlhLMyHbuJojFAb8QzJBCPeC1MaD3CgKfstlAf245Q0SEFiqV7HkiC95mwIIjp9eCOcAtUYznpY70SM9SutwXYwCtTkOBg8JOY5ZtvUb8DnIpIbPHeRO7k14xBGJyjcTJ83rlBHACoSX0rFOJWwVJUKYwQxpR6olcVGOndL2p/xisf/d7rUOWWnwCuT1hrMn+nJXoXiZmRL3j3TkYqS24s/tyuOg6az1+tg67qZCNAPVFi8qlV/p6Rh2ssOAlGVRKF7ubWcWU5BuUXG49hxydHJE/kmcUzlINxzAQvWePmLr1Jt4bJNb7WypT04uDKC4n8jymLktCSgtxL8hMnBLnaeBlHgUp58T1bq4iGuymYawSCfFkBGRNc+4LXd2cKrVFG8lQn21iFvWtwZfg3HOtLjGKSmUdLLL68BXr5cQdWl7SyBSek23X6WvLeaPOGT/t/nshOwgAqsclqMAca+Atp+vSuRuvR/d2Vjbz+fotb6e4jy/2nxbhhVzhoyQC/ORXTwXuUcDPUtQZrHA729KjPQOzJ04cVS3amV9ftL7MNe9JFd68kVlYQQKofk6YJxt0mT1pq2cjJGxdixfFfKbszJNwr7KxtOgiJE+55oWrcTV8bZt1KHe/XjonwwAefye5wrSH4oeDxRMGhCdEXC2K2NOrwKSVcjwILVxktOYmAUhnpLxqrpo9/ZzPvZTZA7gA4ysP/9665s8IX02oeGsuMkqhZwZl9Ut1nLF7NN0sqMmlU31uJ/Fah0PSczdaKG3rlbkJfwK8UOeEFXOJ6yicYVNOVw1w/1YpcrWni9VphWP37ZC/1nq1KX41rSkXHncjrjAdvSqYIFwTsfO7GYsQnX8YXSe/X7h3XHvLdjrBfATmmqQ2tt0P2T+TyGUc16FewvjBGVpC64Kh3DuUfTa7987/pt89lQlPS0i8YCsmx3B+EkNxwGf3RNl/yoEUm1Yiny+jAR4oJKrTVSuTlcuebOm1fR6Pnra8vFSbo1btuRlLGxn1uRM/6pmgFCL6Wkd+ThJkIUfnURhvYeq5sJZ0UufjXd9Bx+hJQn3ZI4fvIbWMG2PLbei2Muu7ex8gvxbs880f4Bzj69x60plgzvw/LrN1BgvfQrILq47R1PX94Qm4jun30m14KetEexfpi1zotLaqT7Ms6ldK5N8J2PekHmN0YZtBS9RdnVLej+A+KgY1boMP2sHtmJAmf/49rzNJoH9G84m9rEspPwHn+CYeUfNU8kxbprjB1tvyTOxK+TCcVoe824xi/G0YSHQCjMfJUKoDt59z8+E6FB49lnx/aa1lzbo6p4vAcsyURnnIb9EOeHYd+U2RwcNWAkgrdJpG7Jz9zk0/4fg6R7uC/jTNKBSKX7/Fbl8TTkqKZhZOJX39XtF6dtTMH0ECdZIhOeAZ99mALpo0odtDKo27VToSeNixkUEuQvCpLx9eCSbHEDHC8n3G2RkLxXsmoBx2jnB12ZAK0Nt9Ku7J4UTSg7H2HY0gs1c5ZM1KkPv+aj7Z8K8p5SOKaYhosy02ork+WkR5c93lF7BO48W8vYejrLzGP28fzuEXQVmy5Y+BYgJ8y2fwivunm28DtuH98pdkM0lRV22QrRte/maA4zhKwJoacDnOoebsZNLBKz1J/MyiwU9TnUty9PdURYfCeqpaLezv5zRgUiEib2hADr6q/3SHc/Lg/HqSVBCoi8Z+6J2rZF8IM5py0M060ENvG35/VWjg8SbkInscs6w9R6gRjUbmGWd63Bc8El6JWDYyT4YyaB8gm31SxlvnSIfV1GRe5lgHhyEZSzwBaaNRWfs7HNmqRi72/Fe/z5BKnn90CFJZZ0oapaI8xF1shk+aUGDyRjs4yLlP0JfcbPOPxOkiQ2H/4kkJmf0g9MBR97qjSwFZhrpdhMYz4TLr5/ck+PJpy8SS0otJ3hPALWw0km1bY6jkHbCW/zQdXiBh3oqWQ+uzmEGReuTXZBjL6mUPoIWKtGaipDCzlTliAXMn4EgOxZy5GKFOTIv60aAPkDe3wu2i747DzpypfPxdFnMvJuGPDmUlLFTWTXn1H4ouiDpyn0lSTdgdePrrWjwX69qp5cAbztO/AN+SQkq5lORdiaI9EqV+6VqIxNOIXcot0ylfY6SuPGHnP8Q4WNzOawWpEfBx6XnkhF0XERKBOpT3+185FGvXhBvwHL6O7iKBTaOcLJ5hTQrhibQqbo7G1iXE7P2ZXWlumkNL8bjQ4X57zvF/Q3ApQ9EiwYG7UarE4e5MIberQ8kLxTgW4Ycg4L4p1rTjrzGRdTNaC9w+G+0Kggvm8gACd8fzsmrNi+PkO+UeMrSY73Ayj0FmE9ouHvzMlvrgHqPCYRIwSJIdfMs1NTTuHc3w//Ig8if8dC6t8ccEzs+lRlDbwUYUpyCibS+qORgQFsG2Bi0efWb2XARQapq9CzHuwltOLWATKI9G5BJdenUmA13QmW3VwtqR2NOufAksIBioiRSDVjO3SXf08NJWguOWK/AUr4z1CczbCE6PveoojKAxQb23qhB32gG9zr7Zy4gJNoQ77xcQVOdISIYhP1WJQLJXWU41mAj869usRswgz/foJ3a7aC5vIliNf1CTK+lBVVTmpsxqxiKUbD/WO2lrM4rhfkEZyxikK+F0/aL0PQFjd4gIOz2RcFmxORfZm2d8BGmmdOlcpzvkbr/Q7uE1/taZDF7+U3mNy0yH4AUy5yx1JjM4Yf03keK2px9T9ogJLXHN9axJodzICKgLiV33jUBuCL/ovnDvxoCLmRYqUVviDKSwy9MNji0ou6w4IpIKR1iGkhzYQIa3dZudun+OUIKpPcbm4foO/Wp/cj87B+VqMXFjyPRhGjmJ59t2HHLWnKkbG3LzmXcWb8zGo/uczyrUbcnjpJBQH9RlEP4RnXN/EfPt42rARpL4LjdKn9NmxxRZDFmLOvx5gbkUgty607WxUO9s3uOxm/Jjzeg13cdeuojeXXnOnTCedkQGa/1pbxrVkkX0bBxc9UigSbDs/PHRdPYxOIxhkJX5tbsY4XdXu1fF7Ze3vCLu4DrZ4RWTY5ll+HICVUmO3DrVqKP7T0fx1811FBCz4FzRTgCmEWkNvIBQIotjwVkP2K87/KT4/0L0Q560kK8utJkxwex/6JyrmZKtrjpY9IGTo1kV3WndpBAvyp9xTy1jxSOkRSUxEdCMRbF+VockOpX5i5sU9A2g1TjZG5kFnn4tG5Tn9z/l9nTIfyM6vnATGT4wIMMGe6BlS/pnbo0zFlA36ZIakFLKCj2om9RB6CE0UKemCbqRvdS4puTl/q9+/zphuJj06B+MafLq/dYtmsLGYhlDf+i3a1rHLDGZr6IoQOe8IBUk2O76rbTgeKTE2/IanjdUnR+FdjR+6De3fKO4dmwLaR/csCRyvIZNAwvgLI58rGNqYuiW0f/uhHbE9TIpWbhXWeyVV10NUb3BvrGf9POhaPl6PBw4XeVX/MFrZ0RqVM4iq1wpgqbP6b9cre+yW3H0zgPCg52lEVGB0K1J63ABk8HJdYJXfZEWgaKiHuQo106ZiTQGqlTqbCAZJs0v5iDHNQ5JnV6rraWoY4ZkHp2ohvBcWvJgnZuvZC255mOElwDUtY6Gz0O+iY74mS8flBelmPl6T74vJuTZ9T0IV95OWaJV5M7o07Oig41VMp9VuUgIuDRmnlbiANOYgI29IWBsO7IkniBhi8UK/U35GwstibGIuIS2bOToFcb3N3Uya4TCgY9E790pTlbk9ypLskV8jaBW/xVMIsXey/dpR0diZtiZ1zAmvFj4XA5u+P5yin+0BNmTIf3IgtHwg4aaM7womKJ8WGYQOLWfL5a/p2IzRSgKqobBQAdfzPEADvIzPsQVTL6HumSRi8Rt02ZuAt+6zJWWozK4Ptk32xHCk9kw3VteaxyI91C/3bUvsN8iNjYmihsMm2vx8l9UIxDDO/Nktej5d7PaKo4QcGMu+IsTltWYDe7X/hZHJCHQBxBJn+63jTpkHiwMFUo2kYRS/2y7DPceFRhlVjfl8ppF3twp0GW0p7TOWb/I5J93gTG1CLAbzKHJx/6YmyZ+IfXepVwjFnjFkgO/b3sCdYG7n3suphf9SX6X738xzOc4n5/aTE+bGg4Qepmx9UH5edhhpULSF01IOhssnlw3QDelGca+jmqZgrtBNMR0rKZqQEGdtg8bEWp5nF8LCknggL8+pd/eeZ+HJqxwzb6JoxPpmAGXlb4Hh1FOibJMwujT4qgqQi8T9f/t1BFHKL6xozf5Qt9XWh58j84BDSxe5OXp9zNdB/C71MmLL08yNX1Ux+KYPFulzmbmRNvvaJFCMYrQfOsuGfdpoSzIOREYE5nfJqwO2cQo0K9HQFDwIWLvNbwesTXjYCkHVpY03J54RY7OjLipXKkLB5wvmFPTWbAZwwt/bwuFEClZg1JzuQc9MiPaNb6e+xnQH8pFAucWjgyDoziwhgXUuWr82EH6k7ouRVeFtEK5SG3BA0Gdn94I0HKXCgzHGRLOSGXA/QkxFBq8PW3+WXc6ZPFZ1jG/PdY9Bsp12BhYyQ9qifwMs5FppJ43bNgNZ4sQAsYjMB5U7qiHRVrih75usrD2RdE698Ib4niduzYC9SPDe+c416JYKTEf2rWPcevJJGQVN18z39yu43e6xS7+9+SiVt/HJ/DE2B5cfRfUp6kf/djDnz5iCgBsfHeux8SXAZMeCgtpcgsdDA9qCns8HshZM5+at7fiqh5DW4WiGlCmRTVg59ainsDeR5apY0N2A56RznTIEIisJ6X1ObMEMTa5mgKb/ezh95v2X2nrlTqPO2L/lU4oaRzUfXCOG3q9iznlv5pyaG/W5N/DPFM/MIbl3K/dr31hrcVffmyYaAbRmFaX7nUQ+I1uAkTkdMGEjeUMPtrLNKSizpBAaNm6aiAM2lDCXkGzMVmW02rK5t+c4KFwGZT3ljqz/48dJsf81EtWooZu+1fINZnjJox+z4H1neNf7BJoo5s6N+9iEIhb09588g3JEZf91I357yGl2nHqe7aB8HreVNUWgdbtKRaAZJZwRhcsmIBXI1p26Sb8NvePAWTzZ+AvY65xh5lomASqz3wVI7yqq/LiAQ/yvK2nt85eZZRYeb4kmVgV38BBvIB7WuM3KidWkL5QK0gEtDaTwV4jIab+tPIaoJybC9bDhH81BmlGOJ69n560cVYgQTlcrA3d3nAMQdU893sjUVjQOUjeNSEvbvVSahDqANN172n/SMfrS8+W550GhS/pkJs91wTPvuwMnwwscbIDqUzTYW5hHw7yJG1umED76cDYLVWIWLm/h7H3Luvl9V+E18FTQ==
Variant 3
DifficultyLevel
634
Question
A group of 48 mainland students were surveyed if they have visited Tasmania or not.
This table shows the results.
|
Visited Tasmania |
Not Visited Tasmania |
Total |
Boys |
12 |
6 |
18 |
Girls |
18 |
12 |
30 |
Total |
30 |
18 |
48 |
One of the girls was selected at random.
What is the probability that she has not visited Tasmania?
Worked Solution
P(not travelled to Tasmania)
|
|
|
= total girlsnumber of girls not visited |
|
= 3012 |
|
= 0.4 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A group of 48 mainland students were surveyed if they have visited Tasmania or not.
This table shows the results.
>>| | Visited Tasmania| Not Visited Tasmania| Total|
|:-:|:-:|:-:|:-:|
| Boys| 12| 6|18|
| Girls| 18| 12|30|
|Total|30|18|48|
One of the girls was selected at random.
What is the probability that she has not visited Tasmania? |
workedSolution | sm_nogap $P$(not travelled to Tasmania)
>>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number of girls not visited}}{\text{total girls}}$ |
| | \= $\dfrac{12}{30}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/qSqHrvNBszxrn5Dm3vbIz/ftCNVU31bIHSyFN/NdEsWgObLf2HMfoXictnl6GZsL6qZKLu7lL1Soikhmjw6ILmP7vZriCmiFULfTS9A1k5/Qnf+kiDFFAnwy467ZiPUieejrG+bZc+ut5iBL/EsjDEG/K3dwhq0WLsXrUHPvCoMZOcKip3g8jFNniCRX4vEqb1ZJg5zVn+rbGCEoRHeSazyRoAzeanShuSh4BbQLe1ziqZDiW6IFG0Zpv7vcYGFHQUamoO2N05I275IsXIa3CKX2//qTZLmu4FG+0hTBjPzosXL+BQSH/VBn+tUDrj2OSBOxWjxlIQDL8j9yf+i4k/l9ufOPBHC9qzJduTZKqoznQ0mn4Mud4LidOH/8WDrKVED2Pk2t8unxmBAig6el/UOyvpzBal9j4xQb2SG0iEB6nNRhQhRY/4Tq4e2Fsa03hCkk7+YgtU150Pz1s5LP/AwX68bQaeu5VZAR25/Im4CF4OgOibag3i6VAILxwZwQH/4FGx7Cv0jqx861TNOUD3o7ZfFbhgy2UxQNSTwHjR0RIzzMN+jsC3bn9LNiFi9l2+/ZZUoMeO5hzJELhxNR0OHjgN1HhPQ8/27XArTeSunWqV01zwhAdmKSr4TszJtONI7dfXe+lopfOv4JpQqJnQDtgXigMrfvse07s/kJOFPX3v27PlltVwed1mm2t+X/RKyJwOvqjSY4SjAFOJa82LsnIEk/pl+XGFX2w7OZc4K6N4Rsriz9q/Laiy5MH2bZv1m99bCLAFetWqbmdjjpu1xKNTUpdBC/L4fz0k05BMRc9PzrEWWsfFX9eVo57JI/4JgC3b4Eh3G0pLk22Gst3UvdEsVVbi+2m/mGDmQj1sPVD5POMI1E3P5w367qNW+joPgpy9PQm3V2JdssYTSfnE2kHkV2V6b+YgZDmEPkrguM9RriRDPTfkRoUEMWdQ02kd6anTGmuXQL6HDf2/partisHD08vusO78hYYJAJLhrhTQj2u/Z7c73vbtHPQoMerhnu/dbLH+rhBiPFFB4xjkrTC6tlc6/rx8/kUN8x4IZ//A4LMnLdEnZybm+RM5vtSDfytjdhDvP4JjbNY8KkDXupDFLvVQMhtfSuUUnBDa6yx5KNlUw/afTqPGsq52wmQe1z4IU0Wp9M2CgwfG/Yo7zn8RBNPQJhRAC4g4A/zMnIQTr/XaMVDS3l7qxw9u424QJj/rvVEWYnutvakOpGXzlKozrs7oH1WtayfiEadzUa37kGYi0vWaf8ic8+bzKxK9M6zs5ckywNNARCd8UR10lXQhcridKSVtmDljG3SIhdloHWkifnWqww6+gxaU+B3dmtAQVoZS/wJIx4iwYrJYpoffbPv7h5daXl/IPuNekXXzqZKDxKootreAXQZcgfog/fxDXAX5TN4URXupxm1gpvLv6+eTFsKSJuOrId6tnxaDm6OgdLtnHVopeKidKfm4YClZpZLhZQ7jQA/of0FJIpvcX7abOWwaXAfHOUfO4tLqZLEqdCkzE5FLJ8B1L7yQIvFoZ0GNRNbNmsiWPwAyQQaGkMp97+fUIgZZk9k9Zojd1skmAn/YRwIxDmyOb0PuoDIUfUckiNMNmXOwhlbSH+xnVo7283yygpbJrMMVQ++FpYbIJAxXA0OGv1l+7XBPTJZT/QvWZKzcivwYX3gZz1UwBGp1uStrEXmEKUGRtFmm3V9iKV1azDSOtSBAegUYTFmyG/sW/NZ4uOXC3klyM01TSVlxSzzF013dp3NsMgSE+9234Qm9myZG/PkM/FLaBUcbEGV4gH+VDYj1dOx9YoUTDBVv/9ASOx/RrIZvrM7woddqcKm1c9roDj60oUlDLQU4Xezvh6lyhP8PkeKn4kbrKwevl+V5byEFX9EMQmqZ8kZoMr2LzXjGnWp1d/+jsSrzd3eVckj5PsIMjNICIzXEirr5zpfMOBnKuyiK8oie09gQ5mukcZqHl98L/oZZvcgbNzU0teumCLG3s8LZZzPsSDPaR2DQ55+PzkxsbFzbAfWzzy0XF0s7JLfmKWJF0custhH4HthFqsCOIyJif4blq79aek0rP6Lozq63V7Y1vkT/KAFSKQroLP4AytnRLj/4pTh23bqqLiR8TebFnqm8o9oesWW4s8wxuLuSYDkbLczUMxj4jXUmblGvb1DY8sdsyZOI1rkjcuZ2E1OFs4D1+w19iHqr2QEJZHMhPKokxAruzUscEr60oUtfOXMthyGLThP3XIQAz+8kxOFX6NVcheanb3QEr+ZkaUUIcN4tznBCZ2P2Mbkvm/qiSCO5fq7Y0/xYwjkRXP7JJp7dxldvGzZpT4AuqJoewgTCVbOWLygXiVGxyYDqGjG65WjKXSsmk45xR2Xd660IT9dJOULP1C+vWhMpms5fY5+2AFRKY7NypdGojAJw8o5mmVmEGjMFAFQ7Sfgm+xqcxO3qBIPrLpA7MYX7d0YtlB6vwc8sSILTmP1/s3qo4n1Xij/itvV8vgruC39+/lx0wr6SLMe4QGRD5TJiwxP0NQzsC6XFjI5KRnMg4I3MSIK6AK1Q65UTjZbX8SrvJK1TSf7DCa8A5p3G18bw6KK/qNdpJnV2yg5/BK3qmEl9C99f75IJZo92Jg7fXmC5sBUXJWJ80iJEeUqkSyCH/hZ4zmwzjTqh9OzBrDNeMYMio+4d7uT7uW1uxf+BYyV17LH6XDyTRaXx786xRH3tBro/yl33MbioiFOqIU/uCdLEhpox+lUEbPzKNgpM//usq+B0LCwlQVhQORLFXZDkLg9wD21yNSKFJWgk+d2EdMBouGCGjWgILLTkLTC71Jy65KUPVhY+6Y6mun36665GH5scAnACA4nbSTbBPv3p3Jl8kS2b5c/bRc0vuROYKEyNISpEU/hOjrCvtSOiIxBK3/tAhFtk3Bgd46hqEyVZQL7rrAnwQRPWqMysa5tqf0paGxlg2Bq6sFmyf9coB2cVXhOcZbsQnDTMw18UZUxiQx0EUm41b8W2p6sDGaWszQkBQYVTMvVcsMFhDnHgpRvqYjtjjtJIp8MZFF0Y3PU9vZtxTkPp5/dT2JCREL/K66Pim6Hwh7kzfR8B7ms02IteXYxTOWKbzUPg8T7pS8H58Gh9IYPdf9LFqkdBuTE+N/vC+Losy+lw2fozDcpG5YO88BQQCsWBqEPNSJTfoxiQguR137zFuwJijtezQYx/cpIk+XKPhvvPk8hCtyCwotygZIGjvP9Yz6KYDGq+KRbNnF/sqG7L7PKeUZzgSHiFsLwQjIPOEZHxtBt7HNFVRKIyyAs61QdjLT6BpGjq2LnB0YmKVltTO6A7CA5CAC15AEu6qNlN2nJRhsPadcb9pnG6RT0/TCUl2INaLLVa8Y7BbXv0z2Nn9mJqgTJfl3RjLKD77xHINapg71OqcQrKL6XPG5zkjAuLZmC+fotSERAzWr1utAlZu7gL2JijtsvYwVzyzKNmtH4l6D4E7hEUQIvXLzLoAsLaoEFRyDCL6TShBIcJ18x5ZXss2QO5qhDlTyQaWBeCfR8VjB6Itm/8WRH+YOQW6vb53WePJFfJ9PY+vXpSWelEnong4yWlQrj7gIyQsE8kzZq97pJM8wQrPtor/4m0QlvsQKObKX+m9qh1WIaAKPOrSqunujuG73y2Ml0w2f66eSV5ewj8iTuoKYRAGOj0VqyMSqlc6aPpNI2ojnPJOL4rh20eLSK2+pBYbqJwchVfIybUt1wmGYgaR8GXGs2fmOXQmTEkuIktswvXCRUlFmXBDu7HNCmZb5hyAkZWpCaDay+Cqt44zrAMbxcr1XX/wAY4BUeNTkr52kKPmgDuhnSnXz8CW3reOchtcSSfYuxp2qQrc8CmgAIutrG7VpKqn2LAXEAroaBXJigUOQRuLMgWBtVQTlbCfph6YJxqU7xaegilwM1cayRzl9F+qoar8Th6Qf4YhhsmnDHupFu+kWb881gK/JJDUV094IKf54pPUEtDsBOGP0Sa4dCgCtgyFvQM96pRSPIK0nWwPcKfvCaLpDmNNsnDwpCHsXerts1y2HkbBZPeiM+I0Dq4SiSm1iK2YrNJvb4Uzk8fcEer9dJR5OjwNFOnMQlbJ8Y64HQGv0oUamCKo4Gyzq8+gp+LWwPgwGKkaL7JwETpj+EU2pUuWS25/qe/bhFicdn7YRwW+adbII4oajyn6Atm2YEXLQ0ZRzwaf3FiDsrBJx606a3v5H5vMhFm+sd0b+LYEIFhpxGgG+CL0yzskhIlNjDrsWTWpRu1vkdmu9scX9cK+A8scwK8BDpkQhvPOK5JXav68LQhbwmhQXeAN0veff5BixGv/0x4T8MrYA3FXiO+rY2o3PfvlzanZhL1fgILfJvc9H5wM/iQjeCYC7TId1wrSJJfs68bCy602JLHHaU87NFZyHL4pwJTFgE53PXZiprWnAEmKJl9z81oHZpTstA1IL8M/iLfQrX2oKIw6flyZIdlu2YbEVMiN71OZewJqUCKuCZ97ePeCJbo52+1BYCMfmJhMs6KG18W0tal+k25RV0YerReoOSiyWiQU5Zh911RVe6dEWVtSF/nb4J9577iHI4mjY8bHw2TfopvyCmAmvROFweJlTxM2njg1it4B9s3gwYXRIGehsIDMLE9Y9ZOivWrn+OMeHbMb8bMWK/wc3zPC1cPVmxlv03NVbUGRuYerV+mgh++uQVrPTwmdBLSGh1W8E4kn5+kRy2scyh+js8rUpCLss6FvIoNA0ZJDucPvi5Y4inF/gDhRuUgbKDffPTVJAY6MH0ei+Dr/60uEJT70U17kXdUfYCzyrpdyDCbBRTPRYML0wps7ZjxRdrXiYpmbulPpybbkBJyuXpcB1yYOY3ytOZo/v4det7nocF9v2G9dwHCfGokYKUrWHP41xEzDcp2AGj02AfgEIVaaTOoRifXbOOpFxR3zM/gGQCD9o9UAupf5MiqDRD0DRgyayPLqklN8ZiJbcuzDHh/2DlTRj9t3FwaRVgr4xbgiII8+KhVd27/CMYht8/r1xJunETDshWHlCqmTqKs2n6bKWB2NCK3GLcWvW6fLy6SR7OENyF9PD6tX7C0Vs6TuUIiCN9tokEJbphtFyaaivr5NY744iSyZeou1Ty2Pa3tVUIxkC3TLX+W1eO3hsDOAvlAJo86Q49lrSCGMKviB4oqjQEGTyLAazxm5ApMxOuWO3UyMrbuf+PZTjcPgc3mVU6y4NKcbzGt75XXvZQ1P7S5+dtUD3W7v1gOSbDbgkhzaTwO0DJ7EXTkcuKSUp8fdt1BAWK/sGEL14motTEkELVjqN8pIYPJQ8jok1OLLjln/C3mUq09ZoNASVibVRG8jhashq5iEykc0x8KxGEMTSJzUC3Y+JvjxbyrEUZF0wdbqwS/59BvuqBSZqVPUsiGPT3Hp3Apst0J/YyX17VhtkNILbZxpgurXzpGhIopN4nxxJPR4m0gWxqeZpxHvLGD8Zwac4ky8Z87GfY2KHiIiNozdSOiJA0nsKQHPXQHeCfxZlCXaUrS7+FqOUEX/spAQbp2GgbEkdnpTB1eHBhoVzilrw3tY0G8vZ5Om++UIbhVJu9fvLdmPPG1xJKxU/QpK8u+QnUKOaX2C7nl2x9JMYQ6BuDrz/zzyhh5mmRWTcUOkcBdvo06CsHd7V2n6RGi82Pk+gfNapewZgpG9/DcBe/fT/Sv0Y3dhVYqJxZPjV7UdVc0p5O76UkLDHAb+8w2xCSRTROnORrh+Q1DUzqCW48pZDv9z+eowlnl6HaZMnW7fXtXf3aBUPuOSaOG9XBFh3SisHLESgcIVUCkWPaQOhETBkSwq6ULRjgilTmKZvvsR1pEW2a2+JDMv1QOETzIZr7TgdHFARwkxEoAnwOHtaBH6gQJpGUyibnqEWNZ8js7i7DJmd7i0+ZoR58DyCdSwBK7I1s2PA0JD5jg0RLDVbHAZ/qXT/mKjYjDt4pL3zxDkwdaNIKehm2oqnLtgAQ53mx+MVe41anKjmsEOCkeFi0jvXwGbiPAUzY3Ty629rU+ceuLo3sCWHxYT/W/Z8/QkO6KS2UzDtDsvwbwo8WxWSufiTpyvjKWXW03SjyiELRZMqsjfLDj/ctlPUGnZivVhQKDVJiLttyfTR2TQnQMuigVpPGrWZPH0cdCoACmnkNCb5crKxOm8hQjX4a99GB9A1PFuo4cINSWl9l22DOtAq/0icaev+1atNCce4p5BSgOvOd1YZGlvUFnEY5tDSb/EhJxOPyGk52DHWiXJOhIrbCSgCy3u6+wNke35sUrCD2yzmAcBFIIQxogQ9gPDEhYOCVBvZ3cOUg5QwhxfRoQN5fr3sByrIKh6mQ9ixS/0sYk7jRWbg4DWWlIqN9XfnrNxpHpb9S3q9y1uqsiF8cDc6njkmEIS9826Bhmoivzs1VOH3xxC4XxkYow+4NrGuCKVmrh0XKGWD0T9iWFLLBdcAOOrYpJfQxOlfLhLH/qMMFhNxgTXkUDCTHUZXb9EeSke9EMeQipD1UHTqq20K9eosjBSCeFZZeL43NiLnoPoJVD7Vrgd5+V3/kKC0SG8O5A9brnwdZeojehJ95nnZByZEqQjvY7QbBJE0j17zQpk6rY0dQviAMBaNalsdq0Ux2LyDNAiVeI2KA9WyhrgKrLVnh7IKUqu7bP8PtGeLM+5BcXUytgZUr9y4Tr62si5Ig5km5EaORJgPtZFaTBjEbHC7DTeYoNXpznQC7Cn9b+zXa542TPfK0ZpzRNB34r3YWmxeO2yMvaE79lEJJQxDdoaZMyfRDUwJXXRgkfwgBXdkWUJHbDMRmTvnphcjy2HmtfpTn1HYyPPiMQ9bJWj2hrtMYnChgUaemIo/vMdm6h9DgjP/dRFSMM9HSzpM5iA33+ki324wAzB2OsF73GTP8JlNhNcSLRulYRpYxDSGbE2QaSa0LkbBitc38jCHELLMBvafvfeO8BS7pWGC81oKuNC9AK8f8ugkO273V29RsA9h0/e2Wqtq8z6iywwulIGfSLfktSlsGBQVx7scrqOcQWEwEymB9DwcCUX2t4ayLD3QU7EkGGIvtkhZ+SWRMnUhqg5ZZjnEN3kA8Qw2RQmA9VfTttbVltZS3uOKQXHjYX8ATvvtO9dR1AulzPtEyoZqe2yUiZnCM1rViultwPNYBvX1tqsat5LbaP5DZ50HReSGh95FprQ+RlWdwc7yHVLJgNCNIr1bFsBmUz8A0Esg203Z7w9H/HVhGTyP2iw1tPVI/p6DtoGPIm5PQ68BBl2NKNWEbsgCObzmT2aRF3/b93xlyfFHr/N4AwkrTyFzO7UM/1btwXaPITKLOhqW0o0VU+y57sfCYDc5MDmLOGzfch4sy6SjoS0rNj2yQTiSdz0x4n961uNBCwVVmow/SvjBYA8kxvI7qL2VnABC7stQIBu3AeEEoeCov/P+vMcgA+YkWmQ2MzzYexc5/qomRJFyD11b91PCt/bL+gbHWTslAuxvAYnixBERvkADo675H7OKlAQqFUyLArf94RrZUSLrfNhZ/bLmbLPgoGB3sIeYeEjuMSn3WSGNshvUHTTCCXXEZ/K3/+vsodBTwpxjM4c0uzF0GCo2+Bc2eXWm+xSegwlDVGEGTmP4gJbfUHoCi5bBkShduKiPUiuGNH7Y//rs/kCyPpeHALH0Qb+eCNNqe
Variant 4
DifficultyLevel
637
Question
A researcher collected 60 live insect specimens for a study. The insects were either cicadas or wasps.
The researcher counted how many females and males of each type, and recorded the results in the table below.
|
Cicada |
Wasp |
Total |
Male |
17 |
19 |
36 |
Female |
14 |
10 |
24 |
Total |
31 |
29 |
60 |
One of the wasps was selected at random.
What is the probability that it was a female?
Worked Solution
|
|
|
= total femalesnumber of female wasps |
|
= 2910 |
|
= 0.34 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A researcher collected 60 live insect specimens for a study. The insects were either cicadas or wasps.
The researcher counted how many females and males of each type, and recorded the results in the table below.
>>| | Cicada| Wasp| Total|
|:-:|:-:|:-:|:-:|
| Male| 17| 19|36|
| Female| 14| 10|24|
|Total|31|29|60|
One of the wasps was selected at random.
What is the probability that it was a female? |
workedSolution | sm_nogap $P$(wasp is a female)
>>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number of female wasps}}{\text{total females}}$ |
| | \= $\dfrac{10}{29}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19LX4JMt4ewwL1EU/7/Nwyq+wv0Q9LxcHAXJH+9a1l4wr/njPbDOW115M8u9NB3ioHWPtw8VIVsqhfxcLg3KWuPAeL+DvDfLzJPQSvf3Q4u6ybcbjdTLqOKvTkIjSU5TRbwLzqn1BLGS2GrxaeS3V/S1u/i+CGfU9TgYhTuGztAiRHTf61jcl5zK2D0HL8GN2S2f7T2W/T9bmaDU4orI1/zofyozWOy+TF5Qq5Hbs5cZ0IJZlJ5eiGXw1eIfdUsD9O7JzVi8fAu1mgv56TjYwZ6yEQWwcda6kXEA6v4nE/7mbGmc+jbkkT3jHoGJzVMiWUitRgITyfovP2zyJbDEcy2IG0o6XFtQ0nV7So5wh3C9uUrieRBT6LZYxebflMJRpEWpob3iU5dojnWQ//+xdMYNCniGCGZpk9DcgHdEBa0aINUIDDX6lMBgT0i60EAQYX6b4NneMfmhEiwZcw0JZpn1F3gG/RpEwrJKMuvahYyv45I1SlW/Wal1FM1IdzEiNgKKa+Ym53Ugg0qFtzDLy22vW/E+UCqnkiPQ2FgawToH5GUVvyMeJZ8p1uFfjgcf140UklvD76dnZnzclcJHDJ9xk8qlDgHP+UsdRjr3MgZGcjUtXw6iUSJANnh28kNW0xwfGMvv9FyEd0qe+HdQAd9qjYQ4EwrmAAe/+T5CqCFctqy6dGv/cVhYq0OPtoJzk8tJXBSTyGSp5JRWcC42dSUtrVO0FNGm+ge/jndedk5lwm9x1OVusxy0m54oI7TTdrotYjm53vblT0yVBZXjhtMb0bNE4HK+puNELvEZ+wMrKvdEUz3jvMW+npgQxECxJQ4sSNHLcqK4tIkAIhoKLxcgy0BfXCV81YrFbXwJvZA+H8PwTGZd6MeT7TeGO/YCNePTG4eA6+D/HUEEJ1FaCqbodro5TyOnMvyUID0X/Ol/MWGIZ5qNW0bBUV+7iZD6SZENaNABHLZp6b4aOcFj4CL9LtXGCsefaOJ5PUqmRksyTjnJJEbdf1+hOtAZqjMFl2kSo4B3AtOjRoNCErsQfpvWYiEw9krasFQu2Sly6PFb7S2qWrvT0FxHNqhajutQA6J0bg0UXoOebNtGhBjStmZVFQhJLi3dtyySE1sqIzja7QLbOYpl1AH5roZ2PWzGZT2Z0KdLSh46ZBmv9yNf7NtU5yYBThs6ZPsy34N1LnlDKCy1OqXcG50nTiu5R3LKt+sITKMZEgNE3NgNTH9RR0U4qfqiVvScnpnf+IKVqmmCB2OI85P9dAcyIt0nzAfYTrkWm+37EPHAodMAXmIlpa3WcC1viS9XxeLkqOMrqLenoyk0B/ExOb532/69DJUhS/kclls2MvNjiS+SXJ3iaupZmZM7PkUBU1A3k33Qb7WOJlZW31lFKr7T/w5YS5+/x2UC6A4FWVHyk5WwiNUasuAXfiIOQeCvBP3wZkK+0agNOuwz0csJJdIUX1vFKWVLw8uURXhOVGWJ7YDKtvjr0tKp77lJXE4QsLyUjMcu+scZ80YNTuO+pwnuDAcRPX2PjMKoMgSG8hwXrCTNBwAcgSBFMRxy2gn/4ok2SWtEADV58AZajmeFp37MO8LMfMldIVUYwqmLm05UK61hiAIZe42JFkg3atwyVs5j7HR6ZNjGEcp9S+EZMrpS1u32KA74B5r9QZuxygmtyahoBhmsxoOCJqwIMhvmgKNJAnEycA7WrbC50XPo7UBvr8p88xCDfEzgcX93fk3+peIlGvS4STRMZ7qcBArRZeCer76C5rfTqy37iuW8wto1LR5SOcMRS3z0W+CjQ3/iDPSS7bP68N/yMoumR6q91lb7MRKF7dI+FHJIHBrO4u89UgjLUPPI0QqPDQFvAFuVWVL3Ku+rsZNAgPSHqnVctkMeOdORoPBd0VahM4l1yzy2vir7jrp2IZTqne0XOfcVcI6Hj/GYUPKQrAgFCS3T8hkLKOjWNGf9Nb/T4YMfDWneCmT14LKwHHzFt7Z1lnvaDOfpOytGIXMAJjWpigpNnVt4Gv15akB35Bx6vAydJGKatm/R4awqMq50sFNVbuzC1FXiw9Us2PNlvqEAyrqg5+CBbMAzyPWWIG316TLzjOaYSi363WNgPojwX3GKh0IRJd+9iVQSEz6/ugSo7vZmn7ifQMOaED9TivJIoDBnhzh5vIjqjUsis0YzDEhX3GfoIBWbD6be/BagHUJUnVEXtL9MPitqKRPXJIt4XPFmVv8shn5OrfvidApy6KUfE3eunDHbFLcWybjRIKKH1pJM5RAt03SGQjShMzKWmiRXyzDDR4T80djkGto8n5JfpL7eDisflrh5A2tKpjJL3CilEAdlkmmCxlWK0tWbzt6RbX7C/ZE8lBanPyfpUDZI2k8v+X+56DKkWe0FhgMsTQsWW8vNrQXkCUqjfX1AsDz9GsIlq26ccdAtZQ9mHGyVHLmLgM6Q7sHC/WvG5DHIn0VaGBK2e4iOorD0v4CcC3iptZBH2Mj3fTrOxYWIpWYamrDUIfwmQ+ou3xnnleh7/fT0g8gM7qUqSZPiE8bHO3oDwSEw+pFzmXE128Y1QA54S4eCaNSZ9HN0RgcwP6ju7XigzdVdTHJ65VWSC98X3YirW7aC6wdQtLxJbWdzQ3WwJqw1CBAnrxDssgTrXiMiRmqnayhYvFZQ/wiipcc6at5/xZ+71iybMpf4s+Ei2x65MPeZiSsKyreKCHoxTfwdyuaq4MpuK6/uPvvnUS1oETknvEqK4aCn/h/qA4HR8mUXJC1r2RkqrYUU+ClrL9eewH4eGFSWlAUcFg2IdOUuAlkOBAUSAujU/WbGJCUbjjrbmlehy4KYdJr8zxhBXMi9S/kfXNVWvarr9WQIWc+7EWavSpQyZO+PIUxpt8IrVSHPZHzx6jewjGGOjb2e6FszoHxkUiSbUSDnuUjaN2dDAA7v0RCqk7100P5g8fXc+vfxtRCGl55fg3xaYb8QPrHRGxlmKhnQap2rf5dA4XALYCnhQDWeC23DJ0zBFQEhgUv6wrRVFjQ8a8c5lerHH9kpwm0szLisNXUJ4HfnU1QzxtFzQWzj4iuTB/ocLNnLckc5wHhFAIkm2nx2CfoQAyJ4vj1sLIUWcT9MP7Nggr2EXRrebvv3i/Tly+xjYw3I4W/HTkX2bJwGh4gNUaMi3JcBt8q59Xc374YFkjrPAB5BnxDY4b9JBYdoqoxT0CE5nbxtzB22uTjGr8EWCPDCd60Hu/nREWSAAkrketStYfyGDoZHaO4qO9GoOVhyC6LFcNREm2oJaIQ5NniUYlr5hsrRWc5nowSyfmhkPS4yCMftaO/LeRxFTYfW1zPpyw4/0IqLV+HSPwm9fMs/IzAYzZhrNzR7hKtLgar1JwW4Zpy6fpHMP4G23JVZcr/uqgEH3OjaB2oejn8fNyIl1Ly3lvXWJr4Y8bMwH+3KkQwW4EAKXoIqDW/GDyZWiYxltMu97BmY7EPA4/d/fTrPse7a9vvd74x3a7UR4JTJr3G2x/lzWANEbbvzy5NTFkdQo5C43Nkr8eeq5ZLLAMO/xNRT4bCI02UvhCzlJRxkhYDkQTpYiD5aaA4AP/sFbf9TassPEpWtdBErrPJ8AbKmPAbfha+O3s6H46rIohwGpKq4vvE0RN0UccPkaGV4hYGolJbqhsEyLj4o6YKbkR1uj5/B4QUvw3zK/pLILTiJZXb4zbAokfitMPU8DyCQ5u8ToTbppkhEXH17+CE1FCHvkkoWAgbOL1Nm0AvZiEKIjxCh7SXxs53mKYoCgoqsJTCjKcAZGZCNpMfeBRScKseRtYqEOV/eTMVuV/fMZ5S1Wab5jSyXjFymN9e5NSFQd+B56KwweNQAcBJi728DsOaKSguhgssUahZsYbnCYvJmnuSc3c4UOFgwLy5pApP7XgvMe3rPVNbOVYXH0YENYvv7oHMSMh2uxd9HyAxB24KhFbK95eSBqxLDVacyJJ25GNnJJUZCbXSZuNyb/PhN0HsMPA2LSjOeU97Ghs53m420eUaFiiEjV21cvWSTPKpyGzxr4YJUP6lX5c4jH0T/qaf5Ck/IhPKjJi/8n7nZrq8AUFEGNmkpF2Zb9galwI0bXJH523ukG2p5UezaAvUOL6C7UMbzdiuHPhR6hZ5rQK6Xn0oPdTU9rwSWMv+5MqGNhwOxa4XbbDccxj/efl3d8EDaEsFvzOz9eto/sm9ONa++aAia4Lqenel9qIl8H9P0Kr0sM8JDLK96QcfjLfyHxf74Rs5mFznp9uIhC2e/w/+89OUOe/Uv7RWJBtIJxsuFCgZAU5h8dsr2Gu6fN6Vapk/x5k/n86X2o/g0YZnZWe2AJCx44bMt6rJgPBTTTs/JA6kzgG6uesYkKKlBvUhjV4ruunPqTiqH3EjVwR9tTPvpapMpK902BftZn0v/OO5lIcbk7sx79zui/qsYTmuhtUoDeW3h6mYTWZZKpbBUJFDcFSwIg81srqL47458dqgQ3SfPjcc4vd+N4x4uYIdgcItHVZB2z/ihjjQh8fWZzBltQNJl0UWKzAPeMdxgaNu5WtjHX6vo5wF3+700GXorTQVa3nMVhEh2oE6exfJWxgDEriY5n47Ts8D0BDwtLYtRe6/4iztvEy5I3ERmOe5emxzoOhIr9u0bIfCMw0NXHzXacQY6vWmp5j4Dda2nJ4vXzitTAdkfGlbbZcBNzeaLAIQv7NfhLY7MySGiRWvSMEFpU4QlODGKsPN3cVNu0Jpr1W9q9A5iex0gdae8drHMB4ty7bLx8u7RbN0AVOVWErwXLswobqxGcLinqX8tuJIWeAtVv+1jyZqKWXt2eSxp6hUzzPfDBewoO6lm5cI/xA9OjswyAhNo0vVnmKph3YmqjmZ9C80iFNmEHdyKvKZmkbRBhQaCEgvUq1OL6z9luPMgW2rmVTinc0uoMi0I6yaZADOVd47YpPNRN8213HhiQf/J66AQGXiw8PppRDfpharQ/x4m1GEgriBhHb2efBLctMVHdogkS2t0DShl/fsGT9F8n8A5jVG3T1zXLza90MgPUs7evnCb5g46tCWiKIzVoudKnfYqje/GSJOF5QGatkEwsU5YOqftfHAhYouOm5G4Ho919a1C/q+rwstVmzrPi5aL1TWGZ4g66rUEdbPdqa6FsTm7ReEiS8eyhGOAydiNkuwbEMwWsA9+pKpRDHVybevg8GVEIMUTw244gFZWJJMeFMjN+OgoWTiz183ExHlTAK6UgI4CNPAiz9W4zDGmueIFISHzF27SG5oksLPRFMU6eD02f3g4MAle5oYMVxqL9mjwUgQp9savpxHGURPZdGmbihqYztS0s/k0LM+3Fw4RMhLtPRhitKK6oCjLy5iQ0WzeEdwStA7KEKd93pAA9SNa3fyKEonWdWz4Aoeb67CERE9tpT+J/8fIEr6QsXL8nKPH30F5s4pEkv+myPM8rykp5GsRmsjPO0ZjSxKo7Y/eCHGUIchCvULdlTwhgL9gpgB0bVhp4ZVshndNrlKnDHCPwdjgWRkD7/vZenGWnrhJrh83Kyo1wYD/UmzPPSSIdCb5qMOiZmnmbrpoD3pGSNFMtkWamLuvjepygNTu+BNjsBIyzi83zMe7tUsIs2HV0Xo8vh5P3SeIRA96pYWITUNyKOjU5g106HduVD7IZlQqCv7DcFt4v3hNkCY61SxCxDOcxKn3UjWYtUpVUHmYDAx/NB1FXW7rvxhI+7JbwoVkXviKtuhJ2xJAhDZDjbUE7AAo+T9RBwuLBKWcZX7e2CodRh2A//aF1uXJl72wy3sQkeaWquwhH+5Nqyj8gTLmKEuxCFKz7o7GG/TQfdkY2k0Fcsc3lmZJgppBIa5K4jlMJ3DoEOYvm2xiAWSNitFpToFacVSWA7+VwlBsm8k2iSIG7nAwuskLicED2vIyAykD9MuZm9mzForT/D2m7zA67Gn33CYYVsxFtLrJ7W0II22Jz1yTd2RG8YdWnXISUuI0qRmT0erVFc+0C3qdzGKPsar4Y2ciF4QsFb51KJzoRrwydI4E3svwqZbHNcAHfnZy8O0O2Vj33G8csSZIzThv99hwbtg5129s0OKHh3K28maJHW9Cj1SaBJEBaZrWwcE007NZPm6KFXKxgZZ8H2KyA0ek7k4Ey1Pp/H6RKuFxlJkyCJOt59Qm6QOB7wiOUlas1vfdqUOlWY6ugLO6nLTaPs2Kh6Cy0Fs6/7waOJjeQMHOBhkwCEdNB3aLCqLjAuLb9H/OG2fuU30z/cODlrL0r7h6AaMKIpYWnT31RlboLZnL3PsKhgeD2H5JlsHMbwpLnePwc0DNV6KA+VvsNXvAwBMGAnSLsUO+nu/VtQhoUWZZ0GeV/g7d9KdcpgCBHx0YqPRf+YJkYoALrgjtEq3O9m+o98fHgaCr8ryUPYHyt/0N8fG0igcfA+obohMyZcbXZ/10qZUqsmT5GbHLl9K1v5XM6N0Ng6LBfq2rOQPBhHqj7NxffcMGtfjTKOqsLUHC9TKfgL+38TIEwEDCBdg5zZVeg0txkjJ6oMFu481Z2JD73dEJb/yb/gcg07vOTPpByYhOEPFYUoMk4TOnZhZ+cW2Dj1JHexYbgWCkCay4dOsSwo7zcOZ3zLdBCQixOqBJajCETqFu7ChZf5jHP5UfBpnLOsl8mVI+eKZXiL6VSAc6FbVGiQ+gPcs2Vj/MYx3BIjhnNADWGcxGzHjqUx9vX2CFNrUfd2ZXC6skltBLdXFRrC5ktFrWvVe0zKr+nUeY6vMGIcXXqI5rIAOOvWNW28Mlv0z8I6tcutbKCJwaW+YO7jtFsDawHSZkZhEX0hj/sExOyx5jtdgVepkV3JDfoqF7PZxPy6AYTxDkZnQBcDe3xg6PMuIm/Ajm1jdH84es4H8mq14gDac/GFPPITs1jhqeukaFAbiAemhaxdrdDA99F/XfcDwPcPDX03NZE9ypdm5M9PrknzBsHJa60dyvKcui6KYVCMhY8AiEpfkG+BGK0lz5gxrP0cq+rcwVvszC6e6n3TkFF0PTDJikBFk9R2SiBI3vzNh1Y34D1/eb5J06UmIzj4tmBRwKqFr9HlRdzgXruVmG/EGF8mFrDrI4vADDQo/uD/TrpfBr7xgN6AJgfzDPFTN0Cr5y4/hRG38gUVVTMw94awbCAnm+ZoxZQP+fxIjashPr7k8bh77kEOFjYbo6PV5BooNokbkIewP8HmJdyj75WJQP8hS0D6R/XhPP2awlAhZ0aHwuy0xEe3HtxjlsFvxSu6muEHYcVQnpGuTeF/K/Xubo18OnBXiPULK1onsKXvxtz1+buZvWt2SqZ3oF9skYzDjqBSCG+mJmnJeULdn5TKnHV+R8ALsFo1rgB9TGg69tP4qN+KJzHdWR3685+WKqpHhapiMHf1qzU1+uGaXn4vCBgqpBJ85PC9Yti8U2zUDR0DhFLeC/LpIMPtqCrqGYIAFp7P/mdHJT8TjYshJSLmiQ2+CsTUHdzPn95ZNX9DN/7BFyaVW+jsBBsIzN1HgJRREe00Fl/0Tv6VuIKdXampnwz0Jcap4WS9KK7n2qWTal8Gw3wJwnDdHhcMSHY79XLWsYSo+tgubqAqWky31wLErOwVEkzio33Z5D9mPVIHFGoVyTVbGmZeJ+hHx849LAKAvWA==
Variant 5
DifficultyLevel
640
Question
Joe owns a private zoo that has 52 big cats made up of tigers and lions.
Joe counted how many females and males of each type, and recorded the results in the table below.
|
Lions |
Tigers |
Total |
Male |
8 |
5 |
13 |
Female |
25 |
14 |
39 |
Total |
33 |
19 |
52 |
One of the female big cats was selected at random.
What is the probability that it was a tiger?
Worked Solution
|
|
|
= total femalesnumber of female tigers |
|
= 3914 |
|
= 0.36 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Joe owns a private zoo that has 52 big cats made up of tigers and lions.
Joe counted how many females and males of each type, and recorded the results in the table below.
>>| | Lions| Tigers| Total|
|:-:|:-:|:-:|:-:|
| Male| 8| 5|13|
| Female| 25| 14|39|
|Total|33|19|52|
One of the female big cats was selected at random.
What is the probability that it was a tiger? |
workedSolution | sm_nogap $P$(female is a tiger)
>>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number of female tigers}}{\text{total females}}$ |
| | \= $\dfrac{14}{39}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers