RAPH14 Q76-78
U2FsdGVkX1+rs+OqNs03RukEyT6/F1vF29VsHleqLthvr/sl5e4CemVe1oy0eyUkQa8H70ew3c3tJafAeHnbSxA0HeKdZSd+TJgvc/C+qk+deu8jmJqNkHgMluAlg9EbRUDG8JNw9WJHI7SnAyYxmFdS1ALMUDul1Hj1CX1IvqoMr7niwYevWjugUCYS7JcPhiImGKup3HTeU8cLHOIs0/8eI0FY5gXgYkVgr2NtyhkBvcoG3jtuhYIwtrFmpKur9gTHoHqho8cIpGIOF1zMzqLw3uHnEDxLNmw5dA7kwV+mOaIXbNvU9+1KmQjgd5qbw1qrnKxt/FilILqagI8QvQkKV43tNk9HppZaIyxzz5QQjt2eWIS/awbYQ/6iuUo16nj17l29JellmEdnf8LBVJJffYz0Y9Sw+Sq6Kvgvxr3W9RgdJ9GvO6AZJ+x8tur1sOia2JOauDbohFY81wJp7PratzOIhd1z57Gs8rQr/CJ9swpiCQCpe4xbcz5y5blt1/bbX3B4vQP8y86JJoWVTwsqcp7KIcSqTHKM5U6mc6Hheq3QtaEmCGuh3FVKG0rEr4hAKIIdnWuWCDI4fncU3gP1w0lor7xpSE9E3pc6jw5T7kHVzMXOmaSJ2yC5P1Z8Doa1CdMhFG42QikahurLxWW+MCshNGZEAEIu2FvuEH+5pXMXhgemHDhQ1+0EA67dsEa4/bL1mMGGPfdK6iAsHgeQD9nMszpOzzwMm5Clck4j4oZc2J6KJH7hs1IoyB4XKgjH8ZAC/FQbZv2OISsGuz3XOQMuduLDChIuS7aE0K2RAjrVOpn2exUXefYsfn/vaHS4fuGv4sDZI2zE7/nu/nVQMuKbgRovK0doSUXsJERzfxW2lh/0hrGLC3nCuD5GUcdbnoKOc3Jk/ce13Xv/CyI1TtwB/67BKDqtNBcJhqElvYCPLVhCwP1sX3S0zzKfv/tfRjE1BagWi6EEei74QF0eq+CBFUNHSxbifDgW2Q2mxJF7Cj0SHbv5rHuusCeLmrQSGxIzlzsLs8PxK7vbSbbkuM+9wIP84ui5gUq3nu1iIEOZEhyfGYOdi52uKAWn+vSDYOiO2MCxj82qos3jOj9UqROV+JQ7ElzVRF4igLseCCQJ2ZlhgEN3rn+65YU3HbFWdFGdm7QFnKZqyO8J/Es6eRjYYgQdvk0JVN/76SVSrztCnoMXM0uVcMT8GdKtQZJ9bsbvmybQ8FwmK5ilNzzuTLX7urDTr3AyqJi6wwe4e1oaZYx4/My4FqErJQMGzV4ivfYMUqputbcUct8mHyDmsc2oPHYAMJNLSPOC2F3o7PlC8HZyCSRAgffB0z1erjqAdd2g/s6t6Q3Pu2SuD0FWvWCnf74jGwAL3Uzw+XjnSYzoE8hlCwgU+6s+4HxLbE7I3zyOqw4fR6q73lnSAwBy8YO8R7whfm1biQ/eEiqwPdmXGBPDEObIlkY72RAOn1RxQpz/VyRESQUu+hV+BiHaTUU0USg+LnGq9GGkIzqx4E1Ad8PVTg5zI/rnD4rkd+p+o36ZxHaynBqimnm6ARZcAhiiZFfnMI+hXj95y60COt0Wh/EAwzHRX2tVtd2i6jXA8H2JhVtmfFQnWY38PqIatphi30oEoubZHJGDlWjZbL3qdfUDp4eivAVsoXLR/70Ei/qYzX7/ZY8ws3I3GhPhgCrM8+lSLppXnGI7eAl+M9vG02bqus5nvVRG2Z9kwqgqkrxLnutY3Ta4fOUuf5xAO8PDxBtD3hRUrwYV+59Fmcz7pluGm4jXaloe8VYpow+C2vOUOfF4kCTTJQ7GSBavXN8COBMcrqtVB5Z+lzZl8en2Y5ks+DA2ldgHW30DKyP/I2yUvyx/LbhaOzzWnTne98Nb+15aDq7U+9jaJBHPGLmRtZrLZTvyoFnVX8DibmTcXehVYSKS6l9Rb1c7e7PUvH5FjpkXCBvNjJt5HBgcht2lLlMnB/f+bCNjSve4Q30GzdDftwrXP/K0BazgnRYw83pMeGESPF3TVhVuLtrf2MGNq/QWoUv1FrODuKmw2nI5wvzjr8ffSXowtsVd0pAEqYeY6S+0MdqiJzM64pwx8EwWPgbIsu1n47j7B/fFipsO7R8vuxcOxTtsgOV93/CvyuweOtnlHl5/Vxb/lfsjIWl5dCtQncE1lrpiXa1c0OIMd6CIcoTidnYckCRGEroqJjpjXV58LR/8sy1yqSnX6huKUoi/0vN/WhPL/hgxsvdRrQU5YS8oHIfJ6YhcVJGwNU+MhjWekBbBeDY+9n4OwoONY9mVYRx2hNDeGfMB9zB0BjXn4WTMDFy5gVWZZ7E6sj9J4jE1Zr/B0JgS2ddPGk6kAQvYFbpMwCs7UUDQf0Yvc5joK/CRGZnO+4QukB7q36+7uf6+O1dktOWjcPwXn43iFITJXw+YgGnrDppuyFeGTF6ovuZ9ZwhwNm+BjBbDckXlNtOOExPNwCdO+0CAJsuLnOeQXd/CwhgJQnhuXHYvm48lulfjRPBbN2wLLCPRZpqOS6wCv3YWVINOtSsavFJNojcQtZC0T2/23CBN2rnzq0nOmeD8H15JDDrw8FJWNW1RgHHUc24uQovb7qGttgwq5CzI7cCpw8P9Se7f+nZMCSTRi0BdY5WkHSbvHD9dSDxGO/6F9HEn/MCJYYOfpaplaCGXlIVrBpWBip7PoC5PaUJDtT0n4+hIM2Se4dxwpdYgfeWWQwQQWBlXlEYdZ4O+Xb9HnHvBAuAxy/C3Dx1f2iKMV5J0qykvZhxXxgUxJXnQ+AZF0Fe2U3OI5lTLB/DiJJdriSsojtdXLFnvFn5MXU3MvpcG64cVeVA5StD4SingNEwS7xm1zKQgEkCBsghq0RIkdFisFFNAIbt7C0LZWPFptFw4KtBga4/lWGnluNOdgZHd8BMEKWYTz36juCCW+/AddSm8jUcY2V1ZH25VsekMh3H70EOY212TO3Tk245CvF7CjRWwCXAN9XrOGXQvdxdgOCPVB/05/LT+Fk5WYy/tVuRD5dl8jPxG7/uRoNM2i84l4mUCtIcGMdmrHCL80tglyHgjvysLbYAcqKyPf5qVFppBIjiyFsn8Je5MZUsSpABRnSFdEiGGGGIU+6y1Ejz1if/V/vnVT1UC0W4xAzh1MwbjAHJGiwwoffRSlHJTElxVHCSA+TvE0nRlaHEe+8JHVegVmHUMp5nozcM2mSwvVILkRLZeozDWu1OXF2jK65WiJB6ZKcnAy8EO810tCW8NEyfoljnlNDwuqocqMEVAgWEtycCyAwkYEeYt3c2Scx0Nbsg/JUgZn5vpubdY9pwXy0Rg8K66L3e64GerKq17JtMn0zhk5NfIY0M+LlIDnbp1kI4MyIc2+OTggrdAC3gqDVXr9JOrOKBrt5HTo4muC2Zkh84sp2gTGg96g7ULV/Ku4Ai2kehNuxVhC+pGoc9vYO1e4CRxmqLUR44Db2sC0aoNK0aWuXM09a5p4aAFKnu+vPGpLpKyDVXNvpjcGx89ZQZFRqCDiREcB5IG5irZXuo2cVRK7NxX/VKiwpkbF4snVTFeBW+1rwjcj5GEczwlldlxDZEIxCCzwcWc8THTwbR2xuZzuNyVz/OQvVfDr1m+H6QbtYuOJiCGtg9SAcUKSPDaOlA3vYZ39Gin6y4rqsRJnrbS8QXcgiLTgQbqXbl2eYAqbQ2IRtWjuabVym5bDM74X0rtSqIkRHVcU4M07+FS6WVrLhO7zWmeJfO461LtaHY1juVyNxMIyDnYSe5S34/AANhNnjhJh/6bXKlDtRmU1RCIKPh3TItmFoZJQFzaQr2wz/VcgYE+p70mn0xktaa39lOKiwBkba3Zs41P++hKOIOuHdiBIRxApBGGa7kl4yqeBOiYyYOTj45OOwoLRnsbXByHL7gZFtaWicedvChCZIZrAe58jD5J9d8hXMyZ/EjXLXK7TH0eS9waUxb7p8Z/WlHrlGNsqFnnQyalH8M+Twp1yM7oI3i3O0OKGrCKlsizpVcOwVz7sTIn/6QZ0DebM2KddMdx0F4BEpRValhL8KCmB7WX/xFCvvs0JlFkcZm57iidjl6h3KlXtshyp2CQDsOyPK2A3rA4S2Uf6Sp7fwd3HNpSfQDUkUtgbmgIyFbFay0yQiCV58Zgoc6+3g4kB2+dXx0Ja60gtT/ak5O66aXqxT4sFIqrgk7XNaJSLvVkgv1mo5A3OTsjToGrOy9PT+8/0YZ20xDyXWDOUxlVLg64MC7kInghw2McoKrL/TdXfvdNg54=
Variant 0
DifficultyLevel
438
Question
Terry and Ray have 32 toys altogether.
Ray has 19 toys.
Which number sentence can be used to find the number of toys Terry has?
Worked Solution
Total toys − Ray's toys = Terry's toys
Therefore, correct number sentence is:
32 − 19 = 13
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Terry and Ray have 32 toys altogether.
Ray has 19 toys.
Which number sentence can be used to find the number of toys Terry has?
|
workedSolution | Total toys $-$ Ray's toys = Terry's toys
Therefore, correct number sentence is:
{{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX1/DtBwzzDRnu5FoPzfF4guYP9uUwwfdRHU9ktWqIKwrkaID0q3ODBzfOaWjB3BTBeWtWCixTwQRaXs2S3rXu8WlGwQb+Fe4p+4JjM1pbOi3CdiXaZg8gpfSVgTPYnDud04v8J2WCCtw83elY5O2Srvvw8ZYyUVzATsvRHXmhw7N4R4DmxGZJvvtD5sj+s9gJyFHso7HDFtRESxV3ecF3FrUJbLV5UcbN/S3FXThrq40eHv7AiIwt/0xn01ThVOFYIOEndOYZ1AUjWT+kWRrayfmWLPJm2r5P9vdLtCr8PJEOB7LRTljkjl4DU+ih0/ha5ucj8yi1YYz1hvc117Nmm1CID0eyGHVvn5QMpuYIdCrLjS5pokwefbp8bc1dk3ZqoHfD5ey2rfK2dAzrBCOpX7D1wV7XPq3aF+7N+znU65lDk0i8onZG2joU73KIsa3L4G1DimSzg2CglVdWBGK1uO2NLiH38EWAsEFwfGcGU2nLJs4a26KwGxA6WyzV0DuE+akubRI6NFFFIXRc+T+4BsCEWFq7kfIPQF4Le1lzPqu0bQZZYZZPS0DSePKeN8RwwOdO4D/Mg31YDS8imzc7Hw46IdJipginAocOBgN5PM4NUsyL87OmaKoSp3889NOAdvAk78h334UB/LuKQjtFUhDuSIIUDPOGT7vjBN2OZhDUPquhgJrGIkKgy4ZURUJ+zrWF/tGRVyEegBrH6X98IbqiLwxQBPkFnbIbOnhjN/Ew8qFgRYyHg85AVO72UPKqLYgGhnkRkdUqZSvA6I780cHaxs5XcdoFZlTGmp6mYuqrkYjXLrp2Kypb2txW81ktEOCMMYFzcYrIXt7r2/PU8d7qKc5/DqeVkA51/YYR1FSv2R0NOOSmtLLGQQNXSp2bRVjh4XCQ9mftBVykczNndvdNleRbrMSRGxIPptDL5OpDyKO7k71TtEktSVae36lC67k7f7CgTgfsFysZpwo/kLokBOCDOFfZy9gEDiWQKgKvKHk5c5rJe5dsNBT9K1I3sHKRXYJEgWRgoEgWzOERY+B2MdqvndaH2j71xGfaFE5rihMcc1/1zzZlj6TO+bpOviNGXCi87/gqsatlwXsGgyf0vgo06OhFgJW7E7FG4P1CY07ZAR44qlC7l0zFfwZBSzS964U4UQWzJAwB8nbQA5AQbmUszDprJLf3mphhsSVu9IQZech95hhOGk94V7yNVYjBieVuqHcga3hRO7uYKkqDcn+bkoDcPkCow80n+7+GK6wcoo4VHbrwETjLIg8gdepP4ebcIpETxy/+nZaejaMVeGh7NNmTCJ5Sk09qmXhNcqGXXQW6jGuK03fcGlwu8fNsPTGTs6M44AX3yFzpGxT8lZqtBY7vb6h1hgw4lR8JlKBWG8jr5jvSNHTd3gDHPTzd/OUeSYYZDy64+s5bGdy3n2ikk+SKsnBmcInIycgPHr1knxfgOu+4RwY8kYvL/459rTcd85DDd9UBGfMn3DNDUg82pr1sBJ56r7/W+uWDrcrT7QNGLFdNZtvJU4pSOY2RbZmByFAM+bZc7f7NhDxKyFoH5ep8P1NSmHYXpPEITNXssj7WmJYYpQRhz7onibVGkgI3OOfCw2DGLV2axxhYw7Owu65QpmYBCMLZv9MXWwt4+NbwswjWSuArADWRWzJVKEh5YexFtfSinlGX6xhJCtyPbBLsANt1Fr+fNyt+r1tOg7IDHY2CMT+Y+/2Cf82edEoCXD5TdmC/4LatpHekQYRpE/8bT+ZBUFjyaxq6AjBbmozplyxiWKRi9EKylczZ6NPAFNgB1hi66nSwHhF0qvlesGI+fV2c37TvvLH4gM97SHsDt3jeOIEtEUnPOnY6gAYqgNbDIYoBpNiThfm1nz7asxR4h9L4AvBPGopou3P3rtvkKJiAyjSg6OC1M0vceez/id6G0ZyTboNzlVFJmHjLvZTDXwY5E4Z+bPSnV3hsaAwGJFx5BSjgkOCMS+4CeN3eOJYr9CxoA0rZ22Kc6gtWVjVrcv82Ek0O1OGK3FAlB6joWFj4iZl+/sZAQrD6VaysSEG8v4PPeVHpC4xZNXaHeQEEVPBDwpW2e1snpJsgqJj3zY8O80ou2PbKmXCLa5q2r3sD8OVt375Lhaa82aCa7YYJ+tEBi3kyOpUKznH+Zz96wE7vR7chIXu/hKyNenpjS/6gOQB6i2zCZNFMCZ2XVYRNQhRnbclEj0VU2PpDulkOLsSI/9D7FADMXwcFZb1D3lYcizpVb2VBGgqXvq9vCAcjICxsCTmUew/z5HolFH2x40pj1npjB9mQwsC8OgZDcuhmOON1iItniEyIzcNd6Evo9BNoHAIkR2VxhdHLpqBRe8rraUJXRDCEma1JEXbkKg/AuV3NTFTMdKmctr3bo274qPoDfG8yVeQbxx3O4yjjar7erwckynICVdnc2ZG9sgZegxO3dJfikWBdMYBSnlBp+Sxa8Uewtk7m1T1Itz6Ify35rK4yw0G6rFbvpIhRpNaD8B/soNo54Ngl8vGs+2QAthGUxCn2rhC+M0okRlJI3lJm/UVsYqpjfs4zH0VAKQj4415xZ5FJ6s9nCzhFERgwwLEH3YfnPiXOy5C7v25vbfmfR6gaEO7XlpuI5F38EbC7w8lmL2r9jT5OmS61vPsWrDDfeWpBFl+m6PMMGVm4GeSDmr0bItHsDfJm8XLDvaPPrexiZeztvx33dEfSr2fiYvCjPDCBXPegHoPYDKO6ixcDkiW72ZdKGtFfKNywteLI9rwmT0RAGKg3IpnIjT6SBkHGE8YNhlD5cV0eDh4QDQ4tGvdtckeGkgBfBAynBdI9SfsyO+EdPUwRKvA4y8JcPKbcZ21H76CYkAtN04Cfyg54BdHbvh0b0m0ET6aOhHQ2orx6itI8kuA5NUe5TdidIO+cMN/mGzeiZY5xLuRw5xD9DxEXkOXfYNw8EbfnupfqGth6rSIAsXdR6fdcNT1B1G3stQPoeRDMbR2VXvWWG9vuYO8OBpboBdmybC4GvuWzz6Nf/p0MFHRCNFNHMSs95lL1Ojb61ZfJFlrQknik3rmtQR5BY0SAdMv44tN4R3q9dPHPnrRzGvnzHmxP+58NYncuNATqryoASfBC9yNkH65yFIA5INIb197SBg6AjhxMyvHC92VG923I81ky+t4Mms+PzdQVX0v5EipfiTkZUKjm0vFh3Fi4k6ABq5TM1FNWLfVNKmKobpib6PrmNr3ZPmxCA0VYaqTmpcJCLve5OEw78WFgr5oMeUBewtV9Sk+fe73MMkFmoJFO/7pyTw2/l2ycZN+zJlxAoT8yDVcM69zDQzrQ29bFQqRDA7pGg94kv7R85FqC618GPZKggWQVtXzI7GoxIU5rjSb/fv6fJ6QNlcsfENiqxzluPWXfJ80JH/fqY/gNkIVXhDAEQy6FylFZged8zcnnN1rOWTBaziorUDpod5r4TDt/qIcMeV6zpAFAzmx/fzPs5u5FVHFWzoHTHMYY1aZzYjmazQm5/WviXyaGh2qGsuWsQapN4SPLvVnpJshUTP6IKk+fhVZU9T5bZxcW0JKeqaa5bbKSLsNEL/7ybxm08mILoVU2Amx7b+I4NyJ0Gjwjg1ITZrjuayEcfiSSC5lC9pSzhqTuc8fLAMKJTvQtfAip6BG93GwCLVyrhSScRgyXMCuLTe1OjeHjrQz/yH/VrxhvHEiySiN4fgbVEc3wqL+Dyw/z4kvU9IdLVqBTT43IVwTbeAmBkny2lwIUIC+biLn6R2VJhQ/GKeXMPuMK1YBOcqraKhVUxhUG9twNsKO0ShmhoZZbmnBgy2x7rH2HcKrA08qvpMNG1lVIGfnZfFtbTdU+BmJ4sqdey1oMfAeSvPPSeaObc6dhDOBG8bBio2hQA30yYFsndN9ceXoRM/nIj7z3YEoXc6jUZu4DlvrMObDsujTQlslF9MTWDXsHCKwmL85uRQ2UvgvFSufLKYwFRXkfKyL9FaF46IOY14S0P1wwiLgiEi8lloHanafxEfe5Gi4pJe92UfsQe7l7P6EoYMCPIYICsl7EYa/vNsUXLXG2vn3b+ViOhN9QqJLaREJTXxtm6BIMpLqKp8rr4k2FHjIVEZwnxpPXQCch723KYF2lnHBPXKv77VRMQp5dE7YtGw7l8b4IoVVQeTF6vp1TrrZwWz8uCWBVTe5y20G0tIeXdTjbDfn2TVU329G0p6UIPMy5mpWKSIutUOPSEzILP4TIe6npJxrxcvRW3+egMV5m071bZsmuIMPsBS8SahGcMLXkJtwdCnyPzOR+UVqhwAute7GxA==
Variant 1
DifficultyLevel
440
Question
Michael and Andre have saved $92 altogether.
Michael has saved $51.
Which number sentence can be used to find the amount of money Andre has saved?
Worked Solution
Total saved − Michael's savings = Andre's savings
Therefore, correct number sentence is:
92 − 51 = 41
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Michael and Andre have saved $92 altogether.
Michael has saved $51.
Which number sentence can be used to find the amount of money Andre has saved?
|
workedSolution | Total saved $-$ Michael's savings = Andre's savings
Therefore, correct number sentence is:
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18jDrTsBthDluUO0Hkh6SL+lna1h4fvDfTVd8jN0pMWGOo2jAKr0Z1LqylwwEB4GPbC9XGdGAUY0k/2yP2hCwrPkvSGufuLZsQYzG37rKzN04nvsiI/ZugtcKOTTRYiSJ3RXCMIBBGGwb2fhR8N/tyU7JAWT9k6jYJ/275p+pq/7ynAhrg7OvH44zp1QQtXQIXBB1oE66QEt77vNGuwb42g7rccc5rW6GLqR8IpzPnV1Sdrugt8iQ84Pr30rVhELibtIgEs0AFctywOFy4/TxI8uSZxTw1LY9s18tJ4VdpTMwXrBHVbLEsjL2ge5GnaEtWHy0I5yFN9gjOow7blT3wrxuSv0873ecYMMitUNtOOmVL9+E5rPtGVEK5w4L1xf/dP0kTUGIr/dV0iGI41qLyXVZrfpoOtk64+d56O06HhXMhdO+wy0J28gnhyWMbgLbQtmvQJsap69+ttIqM8ZLZDHU4n4JV864ON0rVHV2m5UytBivjvfCQk+6iXqTV05Z0GhKRv6Q1n9u8emwxeDi9XmQGD6n2/GxhCpJ4Pxbis3BlYDdIXCNriPMbHbtoTmyrjPKEA/8lxzxi96MR0xcX9F6cJ1aD5KBhsBVSSaHwIwxHPx5K1CCuzMHqosuQmXrF2XqYMggsZgGkQJYe1C0PzDWrI5S9wOju6FbQIlPHlS5HIVGlLZfFw4X+4EY0/YaFwnOafyKuPTMRCgsOPFqXFrI9O/XymEStDT6rMWKJu2vhXwAo0E9OWQ5dEQY817H9YNyZ502RCn2S4Ao+cy2Drmr35Vamq3loPooJs5D9FIgqPtQom2c11y6yHr+tjnXG3RMw15v5wGc89GE2XgvS+UlPeLBXZ8+B3znhBbO/5fGXLy6sQ/TgOqLY7ZAcs+1i/0RZ+ED2S9zTilStcaXuObA74xfA24BP/psvebNmroVxue7LEwxWNPayDmcsMrfowR1+d/5nQpAN7DpkRcBu9A1+5MJO6gmQyPeojheAhjieq1gUq4SydypUyshmZOr4dFjR8AkoRKuJMSdQ4n0+p1yE4ikrfD6yQlAIEni8jkYDquXcw1lzjwipiIS6a2ZzwRunxToO5VqFqE3ft8F6iqMJiNoAgRLEKwXSp9s2MFMak3vQDma8KjyB0PEuoUIRkjezOQ+zFhc3bQrX8PSMT5sB332UCKzYmffQqoAntrwjE5Fyo9xbTl94D4j68hFqfOA0PPo1m+qgadHX3lzlHzzfO2OiAwSs7xxICIofOeSbXuttigrkB9uP+f7yIPN4U7gnEaGRI83PzB29i7w2NyR7x3IdLHmAPyH1N4fpOZH7JKgN/DIpjSlc0oxYK1LSY9S5jDR/rojuXi/jEx9RdhGCVLb6h0NmIJGUf6Td4x96TyCM4PlazlBw11LLZ25gm8UuIlU2rG73hIVhccFrMVKkWDKe6jfqIJ8/I+Dezu8crw/M/bV5W9LkeJyhNRWseRVfk5Zz/5+ROr7Mwpj7wh05daEUSkOAeFRFLmO6NJcfmglulllV1c+ghE3hPVo+6KcM4hoCAZl0tKuT9H/4yaJs4ctzncIh4+JwUtJOEAkucgNDnIoy9pn6dvdH2fJckI3Kigm2sUwFD/GvHDaBIz4ADPgYfFNJRJVkfXSR3R/9ugIJluyRya2CA5pP5eoA9u3nGeRjFiSJB2MssLQ8ca6X0+FMGRfoRWmhVyKY35Ik0pJIZz+8YS92iGAFwxQAou8nkfkbkKj2xxNJMZgSSGFmvTJGsQGnK6tD5S+Lmb9v2ZCO+Yw1WtOE2Hfz2o1BDZx6s47gonDiENdWzD3+XeS/i6bCLQoZ4oNAdjUBCdQMn66ogOt0YOLI4gFi776XFREgDFySbMvn/DPUzt9JQRtxHXNIdFylCs2C9zDHUF37Qg2YSnrVJmUArWOSb60Usp2wA5NIhv8ji07pk3azn35p6V8vQWDeVfRinnfq0cnNR2XF04ZPjzR1WmZCodiRJIkH10OPc00YA51bihLxPMMm0JGpSFZCsenbg1NEHCYNG8DPfTZpPn9a+QVDK0AtZhm6/ULwjhTZ8WuDYagozeRF1TSBY48UceyKizJ2Srvmk2NWunFVp3Z/yWGviMLLTdc0qNsI383I0/1biMrAcgHr8JfqsNkNBIVSp3DPdcx4Xx3sPRL97fw9wHx0L+7HYsq8/oQTyKvJ/JwmU5ZgY2n4pZOJDCm2XKDKbo+kHgU7gzmuQZ3elfNbUnzfrQmze5UCu4AYp+l1aAvcYjCZs5ii6Pux7TdzsOtLeO8yeDubB32q53JajJugaO5nbCEc20S+Rrm+KqTcMIRAileMx4C5cFhbOE/ZXEa7Iwi+wUWsklMlKyGt7prm1kvJfXP4plh9ZPMp2GD2SJgvSveAkGy/S9JJ3yzc0Rg3OIfV7QFDffw0QVOFl3mIbjRKPwSFGApyNQm+diBakPxCKskkKjo69ytaSuZrNmbveNP0tev4xNJ82KsP3SYp6meKx+FATGaouG9gJeD8Ah1hFt4ickLHwe3fF7povNQQt+zCZiWUqpvhjtnjpRDVWB0mhX0ZTfSE/PvOQJhD2qaq+Yb/n0W3qMnNKLyDrptEz6tFqbnZiZ8rRibUYdh45has/H588BEUic4ClPxytFPdsPOelrjNKHkEdSZFz0I8e2Ry4irdCcSoKaZXsD0eRgVR4J72ttpomvCbfpUaegoL/tKmwrSLQtU9ua9dx2yggrWuI/EseZu6j8XPchNXMIhfiXeMdlKYZuD8Qzds9XZ9Lia6sKxkajiiQBnxnjsqtwbbFKEhEhX0YFajSPmpZfrY9scKaWne/Ung1aemsVKimGQugOpcH2mcyp35d3RogvuXDI5h8ktVLRWon4dypVP1IsUxIAvbGYHgNBvwBIS4xaltcGKe5tEP5wtPQxEuMBr86aPX5H+FjXCi0auFkACGiqD9X1R61Fzpxv/5HEe9DxErZK1Rqm29VAZl5Gn+ZYZr9niqwCCwhJCr38Q8P9QhsBcJzAYjGHngSQXZL5i3e/gS8giZrMoBlvqOrXKL7S7UcQFy9Akpp6TB6DGm7cgF1TWaVhW3zVQy2TVuwqSpdW5y0BkgrNWYo7wJ557N04eb2+P5QhO8r/9EVB9rcMlHrMNZ3Kv/1e8Tsb9GlDEU0RF//0ezwBb/Rff1UCVkcxpv/jQJYr/HIAumSXgTiSZXrWKbS9hNxy3wOu5+iThvbeBs9NA16OnLm8fN7kuVCZHb7Oj9goGGEzNReHugkxmHjFoJTGjS46s0XtguHlLWWPO+C7aZe+C8ZnOMerG0DmaiX0kjscveD9OdGkVj1YJpJPrc45rfTNbrFfruytNZYB0pHztmGAHwu2JKWqWDzOieP4PkI1CuSVehehio7DN+3SqmOOFdC9gkcx9Rn2QeW+X6pZehyiNM2H/foLgyqRhfxbQEC7udDpjJ3v9be6/9bmjhSZsuRwvSClNJ8c1+J8a7Q6mUwqQnjv/aHbmQKYrxrh9zz2SZ/nP9AuxBKbm5Dz6aKAon5XLGFTih69n6cvr095Wj5vf2OxovtmZyHN7hgvznOx+gea6gpS8LWqdQKm4WfamqBf5/7T/fyw8FLVLt0C8pOgAEDq0D8AsDCIpZIojyshTZuQrY5x2gHAMCdCvq1QKbhBQLYUVzszkwukYuImIDyU5l7/8dTcyaPMxQIItfG1oNOuQTp+WB3NMSZKDuqDIILuFZd3Wcf2IFAK0PA2AyuSY3dD1OP2I37aP/i7IXUIgd1R68RiaPJPKbszTlkdWBnl9XS4DzhIZ4J6wP9eVIucAIY750TEv06datMFhDU70N6in0D3xM4YYEWeqgY3Kf9T0uYKKHajMwxux6/RJGoICtmVpr83woLInZoCDD6pGM/yJtPy1jP0eLR0zegqEfqyiXITQ7ycmOaZbGudHhdObkRDwGzYp4JKxhKOfjAIzqKwfHs89lLufRyQFL2UK/boVtFG7oEBrCG3rpKg0z1hG9Sgqsbx1w/lFKh03A41uRjEQEaDyo4dzjVi16ivWOcZ7NIFviIluNw48ttbRiRALlsGp36Cp1pgcDpxlSZOEfokU3pK9A3w0HJrhk38gch27RDLOHCvcOMICER90iQFY7oovmsb+0/GfwqokVlU3w8AHyNvoDxVMDc5h6PUOdtmnUXg4OYdjSF8HCBszWaf9y46stMQZtKjMALZI2Zx2vM7lW8gM6wWoA4udWN5BRfoyG10Ts/d2qcFMop/S4PMS0R3OgsZMKJCG4E0qQHqIGIlD8NW4MdEg1sRmmtOSzkn/8eo4+ZuXze3dPhunrT+MFxmgs=
Variant 2
DifficultyLevel
441
Question
Gerry and David own 37 vintage cars altogether.
Gerry has 21 vintage cars.
Which number sentence can be used to find the number of vintage cars owned by David?
Worked Solution
Total vintage cars − Gerry's cars = David's cars
Therefore, the correct number sentence is:
37 − 21 = 16
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Gerry and David own 37 vintage cars altogether.
Gerry has 21 vintage cars.
Which number sentence can be used to find the number of vintage cars owned by David?
|
workedSolution | Total vintage cars $-$ Gerry's cars = David's cars
Therefore, the correct number sentence is:
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+Y6wfBxTDigPgE6tTBl2E42Arvv0Q7syWDg2yyARRSAAyfGVEpTXZSPQxPE/WfRMibLmRa09bbixrRLl7q8aIHQsuHAEr7CWZuF5DuLg0cualfxVxMARXiNAt55Pc71T8TLKfA4C7Vw7dJDLBX4+7Kds2LaG1MptPnsQHGCSK7dYAP5VjVgF/tfTKzveAGCNkIOq7x+0fsNaMaXdsfsYDcSmYf6q4Sx8BuiMq6uZoP/Q6OiP2dj1Cdb9Z/XR2F/fbU8BWQPkNvvNoaqLHH9SaPsu/Xqff3leuXnvtOJuy26AMS8EfK0CgdvfspzbP8GNdZ8J4U29zeCkcAWWjbVdsrZcKVgfx4bWIBQlJVCUywS009bwGbO4b3WCjF2SJf/OTjHtmmxPadKNfws2eoxy8z3xtG++WWzFMg/WAM7+ggXSS2Ckc4WwoZVCjqhvOdaVS/s2si35ZkRFJpsqo8DsY3t4vZmFmgu4Xv3MQduZXmxnWagWE1TOT9bxhGHQzsATLUkkI5ezF6dCpLEmYZeR2/Bv3UXHSpqgrL/8QAg+z76YaW6xRF90LQvx/ua7/2yCnHnJi0Ych6nf9dPdegDGPBDG9/ra+am3EXYTE7bQQnGRGAJ5LoHKOrVAwNl83FexpBVeMU5ngpr6BbfsDssu28OuL6nYRvEviUmoX4v9gvQkvqCPPXh+i69m0oD55Zk7oTQvbGD6pwJW6Rd/kCFVaNxSv8G6Szyhod0iJLqbWa01MEqBHrUTA01DZ9xOAA5ryr/yMDEnwJ2YnPIj6RB1Y8PpqWZtHaEXBbDO0mU4pR0YsJTaMCoq9xew7aoqGzSReozsjNwyJrh7CvSMYs1tS8GrRV4cy7urnu6JqHg92aIkvd1xf89563s8KD2Vl/cBt+67GNoe/pQ8nUQejJzpuHB6f9debY4sQJwcHPx2N5AsfbyjZbDsCSRys27/u99Y0fNbCqj13fJqA7W7g5k7szKu/xpEMnruDLjWzCDAJerqsEdmB2q9IgKa/yhQkGDnzoBZHjOaBqvYKuQ5S64WaWVFjbGPy4GoomaNSUVoFEXnIAKzVogKSjc9QzAVg/Apx7eS78LNwwIY0/uV/cMHIxxH1lDLIXw6kZR+Kwxc/zq/WzOJN/dLaDSKizDgvCbG/Kns5CusLmhqTvJNJVCqE3Qnlbr+DgNmOfrYTBUQ7RhOIBBpIWFFwHU8TJfPY3ix2a3VmJh/zApz1+TdLhbGP5EQg1GxMSa2cmufVsNmXWUQyMZCY4q+EP3eZY8nMP/pu+yNzPEPCIv/lWtRqK2m/zLLWsXBK+fS3B7vLrVy5cqw+NV472kKCbTWMnttHu+m0I65QKo+zGfHPMnrzfIIAi8b3rWrpySgvf5XXYDNsO9hvFDHc4tGDzXKbnQBOFQiDdF+J4WLLhR4qA8BE6Aw8ay9mNQXurG/TMUvduNxbVIZ6C8e9SAA5gDz1Fs2oB3Cgdrsxkyr1cdYCxBDpVQuU2PjH7AJ6px0wgOm/h6FtbdnXT5tm1Jny4vXt8z+g7DOTtr4tU328XhkbKpkGY/a2+9u8zaL9sYOEwa5zuz6cZegv234SLVt+FLikBGCL/6n4rOwSMtJLz9X7M9lO0ybIQxgQAWryuHXzDJ/A2rDRytirnDFn5bE8XdGImbVvkUFWC3u+HcCZzOvEpTfrT5RPaXIpTLW6ukXVaOx625Jk73ZWvlXridr4vBWMj1/LnuJJL0RE7UOyCp4I3wVkfZxEhVC48lyL8pM5uupZ5c8UfavXjlG+6jW6XAelwoPAdi55uknI7/ZF96sfzHSr8MVdu6g/KDa2VUiO7XRS8tZuJ/hEBhkPt7mpFuufVohtRFs4aj3zYLGvMjmGgL8JDex8nktzafDNPWE/rz2xUc2YXXiEoQg/kc47ddf7FoAucZmG4dqKkjKio++to/1f0U3UjPYBWJCniHKj7NYuWRVBR667DCBfy4LMC7Tb0H9ZiUx/5l0ym5cnc0/daTZAW2E7X+I13xk3CartqbxDxbAgGZ8rQRx7HJzmSsTMS/4TtNWrAqBts2yrbYTxzeEtDfnCngj22PMmyb2Bhq68AfR6wvONI9U7ahwaHL0ksm7AFYof9Jx+kMVlWq4DR866sCdtLvWHmMa6kT84qCjks7gvqqk1x0KvML9Xj2oK7OAfI2aIeDKByMFlFlJUpSEkCMNuKD0CS/M3KWB/OA17aR1RHzKtKRMQGs2/9Hw6ygwghJBai8mX1lVaaB1m5hBC932V9vQi1zytiHNeGfohPdkDF2rP1ItX0yc0Dovnt5foFCyyXYohABHZjhVhPwmol31N4a2PgDOM12wGtu4XviSP9E0OGXjMfonz/BTXCFCo/aA3eJ6jNaHW9fdkPFRxCjfDtDPX6Sh34fSQvmnOf20xOXxBAgGHP0uv/rAn0F427BbUEFOBO7dbmL5DYAzmuWPAdz/MZG7aTCq1mq8l5FC5tWe7smQVvtzauEWw5IUF2lsXsCIo67rhPXY/F+QAm3Nun30z2uzyZtDE8Pnti34MRF5NO3TSM/kj4AzqfEOmc503wgZj22cteBE/HGUsPIb13zd0S86E1qw0Atd4vI8u6Aler6T9NUSmyWGpl64hMA5kZ9w7teHEbJ2d9nEcAo+FRp5u5SQxJkHV7kQAnkILpgb2hnWj/5KbEydg7Xn9FrbMoiSAX4UBF/EOhTvP68gHmuYhjPoMayNHRGKv1+I5UznMFWWM0vHV1JbkHRNqvmnI1wcxcpew6zhMaM4UIZa/Yt3Jp4J2ZIz3pRR+EZsDC2ao7nf+DbwvOVgPRytcAU44omhMu9HgAOvX6fEgDFYWeB0VxbJykkXLRFThG8qQp7HY5Fn13cXFGyQnkrIMMiKrpjnLV1zN6m94acFEyBkV4/ECkkdWue0TKqix+g1JUgjiIktrwfj6GCgorHJYcmOaizI8WXJ1HrpP9R/67wi+PfDwhszwy3QVw9Sh0d+jzVd4a0gCiqtOn/qYXAslJGe7AFTITBBfzln4acmQNhfLhI9jf3N2mnaQZ/vt3G44W1JdL8KYLAA0Nw3iwNaISFGhdNR2b6LoC9ujTClAwm3Na9wR7j0feE7YoodlBK2OZtvY9+7dxKA2i9PoZWLiI/7qWkctqA36TA0ztWbTwhEeCk7as/eEauJEdHu/0T9YS2WpizuiwtpHfK/mOUlWqlC4SuRIoZC5enAe2IgKoSEpnlXq50w6/vFrpNirEisUjADy+4TjIfVrdeADqarj8IaB+5ugcRx4WZIA3BLkuNW0SVnEp/PmXnI+QR/Es4wBErCN0WTVcs7JoZ1pHwY7GTIhnmrMKglF8ZckIacPHrVO/L5HdvfGi15OZQXz4OmMPvpwuxgSbkixLWh9md7xOc5ID75MTguno03D2aKQvbqOAUpQerqqZKIEPLxmB+i0QeQAIU4AFTDXTAprWEw3GU0202lRy3XXx0klCMyYeKgOZGjElnMhdLL+bxXD0oxr4Y3mOJ4ao14n/Xenzzrxiq347EWlkIYO/WjwOjxpLP6L4s4SPNBvJXVVvg9wrr6MyJ/qK7RhOMSTXTpFHLkaP+++vHzNubt3LEX/AVT4psGkyOGVXJyHx0Effjtdt0CkZhAhUt/hVMbn0UKBDmg06zTIWvqQl0v1ICT508o7hpyYUI3Hlzza/RkGw1Qjgolj4tO/H4nabndmdZJW4jAfssWlrmqEiiLnsiATMLArql6idO4kIon0nUUvQmzDD908lg4BimbTqUfTG7UqGUo7HZaCm3wKt3kH5MoRGg5BceGDTaQxdXbv75J/yXOXsPrqMRge0gGKTkiRR7gxx/efLzZko4kmf8kNrQSZR85bTY+voXm8rLCn/e2Mue5aPK2P4r8Bnf6D5U/hRp/PRUdauqDKuFkeRL3ZsrfzIWymlUL2XZvk2+BEBL7Qb49pGD0xO/IAv6ZTa9KDrTvAmQoRIdU1bnAr3Eh6IyOCXJ0jBHMe7Mziv+TLD1/AahW7mu1c7oA/2fhl5Adx1h6iJIOxHtNI/NM4NdICsxvpuFBxPtsG7nHvJoegeEFRdK9QrL6NEkC0CDpRmeeyb4Sfx9iBfvOiq7Uu2t5z4Kn3TJPiT2kdZIXFvA4wxw0Y+Se+5aHv/c3REGH1TboM7hCkESXYGXtxbTSOzBORE/f/womirLNo9rtYHjtBOzzfVp/t6WQuGuymjr2oppc0lye59VWlm2mcK6MlcQyEi3vYm/rtw8JvNzsVh0POC8urQ5rDaTlThD3RK7UWXB29qEGwZ/Rva1OO0BN8CqYNahA==
Variant 3
DifficultyLevel
444
Question
Altogether, a farmer has 78 cows that live in his paddock.
One morning, 42 cows are in the shed being milked.
How many cows are left in the paddock?
Worked Solution
Total cows − cows in shed = cows in paddock
Therefore, the correct number sentence is:
78 − 42 = 36
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Altogether, a farmer has 78 cows that live in his paddock.
One morning, 42 cows are in the shed being milked.
How many cows are left in the paddock? |
workedSolution | Total cows $-$ cows in shed = cows in paddock
Therefore, the correct number sentence is:
{{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+lu4mQ0VXmscd/uqQmvi54SazYD5zaFLRhLl6CTblIshzme+fUyxoSLVKq3rY6uGrCzNhP7FYcLZWYnc7pb4fSsHHHaMGvdGzq4Xqm3UXJxqz9Ky/3gaJtiE3N+MOpm9JcobNWz5CuK4HUHxfZSHjvi5U2k2PiQ/NcBgRFCRFGmvo5XRNemi/N9JO1qMzZv5a4s748o7xFopMSCj8bggRP19+DrJGtR7BE1L+CbIzjKpkM9GfyaD2liGsRengjWvtOdF79/L2CC40+J/+YWRhr6QeLyJATNuOnXvqYCcp0R+n5jzPkLAKq22Om7AW4ypdvgbNFBAXMiu1VbX7hsJ6IItrZ5kyZE1mobUYHh/L84HjdzV171rliEXBSEXxyvqSfOm71LHOZrAGb5EI8Pfigs0KbKV/HWzdT26HzYeM5FIClI2oy3Pz37Exx3jF2j2Ar5BkkMq/DfKn+W1WxzaC1fba5ObgBrjgXVSG0KB0yV98GShRXcc3X5Hh44MwCBnsPTkm3WVpo/TC2VBc3nOeX83cmHMEnfOwz8J6g/wx7zoU7Ja+FZ9nfw5/M+7qTLFQCYAgJYfEyDMlTFQqlSXbhn2KqDcaCAyk7AkSGcV1aGYl6xZ5880UGrK5FqE7uauVeUC4Ii+i+rYvfxRu7wIXSt0FrdHlMfIQa0r/mStK74YNW6kSj6RRYlph3CzhMcW4w6M14f/Le8gOMzCMbq1x4z19rhfVJFXFg9HSjz8dTltlkuwdJdVQ1NhYfol/3KBf5ndIIJD/eiexx3CoZEvuaRmS66hEtiQ8U+U7ymBeyThHxGJ2UbGTG8TMXqNkqh78VPV1X/acw9WLVwxuiJ6ACAYRlYKMg0IeCEzeqHqFx4VqcetISmVsfj4n8rZg7Jpz5anELyTnHRpKAkgVoMFGm8YwG3hXY8dp7wJYVCT1PUO+pSjtwl+DFcgnEnPtYl1bwqIV9dXsU6fs3ABBvcMmK+FE+9FwqraDyJkob81CKerzrKV/NYvELugBr84tC4ZNgD4DP7JLmKis0LeWHGSkZzaF5i33UVdxyJfaH9OOibXWpbcbYZc6u9xlLf9zRWMYzCwXs8GKAgMvnagCNo9DeVoM7esMNJ4sVJbfg3Dm1q2DZcnSP4+NQW9CTnbeRt0CgKzSBRa0KDaTmhikYVKKCZrLo4zlIwAIDWTgTQRfAxXUk7FpjuV2gpipHTUzy91Lofhb+oZsH6y1mS36k4KKw3XS8yXFFKqWj8mztQuMx8Frq+azv7WsyqI45y4/Tm5uE5nLg8YavDd0BCFIh3ovNlCTxyd314rw9dyz+VSIN7W8uIwlu06eV6cCrIMniBAXj/0/dYS7mTRfyTAfCuQadBx0Hh+zOeGIfiJfjvCa2RFpZAXNAv64gjveT5w3L4EIXbFdfwgwYIGWLdFLhhHDKysiCujB26NzdcHZXl166oQo/sTyVl+MMrQX+D3OJczXcggPhn0PsYCUMQW00ohrdVNh7yLqb6oomNkcV6qM4hBtPH43zmGaD0IdqDEnR+/LWb7Y9nF1crJDeEBG67SMgCa34V/s1yH2OZtHHUWeLHRfvGorm4204q9sTJRxPR3MCGjhHeFAAaOlluif/Ac2J8vTy7m979sUZMOyKO4+KOze5W0IYC5NnjGL95RAIo9St/5ZvH0f8tQ+qN6pSFeAqqffM+0fr+unJlEduxG4Zp13dVDMjXada7QDypB9RHF2TpDVV4DXvb9gRMHB4N/vtLNEAp5IiKpFSRyr/kRjoZFU6Ou1rhYgrSqdiLgmyLmY+k2Jqrw/uOKtaoaDWTSWgCMFUk3sWHdZOuNE/ym3/c9JoWROvMuLHk5fEzSDJsFU5biOYDndUkxHQYWMWwAwl7pxMU7Fn318g+qiE/Jj1xMP6yn0d+hOn1/EwdoKaDFklUVKxrZbKLKSmLQM0/pcTOtGPAnqwp6vRNxNM7OA6p8GAGsIqFrY7PeNlGe/557fMNEpZgI8G4mQQDSsbtEOXF2TNwg8YfUPCyaHI9Al8z/sasTYQNTEmzKDSMJ6uAEEExHC7eBu3jw8F5O2TPFPxqbLULd89FU+1ua1phXpTwjzbqxbvCv3yUMiC+6B0whsvhGz1bcAgNDPZppHnzO+WeNdQtAH+Rj76DQeZW8Ft8bleMvI2PyZsAe9FBUy2BpOUhRjTIUJ+msLYxTwIqSVpexV3L//0sJB8T+9TH9BFxZrv1eZjRVxCIRj1m42JuR+2dPkjGC5q9E1wnGvmf1K0XHjfr44OaJYK1rZ2E06Ro/BGzYEKIoDpAcyn6+acnfd9ZEWTsFKDK3esV+qLTcGW+HOqCEpKHGMc7ua98M5k3mfiCjVr3ATX2RFeo+GDdW7zLIt9l9xFluxBZir3Z9SZViMfu4mvW0X8RRSIXRjJ+0+T22O/HTSKioc2ptdf1biega6rW5Deotzz/tdFftPmF60CNaZI0zrB82zdKhDbQCFs2qKrq0KR8zGC2pFH4aIZ+I6/o2uW3fTaYDrD+YdGqd3WNgV5XbxyVB66Lr4SQSOKG6efRCdzCla8ZNCdSK3ZroI4NyW5MmpVV9oA5rWnGsiHak+SxpyiqXVP8D/LJzwjm63se2BKUftoFHmWp5pjFPhWM3+Se9vwbnFkYpXAzMopgftrYfzSnakacIx4xyM3v/geFtXCKm4nN6+izyqsZ2TP7ZZkCpNm+WZsy2DXuTKGl7FnGBvHcswwtSLdF1tLVM23DA5+6kTe2JsQAdVR5pJuiw7NY41P4GD2sx9mmophbQu+EnnJFWi6cVDijFngKSGNbUfGanB34OSZQ+xNAeWosbBqGhxId26qGwsC6VJlKYy0DlEbFYRRWeF8kHJjFFqhFBTqow2ZO84Fkl+BvNqu3YpxOkV7p4ggNGDRB4/GM6zIvCerulypCTDXGX1qstcAcTidGxgLO7Gn8GPFWkcTxLsulg==
Variant 4
DifficultyLevel
442
Question
A rancher has 46 brumbies living on her property.
She captures 19 of the brumbies and sells them.
Which number sentence can be used to find the number of brumbies that remain living on her property?
Worked Solution
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rancher has 46 brumbies living on her property.
She captures 19 of the brumbies and sells them.
Which number sentence can be used to find the number of brumbies that remain living on her property? |
workedsSolution | Total Brumbies $-$ Brumbies sold = Brumbies left
Therefore, the correct number sentence is:
{{{correctAnswer}}} |
correctAnswer | |
Answers