20299
Question
The surface area (S) of the prism below can be calculated by multiplying the perimeter of its face (p) by its height (h), and adding twice the area of its face (F).
Which one of these formulas could be used for this calculation?
Worked Solution
U2FsdGVkX18Y+o99k/LW3eb+09NyCmzQbmInlg+Z/spVQT60c4r+0a8YGzHC7hv19/Fstv79jP465JdTo7rR52uNDxJ6mz71BxrW3s9Z8D3vDcSbEm3u/JMqppEhGUY4QGtq4/5H/+h3y/6MQlAZo+CA3qCIbio9GPjahTOi+jRxI/nk2meUZOUv9krxkKuvVPq2184stEnsBIDqeGa3ziIhl2Eex2h49buWk/LwvGcdBj5blaKzfo3Y6Y47Q1ZOMBeuvUjlNjutQbPaTTu48Z7IBCOy9eOy3VRCKrlattUc1/GTww8rwThCXvIDL30U80dMnIL5VzcDDWbH9jYMJ49Wv8j1YFLn3+lP0GAxkoy7Od8ZrrkaSH1b7lV4JNG6pIdyvAaDdmFhD7uQz8SKlnMgeo5xM3Y3aPUfawE0bxoNTKfDjoUh7aH5GOf1Q/TEY2lsU2dPqchsA3TdbuJdPqM9CrKAl2eNa5Jd1oilcxw/S0tFU/Epunga2SIfRG9pVzaFKqLtZeyFAn6ydja0U0WeIFUBltkTIoLh3aPfQ39j2fiM6Czy/R0HbwttVAUDSF8NaewgrQKbqSFmWjTq00WOb1hdD3wErLV6EDc2KBBM6h52Wc+OrLroedReYVMF1Omj8rVYnkr+KshtiEL7GDaqxTFHKWgnvqy6I4Jj1LTn3jappjzwfIXSxTPiN8RoHtiKPvgejRZIttoF1qv6nb4173ZKRS7tbRY57LXFudu5U5AvZZurw4Jx1XlEt6mmk6TMXELWoEYOmnQOeDxcRzXNVBbl4kWdLUtudv6KMQRQaikZ0+90KDAcifp+fDOqtZt2xJAZrytl3Rxi3X/FOMwOCM0kI85BgezBCuzygFLt+qAdo6dPPOuWYy9yCGlFv00xQ/D7NLbGxuI2fA8tBINIsCCGgNM3Fh90QB0z1eu7RdUfujzsYvUvGwdNCoGqy0c/u4+Ad5YyzVsMFfVyGKWo6bk6iF7PbCaBjxfFpksPIZXsNN8KJ3X0mvhfX1KUh+SVHoazG6vB9TcgmDwkgBma+fq4KlVkbEbFFzvFWYjJP7pMCIIzaAjYcNxojeNwKsf/b0XiHNLOCK566qIB+DgTKXKni10s8TjwriXyMs6fT2D+Ss2NMfapKO/1WdkmIUHNiJ0OaU/zclcRz+TLRsOEYAw9Ga7PWXBpRJ+W6MhtlGwsZLyFKewzo3msLb0UwY0w/DYednqAma4MH8DLsBmi2Gvno7inmf4cudHRPJ6IIMYbhUvOP/Xn2aLE+8oSGVxJNQVLzzNiurWS6KQ4drc13CNDmrNlqkguRfX2wXdu49WUtGWFV+o3glxKxOiV+8HduRPL9j42kXXnIw1bVeP2F5JNYcCuZ37QJ8Oz5WyjbzV7xwxxEwmhnO4q9EWv/R7oQega74dMEzhEIIp2g3L0tkweYr92WlMf8rmqI2S7QjhYNT11UaeH58Xrf5fMHvUOQWvltqAjoqg52xiKXrVXZLMPgM+wrgtrcqQKIa8hKX7kFgB209J0xo5RZt6IC717fXxJLj1NgV+xx7BWgVtB8P9zrFZD9rgV8tpQBJwBvr6ishQbLfSlcQvVs5szFIFFmJxZQyud9wk7a8GOrziMqaur5y8eG9whKe/XG6fln2m2WDfY6IXQ0fCMBHCjwzwE+ZHyF5vH4wSrzJbsGobfgP00thVRbaFn9LgJR+m4Cng2y10Nee2b0k6mk6dm7cu3QrJcyPrnJebDelFMVRZIoFDSoSu8O56Cp2X7ESNo3o6GbIYmQy0R3nbBVnfXqPpeS+F8X/HDjMj0X+Q+94ZZysbkIefBApccUbQSwZxmbb32ttQn9A54FMiZzT9GB0NW9lYh2OcPeG/uyxZEuFi3Og23EfEntpP9xOJ1FL5vTFWRwSQzbJpCjK2ccDpGXt86qAvX+R+Y9s8NNUrKrzpBSB4xLlCuGlFp9ojDncLhrjvnEJAuc9KjS3Cdvf/hdhkResRly4CUASfayFynLNLJMVf7HEjt7/PwCkkzG5PTOfNLdmXBax7qRbLtoqIY/AMR02MtLrWV/RModu6vr/ZwBfx9eVqnyDZAWCNHuQ3gRwTt8QDYlfn1GN2UnJNM5G4jYxEjMwxQN6ItSoThCyn/5/5zu8JLmEvrVE9Jpq/DRvv6rJXXu9MI5hBNXO9yqalbJnPxcjd0Umueg0ELgyV1bBa9EwfVTF5i62ForBbE4STb3vvgtzKEdLqRxT1T6Nlet/oWvq2lGlFyyl2BIectA75hPYnSPIHBLGggw3aLwa0JZCzGAmDkEa+dwZp1Sf1NinWHPoDITx3/SPgwGCMiqK/WxJbipzrPoY8Yaxk9DXYJ6PF3VwlF3WrlMnbwa6lfkcVvY9KvxlU21JCz/TKT5eB+lENBNoAG/vadcTziyjo35DE+INhJN1zCkoII+3a/2+ftYpI/swUhdb9E+T7r9Ff53Qob1y4H9cUnoULOMZLickPlgkojyug5pxnXFRhfLk6C7C68Aba3FiXd5S8mFcSb9DpkJTsGYycFYLRu1Q1hwASL4kTg9tgvJJ1TTh61QjYtNML0lsg6HZTjiiJ+Jrzy82VnVTpTplcOWFc7Lns2hvegTAEp7CSZdL8y9HWEEOh6gTDmRDfSwIy8jeYdnrtOfJHlVHxdR8aegP3lIrxT6PcRcIgqENfN+ygu/c+ADRin2LrjtRFbAlN5pBdHM+ZIJXGUH9JE6bD3ilWXRrv9vSneAhfo3FZ/ggKp+WxHKA2qono+sGHexSVGMij8czv8BEt1U0vkpp8143VBIMBdvmllyFsOVL/MpfNP5wP/pdGiYa/YzX2QGhgQ+d7oajRp5q+qoKbb/JxUdonb0nt8ACaT0RdHFmfDfkqWYJ0xo2EV6moNwInYmv6vHPwm4E8gR2KvKfKxiPOqP34OB6CvThqHrDH5ForngM+FRa0s6/xDbl+yZiNZm6vmvf9SKgB7eDU31AQQC1dj5QaQ7hVWMCGV72i04So4Vs/ZHV/DnDCrH9lZpW+boPJ8fPHi0K6kuZYWY8O6tWKWL0dePT3vgzk+3qfq8sJH5NJ0J+a8wdIMT1WIiP+Pq2XTV8DwwAhryouUkqwq124t1C84cpYNmsbAHXycEonvz3dRwuBP3g9hfUmamCIBZPuhRvEjvm/DGZtjeRQk+32P+VwyrVCZ70VkIze2gEqzHlZ8YRLOCZD5XZ9x8q4p+SG/RNXFH+4AMgbSc6ttGfC+KA7GFERTwKu2/+oTejUfaJpSx3u1udkdY5HeDaK9Ps5UVhaa5zSF1v/KQKON+y5llA5UfetS6MGlwD8QmSh0yk0Vd32do9dcQweHJeh+WTyNaNKvazZf3SnKULwjy8EPzjWbIXS2IjhQ8U4BkaLzLo6pzKoWjTGn6kUSvRLRwpW3yFrF1+SwbD9E2Y7Kbv7yPHhl3EFpp2YIz3bqZBKEhCw9MD+fCt2qpxIJzHoSxk14qpxGgtyTTjcsttYbqwrj5XcEaxiI8NnBKjAn5LMP0CnihE0V2tHF/r0p/bEb65zYYf+KQmzOkxzPHjyy3QyzaVHkAiMF7aVGV/talWIhn7DZXH9vsXvEf3KQ2qLxkD0ZfrSs/Qu/eaIE2sAsyw9D3vwHkAITLfm3RZYote6ACN4kNXAjMvZ1qYzEnu1P6/jkLJsCTVuYwUWc6GORkEFnId494jIuBdXtN1AIMAgTLUM5M+PCXKJ3ed9OHjWRZXPprmmxfe4dvi/uLIowBBHS9JWtbptcgNm5AxbwCcO6EYXWRHVNKhX4uQCBrtKVirFw2djUp/Udj8v7ptmAb+y1wObJCexiwv+jI3808xF60Qb7xoNj70uq24AjetgWzxkisTfwARaWTl+rCtq0GbDxRFjXVEmikTvj32JptHvE4p/mBruGpRikvE25t5JeAaZkzXLygqjQvitvbEsNBoJa66JomRnSyt01FE45x2Zi1XBLl1IzIhPQZxRXaL0B9t23cTUAkzx1cOk5TW7sqaMuCjLwnnoznZZb/bT4R/uYx59eP4vunMOZyk9E6ZiDa4brYrt1g/bYLJNGHfRrZfniHOSX4p5EYlkk7+J1EgcJGzk6pvgBGMZVNtiTRK2d9nZLFdUrEVw+e3goQxEaNDaEYSAmGKi/isrQeFVLKyqOIrimXo2AdVTx3EWUCRU2QBmta90G0jjXSAoOJMEQa8ACk/vdyNyLHeQzmAgkEmDFgIFzscSEz+V5gDbJmlpugaGnvsBvq5jDJPpVDlrUA2gy9ZLsGMOBbn5U+WN2aPVFt3AZQ8NyoxLi/ZqRTnqjsyAGu0XLvy1sHTZ7EXL0xQ1N+oDdijEY+lFFREQs3fCkNOmDexGcujc+VmG8L8nzHS9Ki+/Kjf7vc+4ZRKC7L1FFYPRTn1oTxTmnfURF23XNuZRA9qnkb9MLf+46uS0yA6RsbmKmqiUFCA9lQexbq32KKngB/G5AUpAuODG/d7Ji5wB+EYwteDnrlS1+WSZbZPg4JKmoDpz7JdTnvk0ti4k/c0ZHBsh/48xWtGR9ppZGzyilebLkg+WGLqEq7MBn42MpwdsIn4eX67xkDV/MB9h0D0MCwnfdCfhbJBD19PH3Ju/Qqrjmxoqzj51qTjoeId4jj1k5GhnAj79RYzEKwWMv6i78jESHVLu8hfKUgLDzMZxu4FpEevNbARcyFds+eYpJ0TaYqsa/u4zipwDZUSaMNT/rQpUh8pD4yk0nBUptXEcBbjJSk/MARiJy+eOuPDtaq6kVXaUeLPQ9mqbunATLMz8TSMc4LD4DnwekGF4Jof88LZCLAjtmJ+AfN6hldAhmfTANW4lIT1HLE2jjJlatyJ/zBIpDjt1mbWvv6DYhcSHxzoQAK2yxGikEyq5W+/3FI0l3v+tzjD2raYn4U239Neb6G//cwvfer4j7GMs68OnIyZh7oBa2Q+/ArtjmqqjEm9OKTuSdUyJw/b9T+Gn4+nwqnb5gpeflC67l4O/w7GcAx3JZYaVXiRrt5mp+YoXYlm5ZUjBhS1YI52lEOYPmqQD1hclYN6UNI8bRPitBgdBYmy5CqwbEQG3xlQ2COdmMzKHPX8VGb175zPB9fO3gnotny9eQZrpHPszSPF6rPWNJtZvmCq9UoilrZL5bc/CLY9EpKK0MZC90biZwVLQT1mHpLr50CIcZ1VB/Utr+a3Xe41+oqml9bFTmerVpCt7Zr33Wdl0VgUTYMXXswHwh0uKKhrqECN2HzVwVsTfepLdZKl9C4oN4nsqywHKms/pcJnlxSYhgpSoixfYeFbDMYHgR0XGmsDfZBpx3sNgYnl4Yk4tU/E5lBoZxUVaS5ZqBJXbE4MGJsTyE5cR1jlYZVDJGNz3gx53MG6ZYqE0mzRhOUFfRz8YphxwBf4idVhx3QtD7dKQUfP/s+JlQt4voyFS37uFjqc//v7WaNOs61Ia7CRP1MvJiZVm3osI6EooFFZxsWqfjrM//ih7VgNwhitUcNWRg/cQQBvq/HC8OUntsr/n+6inu2pQVGpASxSLr+bMfnCJsOWzoy0ldTSG7CvuYyD2ERkK43kxW4Xq0IlVp6PTbMurttxqjUKQHNHMtFN83ed4TCjqZ2HiGz1HGhqAIB852suMB6KdE8nBJciwOPKbyVmsioRkXVEK8Uee8rB1Bb3a4b1yWaJ+VmsUSfNSb4Fp0iKE5/YiuFtTb8S/ERbFJmuJkpRP3CDgNH7SR+QG53rorGI1hb4K4nxcZaVyhPUBLMP1nRK/s07nJpprgLbrCgv0aH6BVj27h9/xFkRKOSH05JUSiRGOWmCUewBqEL7PGGFBaYyboLU41aKxkIA1qpyKeuwk1upbZSqyohppAceY32OBUYos3iXEqrwcdhCrrE3vLIFqn+EkUvDPK9bnhLDjA1X5taH+DahN0Un9UieHdVzdOSh2knHswuXdk3P6wWL6Ak7S2qObMJ/FEncDy7I0UEicatgHVjr6SXa3J2OUjZJxMuo6qLGnA+IG9NHFMsuUltVYQdD/yDo+LcTrHZxsJ8MdAo/h7dmdDrGpnLAKtnFmnEDnLOpR2U9Yck8nI1gMdu2d8BCjvw5NvQww5j+x7Q/CXqIk8RZPyyLqeVRfhBTgsQXNnBYbZpZyOLhd6FMnra3Xj9NkqMq8Xf03bZ31vfY4O4RR6jihfZfCsB9vZsANfJaspqfyPsSc+cnAv8Fq38Axe4sP+05M+hQ2+4RtWLGDqE4GDcMtod4o9+vgW0yr1fAb5NZExvPnED2AK2USyIfxEA8hd0Lyfg4K45GQ+P1DgzLksfEQJG99D1HOKy2FL0X7TvNL7U0iSMWVzDqb6gfjYaNRU/kI1B+oFxGtcAn7SvluCK8bmW+Cz7TQy6QdFvzbcWZtMoeq6b8Em6HulcZUjqSnmv7i/CLRCvIZy/q9jJq2TgfJl9Xy5AQ0hb6LHVIho1c/EqGdH8kP0KDM/xOVqnCuNx42QPeAUYg1u4WxtGdPQ7dFLZdHrVOEX5MqYKvPem1it4AV6CvTR0DnEGZ9rTjwU5zIQ8jzfwM0r+WDMkbLrtr/YqMOfazJ9L2OYGNM3qmFw7aujtSkiE3/xVUOKjvlj8GucGJJyxqVAZfSa6I8tsJZuA6a1Zc4e//7DXh2umaXMN5QmhojI4XaWc7U2KToQTt8YdZQGOquXHW52bqtxjUKQ8ocS4ugECyhrFZie3pTZS3pkyiFUFWHD7lbh6iC2ETHaapiEt2DgLzmqoqijeGNnUmRjYtJeg3gAUmRJHeQ4Kk0cgnDzNeajo4VAxx1TjMk0rv9cREfLoU7/8E2w9DfLxK938B+vZERqSyH9y1twyuSpeMbQ9zU8tM8ng3UondqYPd6vTgCaP7BOGqEgKhaeP/FF+HduPUXb6hB4iKvkNKU6kO1GWlJVyH3snLgYUpPfAqoer8T6Nv1GuNi5vaZpu7SMQx7ARqs9JdfFqvUjrEl2KMLogC7HU1HnXt2FQbbBR8DlDbeMjnq1nXewIae/IpXAssibbW7PaRMAnz/PAdwgpCjGavpX/Hejxj9IIfCUuEKt/Plj+rYCFhX8lcAJGqiy+wUG46x+Vxtoohf6IbMNFpCQbbGfJnk1YgqfVd4cLF78t15ncgHhfYeEsGFtjX3YYlg81DZa2P0NUYXK8QD7xcWR3bY1gkySiafa8DqaJVlSwqsZZEgCGE5UPA65eiKxiMYquuUU4wYuTN7VxZIFscqc0yqsFX61AWs9vxZR55tJm9dl7HUbZKQRVaBQRdCCZ4PordFscdPlGYfHKMmVEemeRO0rTFA1ycmLXOHM6kBNDcs4mQXXx2OJr6o4F7hVYzX6tApPEdGav4e06ctIQ+ZhPvEpHGLLpicYqzxZWCR/uOBCIYCx70ykb6+GH06EPxji2N6p/Z+gIH5aGLTVu8LU8TmmdrrGpuf2OtuJJv5qoMGUb5cDiIsN5nfZZAEKe5hmtuUKKm17qMkJ+Sp2IaVzomU2YszS7qosQ8S8GkOnHYYXK45lzY2GJku5np2bSt+EXjYNJPa7Rc+XYuGdTeclcY59KYe7ElvuB9gDpgXjzKtXi61/3OEhXUY/Uiece4KW/8T1m+XWZ6mm91zaqg22QTYNMSNZeqcb0qYA5Jgz/3SqHwNZJAGMJlxRK9FpIWue/0CoLe+HsmmkOV6S7gu4pFICR/iryZZ7N904cg7yCaupWJu+WOiiQFe3/0d37hfT+s/0cXsDfcLTmmOzlpqTQI92WOIUA0wcAV6SWGaqJ1cwtqxbPuaSCq+jWmfUsya8wzbdK7tUXaXjC5eAMRgUFA/hHNh43RnF7BDw9aGkDvuGvDDYuAD/XUp9AHHp8+4Sc4IujQ0TSu9rpoDcdKpcLaGML9N2VrjYAhQ3dzggrTrIIX0J208gn9GNo/V+v5CL0zf1JXsmK06Sf8v2+BVERSVlpkwt2cn98RLw4wH0nD3RVK9CUY9EzG8roAvOKLKj8Fru8c9aYQ67TI0UqiFCwDpRgD4UC2JTjAKQvrcOPN9PIfK6TkSiZPELEiUtbjWGPV55b3nNSYT7l9OzPRLFltZakdSUFAAhrDLfmo97906OaFckdWwLZ1Hyphu9MR2SSwKeItqWRIZ1zZu2xBPBqq/rUSbLjmAidEBE+s/Zt3mVs694uQv1CuMunUWVgqi3iai3MTzRRgZCL9AOPf+8ngY5aSwK/Zo46ffguBKXvSo4g8x/Scb3i0yuZD14owzRCAOA3pE7nGAUW+TcUD0j7NNyeai0raYqMIpdmQSc0EL3XDd/7CSd3lx2W0Tpo6xkT3oU4qGD7r8UP7zCfUBpsKgTxeUbC0AGfYasaZpxqXsdWZO6RLJb6LzYXFspwn8uSHFXxF8sUi8c8Lmg0Mc0uEKEgmviFy6CRWiKtM/PThMiLSl4M23dEhQ4T1iuFRMSOnaS1tSJFTryy84W0K7Jm52Bb/Q9tvof0GhtdztGlbLKRJ7eExxGkLqLYx1w7ssBLultFwUwwZjpraM221msAtnw5/nygXPMx+gsisb+2ivNMfC0BnDUB+juH82qN/dG4QJ1GDmDXm82yCAJZkGMLUCcIiywaXY4Jc964TWqO2lu9GeEpvKuHcwOM1fvREG4Y69qgEZ8perSyWLCoA9hRCVK4lJtFMUC56B09Zy7vQuQDtjBX+CvJpWZnllbf1OdwgBKwTZ8M4lP6bpyhTVizJ53qOJ/eOZdFY/QziQDuYRv+YXAHgYfIPtoxIigzc0uvne/dmNETjgIJtneHYJw2bnpBHrD/B0RKpt3/8QOqwGyva/nCypHgvFpq/ILFDO0OAxKxjPfZw+XFJAv8QAn2NYBYheozxE1rufjWLwDMXNNiNsA+rNwcL3iZ0h/DEKUTl970o9THSG7fr/e7BfikHrtPVqfl7EG8Ziz6cRJ7lXzVFvQJJ6bg4ipvs5cy2R/J8daVA7TS/BbLR+EdaowmNED4P7pSRSeIZykCWvR0xb3ac2AtnCxkL7CIVXs2tY6VYmt0pu5LsmP09sLD/Jig/3jQWvehf+fUrkb5fy+NIdzB8qLl1Jy5hmekRV5s0P9ONvg82dZwIZ7O1NOsh/bkR6ubPkJtFMHwTyGVFmKbp9enQYG0R5kON7mlE78ZExuBiQduBZfeYfiTsziyeyrdei1aHFsyAL0ddhnSwY5NyE33rtLja/wP/6LOz2/BjNIhfDdP+6Qr9NUv9fSBqSQo3thGwyo/3QbPiS5Aj7Wmbxrl38ErQCInxvfFT2Y6xZSmXGHZbawy6rV/P8jkX+cu2uSDlVKpzdlVmtpbCgeZgFaHtUysqv7hy9R9+u7KpsPdNyULDAJX42Scug086bdzGFEB+ERuM+1hI6FUvYd2WprXktQby6fZCAUULPrbEcGHqsPejqM8c5zxTtfG1c6BsFNlhUyUoXCO7BU4SS+PkG8nc3wjaeTXNRU8+i5ZJAp3nFAfjWDAA7K0+ny+KBIopVWM8ubc9QYpHtgeF6ncEqfFgfvOJcMFwnhS4ysyddD0GAnRV3YKLwXFRV1C+3VPrak89xwTEYmtsXM6n4n7nf26tThszc+DxTrRN3t4KwsvrA/QQ2sqqCuv7m/pJkm/t5NkpfOh8eA4kqzCIgz3tp0bxKaBTaWbbksMMsTcEKBcshVQZAAgfktYik1/aapz2QTxwxFI33L1yN5EDXY1aWlCqG7I2Szc42MmIbRaBl68oCCds+jvTzk8AWMKjeQlmuKHjH9/0VkdJ56qSt/Ck4hjvExyV9QN7fD63SpIoaZpCGj/gOxb5K/G4uW8zz3Jlm9jw1uF+YCLqaNeiEV2jydFv6+Sb+fzsuzKzabpvE9qsxc8tpcydmYMVe5pgTKs8Rs6z7ahrr2xpllSxWBn1P7apa/NrRLJJl5nP9vHp7t29PxrJap6dOniYQvUIZOyJ8BVyZCT15fxJUnXt0fTw2RjyHTVoCb4KDg8petw3NBt5dDT/ASpok3/ZmXzyUMUgfgNrF+h4f2N2bWTbcdR/q7hDE4zHmMjR/vafD8RlzFIMEgHaKRiqiaJxr/s5FuYXZkQlrMKLyri9HJb9ncfTOYCI7FGMmOkg9rcQYFT1xm7jKQpLCVzAqv4YLexwTTWEjUcYFPpEcl8v8u794lp6pxmda+YqfvTFjlFQa3ImApv6PKyoHtyNTKBTwYcSw/ziZwnMyV/+h72siGG8u/tvp667EquK9tp3HPpvfnYuw6LZrYddLD40uVW33JaY+dBtYSWRie8WVlXFYF4Gvzef6JgD9dUEW15jHl4scGsI5/Pr4s0AlUS5ivZDDPQWIddW9aQOqI2/tCqSY2YThJ4sOd3E5VfkvmAhe13Hbc0AO4UoStE53uHL3+lGd4PLhdsfAxRzjWSLdpeKdcDjHwpKDEnTPmkGB++oUfHw6SyTXFVEPDFvQuW/ot42v+VhmgGbIcOkwGVjKOMCm6o0R0L6kQky7lJstKozGRihuNDDBbnG0rsKnh1duUVWA5riDL+T9Dgvd1nXr6fdhEzHRPIUe7ZW5isjXt+xDE16JK250+fltEhvIEcGxKzsjJsnIrWVvogsFb25/CX5dflZNhUmhox8k3ULyCGKyP46+NulJh3p6c3tmAha2AZF39JItZtcqcQ1twvmywFmzupXM6fZ3MnDw/S7tOmCLwBEdO5sFdeLvO5xGm313DuOJsadtGBaEKqNXZIiFUl3bBoEPooxnfzj8F6FH6hHGgdOcYCCs8sVVWC4luiZ7JEGZXZIecdXtgpJp2W0DKCteH8OIW8XEQjPu7SVVj9iwNMuzrVhcFfZpIxaUvDzY+A5V/SQXDclbkYSA/qGEJEEZprIl5Pa6WULevW5mDom4PYW6UBhimw7GnlB8AE2xyt+MdFShJ1DG5g3ScxMgW4lAG5p/qfnygnxu9FcRKxhG+WLoqLGrGETnRojbma8cKtP1D5vZ+OTpq64UrTjVzq8n6kcN6Vor5YTA54UqYbGlUvjAhay+1x4ghAQdaNvi3oz70Jj6JO+WkFBTK3YUHsS5nCK/BQNJhn9l9/1uJhi+yBdHYymj/yACjecYcej8HEzBWxaPocMsJkbA2qyrxv+hVAxsT5WMPMhH+5ske7o9K6dqfKrhgB/AFAhl3TUxme5EDHQhaKRM1550EglkhLM8uA11MZGIiSbZxAMzWBGYG6/3k6WReyiYnnyne+Vry0Wx9WLYy/ACRm2tLOALKvRh0H4PoeTebQ+OOstLA5ukbH5nI6Cd4VjkMsJ0rF4VECQV7doUkPsSKqOiO+kb1s+7/49s08iRht8jKuO1P68WIuJ15zoKVdWFHP30+4bz28apfhGDMUbSeKJG5aohTxbCsrpKXueyT6ncY9EJiPNVG0WRV3MG3IbAuzIddFCvMMzPrnFEhcLCNgICNXRfUAoHSMkLs3MrrbeQQL1VU8hFZMgeKCvKYx834iNLeWmN5Zncm1jw1UVpC+6y6kS4xP+SymxNAnqiEwTHfHjCYgF2Gwv06xoXVMfiRAneWNcifBekeEJaeurGrc3nGXvzF4k8j90BynnsRfO1JGUHOC/dsDgD8MVhXoL1eLXsYQuV90YjGNca/TXWuSEqg8Ig3HE+TnACo5sWXPtoufMnl+3vuVYr2Z4ImRN58J6k00CKPZRmV65nDw2KyN4z3aBk7HmWGQI7cVWnr7+paydQC4Hf2m3xEqEdtXhEDeC8LYVeVy9H67tSY5wF8Iq2wDItix7PLnIjKkghu/9V33BWNu5ts2yLx1pkPv5b54WxDzCWJuXxYS13SzHIoHaf/I2BJaDh/03MsmKHRpydveNbpB3YllZxKBua+8TO9RCxKXBaEhftBDRjmY34I/ZoS6kLc394rn/Q3u35FKNaALbq0Mn1a7vpy32Z/Fp/sFgBgjKM/LEQizFFpibZek1AeFnpcQgRcuyhmQgIoC0V6f8QvnYgLPgolNGpBCar87s7CoFMbaGWjMbWIqC3/Cbj4JNDRJiwzuaq2ghUMGtmTANxCTXaw07iBdPwbBh4BEDkqKOhgUDQNoWJcHAiWeEKb0909js4k5/0u5Y1T4MCu9BL/p4pohXCZoxzYtJMH/bJmpnPQQn3WIrAH8lhOTL7gFTOlJI35ABrJi+26aI6qG+wjL1dRc8R1+HS5cO0V+ayggUJjLolMzfrMSDMUYc4yLHm1jmq2XzUBzhoZoVEYZnbhWbTF0+7vSiTb6OsOhkpWjtOMOUAJlEReZ/pBARwXQu0Y28bTnfJAeXqS7/ovj9zr/qQOBmJosYlOaQbZsUrvVTeON7ceLmtUg69vprcn4Wg3TUm6OM3rYyPXa7DkEWGeSNN4R3HHVuSQzqW0OQtUmF6DcBSc2B9JsFE3GSJ1hTlG0vX/0TJbn1HMCsLYU7scxx1xBQ5muIgyGYH2PBJHanoI1K0Fhb62YaFrxFAv+SPOK7NGWlWxHfHJ7omZF15X7bkt302mRmMm6MOcbRWDqRbM3ur9HS976AcNOkSQDfdIpk3jZZRgnDp1Y0e7Abwmu1uSewdFD3qy+r88iVwYTkE4T7CBWiZMsYbA6y8pI04N/qNCSn124G3OrWcxFDslvQlow5aO4Eh7KTMy+QSHmZ3ao3aY30+htWPnSlYOgRDnfJ0zrC3WlvBM9ug+FeHTLbXCRuS07xxCDwFOiGvVP1CUwrQmwOOAxty9ozwRddCIEu73P/s/2YBbH83biqwWk0YYcpqPtaM73NBqxT1n+O4AboYnF20m+JvUJfXB5m0EqJPzIdFDnoZ1107OxIVL2LrdZmureZqdKCyB0ukXWxoiWRecKo1s+WnDDWTCANURmsKNEB9B7yKfYaxH75+DEaF/d0VlcgYqEltgNqW2D3sa3f2MMopCzdlgwfYIHB1eQxtrKrho9fE6cqOyyuCbUl+wXrqEK/uiDHlefcrmLwJ8J/w1SAviaKeWYUZzUj3J7W0XTuU9Ucw4WjgMxIi3Q4uar7fIBuoXPtEU9gck7muuvbcFfXbUvua/XRpjX23WrBSiwWqfre/c2biGclyD5nOsyXK7T082PojxFXnCmFo8vG2ESaJGBGyrNxK+Axhoqc5UaG+97v6Z4qMkFH0IGHksJD8qrE555Pqn7ninzWZNwTbko8aYAnlww4OIMkNxkEQUA0tcbpL7XBiEYo0daE6zBvodEbhbS4RD8+B8KrSCG+q+1+jQLAW//UyK0zpI5qBxFb8zogdxLRtH+4Ifjoo/3pM81eH4ZKKFlowF2WRR3PjcoYxNBzyLpRpIjhTVMifxqVU7YTlxW70Z5vNOh8ftd1Sc3aSTapEMirJPT9/CJN44/Ig02fMVmIlfi5skreW8Gp/ABsrk3ul/+gXTCymSJKdIDWsLVbFlmU9Kieoqhbg7VM2JqHs/AAfw1jnDzAl7EskxViMkdudw9agQX/aAVByT29T1O6mvkGvnZedG28pxinYAAwEwRzco9eafrIqwGLfm3W0sYsrpxI5eaoxb4cQvvRahx7Pm4eAPZ1zLIY/vHmbZcd2CXqE3rniyFemIWZ0zN8Zd4e033LQ4+lxaV9kmkaBd2xZWZDeKMesi5mAX00MENsLhClAv/p6cispMlB5wYZ90haV4HLbO/rhd6qx6rL4qZARXDsbqNFzRIb53tb35cLFO3yIPYxg+xPNTcM3leXCdkdTFJUvQLTHv6VIq1oXxnzcUHvphWnfLgUQ2ZxjGTx4/TtbkBIFGNUr+bt5/NK42EuLTlio8uLnf+T87H5eS4jeJ7Ka2fnQQSCycGfqPdaEjCetUGb22V8tEoqWFO7p9pazBLqPkjPDQfVUeV2k7JlWl/qRyYWKjTMClGztMw6GAC5r3WusYzH7XQWqQcX6sTqVVlE3n0Giw6Cs//wPc/tLscW9ZEwNBNrs9WSa6rFB0VfPG6dl0zjah+FHSuK7DbnCw48uF28xH44xAaaVj/q/bspi+U6K39F4EHorVxWDWBuHgBq1SRtLNmLloUhOWjXpuHLqAE0hhjjJceOY880oqg9b2GWV/YsOOqqA8MHO6HhA+5CbYel5OqcDdP06m4HV+1Tgft9p+712dUxplbkHXQ6Sl+anEJK+ilP71eOJKMFsEkoJlDI9he/JyRGxJFWsRKYqdJYHguXSR50dSz1yjeAaNErc93qh3uzWWM7Tz/XNcOrMharnzTyLGmQWHY/cDCa1MdccyiB/V8696xIIOlNqF+zmwl4B1k9RatCGFljMjuqOPqAdYcG4DJ9V6ujQgn5S6hvRb4UVzwiubsJxuV4kjP8/A1Oro8rjxkoMJewFvwd5Zv1OWzzb0dnScLPyF+oYr7esY9HQuqO/Iw2CRb8vHIP0lbXtfmQSW9JtmibrY2hKW2U28M2ouCKzDlNw++Fm5acIsOBh6rx4HaKvJZkjI1O7Obrr3EPRMgF8I9nHtd6/6ARdgY8OHCYImzvycZ7ZPtNX5lD1ofOhvLyddQhb0z3ap4ASpLDm672k4Ep2dKCq713kdzFqGjIkPyEHccU4O9iQ8v/8uEwGkf0MccSvySNRJmuowC7Te+9RKKv5NhNJEwxUJM4JPdfzCZJvA8QPXsEeVXvtQMV4HNTVsav3En1R17wDM30ys0Fh8LX22gULv4Y0voKaAKALz2GHsv4J0h4o86U0155MrmG1W/JNl58at+zBLZwPcX/BXBedQ0JXw4w0JMqKfpW0qDeLbX0GcP/IDVet3iheH5wdqtmrJQ0FBKu8KMVsgDMRheX1yAi/GKY7yGaI/OrX8yU1VIWt57gu8SVt8HlhcDSMDkIgWhmX/RtlgZkpdrZrDRt+IaaaEaJQMwYE1mxHbC0KjTPm7B2LckTD8OJ53BButSzpDGENzs1wXXGngdg/NuySW9RgYOe2yO9+kkW7KqLRIdgvXX9TSrcbGuLj9NqgzxsMqeKIAFF7n05yCpvztOWBJp3meOWN1YCujy2UITxLsHk6jcuunGP5hnQD8joXsTm8LOA/VG7QMCKpZcHgT944AytGv7aXlH8Yb1hdwbtYj4/dl+BmG9PUqX9tipLgyohIfI4wh3LPuB/5+TJbzIqdKzk4lq2DkmJDaWiCoAbbOJEYaUz3Mlpg64pH3X9qoaEugbCNxgcWU2hbMJosM9oEKbPjhegcJva7Em5/cgC51OFOVA9GtWmkhPijlSfb3bA8t2O96u/1f+Zozs3IoYXx6nJvg/3OyGHp3+HavX3n/T0VBQxaRSS8C9u8cy7Tz9RlZi4rY4roPWc6LcPB9pU+HdY+/Sqx+5nLbpVBvn4lTeR1bN8lrUIy8RO7HUaNCzUluGv66HLcbym+agBZC+kVhVk3uRc9ZcBFcTCABDj++BAGiDCXyIQ21qYzp+zRY7ZILVW/NZa+jLgRHU4pj12+TrfAqzMdi4Rq+3rv1LKDXoBC7lkrchfxi+qsPplScEBHfddeCxqWIIVelhleLV80RQckYmT3uOnsQ9HM0CPLb58yj4w7724lD5S+PKtjDnRk0ZTuCf3n/aBfTStJm1YoSjeshvQtMH/qAVFT7libQnPxfiG72+n9x6F5BV3VsSrZVYr46fm8wd95S3+2XJuafNtgFBc/C7aGUhReT0e4T+PyzUXVZgXBgCZyP7SiJtsnIvbKsbwY9t6vZnOEnaBq/R8yAI3oa
Variant 0
DifficultyLevel
558
Question
The surface area (S) of the prism below can be calculated by multiplying the perimeter of its face (p) by its height (h), and adding twice the area of its face (F).
Which one of these formulas could be used for this calculation?
Worked Solution
S=ph + 2F
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers
Is Correct? | Answer |
x | S = 2ph × F |
x | S=ph + F |
✓ | S=ph + 2F |
x | S=2ph + 2F |