50081
U2FsdGVkX18JPSq3TQEePzS3WdgGJ3KmR+Xre7I9wVW1nHQK2mDZTL+5zZ1lT3WIuRyA8rSwfuq3ljXsNvxqrsTPAxV43JODEITKguF2EXvy0wTLVy9Eb2mlVE6FRCR4KpIEz9Y4hOKntB1JawkVGgd4w9hBIJln3BQ3oN7PCjkJsWDDZsQ1T4zCFrTAUJYRY0IaOQayOwLi3jzGfEh2yN22Ga/OJU0KasUvjvSnnb23q43BLUZ46U+inXAIEOC0YzySOhyXDZy65lYebqffQbRVNZGhw8ha+NIOzTZy+H5pefu0wohnvlnhgbABMERAq4tIdzaEFjotjNnJsvWEGRQ0lxYcZW2HcyxAwsVsR4IsR0i1koQhwAju28f+nEYBtvO14A5macWnkHkSj39k0Fp+VgoFmhz4SMXMjR9TNsr+gBn2sCwQTQmu0OaJnoys5NzW9T159RgHaOG2UZP6z3ZB8Negq+4rq+BZkd3fukbvo6B6QGdJaZ98eKiY0K3njoTZT9ury+F/ICClqgBAgWa8nTcMinDtzBXFwcwOqSZdac4YMNt1f/nAPFDtiZ1pHSTto1DXshCCjDpmD6MjN1AUc/bvrFW51B7bew5YSpueCi8wdd4/Gv5WPZYkKCCEQ9kJV8AsXcPcpM6tIUEYchCWgcdY8WOowqzcqdumHjux3z2UwL/pPAmxR6fwE40+NyxH/TtXSNvKDaXdcxT2BV9CYmu+j7P4tGRtO4+C56nffC0atrcPZgclCuCTLMxQyr17GnbVrLkVleFZDtA4Q0VzFP4OBEdPdGtTokda426P+A+iIHxXCy+5+p9TUDfBKkikF2e47/PaOCd+vnkel3InQpXKr5EHQtN9/6mUeUppC6j5AfUS4V+XFn8Xih8irVRRCD5MtCw/fgj3ZMwoJPlolnfavGrBxaUs9xCzNH25ebbDaPIS+h47DvzIP2jOOer+1GSxzi5XPHbnl3z9p3g9G1e3SbOZEYycNBqcVX1r+X8FyOtBwi+rdDCZ16t13IFru/hquCCI2hIcvS2/LQwgV4Ed7PvJRav/ewE3FUpRNzliKcMLtbCyfVr1f6CMaAGnrTX6LopSOJyacnnu9LySJl4jxD1wChMpLLuKztA29KfudbeI3ASTNDgQv05ATlNrrrJTI/EUqCAQHmF5SM9FFPfu4dz7pIg0axbfsn5KeXtHYFNR2jR5JV2G5tZ2QWqn25w+Cu0mUgjA/7CcStAyfcQJkLDNvCudWAMyuKayCYWIfpG4lLjrjCCVL7bHe+ZRMZ8co3qXwNPbORu30tECYhn2didZOLbRbpJZpkMaOWAJrviHgn4KEvWnZOGfr5Zph6aDul5KFq/GMhDuvuj5PRe9OjI1i03go1p8szvLlD29AlaV1y3n4MVCdcZoyCjkWW6NTaYFp+LNy08jcYsU+Ieldglzpj0PEfvFvf/TDoQQXF/oTdBqgmLSlgiNJeu1XaHH+AOp28YNvKBjdDlgfem4/hUgmDJJZVaYS+73kE0yxCthsmfr7K3313PgrQRm7ZD+Y/VKxTl2c69v5oTSUdWNfECJ6dyKaDrPaYviDwM91Bso/G2goZZk8/DpUAK4wMktWdW4pKQiV0Ms1gJAWl7MUWRZEntYJuMbiUDxHaoUJKJWo5E5CkJB8JlSY0V1hc5zXO+QOh8XgKBnd6dqY9fS0cF8SwP9ixUpBMPS0CA4d6vf8V7TuuWzjDJPNOz1jYofHhj4CU9QoHY6GwiD4CY+Ci9/awRVWVcvhN425W2Z80gEF8FZFzA/Ndfp2kn5q+V6qLp0Q/yCmay335Zy/PMoWlyllgDcICHe3h+y8xZ4vukzDt8v4Vv/qUSiLSe+SygcpYy6WsapIe7JhDpmOrKhhdd89mIFrwMr9wfvrLcmmnCWHAawcInU2ty/a4xKUSbceUQdHCaky3f3yiMWdWWbyLglmSAlSEPoWJCsy/UyHjVNn/83snS+nUoI8ynjLC5JcYr3ZbhyC62n4T/6Yc6l66ehAcb6aEtIbsNjVpPoOGiiITzZaPGn9/g7qGeIosFJdS4hAPVN0asVLqSh7zPXzgFGdAIr8bQ8b4EckvVvLVfV7+FLSDkNdmnQZisy5nUg+IfgQEeihv2BCmIpK404cJMW58kTv6AA9wsnY0C0MHvJ3sTdAyOy5MT6P6tDU8LlhzPEfYe4YWXFbq7OuP5XJrSZcmFPvNFXFZobG/y/nBdcSNpNGndLBkcGUkWUOQ14V08TC/+r05Np8nVXNNj4Vwz3wHrNdKQ064TlShMiKFyBoEGc+zX9glkkoCZBXo1eJiVAguNjCtQkCneQwcKxL54nqNnaw5ghxzFDb22Wugaog/meb6ozGKoyhaKy1tCrn7/DehVl/jNuVzq69+bPAfXIuq2dH+P9Nyk0Tzs1UgdXLLSaRNzkxZFSe8IIjIKPOjjKp8aWh+Kmd/Va1XMhOACJdnpGbeksTd20IoBIQF0WE/NRfUKynkmq3otLKGwguNe7DeUisRRt9tJY8gKVpCumFt9wZRaLsQnKrEg5DAYvU45am1Oj5iZU5KBw0afJVP5WyXQInsb+nuKl4mGAGkOVQ6F4+11Ia01GCC3C5H9u8IuMXaNgln7+nc1CsO68qJfKMw+8qAtgRtj40gheJeAZaGinqbsL6tDosGX5x6Yi8iDuFaGfjYsmsnFE3b7u4z1HqR1OhyIDJwwW8Fiwn5BoE41vjbQx7ctklIeykaHhnz2Jm4Qo0yIwvclKDQFtCw5fAl4uPV3Vkgbwewb4FlmS1u+IZKCY/fZhekCS/Y0t2xj1WalstNteXCFO9dRl5Fuh6ys2f5pf9pSScKpMrgT0xtk94FklwDPe3CkPLe0X/Nx617oS7Kh/ZFvuXiHxYgVeoezRpODhEoEg2vuxJ3oiootMCQLgzs6MYgnnKun+6spTcvuiXZpE0Qay0Lg5nAJ9HbxbKy7ITZY3qdic2sMSiH/hDJPuzfl2hd0Iiqh5XhMMAOYN7iMK+oLE1U9QQqXSKHFUNXrVUd8lyLjIHXZG1/VxO5wgXyI4x6K7PZQvetYQgAcVXhszQByyrHX+1e9KnrNMa4mrIniNYUcUeXfC74rEYYz/7TYNs9yKyfm6beL71Ot6Ltchc7/MKir3BY8kIbSzFYa4ryqaCx6WrbVHAJXrKlpX+ntPXTfU0g0cQ2BobeDVSgz0SM+2R/atTi930R3CPnkcbdVfw9VAEJ0gNoTq19qgXlLis7bgPBVuSy8QdkjBBinWMims5fvP0awhD7e8ltHHx5ifSeBXH5a+3A2/EZF7cVyf8tlr/iM6ewQIB5M6SqG2gugXcxUXLxy9PNlTRRCp7dKAH9vJLWX+eyyESTvLokOdy44ISMjHdY3Y0/MUnZGZ3jWCOL0b4CNWU3J710w/lcAjn+neTqLGKjSVTaeqtcSrUNZsYX6lBpSDglmpCG0M2ippGkkWgahiQDKu0bDRPN0vIz9gMNCOjEeF9pGtb6GhhtqjJNTY9G6zvRadtXYFUYrtgL2LKEyecs7wW8Evx8SlW9Ojdo9VFDdwTBnkth8R4S8SavQhuIsOgwtXJcLk8/Y05Jm697HJDoN0CKNSH/s41KPfdcimAOfQNiZXvlHMl9TMl/2lo5VZ4xb8nQwZWwHBlVAh8q9kVr1PPkLCjk8cpi0tKyZSkYan1IQrbbS3MEMVHCwUcriAOmJbMk10kAiNSJvleArsllcigU6oVQWqq9G1HUqL6wQvVZKKDOn03l9dpNdugSTHxEPWAxRhw5WYcLaxoWi/bPfoaFH1u7lQV1eWJ9Z3fEBidCe4x7PNNKNXGNqu4JzBaGTNslwe84HXQskgaSkH9CFi0l+CiLqYo7xTn9CXNLUejy3zMl/U1q4MELcmS00EMSvIYnNzU612E9vWyH8YrlE/AnHCw0hysFJGg9Z4pGDtnyysH9zplkj0oor7SHTQUib+x2b84vRu4h6kK4iGFcRdNXuXPnCe/ZwFlB46TCl0hMkdFjMDHoSAYvky+m/Wh9qFzIzDBrA/TzsPCM8Seu3onUQt57aNZ7IgqWeK/ieg6ePVcDUyKiIF62Ie174i9p6B8098I1nhK8ArDUUg5u5gG2vYjozo3K4nTmwFdS0BKto9kgZelBu4U3a4Bxp1rX7rNSZx3a9gtoTl6CMA20G81xndjM/StMWOXuZ2xgdZr4xvd+4gGJSWv46FnCe65hEgJfzPJHy5L8vT52mBiTtzum7vKpWn9kdwMJ86LwPSgA5wBxuxh/jnPm9TWR4F5HlNDm9hHqbYnFrXY+C+gaxWji+Nz7VP2XMmfD6fH6k/FUEoVjsrdc2I+v/rZrsOcHt0m5AG
Variant 0
DifficultyLevel
584
Question
Blart has a device that counts his steps each day.
He aims to complete 10 000 steps each day.
The fraction of steps he has completed toward his target one day is 10 0006700.
What percentage of steps does Blart need to complete to reach his target?
Worked Solution
Steps completed = 6700 ÷ 10 000 = 0.67
∴ Percentage of steps to complete
= 1 − 0.67
= 0.33
= 33%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blart has a device that counts his steps each day.
He aims to complete 10 000 steps each day.
The fraction of steps he has completed toward his target one day is $\dfrac{6700}{10\ 000}$.
What percentage of steps does Blart need to complete to reach his target?
|
workedSolution | Steps completed = 6700 ÷ 10 000 = 0.67
$\therefore$ Percentage of steps to complete
> > \= 1 − 0.67\
> > = 0.33\
> > = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX19gTI6lVY+eYwho01x4lfIizoIBzBaX8ppUcs4SFLJsuUEhHywRl1FNAirWrfE+mM93AWho5n9cjIoWXYEvudGOSKPnhsxhrDEolBCUCM3IkM3QZLRIvBwwJGpfwiPak2BXGv//LzWROfAwxYjvWl63ejhbXGip5V2u70yC/KRVwCmaOUgYWQ0N+x2iW4R3QQUcS0TWf+F5L4Ir2AWdH9xtyEcVh/FeVQ4yTrDFyNgFuGrmpd/bpEVctzfUyaelier/R12SUpJn6AtTmZwHo4WlXLNSwZRUF25I268BvGsPGJFUmY7yOA+VymidBi4gOo7NFczTyS9zyavLvdn/0npRYm+KxzsDazSCfSkCMF1FVMtFHKErf8ezbJyGyu46wSPdWYfJ6oRpD/FVCUHDeuczO6WIVPl2vhVp80wFXkTuW9NlzGClhyW11cK8puQxj/iFgzFpePvcLQ/E+lIFe7k8rPDqiJlZ/KpR5tjdeY8NdqYvF+W9j3RmXV73R325UqZnkgbKCdQ9d5hnC+kzd2vN5FUcTuEyLUbtJfy9DMBZnCiYUk2kYJ29j79SPnrc25aLtlH4wvcvp3DeYyl90y53Mckv7V2TcF6F7nRW+OFZAoBA0nrbJcDtDlm0oGDU0LtENjzBKjTM8IFSNLWwhzZIDbvLZ2ZIb0WnhBuBdsiAFkt/SGF+47j37jQncXiRbrTfpIjgGrWtxMbvQxGAjdxw1xZ66NsrTpiy7ef4HKq0Bxu+mF2LeZb6TPhzcB8DAly2dXAt1h1JsEx9QEUwuDkV9xRkuBRnu2Z6IEZTVTHGEBjr4XL5VlZMoiDpEmxgt6aZ9313qb6+DysEjWvRoJuYigezDbit+MQ2no2Hc0qI9SqK55faLrZ9MAMjnyzCpEh43AbXJ/427MqgVdX4TKpBc/Gtn9krwGMc+HWYLxsGlTLEie+tIGFtdfsOJumo8o6fACUNgrkRjZKgH/1gUtNJuyqjjq1lbYaeViJ5su8lZPot1nDuGH5utp8KkBIJwa+GSxgw/IgTxphJ4HEl0RBrbRKucgxsUneqUV9GyAw6SMtgRxPoITzrh0isNQAyC4RicHn2+d2YTMiBR2122uj7FlLAm4LrAQrbWgQijwh/AHw8iU047eKgOHBrwWFRgDLhHDiNMOBEqQjp2mEVGox3BW2/GWPurROo6BFzkVrL6KprHOGjMz/R8KlhigvLIVFGxB8xKvoM3ggYgLGYVc8/tSUWep2h1VnACK1wniqUgZNioyD/9bITIk0K643P02HG9etYfsb2U4PHfL97YFE/Nwbmr80mk277iBYG2FgGlC4jBGqlQZHL0XJdOLD+M8xclysKqO2NSgvHHhURGG7XcN56oPBFliWixAwRC+KIQ8WPGB3xJG534xl2rVRF4EoG91FtXkUFhsG+GEwo3XWHDUv84lkfupS38Moj04fw36Na77ZzOAHBKxFFU5oJYy670c4MZggUI98/oj0h+FBCCg1Rq22aj4lOZodU9aUQ3G6iIlagT5mXFVK4MRamdxF705HEjbU1m6z9t2uMEYvYumwjZTwDoNC3gEjfmOhsvVZoOGRDFnamySC0DZxG6fcsfu52QYokVjZOxhQ7OhGjuo1dewWQoyIxZLXnB4Xr8kesUKgznsMrPJCN3xMtn8fzoRBuCOmKup8Rc5NnHLt1Szy92oaJNhGzFW1bblzmeQf4wXJnQJnu96rUnJylhQLZZxn80l6VrCVPnW6kqZZMRc33fhk3JgWdJJ+X97SbyCSwsRlJpLHookPChf1/Gapuf2JWvSLU0wl+UHT9Zs0J3nrMruP0gK2gEOmudDMtmD/yx6FcVkjqzNTvpgKbIDb9AhSZuQ6+zeY7daHbWSKTVmzxjZtdOoCNWlqZbrcVFJkVy3RRp1McM3blWZdj8N6158ocPpzsHhwMobFEAa3Tima/EnZFCv+oUujXqevMwBQF/yU+gResf7OokeOb62IusxDzjLVpsFXqc8Ba+Wv/OUTzYQd6pKk7pK4pSQFA3og3lbKEFtoFxMWvMPEdEeR0/2RCbSKte/GWxMwn6Ii9LbOQJpMPwgfcmMc1lXfXXWpsN2k0aXEpD2L2+c0rVshZLB5BU7RKmUQerg+NNB6DznDHEHSAw1GUmmM4HLk9Hci26taPH486koLOGMgqsRAqF9zaXacSMSSSH10zDumauiGqfdAHYEfJ7GJCa16PXrewJ+3mlN3EVDb/ozxe4UaySVa0oZl8/SL1tDUEfY2PHvpaSAjDdGUNVoBROc1TGsJYJl5bzBAx6q0dVV1PQz9Rxk5WcRDjjJVVY1bDKS5KRwzlzJCHMOd4grT7q4+FSoAjy4nC5kxCAeRLjqdJEciMF955u1RLKLAxyzfLIy6WssPT2xgAFjFNP+Bo8f+FXDF30Dywt49kENOmjrcBaE2dMxHeTeSNCl93BH+sGB8qaCYpQzA/xT/AzUqiVaIQ7u3JKKa9FHjfizF4K6tU8gqYDoq7OjcKTN2yf+E8v+sBuBU7UExrY6DCNZLoZPYkGHjo6xVlxsVO3jjTnNS72Ree4qTIB/zWahZy5DjQ3PCVcQaC7eYyhZ0dZtaQ557zxgKGYb0vwjd9VBUtD+AxIO+14+oQv7tZJjmZjTZJNHTvmAksIklhMtjRELCKBtI16dqoRhjeDRb8RLlR7dziiXYQAEI7YPYg3SyqsRxZ5eXFar7+AXJTLaFl9yRD8viNbU5FfI3EVz89PsorDKXbo4rqpFUCkYynRO24tGc+1883pZvekLwDs0uKqkJQRkoQ4NNN1xaCp2iHaWiykQVVSUuwGk8KtU1YkjcqSGkYvATevJWP535h86ssaUCdnWJ1S7JcyEemtTx8sYTIKzFdMpnZ9MpxWrQD7h/MKT4MOfH+Sl3Cc0x3Rxp2GdQisf2ysYC2T5jlENxqwJWb8qFnNT+FlxqXtKoxJxkTWSvBTQZtXMGB8Daekc5BtT3HJjeAhu4K/olTuZIPnvGRqCacjwGmVGhHoz/7de2vSiq3ZaD+bcMALf1UDUD9PECJtVcDKGrl09q69Unk7FxV05v33m0YFoKtIgyjNLmZTLkGLd6oPa6rzHiblVf14ZXlM0zrmTQwOKrEvpagnl73eu+jL2G5h6slvgTVGA6WcaJUSUzvmzmM6p87FYTn3y1IBbY1eEhrFe6LfHaPJuKejAvpXuQvysqlqHe/DJF8rUoTBog+L6h5FCObpH4qG5L29Y9aYm5hBb2PrGdU0W+csSneQXZiRaptsulKVc+Hd8tMObZOpW24QdakO9x390sdLRvZQYaxxjmRDEsVshnZLa3QrwAJvTfWDhejrgx6QkHMhRSzAKBtvbmcAt38ZZ1cRiXQORjDFxklvZJTUHt38mARnSu9LeppDM/te1ZotFF9RD4Du8GHLLbcyICqkXQSxLeoZV8OBSJyqyt6fsdSf9kAEKQB7CVxf6Wko+ns41RVIcq9gvANa+7K788Lp/gHuTUuUL1hfHsWaY5LcWS2vN/EQpWuGkJ5swtwNTkwFWx2lWQGgfQ3TXT96TZcFvbMHQFz1cINrup5foAW8zijJDW7cGTPw2WzKu1dFyMcDUl41EdgQoAoysiLPzdRRn+551Rrp/2//lRWnTBs9toVZKCs0TQlrD7BSoFCe1Vpu4o5P5BKbUEzgW0u3xkgLNkWJ+uJW4kxVCr+B287JNoZ4jFGHOeYhJD6a6ufBnLoA+sKl9x910/k2jvDWLgFZ6a7hLB6VH4RG3HUprOhc+HpgnpLNT2qz4xszRZ3locVTK5Xr+Xvg4QntFEI5ytepufIXcvCvHoa2goL9bkNrNp2uNr8b86h2xcjmh/JWlK+r/zFy8wpXKt+y2ElQkPEaVoWhHaRPH5X2U698Or5KMj78lcTKWZ2VOzCVVP2fdwfyBxW8plztcw1SfZy5t1WqCKZhIr2i1kSBCmvsCqyIpqV83ee8BoA0tykqn/ZC73CdcW7BXrr71vU9z/YgvmQNhN5YoEd9ulxMl0TSyDW2T2NVpH8CypgmXpjSoWqEt96qcLNNUqzYM4Ne1LfryExVs5pKYdKG6y3hMxTIAkzmNPRHhSExRAe7nljSrQeiXSBJZVPg+Hhf24wjCH72Nipe0fcDS6vFODnPX+QtSokrTKHhamA/tNKtryWP/8MhQ==
Variant 1
DifficultyLevel
583
Question
Anna's smart watch records the kilometres she runs in her morning training session.
Her aim is to complete 10 kilometres in today's session.
The fraction of kilometres she has completed toward today's target is 108.5.
What percentage of kilometres does Anna need to complete to reach her target?
Worked Solution
Kilometres completed = 8.5 ÷ 10 = 0.85
∴ Percentage of kilometres to complete
= 1 − 0.85
= 0.15
= 15%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Anna's smart watch records the kilometres she runs in her morning training session.
Her aim is to complete 10 kilometres in today's session.
The fraction of kilometres she has completed toward today's target is $\dfrac{8.5}{10}$.
What percentage of kilometres does Anna need to complete to reach her target?
|
workedSolution | Kilometres completed = 8.5 ÷ 10 = 0.85
$\therefore$ Percentage of kilometres to complete
> > \= 1 − 0.85\
> > = 0.15\
> > = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX182shB762De68rW/rXsTfVD5rEA0ji45Z5etA1NgTRnB733cuanYlrxBNnkUGjcjKutxT7AMLY2iXDaaya478YUZkyxOD4H8qWo8O9AjCfW+S8YwtI2UuaC3eZoRcYOofR2iVVNVt3cHer2i9s1287BUwfFu3uFMRQePh2EbROmz/lF8OhbYLzkrES4jz4d9WmdnmwJlWTjV1f0hshKYiosj/6x0D2Nok8fl5ESyjrqNZxRexT+U2dLL1B+S8D+qflhi8ANX6oiTlhUKDcePCDi5T8JCJmgvKPz/RxOIviomkABPEXvoUOLAAIZwhfXfqIVvqaylMp6IL2ECi/GGNqU0ipijDBFjDRUmBz/r0SbDIuqSA32d1t3+WVpNoV2zPi3drmSe/Klf041MSDewK7xuDjMRAl/o//aiFC9jwkOSuG/fD2LRc241zn0ns/C27To1BIpGhtDW7TdBF6SjwlCN0RYIEJP4PMU8gWDWrpy6B+9L4ykId9kzXyWyw2x28MKN/GJzjwYabnyPILSEIo7V9hFKHwryxPgx6aaiR/47Sv5NJsc+dYvDL3r3PiOg0rp0wuGa8rfJde9uD4Pr1DwEjLHU7reRLgWUlZPZKm924aw/QE4dmGs2tAvUr2NCgH7HyKSmheegAKF2LOdCiOHIBkO0Zftru8cCEyF4tDgsowxbl1JjM8ysh33VNwA/+/Nc5D4WdITLSdFjz9pDQZLFCFEZv4Il+wQOba5BGjPwJtEbkArKV3LjUSx3k/nqvKuLurBUnnOoQC+IR9rE6D31uv4zIfBQy0vzj7VckJ7YytIvcCZ+ubzJsQQ7KBCtbHXK4Ie0+7nowo1M2xALPW6rK833Vfyn5saslWb5YIuD+pGHN2Na8HGGkPLeoixeOfCGhjn9lAh4ATcCbUx+eyShbUq8ST7wlDg1YHVb6q5cP9gtxpcZsSnKOCQgPO3l3USarRywH/JUe+Mvsh4rh0V4ADoYOVfd1ypkCbQDYIiy5gz1/pcMxz3vS9pyJvu+/yUsgVhzMzfGwiH8WAuWx0VMt35TptBT5uGOrSZBdJqNmZ99+Tj1E5p9eaigre08qWYCcOVzIPP4FYyOt3XrLnJv/xArccbZ4BZTiLnXIGVABqHyPSE3rk8CCy1BP0R5z3E6/gxUlwZSSKnRk1VyhEidjiZzinNK7IcjKtMMSUyZu8iqkwUpBcSZPQ6/151w55+l4P0yU/VEzvJXYb6CKWP4L2nE6ENXHP9xOh0ECwkBf3LP+YD7PHJs0GdeWl/VVMgUr3Mb+aeSy2qoMGjCD+k3JEbksLbmltfjmeB4V5HtgLVMn8Q5qm4i7drMqvqyGhV2Qm6rKxUnbSkTkOuVflPuM3TFZ89SBBYPOF0KLfRtv4XQOtUB8eI+Hy+NrYN3TIN06X/ysM/AeDL3e6TjcSpEv4EUfL2bZXA638fH3G2ClCbD4PWJQNtBxuf+mzuMMaYLokBjwLwHrrpVQeItCOxXdxnN8ibsNE/sEfOVpGHp3HBiwfCrkXE7b2/is3opK0GhG7wxctpAnkJg8454a/DYRphg6Kdw0PaVeDjamJnzxBk9fiArKKU4O4TkrBnCBgImMQg3flaOWWgpT4HQ3lbwh8Mzo/ASoerphdTLOceR1MMSeU01oipwZGh1bZZfROAMsvVWlzqky4x4+SfqbS+MvXw8zaRwTFIDfJrXEiDAaOA0chGKCCrqaFKzWCXgiCY61NwsOwhMNZmH9U44jC4dDHgRvgUh8veqxu6El+lspvG0C01pK42+mPaRA6X4Vzn+iIQ0/w1FPCjBFgYSy+FBL3awwjE4L8IVvmPmoVEgXfJBxFeLc42PuOZfj5OTZjCnf12P/unuLbyswcaOj+ElBcnWhFUh0cRWSHw0AefXzhMQI49MUgKWAQSgMstDe1VgQlDZow5GeRF407LzwLn1pRmifWvUHAnCA+ehMYulQdaVNLqgOpRUWmSfVDKb3a4L8OhSeWXUny6YPvajvOuzUqsakKodzgzflNu/boKfWVOg0ZvsKnXo4zAGcB33PQKSeU5+BD74kuILMa1lXSkPC4bWnjnEnuP2xFgEYZpFeO3j3/J1Z2TmZb17kiSCojCWQOOO8K2RSK4qDfnBuncHxINcOO3yt79XISWsl5ntM2sHc5kakajwePsd1DVR04U68OEa6wmiG863nKSNQ4ChNlAkQvtiQRWtCvuhCMobCmrwzEWopMxhxrH/l1EjKtsGKp7Uqxm/0oWOL9MNumAm7HM9dNM752o+Lj0FJgBkPAW3J+NqJweS8mLo5Cy0Rd0zTqA7JJSbGm21rRByzVGr21LKFOy1CGbc593gvYoiGWwbFO2u6Ekh4EHawiOW7svi8nyi/8jGFPAx4lNY3BkNKMmeLQpeKlf3fYol0ms+a6K6h0FFn9/sNDCKHHydf2NFcM2HKVhly8GptuoGroxFvKRc3S+4X/4/22bOqa227A8Gah560/cYumy3q2m+zFfeg4abG0o94xEetsPDNDtqqourIlHdswCIYHDJc6tiMdequ0c78FqqoagiH6ASQZ+vafdGfas7S3hCQ9DcxaxVcqHIbbYilBbJUGYUMVvM9v5IDTMtzbs8UZyg90DkdpQzJaKjetdn0W4GoUADF/kNFkdfYDOY9mSYoL6eaathZmIWLlNpsDznoiTigGRWqZCaAaerIswIe4KBQanrg7cLezOy77/l4jEAIgrfsVTdY2LR0ubH6MtiNOxl/AysTqnA5KtNIogWxSpbtz3Okads06Ps/7kTIbYVssXkizGBa3Wf8/GAl99PK1gFBPJmkN94uJQDhBXKC7KRmPhtAFNHdQUVzf3zfmeGLDTf7t+BbOLhUez0qhLi3t2C/wtOtFy00psik1fFEv8jD5Nseu+ZltgPjufhpBSR7P7vEypBiZ1D6FKVS2oLnN6jGn9lzuYVjz7Z3K9s+Af/w3J0FDyPmog0bMGMfu+/OZ6omRGbW/iu467gEc5HsLuE2v9UbOx9kzszw4CQXtZ/kURVXl8YwjFSCnyYKURJ2CoBQuhYLKiroKTHe5C27On58ndM7BrJzSxlMjPMdBRXhRWZR0C3XKgtEXmPe7aY8nb8Pj2Nz3o7EGS/iNQqiImiP8eZv6ISO5iXUMuo1NRthis+sCjgDDYAzyx6/OSN1VeDwlhWVFnWAPnNOMATo73MhzEqRDcIDI7hezr3cPYlw0Hm90oWWsxoi1MZw5YLzpZBEF4A8pVhcLlh/6Ir84NJiywg1Cv1GN9oPKXI+y2ZWiPb15NlBYvJD0Yro6WXONzvdzxlKGWOQ0vhN3HIGORT+r5of1qSinwWfWZ6OOX4OV2TytxMe7hFNlQWGVCmBAVhHjwUXOYyc9Rc8b4DfK6375S/o7YqHFACSlfT52QdMP6AUOUHfywRFJeYfigN6FZJ9cmAEA+dYVN/O1+U/ytyjtx/+fjrrxs4hh39L9ZyZkGKcNPnFr7ILtXEBvmITCrjvsTf1gmkQzxY3Vo+Nbs9QrSVhEcj+jgpmBfHuhmeWaD531gvSYWAFjqqRJ3VzfB8RG55xrGInWnk2zyGrV/M4fqyKb2iwgEa5KMxYozl14FT/JS0KwGaWuFa2CWYkar7L+Hu1ceM1RFSN3eC1CBJltiqNe3/BA8QHJLv27x2QZGlnB0oyif5/0SYIsfwthbrITWhSzIxN6h4qT8X6ATrxRPonrXw9uA6dadmIeuw9rn+DjHSJa3LG6eVc441XYGdvqYGbU4MAbi8zdR5ZYAS7IC5omcTGdve7ULKFBj7XalxQdCEoOlTS9XihZcGZb/d2VV5ZqIG+UXuGMXM6/I2l49Nao+Zxwk7dkxbVY5CewzcvgnDjA5i32Mvn5yoNK5Q7QybI6L7+2aC0qbNFOmDDB7ssMAYoP5trtUqgwt8yrEm+SUjV3efF1rCzVo/3OH3LfPSDaqK9V12c+R02DIhc2DaFiHNj5jUKcQszrOJ69o9vlf3CMV7uCWMx/EHZQcH4DL8z7tG2RaZJphyTNWBSleXKwFHkP6BFJK2Lz3sJmtt3dMrmdtfUUQSKY5aOcSiiVzjIUtigU46ufxKGPzG0ioiQlZi1kRSnAVCKQyCQPbF+9q3ENTYKMfE/01rNcnIgai5AycmdLe7zyuD/bBtl4LxC0Rsr2ygnlC8byA4rFKJkGrApyN23P3KVUS/aP6vE2EenmfV3Z4RfJX
Variant 2
DifficultyLevel
586
Question
Julian has a device that counts his steps each day.
He aims to complete 5 000 steps each day.
The fraction of steps he has completed toward his target one day is 50002400.
What percentage of steps does Julian need to complete to reach his target?
Worked Solution
Steps completed = 2400 ÷ 5000 = 0.48
∴ Percentage of steps to complete
= 1 − 0.48
= 0.52
= 52%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Julian has a device that counts his steps each day.
He aims to complete 5 000 steps each day.
The fraction of steps he has completed toward his target one day is $\dfrac{2400}{5000}$.
What percentage of steps does Julian need to complete to reach his target?
|
workedSolution | Steps completed = 2400 ÷ 5000 = 0.48
$\therefore$ Percentage of steps to complete
> > \= 1 − 0.48\
> > = 0.52\
> > = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18mZlCsl0L/lU90vWY8Vr1CANZRpkzV3eCqY92YulD3uPHZ9F0oDDvXGyzIq/ESyzI+qHLeSfOBVG9JuNI/yPfx3qkThKxGZ5zYqsDRPDzIjYqYkUaI3S8GVOc5AcI/cEsH0N9cAM2xZ5pahcXpscL5AYGD3boEtWAmL84KoFbj9KnTJUJwqAWQbyxuZJSf/sukaPjn6YBKz7DZpxeju19JbbA3KnT7KvxIbuiSB6YHX5hqeq2JRCve/RwEHz4fMYUnnwGWnZL2BJ7iDWTyoypIBJtjMVAm7a/Y8jdcIr/bMnc+QHBjgMbDlvuRiiORwkZRf6SHjiKUdO6iFCGePr+UOHW+0k1B2/ifJkYpd/e1ZyLztRnpVI1vwO8w2T8azexFx3WdK7wus1qtzdIqAmsKfh939Ii0xPwttIynsQYjAGz2e/EnrEfNAs64L+qhWRiXj//Fa/pLYfHjwwXlimhbIK/b3CCpCrrlMQeZ5o8B+UX+EcNoRvkcfiuqbn7/g4jiJ6vo4exFKFqH7xhrCA0rC1SiTDqYJF1vlrIwRIr9sSw2umLl4qzOkPfYgcaJKdDcbUmtmOxWaunq/szOFlVE/2v8gr29MK5mWY2qTxfv27ZW0j0JzBClXxXFFNIeR3BQbDFyOvAU7wpoJQwWLcxk+vEiUzXKde2gtNe5ja3r5B7N0IJSAifninif9xoeQsAJUVfo68uifftExz9n8booiIyHpR+bEggCWKtfGUV7w8ov5k4bzZHEMS3pBiiQkuwV4WCx8tI3LYC7EPqn7CixVSkH2JjdsQa5Xrl81AOHD9TI5aptqaPXdaUbYxmHIAtzfuFzpGI0Y1ZuEDRke2sGDRMazHijiCx0M04cNf2vtoMzvF7Z0G9wRH0Xdx8gb0l7CNT/QztL6L/Z9uq1jcseJrbflOA8XXHmamg1IQO/VCiFucrNSi4+BXOgIZmgFGmDTD3RF7HxbV9t7dxM+0UbUM6EH8516zyvrITDNCDKmootody20OgQdkUT5hBDiS+Xeov3JndEP6r217pI5cPO7BVFjpL95YF8u9/p3ygOxfVpJTz9HUfZEJwjyarkrnuUBnEPxFB3itHHgM705Os/2X2GJT+w24NuP45v+fyXWDksZe9fUaLNPtejlbE84rjCGxbjDQ5LVJZ68gVyglf+M2ozOM7yEMrCGrJZ2I6bNTTiedh5gGRK1FE05gg8AwZgwVpfRneU6AXL7d9+Bu1BofReHpVM0e8kEZy3kecSCSZamEPblgD9fJxnEaYFY0kXF0bDooL9Y8OxDdn1eav3dq7my7xtQIH6BtYoNTg/J475ZDPLV/Mvutz1wCjBqpbImTGNAP2JQ2Bs8UlugQLb04d7xHYAY8nlAFMHfB0zlJR2lCjCVvl26F7zn0HlKbTKcWCc1YeQflcxccujes3VbXsLRz/IcgXqMNsto+pnwg0Dk7jmnqWAyprNfItFC6q00YVZCKguNzF6dHpnwbv5qRgLcxwFWR9h74JsbPpW8TTWcM9gR6htiA/Q1e+oGVRizK9BviPXYx/HZqGR9OjNbySoNiiD+udF3jkF9FTJmKto8AE8iMQpcAfOg5y++tXAVDLUXL0AcmhtbZNa/8OCJHNgxYt0YJrh9T8pz934nlT+VGmFftwAY8/eFHDJSDqkV7S98RbtXBj73jqixZdIplbjC1gQpuxbBsPZiDODNCcZpVmWdrMNqAZpt/gf3zPIYKQAp4vx/8Ld7susaZ6hA1XbLA30rxDCWWVCVuffmW21iJjjXq2L0VamS+HKOMgmc0hrO1wwiAKSj5Bw4Ub8aNQa36YPpEStMa8bV+kX3mg38tMlOB2fL98tuodW3awy12NnKCXyZAcd/ltGAmaWDKiAhT4fnZVxhH4fYK+5mJXbm4mApsdxiqvZmwJTQKX6M7pjLHRVMobF2E4sDLYAKA5Z+BVx4eATkSbQ8Sp7CwmX5D1HOFrsHhIoulwfFMJypHJwRsAD2qJYDkLwMKdb9iitMq5bIWUL4+W7DNqj4/NmrUO/3t8B5+tDp/UzsfZeKJVA8Qeo+aTVkGKrxgjUgdoSViwWeEUM/K4584d1yJe0wWSjE91g8oW9aRCDW0lJTtC8EQnpDwXUYa8njtklTiit0Ou8AWgPYNV6bmh5FFmVvf8d9wArIn6z3WQpLWYTtHH5e7ze0y2/wYFG34VszAfDcn1FO5TWonvzRoye1OrKXf2iEM4ndZiT8d+JA8+EdLgHPbkp/4PA2sLUdTlIgSF7oImP+ewK/hhF921RPvlFo2chnIy+/VrsChb8uItm4AgEjXIpZ7cg3ZSeRXbcg2wuvmu8E77htLHZ3QGYuzHsbH8603crbOkgHS12gyyAQxURu56n3OazhU5zg5lPBRXm1s7Xrz//3+GFZC1IEtZm7yZbNLkl3aHp4R95sO2yekz9Lnj91EiilBAiOLlGuJpY+EclgKPlp2ERvjySLurJrsw0V85cH9m4NAm3rtqPgLL5VdTeXFT+DwCdmWSs8vwE/t/pLYNA+H6RhInAuG+h67JL3/ZgU6I5AL7R9BR4V6pJoMPugXZwQFutS82wPLb9DPadqEztAazgZBaBhTOkHumt9XD0wRFOJTaM6TAFO3WTNGs3jRt9KgMd7M0rAdit6KwCmwQysO9xfXF6E6PY/ykyyLM4SChy2VDD4EtoRustjsIARxENlcz33JLQIJoLzngqMPM/cg3klVr+iPDfhKcqJZEkhy13BEcrb2lnkaLVO+JA1fCncENAoLsdMndNF2lIw7MmKJeWqoPJ3C7DHvcXyvP1QQLLdRidNBvJIs9X+YAd43ow7edpAhnqvyqpEkwhyrde4vAD2Ot+y4HNe0ShScgAVCnh1Y2NTkaV7FADF9xY6OnvIJSufqR0XWxYmzSYyd2OKBZ1SIbc1p7HpOU36GCgzaYWINQsdWRcn+V913JabBJMqJy0Z7+Tsdn+eG00BY3ZiL9ODVS5lXbCKWYJ6pl4uWy2Ls9Wzc8WxDb9bFzLvzbavToHZz/c6aJOQ6tvipltXk5iIkRdK+TX3irFkF3k7UmM3Pr9804VKAIZgesCiiC1KDwiTbO7p/er9AveA5gMAMBI2QaL6ntbFwaSYdY4jmg+JD98iYfaCnRTJHVhNmxVT61MgKrmfJ/KzU6XEdskeRC1CV1esCFWKzfjjdGlOdzaZSlv+I8NZDbVhzsBIbutWmYLdt94YAvKzNBHsSw/MKggmQyeQ/i2zidewU9WYP8e0bYOnrIb2ceISIS+BgRqXDMHuFay7g7HqMO3M2dmPpKrMPoe22UMy2W1xXSKYIccAZM8hJwQceKGq2xTBXqsWEDmr9V9u/Qx2dYCj0roBjrSCzfP8t+N3u62ldKVs0UVGp4IJ+mMi8ZpFRzS0fKtX8Qg0IUEBsRUyMelsAyiQe3ioSne946U6mruIo8fvXV9diuKRErnfoX8xZCvFvSCv7F9IwLMqMC5je1yxIeSOZrwzAHOYDdhky16CtDBh44Mzu5KB1etN6AZ/R5KFr8VZ/Pe2upWOgybNhVs6tJOoByGrkwKK3HU46n/16V2bEf/8MeJ1vQ30TstXvhHTRbh5BD8OizcYRPi96gb3FtlTq8scbFXaaE7CNeTx55E7wcB8R8eD+TbkB2WE1SHCZFstEpukf9fcaCPr0wSH/3q+K978sRn5nKousRoUtBYHSWLEV553wZM2qkpVISUBSa++I13dEHr0wuZPGdJRTtxzBP76QrBzYX+8gwhQ1bzE2JWwzXDFREZkukFDchKMP6mGAbTQNZSUfaJoBha5uArpRwbkPpx+pja1Dth1n0jNzHlzjHYnC/WndA6m/4vYkaKVNy4nh/wksJS5OS7orPAPxjsCXfbnU3SjHpYTpN+YI5iyS3lr/piMcDdJzNDlXQmdLhZJODtrFS6qeqdBuz/lf7MuIb/Rvlte0NR986/Jl3mTbBDu085WCY09Bt74QjzXpT3c/0ooAnEQzVdmcm6FZH05zQf0C6bdyAfrjZH0FbLJ/vgaAick2JYr77s29ZThUyT4K4pHZq8neIvew1/2lMliSu39MVqEJDTtaBw/97+E6ti6Ocbsrypt3Bqz33tlGdYPhFd0GT+/fJ5ONN5MIImbkqcEhQ/TzFLoIfyD2TsYQBeElzLdayBbdcL69HNsw1p6x2sDujd9fC0Vk2BH92eHTfkki2i+NCfqId0qf2E9nCMdJV2fDhfooL1VBBqvxre813/87/0AiCJsx8Qu+n4DGDQCJvM2A51csprTHTrG4rJkXmw5WFFLg/A8HxwGVJUIdfcBphhH4/RYyrpvcNSzDg71iZVPNsXJtk7Tg+jYUrr6967qO2IVz11skoQD8zm338oAwiwsd6FowPk4zIPFLYf9vAJm6SM87v4/2Xezj1r5qwYywoOybqfKzQqBPdhvpo4rHexomk5J+h/WmeSgMzxY/+/tdXs9oWdLbLJQbfMVskDwekwGPWVTA==
Variant 3
DifficultyLevel
594
Question
Shakespeare is writing a new play.
He aims to write 25 000 words per day.
The fraction of words he has completed toward his target one day is 25 00017 580.
What percentage of words does Shakespeare need to complete to reach his target?
Worked Solution
Words completed = 17 580 ÷ 25 000 = 0.7032
∴ Percentage of words to complete
= 1 − 0.7032
= 0.2968
= 29.68%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Shakespeare is writing a new play.
He aims to write 25 000 words per day.
The fraction of words he has completed toward his target one day is $\dfrac{17\ 580}{25\ 000}$.
What percentage of words does Shakespeare need to complete to reach his target?
|
workedSolution | Words completed = 17 580 ÷ 25 000 = 0.7032
$\therefore$ Percentage of words to complete
> > \= 1 − 0.7032\
> > = 0.2968\
> > = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/Yi3rV5I0Nb+mqwIfLLyMWu6yIlPwjIfdWHtgkIBcpQxnaoSg5TFFvo+PPWxVGof52srNlWYZi5T3mhXa1qtMDVqEOLTZZk/3oDubusHGsFeqwtblNDC8Fi5G3d6nIgOwiFHpiEYoLM9+9GlDzUnQjfArdrJ/uh2lTNV32goeUtTt/RUxH9orcHZX4gKUaP6oh3olDX18732+2W8Q8qOsBRceOJJUiz3THKUZh0yAOZIINP0xRZRnTxG+ynOqaMvIZBqkIkgXRDipnvHMNFdLZbQB4Jk93rSnCnODkPCYvNJ9nm/fOdzFLaG14qdMnTTbZIlh63/wU7NXskpd3KuvTuo4FweIckSDhmBQI6WWgKBlbWSvMDiRlq/bIU+am1pVG1/dt4U9jjfm9x5W3HkE6auG1QZNMbd81hO1Sl8Zmt0ZCl5TSmRXFDUX8Xi2Q28FRFpyagc0hFV6Jc1vlc1fi8RhkeJaStRNBmrbIqmVZy+bd027xcM5eopXX+MVlS2HuReU6QdFsz+yoNGnevZ6oMP2lQfmX8Zt3UCWtQ9i/SZ+N7O3ihDmATkIrEhtmWgka+RY4UXDxtL+ChR89P5LxRBcBkbR6KtzPjFrWlQC3YHEkBLvvm+xC96fPFtcPSlYdzYCnwcX9j7OK68uA1DN5Zb176kar9QNB0ztWQfQnKFGs36T8zY9w5mrzaex9Ml0uMmz/rRXKfJ8o5YWncBUCq08Eql38cEUeT1LkdoVDG+gttiyQq/JnpUSIN9tltbEgyRSqODwStWmpRISCHjI6UmhOLgnMZnlV2sW+31DnRKA0A9zNKcNROCQB1T/nEQgq9q8pMWKFr58paIRrdisUhQ//JLznzvIoRHFIZgAiP1V7RpPeSj1JlNbDfstZzdX2wUzZ/YB6qrf/U81I8T0E0WI/1ll0LXm1hO6Bkedi+hpbRN9f1gIxXYuIzoytQNZvSNG2jsr09pqoDcvYunAJdl6QywnUB/4xhJcio3+xCKQoq0J2AvoN+jpTV+Cp/Ppd5fQXlfRB8qbHzw35uYSnDXKJvLutyJMpHm4W7vUNrUTSc6SiJTl/wYw9oAukJsl/UYipJxQs+4ZyKKSkH0J0B+ucuPiOiwyLl26h3R6BbN73d5rzUHD9RgeZoxjcy2Kcxs2iLG/8b5AkCJolk8mhmwThc9uGSMeAeGXBkTzZ1osEo0lE2i3c0+geoYatyXwMEO0334V5mBTE93XJRYVnNgN2YEPMVlOnnJjZQuWFGcIDQPk8sHEAkhtCT+Nk5sa3llUBv8LekUu37XacQUmgJhIlK4uiaLcF9aOCboQkRHCjP0xE/IwB1e6Mndxn6nf1RkKMEGGp9+YIEOkXp0eT+3lb4qBTsm1FKBOAxrsAA0Pu6gmq/BQGzoNUrnpF/EGgEShcfIeeGHDq71Ve0f6M4DTbfS4a2MjqWZVFzct2X+LM6Iq1r+Rb++Hr7ceei+ZifOPsIB+rQso9IQDubv7TblHTUTTTuJFVhvxBpffdhnid03xV8Kw5aJ96nNOnHbaVCEnfdClUcp0ftNEygXwdHLIbwVJSklIkrStq791ws5doymtX3dnQ5HLst5qhLZS7FQRVg7vfkG1fF8zMnTV8JMekoh/9zlVu/DJszt40m7Lp/bqKYQ9E1dIos80UhqB2/23YlKctAduBGQB8Tl4vUYznYPKNQfS1Je9HAfe9GGfULXFckMki+6ro9r7HrHqLaws1h9c/BG4glt4KctVRHFYZZuSY6R8sIpCX+W3Pm5wq3314jfgXBgs3Mp/kojvH9CuFochMdyMCQu6ORZLNKV4IvsbEGlJ2sRia9gYqh1/Km6OV5+ffGX1BynoSXlQr92wcDFKjM8YZ7nYL8mhx2l55OT71N/pDTroW1UUFMvcTpz3P7TEC8owoh/RuyMuCG45z2l8o+FYa8dtXi+cCqaRXLs0x6qZFE7/YIS6RskHAbCQ2X31pGLdpnHQuyMXZEAKyOw8zbeIhaDK/qD+DLuKm39GSLSE2wCyy+T4c2NAxlaRRpxXzx249AWTk55bCh+eJ1miiW1mKUInBo8dYZlerSrxMB12rTjA9bSHJFP0w2ezv8JASsrVufye7GhvfvKgArCCL18xtuOxB9fPjfZ8C+gS2j5SmSJeD3MM5R4jXYuQmpzYo8xOJZNSg2vq6GPgBgh16KdwT3Bz3tzktdtZVuRHnsxdndIRKxfoxGddpgchjV4gVGmrYxi8fH4rQn4q+Wx5t1bhxKarR8L5Z2lOurSq1+D4NDSCphxbfv9ZWONBXDjosXYnZayLh9kg4LOLliTq8PaAycMuNZ+qq+D8z1wZy2fxUDYqDmUDKOOHexK9C+uG8U1VlIeNs6wtLg/kNSzNrMMj6hoF5UNaRjlaVY2clyAFwPs7oNqhyHZwfnDddP0IA2ntIpfcI2gB/yRauVdaSjoNaCFdz0PGljp4UiL51cxB/La8uVSh5N8A2jLHMV09YIKV4qDxPlr4lY+zh0AiA4FGbHaNNHTrn5czPzRti+WwduueJNjNqXULM/3dFodP0IWY/aKbh4Vvuv/o45BNo8bDDHoimJuTaH4El0XbdMOxdlYK3a2Ddy6lFCCKYHJ82GZ/Fbvzpjw/2CX32cuETZ2G90sD41FxJqSH9RQrxtJTvp0M0AZkCTClWEk9W4ebStAKZt/rVOVWEpgwcRGbSqMh7br/eVg+RMjZs/75pcPpLgTPBqGiLM7zympRj0P25xhs2F1ovPhVFf1tSKWVVTLNXAsijfRpH9uUHUXNR7NVJv8L/mbaxPt4Rep6uHiMjBWFXoNeOWf476GeFOA8ONUpYn/bkeT2tPKNvm9cND8KidWmBa6+rr6WbQetQ1xFgKUF04iSkqYqbcd47cOhzZcWnr8CxZp9JynPaQl3AKP7zFn+mUfRtAEYCbE15IrXRwWzwKZxhQd+fkwRaFMgh1vOxrkTOWx15gaTDmGB23OY8hv0pAcZwJ6ksD6vnDsPYYFbiSFPcVeWFBv1woo+CQ9q/AexJDskYF7+vKUyG3yf05aBdsg2aVVvF7i23dkFgYn2+Ccxi+KiOCLIo/mkij/+54SgzfkLHNuXW/UWJPpA9kGf/oi7c/deeIJC2bxicRCZP7Ll2J1r8pouDfWJ7iSjZzBF9OR5TJNHxwMPDYg7OKjhF/lnhGPNYwNttjSZ82hm0ylMOMDCg2OdmoOeNAvEEWUMfppWVwmm09nnAPQryKLHddBC9cbIRtS0d37oqbGR3n9isjT8qOKrGL9yu83giN1TuW0FVyvYCNyuBiKZ1+nqEg5YWgVOrKyraPPD3HCcWLvYwylnjEODXAg5dcEbK1vvRMLPcWuZVqhjuNrPI+jziBv4UQOudha+sn+k85Oamz4I+6+/8r+cxlITw8TpZQ0B3Ztt44dyKh9NqGMFb8cH83alZF9406hXQUuArg9N0FactGVBVODmBWBQkx06bq+mjGdobMmFmGXNoNo1UAywezTwvCvD2JzhFc+UVFpveySc34Tq/EjGRdiBPtaF3KTtoVsmyJSPmqjFXwamrlTeXaEVeWyvYTXJNCrvXE+g0rZ8OaVZP6yccG73zb0/btW4zvunHMF2Uan/uB86weBAOJsH5fpf9bvE7PPWBW7Ey+fZLVlewZssGwSb9zqXiYcL1wA4DKSLM8A+C3ROIni77Fb7rzFN/zJmNMitBs6HNDg5gtQIIyDMLqGRUdD6r9x4gKl0lSG0VHkTGkkGuFxNqidYV9EgK4X0MBPQS5JCRxTwJlS/T5fhfashY+1G8b7bpNbPOxjI7lSLJub5Goum9dRkMl37mah3rSxaJcdosSmQtorv3b6mZWhoZCxh69fUFB4DfSjtT2hdFcwaK57KF/9klP8ccVb0aWhiyWQZNG9hlQtIunLC7D+xK+vTWaRNVFlG9zydLcAnNa6D2beNKIoBeNDPUjUq9iTGGp6ggGIGNGHaitIWeccXoBNFffLuGia4uzv7qYKTe3dWlu05ElkDuPggHCQpD9w9htZzXde/Q/LhfsJBNuL8cW5iTg6vgzulEQGuMgHHmAdtJcD+tpmov7nvk/SfLk5FPZRUAryBWgUK1rLxrHvuzfJTJx7eHhIcmVPlegxvk3FpqHcHr2P932jHbfhmN4reEbI81U1ah4SjVCWTO4ET4UvyoWxPFVgNBhhuK+zxBcKOWXltkIhS88jwOa6aEn4H9NZSNePuhmFMkJ7fn8HjfkbEZ12PbD6kI188VClRd5NgZnCsQxTpDQEyZjj2YcbgEN3h9oIj4PM2KC3L/CjVipa/OB34EKCtz673d+WXsJ3YB8N7L6ZyZmzy7WfeF8PEV9CocITv7ssuVBttFovg1986EVgSXdLpjrokLB93OagKFMtjjC1uZul+E7y6WvPAPfn3XVws9kEjVC81wKtyIYdYFDQ1ZDcWrf2aNiwED86eDw7Fg6lKWuf0YocWVG2O4G0+MzdpZmXYbB+k7R71dBf/fr3IIGHX8avykyfMNLoqg7/+HIm9DwrEkXG/67iRTRUakoaNgNqHlYrWP4TON2r6ey4JQd4zN+BwAgJWNRpqlTTpNC1JJgNHQrsbU7KQk
Variant 4
DifficultyLevel
596
Question
Ford is a car salesman.
He aims to sell $270 000 worth of cars each month.
The fraction of sales he has completed toward his target this month is 270 000201 987.
What percentage of sales does Ford need to complete to reach his target this month?
Worked Solution
Sales achieved = 201 987 ÷ 270 000 = 0.7481
∴ Percentage of sales to complete
= 1 − 0.7481
= 0.2519
= 25.19%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Ford is a car salesman.
He aims to sell $270 000 worth of cars each month.
The fraction of sales he has completed toward his target this month is $\dfrac{201\ 987}{270\ 000}$.
What percentage of sales does Ford need to complete to reach his target this month?
|
workedSolution | Sales achieved = 201 987 ÷ 270 000 = 0.7481
$\therefore$ Percentage of sales to complete
> > \= 1 − 0.7481\
> > = 0.2519\
> > = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+iIyDgFTxQRZwdqkXm/BfwfKy4BbHlYPqmwFNXC5kH2ngLlQUGEpeIcgqObe//oXrOZqOKqMXvBhfqgvQUlHhN2iEsiujtxMvEwrb6xPJIQtciGPRiSmPy9Celn+1uSbbP0Rr7cZpdVs0ZL9hOu3rOjWl7dG9jrmLwcp5dvV+ggfSrMD5JgWVF1I3DjVWL5BqFI/c8kbP1sq0ErSe6CL81hwnxCllXtTXwtrBnUUjffNtUJIW/Ot2G7zms8HaqxbpCccwfEvQcsvnK2OBTX8Rheqn07+wpyQ9+FEE7xJRmrmdRgRxk5jnMO1Ee/+wqRAXyLcy70ICSBq0N9uuLp2Mkb+yQ91Vy4CF93pyLSIqw4EAcwHPQZGEtLKk3QIybfesqeq6+amhYl7LBL4v5ptEQWJGfjMz4bo2A9R+1q+FbFwm5mf/UxX6x0jerc4G1MxyHO8JYmIfo/TROgXc4EuxolTWdA3z8eFj5TlCscxTuSCsV9o6qgxgBHxPLzWM+3FKv8YBO6OzGrJy7E3YsUmlwao1gx80tQz1y9OeEHh/zx/CgCNPuj/3Js5VflOHaiMLkoc9sU4Bu9MpeF9bdHW/QqWZWcKnYRK/c78IgV13ZjPDnae9+5hDgiQ3fz3jN3n7dC4qsty0FSGAkPOPt3S/vYZKCzP9B95+/Y4v7t6nhgW4jCdn/oseS3ubtjoG7v01KAAaBm6Ph5/51ISqbjSoaviWup10rdiPtonhdCESbBsjDl04ksmT+ZMzNCX9d5dpccec943zKPuH6mtDv4ocVEBw1l1OlxZZOdzPrlOI1Tb583h6FJ1tl2B+yZM2Y5JelhPYzLpoMtJaCCHszeM5h05IudCq5Bd0FXCWYyRGiVMwjSdIMchem2TIrT4a+/gcN69EtS/RUB1r3p87+q5ELRhTPCkSjLAOZo0qcY7ebMAZ+J1kRwAT0hp0ICPQbUNeGO4ZHmoJAhi7d+uAWKgHSro3td4Fj9/dC7klEqeJGm8R2WtLdEXEtZuBrLfwM5mf+DhvXRgDDdPanWJv9+hJfqJojhSSzNFIdB0gmdIp9UjZQcQpkg2MfCmLt7XXgwfNow4p0YHrQVYSnsft1kopRBYIXBruxbFs1lAHtnf2X6U/e62FoyZJwDAvVggXLPdCqMhEKkAAZLH2G2rBrEvgol6QD1ZlgW7kIaCmMVw1O2IrchQR+t77q/7P4Q9R8vlW7COwNWeEykTPU6t45K97FzRRSdoGzxlhGQFQsNouRckzFVykoBluAgQldp5ECcpKQ8KwKjwkcgjSslLs8Ik/NH81YRRe1iBqULkLfKB4yh/Ufjq5aMwxL0GyrgKy02RJX4qRbEx7vpk/eeK4Ji5YmNXp8e69fyNqKIcWlPTj9judsrCNEhIinpC+HQxVCSYFGBgMHxV1gDpW6faQdeMP37n6RIjGaRyLgTheAw8rSbmxC2IVEK5JrcT3cLm0zsWYHNRmWxww/lhGjJCt17LfE+RilGohbZKJSu+rs7MVM6VZYK/MQs3RUCALvXTNJcMojfVJZhk3t5yMUuTBzhl8Ymr2TLVaKot3IvKHcSPRyE6u310YMsPsc4o8wWkcD+xTkxzZtRBj/ONacCH2Faena/o/io8LTdDUfh9aTuxcuR1E+ngYLA1acIM2OK5rTEIKoBEO+dqLDTQQx4QB85oYA81tsjWc9y96+VnCro18tn4VQnNkBAAzhndUnaRe7i5vxDNS6K0BAHhpULJBRZBVjnLInysIx8n41aBAWwBUIOcF22B+5kdEjY3P7i5HefnAehMEsCodqafJPOaMdIkUp6kxxsVExaUCSDLsb5O9BYGyC4gPxFPidrM/m8bUezi2/Q0Mw7oDlacrXrioRP6JYtZVWQAOicXFTsSAuR45/ozpBAlAP4gIwde3B5GdbJ1jiNRFb/mXYFBV8pouaevoH5YRlZW1Ja0h4V+02jmShHc7Pubmhl8R+8pVdI8nehd5vJe/Ou/XpGhQLGT+q9bdcqqWvsxDsLgycvJKnBfxvb62JWPmV+/P+cVcEwttQqVRUkvJ2CacvfP3IdjPmOGfDC0mRG4YqLh4/k3EjNSNWRxbq8ycF/gzBJpEchHUYxmb5Ga7jNPbxl+YLlN2+SSZWdtok/0ZyNO+42vS/gDCqqYX6OJ37WMIj09BU2ClndMw3wkITjYl21bpmnfRYRZ9p0p8Pqw8rwhEDhV4wzrOJQj7ZqPTZdJhbmlvJlubEoOXNX7iFWBWUEU40nyFd1b4ovglNrAR9mY4dprFEBlPLy4a4olXEcbVaCVE5YsbtxmuTlelcWyXm1JSI0Lq3Sl1JLzNCYDSwYWkvSIdLaxqR7Ssh+h7CXVoRjHfBk3za7JCkCE4Uxr9zAQO1SfHjbz9xy4dm7vy85Edc+G4+cZRPVzb1oz38cjJd6EcfCYME/eJ7kVmbuaemjIsd5sNmzQf/IeypFQagdERvYpJc76s8stcgwzTWfQuunKZGp2Z+WI97gI7tSA9B1vUqvdFOt1Qdk9cdGYYUIqtdl8c4DjeCCaOxFTQ1cHcXPVVhel0Hf0qiAA/avLSsClJJRL1vh0tlC9I4rQpjBAF90z0HWuHx6+MbeGqpL5UrDVqyeAXnG+mP0K4vqVApJwMHhvdaO7UYrh0la4eZqVL1rJYStuLYoM8KLUeNaF3AbEM6/RYxbM1c/C3EOJ6MSgkImDFozU6NRtPRxcEixQ7UkzcAm65lffoD5qwfnEyfxwmNzlLb9ZoY3fXCWaTKUz53lOJzIOk+FMX4Df4rR5kf9HeECyH/nva7AxFemQl3JtPR+co9fhrmKztiBvvH2ieZBNEkfU8Mt1JSkPC2s9ozLPOSuaZore6ByEo/xRvKp1dcOKcP5mR/dRS51S57jfgrJiCU/BpCBJfQLXpekIM3cP23S2Fy5Vv+Nu/YDmbhwqHbMWu7Ym+VXI4FGgGpl7DSX1PQa1ddPJRsVJoNqwGzcdy/NqP8ITr5WNJ/B3z11E5Ek94CFOMdL69dk6N44HJ7NbeprNd2e7SqWUPeboPeQ6AH+50gjd5xrcEAntRra9SemeCENsGFhYAGGWosNpUUticITHkwhgQQmVYTzx79Ak7wc6VbowYqAnZGcZWGoB46iH+X1byvyfu0YvD/UGu2TZi1VwIFVL5PC9AZjlmAl4YBNWIk3JWzT+io0gzWQkYVrHWGAeTMfVmHVl2ywSb+JT9lPOzM0t1C0OqunhKIOMeKFvDLk9RmfrSmmzaJvBeUGrEOiY753mwkThdFfIQouzv5hmQJsYuR2P638t13B3EplJyXXVLcPrjRp5uvUuGD/+KfX/1FnT55IkHh7nw2zHy5DRh3sNxknGZw1Xov68U4+9EChslIMPS75gAAIwf110wmTOaKB3A18txUnP7KE7en06KwRgIPc5tilI1LidPqZih6f51mcICEMrCiS0dPYwACzo7icb46DjazRCtUOBoyZzc6DnhsUvgLyTjSby8h+avl+D+ykVtMRHDMKtdlXidiz1ViOwOiC66Fv9E5hkNqbe3yVS73AuuMZ0ADGE6C3FKdqgsWM9xCh+PN12iTlhmQg+Wq1JX7yKByQtG4kUtGzmaQVLo2gXmD9ITICryN4TRmcYCRgyi27bi01b9wMNgDhenTL2gtkwL43VgBYNQeNwMHZb4UAFtDk46i33rtzS7MhmCW4Y7ZVAnrRIlSXmifcmiyDLKKNTJHS4PhabV3A+toQrcDiKRs0L5Sf4xzUIM9dPLaC1iwKM03Cdcmq1q+CrhNs63/fELhh6OF48kn/gXOSCLyLW1bSe+9N+6BlrB6ms7OCeyJY9zN53istjiioM7oOQHhcspC2eKW1JfJl07GZqh/xCAPSMTvGrqS70q9QPWurQeSfLSt9xbKbGixN9PuFrebpEfWSHV0iQYdKBaxCM9P16RY8zkkEM6bDm337tk4/mrmeKM05Kfu8kLUsiTsdB+fyvi3i7oeeBuhQ5a/AVJFT3FoJJ5azptKazHGpRtUKGF/yT7ol1aDVp36+QDQdR8H0FquSoeu7uAml8lAXm2rX6qOR22qkAcxyhGP1TVnyIOC3odVYhGr4K3GNavphdXUAv40KRHk7FS6uVVeDCTN7Ig4o4isMMrj7rGUgCvjY+jlv82AxgRyOeNEutrrpAZV4ipFsQ8Z+4qAAbmMVgB2pukBYw0gz4D50EQIfQQ4b89+1vRr
Variant 5
DifficultyLevel
581
Question
A factory produces electronic components.
The expected number of components produced each shift is 1500.
The fraction of components produced in a shift is 15001050.
What percentage of components does the factory need to complete to reach the target?
Worked Solution
Components completed = 1050 ÷ 1500 = 0.7
∴ Percentage of components to complete
= 1 − 0.7
= 0.3
= 30%
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A factory produces electronic components.
The expected number of components produced each shift is 1500.
The fraction of components produced in a shift is $\dfrac{1050}{1500}$.
What percentage of components does the factory need to complete to reach the target?
|
workedSolution | Components completed = 1050 ÷ 1500 = 0.7
$\therefore$ Percentage of components to complete
> > \= 1 − 0.7\
> > = 0.3\
> > = {{{correctAnswer}}} |
correctAnswer | |
Answers