Number, NAPX-F4-NC28 SA
Question
P,Q,R and S are towns that lie on a straight train track as shown below.
The distance between P and Q is half the distance from P to S.
The distance from R to S is one-fifth the distance from P to S.
The distance from Q to R is 21 km.
What is the distance between P and S?
Worked Solution
PQ=21PS
RS=51PS
PS=PQ+QR+RS
PS=21PS+21+51PS
PS=107PS+21
103PS=21
|
|
∴ PS |
= 321×10 |
|
= {{{correctAnswer0}}} {{{suffix0}}} |
U2FsdGVkX1/WzHJsp+tZkussVhcbUaxIpyXKzlarZ/quG3p+nE4rnc6QLGJglerZQav+uUXkPTf6oYXql9JknXgKT8CPOVYa/GE3c+mb+/UOvkUpnlly8WphQFmng/5gkecEgSx/qrqh6FOrBBPAFwUpYQElSyy7eJXiVFhH4Y/F4Rik8ac+D8vd0BeburRcfca1gN3d7GPoEvbFN/MYvn2b+yuLzftCw/zP6IIg03FIEXbSEUW+BQzh8p4owQaQ2J5fGcSgPANUVYpmCQt0bPh9nvGzYah1foubWNGjSMThAnpPz4slHmkKL0+0GZZYRDgvOdq334pIt2B/Z1q4oDUI8u/TFiIZ2chJbC9gQAIycM0E9VU3BOG4vou+d+p2tg5XR7pSKkuu8KeQNRyHF7/1pUsp8/+huF11tAI3xaI694n46hlkdD92GwKJ55O9aZWkVGdKjTQPhUFImC7SifgmqBLIYKosCOQFHElW2kHQW7zZnj64KN+W6DHue2aHOzXP3pQrSTdEBPnIrEWEjjFEPf2Ar85YMlOomLFHxs5y4cbHccTMiEC5yfK7EfHDPlnyi+Rb3I10aT2jn4IJSpLyyNm8KexvmcqvpFyoN+5RL5EH41ExpVnsBdDfCnGbqjGsEO1yx7zIJ4oISV+iA44ktCuCtubTgMJuFpUbZo7toPIlvzC7H8Lzh2cPqkTaSjNFrYx6InB0rLNevpz5cNoFUwssF3SaYvCELZ5rE6s637yCMlv3EbopvXLbooCaZWIbzurfqSUakOSgev3sCdMNkqBa4pD3Fbd79xCFll7OOgtkg33PiMhSZz/sG+PywUnn9mFi2PfA7Lf8NkAsEQC0wl5iCmMdcan8RJY/8ItXvVSBcVgDgZXYxJ+W1nKiJ45Tpko5RmW68pbxrsvkKo/8urLCvwPZQMUNkHW+E0gr2+EW13PjfEd53b2Pbe5M8NlgCy083dJ9+3voRFgyD9pdD1UlRKmZKitaipaOqaFafholkjCQHUy7Nhfgqm1OpUlrcOHReYKLOOFxDpyRyokdtS4Z8mHeHu05hunMfgqBcz7pU+s00/BeRIqPh08n3mM+AUH9VTDunuB0taqmfuxa7BJt5y4/PEDDjk61uJbWwomB6FaEB4nbDWaiEIB3CHiheqQ6EaTnJcjalcWrHqExwUFn5Q6LtsiaaE/NunlqWh40hgAjvweBcjv/2Z+KXQnYUFjQxrN5nfYac7GXScx+0eFLDqhL4KcKQQJEItmdzzfQojpEE4DadMCbyoBGFavHlPqrj8y0Xy5fejkppWhsQ9BRouh/C7yMumXecCsyMP5M1DPYl9mOQj3RwAJwurBRCbiJY3w8rYn9e3ssdiDKpuEDMWaghwz7SUFEUYHogQJjTp9/bN71OilTcQUEisNcryd/AESh7d3kJBDd7P70lF1XRwD7PLL9HdQnchAoc8zyCGICmo5EL0MK2xYzNPGgNFYW+XpzdMc9ENiLGM1aYKvyei3Ow58ThziAvhWGGeRjaZozsENYdqKOt+nZ4aPJwlH5dSbdxh3cJiB7lU1/mA7+fp0pk2zRaWJVyIJzEjLum3zKlqaeVdBqs05WR2ShK9wWJbJZWrwdp1w075lbWeu3zTSfYJSD5FlqB46e3zFns0jylTBUSqxXnCJBI4n2kjlc1CvibzQS6lI70WZJm1VSruHcERSQQJqtCmlscnJ0iOYeUHQ1KdZ2/KVV3qv97wjABbY6dAdNQQFlguuRKuGVlee553W+532ooa4C6TPSjmZsQODkNuXmKvgnTS3iusxcbOE4WTBIkRKkC/xdGq/RHphYEXd60tViCWscLZPEepbrhrbN89JPDwRCJkgAiiLnsog8pyLulkSmZQUpH+d697vmziEutPumRkuHOQsbabR1f11VIaPQ6Et8k7h8miYieb1i8N51UnP70TiKVvUtYAxPoKI93512qntJ8b9muKUjF/vZ2S2zmtgyc08zbtMJPI7u44XUchtA7IzPRU8eKGznT6Ld4P3uQHw3ueLXZkeWjyx65ad2fmtRgwR+3/i55EUF54tEwFs33Wf0bMUalYrZu1kfUwtvgWbHk1BRwTf0ffxZjUxB7rw36k8lH4pNnm1EuWC/aHINJUIqERAdaS9w7ardz9NKoWxWNeg3LMM9ugGQPUQaCT44p+IrjExKwcdD2idTo1NWLcbrp20Dh+qR8Us1eCL3NlB3V8amRNIg7Y+YKQQae4cwO2d4NXWCzPWsaCrqmtCVhMOaGIjoMei+rxDNyJG7V7LMmfh39tnLn+OmP+EqDQVmDH7MhgbiGYwlsI63uHzjyP/MYO5h2prLqiSAFBL5mk1oBACLvHfyN2+Q3kA2Y+w89QiKtFqr5aqpnuVetalJuwIg+SIXMdqEnKm1ct4vwH8wrlcIFo2oDT1+jOyCufizSb0pL+that2QmB06LPB7cn4EBxuSul/NIMpZ24xJFrjgPuvc+FnD7toskB3I05lrLSY8/krgtStjlptsUVQnQGMC83lgTIM+2MTalAgzDmZQo8BGlxCYkjd6G4gVeKe6TSFsg0SEwPqjEncEq5inclRgyYdYy0w5EYIeEmP1Nc7Gm157e+WTYNY8qBN5gRX84S3+PreeZToaVvkzRT+PyDEo53tDjndug4bLGdE5CTFIkfxs2xlkQHzE0rJxC7mIXUjjZUk/RjBNh4daQbszmmaJmFj6QBmW7Dy9lAvXlq2iidosMGAOKJVzqiWYop0IfbBelgM7VHiN5DzT1uWHKBV7UjvpEZ2j9kHc7j1/Gizy8pMhKFCf5uYY9UymqavhoyEca6Tu4XicflgMleCW+87lP+l8GluojbxP2LWl83qMYmZ+wbYsmxNMiV+xr37KPuB1YZfqyBiP554XZqMyLhmMFV+lteB+Qmyk3StSvguPBbfoq9KH795oqaxIg2P2DoNyyc8/uRFDpbH0wkvq9i4t+RU2VsKEyyGa77AEYYi5NXgVB61Iu+Y1ESlJ+Y95yTm5EC1Ll/tegZJ/y50KHi1X5uRtkYQQZT1fqXEqvlD/5YtiLHEdksLdWdotDI4suioPLkpCtdODutfSM3F+0iZbWBoa2xAaIZwAuGRoUckDnH1cNNPsk/nBpnr4DJKNUbvuB5Z3B0D+dAw/EcLmQX5zl7N9m2VI8NXu5GzM3KrmDYb6M0aZUuztafqRG2H8orE6lAuHpUc+7P+lNvQphxZZRF2qay7+GmSJkGkXKr7PoelxOwiPN+zk6O7a59GhCvD9LRfm2LrsERwb0luz2a15NUiEW1X8gbFuP554gbMRI1c7k9F7kvP3dG7DTimE7dUxJLeAjbYvrk2EPFxQMuJSVIkPDAf6MQu5gLGESQf94smIp9XMCr0A/UnhWNG5/5UXgOkqgjvrs01sfqujpM5FMh7ejOfqM49FAaakbsMsQ/+HPfVwAQGxHUjDjz+0EsgryPbY78HsAZbb3nTFNpsQLQeLmt7Qmq1we+wpmD6YqkxtbkfrV9Hi+rMZ/4sMg4TtY7Z8NpB0Sphqr1mC4N4H33A9z7Ze/F8jVsWaMJIE8mdaYXs/GrddLtmly3SpDdHhfc2urgJnvqDCsOWZI1+F1X86FyuO0y9NYZpX2FHv9NkGVq34XG9IdV7ms8t5lUTSnBlukN7JIXkGLDxVr2d4C38CQWdUJvFe5yYqQYu0QPvL36w8D/L0HO4/DDpo1NcAFI4InoMWiA0vf8j5F5Oc54N5lGFyyzOJyuFkTiFfW2JThGydQx/9rMlvhQiTOIzsUjszfzNYYQvMjnQR2jQbS6ntZskj+lHtjx5KpuMAysROBYNRELgKSY/WIqo8OG34gtX9svwTfR7SkdIDa7KOknlltTdaWfwFPcHlDhWIKjc6ftjqJvJUxcH7WYVPIQY704vTYhLQveHgvzuauhfWdNBwWwNlqJGwYL2dRlhiwekapXbppLH7YAgLdQrdxcgcbQfFHiuyt34Lte/TAb/pHn2+Drfq+sSWGbsurk+LavyuSZ0U/nWMIrqON6HfeQU2/jF9ekAK5QNgQ/ObK/xT77T5jznzMymCH3H/uQlO0vo5+5vkHtf21Mt8u4Z/B+mEkrZ9v2PV78feCYnowvlkdcJBeg1kmUclq4lvgBKKilNJAoFfXCsexv6e+SYb7aKo1POmprefmVwsgIZBsSQfCNQqPVAgWZbdvZf/lI0y2+RGqRH8vqnmfQWv8QIxTwrqEdB7T96vjfYx9CI72n8LkKP49yySc9Dq0+fwgMYHGZEBWT4cFPVdtS9wDO77yqyTJPDppC53lspjGgaaMP9eSNBesANyYXrVO/YZF4nrIs6VwH3lptKI+k0o24LVEvOjRB3XxIUdsRHLjAWM2JQs2wQ15QuPKRweks8yIc97bqP8WzNoSbJO7yHSqqC0h4BwmtWEK61OAv0ZflyfMt/VbRvF8zCu0exmluEemrU01LN4S624StQ6yIR0+NNZwCaiUMz5bixn8gM36fI1GoYZ1UiFMi+kXmfG4wD4bH3n2QyPz3x6Yfp4KY2QTH5DT0W6eNnm5YD8m0KTn+19XPkWDGwWglI2zWczrvOwDB3+gPdQb9Q0mH3VHBXKiT9p/lKDIMRTAimc8f/nJc8+YuSEHAs/vt1K0zeEcTm5uiwug2vIIvPALrH9dcbxhd29WBjj7+OWqxE9n9w18IfIxUITkaFekg4JbWma724x1ebmxnXGybCEjcn7KYNcAZHG2IN2M7ulODBUZByZsOVEYqOfLeG0kKyrz+aQ+nsX8ubM3dciAdNePcahgLtQ2WqLtu9f2wenAz287l6w9MCdtA3w65l9GYDGsvyyqZeYtJho+a7osV5AzopahcM+gU8BjrwjyZ7SsP3Jy+TnYytSfFlm1EdDyj6w3FdawXIsTb39yR+jbf5SGJnT8OP/4YihNfN6/NlUDKsjECws4m32f0ySpYfjAI4YG6r/FF+TJv4/zB5mURw89Pc0s/uEq4R8XkIaS9+MFZ8CrS9tgNFAiZ+Sys7EZO6MO7qfMPrGpVQ25/9RVpasLFiHYRgpzF6whw7aqAYkB+stq0lVfHZjfuWnYrkbNJCXnMdrL6+KuLqq3a6Js47PuVXEVn0AynkYcCZIt6rIdWTZqk5j+ddcQJ5nORKxCPmU+JB8zH3O/eQeSyk1Da0M4sCcjwiRePn3s5jD6RykD9EFIl0hCsKrrs4DYbBQv7/Pb/Mco7qZyi5rlAnuvR/d+BJ3tPvsDVapWCNcsKVCvGdJdJeSDrn/QkOvEWALdzyzqkYEz+GHieFTVe6lPKJMJjb2I65V2/Yw9e7DvEZj9SAELfdFPObu2+ZOjQKtPU7XqvHMtYsfajksjrX2SgqxVVbB4OUZ0FKlp2jxk4kedjcSx0jfyWPIm5HjB18Ujp3OVaDDNevJBdUdtLK3ToNHJbjPWUcqKPDMr2Zd5tPkzOdjSZCfs2rRbnKnpScJ0sjLs6Nc7yCY6hHE8KFpoAYGj28fdO5Z358sMTkeU49MH18TiI9P0C7T6BTusr5cb+jVl1fjpRnnDBrQtBRe7QXI72QUQQgnTOK79vy9YbcufrgGz8zvY7svDGM9azbXCv887oKXdNV0v5RH5xdGT9yDOF6WIFCRYOrmtiW2wIVKafIWNDo7iGQSyaoM3MAQQUMAfnC/WS7K3cHB1wodudgE+b78Nlpyn15lTMBoKUhaXw+9/nV6Aij8W3Ctclf96xowbm4doIizTkyDPnSb6IIGkDdWCSLF+weL1RoQ1iAQTos72wUzmuQwPmhVRnBn861f/vhz6YSGQJ0YyKsco8SG36w13ZFDu/tP9ADRa1jAk9PY2fUcnXvWxKttTkFeFZiJZa+Cm2SmPXZqTCLY4mX6Rs9WynAlIQQNbUsR5zC003hc08919HPs8oDWhiCnxtBTHbQtMwrMdnSWczo3SFxDBa8F1TeIF2bpGg+sRw4cv0UDNCzzawkN1X+BoaDp6r/ohlQeH5pIs2R9har9eTp1WPfs+vG3mo80Ga2ejQArN2VAlqodu7xIboX5/z0u/5nT/9Qg4EfL5dwbs8wpHD4LG49rUP56/f+IdWwKfwvyASiSYCGKzCoWNMQ+Sc7rW/dnT84enq/erxJpTOaSuZOqghoWDBCeJXHoY8JqFXcf3Eom+c7HcHB3WgUVhT54t93NlZyUWRq+K2+W7vJZ3v9uJ8uXxtGH8wr5Dyn1FaIzp0T4aoPfBXvfScNX2gehLOjcsvwBoyWiY/AaA7xQDiffIAWurACOXlfEt80pQVXNv4hlxXeju83HDqmE2NNIcdClGc6SH65lwNWlZJSF22zBkP4C3dK7xMGYtc2t3/XLKEEa1s3t4DBFtw086o+8QQAGW3oLdrYxOOzyR3f9LsFLhXb4S2nQBOBN+g9L94hJLvq1yeUzoo7PU82HeDW1Z86aRa9LfVJ5PVBEc+5Ooohdo8W7c0oh8PH6lgftrtO3aLjoHp+TLNpI5vrLvWZlZUgsdLwYfezd5+h8KdRQwOzYARtxQdTgDob/8qTzl/B7BfAX3X33N3j2k3Odw8J7Cdo/Juh3QK+TfjZ5L2mkzgt8Zc1oySOc1TbVwA7xlJF4C+L1WEG6mZ3PWFyarx3bWn0VvDq2vPP3cCbxMb+S8rJcObt3w6vTvsyc/617VXRlYMpkRiSH1kIJ9btSSURiRzvtKqYt4uew3PsBozTN4kqDwP9rsZ4JrlhSC2O8hBoikho/2Z3j9M36jtD/pHRxBTY5JoJ27ueoPKxkpJjxDkUhKOkx8ZIjys9FUwVc444jld6cpHWXu4hUsea5tKu+eSnMJ0dSLzui47nelBb/lZvBu8LnEqNuL5vfbAqvRX86rnyo+OTWEYgsbnoLShtMmCjZBTqdw1X6i97kPJ4ko+xQzmjtm52mg7fAlfklF415KYhAqDkNv42fl/Jdnrr0pouHML4ongL0956EZ3hDSGAH4XPL4O6h/Ws/u7Bf6lAopXcJMephYwH5kVuvLwbofLefVW5PXu3fDeN0/17r7+EsaJ6d4W2k5PNhI2uoNNIeeKsDgTkJNKu9Ftp2+MRKfWuMdojsI4a6Jw5hNVf4BIU9SkV2J5Z3xEc0gm/OM4aG4n70K/EFvPCmRcEbnEVmT2t+hjQgZZnZK5TnWZIFNKqHV4MrYGPVWO6IjR5BWMzCHm2/dnGwJejXmc1LrV9Ry4L9KfPB5v0VnDF/VVJnRTflYmCrP7FoqP+em8UzDymrje0KLBQ+JKyOX3HtNYREt/GdsmhdxWT8wRxBcSCusqsHB2m7UcQoHdCp3ht64C0TUHJJUZD8Ej84lKFuYRj34+zVlYo+qvU5m6xP2R7nMwiMEhXH3yk2UkPEDcN4VSc2V+6oqjSfPRNZayDJx7jJeo1JxvbzMQg0i9fn5ntoPrjD/Oo6xCFHL7imseSUazEoe8m36dmCob62gGAfm9oXnXe7ZbgNrgpdZS6KuvzDAassd3SX90Z8j7TB+ydIUq6f8m43+xUiyxRqOL3iX8bZzQZfDHB448yM0SUbj+PIcwpJWmof0zuGxM+uCWGJ9hFFnlzlxy+RsJRyutS19EqBG3FzZSfgqQpKtcgv6QktAU8867vp7RSulil29BOuWW76D7nWImz4hZhbvRoQSes9ETKcYM5j+g7m3Dzlj3f5yut+8wn+3WO3jttinjg1TYqu6GCg8GFkS7ZWUmRUFbl02mkt0dkQdiASmciR6Na71cgYPTapgnkANx3NtbyECDJ204nV2D3ph22WISGO1ndBBjGnefciyfBzjkj3Gb1ys0D3MlmA4T0zh1yjuZx0ZR4b9rs4hypJKi2wg81xFJDLAIGfj4cT9PXe/gxiVdYqDoGCnatgRX0HsNP5T9ln8YRRRnlrewKuM8ZF/XbsDaz0B2nR3gsUsZsjIo/Uqtc1DDF7wRrldCo0VK+tmjWQ74vH9v7o8+cui+rbjJmLrqHGuReNewO7jvbIDxt1RxHVeOcanzzB/fvPqn4IGpATID70RJQpOKw+xv7+JnLfA5/7RgfsFr5WotNDfeKRTb3VmncvymqqvQFWR2ixhnFAAYJkzER85YIO8BnxgmcM/Zcika2ahdRL7FMaJmC9B0sDd6r7GAldksCmzqeyGrMRrI+3RAF1627Hpuo2qZK7Jv5r3nd6QzVJGYbEpRM0r4nRB912xTRpxZRQedoC7VCkymyelujTB/t8ybzr0UR78YGPrFG+2QHH1WIPQ12YWFA6AaVRw3NoBZ/Z1rVrpv6oU9MrM6+oqHnUAILy39m85IO2T4oUhfwu9TCaG1dG5sEgTlOkGeoGvybEGcMUz2VMZvgPuvEefeQiR4XUR67TMasBatZ7j0H9NIGz5+XiOQXXOnz67fWC2e3wj+OoeRTABY+PGBIqnOSQ33Jskn4IYi88e9iiL4u5lTOam7Ybm2SN0PF/zdi/iIOlTy+x1Jhk5jf/JdmdOPG2Wu1y6Nqd0GeqXumSFeReqG3qbal+xg4GADz0jjJ0g5X0Gfqu4vVCJdB/TuU9KPc689cuF6eTO4SmHVNvsndPZulxfDEiILhuRs8fWei10m5AwenFw9aUjt2z9mAMjohWEaGPnw5zkEXIdTmo/aaiWYSUWuvkHj6+vDve3Y0rsYPkeADNpzwNyYuGi976ZlvTsRoYyFH/pfrLhdCCIStSpvhIjpkA/zzXKVYPHJRz3U+FOlkXIMIjyLVF6DlyrST9V7t7isk+2Ut/1oZGwjsZyM0ct1xgs8R8Fth7dF8klqKyEXL8XTRrZA7W9ibxe8b/J6RkWrT6XAe0NHcFvdyRHbwOgSolEZ2J16xSIwwyVxigo6BUsalE9RJF2Bz9L6wsrVLtNYsj96bfCz8nuz4hHLR0Dvl1TP1U3NdS0VP+1ZLagM3zwxxU97mJ6HHVEl5j1kupMnZapBOVQz3xdHX0LwpzJ3dLRcSry2NmmXu9OXm9qWVYhc/Mz4LYUudVda9y3jvqKey1MLHg4Wk2JPsYC3E4jxg/A5bCCXdQW1G+YM36L3lE7WZ/2tv7FRRQ3sPZKUi2wWiBGjYe9BnZD7EWW4wieLBlYxgMQuLvV596asZVVN+o+dtHUmlhWuA93NTY6a1+aVrsLLgxE27Xth0+c63rvu/zQl0m6DmKHz1t7AC7svcZQfhDW+5GX0gO+yFf4/WnBE73qI9aYfZDEhMyjGLKU8gjonySmGqZUkkNnZJHuU3W1o4GDf/gxVeZS7yUV/8Y7ufI7YjJMlv+JGkIJ02OfQZFrt/R+I9XfE80XcQIvDfDXY62aSVYyKuF9pn06lGJ30ub0VZnzzqLA30NmoA718niGdG1a+UknVp9OGIb3D9csJ88R1QQgp6nwkpXIKBHW8Kqao0YtDtv68Gb8a1asMyY49KpaR8h9vPfQ7W/2GOoNzPEVfJ+RSb9ssYrtYgmezvcwG2FeQEEMFH4QAIfRxsuDKnKhXsauphQhMfQbad4THOoZeOJiWHC1+3tCEDSNd70JGMCkhEqiciNR/56zXh/2I7l7pvIPZnDdIAllZDhl0MpNfdHI7O/8T0OB21DwCgmYorx3BSDus+syqatvXNwBNfrbQ8eHrA0T72y6LBnxAsCNMR+7XY8U0xO/FITNk1UtqjpdVu30f7F6snNJ25wtn69Pz+9NIwK+7k0+4lkQGgnKwVpwdEQdKxrQs6m+6wYhFjTgVMdMiQ277r8dglZXHu0DlKrp/i2MoWgnvhPlc3a2mUkFHA1kvh9N5Ed/PXyYbR9bagirCFy6Tjg9Gtdi0fuYm/32OHn3UkFylIYoSg6SOyttT9PxjSyR4IYgYKZKDBSbM6hCNsg/OO4eIq8wi93r69Q2/PRGHbC5JsEnKghdIeUCM1TJOSg2d4Q/JerZKBKxYseyu3oyv21oxqC8zy9vdURFWJj8WbXhPLloiznZamPkwDVrCj2tK8JT7qM74aTl6bbh8hFJXSQoFk6h04Q187vk9IElovzyTaTH5lK8eB/gNKd9BVRzPVU+VbL8wEBwyIwPdiSFOdKvBjr3f0Mz4gItst6h8/sU/vGuuErvd0ufp5drzRHU0wecquEYPf2SXHUh/kOLrISYaC/wjTUbXKt7uv1WRimKqJGJZD+IpZahTLhdh4OUQumvJ8J1hODeOuH/Ftm77svsZROoGgXBI/wRGNLhOJ8PgjsEpNJ51eU9x9tcMubd7gcEIc+szcKEXr8moTSPgGQpZDTHSAjoQeAwZws1LAqK0mVQVxeQPdHDQGQTROt1kZKqYxS0iPUJQlMsHzJqYvwAokspX7XXkqVqmuiqghNSvRJtvMtGrXoF74WrUGb3bkXO3nmsrE0eF4C+5afBsKNTfMByrsELfOn7QprPXRca9d6R86fQYkZ4WV6imZsj3WAo90Dw3k+Xd2PNVBkLbEggFzcAn9/fjcOa562Ir56KYsuy1yQliMr5Ah65gfR0u+NT8Y7dPfe0/jmpQg8jAHzBd/DdoDje0J+Egaw8XtJzjM8Zw7l9vYZYWCD2xVIl4WSeBnCJQcZpBX49f4WwyodH9cWGce/DLtlz19nN07glF4LX23ivOGQ65YKBjJhD7HyjtyS4SefxIl1FRqtildVRk0EqDNQrWqSeUAUiK3jaYxmcWCTMDn+51yT5W25SR56ukXtv7RvOfmgMAW8QhiTyppxgWnD9qgFxciOPUND7ZJGEadUhZxLi/aPJVRjOdwAfWyhOA2+bdwkXJTyIFcPBJHFaMKzOsazUgtgilHZp9Egs23mW6k5oNoP5yRHruW9ScrOnYrUUHpYkPxzH7fpBxmCzb8dVmCYGQqAAtREZlvkz4Ikkpg4ELEqW4I1ZKKSZO1eny6ljmemk3qOadk6EgEJfJfe8EMZwXqDsx5W8mscjoTUd2+DvfE1AMVr/k8Ufpk8vkIyVJrj93ynr7+9Kz6ecaAODPb0hECRDvdozV0CbVPHbzpuEqJ7OLLJWni6PQ9n3ddxgUndV4n59WznZYMll+IiWKGtN7QpaNrGf2RWYOxKqhFgVheDn8Ic0kGLP2oa3i0r/slirWIgdZWZsjLL9+MUW0Nf0TyNKOfD8x+Ck6Y7XMkZfCh3tIO33sezEHliUKNNeaG0oZILBcNrnFDCEI9YL3sF4yNAXx4lYCxYCYVJIS3W+aMrxuwF9xAPz+b4JI0W/sJVwqDZPDCP2/7J2/eDz2nP66p+aDLn9h9OsrAhHNyF+M7/X/2h3tNgetvS20/ZEBAqSvB5m3Jfg1nhP8z6nwpsx6uajJf4SseA1Vi0KxaRA28CTPp0sMqbk0dixqqm+4PeS0qw9yT7CaJBxh5/w3nQHc6ei8Fb0bvpJNegHfRYmw52Ialn0wtUrSFgxkGnCOf2ly1qZmS1TUJUjueyUVzrVey3TY0lgIx7kjGDvvAXaUCkrM620kwnWTFriasta/8ulna5B64p0qWwCEsVESPKGwnkmdy1OZ0TbTzYE3dMroDX4a10qD1mSoaI84MUVqEeWT4dCVblzsOtFybdmfiqA6gmhtJ3BxL2rBcCZigpOR4dA6AYxlxUV5eu47PM7wkx58dUrLHBNPnK9xY/gMbQJSzENsUNxOCfhSjKfiD9RnhmtR1vZcxoZOiDopq5HtyC114KV70Np0TpFKFpEDTfhhC5Cgii3LQvPjLCxiu+qn1+QnzaM1JT65VRCh6vPyAjMlKMB4qK5771bbqdUgcUFLLqu/y1SchExxyyF3/o8G4Jt4O+r0mivjHe54HgRnRUiDNoGzT+AIQzSvOOQg6Z3buT5oUKdpNzljFKcoef363he0NMqd6iM/8zOEVKCZARhaduRFADTYK/lc/2HAFhyOzYkvELzu1liDWRnHT57V5Dhef8ZX7rY8hKwOVVuNtI96d6Cu/VGSl7ANxsVNd0R99PZhYvL0hPMc7eHaizTdYWZUXpfrTVSB8OTyZhWTVHKr8A5FHl3m9SRG93x4UB02/Po9YV5ljL3cxNtIi9Ja3JRGcjv4DqQkJS380vSXcxxlXmcuHYbj9BPQImvdJ09YTBbx8Z8RH/ffMyF5eqF18+Sft349l798yfM3r5GEaRQmdSTm8cvVq/LOwKrI1T6fj3x2Rv/cJvMcWYUmQEFdA5XdfRypqJcmS3JftuehgHTdfmgGoq4nzsuk5U4NVxrDnpfzytjYbtMaOLPafHb+PHkIUlUrsdhJP46VCx8sW+KqIEPqNGFX++Ha5RC7pGcFdV5SWWphBEF8xvnkPRfriJDL+8l3jOrmfEStXPsH2c0FaeCUxLx/F1svnmZo2IryzCnr1viU1fbCb16BtXYJfXc//lvl4W4C1q2Q3ZubnOkiBJN/SE5OIsEZgvLAyWIYH0ZfJGcRNOJJMT/RhdZPLidJBOnXybvxDBrKXuIFtUY4Qp/usUgnMko6VCgiaXvm7up1oorFtUP42To6aucsuMyseuEW3j1DMQMH0ftCHh35TOyCo8Wb81rIHAUXyBkqVQKI59yTPlGnHc/73UAHUV/5P/U0M80J5gEOmbVLMLABPZ5Fyd4exuK1XeWTmg7YVwfag+cBkPKNYFSmmkaniHVgUZ7clmUWRJlrUOftIzm62RJDshcl9HCY5hrQYl1nDahAQfWB7i4ZGFCoqo8QrngSi8RmWOFHdbH/b/VE3Ra0SlpYqc0B9Sd6apZ9KUtRhuBp1rOoipQg878t1omPVboC6A5esdUZ8fiZEj/fj12upe0pEmNuLVC6Dxhl1ddqXZIXS08R2uoA0vtIZHFow25PvaYD2ovhMvvIO4rfcvuV9ou8O4TooND3QNrRPYMPV9VRLyhNq2NJM7+LoR1wzLBBL81Flr1Uq79RfM3oS5l5INSImY0KtAQQlHkFIMDJu44HsVZTX8BtxvgmlBkZ3SbUD8rS/F9sctPMgQzNx0qtkXdnfhzeRDPqxiNGwX/lT7nJPujovoYO0fxo/kU+3OSIvc9h9XMmKAnlsmHv2AKKWkj7384y4PMC45EE0QkRiVQKnTQm38b66Hcmmt+4nnY8Xq9Vh1y5PQBUiYY1ovR/QPFv5dt/RCmjUcX09dhYKyIQjDFVhkEyELGQ1EW7i0l9LxPNpiKqI0+6w0HkWiLgqObqgPcBqtmFl0oK9uTDNXI4mJXmPTHPDUbmG+Dj724aVb4Tl9Aj1wFO0G7Wh+b4xCSi/2GAJQvdpx4/MbFc/CHx1Ltx16hf2p4VhRMaTa4XEfTj3CMcHd9MeIAP6jCh9N6Mx0q8nhMLbRSV6ysJw2KvVUPimY4Lmsd86PoN3xylW7OJ60Vj5HjJEuVSnnygbTmIKDUCk+oIi3ymUTGfabasP/ko2bEozkw9YeaoHVJzOEvI8Oev0uczlmJPALaYyOXqv7kt/tY+Caaq3ZWrJae6EX//iTWb/45kOYfJf8nK22nBAIQJcKej4QZIA+k5NnJiWwSGeWdtD1Za0gzKCtir3N7MtnBhxxtK+YRFzaY4+EQdzmo0/tuYPvAtQV/btx6NsAUgIippNpL86b06ewulmfQJtzEta1/jciFRoM/aNZuUt4UCoA686Gode4RPRrQO2hwPYLqz/obIimXwzTbnnHXshaGyASbLG9glvfWMFMcdqO5mqKziLXTRPo4dAz/ddT3sBYvXD0POAquBnRv8eArDzW5I3lDyNt+bsD8aNrS9sCBfge2A33huDQtvMpRbF2+nvArW4yDNiRiqPqoyw8s0p7sbBTApLR44JXzZq1RSPg8AMJKVFNEcvGh1g2KhqI14e4KXo/+EaqdLKANV8Tcgc5OUTlx5KOnjSGFn8ULktoPvVZjJjXCzMFEKL0pNMfgC61N1yO9CgH1rxmoibLaQF014DKVxT6isjAP6yePPyXmy509OgbviI3A0gOgb8ZAjySoIXDecAzY6nbdAiDtAZBnnt0EYAXIODxdyiaMiCZEsIOjXMrEhlVPT0VoyHL3vmIHp23f9We2uALzXr706F90k6iG3E8MTFOfdovFQ4LUQiGtmGiHLIRF56ZE7439lrwciqKKjOBlhrA/sEXZlszY2bowTiUiSMKtNSJ+izSeI0iCGNZlzlB7QKKLtJOz0HjsNayBpAs5xsXbe8gsKsHe3dO6dzd96mu6cVyF4/5AvyUiRWpSJISVnHt+qPjyxiUlSYBuxfHkPPzB/jMzGlWRYnfkz34PcdZHM0Dw1eFdKBPTF0aNl+oBWi7fSBa0iTQLNLe9a/YwVZ9m2/Yj9strLzlbjKcA0212BH8sHIC3UxEeHkaCSTEynf08zwOOg4p+y3oGC79pd1g5T9N6wyNnRSWXqBnuakEF7iqbQy5iFd+bKEacClihqWcBKjNGwGXqCGzCrQx41TMvbQ6kkPMBDBIYt/yy5kxXcmJZCtIf64A70Yq2x7Xr8tLuHw3HpnU1cbEb0LRlSoOtt7VjuPutTUv5+36HFcHUAjC+iF6kinfR3zPIFQJAbZtPvTtFbE6coG65CcXt4zDlMNllX/0/Ei5Zo89Onm9QQu9XCo18eeMUe8iqoocnV9JISwzSLbcMyyDKBqSHiLZS3iGJq1jN81PnTnquKfHfn6BTB+VtVga7h+D9+v6/PlB9u2ELxYNPnTzj4xPXxpaLnWO6w2tCPvw4uOwsCre8OnDW6hFSiuMEwun08NnWwpBYhFgtaVij/xxvvgiynmnVKCSuyCquMyvXYfRDH3IABLl9qu1H6DvnhVEBpubNEclr+2Krd84DrMylLynImREilcKF715jndLX1vfH0ZnUX+gvAWG6Q/3/uDpjdITPkyU8Mb3l0twzbk744xXJvdGTRqg7zkSg5HmwqwLBqAOogqHj4Nw3v95Nzv6c7ehyrpjwEnp4zDrbYNEQqU/EQT+4XiSBf5Wi+kpsZ3q1KWLxp1pedDAnWZBjJaZFv+AxxE8tzHqmGUd2OD+DRjEpAouL2P+9fE/BOdUeGGjuKvlol/7ct7evZPFHDm0daVUf2+L2P/N3D+G7mAvlyt9UMw6NfZOh1rCLP/SKoX+qpICxuqZLplfWAGtnhSNc9UOXbIJFCMx9+nTdeWABZUSLxmX3IRJZIAZgNomn7FD4NxrjvmT4AhER9LpewjqNUvYBXSPqXhjDM0840754cRrGgVGpuazyjPealJE2VewHDqTW85SsSGG9T+Wi0eP6mpTcfaMtZBKQxBmY6YPdVmP1eCBXacbTjKT/W9eMaOP/10jo2+jqFttAax8Pl63V5kEkFyE3YxTvEgQaXFsmVqmfEvxXxR//bf1Wb/xw1HAEe7iBYB57Bxmbpknz7r4uOFi7zHxKY4a4ykiaeGNsVHfy7+tJAERKtrnVSGjxx0OTPjJqzQrCoZbM3Lkcw9C0bgQgSeNF3QmHWscWGfNlQIKSMCULKrGiZut2Rk6w3MXxNhsuF3t0MgM/x6QG96PiwdP1EvBnSuj0LAwLZvIfZcVzr2jY1HCJVyDHSjDhxCfblrcAbwcO3kEHfmQtwvDwDpe6VlcBEDAGNSBn1gFupay5xZebbiKZbtOLp7qwyqKDYlvqclNMzxDPsS1rsIOLETyXh1luCNmuttj9rNJLmhp7SgCPX73gOFdufNBlwcO6J4UqwCjQiYIXNzwUcuZ+4zGWWztShBAN4kq3pa2no0VnwiBytBYWxnDC8bs9G9cmboSyeA18CEhlfx3wLMcfT7FB9F1IJmsA+i/3K57yq6aXQFRNcTJhmSVNHGf3laiYnum2a+KTMBFr7v0m6JXknB3A4BCnymBfP4by4teXRYbX51SYwgqTu5nqmq3R2l02o0LXC4Ck9TvaZlnwWkIoTHPiQkd/ICpjFujI+xOfOKURZETJMCVLLK+Tlf5DZzRSEHGT7AS0eoQ0a5S6VDQMOBijgQ6e+HZdfjxtMPIKgoVLsF8+3ttam3uaS9R4yCn9MYvPBTyaHau/7M7UrdOsBUD9MHgEPmseM+HjuV1RbikPXkXsLjaNP2BVFQ5LSAIcZ54pwp818Ho7BI2ATRX+86PVd2r+zyoQ5c20otaHSZIGvTLbV4009ovLnN8W8j9Pmr/xoe2VUgpYMteT9nsqObJu8KvH5FukmNVe91WkK+YFoFhTCbxVD5GoIWVITbCfc5K5eI3hAlE+Eoh3HggTOenTY15rZRuErBLuC76/YtWtRxPwDKBNtifvy+NQhNLdY9qMWsPR5IY/Wwwf192EhH6EQZ8tv72nXbf8lpxUN/oWTro0nFJIZXddd5ebOE+FXDvnISQSjwbf+sNJI4TUj8WDiXEZ74QMUI8kYLed2Z2Kf5h403epKFxVz1dK5CGoyAw0PNYVZF8JYvBBRHXNzST1zzoZeEDfWGtRiIysOt4WuRYNmbwtoBdf6h3Q9Bdu7Qj+LYVI62yfrEagCUI7vXt+dOA8GciPE3NuivCDTwF5cJOxccSsaFNkgtsR8bFRYHqCN6NhMmQaKwAuES84keCvoW8P2edQ1Kab98Xsd/ZhPhY1NBvpCEWbxhjFPRU8zBT1mQhxTTkcsvvRNYlS/rfVXR9exmKXWQzDvUVeNSHoGRMSk+qPl57nHMNgD0HKf8Hl+PKUvaG1B30aEAX9Vfw0sRRlJo80+JaWjL04//vXP9FMP5FxO77VbA2oZcvumI9SsJW+3X4js/Y7FOytfToHS1sHqYlxZrXHDj1xK+Q0baXcCWI51VKM/DK7JOojliE6bn4fyBo4YdBgTre1LLTsRlp7hsFTjPQ+gqHgwJ2WHuC6qgkPwVPc+wgR2FYi5BQHVowDnQR/4MZ/+cF0dUl4bBJgEBVQp/AvE4DVQK39wmShJkt+9GJYKG95K4iohnDRR78NwUXIToALya35d+NRqA8In7DgsEQWZkj8mIRvh8veS4mW/1zOEyrG1gnQGBINMLU6OYexjvx8tKXsvU7hGvE2gAx2w1nGU2GjbetTlS8x6A0kH0CelXTIH2C9mKrW1g8cTY/sPfbYYE72j4CUyYq5VsmYZEC2TVrfds52u2EDIOUaRtLIKfz1sjoQoBzrhBhJID79Qea1Ia4Par75rIsO5g6WrAT8rUyZB5QXUWjRNdGIwVfWCBNvqj6jRByQ7cCsYUgifnI8wL58gaLfM8Bhq8wR09TODh79f128kooSmEhNdhFgkZnClLIRz838ZQCVwEeRPfUUgGkzvPfWQxB/UpMpLJrzK5T3ezJ2L/8Ju62LbmKlB0UkQy+4CzwB6ENIosNmAjac1ZpCytuCscDXMcJ84gu/gKgyXkJaVhHMb7JzhUaZDRhLUDtCB13sAPzlznnPNzVd0uMwhtUmmEQVa83mNjxvjACbWSuDSw4l+lIDvsZuDMQ1sGvYaaSd188Y7tUX9hfpAqjDm6Y5Wrr152eDA3H+GsKXd90L7ix9YwZN/StKDmeSwCKPvxoxZ9+1em+tUDh/hUMf7vtXa5KqhE1hGJkP2NGNa1lCl4B80VpWdmCwzgLiTuE4uYEFpdmm5OitXXJXSFZ4SA475HSoTp7h3xuK1dcI/W2IJ6M5Ci4ur2KU2nENstrfEBhkCmW7xHJBj6FezABkXHNhZWv4NuJBjg8GIvPmw6UiKY9iQi6uyhEFUHbZgQ1bbRllA7fL7UMUtSoITMRUSJs8EDAxCM3YgagaBWCLJGM8FGTaU6h26OffXkM93X0Q1buBxTPkcAY+ARawYrEOWoXNMpPjJFcPVJ81OMp941/w3tH0c9PsdUu5ODPRYj67yuztzKUjvmU4DRWU+3wiFtp76jMcldcBKdWauuw4lySuldna6b/EgaJYWV/ydp2huCDs8JOgHxWsF9ly0JWrlI/5ZGkWpf0VCaUoaS2fJPAw/Ro+kXnH+EY5t/zrT38TbrU3cxbtQNgGe/zFeACSCULFLR6jAlyKJJjdMNub0MvYtjgAW4GH6M6vvB26VkwpcLAP+5EawDQaBTgUF4pe/jxXJfLwE6ef8Oz+bBQOyx09eqBVR6fGULj+t1FsM2zCgRv7aTtWC/7li56b764Cp+/tb+k6X5gGmdyvheE2j6nbiIDr7UNHKHgcyMilU+tkgmZJE3r+fIv/FsZ3s2WlVomT2XZcnzcMz3qMkimc9OTxUhbEfI2/QIaMGEfnSiLTO4j1+k4mdOIPSI5bXxVBDVwZOQcT7au4qq6uE5gYSHmy92IJs/iNnZmA05fepXqdoyVzzkBqKYHRzYoOnDKgu5rRRJBvLR5KB3Q4PNIQllpuHhjFDDH5OCtOY9TXj4s43Wnh0IPJBPGrZM6MmN3N48uqhqQAl+ocrCHmEbq5/QABcjQmWF4d3pMdV+qMJ8frm2ksDtMzzkRGqBwvio3BlJyQn18Eu7pWfPCRAnjZL1qvDXmxsAnCbilNt58z5TveTE0pSIwNbh34bcVq3KfsuWNCwiVGBRDXbNAi/w5itsHA/+9ASqM5XROrn7xQhffikrFyu9oZXWzYuAjixuZjSTiX4AY4g6pAfjdun/OaeYJxMT5qN+QsK0ASnv/0YGN3bLegWAeT/EuwAC4qNHrN9p6Qg1uqLaxgJ8tCm75zocK0p3l5Rs4CnWNZOyXiFWmgWbSzfQ/NmEHUUzv1cyZsyqa/aSfWTVcDZQBru7RvvUOFTaWeG6If4V8g5n+5BvYe/A6s2jyn7vneaEe01AzcYyrklHxZNyv5lzlSVPUFFy4y8jRpArzqbiRDx6zORAFvdZFb3DT247Vip1B9Q+SVXKNo5Fwe0B53Q/igUconM7cM1on+Qo7ILynuHGzFzAL/OU8bzUCkIOOKd5KRO3KeQLs2HXL8uL/ZYo5yYsLKniioJnugaZH75wtxtlt/+ju9e33h5wOEh/IjzO1UbgLE6RPxxQ1l3VoXpne+jiCUlJbx0p9rMCt+W1b/AhbRTcf6jXy2j/VF1A7uKo+csd1TOZl2OCLUjOJ27776ZTlmTDJyFPxX/LMWYdmjWR/ioD1EWsBImgjANi2ZVSiah6qAGaBDZ6MXecMYm1i6kSp/x6s0hYpg8P873jsikcoJYxXL8N+zEGLOkGwaPRZ1qRFPOr2w8n/KRloiN83I5iyHH1YueLqR+pwy6FL+QGNFoIoQNEkU+nwDm/wge1Vso8+3fkVCSy2UKh/C1/33znRymZqUXiAjyhTwC0yqXcGgtUbruJZcBn2fdCf/j70sk7fF6SLsybzwgKZD2x2nUb9mTtAth/l3P9BRWurdOqYC57v8pgBzHFVoS1SIDywDw78r9RDinYvNpGYGOkVAMrwVZagdrGJ0xBj4NejkVvfi/ePF4ayOjg2Bem9ujWiMQ3DidokhdNK+m755NsgVmMl49YSp3nj0zW+JFBwnaL8VI4GWVAOh/mm7Q1iCFsxUVoFEGWlxULXHbmi6H66gyw6XaMKKvmqvdfsuDTqJGjphtIs5MtY83lZz12MXTzPZNy1+/I15MNIsS2UWvBCp2Aeyx0GgU0c+NElUrHKBfxMQtDDgKxia4zH4hf863KWlqcMg2ttl577xPfJ5Z+Ol80VFR1FG60yMq91J1prDjReQx8VLwP6wZ+Pp/Rj6kRvIpTU3mQnd1vao9oLfhKgiAtFvgGAAVR7gOaRQZ7eaYE9A/bWjHY7lNx2yT+N4bFPfmQJ6knhb3F+RtgqZ7OjV2ogJtTLK0wn0CMlhCn47knTcTylD9Ez14DwAePlACoDTZgQXi0x5p+x1q0D2jKD+0lz0vQHmw6omag4PWhqZ7EzJ2npDPTUMY+d3clr3DMpoIuEGa/gYIyAnsqNeopaZoQ2qGFMi4/JFOLDaDU47JuhYn/5qu5Tu6/SOA1xcrrNY03vwoqxu793kUXX+unpZn7Ch+pUPspXrO4IzhUazldIw4Qdx5Vk80KmON5Vnw8yhFyPdZeub9bkJxz+RijBcKWYd8G3mtxxhS+JWjP7FJO/VivQGAUAwKPKGKknQ8hHbQRBWgAO32QmY8tzWOGRRCuhOYvrc0k2OdEJw04+uRll5H4AaYYAeAtibzHQoEyDQa7pwiA6kNGXMBjn4O8OrjvDFB5s2rpdwbYJuBjj3LDSRifdW7V9KJt7cXxFlQ/XFLxICBlucu2Lv9GCdJvkIthDZN7lhC7mwbfezdhSLeeSgL9bWjpRWYeVCUnEnYZNh+DoBz7CcyHMMpJH03UTLrDyBmwcw1pIG/XOugo8NR6iO+nG9stSNDyjo7MSePLLKWQSgf/tGGPWSv4nlmMTsZHMxIoxqEEFnDKSzpcI7b05wC7D/kYGo67S750MNdlA/HGBjqrxlfuM2mbN04nyg+qy5NZ0Qf49u+a70q0jRJFD/gBEnW65/v3ueth+ts/QQd1ys2snScXT1GStTowVqb5sjJaLQwn6UkYWaqkXbQ/L115l0uzSEv3trKz+JI7RutcZY9MN4LtSDCQZNsqR9THmZfKUQas1ggI213fywfgfpB16nTqwdTaWAyWa/f7ZaxqtT43OQCXpLQ5kYyhLoVlZZQGkYFmW1qBUvKsH0Oxn2P48Qi+tkDxXP9j0kWnpRA/J6MVRfkPzu7EvGO8h82qVlCJIdz31zdgd4BeLSWO4OYmMDqPZGJWlZLXrNxCmcz/GgzCzAh76EUeQ9yOw9WFqhDNoraKLtKtzC+6dhr261gncOdgEAp6k97lFPY8/sNCP0KxBrkd9Qc4EJWfToIuvZsL2lwzzQ3dwV+T7ekBgMVqHNWcuXFYWToAYKbKgBaxSWA6Lt4zwBkbFWgdoR1doTztEGXtz9oEB/gcVjefMrcsoiEIVAB6PnAX1CKaICwMe7F3fukX1LKxGBaj1ugGlg4RQJLItkebkMsBoqgbS+0NTBChaCNM97wDBfZUxUL7VMfLOJu59b2pIh4tQvIGGQp3pl2Ogr3M/TKHLmi7pptFXJsvkIIXw9BbM0xJ0xO4ItmR9TzmhoDH4lCy8AfKE6USPPYv28lfddJEE5UlRVSPJ3zfijwf7YeJXxkpXk2vjFIK25em7lWHOUsSGIOHL1rlidsIHMS/1T7MyYDKwwDr5ylzwxiwqHA/LDhhu1cQe59xSskDfd7Lj037NINrDAtcqz994hz2DkX7YBEpFISn/OmsWEA8eS+jmjWcSYFqsfS6n9IfvC2KudfnV0TjRYug1gQ+Pmb+8KnRoAX0e6TbJc6ikzBiB/qdaUVSOL7FQo6b//e24Pe+Ftyv8BxtpU3TPCn5SmSyrChcNtSMZuO80CDaFEHqYCP9UJej07DUIS/UGClUfqBIKxyOcgUMNI+908tFYHF6jmcHB6QHb3E+j+B1Jl5lXMU6T2U9EqWdYVTHF5Ms53dr82OjZN7zGRyJWbYiIBAMI5PNtagHojI+DVnYgMHFeh5j6s+Fdv7Fyvk3IyW9+83IYdxvwwvTtLyO92s29Xa1TsVdCkaNin2OtZaf/ZOB27+JSx0w/NGPrnEfMWTU4GhEc2n+8WslB9YyrGEDHCYl53dDqWhdl4rla2OmLfomqr0BeSJmm0WbjJESpTmgqJZ47PLMwS67TN6AOVQu/7oZZ3nqiwSSxHhLprYEC+bWXTZKZAeVa8LeKg07uCFu3UrlFwU22WVKo/BRELfZMTYLa9zpxa2F+Wpt6H/Cxk3dxVMj1VsA43v/Z8bv0LoLKB7FKW7jQMSrG1rWg4LdbN3An7LjohH0PSPFZmOk1W+9Sth9Vkz9Dxts4PMP0pvJyv5nEr1GUZU6LaVhMQP8tlZqgfWz7VksXDsP3siWmgQqqHX8UmX+/PRELY3j49i9wCVu3wHzzApqwGiuqNYvWXNjqC1Qn+Bsvlnc/UR6g8hnOLz9rfnGYk57o5PU0buAxrnOkhgAQA2W9GV+3RSB8520S93xDf+puErXz2HW01zoh3u2hNxQMAwQdxtVnmrfU7TjVfY1y5P8HL+fDhtw/BwtNCIaD87/W2hJeCSW9VDfgPSC+aURAOUYR0wa2vL+2m6NaafQu+zo83OF7Ze8ojtDO1L0Yie4wfv8sF9n+ZfXaRAmCTGpWMfLTt8U982qvrvD7BbSqhF/1O2rDXhRf1E0X8eQh2dJMvJPasOhMmsVYwwyDBxxqiJ6bi35DQCjbKjyhSh22daN1uOq+/2v+ARXNUQSdWuD3wuvRGpDPFyXVdHMauG3DUC1fvFLsqSoc6EkK+2aiYLS4OD+wh/NhYa+hVW2Vr0RBBj3m06z12141fszkHgh/rr48TcFLL2Kb1GBq16Uaj5Ggtk27SeerCqgkdPi/+wuFiPO49+6HvNk5mSZexYbMU2c4Nbih1R6HPzW32mkRB5xgTRYs14F9zDe2Go17U2Hl/AwuHCsbirLKSwPTJ3SD1MnmjSrNGH9CaAIyDq1AM1SfRWtjYUb20xzA2RUSaM/M0SJAW9fh/Q1Y0nJzfAf4YYzVb1H9rKKQtmXccVSDKJHMyZxu6xWjqJGd3moqXbq01pUaLqv0lY5F/cr7C3E3NwQKclYEiX7mVo586rR2YM8AW/GJeBKx6UhT1NCGEvUevpQLL29erebwtlHKxz238ZHbWIsSgU2tysFOJRI3Ia235CpqjaDyGqmOcBnZAP/KoJJI/AIMppGnBtf2AafolppCiiB6bghYY8TR7RajP8qBvV+wVVHm+HUeA53cHwkRyMoVv5R2Ia3uhnza9o4y2qQ5Befz0x8Dc2f5rbspOGewZy3a3pK/JJAcM8Y4Wx7Zgoy+8BxeIbkf4OjPxX7GfnR4ej/bwUBQ5ZeqolJTQyzz3xy7dJbZRkGaS7YpM8AKsg2PKfFHS5VerZpfkbRwrIROyHDX6ITtyHqF7WMLQJYD+ZJhAZVYMAt+dxoYtZHbR8Nn/pYc/SMoGUmsB2fp1XtX7sUDqTppzNp0RW6jRfqRgE3U9CVzDgPNKHMze53+IcuV5AQFQxWWRDQ+3teqFWuv2Np/n+rCw1SCS62M+Y5AsbKtj1JyyhDM9g0GJRodQe7AgVHNnPs1m3nWnAPJs6MHRYJD/Q0QwI2sHVDxlBFLPSHkTgCzW8ESXbe18LZ0aSeoK5PkWq12QD/tdK/fWWSMEXGvn7qBcoNupFzIwrLPnEBx0bqocGAJXwNa72e7222W+Yi0OJGHncGtfde36zbW999V5QILh1jLmw2srdhUhBTHj4fpSQ28wvkDJmwpVDSjKXgJTCUChQ15I7evM/v85CSjQjRoS2pjaHLRplPgPTdSTwk6YwqsdZGy/zteepnL+lxp9ToBeOy6WppGWzcTqTg6XPfUhz4Jn9GFh/m+lKDnUHTTcv7aMmY/A4MqKLFxyrZFHGV/1FhlL2MZ+/PssElMXiUXXCcXyHhO0uZeqd0KLtwD13pGXFT2zw1wRj1Zq4Ish+QHUm9fsrn4vVlGaumNYBpZIbbz5zvhoe++XXv2SVsyiaXvlo9WDSE2bnIW7Jyw3UydT2NwdtSftB1ZBjFzP945RPwcBU8YvZMuhzCWINrUbtDUVzKVRg3y90CWUJ5V0Masg2fsKCzLopng9TEy+GDPcSkmFAxinZePNF2RvlQhWcXUoWRSpL4kJKLrdNE1Jf2SIoZVRSPkO3nrMuRGbBDcRBn8lznsB4my1u1yAEncaQHYr/EJhipXUUc/WTS4w6V3pdapAKjtHauPMQZpdWTRb58HEx9QDg43ap4RuSRlj04hpo9LJ7yrYvNiQgCCoPDWHcNjIPlk8oLoKBaalSuDsa3BsgDpGzBbZ4nx9qyUoU0hqhkx3B+UtDLg3sU45icpXHTjdK6M14VhIstCKP/0d07qQXGrMSDRRCq7U8DzZeHvUNzr+67sLtL7Kvq/7BEoJ+mUXWjYiFSJy51WcZN68caAuF8tRdfaLq0WYhgQGDld8A+1SaogW++vI5TbJRCa9IcqiP3vOtIEJNi3ufIEbajtTgRx+s/QSvl6dt3+2f/WiRaAQyB3isjdh1fm8oMHk7SH6K8ZP1G9C/VP8NpdvqVHKngPv/z65KG06Q9Lxor767BEDQr9e6twVhxTvDhk+00n4EstMH4ZMjDjK8rw4caGFbyIKgXZVEw2zMoI8OmtOScejI2xLXziy1Mebp2/JnSZEYY0d2jxtpwHW4DaUCMo9QJTIbj024die6FHkPuouiofsXqzQH+jXicFnHQr+ngiDnjxoe4rZkXnxbHUOPuMh62ChOA36j2DR7/XulMkkZ90UCG4tef85pl9GmCrnwYz9KF+3Ynney4w5pPbRUlzRZeWuOMf02nitcLcnFEKjOitmwqgaEnIGb0NpkqJ4MraPvY5mQtJ5MYQqZE1BvpCf5V9Lfqf0T/0BhlrXD9vK6Q1OUhJgLO/DtUxVFsxWO0HUFW0WxoRU7UBCpRoVzoUsV6+Kya4Rw5Fs08YqGnmtadDtz6CDPxNqAnksFFHD6DdgLi8dckCdEnJg5YhKkTWMADQyyT3312vAZ3BQgjwhw3XmtmpHz0v0gP7E5h+256QlF2Dljos35Ebi2uwB2plw+yt8EtiekY/y/lu6rnc6rPzk4n/cl98wggvMWtkR1sTPUkffswmgXgL4Rc12VEstFs8P5Nb5cQn1I5hcSKbiDxo7lWcFWzNBQNMUKEDbmz5Tdgp9eNgZ6QQ15Ihsat2JLJ+N0ZG+dHX4yA6KCm9N7he3qL/SY/d9zW1rJQtERtrrvUm6n53rSEWMzyDY9c9pd53zY/rzBfK7Xm5vdwEb5mvXb3ymSyP4tX7GlRDwO4RLyc7kAwO3JJ0VB/e/eUv2OLck373nhxxMyOnfyeBL/TptaRFfYHz3Xfi6M1/gh7/qeJK7zXNeCRbsD4NwBu0oT3H3L+BRxZyG6xfocz0RVIj7IfPPuAJdJFyrDBurYXrz0E2d/jlXVAQDXflGwZUACRvT7OydFg3pfBy85vj5GBpXNj+cHk9DECUd7tj7m5bF7SkboMrkf/8wz+qlYk4Wv5krHclhptH4aa/6oTzvdsStOk/8v8rYU9pkbGO6U9/vi/lF4wQq/Ki0zvqiZn2xAe6wpe5fRwLe9YG66lMhw5yZEHAbIPLfIzQCJDLHNxsrYST674dPNNP8FO8ocpyrTuWUzqYx1JpSdI7ZEdHP2YpNy7s0okb/KPXJ1Qz1epXpondqcBzR8Es2sPoKHrI59XsCxFzndUdjZuh6yo4M4TzBPhwfI77A33fWw2NjM8hNdpbJ251Uj4qs/sAdx5ZDegYWXUYEf36v0HZjzixUZZNQc78pL746q5GC+d+9m9LxE0CZQtx8q4dyaxvgFXwPHtCDvz4VJcRPfaTzUX5Cb+qw6D2O7fyob5TowmOZf6DGtGXduK4rYI7RvhwZSrYMukpkGm8gp9rgiBKr82HSfTssmiOf936PD444nDks7/tQ2RaOs7ZfsSIilcjv2zCYX3D20Bt+ZRH6P8exZ3UMBdjAY/eznc1kYkLQz4YDQF0I61/G7WuC/MOijghA1O1bSiSH2qrpNbnGH+mmzULRnm1EVE6BOvZxAUhiwm2CxDgCPEPSs98wqfcBbX3XMjSm4FqhznKtPgfos4n8SRY+R+QbTslsOmgcyOwrDsyO5H6X+k3rAcEgfj30yBYPagFDftWpMGP7wJMa6L1nLofxp0CAVrhxdjQHRqJ18T+3MBR42WVeOkOo0pQXNtN0YQY6OD9agDu0AIBWuJOnXT8Nh/vlPIioA3ZlmdtWE5k//XTol8DjDYZaJwjpMAcmziGlJjQjwVGDlNkSfjkJW0kK9uWRSdfzzUiKtzegkhjKyzhuJBAdNlDpsZfFrshK6t9HkZXVoQApf4qlHfmk9TiIdS0kYDd/CbhuvwJxwN8tZPvvKTqxe4E0hFMS6DJtNAyjM+eA/B2pRBLeLV17S34jPiH6dDnYFa3Mzt4gMCyFIVnfKo3/RwM6m1VME4coOECNPKP157zxxwpynbsoNHpDa6bDlTW3PRaKmreorK3LmY3gyfW4aQc8hhQYaJ5iHp2ZvyOET06MKzwQ4/KQCC4R7vBaYsBBtvJ92ibLzBuWg+r9j1BLevESOF3MxmsDQo358877kKmQbTarXngXFXhBUlA/yVk5OqCuB2PVfLXsBp2QsYO7REeGKuxPz5Hr+dp4klN5xWQ4wW1CeVwRVoTV0N1v37xg0/tcsB2Vm7y/PExLwoQPFllHH0AkK9cjw+8FGu3yd5+/qJmvtsIHxwHyUpvtwqIi4xIfjOf/7Yvy/RYbgYDRU3U1t730j4WdCkGGB23ACJ1q/iz43Ga9lSOuFT5tSCiB6rCHCErA4nqK3QC0IvGLvfrbShQ4zJkNs2blpBvn0bfs3G+peeA2n03hrantMzu4amep2y1RN8e5r71op9hgapAQpyAW+ld9KHdwodD5lhuF4rXIhzCuLA6WkAW5YZQW5N76T4eURnnoIWTeLXL2DJtF/GWigsw9s7v60SeuipxSIuA9h6N5wiGDU5wLcIMqHPc9Gy92tCBrqRLadkutagb7sPUjTKbN52Te/0nfFUnwBDAp0VBy42yiLnRBhGNUcirxIXzhMUHkNZjlgNJ4EuBMQzJ9wrxvQzZl1tmQoPHoAjO7E956Fe5JLrq1s8yWx7YwG1lpATXwJDqy191Smpuov1RfWMxJymA/4ooMh3I/PgEsFr298sKT1FbYXJ2EVcFmSTEdDtdoB1UGTHE/iDWrAqobFMitXpOXxHKxKUEOG/q94rdUVyE9BNiowl1pe2sMF3HmLnzLLu7byQo+UGzqSNTa2cARxaZ1p4+udoPEM3ivBKZX19NsODO+ROA96nrtI5gFdyREcQDWMV6yeQMum/RKd1pPpKMORj57Zj6KAIPyedX8D7afkdN6NEktK2yUca8i05m/J1XqIgYnfAjm9c+l8vwzZnYJz3LV7pXDee+b2OTN9aBvSTyflV/1kkRnkJAfY3CUtiditlWX8YHxbH9Ld85lZC2Xjua8NfDjBbS2fhcqgbKBpOW668iPgvIU8opbR4WfD2m5SvBAN0qE/iYGrmbZV2dgD/aSmDoyizYoKfEL8jbnOqKUsGdu9028S4RKgrTw75akKQnIWLK2kqm3WoFm55XjZ120KxOrPe8emnXJe9rSMzHHmUSdj7iRhkpzS/kgMUJ99cmwYdGo/6KX+UNmaTdfGIoiSvRuMVlK3sLmlRD57fvTDXlKOvhhZfxfzgwAGEogPRGnJWVHjqPXc2iaNjKJwNAfAu9deP5dDud5G8RWKuzBKzKBjvbgYkIPzYqKPiTdWV+4oeI+yh8IMHIWAlT3eoEHLqSxwMnC3S6C9e5fQy996oXO6OfmGo7NMgJ0USue9CrKXIs9yXmnUdRx7JUmaTFHiwiqC9t2qI/3WfoFBWYzJCk6GVSv+C2kR4/I/NSZYO5z7tOOZNx4qJL7w8E9vScw/7D3bs8GdY3ktdtDwqVZoNKDV4O0KB1oIDdGCcjLXJcgjs9MuGTtPEG1echvS5vl7SyUr/SGfHysWKm1TuFaEn0wLQ8zMN2RSw2Iv2QQTTCe4c8oSV3+n0Cklla8TnfRukEEVg/lrKHpy2v0wpsNPzhiYHxbpyg5ZdXxT4fHv4FLSG7RqnagVuH9LtmBavw35T0SJ2f5ZRLG2/0bEeuJIYtoEve7LvL9VXpi5zdMlswtcBwHp3/ukEgQWQ3BhHvgIUiCvXej7Lw+mZ/UOXrgMUXJb5itrgRn0V0k1rxKQ9XbCvddvB2DfTN+pneULqYn3J2ONkbTwveE+LxijF5tl9q+2JuXk8QWPLDpj/XI/nxIC/ZcsJhcNcXz0sENrmP4yBMa6VrnVpxbCq2LJU+ISKvC0xXMT33j3/h8R30nAAgl5hhyMi0GmOYcsvm4o0iekFwL5LgpLAR5Pfsw5pN9caoMKJHBKcdN1o7eQqw8P2giVooYYF5oItfLlMoq1nA/mBNa3qtDvv/cNGfM6iCb5v4zNre6uE97cSn5ihu/ifNFV7JS2wfrMOY35SVbAMMj3fqxQVSuVuda3dms1sSYUIlLAg5CoySalPijZS457Lmqcuf8fyI6cTsCu3XJtSJIazXk/s87uay+nK+gxb/ERZHixHyPjQamNAgdnslVycpH8MyRiN0KO41JYXZ9fUYp3NYpCMNjRmQN/Zy5IzQtjzHuSu5YvsaxtpIBJCJgM8mIFdn7qdhLaqNtX3lCLmiu9VlSw5ag9QPWOE7f2x1n0826ZISkY2xgvqa7XQGg9wQvLXzfgbXHJkvFSrCFXHoCKkCs9OX1tlXKUQV6HJTXbfopPfF0mQ1dOouJLdE02jVPIld+QLZSzD5RY2r3KI9DyloND8/iZXddx+0DdgTsFFn8IdqO8ZtGYAZVS3jnofoGwJnfvIyrGtWM+MMBpBcq4jbkepHtnTshaGbiLDrS9CimxVs86Qt28+6n+5WBCsZZbFbk6l+p7TIybgA9CP+xQJ8dfSAjHNaMcfrMz21uVGM4KqEIA0NLkBPs+8xQPpat3icbgWKkzmK2o4x0Wt7gQWrpS07gnivS3Xk7DK5mFTqoEzKjpIVRm0lUxiKS2ktA+splneIuH1BClMEaYho2XPBnsQ4GisM+2HTcKBq1u0daD6kdntGXAfnDl9CzIiMnoOrUitLCfLA3HWKmDz1HK8Kh8zK8uP54ueietvA7/uxEdUeQc6mTMadfpZaaDnOXURkucpjUh9NgrStcuOmyBL2aCjdgi96QuopgrQS6kJ9tSKU63lvyje4vL8E0HLQAXH1kk8oEnhDsa02MsPHc4EPTL54BMraGHVciADBj+uN9pr4y/uOZtcah2HyB8XixgbKe8V3Vs7nsFawHpPg7xKj5OH7fOYdlDbbMxyex2LBT1yLl43+Cc31X9v14+2rAJBE2j8nJadvGMRbNdwFEbbuWMSQ3iw8hkEYYCBk5qs/ZFhEp+ib0fulFJ/7n6lmlQJFg0EjjtwkU/2wfoqUC9bw2ZR67QvMcEzk+csRJPIEaYP4YYSJ9roiB5Z4Z8NvJ38p+1mp39Dzxe+pDCHS/nuB/h2Z/U+/WRIrr0W938PLC9AxGa8Br1Oe4SQ13xy5WXdK2MQ0G7nHbNYgsG4sNyYdA8TLs8jqirB4ycHlB+qxHOngymWgcLI0svItjeY9hUPHj4LgKmJYJs0/WiQJXhzV5iYXg5sUpgr4vNOGLWV2rL59Pab8vrbMH5VwcUFjtdcuJa4BjwxBJMsscJEhEIrCusCjVazUJsbjPwtQY53nosm5l2w0nQaPE8U7/p6PfEBXcTyj1Y4yAvbOrbECPFNZYARfNfk/oYd2f88hFOAy6FUtOkahIZ4vmhLZv09W7L6LWvuddtT8bSwGX0/mSC3P5vOvuwEUfB9jccOQMFb9VXrBRfgNQj/W4d0uTEYJZESxXogRb/B1IUei151P89P+4U+BkLce/Xpfq496PRXr86yjwcwAUnOYCS0tD5BVBtBG4J7aimSKo6XV+08AS+wRuaLLfQGTyhcbBUGpJoG+YZIzGb1CGQK9EHOyYupETj09DUTc7091RmbQ9qpeQhNLxYvjoAEDnbLT4sZhplzLM4INg3b3lgdScYRKMi8r87m4dsmT2/KCOO0pkvIx3ExD9E90/qfk5uvbCkeTNscvP3fSHeH5evJANmIGq9vHL/FeSWC0YVkFdLQNDJnty5md4vmmmuSEri88dxxXVWP2fie1svvOeWL2FUWtF6hagozv3M9VSHrGOmkzbra/H6Tq86h4qs3xK1if0nNT6f3r9gcOKmqUgiWdqyB893rGcPu7DB7pbTesXHqjxyeFky0O/IUv9YvlbYF4cagW+YifiiLO8Dh+T7yf26znlUiKw2frm57dakm7sLYt2aZ/glvVJGgi6npzLkzEMbePZ3EdbZalYxGTNn5dvM0xxnq0/06fC49kWnAMzk1aSmzSBzGYUkneeVMZ5UCRoks6UHeJtvyAhc0XAfx2q3ImrFn7mb8Y9VDFwZrqacHplmTtbZ1lNhJ/4O2Y+Ax/PN1DPKu2cPVmLS0pcwlduzxE6/DjiVHLWWvjhAW6uX9L1UKFX0IQ/pI4TWPfCw42ehL4pRhIdKcYekDQP8rRW0XfNzZXNCmVxn4vsQ2i6YN73FDu9+kDMqh6jUMumGJW7qfvyfAnot6mM6JwAXoOzWY+hPzMEDLVZDV+IzW4ZB8EoTzLeXHNzrl0bd/oG1o2kCYnnmw9mav9exQe5qyAVAqQ3j02g4/s807rtp5kLehTkTZbeH8HVj08rWTp+YQtV7kVj+k8AenjcUzPRmQH4M2cHWQqH9vU/tCmGD/pMxQtWv091FdgjyiY3iBl8OX2x7ScSdUGN0Da29E+6Xcch0hWj4fIu8v1BD2KTkTNQd76UC3CAXF9VBMema6i1xmCF6NtwXzIg5uEphgjtxcNT2eHbWVpPG2NdrN9Iy0ISMKju74xhrHKyf/MRil/jVNT6e30+AKaNLMsuyvnWd8gJEH+o0nYupOT6GtxIhVyYFDOMSvU3v+ZA/cRbRGLzlPRl+uwzgyNgeacN1eiTkDmrb3MS5YuTsfv7ZBURJFu+MoXi/dhdZzYuVoDtDMeOufMdKlJjwfgAmE9Jft01vDciN1iYcEld86G6lz2iPcBg3K4oF+sVihu3DMo+jhAgDrg9HIyUxqwcw9EZPKz8YIN54eJY5DjUZOPqxBKJir0m3lDTjbbPNrkWUIyhccMfcAHBP1oWsjo8CaKq6wkYZ9hw4CgSkwSiapCp7F2FdDfk/kj9C+lT+8/KzAy7cBzP4+O+CtiKmU80DtL06i6ndYVy5fSvlttSxFs5MDfGpjeUAkvjYww0gkRXasq2N/5wemjgJGtY801/qyRpqh9K3LOgodFJVpe8voTyQSaVgx7oChngdRnLTb4YG6A7YdAvhynhkBn0P1MUpgmJ2BZcXjNwk7mEXzffaKYowJEDvIKZ0oZSwTbOp26FXMrt3aStPewvV8o3dFPnp/aSyO2Ix/qD65Yn8jAIlikoJlfa3I/8Vxq4yetNCiuGw8WjbUp+3SCgQ7KduvvCR4D1/sr8lBz5eV88cdID7qcuhXrxN5YlZRuUhWoYgS8KZoeSEZGoXl0BtPlCUjZSYiHRvmcAq74NbTER4VOKDwyPGKsbOTtbvRj9IzMVWeY61MU9IrAFAIJ0kafN7JLwwkJ03EtAVslB1OZnOLRlvS2/FtNUcEiGgpdHcVod7a9vcWEdxdIx7hId792FN6VAnFGOt7ba3KIWGtLBy7IjLNvBVvgEBeeW5sB5v0lM8VUWOdBWPhZpjO3qqnWOd6bu+NEcpSPwAqXJOT1erWNRZkHz9BtSF2i9puQ2b+ZyQayftoW7IRBV1O7UoQGMfHMXPNJitR6NB6Juu/o0tiwL21ZT+ds14PmylPQOVyI21P9h91yRBbpukpehio8LAYfoIOBnIpzDdt4xg8/PDHL8Ov1pt/PTRlpeJfCNP/WdGsm8V6Cx5sGqXQWV7gcOe4qN6ABZ7/JbCqJZJ3f6xFHkZtC0AEiP46nDVnOnlZF0iRq7Ihm2Yb2VWgxgqTtGspc41jsX6dXWxOK0W5T435p4WJ1/KStILQqswyJZvtfVk4TRu/GW15BJaVbsfICOjZ2Yn49EJ6gkDHAutaIVi1Crb2pEbyFKV+IbGnqNz1FKWSsy/YALIhyxWjiAUQtFO/YM3j/m60r8HnHIhxFaIgdJ3FQk8Ill/Umu4rCWBhDoA+JHTW059tMMx3oaP/7VL2SwAl4wvD5UjoU0i56jAT1TM49GnntoPadJmTc6tORCuau3cjo5b4fjbz4Z2GVNJ+VapYam8OGvIXtdrxyE794M6FSRWAHFa34ojv6kAglx004TzKd0EZp7Jknb1ZBXQFvUkZRg5psDUVr35STh/46Y9LRWm92/7Bn5E8zPebeZ9V82Ls90qxO+UnGFwuOQn2w8N8rOLA72fh0OotyOnLMtR1BpeyGnhfAWsXPY31P5bvTgG1AwALGMAcbRh7mmDFp+mcKrVdnT3FKSSm3MgRDV5jMLdjzq2NIoKpWjaSDtcnwmneU3p15brgeER+SUVqqyxGRhsbnamzdrT30WJ3Q5fl4O7riF0pn57buSJ0eFi0eDLn0qTlaMtWIYKB5v2hM+3zR5futpjqf8OnHTGVbqd6j2zYKLZYWHz5UdnRfNe1DNRmETy7+ZaDtZJUDp7RIsVQJMX8VO2p7BkbbV3aqeI9BkJpgAlpvnpdF/gqECHnSUx6g82NsmwMSdDZLlF2dKb8nR/qCHbUCJfyaEZI6u9sb5CiyTjDD1FKl7W3WGTfh6pmcaNdsQ5X5EfFOYBUlwNtL00oHJjWwJXu+sIqzjzzP39SvG2Ji42ODM3rzmsKhJ52cxmp30f8/oz9YNA4jaNMvpmwokF8CfIsiptwQ++hya9/2WLJSKWt8v7Dvh+BXGz3na5LRBGf4651JJ+pQ95G1YP5+1F57WN+l/cTzAhbXkzSwTbkX4e5FHPRRagCwUcLdp8HSJqFuM3mMctr2lEFrQP2emWsXXhKJ7JZ268Czaq/cWbvFYl8jWXnR1+ZSx+hzNspUIWISkFO+e2gmeWZdWioQk5UeeGs1ah4npNGJl1lyTwDNEiQ+rbcEA3Hmpw7sEQ+Px0GxZ3D0J+a5enZQn5wxyM557Br2YHQeWIVGfUJi8OcrEplB0GIANQmc32D+a9tLwEThTdhPY0W4C+YRpkKElwfCtKUcraI3VsiarqAqTkbOKBBJrlpxV+odMvLj6gSNMa35KGJqT1zcXQ5TzaWM4XYTA1+lSab55J0OCGDwg/Jr7XD6S2FCc3g3tn8/qZ63EcYBvFFjwCVsFrk5RAsbrIw829UHcgKsN9+HZQhaPm0V5u+/45nEiS8BAk+zjyWrZlViX3wOHrl84gao0b8vOaPl1aBPr0QEiCFHjr0H6x3OEWb6oDsMWfA742aMln2uwppX6PWitZHnZxKBUAmvZKBdrwiUIxjCdbIHi50C69f2yy9gWC8dQC0ZuIejBJCpMooks+kK6nB/9WUVc8vYwRaE9/xGmhfRSVsrIshfEs0Pzxse9fseC1AbUMEdXqR7QBDlqD+gqL5kbPBVLDvcJF47iXJvljq1/4PqFZgX1l/arz20X3giGCLwWsbhvUY+63N5KDdOHWI20tOYcV73rBht4M5y8gUcCenPOfGyfnUcI0xAJsPl/lSj50ykDJsYInjfo0VtUA3LI1zXlS8lQl+2iWzOdfYSK8zKy8kXkRi/IJWsHappZ8cbv0CU6NCRJk+gb1tp1vDrNA6pwlltKXk6IpmHl4GHeFKo8og12jWLbtaeaGfDf9H+XpGPBJ3M9Rk5F64OGDU5UOen6AJ6bpmf7QLSfrJNS73MM8SHEI73NGpk5h1b2LGx+rmXsHB9sz9nrh6zK7cjAJ4HqqzHvVu20b0Y0wC3YpJVjyj+yLofQhuj2r+FbbkCItymt+9rJYdBJCWGohLeWvMriWBl0Mkx8t5tyu9Aq5Kp+m7iFDjdMhqV4pGPp3M4dmY1QB7se1bldAcuqLCb803DGE8Juc/DNX29bbBFJPrNhyqrLuMxiqrMKpE=
Variant 0
DifficultyLevel
733
Question
P,Q,R and S are towns that lie on a straight train track as shown below.
The distance between P and Q is half the distance from P to S.
The distance from R to S is one-fifth the distance from P to S.
The distance from Q to R is 21 km.
What is the distance between P and S?
Worked Solution
PQ=21PS
RS=51PS
PS=PQ+QR+RS
PS=21PS+21+51PS
PS=107PS+21
103PS=21
|
|
∴ PS |
= 321×10 |
|
= 70 km |
Question Type
Answer Box
Variables
Variable name | Variable value |
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 70 | |