Geometry, NAPX-I4-NC19, NAPX-I3-NC22
U2FsdGVkX1+DH7lOVIquEDdfkzvXT/Su97Q7wuQGal5uid3gFxzCIppxVi8bHWCIZqr9SnUZEx/QzVAJ6DuXniC7aAmaoLBu+O5y8YA+xPE6mVSHBszjr8wbH0LwkPTcxOFcqFbCWpMZ3xVZHMfq0//8uRqFdT3TNm6ZdO1B5bm8PhFGcEsYy3drro2nDVLuPmxM4b/TIOGUEpFCbovsCL430PYBdO79wZJ6D1Om8YmjH87BUBlFAQ2XyJXQfndHByD3P97BNsdJBYQXkbV+LFa2xirxSyKWOPhoxmqGUut3FVxi7E5WMtEJeFF8LuLcAlEEmiHUJxyH19tvjBmC4pcIckku0Bj2ntbTjgTs7upfhO/Uw1yKq9576eJLvQJ0Y75i24NPwTxQ6alSBK16iIG/6y8RT7NbQW/yaXLdefo3Lnl0SepHBpByhjsf4ztHZcO8eoyT8WyeqtMnuOT76tbTEukhbiiRSMFKicPR9XTMtMM+T8DwW4QuFaajKek2yGcqACpgpQvQ3A5kVWTdW2lTuatBqTE22jmogzEbE54wHaKfjmeeRyq9WJTUjwUjX9ngmkkqKXwja1Uq2kUrcbibGfnArwXqq3XuAvbNGwg4WAsZbr+lGq9ZcLA7fxGhF1eQlo9zWeVX7+vEbKnlY1kXxqDYp6xKgo/ipE3CGe/5vDgc8biBWnAxtcrtnkAfG9KRscKd34nDsA/SOiLqiTP+aM07A/GdWs02pgeIaum5WKiJaO+9nIozV+RKSbXt2LZX2N1kZagpDzPQrMbA8v9DzONn87QWCcXXKYFIZ2OJSlZvV++DJHkFcUILk10Zn4CRm6VFa/irGdYZT6okzmgpAf6VMz8LtCzQo5OhMfqy3to20q9Qblt7UvDgJd2zNs0h28svouD/A5gBdg0ApF2CCXc82YWDGu0JWinQJ/w6wh0blK/MV7tslCSDY3EZBfzGeKH9iwV6ANmYPZDpbpvUkYsPXVpjSkhsDbvD6fx67N8ELZ/1gVYtZkQa4PCuY11Nkto9KKwKCp3rN1MfSsc+kXEmokKacnwiCXQVFaHOVqj1mwYyRnSSQORfK//PGpQjjYSJgLb6tGs6+5+RF2tGB/OciXmESNEoKkIVxWFs1D9zKmh33wHjCGF2o40E1ooJSd48o61bUmpz/Zkv1lHK6g4g7OqsNBm3qo2hYY0TchtAUcCyQpPWBjalKlMmX6x6L02z4KQW/O8CilzVlFiTzsI0vMaUQ0ivZlDZsKxx9dTiILxh2QT/q9gPitXHPubA1Ssp1K/x0M6QkL9FRK9kKzu4PnjzvpKpR60u0S8ZH+Q/wijGasAcWUC7fwfANRrREjwpC7xxID5e3mHYFtQ/snxyh4AvlZg6QDUTHX1NCxCjtaGgtySnelOCLfpDiTpWN31Eq4p62XjsCK7bOnIjAaiZGmmammqKx7eLEy3ns456nmRopX+sSG2pAWPSNk213JqkYHru1UzMKfBjNwLqChAjUzESYNltSVEeeea/Rz8yAwEZ2g+gatpYhxdhZlHpWBecEza1ifjCS8PiamlglU0SwqlB1aIhldIGsULQHXrPAC+713sXDstKkViJlLLsjqnByu9jNe8S7oUWfe00vjjgRYN/kfhHoAZvn7P98bz64p88ras3u3R8Q5FxaalvYMKSt4VXqnlXJ2vzxBkl2d6tnuo0IupeTz1DaQ4i7OJElbqF/jvVVONtOIzi/uejToKA8xi6DVKMhIPVSMM6LH0f0DjhW51urbT3HnzY80hXvMIeGPg8mAgRrE5ukCK2Z2ekSlg9nGt2Elk3N0TyjmLdprKep4DW4w6+oxhqSTVeONilzL5OOb94BsioetFocDdyW0ZhAofdZFqKBvTwS+99Yw6q2WXyhxqxq6WUvJaAIHFn95VIKBku1czrvgN9jKdzsbjcceihD2/V8tjBeExqTi3A6rzQdVF2GqtbRQ8czlsVRYmXSwhbXBfn96XmzhhWOZBL8j0giBiCQtFLGK2BDcWYvA0+Ed1Ik/nesfME/m1OV6jCcWFgLrr4ukxfgwI7/KIbIZq6w3ULK49lULnUsOtrpqy6a2cLCfjmQNSQ5TksZMzIO+Ge42PJ1ft57RvInjdAp8NhOH1fFIfrbLS6xjJi6gWVVQRfkZ/HVye6qcexO5EKhwMMui2oqzWfMQVT14nnPJBmeXzWiToX5lzfBsMktaabZ56zHEWdqgQH5y0hx98lsOcodSNcOY9XIpv4An3aXwJx7XImMbouc6DnAMOmvo3cx2/0/v912roJsJAYk0OoT4XjzR7p09W44JKAvpqsSfEAi1/gbz5JqfUa8kF7vwWKJyceS6rZVsmEuXmkop2nLmq6PrFq1e2xxOg8RnbksAWr3G20ng99ajCqcHj/F3LcbRJCq9qC6TorjjiW+uNHD5rqWq7c6q9cQY2agrEGvwZ8R4myNf13dBdKkvyteFqDB9s90ZgrEypgbgOwIfaO+yE0rI/DVrZKK0SHcSFhgpb7UafS/sdjA69RmVQjqCTlQ2MB1ixdLNCZhwMT1382kEQcx18SkVeMsRH6/5udbp2UpVPSW3EsaNHlGSdT26PNc102A+qCH5a2CsE7eyzaM5UMNsBhmbosCJ3sbFmoFN/aP1/bFH8I+pc0dTl8fctF2jsjnLqgr+rS9AHGk6I5HUaBZ5vL4+QK0qJQH0n0Vr78Oxa44Y3PjK2QYdE7Yre0Ut0Ks0gaWiiXqObIRI6Bx8oIFAC3eI4QfSuR/lIPMQalx4Of1OMxlq5vF1iIP008uvzfMBI+ifN6AUBYHcaxWtQVLEr0vDw17hQvSAvTumBeVXrs2LWuk4EFuglN3exAJ4dpqqw9+tLtp7ySiT/Kn7RRTfvhM6tC4QXdRLOSmylkInPcX2otTOS7KQQJOkA5pOfF0EaGM0UpqIjrT1tKaumCnOATNgDU/rGLj1EAdvJ7YF+NGT9RkdZwS8EfBjdi12LXBcHrxISR5M22ZPKgnHE5D64F1UimPV6plxQnRGTtRXq1+GSULGMZ2Qj2Fg5qijTLT1zDDIhrGwWyXzxwv7PVBBO6pVCiORqVzlD4tGcQlqnggJ3YBtOasu6+OfcczLPMwPNAS637bWM2jBv36Tc21J3+yNfGshDem9PNFcg8hyxiDkMrkhyhX92GBflbbtXyU/yfcfbMFtl1slYFbHVdo5O+f4AQktPLbT1/ft6cbcLoyfEpjHm0FGb55vDwjPr2rOaqpEgvr9IJvlkSRky+//XMIwtzd/0jOvatSOZdyIbkBrlIXXxtF8zAZZFAP3jZ8zrYPwTQqWpubig6bX3KT3jfy74iZF4MhOPL3uB2ekP4mq9U54C0hT3ZtL2agF1KCRSiKRTXzDIdzLN+UfsOrIl2E3AneoxSMA6sovq/4aXL1UtrYPjtbWYwdDct+fTfTOFoIHqMw1FMl7Nq8DFQXbnw7a/83b5HpHRkGNHJe/COHraykyRp9PL9LAMMZU0RD5yhx+VeXgSOPBPwc0cmzIikd3piPX80pwaz0Dei2dQqI5Df9VsN3NzBz1jUh3Fo5hSFTakYXlK/S6105iYo3WMtIwkvBEUKQlxA7XM1vR49UgejQii8f6p1IlL7PLk59bs4JnCCkuVOBAJifXg82CXERmKJ7T7OG25Ht7CHNTxNDkS5D8/qj0HlGZxPB0YmQLfmyjryUoxfT0tN7UWiK88B0qsMO8SA+WJ7CZylbl5dGoIxdINBt2PrLqlYSSra2xKeI6b3ITkvDlmixtIK6YrC+IF/J69ffUPd6lvzOlpwRNuZRvNSylAJnAWvrV0NUuF1n//3kvpMOYv9FjRwu/WiUe2oJqvCX2tw4csgMviof/O118RY9e+rPyiHpysVmQjhTheQFPNb5UVwgPDNsjHvK1LliQ5dmcQoFZfFNPcX5jaKIJaFzns0zXij5pE0ZgDnSgumaXlClgTyk3XS4H8QP2wVK1WwwC5nkAnYIHm1GYfk4rWyF+4ukbzCuMSeme9Jwr8FzJ3biH+LreVz/hOYsOiBKOewYZS0QVh6N1w93Bf6EUMSJTrnSOBC/3t9os7QIpozENHfZuwyxSc22Rt5wriapdvG5Uu/VLZljVA3gR1cdTQEgTcJyS04uwfusVg+2uIbShdMiRm2QHvmiCGuBfuPr56DpeaDU9dr+meLx0yMZ/NcIogIYocVcuSiKoamPXNK9kMf+ZUZZvhWkYwou11kF3jbuJIRkowSYS78+cJ0pyKcLzdn/Tj4A5ZmELDktv8GL4hF/J6M29eRUn8kWW+v+7mh0rOr6pxXfJjzGLQNT3jY8JWEgbxCZj94ZgNMxJ+BQvFt9JMTG7PkMzbkhohi4RFqCh2+sMlX66rg3IRW78c2C2EJp1hxW3Qh74+vBT+yi7l1SnoRFNSNnpruyS6qS8FeETzynIKJLpyGtc7X3BUqW6pu83CQZmn+onsfVI065nuAQ9kDEuh9IMfklsEOhaTJvqBXXZpvw1C4aFOu57UNGXdhuaoNdzgoKY5+y128qLZHVTPhLw9dO+ByJIoTQibpocnw9lJ4U9LNq0U/rWN4p/ZfyfvSOlc5DastWFE1+2cIJZSCaoR+dzOajXC/h5Ma6GgGd0ElaJe/QR6My/+DgUgCTRWRNMVcP6JCSjljfctVgclo7Gz3aw8AfeLRiCTxxL3mUpLJTg4ttLUfk/zI2GS3vO5pz7x8mIY6OxgWTtplgXaBt/WXkR6PZZ9yhxx20BKGE8yKSxvXeQj/mMuWVddQ9PTzL34f4fl0ds29/hQIevWT5IvWH3YQ3y9sFope8z8aRT46Egqspa+k80OHfML4Blkly3fKG6jvAF9NTaGZc6E0nbF3dGUc3o9U35WD3umwqIihnxvxOjBhgbvrCJMs8QXqP+hpS9wZ4L1Oq4DAfpg8hlDv0yYsclQNjhd/Bu7S/P0m5HSZ9WiMhL/uIlKEDvvRE385WLktRvF4OcjTR3BxlLtDHTKB9hf2unc/g9lQqmL3xTEycuXTthtntVenWUyHX6S0DlXz+nBmR2/KRCRVwS4PSsCpXVZh5K7K0nJI+YuPqRU2XxnWzC48g5ot5BNfrRlvNvGuMYJkmKMuIhrCFBTNOl/s0SN923F1+yKKD34YOCHiclW1aoccUAcuPIVIJj/JCQGx7N/odr8TjSAMDBY9g7iSIin0S7Jemc9DZzswlgAlfyJgPXBX+rF6JkBaZtJBvVACv4xJtYfpRxT3KofyhQtbl+1Y2XTG4oxrLgBOKfdHRAaQP/I6/1vpWb89dEzcq5P+pOYqS5Sa9cdiYgZtn9epdhz61FHHffzRi2pBwF6MnGXwA61e0pGPezin5BAuamM8lFF2dz3S9GXPw5Hy5zBGK3O3L6Q2hW39d9RilVY16IFMXE534c93/JR4hgztROv/9l5rL0po6UpJyvRBLz2ZgI+s4EYuNUjCTOYiWFyuDLSjPnoXjE2bYpaINFMOmSuf5QgyqJX9KO8PgW5I/zEbtl5sqXBpTJ31WW5OSJvzijcMLDY0P3Wp/34eVx8127OXwiT1zJg8UnmFL4kEnXDnMlUmrpViqGV276EhU75xBl6UoYaubwF3PA837uoPpPx3BzWj/b+L+l7N26VZxOaE5RaRQMLjzIwssct8kLueHu4tNhFwcbcbRJnhWMChPgbD9vtkiK4SV/Jucn/Rk/ljjZw6gQY614s9zxFwxlvewrREKxw/OdVrYrm6UsWO6SUUs2jVcUtSlcwRNXmI0+toV8qaYz3bSjaGQbIdbFW94NJdXkKwweU52AVsgRb6aHk/5G/m+gw5tEwwFwVeHV65hahdZATzPgJQaP4fxmRyWyEe3v889zEUQXOCMaScwfQZhfSoL9FhTm2J4beeQFVysv/8uBP7PKEdQhoSSpF+8hwLnm3buoSZQ2zV4Mt5WPqO9y5y1jikPkBd7TJRt4OrG1NQflRAUbA/8OzEco7yIYqRSKfrdEcNsJvURI6va2sjR3J7qCJaVG7Be+yGfjYlg9KU6zftkZkMrlfTKRmS2wvfrKE9dJePdWg/9LKuAq95llwO1EYhHSf0mbwts5lNe5bw06b3fiUSJjg19l9U1ITOy6Rc5kTJoBWPsyzqvBvSM2Gtr0DN68EdYGsEEqO73ppyLcUDfFXwdtT0soPIqTHfIeOlUBdebL+cmQuxea3dU5YesefkHRh5wlaWjSY7uFJiDgIUXhzNX/Tmz2/3Sz/eD2PqHPXlpU+3cmi9sIW24w17JIraKMN+kgiTuGibUJb7o/jLwYntDE2bx+xX8pn0ZAUctf2IVC4lx4/z5TwF7qeVix59zbz4ey+imaQIUzsAyOIsXBK8M96U4eLlBOu0kJaHPKHgrweng0JAiGB1VfJa6r3rI5iZfWJGDImF3XWPb2mrzt1Ukc8TjUQ7qxRhsvV/BJfOZGc0AO9/m0cCloVYKneFYrbId2+Tm8RN/JsymGEMYRSVyfrpWkxIc46/Ai/SKUS4jqwagponLES/riv8llbD995cLSJOSWhszPvbpt7KzB3Tc6WxJOiOFDhByr/kNlIvsKtrU7PvncORTvvbrS3Ve1wITXNitGknqQgty/JZlGM727/6cFyyKenFWEhffRTuMZ2+fMlFDZsqudjGX2ZW6uVea9hj+OdiE9rKsamBwH3EtgIcN7G+BguMEYFTtmWnXZ3uAqExCIUJROvNcRgdA2VGB9p/KCGTLSMg/N/TNwztzw9MH5N5Z1Dw37nT7viQFftsDflz18kqenSqOJd9AttZOgim2Yy2yG20k+7++75MJNh10QzwiCfN9b9dbpESrOo/qRk5X5hguMyLlwXDveb7z6UElStYmV2hrneIKEJfMZ/OWFR0UgFBE4BVcDKu/FOmNdRI/tEU2xGr0PDLw7BsUXkbLW6kIlyfA33DY4ZeIiTVnNY84f60BDvXbim8w1ZtOML5x3ir6Hh4x9CcCNnl/GAn/n6RtatTftPNKwFsCKNxUx/m+KGYvQFJGUnmdqzgdeoj33tKdXhOTkyFvrXbW3C8QhgvnwXXFxrHVrYaDrkx312FP20ONf/drA0XZJ7qGFnlTJIjce97cFcCyO034Yn260U7/gEOclSiwsa0Hh9/FP6UB0avq2l1mEzlQOtQ2eHnarxVbXTSu/ltz/6sJvfN3P1mWazLKcwEheoAk1+Vxmdhbe2WpUU1tRtD6h++Yjx0wBn+umi5jW/fVdxELEnxmaVR+cui6Pmewpi1MQacPUCJxSlTbDVPMBiAxYgQ5Hv5u1dpzAiUDbjCG9s59nW8V5kI01EGc4jh1f+6tR2V5K4O5rp4T0YjtGTYFzT7RtD9Q6XhWrzhcuoW65xgDqmpD0DRxb4b4KoRcewRv1O40jNkiqHQDseRYBpKC70rft+1OkZ5Gojs57cgpffmt3iUBq50E+rF0fVWiVaHOZakcoCYXXRutM4n8z1Y4F9fP5IbGXCedSkyZB31X1IzwGQpIy8dTXPHKmUalVSqgj1ZVjRYqqRG+KtlZchAWBXOsUSp7H2cYS7wWb75lFmdx7+vVSBedGg/Ram+kTa9tWasjK+/pEMe/aCSFMd/cF+SYTlZGNkLHlg/3H4R1eY9xYvZFK3cr7T0xq/Z0gp1/1tEK4Qow1VUNc4Un2ltwQmAr9+vrDV254e8hVUvXbMj9891yzI/sQsLVtXV7Mn+0V5NdoILs3HfhcD3t701No6yxQfEq2cZjekIzdu/mkC34sof4EZicp4slTwXmNuT4VHkKwKGZX4OhaxQ66VVtzJ6ErJxsv8cfKT34xUycCz+HvQ0ZwM95S1KHMq6LddKi0ZGPv8hJh1WaWZ30zJ8MccEhmG12BnItCWCF2lfq2RENKFVaLuE7mNTaXRIkKDqXmKK6bQ0JO5H/J7Eth5vEou8h4uO8jS7c4GZg81n0hRXMG2TcKUyIfSe1ZyMXcFm/zWdJSQvShFcjH+nB1e47FhMolY4oJVzAUaxXaeQj+OsKS8qTwNnkJu2ZtJLP48kzNZZQaSuwpjjFyQJhRbKjG0DLxLNIc9Jqn4JS094GyBFPoMJZ+SsnnCKSbl82NEFrFKsg5dm4B6QFZmJ0bjaRXmYV35iHtymL+SjSU7q//j6dB71mQD3cXMzt14E/8SYhoVj97D+3wH+Z9/TsDjgNSxJdunMTQw8eEcnmKytvdKjCehN0im4aZtfL9ym8PGzZys3EnIfwiRGMkCv+V2t7Ae9h6JblaFmFUQbktU7brsUIEDCgg6HVfS0d5AmiAOQh/277hraeb1vL5V48kZ9Q/TB84odkieZVye7u8HcuXT1pfqVoflh+AKXULuObmHXivFxttFoQJpGikKF03ouI7mHWWw8yWM=
Variant 0
DifficultyLevel
619
Question
The square ABDC is cut into two triangles along the diagonal AD.
Which of the following best describes triangle ABD?
Worked Solution
Triangle ABD is an isosceles triangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-I4-NC19.svg 170 indent3 vpad
The square $ABDC$ is cut into two triangles along the diagonal $AD$.
Which of the following best describes triangle $ABD$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/05/NAPX-I4-NC19-ans.svg 170 indent vpad
{{{correctAnswer}}}
|
correctAnswer | Triangle $ABD$ is an isosceles triangle. |
Answers
Is Correct? | Answer |
x | Triangle ABD is a scalene triangle. |
✓ | Triangle ABD is an isosceles triangle. |
x | Triangle ABD is an equilateral triangle. |
x | Triangle ABD is an obtuse triangle. |
U2FsdGVkX18Ee57Gth0htr8c2wOiL6QMKkVXV3U8BaZPgHRWNdKSrAsLcOKB5aOCH5UuLDJB3468DEEiO0ojf1bg8Mr22ikDNB04V88Gxbc/lMuIRoel6M16E/rzpERoVNgEYqBgC+gVO5GS/U727QE5h7cuYY4A8f8G+Kmy8wzEDsku9uJGh9ffs28yjUSDaql9ZN9u/W1PoBcK3GK27WORr6V48IsiAFeATvZulxWopeB01+AB6+xFCvjQ6hF0OPLzDlFaO6LWBeVUwkfYIysCZ2BR4UagLFRmQoO+AqiDPSeCxpvWhZ7qnVTnBDAtFa/2Eu82HZAp/J0C1I5rAauH35jediRXvwmu7E1YZEmHUZ7ekwV6hoiabW1vSYZa+2cf0buo6wwvwClhjUfZVYAOF7RnKjSQXJIKUCAry58tIPk7uTCltW4FZuKQTg0WEtbBLR2X51oq+h9NnkfuLZryG+1A5jDbReZ/gAa6PNHM/ezV0USDW3mlJhUqbZWc8MMs/rOruY5YsbS3sxq4UNMoHQKqsjTyJsTbTKmhk9QFSEOW2EiAvNDmfcRRgngtyrL+EQewlEpnR8BZUW5Ik3QALN5Vk8yMiHhMPy9UkiYteiVTNMFvfl6lRPR7ASly6PWrT0T89rMEo5S2bU41MmgFShbrzsECnO6aKHRiCsgaU04h8wQSrkWQ+PLs7fA1VGxtXJebv+SFmGA3NW3/8oDbbLgIaKv0Yy5E4BLyhsFsRWo/UtP4xJ0IFiB2+XfDT/+fHW4CujrE9VeWhlQXtG7jZP/mjQ4r+0NeWn+o9fcxUHgf1fXb5NR4JYv5/kDFlOZISQSYcm2wEmQhU0TD+dJXLjv1bc/EJaekOwJCdJgjaFp7Vf+OqRXl5pJBk32eQP4JM0aWXdVuFc28rWXCHmXp8cM5jlfHKr3WG0O4rAKxe4GzHvZzOK9YM2/DvlBu/bChWQtpoeDVrrjVd5cQo3KDMuwu5M3TRAJltRywGfT5930Q5RvPJyOKvw9dstuwt+KVQsbmVRZFCqWV9ipRtBsj6IBMVz030SL07gxHp+InyVlk0l8paazAwq/6FrKU3BXIxhR8GqmLizaipswDO++AHBa63r7kQjyremWFtY6bNQUDBUybz27xtF0S+9/ChHnu/NkuQb9yurRInBzHS3t3VkH5GGrzjdAbYxB/8sbkhaeac+R41B8CJByPRcY6ayCiPVwaxcJ9ahGRbCKJhF23e08N3X4xgDmE0A/mqsSXnKso/6xMpNyOAaKObqWdvkp5l2nhNfA4VL0jqmxniinhiYKYMnFrSs/32v3wah66+U9b9ShL7318bxvaW5ghQr0qYunblOLA0V5tavBAC+dfNeYgTVf3AndfAVf3C2yN27FwRbl3ipZc8ztefBxtyIbMkdduVE+YDDEv+Y6sY3KwP85dnhC7flKpVh/jlfQl+JRg0RczRvKJz0x5KnwKiZnAS8808OpUZrZPXLSRLHWAP3OpSa5GYVdkvwJ1UCrDVsnqmxN4pWRhuzr/fnsiUM3HFk/kbO392K3uEN44Afqbz9kaQ4lz3HOJNGNQmP1GwvhOPDF5Zstx2MVQlDi2FlSeS79yN4rifXN1aFP/6fu+l32lFBW8GviP2YnXBAjQVzRL0Z/ufglhLzV9w1Gs3n+CFMwrWyJt5l5mmrDvZuTyUyN6Bbk3WWOA7wfNkK3WN1Hyv2T5JktW/VjrDn58hOvgJhAWVwu7OTCI7i3Qp/kexTTfFbNJ5yol5P7BURxtcECzdzpI7Pgypss0IeArktTyEbr20bHj54CCO2Q0lmH99thuF4k74CV38nlhQXV0beCDVkB/ikBniAMDSqlIVHqbiJhzVLnrpz/xFAZxDvs9lAiAYGLe9493hGt/hpBmG0a9Bn/9u4EwG+o5Fr0HlZvMTWs3PslAdYuqpGuC9UZyVtrCqvE8iyUtPjl178fQ16vSj6nc3Lw8SxodB0Y2ewnyWYRPTunWyK/w/2ZIJUfpna4DQK5y1tKixH/lo1kjtqVy0keQApCE6hMxhcoCvxOQ56WogRpEQB8jkZ7M42GvbZsNLFBQIAcx0pZbHTcOvguGAjZqzD3YCD5Toj9FdTuKDdf5hS33ZjBjehScuXt1sEf1Ha3FwrmjI6+bQmhnC7F8pWiJ2VgUMItvOOmIHPa9oZuyjmz1AJHZlDFHCOytoG7nKcryHY+951Ue6Ph8zZXq1lDnI+YBRmXDW2o5mhOC5YwaVFJJtG+L7tcOdCi+YBB5jFMlOXofui2uqR9DBKto+99ZtKyoeMN7ocArPgwDvOi8dkDSCMonKT1MlyHFsCis14yMae/2KMvfhSenAsD0VoF0LnqlSRhnc25J/2J6vctW5GdV3O/PKqW9O2gTICYSoqLWK1B9ebStjpeuiwze/H/wTKjGsgBqRZTuF5kBueNZ/yXampv8+Vzlzor0uQauUiRYfAutYdgIC3hA9Xw2F+a+sRZob6wk+cn8gBvVy3Y4T4Ca9vkUpWVgF27JIyV3Lgml9WRxe+1iktKOtTY5AltPnpPsStCpGU9Rgo1XigfrQHXm93D66T0zxrceGM4p/snFCv1aTM49Pfl6dNyNsgzR4i/VCkD0t6LMvknDZDaAh/A7kSFznP8JE2NfjJ/gbuoWzhOpwjkMD4JQ5eWUPQ8DopcRRh0JpxCVde0ALikO7nqhHwLloiKAXnXslksGXJbt5N+fm2M2+XcgBd2/5EaPdrdnyJrfVPFnJzg9ljKyZB8ENzxcQi4yOGbOHXNJyZZ9uHMM0PEXCVbYu3uhjVPjW0CbbM7zWz1pFcdFRpB0lrNy9JlXxcpMHoGY8JOOm39IJr8ays8h+M8E8lUHs5V2SJJrH1yhiywj9ZTKpr3qm0rQCsFvZVl46xMugfvnbMbZP4gtdRfOGTDf1mTsYjGn4rnw71D1MhhunINvdUIldUy63YjbImx9EqQHHzKgBVYdSFjx+RMT1mzplCYuwND87mql68mwMzHQyza2HyAIZsdJlnFGmWgWmPWLXAk3ggkTGw04A+GE78ZGixCyW+mAwEJD879TePo793M5yHeeSuyw8AUY+jtPpmus/lIDa+dkmM5UhRNJh17K+7NlADg6IUgwyL4kRDjTZACig6rB8PFicd8619VvlUIJDMALTxPGjwcbdxtYLrH1Y0bbCnQhyqBIlHkjNy/YWbWbrwE3eV6MKAhA4LVzAflldRtous4YWB24mo7WTErNqzwyMlx6cme2uqp02aRXFYy/WU2vn1IhbL4kdpIF3BYIbQ2eQjI1HQFik9rNjuZ81KGl+LPhVkc53auOryTj/HUSJDfkUhES2yuHVlMfhIYuQFJSTrQ4m+wtylFsNzcv6k3Y24nMvelSi/SZi/MOE9wL9HecVSwrig8owjo3uTd0+gcHDv15z5P2uxjSd1dZWCNaO6waGNlfHMSc/+VqXRT6AeXDxcZyaUTG6sLocwnA5Vot4eC+sEoKS5TvJc8heOkjYqEWQgpziKXSba0+kVIGyWXeP1/g7M9fv7QdeVHb9VyJLxcGjM3i1YQq43LdiEbLdtHRMwegEEE2f7x1DHzFpN1whGUNV79H3gJD1butcVlbnDfqzfblnz/0N3cX1aKoFTbDs5mqGEg7Vt6hjvqzWiUUoMZtsGOqEzBIAPgxypwae0/AZ+PbMdDSFvse4k89I8IPrr/BzaRaiDIEvJh38JRgHU2UNCJucMnb+VRebYoxunxZfiFdQKNTrbIsW5K2DeZBEHn1zj4XCCJp0Y6ncqcgJciw4d2KFRoVaoD5n4gA5u+WeHI/TeT0HrcdOHgMnK3+PHnAwf5qtZub1G4h5aRL4uhmsf5dX8PlZcv4qE7JJpAV855XRh+xlXTnqw1grsWron3cJhsEom1uw8uSCmiHrms7jp5CmqqTnMNyuQQLWOenaRCTMYUh6PdmdsMB7Hs/v4i1lkwzsfnAkLJvfhR/7Fve8AfXWHwncoLYLizERagEf3iwilN24MXKW8GZd2E74VpM6UX7Ey90jcIhXUaFkizue8NiNpNnsCffBKMXd+PYCtGmOWdbrYiFrKwx9Sy5O/PGyJKH7MFT63DL6hhaFC4eQRHIwDCPD69lu4Hi4lglVsg0OXW/Iy9lmDkTlBt9wLox9jSEn/FF2cfO8WnyF4zrXAbTOik+7H5K7acKw5QgfASe4yZWU+ZGicNVq/6KKq8AqGixK7aGsmspJAOrkbOe7ME0wtybsgTWXBgn9jjgYBu6l64udGF4sBX9n/aYCU4Z0lS9P+/Hom7sL8+glbkBrmSb3foxRGORzepDtXsx7X8ftidmpP66WKkGE4v3y7Ro8uGySzipE6udUldb8g+5DfTEqQR/EaYplnO2ViMLI/rlY5CyvBFe0o6wnFQRSisNFVoiGV3QaXAkh9g3X9V8ik0NyLegkzie1IqI9sfGGWTHuX9CkOUK38srtm8JJdPHj1rU/Yu5g1xgB3OBJcKMaMf5ShovtbXjpeR/SYgq2JvyzZZPWhKa3PD6Dn+LddbFB4BGg6eO+1vS9Jtagm3LbLLGj9KwWbq+quDQwTFUV5Nio4ExUSkrliyr/RAxB8hVPQ67/Bw3g/MiOMABRBn9eRjtPO564ucmqU4yswbK1PjvE6jBaQscD+ZhtTl27RqU7uv/iV/v0ODtSvbBJ5cTolcpcq8mJxL3mZn2ipd28r1mLnKRupGCm7oP3tj2Qs8AyvAPJ7L91YnWjmMecoDDcG76B03vp/cQLofpStqehgNZ/x99LEKisH/JRV8nEKyyBwQou2uZPQbT5QZJrvx+O6gq27Y1KjwbbXnsaKX2zWjYv6o3A3PcmL1nZEcZIfSo5ibmnQFS+g70SE71ouXsfZURA/YlNZ/BaVp4rpGgTaBDO2OiINsW207ED/HBmkZme4REOsGSOXK/+pBqlu5pzh/3qTJgXl6mSGwPQORWj96NWs48r2IAm6WiQdCc4GhOiPRHk4Z1up/ZVw0Y13XyFjE/VyXMq+N+EL+u0UMdKLBG84Gy1Pd9CZVTJQRKLYUYNia4Nid4EJnrO8g2LsN771vIGA/5ExPwQ7ZhcPg7lRrobjGtEgSEKubAu0mjo8R0VaouNmq+xZajFKsmz7X95IfH/ULSO80VIfmi+4YrwBpqPPeyDtimGbJAnzNAJIsG754q61F28vdgdODrRmsJY1VqCJYYAU+2SmEo0C5fg9ziqYr2BPynv/vWwyTtklR1oiS8LHtkw9B2eb5ZIiLnckIiVOjnE+25rg1X2QiL4Ega9QMIJxXP1MIGLmEKMDAKcVzYZMbXTB6MuWP8da0/WNQ6Wvj1/D31Nri3JBfRs65WGvW8CrOCUhaqijmMLrkveKhGvdqmW/p9CtsSV87hbEa5q3OGmB87lTrnPdljsf+Byi3St0nu65s+MR8/gJ0+DXdjCmBsO5I9EZ59VJE3BVN4srEHOVfXGl/JOgBagk8TievL2FhZ3PoMi9Q5bu3knjrYk536qcBCPOnanfYDBUpHhEhaaqpEyyYB3lPJK9R4SseAQf0gWDujKrri8tXahRmqwumIpZFEI6M3l9Xypd/XjJ04UdKSh7uT1bErsBAG/hskCUXEzy+6EpGVMRYJTV3gMUIGiYF+Yu7nVwocjKs5Zj07OjE7y1Jc/W6bszm5Bh+y0RDJd+xX4j4S0E8RM5X4FjCsEAHMXP/l4JMAi3eHcN7birVn+zt73Wlb42TFUfDnidJo7mFFNvpBuU1f/fetQsNwOe4QO1282mYkWQ5Z2yZc5PGe4kHCRIkeiU6cvZnnOMbsW2dl0hXTx3BZd4ViNTX8XIpmLPkfS/oj5zd87/ScVQVN6Z4bTwEzkdj5IJ9EwiuDUXWERXft1H8WahvKJiAHWVSKjrorgIXWbwd9F1UFt2q5sYQoUNVIpoiS1sPY8O9nQRlwMbRTi423rXbI8shEQ/cx2rckglsQdYCcFFxRWK+8ufhnJxQw+VPOwjJMUUMQeNAXtpnGkFAR7ypQPOTjWsDByCTpy2ICvWMjKyM6TajgWEiwcYZn3RzKBpos380SRLlYyG9sClSMd5X8wXa8NEuwDd18eDYKtpYcXF9qdt1lmKi7to6a3rHGDiO0LLXC2RcWCUweMdZQjFu10nLu7G7j2Mnr7qHRZHJyW9pzj2I1dmPTHFdEI3IoyUbavhTSwCLtzzZT3X7X6rJoJKgRCoUMo9FsmlQku7bCp/sbjTXKqR5P5zPaclZQq5SqLY7RS8DklhgpMpYVybkHJfjxWPQnZvf+tFYon1kqhxIfJ0H0PgE1xeQmvCz78lHlJ4oFbSTpaTMSq1AIFzphLSApOzCgDy5CSWyN3SH5Qr/IEVg5/6T8J6anNY1PLy5HSyqGoEPy/9RkfPOQv7SGVCtc2M+aL8iKPx4g1BEKw9yO7P5z2ME9cEROj1U2yeaZXloXyiBLj7hDHXUq4WcJVfk/bPGHxPOypWqN5DSOdKn6VVIshUB1HOTjlNHr6w2t0QKASwHTitRUn3YgXCqgDmJ4apTbAqdX8ytdLsEqWQSxtUJb1+8Ehs1C6wLAr6aoC+74Ocu5QmRpkYjORgrQmm3reMxuvQfx7a89yuAUwtTfNZgzwvPDV/l0I1fNeSttvl6H3Ue8FzOIzm0e7uAQuoBr2a1tLHRuxOMiy7kQzh4hzmeJaKieH9fKM2HWLqOYCE/V699bggSTfG8zMOzG0a+wuDuIlmtMFAjSu4vYaVfG+D18z4QSqiM2XY/i6p9KUdJwFvulESS90eZBDCtWdXaBfPwr8BZVitjFVduWICAUYDEH7+YMAhB2JvgKHyuzAjEfK46wuxjwnfSKSy7LTZTy11+/USmp80Xn8ulTPdZg/QUVOtFTRoUBEHrmSW6qNrzwOFPTZX9ydS4fKs3VAZWb63GPDbfVJXdj04521iUzIHQ0PCTAj7jHDG2V60yJxi5Mx4nEpXuMJStzbTnacwwlfALasQs2Q4DPfe7ggbtDmnAFrkDquSzvot0UzFGa6vThwIAM4kEZCwLTZnp3GQEISdGKgMPaXNeufxrqjIlZ2ynql7atqqi2SN40cfdvqK/gWSRWbgSQRUiPKBFqA8fGSpyKtM+zTsGxe2KPerneNU2r8oQyOddexTyEYDZEcnATCcvAxMHsjc3uJgyZJoQbkaBO/DrKvQMXyvRWwvZ5gJDRG8gx5DOKCyWLQg4JAxePy/E9+udocCNHMWqXT1EwzV4veZNYZxfGxMbk5NOMUUwW+EhOLfwdtAO47CNuUS4sW45ckQxCbhkQqcv1UqEQzfm3m4viYwpdE2sbXWZ/AFgAJFshHMc5NFS3wnJl03N97TLhewdEIszsPLdRU6HzbQN378XZhp2xdLDL2OvLwFYQ3cNmirYCBqGOU3Af6kgY4DusXlx34WS6oiQ5GdAzWxVBzz+ewXh03LkNPPM9g2U9AAssnGQibAM1U+Ba7wCA0tbyH0EuBmSb02WFNMn5WAByM3Hhys+Umk9xbqqh2k/Lyjd868q7lTq1cNNBb8NNTfyFa7izes/qmogAiK/uY/BCFG4ju9biQYti8Ul656cH3xqSQfvigRvUHvxnIoYHduwbFkXI+Utp2omURQ25v6E95ELqGwMO3WkVowloji0nWSeUl403cxZfzFzvrFyKM86Tw3oTUrOud/hw1hUfni19EGwYKR2qEkmq7gD4clXGM6BoG/TO0Pq4dOhxiqVSQA4BjwaG7YSMwQL8f/0M6vxSa6T5p0o4G2ZtoNZA5hNcpKVSf1l5BIKq0lD8tf/YWOWepMijlT3bZEG0Ygm4Sx2rJqUq2qerTD2+3lON2JZjowLflMSlpAL13hcweTmItQtNqn8/5sfzX77ep6SIP4oiyNhuVkDCEVRn0a/XbmxrdADAAmawdHcWTGTs0LkPoSBMh/4mpGG0tuVQwCmrP6rQK0VCY82bW8vWi6deqAT8qi83ww2ddVpgVRyALOLO9rgMpYWfqY3fYQ7LRhpZgD+pgOHDJQkEXo0TyKlmss9EvLdAIUd6RST8y7G4b5N3C3YA1zsEhNYgS+YeglkyVur0zp4VwRr18XdSCibUqVRn4PH1ZO23qhnj6Cm8gVXQrVwu9pSkmCMsQzk+ZK/1EoK0xI90NMP8vVhnZtBWAF+stz4Yg464OnPHJiWoQgGhcpWvjtcJG3OUalcojJSiRcw5HKRL7px1a/Tr2eeQ1U0t//7jqHABN83Jmbt+Hc4L3WxmBMVxDihm1tl9CiFEZavRS+5k5fKn4eOquJGlcsLW1ODUVq5gw352pqe4oJFP0ph03YPerlkZqIRsJYCnZ/JnTmaxGH6fauaOFSBGPoanhQOPomHPbboBKBgCeNr/cxJKJ9q86dbgeozkGuqFydrYEszrblMvYadn5Th4+/BIhoD6iizN9miCIc7kxXI=
Variant 1
DifficultyLevel
618
Question
The rectangle ABCD is cut into two triangles along the diagonal AC.
Which of the following best describes triangle ABC?
Worked Solution
Triangle ABC is a scalene triangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v1.svg 250 indent3 vpad
The rectangle $ABCD$ is cut into two triangles along the diagonal $AC$.
Which of the following best describes triangle $ABC$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v1_ws.svg 250 indent vpad
{{{correctAnswer}}}
|
correctAnswer | Triangle $ABC$ is a scalene triangle. |
Answers
Is Correct? | Answer |
✓ | Triangle ABC is a scalene triangle. |
x | Triangle ABC is an isosceles triangle. |
x | Triangle ABC is an equilateral triangle. |
x | Triangle ABC is an obtuse angled triangle. |
U2FsdGVkX19gnmMcakSs9NfXuSpt3LnAko7qcNabqgvcTxF+OzKJMLK/ZKmf8XneUnJucJRakGM9b06PodhIDnF4dgSzBDkus+vsc/9pvrcpMS/UWUU85JwsFqfLBNHPEcBhFgryk6AsbB/mtGOEH9gVhhC+Y5IATN0eXQUoFk7qa7C4E89JmOlpkGuph4ZJ7RXe9ibHIs4t3gduS0GNKiNI0uFTJ5Ed5LjeN6EbaNtgVC6ZkHT7iL9gVTLznXOSPCb5H8AU12FU5X/1+UN2aB4OUqoNMuGNLRt5QB28PdiBuOTEd/w4fETwoCtpvLp97QYl89t6sbYC8ewPbjxsUD+mSyKty2yQfgp26malBUZsKzGHrzI4e+PvrCOblUmjn2ZNhcv8Ia2rryb8xVS3GhsAr2Y0r5l5X0xhnNzilTySpdTLgihR3dUftjfLXSKGRCBCZpoCeUrL6Zuk4z86hiIUHUJmg1rPbIkV5S89rUQY7BE4KEs5be+Ikuy9PALkVbMiMsrzbmbThYwBpkmlFA801wIztqlC066yLL8ksSX6BwnfTYKV05lCIBfk9EkuSlPFpH9wKWOR2G1cfUm0s+dFY0CCXp4uEFly/K/msjkVq/j3R0GQoGx4h0Aggkk4xRpk1WlcVYiyx8+a9ExFMtKS48CfTtQnU3sEPLL8Qz71jBqZ+05SKTzrxr8UqX/Tdq81RiMFZO4w1+r9rqioWzDNAsYzSxiDYxoGJUAKtvmTY75jT0iHYMMAleRO8mM1BI/PCcDTc97zyua56fVm7B3y6XmQmBJx43h83HwGtSxB6vqaQO5Ka9NQXtenrjNET52fUE5r4odDoPTh5Gu2vMgarmSFOD2pqXjDut3WYMPaYGxYduJD8vwf4L5msXevlAtxSpnnqpkiBkoAR1P9jHJZW66l8r7TRsyv7MT1k5Hs45yG+VDC8JwbhmGcDC2gXJvc7i0MxPhy26vfrFxIJFP7yITrXjme9fBQM8yDZI0wqO9BZferpW+04SLEOs4IWHGBq5TJkFw1Fds7+qWWvh+qHz2kr1KJ3AD0v1Znr1xPGfIE9AYjS2cp9I1Yt9NtDdaEdzq4i79ADaIlT+c3r7fPVMlhdpTgetGUzVcps/JlK6LoeAU036ONptR0s5SBW/y0WQEbVwpoHPWvvKkU4tIfMnbNvTuN3suJCmQ/FH272Etcz8kQHqd2qKiw3ayiU0VaUxuZ0ZX9/3TS1IwlLCO9e4oi0AXEga8UtU9fK9T5pYfaHy0oMoUQJT3ZKL6zeo4Zz17d8AryYEFmHbZ36euK7HPXbPNN687XBCdEYRdBRpkT5Gsab514GxbW0ZQyB/GzQgJJDlaFwcktK/wziAPuGtFc79kFW1bWN5kqZgD8NU0lQobyjWx346dHYoXAxmc1SNGRva0g6ErNDnSMoi3pn5tZomr+AmXVvQ709lWBfdMWLOkSxOwcTDut+DnGbr43EztuV1ZwrrdO97PniOmJZGDZhJEYdAG69MsZlngjlLbbF4ms1eDfDHigCoXvLmgRczrgYkdRxqUoMWAlsed8GnFv2VtGL5jmikaSS7WH2epXDKmpSRDcxbsDhDeCYtfo8AD2PA+XZ6oXCBMV3foQje5Ui3OUgpHI2NpnHTT9I+JNN/9xscc5TBFWK5e/guuCdseGw1kZa1ZCD1mzmykwPOqudxX1ABitM+d3ttwvurZR8x3kVRtgLXt9zWzwwgEPaIAG2VeIzouBtgp/EcavbPGXR0SSg+2od+Fx9WgWjN3CbaQiftC7a7+LuaCrLS2NYdPIJeCYpbnYHPkNeao7q9THJZSqqvoo8l5+XnQoGdLPSkkTLfYn5Aw2niTEWy24ag4YmHCQvXzafp7UKECA01YuCHwrgA3b1zEhMrRERP2Hka8RKID8mgKez/mi8JPLTpTwgocG7aV8MKkaHwKPrWZSWFQVeXTqrLuFlgmQoFKmDwKYJUF+rr5O1/SYhdXnoS/zGLk4NS3hOJ9fuctu9N9B5xbBu7dDA19QcrNnrpjzifT8AHc+3+02w97OCFL3yujgmD/jioWpwmMD73r2vXkaIcTNvxZmOe1XC484/GJYURN2e+x9KTAQM2RKhmo8C6TF0B282DaEVUZQInj5yYrfQImb3kIZLjWfUk+wC9gyrGflHgrqNUD3+BAwhSuVf6ZNzqo8Hbrv1cvoE/0o/Q20FQHl7eQ8aHB7G0uuKvJppbpIjBN+hEe9StrQYbnT1Gdqz5kAnWgdfs0/zPjmzGfffebVXQaXkHJmEq4cl0uEPHx5le6MMzfqFyEs/QYQrmvhpwLPoWUqSA9ekwmHAdXBphVezRqIcDNaxuRUEcshsk+OlaclFe/KzTLYYnIIQSV8pq1F/Wdo88lMlrRdKz08GV84OpVQwBacIfbR5ArlhQzg3Mbg4WnGfdF5lQt1K3x3kt9IL6O+beSaN5cQ5ey5ijbb2uBTr6B/uPZlOR1whLd/m1Zv+wjBdh3uiMvX03Q3noCuPAwCT6wQvw2j74m4W30TBimYT/lCIm/yTPxea7jePjy+dttuNsm8Ce1ZxJZvz77FgKaVHWH0Moz4yGfc7Wie6FnyGFI/WJRhyFUhgGuKSCF8eGrFmqBehfPau8Kr1ekapXOZzv58B3UO2OSmMzWvCOl6/z7c3GVUEd/gfmeoQFxR2aa1Pbg0eZYujB79c0pq6wxEpRxLNyC83EimSrrzWKDx25e3qBqBKYP22JE/66yU17UqoamqS4lM+HhzQtgprM9dcTQCwdypc9rnI6iDI5ai7TvrS5c65U0DxVXsLH9m8Cz9WlRFesrjnzzIZvQu5EOrxnfYIXRkigZbWjnXOHPHjEDHVYH4TiYw2v/jTHVeSPpOEZHntK/1anfOBksvVzn7dli0/UNXxHNJmFJUSWz0scB3qvYgshJovzw1zesJxwDMsaRi8snv8w2l8pMlWK+x5+Fg3gGeUcNgkMz2i6EN1ag+nPWzPG12MNd72Johzjut+TEUi4Ij2RyOVdSKVvgh8oyNVGVtlJcgjk1vqRMrwxaDFu8a81dJIr52L4K4ie6Icoy7mS366QIRtgMarMDYLZH1V/01EIzwwyBEkq2tpV8+Xax+AevhVhaH80xGfY/xoA+79ESoolYYM99kXcVVeXkEwYaLK6HDN4KeNLC1KzLQIaS8b2uQY4L+SKtqR7QU+91w0sgcqyvRqne0OnlDrvP1UIV9C+RNEgUSkGXdLCmyC1+4oOt7XL5TRyOazJ/xBNTDsXxaTPqVpZoWUIEmS2mDjMDFXhN8rBQtYxkrUWcrg5NwipPaeOtXsLgr4fdDu12UQpmuBRUP1VMKzyp17OrhLlITmERqk992YNHmolHKnSV24HqljP4kTwvOuVfeIKpvDr1KfkiCwMEONvZedCuc5HR+vfPYUqiTuHDn9UdDvwZRRF0BIdSczwHmqNUJVuYGhTMlw9KVbxCEYvmdiT7z0SSxGdf4VvVO8mtrk0T8ZrsiccVIzOJKDrBjJ4b83P5ebGhyl0fs7TI/7Ic0SXYm8CWdpxhU51In+Ywb0YDGviI1YVqRpPQM6XGHLs5/epswOUmEnc7e8YN5AfIadiJpk3XqdNfK9J4N7X+mp5Df+woiC3KF3bMxOnn2jmFKHeRh7iNbDM8SupIWAQOPa6SYf2HCU02HARLrhjOhmaG/3yRlP3e7SL1tBSANnUw872zbwX24IXHrCphiT7RnSZMY8iQ5s2UZ1Taublwgpq7rFwLvDOFFzTl0kaAuz6mUgodYZB5WHqFbhAxHymEdxYir+/+h3cbsFPSedyD2lIq1vo2KBUfjwxzAr4TPlsG99neBzx5WJzVbcN6gD6h4zDjKDXkYsqKb3WNKy0rtu5GbmTruAV0GWHQD0VhhLD+qImEvKiT6YzfGIlkGx2/H4FT+dFO1LCQCom6wTrgEYq6O9TbIKkEx0FCKupmQkAZ7m8/JQrYJJ2dO7luRF61brHYCbhfbA3cYyt8zNxukGBYUAfjVhyE4z1N3FQpwp0aXyukSPGbI+iwI4HOmN4lEys31nyw01R+NWo6Rsfss1D+6Uo5XQE8CHV1d6D3CxHqSLz8/IzF/Qnj1LpMK5zq86/0YLfAF2WjwD+gtErM36qpOyjL2SnoJaWnpZuilEnwSOP2thGlKSoJWk3/t6M8eDRq3Ce/ypDWSMlMjXzek7LNxW3XyYtNP9VtQIKfc8K50Mj/kDi2S1CvICA8FuXbif0jHqMtQkSOwQA8vx1GqebMZ52xfj6w3SlZdWcCuFE/2GAYyma7Ks4L2Yu3GEyToUJtLzQJVQXQ5DGuxhCcImrKO23dYoGV/xV6sbC+PrVzFC4WO6N2gk+Umc1tW44dlrRIPD4NJMsjCD2DenlP4zHDJb1aEOoVUpDYLOtdCnkfFNtKKeHlAy7AL+GPn2IZT7dLHiQEN0QIcIawuXVOj8KVfgq+Tie4lU01GJXU3XXaz8sXQRl19SUVDKBL6Wr090ZHbzRPQB3LpoTtPsZFG97PfNUk5Ocr4qOff+5x0yyMqhmgvXSYBSrLipPp8W/zmHNOt979ujfFtTNY2/pYsG5yCjOs4nntRB3SWki5rEpPbcqbnZD2hGGqogdPO3X7InrPt1V0uvVPuIrN2kk01Uz0C49mXXroG2PsJDpW5UzEw2GJuQxcmCAp2RUOVO+n69xzQ+PwMJd6kmFcRODR9IkaZSTckkkxnFhapT8+3pk5qcnrQIvqgMa39QPJLxcu6+9FI6x984sQ9Oa4THTeabNoTvXcHYBFfNExncrUVOngoML4bnMDjQdwmTp5RIjNk7S0x9gLmR9Bb0ircra8vdQmACPLeBTToKCOJjMQM0PdxIq+FjA2ZfmpjT47pZ9o5E0iWpajO/aKxvyWg1QSrJ7GC/ro9JIN8Y9j4MHgUxgeXVPULjndb5snstSidm2TuISM8PuM8gh1P5fMSCNobnwmqE+om89qnafARr1fYh7+/nSXuFb6EJLGeFktEEx3x8WtFGzL04ixLlSpZv5KnSaPk0LOksajYlHKxdnjZcjOMvdsUzSJKGuwmRjH1TtqRHNGek0Pqplrs2k2mZ1s7QA0u6VPzL5CymE8adEmG7e5lAAQ39F+xm8X87+f0BAqbbjQTxTc99OU4b+JdxjGmy2+59c9/gnAc5+O+bNxCdgFnXp2IIKy7l2Si3/VajVgx09KT+d4FU1d8sTh4YhnAKRSX5fZ4omWP98XvM38FGqDkXwC+qGJhvtehCAxnJ8vZT9kFo/+26ApgDlBXccYwu5LqruyRg7Lmevt0WymLL6mDPGSq6xbz/pzGDP926K6Zto5Iw+WcovQkqyImg+GuGZiRPgxxmgNR1pLGulLpV/SO1B9ilBMLzrcbKGakAt5ExOz+aglJwHbh9sQIiyilCrgLtK0uirjHIoyitCWvNEM8d6hbel+jBpBUNiA4b3IvBKpaNs26MQMyOCUX1YsGCxgoKZvxt1f5Pl8GZjsvsKy832AzxeYgpG9TlZAsumTMSsG3hz0TP7/FgDVTEps5l60lUidZ6QtxzIoZXlsuIbOPJNpCqYlfnm4ny78nc+wFjrIz/boLHWHubPvd23PZl6uXavHq9fI2RO8lLCRzHEhP3TtzgkjcYaXibgFmHbw36ogsHVQXb2QY/at2Up4FXqK4ocgEorFPAifa7i0LJz0MFGLn124neoOu99eW/5qTfwP95vmvP9lPIB0O7yl6IXPOuRYp3uOlDh5/BOMRACy3Yze8rzzIhOAHWGQKobRdCMNV0UfQibilh3WiTTzpX4RNjYcm/cnp92tQrSBtDcrMGqJdFJ3oK2QsvOYkG/Bv49JZfusMdLcGMo4ZvChHFuYedczMbQjsvcFbev3YqgtHJplGbIZ4ORuLkaaqnFlAbagZHncoFLrxw8qdVD2TcDaWkl2c8S2aBmNInhUQIyi/P30ZWsPe/ezuly/Sm4Wz+hl2c29bekwCYrSXojT18ofLzy4tOuwbdApeZ0TZrzC/B5DxqMle4PNuifJXiPbr+As3I4M83FbargBp9P3h3DmaKhKx5O56GgGPVO6BkBLQivV7iGsSXz6wc1+EZJewVr0f53RFbYF+V1673pr3VMTaR33/LGXEdwDxxZoBcsKfrO9JQP9+f6c2x6f6muBPxF7tVfNmC6yhsv6EWko65UwNHkG0fawGKMrwsLgmIFBHnRnokbg+fqcGLf9kytCcIU3eFBR2XM9Sv1xSEvocK4WJnZu9N6jlK9gUagkxRIvQmgtrWzOvqao992zxkd7wPeM1x0ugEm2CNjwMfXaxgs2B2MkQl+ULtkyL9a+8ZLIsdBHd/5yKnazFqb0Z5PMTxw8gXUICu83XW+Oa8RUbv/L+iBGO8PKcfU/+JeaLwdCX/5dRXt5y70u8aYzXbGNYuL2ZL2CpdiF3BYDbrXKIEgyFeM2wH0NRBDlPE1x5y/7ZCIgQaTyMs53V9Ent+MsiLrTzgCToXv7o/ykBsx+etLoKYjMN8JhSPwnJK+0AGPQqjoYQgzbHiQTTGjN3gdwhlGlVOY3FsLOs9Uze9/DKYL112pxZMs5cyVmglQegxEYry4QpE4PGbX7bor8qEhNvDogCBmOzpIg41yvEC0zGgLKuEOHFCFb2PFtOM9+YHi+xY8/j0wCPiEVWEO/Rem7+cdDOSd8J++obBvDpoFXpxWsBmHYlYpQGkqrhFojfUfPxK6NCZBPmqsPnYg61W9Rfs9V99j1T5m0RYvN3L+ThAlCIQ2F8432HQQDXtisYs/DQxzz6yoqm7s4NJPdJ9C81VVkWearhBEHODTvtiOZZecx12WyOgVgUsQYHiSPqdPrhEJ0RMCh3rbqtZJoeZzMTPj1RiW2OSTmuCuAHfswKew1dBJUHLz6i8l3CLZEuPQvQrd3GbBKvLsxH20TcWOAm/fi1RYZAA7YhU0Rqfih1D+jfGTPwi/TE+wfpj4L7GMra9GfF2OLtTv99hEX8Dj5zxrqZ6gJSI54rBB2w2OCjH/Y5kp7VYW/WkZtiBi9vHLYAEVE+7Mn1NE2K//3hSNJ77JsoT+E7hGtLYySABgz7/syShteLuC2IDIFSyupNloWjhROtQ9Vihb+Xr1+aQhH57J54tCJbOAoB6lOnbYGtBVEYRK9VyrFCKA8/qfPaQ9nSc/fKEFS9GxgrIFuWSoKvGXePhyOPu3TCxElN4vMXQOItKb6kxzu/W7EBFSarhho6ufzZl+gY02RDrtMReZaABa9xN+7peGPndS4Kw9nhSCUjd+7dNXf3wrWzwC7HeqN3Ce+hUxTLn1Y5U+Yb7UZ3g62kGXQ2jsTp4/uT+n0Yxaw6+yeHA/Kz8H9LLUrmqErDITqCD6F7F/7RNt+cDpgGzp1QBXtnrC1toTB0KcG6cPwBO/JUCMvP9cW7OFKJG80nDZAEtMuoxGiZSpWPB4L4Txchztnjck3VPOzwIV6BYLp6pYedg+rSsHHjhVScFLT/tMnLsux+Y3PDWzYrL7+WNo5ZK5mgu2tX0eSNKFGsTd03eucSyBKuNxMOMHbKR91W3a2NcS7CTdVIWvAHcrXAVZRgM2Qby31wx6gakxUgQwkLBDhbau+zIjUhBkfT2fcf7cBe0LiJ3ixqqDFA89XYgOCXizLOjDKAl2KHmlRr5H+znRPIUKwbySynvaMG6SOlxtlIOFZZTUQzXzYigf8VD6Si2KtSznVoeh0ccFNgSkK+Lhwc7gJ/epZT07ywTKe9M9l93csYzKBDWIMPphKqf+vTrWRbn6DHFE6BBj/Emu6r9/QFV+aaKxnsR8nx1+xvUg7E05sAuuqLI0jK6EgPr7pVt6IYtCXvNxp5unHbECfH3BIItEVhKNgNe80aNFHqWIyKRT1Q4VeXGzBciAOWBAXAaxPM1UsQTWmfRpSZjK37EjkRwk/GK23OOnaLRv5uyoJbEc/qWnuifraPDuIDZnuuHdynv9HXZD7+5e5K9gohDMnU6ANCOsG+jo5gFH+vJ00VrILC2cOSUBeS7YrbLqqnwi+ovDM54vyNy/mwTlz1dFYBvJ46YaS0LlRQacDrLD6lUdTP9x6YpvB/FycVOfOWhXIoPPDCmMHv6bvhYwQvqfx4MeP4qs12fkVpGJuil+Uz7Wrlce3pe0cmMFMGSgXEJl7HCEraSk4EIEADN3STy/Hsu8pNt47G8ScjVERMCPtG7RrDQtrz5iQyRnxrZPzLKLIp16IPRoFj7zo2IPXp5r3WPu7Is8BorNV3MJEJywTRks7fbLg6iqrmeNVHtlNvNA7UobviR6YsKtxTte1IBgbagTzpGISBJkWTWXdhg9oCPSv00aXPRDo4kTvvNGCnK5+OF6pkqI/8F1x/KAapzSJPkwQsbCydGv7zr3L5PD1jAThDwnAocH/FsDUosNRRYNHqk9dfplhD31TYknigIHg93dozCog60mHbFoxfl5gUfRNoDkPlnrGYJObVgrA7RynzhhETFiaGUlJsDmnAYVyPCDMmr1e2OLR6Ld3aOUFpIt5b2xHWdam31fzQoNxud1lfm4wRdbTKsSVA71wmZ4Ak6n1+z7z3WbdyX3z0jOLC
Variant 2
DifficultyLevel
620
Question
The regular pentagon ABCDE is cut in two along the line BE.
Which of the following best describes triangle AEB?
Worked Solution
Triangle AEB is an isosceles triangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v2.svg 190 indent3 vpad
The regular pentagon $ABCDE$ is cut in two along the line $BE$.
Which of the following best describes triangle $AEB$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v2_ws.svg 190 indent vpad
{{{correctAnswer}}}
|
correctAnswer | Triangle $AEB$ is an isosceles triangle. |
Answers
Is Correct? | Answer |
x | Triangle AEB is a scalene triangle. |
x | Triangle AEB is an acute angled triangle. |
✓ | Triangle AEB is an isosceles triangle. |
x | Triangle AEB is an equilateral triangle. |
U2FsdGVkX18acSeM7T7cAMgHDR/93uvcUMNqGKbUVqOln/3w3+/MpWowRbA5R6zOCzqG/axfLDnrG9P+z8sChH3GJEB+WiDm6P8IAxGAAv9DEsvaPYKhYWt3UiSBTYicd3VfELFeAqyZAARGgjvMCrL20N1UQDIGhF5YdhAIva1F1Qh4E1nKF/XZ+QGcbk9jh+/3EI3CYprsFmiatCRWFYpldoqb5uLIvM32FbFb2LBKMxhVL6MZd3js4uFJtYEquiqQ0FlwgICOrQQSHGaOZ+CfX45JBQ3YArzIk0YD9ZZiIUvfjL8ssR60IzaasW7H6ZddvRMFce7wpqc3abjYTWiA+m1DAG32cU3o2dGTMkNQ41f7WLu0U1YpjHBRXsMDN9edF2m7pDLQ1h4KARqIWtWN47oT7WkZcFKRNcMuTn7U9a/a2lf+bfiA2gzjD12t9HA/JNmuX7RHc2W3Gv7jfe0VUWhMoni6aMQjZf/BuLZVhZOD8PN4dn2+l9/gw43hEqfKp0a5UsP4YDhTK7fhlKvhLoLE1lldUsEGXuxgZeA+OyeT9i5zIal3yp9PGLEk4NCu8zTVhKC1h9d3T10Pt3yOT6u5nnmIPdfT8oq1iF+XUMxv2zfrEy6R2MtUW1jpKidvPO3ncIysVTdwlaon9OzLpr5EQqLConbj7vnv/oH0oOjo5BZmHvqKG6vXP0p6ZPDWy/7zFH+2clwGcTaxQXhb00QER9u6p4nJr2JDT4QRy8tPTVg2VZJaNx8z9se9Aclkvd55Vd1T0tS0A7EFtE4jtw71dV9rvjWf1hI4AcbQVjZZLvjQXyYNP/EXXEmGctnawIO7PDADYOLTUdDqj8JuLctqPIyM9ycLYj4kHprHmVoMntIQBcX+JrCaVioXXNgK6xZiQwGGHps4c2qfDzXLqdk3fLi2qqJGkXiNqZ2786o65lyYWVNV8y+i5kn241UJSwV0BEHY4XMMoggqWlcPwhYPSughbiT2dcNGJgGiogoqJo3sNSX0W7xG0U1gVWUD9hCMrXWajfFextP/CFIjP6VmPxt8lvIRYVI4kwky4Tr+XLnpcW158AkmhL/oWsNvr3IeL0HEcrP3UQum8tOUSJC0b/G6bns11qbg1K0UgMymGtpbxRLLWNRT3g09WsH7r0iAxcpHbnESM2YOepHIIhWSYUcaPt1HLUiGErCDiawTB+Cke3XpMTJ82/cbw1v7O69PZWvr2J1WjJELiwwyp9LyCgbwJ0hnf1snCiqv/eAM2REYMWlC1PiXiIRTviGcmg2TpFU/7mNdUGsVKnFBHkYgQAf3E6yvD//pWoXilCeBBMOugfDZML9B+E9hzIPHh10Zj0Sk6lBC6FUIgbUP4Cfo4BDmmwbrvwsQVZhGV3XClyPIXudg9yUAPgtYf6XzNzkPJXo+TNofAFXrhlsgm+OwReOeRBVyI3Kd0bcA2o3+VPv92PqNXSOiXlb+89lVhU6Glep0bK3vWkBsJTf+m+DGdR6YjJ90uW51Y/6/sv+RrQrN+4q98CZXlXoasC506ESI505hj7uMwnBb6yWWwYaO60wUUps4hTNf49B3uHjOoaSecNZyNXz8NmQppTyYl7Ehw3np6ertyigkdAShbaQHrH9RHlMvXY0xGbiYhbh0pHiNmwb0KnNgScOGe0XtdWeR3jyHm25qP+X0DUcRR91JeI00DIqPZIgsUVCck/0B6b7mhQc+6Dmsi+02GMZcXoGnB4YSWhVq5cXBdgjYx6sXZKjTlNR7IrJlNwX3dMqZDbSMoCFh3mHUNsnwF6zgVHettOluVsPknEQBtVpLjJC+zVSusjkWQuNq1fYtehVth3Ehad5XfWQA2YIdBHMqS0HRbEJjb/94THcExmJ6+2RcXGFqYdxIYv8xwotDFwsEmWzNTuB0jvjxdeh5EXwF4KAf1mMt0wP+pPb0+6KGkZjhHsL+nTRfE4zg1PigzJQKTD6xxRwf7ibMdSwqI+FOwcGuJ3WIzZ2HfYLLstXP0x+o/mhTWbpDX9vColLNlPImCLZlys/To+d35kA7LlPTaMYA+AtmikNoPgftZwyxZqrPUUDWS0nkgZcODM3r3Y3DIMDd0q9Ou+zEDv5edncgSsEY5u94E/tmcBxFRVACt3ONtjFPZqz6a+wT3OQ0oO7xIW0sNy59xcL1bCTJGzKDyhqANMixsyiJ/qZOvLKT1hWdx8zUHwZ3YA8G0ldgRQL5gAQ5PfRYt1UqEZ4sxmSwo1Net7r4IoPKanxQi82gW4KE6EYFB0cZ8ApIjsNbfU5/mjJICnoNhTz3FgxMXcxjVvIoYJk2XyXwS50yWaphOouPSo2XazXws0P7pnuYARaJRYUOsbeEwo1Cnm/670yt7M5KuWEHoSVXnNv0TFM9hQcYd5fkse+PfNlrf8WGNauBj+KNHCHyYtq6+urHL879L7n9GyNHBFzjURe/vzXaFlu/rB6NUTD778a/k/VENlxwPt4gJhrxc4SvevwHWxfMFICr0k/j9NXOy2itwCFvDWgjPy1rV2nqDxDIM3hoAiwXfk3Sf3H2zGiKHaxwpDL8Emuc3FWChzjsRsiff2L4miO2FF2twZCtZ+hGhDLXfeHxaptA3lL3sK9MJP+hCWkBx4BrL1wGDYMPKjsMdZmRC2IO4UqZR5LTt7cMRiSGbGSYyKX2jNyePRsOpksHP1u4ZEHzU5TW1276Pzvpw4JoDAKR+eM6IRnqMqIlIKFa+hO0j9zxm/nSRJLagNEVGb8hP6HV10MI3KpbLGEmBO4G0hl4pVGJawOAdPlpM+vCHyR4n5fHdnUvOzJDgh7knM4WGi+xBIqiawGZrsK2/iGeW8TSw2dEkr/zOLB6JXgBVekCicCQTvBjbGxy1+AR1w688xmYiDVW/uqGepnTlbv4kCvOhtXAGitd+hyybdCwuxu4depjJdaHvexrusrlyf2UylillHGuD0Q6DuHF6l901mDfM/p/8UeLHs1zeYWLDdl40r/8snoq7ZjHBGzM7mihpxQ501Xo0SXiJUq4sNAgjXOl1qw1kRFoWXX6iQQRunNeaPWC0AuQsPBK8nKMVH1lP6rTxEn1RInIcW46qHWZJHT91HLXEmTUGUVGIwVFU3O2qdwR5mssxJ2fKjmqeatXiONxK5evGmh/jvbfmOml/P84+QUVOR1j5rKnq0Xcl/YV7DyRLCASIaexnMPQtiT6VW2HhT81TYlQSsJUnwn1JdXtO6q4v6YuvCJhI4XOYo4MYwtrMjAvxijts6Xh8Wl9WbYhmnwRg9RfvZyNTrhOW1YV1NKL0MpaWrPpFOgvoRSddw2E0MtMBCAV39Nln5OaOtNVFY6Zk2DRzb9dIUzKi4HLhdq7HnHI0BMueiL752BLq5n9ILDY7t6QLyPTK5nqASTOHSm5axEWSbFjZ8PGkmIrtl1r7oVVmoc6ex61NaDnPp1IXISUnBZdj/1A2lM9Vv5jWAhTucPdYbF0tUnLT5Zsja6LiNSRnkOhY9OcMe2XdxrTrDWW7sZkk8dwnGcWgCCWsftro0SLu1Oyj0XSLfhaVvSLgyP9SXXO7jjJm8s0HnaRjehpnt9I4SEPTiNIzJh+5BH4IRiyq0GF8/SJqVk8+t1FI6hpceNgN3jIa+o+Uq2uv/bUzShd4K3ek7qXArB/hDCr4ZZPtvsWyANRl0FqSBD82E8GuYs8oHT78r19vjTAuV65TBx5XdBfOQ8MHaoIfJtxt1cJ34z8GM87B1qwdXZtbOzK47c6piiSqmiWwIjdKHY3XrjILCxaXK1cuz8Qy9AMlWKZ3CdTZNnQPOWqtZyAjJ5dasEGsvQbthYRA4Fx/c1WQTUdEkAITiBqrEvbvzO9b0V0CwGwJfgqIRuMjb+XiOwiX7ppChn/SjV8iR6dB8VtQL/hCz6sN74OqGcYmDnyMlfh7RZE2iB1EQlcvDNVhA6ovXmjI7q7PJz06JAu3KVL8KOh52f5fCijrAC5aWrTeABjhaw+pnLKelxv+ej1yAmX6bkBEJ1zRCOgy/OzUoM9dCZ+FBr4bLjgGCGLFvuWQmOyALWwQPiNlH9gQmcuhCAu2Z6cID++R7MKqX+E2Lwgd2ZWPAoBB9VkUb007hNhEtPTD8aKszekikixdDBszYXj/luBvceNSUzUGZxYARNT7oVaz7otBXNFNDeNafD2ioExoOFWB+65+5tUg6sVn6Ml1V2wlGONapQyC6F4fqMf5+1z0bUqArPp7opKgrt68fugkt6KMDzz+1fRHiIVHCe1kj53Eutt3AJ4+QOKm1ghrRWvEpEdifOEbDKBB6zQ4Ft6pO1dM0vrdSwoLNCZsnm0sCCPhchg1eIy/KImNyjcTxHHAh+dAzf/L+AiQLeY1BanSaNqjvkJUy3qrIvnctM1qeH+MafKG8/PyplE3FKnLtBHXT1UdlNdclTf6pZ+TCiiWhE0KPCb5gTTNxFeobKWLVAL+KkUGidbLpOEytS49r1y8gs92MJvCm3q1gXj9QbYETKrMcoNteefE5gpOh7b896mnO9oW1GX8TBmjE2WJpDVuofZD2v8KCW5dInN6DaDd6f1CgJ2dcpBSsauBC3c+s9OrJaACu0HGfrYXNwlLAgpZBmvavrl4FusnWCKrOpDqe23T5/VogPd0SZGKuybgq0MLcSFlacmRhYqDIFV1oIUJayhU2eYI1bOTq5cKrCXcCtC+mQLiMadtAzlZ/1f4+Gpy0xyJMR2WiMcXtlg4bawophYFBXoa+YbJJTcKVFtYIQRe0cc5XIP6wX6/dOXyezq+HYQcROq6unAedJP2AFbQYsfhJLvfBSWBqqY67vd0VSBjEi11Vj8V6gq8Ozn4cQHUHZZIxd9+zJJ1eg1d8UQbfNhW1QuKDyjmSmqqMxCA8dxP88WWlxu6108lvly8T6mu+Kpm6Gy1P0XI6rmy/H2NvvLm1SCAleBnAH9d2TpBOBYaDtRbpcW2WhzNvFHtI4qaHq7HkKmLBncfYnJVNFSF25FQxkBNicIMo0xpncggBU5pcrbnzsFWAe4UdlzEWtcgJ/8oDx9ApjNo5nFb63VKy8PWd0xIaXBUXbh5a+dc+rI5k7pmnauBd02s4r6GlbHHnAOz2mxutxCrmfg5NubvEs17/w9piatyk2q4NTz+3+K/zRv0uR9CDwhthdqcqqoXxhobWX7I6HPa8rRS0XEVIAD4t1IW3J9fL8sObSxBdK5R1DAMnF7RTXpCsZuIEdk5UVVQZZ90y1rjAI6/K/1aGnvaZmSMq2bm0jRaNXzkGI+K3u0BPp+3k7rr2XrhHgC3BhbaCUi7U3ubuh+S2wxr3wlHzWJ45jowNtNWgI7zPvttkmMU4wKkrTdbcB55/7URxYv4yyiK6S28FFR8jg7U52ipS1VEN5s3pAQeAoLB1RLG8nE3LDbAJ5f+zZRbD14nv5wNxT784IbM1Gpp17N+yecetPfS5Tz3DWNmjMn09hr2+vQp5FIjp+Sno/o6YAO8gw24pg1Ca9cG79Jnwgn28Jv8zW/dtPCLl/43S5owYwoBS8yjWtSD9XDTbhOh+kSeepcy4EK2Q+XzVzLnJwG3BR29r1UNN+qrSRtctgjHz3lFD6Gs/xL3Sq7XQixOYVfOYL6zxG73IJJeOT+OPhnU/hxIYvwUBhkcORloXXhE3FRHocmVYk5j/D9e7S0i5XXT6/7XmdPmXubd3LAcihy8o8skXnCwcVtNavY81ICQUUwx8tpbQjFBERiTQyfCEbg0HiOVbIwBxXRx4T2qxgL0GGnuq+SPlJXeA6H3Y1fKqtzu3XN9XSEFrPy2U1VF8qFDRP/aatZYwK/jZZNfwDwkjlWbiFQ4C1ahUkLbttaYv5mDcv5p1ZvISjOiDgpXS4NzP5K/kIX1Myw5U285rTAVfp3GJAdtRhcqM2NEUg6bAmkVlhAVmzXtK9mEwczFoLNtbD5j3mNDjrWvJhqCatZRNLoadB1UPYCAeVNchY2/Z7N+zULNTB2LlyOVomCaE/3dSASvZqq0z110OhGRthJhFC4LyFJeOPe01KN5/nVAFd0/UQob9DXZra7mAZN5lVwsKQvLg5HWRxI2nU5hibc6ObTQKAZhBC7rS1ktgclj+RgEiaOL+h1ponsKm0y6J5OcVWHtgjg03bbjrsvr0cQa5EBZUu69fp+ApCJEZfSxVe/gRgZYpCEov/NsFR5en+77/eE3807LzCEnjqZXuYwHLpCOJq8DqPk10P3++eECMjahfUwntLxxsBcjMBqoaEqtwFmZ+bTleTa0Fhg/H26gTeuP7uVJjk+o4/jqPIgK2ccE19i3ScejYuGHFZsnGYxXFLh4+sRdfHN0PRi9d5/ftYqBpz5I+myyfEzThG3YY1z7E5hwAT+0aei41vd48dMHNm773MHqFoTNI8GR9hV7jNSsuw3SLWx0u0jV1NFFwTALbxJUTpTY1bDTF1QeIWGTPSJiLaDNI+uDixyunucgqoLCAQ9ndiVQszQHzP6MQifR5asXFdp/Rn9Hax1bB4Jvhchj8xymMWjdZ+UThLbibSSsZaMv0HM78G1ktF44ZL+01VCXTt3/Nv3xhaLhItGIzplLkKAmS/gurfADHpeb6QrrnLAcAvXNqT2HECTlhyfYeUaXF8t1Cgl/2xzz6a3s0YCVVmOutmvmKNtAHTCRcDo7DnUFvxRyei3HBM6Mjh+MdjQQgeZ/G08ev2xwGKVIBJ4iPTkP99RfjlzKMjHyxrTrsB56cTg+Ewe5uNqsInnCmm7TFugneS9K2zMuOlw7amzAcXbAoTfvdcwJo9TLGxQfmIup970pkCaBdXiG3MrcYxbkZl6D3S8Z8fIoblUOqFO2+1PLoc7cXaox8yyYDgOZ+1LOsNP9xhzDY5q6H1f+djyhbkUYZUTQ71RRgDRwV6CE2EcH/+rLslxVw8StTBr9CrnwTa3DzoG+3dQw7B1ZAJjw3tsYgHC8xOjMc+l1kkudUXzWDSIdL2/uQHXguDpQ3Wrg4c4BhnMyOyLmCQ1di5VDpcFE2KTDUJGzVrH1CGUsHQS86sqpoa15zpFbyZMXuWxpubSRa5XjD9sftlhZJLOcJneJ5qwdBKMrckGAlzMWzo/oN0/q2i8Tuy67JpHwbsaX0fFhC5uuydLe62oJg2zXONaxROaomugVKhjJeTxPVllEf5Ql8n4l/+gZNl8yazticLZrdlaVkKawOf+lJy4/ClQKZqiG8ci7nU1Lx8n5YTaLvDBBWNdOk7IDWdefdzt/dEM+UJiq9x7gvWg9gJKlMr6HM45KxUQM2NyCB7nvSG2vNM7bHJjfKKMNV9v9IplTaAU57N8jX2J+uXAr8gBE08RD4ThucIZPx/sEwXXkAclsC+5k2Tn4rhDA6Zz2KgnbzBuzHVDjszVmIPzYTVi2dWAL61jjIph53IYC093mjUhcxiyQdrvIi0CBms4AlFmp7S9PB3ow7ILZYARWjEN7CLbAxGhTVEFOLi+l+pZ7d5cTRNVQrKZqjH79qrp9p2izcstcxvBJO295iS9AH+FQdnkAhJjRKMFYUfB/RDcFU8FRfpFhcXmWjo50NaZ6Bv8NCqGVU7fUauUwovgbWUWjBxYiHZBSLHN5zFtN3jM8FPZXm+QRbxZdYeDurH/Im0YjSUtSLkHXw746wagnyj66rURS8qCc8SXQ+NWbDuFu7deLAILWqjYOE956gfGRObaB9QNBUdo0YJpWZsOBw5raca6KCp+Fj/RwQ6C+8ssnny21M1FoGCo4ECCLXuoKNy81ypQlSWCcfvMVJqG8BEDPDTjVjaHsDlt+EHrtlnzbWcU2NAqZkgXyfPbE0yKm2MYVtfOperHb7jdMwSQZZ7Fa2PPJ4Kb7HMq4mVtP+f5XLiv1P6789P0VTMGA4aWopFJlDbFRhojMDpSXcTxY5Sms4mbLJW0XagVaz73CVlVqcxo033/8V+kAj6fMC6O4axB+Fy4z9uH7uLOydSN6QPoeGiggScXX2J/7c9a22zlhZ61ynrrvlKX8mKmy7UbQHG14eUN6a3z7pdV5LQEPab3Hi+VHKG3GzFlOgESDwsEgGtH75NwPIZUdBFMcWZQqyQO2cNfV576PkjKcVe/HZDg07DntfTwWTazT2N6MpApps6o4Kr+uCAEI/YWAXcRJ6mI5XlB/uzi3YkX7O9DF95EtBgXGu39LPm349NGc/ow0GpEfAbOrEWi5RLBTVBiWKSRI6rMZDdcmFCq2h9asquxCshLzDJDd/E2ee+LFVTQfqesV5f0aQg5ymAuASVBE2GT0Ieybg3bKadPiww6geltzfAmSE68OMGgpiNxLj4Y8Y8MTvqqb3CtbZr2W+TQunYgd6tMhvbChDIfX7Nup2zAEGb6Z0PGJO2xCCapo6V0+l1z1L5P+9TsaGGehZ5v8OE4MtlmdytO5DXEfdVJG+i7kIwxiG+L/4eDObZ8xkH7Jv0q2jh9p4iy+CqRWa7NRiUHE3L53XlJ7vip9+3lovkEIvwboNE99tfWvkL+FJ6ZWDFHk+JmV+m49Vt+hf8P/0M1lVDkiyg0aZRGglk1Z+EEXceLw51OSH33whMf4Or14rJtLWT2xJgSUeASvcN8wtR4LTmkejAJSxOQEtANCVSzRzD/Y8tGt/lYgsIkV/vQTVkR+E0Vcd4HhIKxxxmA/XhL4J3gbvOedubaVzXmNs1uqC1Nwz9D6XjWWydXHfVStyWgvWnCEpSZrW+Mw7VpWfBmiZu1UPQVpSLvHVsvYk0XOvDx2G0GgADsm5dAuiiATOjpsar8fNgHoOO7MhHiGs0R/C9hYsRc5Si2UNivmT6mQqYGQY22BPCN8cJ5TwCSJpdG+JLSau2Oyxku0WL++Xm9/XETlzY3wVQ9cnPXtJ6pRtzPyD8o/lJoo3zoY6aEG/5pmET+JvHMbRZSOMKiPfq9iwu0pRck4XhrvAF4pd/oNGKRnU8UY0SA0HZQbMedcWETB/LroMHS4FinJczp
Variant 3
DifficultyLevel
621
Question
The regular hexagon ABCDEF is cut in two along the line DF.
Which of the following best describes triangle DEF?
Worked Solution
Triangle DEF is an isosceles triangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v3.svg 190 indent3 vpad
The regular hexagon $ABCDEF$ is cut in two along the line $DF$.
Which of the following best describes triangle $DEF$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v3_ws.svg 110 indent2 vpad
{{{correctAnswer}}}
|
correctAnswer | Triangle $DEF$ is an isosceles triangle. |
Answers
Is Correct? | Answer |
x | Triangle DEF is an equilateral triangle. |
x | Triangle DEF is an acute angled triangle. |
x | Triangle DEF is a scalene triangle. |
✓ | Triangle DEF is an isosceles triangle. |
U2FsdGVkX1/7PGc1dhRHL+B0H64ZPv0/28OPsBUys3EasQ8wB4U6hhU7HDIaPDIC1pIiwdsESHJUyuYT5pWTLvBwuG5/Omb24o13/WgL/exwGbG90+JQHKDf9DdJ5oh1hTMbYJokBY+PZX14HeNOLOf/Ja4zphJBsZy0vyLa5/MYzii1EuCUJa+lvfWbq1gco/1IGRCuZFifxA7jIBusuwG0Zq32US89EWHDdcoUpALFuYrjpttdtslKTBT1Zql4nwXIe3rGHz08W2O3XLCdUsmMNLMNeD4RsgQEqUUd1bW4MJ9uIUUfMowJ+F6IUbI0TfL7zXkwNn3vpmPiZYVrLDuWt6dLwInkYw93xYTslZC3YK19dVldOA2k85iuxSwfRqpz+hGI744TiuXxg4aKHO/zP0Rbfias53fVIyA2Kox3RizeDcQ/s7LtfXDu+G+jV/B/Fok3kY2xS/PEWd+Bq0FAqDgp3D54I79z7Elq1JmYe6YGYbwHN5x7irceRy0M5SbItjblOaq6Gtcmi8aU4G4aVbdggASQr6WDmvMkb+Qh5xVYfO6jZH/eu/C0QVLSBaa/vlr3GTOU3WuQFTMv+9/D1jFTRFlCn2FDBFW+qfdAhdT5dzi96nX66jYEyEFBIYCuZABZBX7S8lhlvWZv5webWUamXLk+l/U+jY3uoKEBXD+KNeajITknbLfvXVKBqR3M8ta5nJguHkDqUZlbEWdEN1njLv3D/rBP4s331qRP7dpN2t1NrOM37mHQkurD6y/GOvr6Mtn6JNZ8IhJgQRS2Om5XmeRrA5iL5apRPMkix2nlNcYw/+MF8iNr4GHGX7iT5VZi6Ed72XjxlpFLOXKxpPGJAsNRVjdSAYZ88ZRfNGdcX84SX9z0fjR62+IJSwNul7EZ3X8FiKHsditN3vymC/C3SruCTIWuU7C6Y+ccAOGAwOXlCod5QJS6vnIYdGkwDDVK/cV+E5A0D7wKph+mNjcfGu299+I9qR2zuT6FxiWxWz5TLLGY9ASgMyxDq4qXIFdBGNFu/WLtsG8HIiEu+jDLIYXVu3eUvC+8jlbVxHmf+RdjxSodoAkDPT2GsNCSJqDDWi1bZ2Tek/o5dT1ps5Onx001UHG6N9PItkpAzz+McRV+6vsY/UfpU7zmxRg13d2a7Lne7l2k1FrU3MJ69uFySOhgBmgY4v2h3vAq4Q3DtuKFThw82VkrbfujSb2hSXIJbkRSfoZxnxJi2Mgz9HR6S7Xk/orQ1+e97/hZ06ORrLxi1Edb4Y7YXrGylYkDDmcQjk9cgQHyLqdAKu5R38amdawMjfUZd1D85quEz0EukQLtncWD2ETWDSJYxFURG/zQwqYbiSEowxVUtKlRFMljvfduHhsmCCyO+X9u00UOl9Pr1/O2eSrqGsAAWn7M9YJeiF85Oe5z4oAaE0acZMeDzfoTDjEdfspeM6GFhyA9fICrnE41BE+PoeT59cSZCIW20Imuv/nzJycSp0p4JUJDLJapgWhACwpHpavaZfk5DFSSv67NK2KBy3NrtEcUN8zwaeLRGmTKrPmrldq9kgnU1jl9GqHuWh0j2fUgOvWEj33b9yJgMDg5S5oKp8gFh5cKQmwTahG9nUEjzSFbNrOEFypQvDphANt2lZkcD2wRzOHkRN+Zq8Vqk41k/fEb0mBS7urCAQTui37v6OXd711cBJQtNeVHyLUvtt4TxSXbl7m6iBnzaDrr6ZxHyeaU9+sdw+pYh7ypypgip73zEOGMdv+JEdZFxWY+5ZxjE8sYg8DwyayXsv/L0G1WuofRtDWfBQvx0iGkSH3cTtPaOWQlpeyCLVZFnXQLdlspwkTWAZHZ/tt8Y0c44USF1TKMxhOv9y5Bg6dzp/T/C13aR6dwvcyrSoIgR/xjn8aUC7qctuBxMcNGD2XvnMC+8iP/ySpOnr9ts+kLsJWm+xws79A7vmsYZD8S8aGq7TzzZ0jgCYhhHIoSaBqX/HhNHznUXP0LXFzVkGs79IHpYbTRIYOLBXKkh05dN25egHp7a0rWMGhZ1bPdszmuQgr/u9DIfTV1juhVY2JVnCkFDptMy2bOTWp36HYdHNcQ6v7bhreAdTIyqTiKrmmbR7PQzkDjL6973VjgAnhUqfAzCmDx8DuH3tzx7JcHCykwpVU90EJvznZ14z5lvwZXkjlfOHbxG8MUVnA2I0zh9dXwryYrT59CEZ9lihLP3fB/tESEBtKAVaGzMJpjH1bcCFffZCs7Pza6lXLcqrPo7gwnRtS3uMjG/Qk+SpfI9xLoWjoExncp2thLr8K5jAwTiUSN3H0MUQHIZ7RMWq6o9Q7OHg3g6hlap1q29V9noy5EadjZrpu1xMY1eWJg3DcP465n+h8Ghj0c0T0Ma1dmYX/iWj5dW/5DRjaCKolyBSFe1uaCE4HUGddbi6uWgn2kgkw9/2Qe9ITJQpCOZ1GZdJTesrTvJ4CLDZVfJ6XpviFbrO18kSkcg+8w2Trj6Cooyc8+72OqYR60AbULYTcdUgtvIc9Krzb9g6Eez+By1A+Gpjg/X/WyezyZ7lfGHXuWWgJhsSx1QZ9pf4TKbpZajUbvxZ3wW/VG014b6LuUcmAgsXDHM9iBjRJdeXe5s0DwEoQcchwppVrAVxaHOdecJGR7MOh31Zj9XYg3oFnLU7zrNLQZ/JEY4m0Nh2mgX86iTH3OA2VoQej7xecv/qyNnfaO/8UFlTYNinQvsSjtdi6/8E17rI69hbb98pfNnKuFZP5Uv6cFWFbe9aWThG2aFU8nwPscSMr5M2PDJBUfWqtm+TOcZ8kYOX08GfQ79yKt1V73DzfQwrqnWaWoyb0bj/+48Ja4P+GW8JtX6GZBzpURvPpMKRzUWcDAwjbyoUmp0WW79NGHK4eCGs/6o7JtF/P4YDB4/tL4lekMvMWCSKcUIH7BuEC0Ojq2clt5a2A6wpNqlzMPZ2GAl2Y2zUfib1QljsVmLL8vTfxEilr1WgZDr4lBEBHue2Q6zkro3VQQV11dxJF3DQC/pZntbTJual6U3tTBxdEdKzYQDFQ72fp4YNG8xXWGfNCY/1aiDWZaFNJNf/BIOetBHklckSX0SWAKNZA7sQVxjXmaugSRETJlnKQyLSJvgfihgh5MNdK28Br+BwEYjua9IW4Y+f2OH53wJzU/MvlI9aA+pZ7YNqy2oCQ8oBJLig7EodEbMVruuuBDGD2nU4knHOuZLVw9iak/jc1CAgy4J6Z2HnsdEj7JYfPDPdlw61olkZcl7zllzD2OybRpateFtAk4OSL2JioCOIBBWKzSSV2Mh3On8jzAIA1stQPm1dPT7b+AGpn98gTrjzPh4vzzRUT/W2RUr+fwKCzN5Ob7vjkd33RNh5Kn1wSdNOcNh5BSZQzBxvrsKE+jB9F19Ic3ZnuN8VdaLa8KJfcqetQCdACForqlJWifXjDduztEchD+XKyFx5eCngO+Mx8Tz/X9Q09RFyfhCvxp7+PBflO/WF+TV1225k8nRuTcPLwvVJWi+TS/WellJRiA0nleeHC7IdZrAra8l5B6co3djihah/ne3y7rilWtZyl+nYsLxURYcr/bHCQYnDecb/NkxOvoOsht/jCIYp5fgxw0fyv9J3cV3+x5SxW6ahRoytLQBqBfnOu8Bv6QYl6lNPSb89FChGbJCbNCuQSVCS8aHW4sLwT8fziCGwdkYBtRmLMQCCC6Np7HGnjZ04rWC+mZ0SxytAOW+cHzKqn2wPB6k2LCfmz8h48UamuYtdFydBufqCSUFNWNkuMFW60imMJqR4OEyn+bUdewhaGf6uDPdJjs7hrpg/sknKmg67zpXJpUWk3qkHBJT1mlejyPUYm+sNT9/Clx7K3MbEufTNTUb+Fou77xqRbP7xZoFVnsMPy4rzPfx/dC4yv91BIprOQC/r0BENeA+pNyIq6Oh1bL6sTVEqv/nuawQfrJHEWJSZbSe0v600gl9zus8kP5VFMO4ZqUqPnbqh97H9CQqltF37ivQbMe2ZLHvbhENYxcCVoFRa6XInzO3+S9Dg/4xHrbBE1pSl9CrrPjIGYEvukM3u7vWnOckxUCrSKWQlLpimk7s5PYbTbExcqeAkCaNvtY2GJT5NN4zp6EAy7dIvj3imhQHn38Z6OEEBlouAnFSFmC+T/iGtSUUicLfisNUh4zwdjlwBXxWvFxuiYzXyJYN7UTILgmxYr4//zL6yMn5QDUC4thk2ySzoksvoYgWZT4r/D1fwwdj4WV+V1InT1ZZru6g+vbAGb8QbRm7kmJLk/zR1Dm24XV6LoMzl+8kVwbIi2tMrNqgDfG3HgF8o+SFVePhWE1VdkPfvJGCxeTlORZu/+R8IPnAW4bIvoxaNYHQdukQfBWfouJIVr5MmEgKpWz9GubmQU+UNa54q0ZLyWDES1GgniodygI2ljg9pThF9RtdDHWmvozQQnKq6IKEjacHqWKXkkoWZVv+uRabn6DKEvFqZ2zZqpK1u/1vBBTxEy/mpMT5D+pjKfDc/fROhCPvr43DaGZuuDnApjffRFzNZHM/UXfjP4rzf7ZTMAhQO3z98eGHhb4s0VwZ8dP8kb4829UCG0QOZvBZazxi+feM+6Cbd+dBdIznh+c2twmFYueSKGWHkfiOeoFUds8nrAIph2QZFhOXDvwBl6nAqHI1F1AmeacuzffmsqpQMzW+klx4VAnTjjvSR0yeMuwLEOkCskcqAcdUH2PSEVHiJJHj5HTe3gA1tNI4IMC4S9qluLAAGEkC3sjjgFn1CsIrnbpu2KG7zRdmyLnS2JXxS18AwU3gECjOlRq1SgqlbGu9inRcWI2gaRozlecIr0CwrSPClvISm6PA0s34ATVaux89JDy/f1ZycKjnK0AbQqzsu4beZ8/p5ngKUMJiyxUXY2HGgh6/5XiyTWTkzbcHkkbRXkFrKTg781BEHVHQM/CuZDk658ZEzlPSYgW5A+Y9Ab4pTDNLqUCUa/wHJrKHgVpjkzffO10vDY3y8RT/2+VBsLEWa2FmLLfjmcjRDx+OKecV0qVkD4MznbLB1Vamt/GbM/5X6hDFerfQNfFk1HmD0/2qluxPlosiV63rFyfY/pMBQnwLaTi72XwbzhMNpB5Ir7urH/l70/60DyswZOD3psNgox9NU+PsDohoO72l3W1awj2cptZTNXMgIblbaAYYDmmaBjKDYdqAMAtcPEmGwmgQr9CIcr5ZTpG98VsOQwpt3bplHF6TC/vzOffWv1Qb6WZBtM+c2/1Ri+ns8VSNq7SQ3NRMkP0GTSFUTaNgdpyVFY6RDl0lIFlWZYtKOSAvYEl7gPoTfuRet4V1ZCLHzOYM/eJP70FDzRbJyuAilKbZ8acHFh7tVdBB1p0FixdYJmWosnrsugNoSlNVd2ydTrjEijRPA/4ysli8tc1suuUnVVfxWGh/PL1dMxFVFkgf6mAuUn1F8Vo0VRoInFI8sD5XofkKzOC52JppyHM3gUcpqNV4IkthrETrbCbCerfbYCJ4QiGDDYmI/px4iHbUM8GIXCrhC7dWzTXkxgaTC2P9tQNg/ZvUaDREJ1XpXsprwjJWS4pW8mnus+9iTWBRmlX39NkJ4OhxI0oN0ppMvsW0GjuZfldkNEIME4K614sQXVMN+qu4RTAfuHNzymGNuIG9VW/mUeyf6bOLcxELmUMRtkI3hGbzd+e34KXihXD4atK8kAkNb2dkqQzJO+Jvr0BKn+9nBJx8Q22coSWy7OiL8/SYfocbYHbE44rpmyXEu22WEN2qFP4WwOICZcnwu472NhryvCvvFM/oTvpFNpRptEPEGwnGbACS3klDkNcjT6ElAeDWQD9UnMsi8k6i/LER73RA+XwZXAZF0hJBtayhDFiHgGhyfdX5FIFUxbtjcauq8o4+rwumO9RTbdslcleFQ85moTXBgNh9eb97GGg9gtFfdIiOIGe26lu96SRvCUCCm9I68uDMiWc/W/1gjz/1qf5/ckEBR4hLA5oVZ1cgALsN55yYOukES5ZQoet421098NRxjstOTJFU5RmZjxnH6YolzR9704nQtgNj9H7CZsaa+mmMQC8rdavYKQF6cCZU1UQEUh6a7Jo/15L7mL3tc0EMNpV+Jfipa3ktrf+uZthPBdjEKZPdHzifCxKF/r5oNOi40saT1ws6YSRtQYGZpTbbMWVp6gjFKHWseEAc3JuqjQ0kE/jzlR0iV/IVdoQU2CY34YqxNqJiNDwhNlECQW4VQKrr8RYXuo0YXEC4ywOaA7Nzi7wVJxjlUYqONT+YOBnJtj5z35rkv9+NtethBFO1vWSTrHU373rqc0xbQTttP0ljFhCr+hNFKpof8gYBBlHuUSPjh2YnSu+AFnbFVva9DpP5oXxk+giUZcZDSqdzQ3XvyLg/S0Ca61b+m5dSOghpdqBzdzjOmGFCwpP99FdcU/tiDQzFW8fF5s4WfUxBvdgiuL1ZGLCJQvdrqq3zi9JjpDa+YutfW8y5AlCMjOdkS5Wfbxn5HNB4ti2gz9JYnXgfeoY7Yu0DzNM8WrhEfHQNb0IHV6jxh1DTN7TARNn4mPtLp1yDgbvQy5lV6D0OlYOqdfvJBRn5suBqaFpH2pDYYvsLoAd9XzJop5+x+KstBpsZaM6DIiLN2ykJU+9MM+Vj0TWdUzKxze94vmiF5bEQ2qt9iTebdLfm7kG6BMn+33LYSN/Obc/Xixxh49z4myTTTZNx5x/Zp0xmuksmURa3ExGywnW8vZsGPi5CleBof4vqC/K5kixbKD+uaLtXSEOXpLiyz02OvGjmoxbi1dMTmjOkQkl3XuXoSieyOi/CQQMhBGwG3mTDPFh8ku9oGBzwhb/Iih73ul+nkcRDjGYlz+m1cAql11sVDlHgQRkMjJLYkhNlVxMu+kQdIXXUgs6CEx+sl5faz28YlnNAqBm/5DRsluOsXiVHx6eH0TUuEbjp3pHXcxxfAt30U6vhBDLhLerfarfF/FMJa5TCbT3Wub2bhN32EnaojRdV1ssQkTbxAdM5r1L5sb6wkp/CMMyAI+blCfnJa191GepPv2UNhi13HpvHuwaadB3JrsYVY3QfSXSqb0rj+n99Xqq+F9f23/Q4yGai0bY2u92qafXj12HdVD0Yxi/Taf9G7Y6GBpkl6fAjfqWOnEppwoHeHNNdVNwG3bDrs6cB9EphKvmQ5tl6ajZZ5GMMLh0x9COCN47d74tEpX+9Y/mvR8FbhlDZAbR+aWT+3KuNCN+33e9bOwK+9EqvaKMhO5aq9GJ2bN4yvmFSDTjctVY4Vcu8mODal8bgMeYZVPTLHQ5yRXzhBA2rRMM7cADLNKtAR/UZ1ILgov8NQb7S2G8QsvjNIYcXM+z1fa+sY9FafxIzrTkenYXsSJw1IvWT6uAD3miW23uOX0dAVLhq+V6ubg8rd/tykeyO5r3aOenpWMtAvH5VLYaRdOyR6yGYh82CxvIvHoIueuRnTvHB4Orsln6b9g2IzxDQkkTf2Vf7kXK5iZ0hpD3R41mHJ/AGXdXaPJ/Fi8ZCx1+DUPECKO93mKvHErI2kGkjOSMppa2gv9aW/Vb1gp67z2qS3K++BB4c8QP2X/o4NUtIvIizM/cFh0ud/Di4cS8KTeFCuha7FaopUSQz8E7ogKmD8zzvCjoHy6EuC1P2bj2AvV+ElejlMbNwo8Zq9xSrPwAl8iIAUwexxshgUMsDQaanEtRV5/PLIm0Fm1/5tsGPL02LVr6YGi18L+HjGVQu5EZAMuiSzN7Kevw8GVi4/jLhLSiGmNYocMXusGdKKvhR5hK1rz2eVToGVb+RRrQPhSWR4R+yPlvjFrtgoLuiX+vnsxQezSTzVuZd0V+vv7vcV+tKq4Fg7/GjDsFQrnMwmxcU2SZfT7aE0zCZxzUQ4oZ0LGILd/CL0/d/e+OWkImYUmiG2scLXSKrJzk4DGswcHR+tgznHm+OpStf1iNuzCJ4KiPGbNXpWF+O1yHFjOW6pgotUzb4OOCpxzL6hMJWIemyB3PILT2bhDYqXqa4GkDVIL67rpd0Ap155Q6Xqc/NOtbT2jZBh1XvZxyjIKDZWtu57XA0Bg93Dhmk9fVAH4m0E+Oe00SWXhZCyceKiBIu3SAvMyKfAqfFEMboV+imP9aobqdVQXFinvGoDoeh+smRx9pgAx+K8xaCAsQloKJKWxCK6LYdSc1OBcispBJETlHnL5kvgjy8QVQ3uaO5sRb1yU+WtbgALIC/dYstG9YTIVNGcf8K+TOh4RemBz4ZpPzaFstPprP662zhLiSrwNoULKz3fdHcAqJUALyxn5Bht/BphXljyJ7XITN9IxDCz+Ooog4Oihxk2zDGb4/c9YaejfCzgaM66/WfXwFtnWmExk/xqVbPy+7Uxy9APKs2+4drCf8kSuXXbmfWk/bSdfX6DUQ7NE5tJcRg4TLlgTrzDAY2nO5fDlKizCYmrF/5Suitiij3adVNLoEL4+oShMnFdUAIMYreBcgupzblkhp5YZtgDMsd3a7zs2z5KYbNC8dD6JGxwJ6CUIHrp65lIE2KyGlHycNetcdXirAa1uXZfhvOTkRrwsRgPZVZLc3E8WNeyGnE+hpKRRZN4yx8YyTSIBfrr1YkIhaYNUYBIwiKcuLJlZRkfdAhiGfq7YOmbSJ6mneGj5zOY/w38OjsN6Hk3XrKmiY7FHFPxFwjt8q8LCYzy7nIDS+/Tjs0kkto7dLZcxzXYXGt5uwCoo/K5C9f3Rbp7ZqCka9aDFOaRCFeUTkqUNZKEBbqXE2uvgV0CAEp9++uN6Jp8AFkmmZjBjqqIuKnX0tCSi8kh28tYWNC+4Pq5HObM1FAxOxme7h2MuR6I2d0ZPRjlj4NE11GeWl
Variant 4
DifficultyLevel
622
Question
The regular octagon ABCDEFGH is cut in two along the line AC.
Which of the following best describes triangle ABC?
Worked Solution
Triangle ABC is an isosceles triangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v4.svg 250 indent3 vpad
The regular octagon $ABCDEFGH$ is cut in two along the line $AC$.
Which of the following best describes triangle $ABC$?
|
workedSolution | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/11/Geom_NAPX-I4-NC19_NAPX-I3-NC22_v4_ws.svg 210 indent2 vpad
{{{correctAnswer}}}
|
correctAnswer | Triangle $ABC$ is an isosceles triangle. |
Answers
Is Correct? | Answer |
✓ | Triangle ABC is an isosceles triangle. |
x | Triangle ABC is a scalene triangle. |
x | Triangle ABC is an acute angled triangle. |
x | Triangle ABC is an equilateral triangle. |