20196
Question
Curly, Larry and Moe share a bag of strawberries.
Curly and Larry get 81 of the strawberries each.
What fraction of the bag of strawberries does Moe get?
Worked Solution
Fraction that Curly and Larry receive
|
= 81+81 |
= 82 |
∴
Fraction left for Moe
|
= 1−82 |
= {{{correctAnswer}}} |
U2FsdGVkX196gjF92GkDEDG82hJjsELU+ab1QVVBBIbNgzayO2Bh7SS7oNItz8sEgtR3JTqaVgnUbIxSCWtipK0N7DnKSQVUPuZM0KUR3nuCsX9Avj2Bxd+9m0NqAV4zeM0UwIHq1RVt75mPkXYk0PW2sav60LgxPM3hHck+LE/ZixMTKcnyOqi4rJ9EDEW35IqqXEZ/1LHAZHDs2WyCy3HMet+l8XWhmHrhK2D5y3bfuIz8NbzFuFUaIEFr6Ow6xBvhsjmNVV8seCcCgGq6dFZiEiT48qDyT32y8pzc6c3svtwf/K2KLP0K8qzPoJCHE2fAb7H3geAde1TtuXObnpJcmmnUSx7RlA34GbtJQHwf99TF6/eOieLpvy2vQIK2TzchjMb9oKuNHAQi4Qy+/8WBA3nP13OJrMJjjMAWcswUFGS/pYJfhSPmU8Vspas4aZixBFkfXtzaa0qS53Kn58cdVSlvDp01FlZDEJ21npj0VPiWBJbzjS3WiTuYkKa85ihCrTpw5TsBvzJgQeEjoo5EU9/SeqO+AkxDaItCi2KCPXpVYbZrwWc9kLo1sPUppLQqiklEW7oYwKoOLEduoMG0NgjnNKItCs0kVRmdw6Ym315pCM5jRVLPgpPxoSZtLPi5LOXs34OHfYOM/OMdws7lR+0fJFJmgcyrMzea1dRfJ7zZ6XiHmbX+yvRleI14OLLFePSkacGVcvlSOdqFtKGtH1uUtM9PtpxdXob/z8gUAoACuBhwgbfsG/7D3/tvOnr7uz2qHDbotF279xV1gvSWdwF5oIK6MHsa198R6FrpP6RIGDajs9mH34dPTPHoFEWbFFIGIwaT0lfw95qVyU/nzfxsVCl9YPY5iejw1exQ9AR3MOcdktwlHEUWZqGtTP1jqltDQhAs2yGptlwwcWElP9ePEqFu1ykRft1+xx+RRF3xTkS7cIYrQBANVMObHrK9dk0q20fKa1xtmSe2ciLRvvIDtBGzMARhQiVHyVFJTWGR1KlycTuDaXVTLn9ZSQITjJ0znFQuCNy0bToLp5jnIIuRkxQMD+FEaQgtB50SPahaanYTIKKIPGyvvREV2msBoUMPx28Ue/dYxXEsx6RwRSf+3f12AIpSU/ya82ti4xSxLLI7hDIuSDNc63J0JCk26wr8oD+Dw4WK/epwOIpuP/7zogI7vSCywgQFaDEBSDEdwcEpNMqf1kYU9P77MVlRYx1EinUWyIT6KcukxkdZPBCoEQayo/Zu76Uvao6tH+VpLxaNgl1tzMOzaNWtddzS31tGuY8QKmJL6o4gH71+YRgSKdylxe6U+hCDw4lRHL55SmmUbrZXBdR/pMQez9prrj2SmSHdPyUOZ01OLN3AHKLvBoGAmWeOaC0rn2169XMeyPYHpY1j8wJzWt0m+xYoIZqyjFGw5y7Bn0/vcaY0CbbV4fdx13TeCJy8xqJsiqwtDvg9zZCjC2PgEbPGwUq/55AiUhmyF5XvQwBwE3Oq7QX+AL0cLgr8qdfXUXj2HQELgOBe4/s5VM3CVf31MNHRKh4ou8iCuWlb7nv/e05Ss+eROFScRtZphagt39Y2+w6JffYxUu71LZi8HKKAQHWAB2KchPqGPYq4DHBp6OGTRNYzI++xPuaS6MMpqUCpmvPqdwu1PbC3xrxSwgr9vmPfLxDj3BN7o4hOXwadKiFoOYiiDYoy8K7FEeXq4BTrcJKr3VTHXhwLhAEt1ji/W/fjQyl5pmR0kbiKFj7IdBn9z3yWBdFmZloTDsXR/PsddIE26+1VkQfpBZ7xOEPDhlpQz11n4s4BqjPcJY49DufnmGU1MEqtwyrr0Qv1h7jHilb1TY1+umreTZBE55pdchtzDGME/0UDU5Jvrli/bqxZXS/fzeA0AfyYkTrl8Z8cClPnK/5E+CVh+9A1B9s7rNhnPkhQveqG92K65B+ni6brJFqKZAa/4Cu5oR5WcyZuSbOc//xGYOk3LM90Re2LqUaochxQFQa0I6XPQRpzONpzjqwAbwOrc19F1kCw68QP2Xf37tYJ7aVFZB6jmZceK3OO8qiQNPrbVRo1rmplImckNfdtl81iqOPKkVU431xFi0ly3W7iRdVo8HR1ONXgJuGhQdIFXThVfHe5vrXJaXYld2MormOGUsx1JpH6hXt1U0VwhFSHOfT3FUXZkw5eNvwetzpwX3PKG96xomwtO5Ti7/NTGE9Mk8oKdHaxFocahbXrzwWVenslfppLQrz/JuzqmYH9Cdw54yRYLRuJnvwUACCRV7eXxI1uCeiqyeGIJY4Zh+n4QMrj1lM4c8RgyJyp9JHMkcpiMfa8+lh/NhPHa9uiNF8xzeWrt3rp4BGpAydUL5TFue7ED2yYixCnURTapWIznxrCHGH7utJTlZIVttTehf69LS16tjZZgfXk3M2z9xodoYJJ+9UnXEClBi4BOhft3AnfehprYADQ8g2x7tJLrHCqYk/qu/ibbQVcZB8JFGRaq3pP5IJ7lG845qLJzX/3pHkHO93b7uuvq0BHb2HdrD0XtxxhWApGgvqhnrIFtZq2Wvm+D3+mzUGciXx5nI7Q5c1uePHeFnto4hRrSQbqTa5AJFdDcm7pyT2JkgUMTVRqCz/T3jYQBQRqYzTU2ERtS+7F9BvG+5leAVr8PyX0T+XYLA4ZUlA9uWate1Lhy9HljfnDn4vv9OvhNZ5xo6FfQQ2JazYjxGMobapEAUB4ZG2wbit1JIbKEpDVws/qurjwQ3vr2B+h27vq3V9U3bUVQLGd7qxAWQP6Ld4htrs9TCxBSqHq+dNv1CcrS13ddHCFJBssMfCyO1aODL1BgM+88eAZTqbBnfNS4cRrVse+9gGSK/0jgwBwJSc52Nzo0Is4NkVx2QB0QL1vqpdbYCQf+kkS3eQoPndk7u7jcTIVIqoNudzex6Tv2ZQbVOVB0WAH3IQS+q5WW+zJc/kuM646UfpxNuGv2VM6tCdAx7wtrXj+CuImjdRbXTqcJTqZoPTEQOzZwQJOHOLTm6xCOjUo6xtxqnkm/DvfJc6V3p/v78U2ciHKm3BarAXeFBuSsTl+hbp/C6Y+sqaNpgksbx7WjVatBINZ2ID0fj5EM8CjPcEAg9Hk7Ly6JIUvPSzeyFo6jVW5Rd5yDtYz6XmrzFflLCzO+MDM9WDJtqKiggWmjfLyUmusokQVEqWK2N0soNtuXrcfrpIcpg20YU7q7NeuDKZ59TrWdzWauH9TGBJDLhpf4hnZmr5QB0qp3ELU70kjtEcq7gXry+2EhPLdNP08UqoRUH42J0s4/VkDB6/UEgVORGo23AhjCM51pfvVKLIoiVFGvjRCVNMZNwcdCVUVcIiLxQXsnJKrGRaqn5eIqLzgaOXpLcsUjjoOmi6xyVs/GtvZduhu4pLRcodpkgiUOsbUwD9JZtVAbKJZ4dLgdpzJtF5FjQlCji1iOlso1un2y4Yg15+S1QLzUlsrgxc05lXws63M1eqycsWVeaplvI6IGC/Qx03mqRrMi2ZbuYzCNOosHFEMqb5khHUqbQz2Y3I3NN9I6Gs6ChHjvsHKiuDUdYb1XJdWMlgwSxhbAW2+WIFWU2O0cgCLw/wkvR3fqTdLXxiCQW03RplTfmRTL+ZIahXy/zh9tm3ZM0l+ahiStGPbUMiuoL0geyfv73AIJaUDCas/uJaBjSV+92nSxRHc+Ac16wVj8A6K9C+idYjnjHtjY/k7d+MdMnjr4Y74LgJCJEgeSfV8zoMFi/9oe7vznR3A3j9t97aSQC49g0MQjG8e/iH7V6kbOqJVdCGO4sAzUg7eUIySSMtfR1JG2SMqrRUAB4m48XWczB6DHWp4U9GTHHdNMsmdz/KQbiVcRVnHOE49fraIGX4K1aWMhvQy+6lA3YkoksDjPHmv/9orVTzsLNTQhpkxYwMdlQoVzdEbBWQImoM2qltXygEEzW/S5V72dChSxkPg4keeP8EOpOxV8Z77lZkIM8p4EtzNSDOT6NVFJAnCNGrBYAWf2d8sI3FrF5o6Dgm3zUmxugYPqor2eDuq/65B+kVEoK4KCzm7IVsNo/DGJ4sM6u4ttnzYo1K3eFkqSLb6+I+CP7So8BARp5UHbVTV/AfQsixgsBhT/WFJwrPES74uUDfWKAA24JLH7ctjD9H1ds9p55lK0QilvT7a62P9D44c/SO/JfUwtgnrYhZKGymh1+ON73eC+pKLf+5JLfIRHslEptjYZqplMePoW597uAXBcE6uEQKVrbuEzDukMysyz1eoXfwgZnxZmPrtE0etZNfbI7X0jraKYC5bAIiOYMwK3xYAIAWo0L92KLOsSMPo9+HBxGaH1hith6l+yNNHKQnoIjInC0Is51guC3HFcv5iBVt9Rvdj0eZZz/P2UpuC/W0bgQaTJpwomvFu2/ONpoyz5Jywk6BfOY9wbmrrZFZ+qhs4/j8Gat6vxU+MuwRdzXyBwERVmQ8sgIxH5xbA3SB0CEy9DCDkS+KaVas/x8XME/N2iA6h23eCBC5Q7JkPSD47LcNbWUA5uGB1Y9XKH1QeByL0rJdNl0z5HUwnrOdxltvKfzXf1D8FKNmrSV5Z/A19VYRp/rXZQToX81e0bC/CUyUcOTAy2iDYnhXzCO0UaNcS8kLR18qDSpcpgLXtthmHgpJTdg756eJ6b5WGdECzxanWbuDocRXFT9IzyJZ9lqJAAvtXZWVL19nf5NjFQiW/PrdVN4STy/KQxinWehVa3wsNlQV5qGwm2rwiczAyQq+4z9uyzCsDEgbIY32+A9ZH97WUR6xR1KAULFEnHHO/8BOnehfV0T6upe8lWv4WU3S8pOy3FcK4qcAYZbVBEqayQ1etdpL5vgbhQtWQgCCCgVtwBPRMHAYNwVNGE66xrrY4wGCygj9+OvaA848IapHORdSyH1/2Ihle2rWrG+867HAoeKqdH1vebfUdibZ6YFJuav6NGX8f9+T25nZsNBaHrxEUdGG01jshroNWhlUzKfeyq7V7LfkuZFg8ZXANklMJKMNYnSDXb4wCIqmXqJhA6poDZ+rPABBusylEfMXBNWhz1KDgQPFFHdAbB/+aSsMcakBqjVv77OWZkGezdQQjmXkSsgdtpUGoozt5hSIcyGfqOry+XBKNlyss/cd5BgCdjln/Wrv/nIKmMLi9bfrAtLGq+F3YMyw6KoynJz2wWI1dBiZ45zfCNoDI7BhIv12Vl47VJMI1abgjJ59q0Pf1neweGF2rvKVi0WOH63iGJB/O/4ImN1uU+tFrIoPFsuOvVS39rGQyHmcX1zBLfH+khcredgRSdsDJPUzcd0o3cOx+L8Cip1EsmVNuBG0qW0bOFyxM6cnm7VNFVZFwz/DaGI2HI4yRdDSvHBBadnJWIZsSgeeS+l5pW2uCQpTTmTFVQ2GdKf77ML1T9WdOs84TT06NzxpohWxChokcDpZ3puHHc4O/25LMOauaxLj1UciG2r3qmUapzi6Dln4mtq3QrUtubsmXwBdd+cGu9xda3iIZmoPUJZ0ennapnGXbJ0NP4G1KW4LWY5OToBisS4iJbu8nBv323KozRT4A1xWllgLg1airFzw+hzp0Wjdu1Q9+c3p3JEVdHAoIRGPHwyzuT8VmQb2kIEZIG+MX7JV/PQGap1FySp6LJH2U8WsXCEv9/V9f6YJD12H2By6fNsJ94z/83pRK+HTYC9pOEh5QriYJCW/6IFOLvOd6FD5iE37ECAxyQxXQeXykExsNij1TTZ5eGMXaKWgwbi4MRVdw74Xxh8UA/VLpsJlTCFJzUtVPJfRoVtJnGHbkmmr1khsEQTfdYhCJanx3amA8PlFaszCrQjpqG7juJZqPGXYEI6hb7J/y2jf+bEOhEU2elW9PtgOtmpvHWDH7/qNC/uKOBHpzYKc0uMLBAhz3ASXK+8p+gaYBFrtoxzI96IBHNTvvkkzjEMNcaJ3xfI+Qu3ryhdrNul31NRIqY6JDGG7pjL5ko8zahvWcX6NRjHPk8DtMxxN6nYJLR02J54mblPu6HEPL6FbZuXQv72S4Epk39vvHl70x6TRhwRuGdI5EzmSQnlrWMZE3uplNl5Dg00PusKZhdmnlLNBUCkC5iVX+/ZVg5iOq2FE5g1L/hG+XupwjqIYIRoeqRZZMiRLdLL/vNxXMuNuRD8Qnc3AMvHUA08oN5ZBDP061+0tYLN88VKZZ/kliiVn3RPc2EV2b0C5wgZrqUL5eumzstM2nFU/pbkfVX7a7xLVzSdWdX0CkEeZfQi8h2XDOvme7l8zkdDgL3y6PnDmBqWNNniuionQCoKJ7ZnW46ybqbTzWSCmutd+nOkRzh4xyn8IexxcoJtj7FGL01pNu3EbrnaUhyU/KgtNrSVLdXBB+J9korc+rnTSX2ML7SnI7S1vH89fOK0NCk7RTyg/aagVopqsViT4Nb+PSu8n8NRQ/JMOiw5mXTSfrfFG5fmPql7oJGv3V51KAPsP/vmjU1EJ3nKPsk5NqT76nHheN30GrFjmIJkG5KIIW0v/6HRmm8Z7NlODDlrzudpkd8VWCg1yOPbBtyOgzOPaa4ejo8uqw5eehqkFzBx2Dj5hWELMLq6deKWlpHp3IolY3Rj/TsdAZ+xmALBnaBIpK8aiJKww15mgNAZDFil99ocumbS1bwc+Y4A8d/PzsjRBt80QW5zBmgzOy3NVp4lfaWRCRvbCsC3+GcRdLDYrHnmb/1TFY/SIdRKcfH2DpzukgZTyL2NV2murJKl+8LH3ZwFRGU5WAKJ2bhmhO8dwxOnSeaz8I2InouS2UADlMG3kB1EBHlakvRthSAR35buDNSGZ7eRBjxtfuDX/o73m1fXZ5H3Dxnqk8ukw6dC0btyBTqjoj8/qURrqNUQ9g4NOYR9Gm96Ivk4MpEjUCty45YUDdt1gUBk0yv5t1tEOEprk6BMucfpdKju2YRhbCd5gwAlLziGsQtgBztxAnVpoSWIFJAcnSlrEPgvefemJyDAIBpTSPgg1I/dPxG/V5yXFF5mZ/4LKMPj/q+GhoAMFmHW3g6BoOuOes2YQNtOonVaxYEyiuGfMzjir0dv95TD+QZvg5FnEwgTXP0MCyIapR014kfX/vi1iDHDRUE8SlODZbmTueO13lRY6uCF3RxZK8iH2rQNEwnLEGlsETjHCAeBzfyaHK3vaPxTj8gQ8pznRLBwMUGoeTNE9c1BAkqr/UxAFrfof0MGDqdCsiG5lvts98WIo2MUCqE5YOqeksvh993/bPrn99R3Avl5HVE/tXMuYWG7zZkNoQwpENiUYeTttJgDLy10IZOSywaYNz9+2UOPWqJKJwV/h7X25uR4PsupTjlB1R6koKHmRpE+A5qijLiWsmdE22VD7YsqhfXxsmKza4+U7bpkivTJODObq/DIYVuYopV08IRYU6px+u4oo5NDbbe3gkUVzpDYemgHiIXpjHSESoqmEd55Yy0R70ocFK/OIwuV9xIQ8XGyVawQkywkmpE/j7EtZ9bwJ1P4/QQfFpdVnpK5fLapNOz6W0pObobs/xSY6eSybR6/j5MkPcagbafG9J6hvh3GA1ywGFU9gm6xVKk8KyHdchTNZ1e+x8QHBmvqK9rWlpPDeR7lfW00cCO49H/9CWHi4otv77pPn7UqjCBksMJUzIb6kMIN/KbZQ79GBejcpZJ9g2c/omxJaXpkRvZyRdZT6tA2PsWsb/ZdG6+rZKEksW6C0S8e/QcV9ARvIvoy03RkDmy5VAOzttE8eZizb+j1rG4f4xSt/ybM0smW77wFNJCoc+JkD8fjusTkGXDPStewdtkZL0/p3xiTglAbB7qqbmMgk6WzSV+CekDQnbB7d9CMv8+0vwVszcExmiX9MUaQuZB3AJSkJoLbPp9KWWsiDfwlRLAHgE6ci95Laj/uhkEv8Vgn4TouzbNRnVtkwhHcWH+pIz6vpa1IwXrU/UA7y/SGEeCFjunsn9zPRwZO/CRGoM7/ehSL4js4Vu74YiR2rQE3GSx/lBLmu6jRHGniqiEuwcUaOgBfkWQiYuhfflB75ZShtXptjXI6hehlLdGQTqJjRuuBGgSNqV95YjbSuR5A7J1II+N0gzLcXvKHGp53RLarNa5E2vygPFYfYquiXjflxZTgM5O/LxG5OJc+1CKe+XgQkXXHArAe43ZkCklvAg+KZNEbOkp8/BYjKLVciBubceHrJBHhO04+uVWADeWRNQxEgZl41w2qH9xm3mzEFDrJV732ZwcxCegN307nGJRtYq7VDe2X+oNCf8CSn9uZQBXRHKSNWVNyy3kaVnA6zWdrSIZl10znRHT4sH+AYNy4gIN+J3S8K9WVH+a3mvizTFXTe28bXxxX7ekbyaceiveg5+x0QlihMi8S+n0kXotj5X1JsccH42KCKA42vOSmHQujuuOoANCklsZJ9dkx1u/MEjPYIjkIZmsT3ayqFKrsYa4uv7+HqXFl1Bld4pMIUGhIQWrVqDIHl89OIUPohYHyFApw4cMJawmvhnm5FpyJRfh4/DEt7ORWytp5PJUyY4FHWjbDyZ7vqWjaCh8Kgi2CPrTbzWXih+hbX1tWIP4BvhVIeUSHPeUUIQHC2NWpJH+yeY/KeK2elp7UiICEu6qgW77KASJB12gYJEC6kygfMKup7ZkoRZj4GgO7vU035mGFAaF0JNsMim04MkHpTHsqsfjvJ/lL6lxiXst5rcXa7RI7dITrjuM5knvf0F93fo4jNRXN/zIXnd8wrXMnpgGcdF5xnqwxmtpcr17Ei7IoTqMynQreLqwF8qnpov4MwwjnkbnNlRG0Y8y8x0g5T/vSA5NdmATj/A96O1Die4oklQTcOqwL/pDZd3LjbHRtod22oqvv813Lz3I5o6QfLQS/h64k5TRyGsMQRsbMUzfyWDgHQcQBN7vYiKqewueMbryNniUVYZeAmG1IirrS9/QMdLbdij5wdTqVD01Sy3YAKXk8muZugr+0IbVSYFdv3POzRQ61Lx3WVnvBK31tCPSa/SowZRYyL4vZrHXxK9kG5SmK9m1r3pr/zQK4JeQ+kyxHqJoWeckNExuDXbwWUGl9Wz/uJWzkJ0kKcCf1W4YX6WD7f9BZ72JWqLuR3xXXoN+ueT5WiBmS2wRcrGTyP2jlrnj0dfWGFCpiR5S2ofEwSKREZvJ/WjfU25/AE9qzPVzS7hFYsBztNOzNl3t3YIJR3KCN81C4Cab5iq/QE0h5PaxKlFPgwomD3c39r1faFUNukOaoaH+XLsbnNRFk2EG1VC9VqDME7X6GglvTVpDET2oBcVOYCCDDqapnvDvetqeAGgkp9sXtYYYe29y9xUBGTGh6DC69HS9tf+iLApUBJTCamztmCeuQpRuVKOpAcRW5on5XkMqPK7w9lOHsSgs00Xmu6PlLtWTve/bbWv51y2yzuk6WULpsr0gQ9O8ZQI09uOWmREQgSzk+VzBKIuiJE5Wot3NFXlbxuKe6r4TR+q9maV+x2e6cKgeelsTIUTeNg07XXW19GM2EobudVANT+Xx2i33KYAWcwXNKth+5SjY4VxsleZXqE5jZdZyfOz/6VWr9RI0ur4rmx1Baur5GQKhxeJQANksFCUV/L4TrbbBnCH2SzziowNS5TaK3drSkLu5zT1qi1thqofo9p2ETi2mSgarismR8LbmB7x+yCbBt9YINBEQRtIgWZS+jb1NvHqEYYi9xeMGr8NnHwrRqfPLY2digkOMN4+CsEtYw3DmX8/URJfyY2W3XuDaHVrnlLeXRr04NkAm8Z8kESQFHoEdlvJZDbr9lnuw4SzSdkV1GJ2RG4g5SLAzMO5Si5+tnqqchsPcSkEh9HMjrRaS8sZ0l5AJWMqLGa5rrNyo0ExjmGRMwxpfPZLEvedWwPCH0mAME/4SowlbiK9+b/Q8lGt4oSfMMtwHztcM+wiu3uj3SYwA9FCZkqijGVN2ELUUJPFxNf0oNpJuCmTeLbleBZn8P+PPitm+TLfdRIiZEh2TZ+b7xVVpfYoSueWOEpeRg4u2xfB+6LZWTKtGNAEF+Uxo9cY92NWfwg/Mh9M6HxSfOq7xJUgu7EEcWqoGa0zsb2ir3ZKBT3NIh7x7aihN2/IZiLT87Pf+U69rlkcOrK3sUFUSTqdQFokxw2QlwwStiJBzBnZbXnDmJupi7rwhs/9vr5xuFEFS/CdGAVVfpW1Gh64lGY/+/E2yHFab2R76C+P7emM0ja/aD/i6WzqJucoguSFk0sCvF5lurqcKaWtiVDBBsO/IqgOlwgKj3Uga3SJfSFg3ysMW8E93DBdx2w5Kha9Mj4YzHsFdAvpotcbJc2ZcckX4pp0Fmeu2FgaNxtYvs3WdcOxwnwIsuzgJ+YBFJuJuPp9GPQhASTruZJklM9s7B8dxSuuusfo3BJfGTGvOr6QNl/s6y3kLion3DWkBidtCJUrpcK1+pMjaeHqosqWDG/Mhdn+18+aN391HqRdMipVGoxX+8Uv/hIvbB7xAUIgIjOzjmdt+pKFIKfayJ5APoHae2xWnF49qFmA0YYJrDuLfrozO2tceytkvl7+pcGHp1aO9e7VyiSNCBYEcnTUYxSStwaGUNG5bfhBh59hTAv3JKTNQEHnIJGiQ6rLsSRTVYe2YFMqyP1fKiNvFnvh0fJk8aJ6C2PQweEl87tIQbioQXOJi2FEWVz8tP2Uo5gaHL3MiNr6TbYncnWJOWossSCQiUmZfyatZmAfF2Sma39pTiP+9P7lz2/fwJNnVleOXu18LC+kd7ALtJyjv0f2skpYHVjSNcXIzSVyyGpvmyQ7mKkUy47J92flQ/bxYB3vIFNgkKAu/Z6Geb+Bv0bRMQCqCyLoYZ94YGWEL/GVAKYELBIHMFxzeFzM0NjJI4DngQ+UwKN6gsAoEWfdWiLtnjk5o+mIzem/EfWa1tmiWAUhUvD8pSo9yNEG8sOhV52IYKeGlW6K7/XYivJyP7vuifm1LfpTfwcP8EJDYDeaMWa6gy5b4gT6zGtB4u0BOz0K4ycLL9qpi2w2QTFfzFdowO/M3MPBvRwqkj+qxnNl4SBLNA4HkgbYli/LckcGPWJGc9zUKWohfbDKpmUoO/SUmqZvid9T7BDU2fYtWnbltFkLqpGloMOmqmzwZ+PgGbHRqfNgiDCMV1wezn1IyVen85WfSGWn0aYmc/2d8iXg8Mw1toJ1Qn5YCOeqvS3f/ULWbzvjJ2p4xnbajnjA+O9Fs1tn5doXXUJaVpSfc+WPGtUOfQCi63R/SUUv2pwVueBygo02HMKyrIWf/OHp/NmkgZgUa9qAZKBd+JSHB4e2NaDjZzspiy2NRb14QTRRwmHucrxAzBCrynFbAndf5goFkP0df2yXJQfqFE02yy8iax7kj31t8+WMM4bFy/brufQdwyelQq3ws6sApFT5ew4kpsLnkKJ73+aDS066nw9UmHZRWj1jc0iLWglh/kzOpMFATDuRic5hLICKy77L0Lw25AIU7LFp/LPaCRU1YyI26T7e+tQq4230PABjTzj7ISySfZOP23HhGw77+SZtuyNuN/1wm0j/D1mXkyppvCCbC4Cj4SRwMQovgmjCHQ02RmB1QtR/U4LB7GmYplQs0RmR8xPBB6AY3gwkx4HEpaixMUyAPL2+5vJ3X1+IOmCNPDvZJ2y1h3hHBiEGb1y/KZGIlf9cLIFav73LxVPFdBYfykxLj1ObzpuzeLW6wOwPGs27cqdMfJwRKKjc/eO9DKl9LTqpxYTyqteEH0lvsVknRpi4hOsm24/xdEQbeDbif4QJKruSJixGv+cdmlac1zBH/gDLyNUE3tz82PDBTh07WHVceqccWUSVFsbsxj9cO8Zg4Z2POYkjsPl/YZfEzkVi+dvtI3Vgph2ZVOMfEupOv517oDavtZa+3tv9aoIRKispS9x+H1TfEKwcHdp2CvwA//+ztq9va946SUFkMM+lqGwl86CZKeFXQoSiQokg0P0ljpK5DdZKCUBxLrdWJLJnWonXsn+rnIw7H1/Q79oVTi1yzTQ/BR+Q2kxWhXrRDRHoMpNeJsWY3r8F74Es9UHceiJNQ9Ve5qyWSu5zpWEiSu+8gub5F3vUap9OhqwP/4p83k9ukyAi79kC5yFyqyea45ebEPw3rhvOd/85v+lWQMbm5hd/Ao7DvwJTAqgNH039LNQ6DrlAyxitWyi3FFb1iQ2hfd3v+0apgt/D4Grnzx8QDLhGugo1HoaWGT1PjidHy1BqefyPA7KkuoaB98Rfkfqc+CEf1q/XjTcHOWpSyZyTAiK7KUqAbKxYYJMo7DBf4+Tc8xjKhZTN7CbkchN/X8HtR2/j1ys+lKJR3uLjB8V11VEda8veEG5dSD0vZdL6A+lvyxHYXaj38XsSW+kn6Yjx4Ig01YmqdhOXt2Pf6mied22GSgui55JdhwbYSjX9ToYWb4W7OTrhdObmbK7Sv+6ril079/ptQhAJock5vbcrYvVCoKdVWl18sDhXhFtg8nwXKxVA+8q65Ik8z3g0U6KrkJWsLz/j6rYgv3BZF1uiO91rw2YYp03+qKf2LRPp8apNHuNMfJZxayOkwf4GIY+/epbrdr6booOFdyL0FBGqkuOEiNnbfDoLahhynqou01hIuJ9RkffBWP/WQkqwXNrQ2fewFBdqzkqLehZkb/aWPYX1v+/0Lo2e3sq8fiwUvI3q9So0+AZQwUlYrEIUfxtPnYa7r3IF6LEWm5UxXlG2jb/k0geyCPRt0c0ptY/+VakgkOnZhqdstpKwGX+GUsH298UJGl9TngXL/7uoxga1bvcEd457TDnLbg9OwxiwMqySQHdAIlSiRrsPJydF6CGYVVa+J4gnNsfGpRcL6/dty4y0KYygNqYMGrVBsHu9WaV1csYqjz3c8Cx8WmbH8VJsjWk3sMsj3l6n5ZT+kKwGBuz/85Li1Lcd7duo891I/sWmYJpxQF898mZRAX5jLBxmDEQey4r3W7r5Ctoln8RsCv+WApxei2wHEhTlrRVcXSn8DikAanpIjeWO1/mTn7x41hll+3cknoD8xGRr4SfzX4PFKT4gNDJOPVf0oA2oxEZepC832/rAoRFx9u2IeVIwsP3O/bLHO61o5wAIiuY6EJPQKmeIL5AP4FajAR2GfdfPinkXqONGfc4TXoWg1A8IsPktA/vfhLr3ehXPalpeHoKloWug+CODRdvQOOXBiaic4NnUz6YgGfOeBxy75V8R0iEjCcB0a8FMddsMNlo8Is2Nq0e27VIrdgYYv23tga2xlbVGOV7+QSCijVqEh6S1xwhQrk+m7U4+owyupeL2z+67A5oWd6svFKetlGZ5kqbbdhycs7ccYgfTLJWgt29DbS84yzs8lI2LIJYSfpiGpL8WAyZJldVpmKmmD09yCStQDQ5e80+kBWxalhEHEhUtzo+2EdBOaQ8PgV8Y9V1aehXie2HloDlMbd7n5a4LgVsZHwKXO1iHPVMCh2++jy6Npajl8ufY4KJCnfOscBUCWWhz4farfsYqrsOPswesPu1Jd1W88WXbzQIZvXzoDylr8R+h18PJ6dpi9ATtqq9+Wyn9zZAbNLPL7Tw6Lhy9GgOObMtZRgb85Ac5lCS40B+9s0LtuxCsSzscUa1Ie5Mmjb2MkIBY3BbEiyhb3xwP7DF1wuAQgOi5S/3N8Hg2XmO9yl3RBCgGDV9FeWEISrtLeHkLjJQ6vpj6wVmAw3g6ham1MsbL8xvNEskYAIWtyfm0L8B+nVe2actmYOQUqMLKf1hnGShBpa4gFtsAw834zLqiH/s8kI0wEopi8chyaxLwYiZiQlLiWMF9ideMx2DVNkeXkGvHTokYmZcYDR8f8TNT0hhsJxV8Ys8gbgjudNyBCJ9+rLe+QCak4G3UPHLvSZb0rTC5Gz61vBEoEFyOs4lpNEmiMSY2pCRpAu/FXjjcoMO7v0WJT6+ORooZp+M0g1QhvX4IIgnEwmzK+8LLgjt7SyxSm5UWtvzsR+S8h5bfVBQK9oRPWgSOfn+7tAh81EzuNwH/1po4pgqmls6MaRriCaZ8KEak4a6kw0+s+1dPpZTMnNLffsHHhDPsGvAw3Vdh1aoHgnXUAvX2fbPZ6y9g6jeyE9KFDCvi1QbDlqnRlLJlmGwCG3r1qPms5/DQ9UodRcMYNvTDGsTc2E5qe19xOSHnyHb/Bq6mi0daqKOINTnepNhtovEKqbMXBesA7DiRHlv5VCPqABjwv+lf1gY9/S0tqsv829WN/8cFvDFSWRQ8BZLlMgsqfp9aDxWgleTW10+D96MTceLKcsYFu1InRDGnxY0NJrYTgUnYRj2vCedp7gD3dHpufZQ5jVMywnFTdeu9JlygM9bty7GBTWXeYTazabIsoLjIPq3S/Q5zEAF6kdNFA9lA64j0vuz/uN0TH5hJfLucg0ys080mCwInVBQHkb06l+fiMtpXmW1jueuVAim/8gEgMAdXHCOKSk/mMsLSsUtyqgg/MUIeCtUq3SyZMnNwj0vmeudYOlNDOIeJ5E8juLZenbVS6DrBs2ndVd+GHAfHbatSlVs1Qjm71x2R6LqRdhOO7PmJHOVbAvO98E0oL1jEm+BQTeMKqOOAVYn4iBkEvD09JAa+qP46xxu7sddS5gU4ZQo67k+VmFtjZwXc4u5oRQUmVkKbQa10eXERok/R8UtbrMnEosyF4OBXY7VJ2asKIa5qsLFRLbmy/kpbJkVhIHjJh7tLP6/DFGlUmz7VLBESFVyFMVjYai99fwMJSB89IM2I+6NC7d1yNpaip63naN0dJb0IBPYUOZzuCydgGb/wYo2lfRxHeA6jrI2TsrYpjKD90omAFWWtgvhKzMl56dK17x5pCzqbKnnhzBglow9qSSKVPaRkJZ6LtNr1LDSIY36frl4pM23blKYs14/DA7RG/PP9V5wlleOFdidV2NtIAJQ0l9NMM0S18evZHozJs71sgViJk+wlwEEoDtaCJfi/OoSxSbr95cXJ6UtwHImcPbsXx7Mr5hiH2MwlQgfXXOUykNn7+DEObfv4C/LisIg0HW/JIeW2WOe/BoMz+9rAU+lU+PTpOVp/lA6ostRbQgfnEuZGM/EnI0znPect/wECB6TomuX9Og7ejf0uSfZzo0HuZwOZDbMQn00/NQb4GWBY6vRGq1y+77R+8VrPz4aC97pON/0XunFCTYxZk6Zsy1XEL/UQGzkmZSKhysj2oVoTX+5Jf5FbNjC51NillwGBmWTtdJ4q+07e6qdNS8h+kyIz4TO3csfmGyPAIiFbxAx55xZPtDuU63rCQj4o0QXnxIT/6NY4HXjKhpfaVte4a3K22hNeqCxUru44GABWIIJiYufs3TSf9DANhoD1cjbjTbttP2QaMmmJjeVNvDJRyr0U6RuqWwo0KRbULjsVP+mAC3o95zTsyWnjD1on4O+A9IJIDqkhLP/FvsbbJpHmRLR2308M9n+LAsILBc5tgWYIVvjQfTASqdKytKhLwE1Yz0tDdkDfLdmbsVPn2LPfhiHJ1lTN9zj9uwK45iVn9oTs8uGdrETMLP8GjTtq15Nh2RSALWgtw2uLGsUgVvZW9e4mbRD226tnz4OZk+PxgjtFT1qxJYIWN/D26Rev1U2/TdYKqDiPqqcS9jAYH1sIGRRXzzH8JwHCOeRo2tIqD7EHAlB/lvn2dYQYeiLYaYq1EX77izu4yfBDTDrdwD77grKwWi0RJh61F19iJ1X91Jf4qhujbla9F5+rcd84pVxC+wSYUjQlnKtNdGjr5cpZwqjbewPCg5L5f6YlArM9bnAFwwJ75Zn082Tl0k6FsdDLUPYj7FeGxKXakLPx5Gldql8wGRqu7Hav7J71g7qQKTIBCaqNvHaqED25TJ+RJIQ/ajS73CvJRvkk+QpOcLcBOpzU+3bdWFLz60S/eZNruRKploceBf2LB8TUWF2a18keqH84PG4OzMGRFxJFCTTf9h18c8EiN6xWJz/IBUQ62E+0MCkSNxHfinsQIgQvjynnyISUnp9gXS+R4NVIwFgCxLJQLsYyxSE3j9TtitrB9pmAUFRYHh5hrR4EeF2N8YtUYElJ2+8Sf7Jom1W4FzPssSMCyqyTsSyTuuMm5ShQ6PL67BOecjl3BLOHF9+Ybt3pSBXqOSaUwDSSIzkfiTipDU8sGZNRVjprnkETF+xxinxYt8xwpGFoMohmNYqqIJld9NH0oaieMik1PVSx73/zU1O4mamU0fPJXYaqIo9sTWSet9rtL0sXEVC/TdXzGk3pXDwFcQqs0guHw6AIRv00QB7Tf8REkCvmrYFN7JZJ1Hhz9qCL/8LER6Sta8V/T6yUcR8za7Mh5V0JanJcdvyvUmT7lwhZI5Lp/Me6EGFzNSzsD6nK2kjJNRsQ1XaMO2nTIbLKzDeoMSyZ410nIJfyqI+x1itSN46UmxooAEduD4yt4/bHLPH5jIjuJq1rIGGcytBV8fkrTIIRvlVQvbkh0xHvlsTd+/+w+ki6H/wSIf1nSr2cFNREWpvr7mcoBc8kJWubO3WLIlxrjfA/O9YUZQd3ysA34NVr4LtlzberqonAXVmbGDD/1EwV2xeVrZ2Q14wc+hCXRK7nwnQ+VbOCbWyjlcGUzB1Ide0gGH00tOA9XFmE437soleXgtxWOV56gttpGlTXi5jPtiWK4/Uii2ZYYg1ONaTdWQMwjuPdqrn7djrnnSWE0HNoybI1LpjdeNDAHjj9U+LwZGErr2nKYxACMY+bAvZt7BMQ+05RIhAngPKT6dir3yrY+AXAOqEytyKpnNPrAbI4r69d96Za7CXE8fUSUfpmXd0AP6Hjxx0xqaWX3K+awKoLswswQf5LFjVONRn/dnh6zq6h/Oq5MK8Tw7rc4vSR+umjpqYxoR3SAxC9aN0GUMGpRHv1XPvLNNRP2/eg0BuEyjsprXnBiVra19tp046Mcq9KXI93CEB9TMtOsaX4ILgkis/jnEA2Kftaih+up0u/0KiEL+znGdEy/Yd68wDKjP/azV9OUZRLkb4QCuptQl+pl+BZIwz+zCLafBaQ48mAPKWzLhPA/9lQ59csb6AvnoWA/2IWiN6k8SOA4OrxPhbc724ioGPyXQzUCv5vR05J9jMx7bW8dZgaZlByivuZE5nYe8ILD2v8wCioNql1eA96dr0498w0OypXe+o6F2i6489ptErDUaCpevFCDyyNKMgDCtHxpUUx83P9K1wyIOHRcmW43jz0j6DYkkg1QtpnE1P6Vy9Pc5yJXt24nNjlUqmuavA6uFhZq9g9VOl7anMsaeUKv6+AS23cBTKhHJraENTu0JThR0cmYQv479xKUsmWGBztBkxBOano+gSXv9Os769PDMc1mUQtVleY6lPafywK+aZPBeL0PXkma7JmVNr8NeTbvfI9F2aNqCRu/IWJPArPmVKi/Quon4nx5qt4I0mJPWFlnZrDWGa+NnShmFYFv0F72PlUfa9IrR3Fs6rWO8EMEjyzMyQvP8HF2S5x6Owmv8NR8QulDbBZnFiv/Sn3PtfDNXzqMbBQjIT156T+jo4w29Nuvxj9STJcnOTi5DvDGCXlGQX8cO4YlSVqMC0UjmS2EWsUq6fuXEDdWHm47NePelSIBDh7OpywmyZjrybxi0EfM04lnW6LZu5vaEiocYpvQz7WL7Ffal2+UeTg5bhaxg2I95t9/BJg07xvI89m/Bx+pDHcfFlxMai5GXTh2d7A5PQruPKpifoQTEQaIwa9acWc5QT10F5NWoiFQInYTGi8oJSPIdQfSjn3cpcM2P0Xoa/NdBbL1MLp/pUEXuf//bHFlRD5RYnfF9WFL/ThUAS59V+j+jvGNw1j8u6v3iZTUvQ0udycAXoS3sO9IzqQbe8i4evUT9W6WXOa4zL342/I5puGV4ahMxRznI1i2obbL84mDN4+qN013tKlhUy8f1UvhOznGWYTf6uMPqLfyZPP6ATeOqKNy9d2Fc8YCZTAMrHbJcEltV5rOdIqG4l8xp6BgiFzklQYOZ7rACdMoXd3kDwm2ju6glv3f7e5cKln9cuh72Hqy2RSEtJQi9hrl2f/jeEUhFWvGoc373SlAOL9EZAZvVVugjzuHrSu0u8W3MK8F0+y6uCRAqDojnNnlx56f4ur39Fudh/s7re9J5Rrm8104IMN1xvATxc+SHA3wYLBzpNQm/Lw3+FsRkZUbCgmDJ3Auy2N3gqsz78eKHigCk3eObmgxPI+OSxYlK+ehLLSJqCKrM2rCTV04xihF4y6E5CwF+czHIU46BROqD64dl4klmCBeqVD8wm6064+CqPdnx4E6UvGWUUKcqMAw++hz7PfpM57ATdOocJsseEi3/d02b45/UTeG4LBQ1XaPLRYRj1S6oYwDdVRvLV/qHjWVhpv3lROieIY+fywSJD63oSXoebL7Jqh54WWhlL/QozNI2+uB64kNsg4aTNd2q3u/qISGczF0Q03hIYTIX/s9QpFiO8Cxbiqdp7g4TvSDabNmgLH8KUDXnwSlQ51JGW2fau6rk4UlUgWjQAu8Hk1HDu+L4GMwNxsBoDppgo+xeOBE78h9HyKfY+1PURIsuFh+lC2sEVVX8d+UzGkXk8s+P1AxietZ8d+vaZ0CwufExPbKkPOFQG8spYg+9e1m89sikxHnuc6a3x1738uxvOCauwOQb8B0neK4hp+l6bkvcLXWWkul79GRmSoLj7iJtb0WO4SygmALpxZOupILiI7ltpT3UmHn4xCtPYhLWVTMLhgAfO1nChS7wOAU6hcBgY6F6X0L6juzWcBGqE72VPyUlMKA1NsJdBnAvmeOSMKv1f1QIrLGPbpuk8M7DL//wCMmhkejwnlwaywvpVrOQkxAEaGsdFlYO8Q69GwST6CZi0nMsAv7+WQU6jS4xhBWvE2wRdSnya5Be5h1Ig1Pmy5ObimJRj738LYke0MMJl5dMMKTkGnLzLsVKDfHq/Fd1WFOSy3D1KSxsOpkYMiXCT1FnTtkjtqb1EI3oPyKKYixL2lGfV/m+rDOr8vEJGzhCXkCDHLsAwuWcPqGAGgAYXaoE4hL2/i6rFnbH9Tm7tldRxNDFxFXuVvCyYj62pfWX1gPAdqu0Oop0tQEWpZjeCki3dZxBx/kIyLRtF5+2EJTDZt/yC4reYb0CaWv7W1fqnLm+VWCFEkRNXODSZidlBbojedSdmG1kFPx5f6WH0gst0tEb8kWBdj3f1f3PVVJHN5LtZ6nmvQKtjd41KjICYGHnDZV7jD21dm11hrMTtBtgQhvkHVLghmTKRWv/GuEfnXYUZN21uqzTh6z9n3qmi2i4CNlsm78+P/pGr4+GvMerho/8mPODIhdR5Tj5awGpounrGfZ9GpeXePHhtGK+IMfv5auv15Ei+iI9aYHTgXUehuP3qlELWhUEAQR0iwpCp+WJNUdJoKWdr4PpV9WojorxtPja/hGjL+neOiA/CVvA6Qu2h054XKvQRxrf9g4y2ROdq+QJgztzQf0FUqQ9rWR91TGw4mM9aqjryD3Ir21zOq01XByR/ftQMC8ikFu4yXpK2SE3j7jeKjrkL8JukbN/iq7ZSljT4BXI9YGMb0Tnt52lgANHQLIJQQq1bFbI0MhWZtdwvXxzv3nMmpiRB1pv3mnOGKlkGmvjyBgqpJ2EAa1ZR/Q+85GvIzEuo6XsbcsrR8Dv3ni18Ka/HI++AsJXnmYf2SZ4tAj15t+RIfYRYFIWKSm5rH2NG0wOuHXc5azGSG3dPrfQTagHv9Ng0d9V1qjmJAtf81lcWcXYLVND9yQUhBmtjCNVCDBz8wXwwagWitTvOWeVhbbrztjq5c/LmmxVMjqMKE10q5xnLWtktkv3u5NlEnYw1Y/gPqnAWMpGoBgJJqtMz1Ei3JM/yfWtuXQftUJA0p82VO1GIbIxD7EXqKW61ZBHdm2Wu0dPRcyJ6VBgmSGdzvEf54rDeXxfDBX+y7p9y0mikxL+jLey8gqhzWKzEk4HNvckVB4EwKBEWGPUjaGBwPM+Xpa6XT8qGpbYp94ibvIn7suiecunDmUH/+BHaZetohaDexQSuKPfn224MZnCEDPzdVL0zSxqVN3O8N4JmR8KocKxZB+JZ6Q2HUs45+4ZRJyutLXFn1CX+MRHKJuNoHLL2JhHOWBwZdV9p8fXKoJPmJRZjnyaaxWHpSqeEajXjN4k1FqTZBStXvCecTg1QGNvyHHvCVViSM6J6KlJv+zgSlClGdXXyzMt0q5EC5WxwDvPqzHrJ3JMy83WRQarM+u47oeARZDhmBVODKvAujsWeQDbvf+GBjP3CA5LbCVvTYdCLabpZyWGLXI3h97udg/t1TA7ru3EnVkYgB63tFxXmut809huNH6zjZCaL1ztaQiOcXxv0xSDJ+ZHCKTcp+4cLN3E2NjnFaGMsQX1Z2i/zwWSma/Q+F2hamvfN3cWNIgC4I/5XZZnDD9ddVs4bWJSqYUwcKlDheeRy9Ua781CM316Nz6/ZS/mRDWwPNS0R/sPtKw0ZkQ2C08Kt0/wf04NpPUZplniYGKS5EcCVvlzfqEPR1WZDzwsmD9AlaLx0QDOIS6O0bgUKo98v7DCKNCcO03hsz02qdxMM1IbYOgrC95RyYquEsMLBkCvcNSih2dv5lR8bsl24HqACiAj17btffkU6sRJUA4cYusaY5ZfTUeQVWXo4yCXAiL92KJ15VSQhfukxNRlJA1fLAv2uJfcBxNsNNz8Jms7S4UxcSOvChoeKsTPlhpA0fsstupDW979sz2PvfrrPveA8D82Eoxc0imRA5eUUWIn4H9ODaQkLjxYvGozM3A3hjClMskg0V28yDTDivhavhciRgKxncLACYvHKhgY3OXYBou5hvONHezl3qjT9kHXm34jEKExn2VqL+AUfJaiTEjWLZLajF0WrWfKuu1N6vwaYn8bMuP6Cmzn/1pQbFqBemouGtV8zFUYvrkvOI6S1luoeUiud/YakysB6Aajfvr3awNh81A559KFgqRJ+Wdbly3SkU97M0ep/lUKj6hMP6cx5KvK5xqnfCctCyH/ASlUzzxISp9xDriYyKxs6oDXr98gJSCqV1ZVdQH+JufYPu/ZIwdisCER0wrkJQDBqq8l0pAr+zoQhFql8SgkFM8HbBXpFh2glcuFpdPz35bJgJry7BzHdnmSeUE22vqqh2yH/O3izwIsLJdmkLqottCrwck5zy+iac1l4aAucKdhFV3nS6VpHghiK1GAU1gbXfbqq61HvP1KSQD4yP4EMj0ka5OQ7CGErpPBIz0mdoRQ14+8zX63/mvFYc75OCyzcFue5NThoFOvvDZFhrbi0nSYO5WI9XIjoVaV9CNxhW1JHfXtoj3FeluN82XrYcarUsebQYVZXlAoFOPJSxZ0ayVRHDBjJl/UJ+egeQBnKzpDsdcTgz
Variant 0
DifficultyLevel
522
Question
Curly, Larry and Moe share a bag of strawberries.
Curly and Larry get 81 of the strawberries each.
What fraction of the bag of strawberries does Moe get?
Worked Solution
Fraction that Curly and Larry receive
|
= 81+81 |
= 82 |
∴
Fraction left for Moe
|
= 1−82 |
= 43 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers