Statistics and Probability, NAPX-H4-NC03, NAPX-H3-NC09
U2FsdGVkX18SDcI13Ha+jSfBSLuZZ3PW7EtzcAAxtkAzI6MOCCY82a1sRF02syQGCuQ0PqJw6q0tvOhmt/S0sLqd6o67wlagAMKQenzmdFXurJ5dthsrvamMBM+ZUZQ1rH9V/4BYs/8jY9J3ytq4+LBxKCV3P+Ss5RL7R8SNgoXghNQR0xPSyX1lB5a4hcTMQkzKPE3MGbWUGrfFbsw6l7OUzjenshbzAtYej7yy8ICTO/HjQIs3Lg6OhJv19iYQk4LT08PSr53TOmrSkG6914ToWe5Rbpo4wWAYrSYLnUJQlAJ7C72FHndh+Qu+LagqumA8ksAvwPQMQ1/3xm4jm+/iRioAXwSzP+lq3Ia5tZrx0Gtc8MGHbV4vu/dq3oxkYKlQRchi2jdeOScSBDQljuncfR9aX0Ul7BH/US7kWvG7q2zOQq1F35MH9FycQEFXQPZQNagA8ZmHBAUD2taUi1x4ViyC76fFvQSZxyidHgPl+kxwaSy8ChACAfdKWDLGo6KnDu29adjmvZTzr5VJr+aBQGRIPwf5il1GgX66T2QParDjl9CPq/Ph+qIcvzvutSaNmCndopIR0dHF4cG6okwb9Eu5xzTS3zcFJteT2dbitoqdB2Z5Vrb77caBRlic/qbgUA6Hk53FUTs1M62UpowpVT1mkyN7lDFXWAzEkKUqbHOyAsWckyKmrzo4sC4dXOlnq3OCw+/6r8Pes7y3bI+zHcg+dVbPXU7LkjxATcJNKTF2L5ldXxB11AREUZfsCFB0luCxfe41zNBHqJkZ3f8cSDcrLeWKFAe9kg6scyJ7VVPiLq5+m8PPwrPka6qjZio74jaNzrWjUYTg2Rktl51rG29lPHqslfRdoikaEQHmhsdS70XaQCRteRRbX/il0ZXvOnI1IvPVUsnyu3yKkTpc4XMQL/IiJ/B3fJdXuz+ZJxVVqQgX/lTYtEG4aRPBu0mahdVm/QmrsR5URyKo3g62p8reeqUbqWcxef3S75W9YMAxltFonZ4SRqPc6y5s0oSFuJn0pBpPu44SFctPX/siW8V+u/dgUpkuYnIHoleyRspI3oRN06N67BkXcYmO/LvVqHyP353LhpHGWInOklSqvQpKOYKfrfPF0s0GFwd53BvrMFlV2nrcQiEyHtYaagcGbwFN/Iss7ZmX6ThJC40oa8RXczsRI+duHVTnQT6/HwPqxk7JA6TF9XuQZorR8MxxkhusxtLn1wVt9PCuOiENejNDyV/qPYAKyHnS7avGSjTccFjE0rieUxQoH4ZPxewPa8BftgRI8sYHfNVOYpmo5XfQLi87q1cjbg3LJDID2F2Mm7a5kYboLJmptw5F7XoTXukUY3WeHRwbDCcG9DTG1wm5/Qj/7oySXKWp7q0FkfP8ZsPA2V4ch6gRUVrJwP55v7lbBQLvwT4x9sp/AhB37YFeyAwDg+/zyR/TR4MRjebUIAz1r/g9de5MNtnxfLvCjH4iZvm5SCtE8f5hgpUk15F/dHrf3/FcFrDeawM995ts7oAR/USNiDrAZlBWiZYIViXFN9wjAjIevFWlDH1N0q0NJm++HztRTBvUCA7o9/8vBX1Cqvrh7Rwl2MDhcXT2haXWP0f5VMhRBDeSLESGJPWzaay/qmBy4RTHZ2ZU2gUtIxEUAxPCdfqJ46PDFhQFWyC5rkGfOcVVTSgnwuaUGpxP+yqAo037mwDJI56oJIy6uZgMcnW6/1KMZ81GBHhJyD4uTYShGwy60nZu4b7vaElTrPP2KCtoC8tEBDWe5K8D1aZ7L6vWvP2hUAq0Zq/LxdICcmXqwXcl4f3eh1BtRojDO/iAcZx2SCczeudwgWdI08AdQMBfx4k4Bis50kCfqJx+ut6W3+3ych+U2NjP14/qn77M7sp1qBBjAZXP+TRCdZZNM0AS5EW7MK38Cq8XS3jYoX4dXlxpXSR12ec1Qzl0f/fGLAjC5dNMWtXd7qxKyK80WNOEVP+H233RE+gV04igoraLtvwDkDhCaCbn5YtmYTNW0F5DPnEOkg0BFgwkketm6AkftE4sa8cv7GzRoBwL8W4h97GTObYs/OC3EnaC9QYh2y4n4cjzTz9LuJ5XK1Nte34s2niAzgVNdL0IXmcC0djjhaFoCQ/vUJNhsx5hUWxK15rCMIUzhtryLjgPUjcUt59QKWudMB5YDQ8hfGFMMltDjX/anVaNmG6vVH/zLhFiyivEymBfvscwEkFyD/W3eiYWT0raOlKpVCe7TKo0HtYgkStIlTHrJ7ILHwJ1LooLdSEFhUHpmN24GFOd8I5d9O3ruiaSCUBwCLvgDZUxzQr7DvNtubEp1gCA21J93/1xSfFqtlRge+tPjddxSBTvT2iT3P99eJCJlJ4yMhYKBLePuHCpApN/E14ASzu/URrZwyb/ABtNweqdJjlJ9BTzHj1ryAbuuHz8j/5jwzWHsw6DeexbnmHYWjwxreOSxuDek4HUYbQM/nFf5XlSzMSX9IhNMRMWq00MgaFeq/syixxOhX5oFzP9IqyVv7e4PDatqlwjNAB9N/r/0O128pWkEqvdnucehzZKCEuO/h87EBMfNeaGZxKQKMQtqu4/JnvPJxJsYX7QjRv0FRaUnxKTSG9HKbl6bs6/ShzPLEHIp2USAsN1OR2rLNd71pOWUv+xhMKYeKw0o4eJIy7ux5mIl29Nc92imc1PlZO/D17KYOv0hY9DhEEHF90tW9bmQeMp5Xu3DCXdPPhZi4hK9Ln/LUQdFMDZcGG/3afkXeWSPq9KCLQHB/HMMjRVxWjTtuBszhnA8j4o9QQ7IUAJlznuZ3ipF/EU+OlWI++9X7ORxI5zLQAXxZAP5Zjl27UTl8G4UP34gRsWn1j0n2Ib7ojmRbH4X+scGipMBg9sEVadB322TfcRp8cF8sg+BqXLjnt07y9p+3kG6kg=
Variant 0
DifficultyLevel
530
Question
Two identical spinners are spun at the same time and the two numbers they land on are added together.
Which total is most likely?
Worked Solution
Seven can be achieved in 6 different ways.
Spinner 1 |
1 |
2 |
3 |
4 |
5 |
6 |
Spinner 2 |
6 |
5 |
4 |
3 |
2 |
1 |
All other totals have less possible combinations.
∴ 7 is the most likely.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Two identical spinners are spun at the same time and the two numbers they land on are added together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-NC031.svg 320 indent vpad
Which total is most likely?
|
workedSolution | Seven can be achieved in 6 different ways.
>| Spinner 1| 1|2|3|4|5|6|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| Spinner 2| 6|5|4|3|2|1|
All other totals have less possible combinations.
$\therefore$ {{{correctAnswer}}} is the most likely.
|
correctAnswer | |
Answers
U2FsdGVkX18j2hxg5c2wG/SIfIHRD/o46iYDzBkGw1oewc2lUBxWJ1UbiZEBVzHhZbgXSk4lcSbQEq/HYax6yyimcQYyKH/oxM1KXgRaVGvPoe4CD8OpMxu/DJXXAhbBPhlX64O9Q1cNVBZGv2XHGAjEVdpBCVoKWc2p4xgm4UFPDVV+Wc8pQGGwUXfz6Y2xUOI6mYLT2p4GMu/so5uNi0XKyYGXvg18YJ/nrIPayg6nMWbIc4BfPIfFovaubQu+GxnE/diAE9uY++f7QfvvPNQ7X5wkjGkr0OjAH566g4OPN10JtnTt+cArwYGSP+B+E7d7TGFEuGF3Nf2oi5BUKH4WlXFQZqpFEupqoyJBVsZD0uve594L7LhbGbSgiPB3I2W7HpXa+sII6w5Df/VTYgRkm3/1ICoVAcS7S8yYFJQFADEp5iKnAiNt4jKOJ/OFsQRPVxAJFga3SQ0EhaRrWKyi/sWYPT1T6JfgfWji3KoeBAHQukgAaAAQTDF4T+A5bbj3bDo67FLql4ZeWNOL3qFmRtJ4lw9Q/a38OO1MSgVM9cZHx4x9QUA8+jZbyXhqRThmIbFWJaf9khJ19tqBrOiq9VycCVNYur4TOTtERz37oN42KrmXfzu46SBFjjWeLw4CoaHIfKbLLjcQo8eWprq/ZEtCsVRRXYOm6vI1NgsFQbXlEwS91L+9uBg7rITdBzcWH2EFw3f+baBaWTnd1ZYrECt8cOpqY50CLU+2M45e2qt2a5vKZg1pBAsg6Rkkp4OSDn0aRCNOCtDjKBnm3ldtbfIZqpNfbOAV/np8mqN89js0/iJuKlcWc1Pr8L2xkCC8moRyi1YwWUKgg+gUtVkJeJ9Sfp1UntL3JzIY135IXB1iJVdQFIXL+jWT8hC0dhGVTEpNCf+by71nMx/TWS+gK8We6sPrOQWotPUuq3BoFUpFaZERCl5deKju38dRB7FtbZy7Uo/4EQaMFK44qaUf7vOcqG0reSOPZ6YNHnW1ybRZ98Uhkoz2jQtoaXoNOxaUmeUaGUzF9SqYNaahWjxOoQ56ckV1AdM30MwRHMrDLyOjRhJJy0W7kzFEgi2BwPmCRJxo284ICg3GPtWYYxL/PmIDd2HHI7TFx45Dnync+PaLIlUuKO+94M26Y7KrOgwvHw0BXwin8E3m8SOpeIrwPhVMbJ1YYnlUIcI5DwQVl4n+BY6WNAV7p2JDnU38ku2qBEQYsCzKNDpOCEn8Zk5oS+RGLl+MVFOTtU0id1YL3MpKzRDjK01+ip5LXOtAbgyWxnKhP2v225RbbZWJK4J+ZwDOyNKO5tnHIpPdW26GBjM5Yf3mPL+V4FDj2/Sf8QRm6ZlqPCP4YUEz0CAft3Tworgh026jNI/YL8/E+XBs+7fbf72tlWlsIU5niGB6qogaEyAFRQRg3DABwLlBz0W5bTcvtopgCjQm7rHvbjEXtAQOYTqvTWV8LgSYBi7pJmF6t67MyfLbzlmYhqQtggoKsIBIHvK97hR8601a3Gr62h0wHUkkP+t/eSPk6LWjgXokOVlEsUtw6Zs7PZ5KG0mnDEXp9WKODZVMloDI3PoeDYwVZdu9sHvee4KA8mnrL9Mc1gXvbYP4x4RDNraoNwM+AeZnossQ3Miwfy7HVhGOiGjO33LNj5CHQFTUXNstKlYpTRRYWKPRcK2+mNPn5dCTL9iCmlgJeViqC/VYyzDIwdpf8Sx6g4IjTCPQ7GF2KTY8Gr+GDMCRO/68ahNIEBjny+IuRhjd6uVoX7MMPn3fdTHui31y5bPeOBfbe8eaTrkujJGuh2zxn+IJXjOrmRLv47RTZojXFb1yKAqH+TNkI3CmiPV5Dvl0HHqdzDc+56aYBcGbkgwqdFnrtfblraB/SFoKu/rqPZE20ijkajaeb9BSqYEOFTnLQxHgPshWPmgT+nRaT0sYHMJ0wRD4aYLi8xPYo13/WI4SpGYjrKr/52bSyrgacQlz9aAlrc/542rK2j2eJGD+3ERlf/DTDnCSxuOiFpFfyLpO2du0KW8aUR6VxOMXU9JJrVVHci01R9+FdHThbQ4ODA8soFs594frSXPyynG6byoGryW2Xy9DFF5oyh5hyoWsuHHahF5a12MXX5UOaSAxovfaQ+fJAajqf7ejF+bK1fqPs8T+nLoAkmf6y15Tq8OXNT3PJwGCZvPGUkxV1RWz2XvpOJIuCFrKQ0trWXtrp7c/zZctJqstS4cpWSdf91ofkIqppH21m52NMD+SkodiTudXD0AFVvU/dHocg8cU0SbcfEWlbBEMElTyxDzX459LS1JVHy0um8oAYSWWS/pb4LW+0OYlipQvfjR1vGdj8U/fGBZrtVxC1qLF99COwjPRiPjQatxWYpH9cHNOC9kj/DrwLNa0NO7UbY3Xjk8TQ5PocghOInCfLqKtjUL6BNFVNxaJKTDfEXax5oIbNalzCjukiETsY7rUoeAASxAo58Pj1vCcLDGUEok+oW+Kd4x62QEE132IZb58e+kH1B6kJYQ2gIgaoT+D42VPQ/lotZfl/YE6Lkb/0bXHaL+AvYlRo0Rjw7bmWPcZsWtvNlAJ0iDdd3XkEXx7JHz7D0zwxk5HQTRv+kM4/JC7goo+jumOsgfKr6LMgSnj0wXupkRyoPP5d0Aze60UwS1Bjzw2O5JdYsuWNM+5g0/j6acw4ejdtx23tpvV8wpAvvCcMDws3XQ3CPLluc+k2WTTKQA6lVoEoYU5cjgrxFdB4NU8LBHRigC1qoQtqD4Bx8hkxppzPSbHts25+zAarwHWsD1DqGsB/lyFKMQpxc4C5ch/Rd8IzfkxxlV+bI0P7X3nQiYYDAe/Vh9LE9gS5SVUF027+daH1WZbUIWDXwMuA4oHG5c8PrNmVo0y7st8Nx6zuCuPFmB7lc1yTWpwzGSA+Yo3VKJzuiZcutrcT7M4L14awYn72BrCFbC75XEmF6hJdtTghdvBPeKs+ptmOPnTMLli68/HaQsUKwgzdY3zT+HcmE8bj1IyhcMQ6qm3w49DznOzzLCP0mD5cKzdNqywO5dGld/LfzKxEksto0dSXavqJMPL5atDvM2NXG+fwQm/BmREpD3Q0Ncr8rDuQftBd2eYZf8xMxp1ZxCT31HX3qMiXIExXckDTn8lKuKsIParIPFFSk8jt8Ma9Od0KtWUQOVffr9atXpYQIjqVSF3EmGGIfCfmIw/HEcSPkxh+0xBPc3YWLOSUrqxvh0yFP2W1QTDqKD/wdMYc2rKIPR9EP5tvDrZ+yu1Yhw9OjS3pPv5OiKj2CVFJEewrgC4u+nG6CZGMm10nPBEkDgbwyQMHOoxRriq4qgt88AXo2OSeF8ESW4GAZra+EuHN/Uzs3b34X3hb1PYlBs6ry5pyeLSQFetuh2YeM1MoT4r26K7oKPtekOzDtuRCxY7svbXaY7dz2vJeJqmWypanRe9Sod6L0MuZrWC/2w55ttHPuGf4Bef4UMQ72GcZnY0YMPG6Yip6zixOVqvgRhUp4zbmk7frLBBChL6AWDXX1dcWIPLr0vOzqO2AdPGKJNTy07H3gYenMR2TJvXjpXDF95qmaIOKnZwLfMBBnsdIigpSPcIOfprpyNAzmJYHQdpITZIH8afAxkiE9bpst8fGJQQJorhSdJgGfu9ezAYNzkEwyr/vdA4e2vvk7FOvnMcFRrgbHKicmJ7r53Q6IQaODPKVoBxiAK+OW4KQKK31AXIn5Bp/jlrDS4C8YsLJTwOSsrMypXlsX1llHhxD2E5KCRjdPzu3jOV6WVYl9c9nPmO439PyVaHndVslvAl9IQkjqkOw5OY80QZrsSYloIEI7HRrc/MCNjWk7nOQvAnP5oFpwRJ+OxRORCWgIyHC35Yr73lj6qFyjgcdH/I8tipS40Ln8lImDcnXptss5kTeOH4DIulch3wp9mqNjdgOFDT5e/BwG6pdHSDwgplRa98pcGDkn/ybhU0k9cGm2HLHGawkfHzwRkeKdq0/smcqZPdiA0462hiRmAL63LiPamSb7TLnjn1j+TxoWJPw07T1f3lecqe3xuHtr1N/IlmXVDsjEEPBsB5PhLLBasaPSrwdAqKxU7O8oSFRc2P9QObSh0T8Ddvh+647SlBMlbz0Uk5EIrDFEKLUsMZMi4P53Gnu3cZ81R6UomTGIOuDSiRNTINdIAKLSqcu693wOr/DuLgSmyf8VyN72TPW5s8GJ8BCGHmWM64zaAqdP/M8fSFTSiEHH7oRwX2dB79gJhBhSjJKq6++oyf1mWSOFfaFOa6ZJlptUaZ1nmzPPgTjlmlhvCtXT/MQu+2SF6uXvI9Z28mY05WMk1WbnRYA4gXuvva4CwQRkbMZwnJa4QaF5nJeZFn6CKrTPEw/zLfXNw4xYePGheDDrOgjYUL4dR80gYWnsjeQDmz5mkv37KWFmM6y2LX3UCpNDyrtfQVO7UGz+yq4aFxf+2bKO+YNslqHTVr4gmlinawb+TFN3LWJuoKHMTjA1sKceb4HDePaq0kbQJjb+Ie9nIPfZlnyRzqz9zZMqo=
Variant 1
DifficultyLevel
535
Question
Two identical spinners are spun at the same time and the two numbers they land on are added together.
Which are the two least likely totals?
Worked Solution
The totals when the numbers are added together are shown in the grid below.
+ |
1 |
2 |
3 |
4 |
5 |
6 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
All totals except 2 and 12 occur more than once.
∴ 2 and 12 are the two least likely totals.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Two identical spinners are spun at the same time and the two numbers they land on are added together.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-H4-NC031.svg 320 indent vpad
Which are the two least likely totals?
|
workedSolution | The totals when the numbers are added together are shown in the grid below.
>>|+| 1|2|3|4|5|6|
|:-:|:-:|:-:|:-:|:-:|:-:|:-:|
| 1| 2|3|4|5|6|7|
| 2| 3|4|5|6|7|8|
| 3| 4|5|6|7|8|9|
| 4| 5|6|7|8|9|10|
| 5| 6|7|8|9|10|11|
| 6| 7|8|9|10|11|12|
All totals except {{{correctAnswer}}} occur more than once.
$\therefore$ {{{correctAnswer}}} are the two least likely totals. |
correctAnswer | |
Answers