Probability, NAPX7-TLA-4 v1
U2FsdGVkX1+4R6UBhLAgEeEhcShb0pnNu0Zo2qaBr4XtpPemFu8WIr5EGLsIrmwYRrzsF0R9uTx6R9syxjF5ZlIJoryZqGm1O2LZ7irr0nF8B65SIOAq2Jjhclw2oHqMvHlGfp2Zam4WlKa25NXor0db8AO1JXpvQ3ZGSkNf5J/31A6b9m/JoF9516gtLDfh/eSuxi/o44v0BA+rZUds1is8TugeNdmW67sf7RtazJTvMdyoE10c0aDZ/RTYRj2t1MwYNOgUlE2NX/rnAodAzhHvszU8fHd9I6Ge4P/21sSU5AuxWivpTeRuWjED7dPP8b4Nab0PKXYryLxioUZBURkHXZCMBeUupbvvcIOvfPs6ctNX04BkiezCE7917MH8KNxdt83DKltUDavLTUnV1MbBw3zhgQAtcUdInglG2wRR50w2jCknkTXxwD6TMFLPJ2CS0yTImUIGSf9Y836lVvPLeIxn3jhNAccsMAcETTONrPw8dMD1molnAtvtzFo0OXD9TndhFQtxx3t2e+pmNPkOnKznmZpkEDwVt9JsUkEzOn40GoQN56KFz1QNVt+WzX96zSkPCM4+nveS0Yp/np6D2Yf6L2QCvL/2a0N6mHMVztghHDvoFa09+H/XDsAKa5mGw0o53RdYFoAYgUBIPjembJSasdBbJRuPRrEBQUMLSqq4FO2vYn2KaPp96sdhseW7MIcPUvdKWUiL+sp3C8yOBtDRJKLUJS7q7XvoEP0RiwE7C3WT4o4cMPcNi+lRVsHw+u24PRjWJFciQOMuYRNfqY2ouI+E3Kwq6TSPjXBBjhe0dwW1jTGgSmLKMsqN5kX5sMPj70ZWo9EMAvNl9SNo+j37KI7tn5aH9UuJ0w+gTaIx7mMcnxDxPhV5La1Y7Ps//wYu0qS86HSSbxjcJh1QW2zSijuJilNugrxiyYPi5fFjn3XRl51FtrsgVIHAD1BA0eazx/T7RZtAVAXZCtkj20XpFAlLR+5q4Z7wTtBxLRavSLgyQ50s7w5G/UBM5asmuPZCJpc+i+0CImqMKvzB4JI/fQd61SZdjOyOqLAcT6NpHTGYed3FTeErawX0I3u3F8mAPB86e0UrEMCVn2EWJvJCQe1ZRITaX8MRoLoukIzsRaU6p/nGKJkJiZCCBgXC/bXVDSS3MI6+Uf+ihi4AGzME9lwc+1XidOaOvVvdt1Ma4Gb/06xgg8BXFHTG1wX5nMp9XJqqr61Wc1B8KJE4nkEbR0RWOvKtgWi3aI/iMOd+k1fPVEnxHg+vKzxCcvIxREFqfV52PoPWQD/L7mCBplidalKcIyMPeXYj+ah4OsHPmegEf36xQCjFCUo+rijgYCP44ReSwL39Z2aowJTJiGJ+OOAhFLo89qlMpSGxDX16nbW1aIdLisnIZP1nH+SPEnbBAOUrZa8pjZwrXpbnQacn2HSc5tO68d9uzI72b9H7ru5UlUxuaXJXdTBhN2cZQJf6tcN0ifIBIdZA+6+NlXIVf23ArRWsjkSKlFkGB9uux1ayCOQFVNHw+QBVmEe/yIZ8WkSHsuK7GyWSxzJztUJMWceNe0DCnpXdLrr25NK2ci5t4K+VZ4z5nhygYkYzd+vjSXCM2OhJyQDFwWy0/FGKU1JXInjxW1biiOT/CrXJW/AFI+SF0xWG8TGFh3+EsJh9wX5EVc5rvtPlKBooOwgqN4XdkDavj54bNRWH0JAlvvylDLSNcSIYorxrJXuVrbMgiNMLZ45pb3rJyeEM9iay39qJI/GJFaSmNBrip0KCc1pqX142mjBDNIxrW3/c72fRVEliKI7KQ099g9cs/3Ew20CTxQ2b2gH+Lc9ZPHOcs5DW3XAEDBsUw/7T2abdVWkPnUidFef11cs3BT7BF36py8f1Samb1camLsFz6O4cI0z6n8fwwYG0kxQS2QaiaX+Ws7y0C01mKwWcA6O0gtQ6BD7auP8Rx4NmTun6j3X6KvshEwdMG9SknfdVWnjd4FjE985GevUZ7fws8qclb/RGYg1afGET28ixNhejLMj63KKgqZYgi1w0vonUdSqkg19jen0X+aQGKUfaOV7IAqUXnLu/j/cjTv8wS5RX2Da9H/ws/vP/iuXcWEIyXYcO1dlhQHab4DP9kuAs40ip5AYrdZZd5AIVRXbRgxI5HjOmx4oRU/ocWPI/SIAuHWNzPO3iRrcXcXD5763c7lqe2RfmNW34fjCK1kwFmKeKzQOeWwo2fheyxxvusa1TjY7Hra/MoickSdLzmRuHmEWG805PDI6a4JAsI06at19d/7rK+jh3ocUjTRZcMzSN/yujFjeRp0dfssV8NHRemQFc30li8wIoOZgmlTv4gSxMezt8MrSuAdJY0MsU9Ac/jMu/ONWuledS7MPkTyRP4THQ9ibtnt+QhslelVuCECKiQOU8gb2JLUrf3WY4LItWlK4gJURl3+UwRvIcFRmbehF+8WfhWEMd0fQ6cxi/opxMqjKCpPCxRJi/PQi6jCA2ZiOAGugLzc3/t0UJex6ulMA7UXFqfeTgVbMdx1NN7I1mcQBYd+vFEBVU1bW3KekHp0IHVCYlODbD4bcnGtYZWPkmhyNAnYylr8Ssj0EV8rG9hgMQg9Oiclsm4N4gkpUElOoUG2ps6iREzMmqsSFDUK/excsa0Z/wfYQx2KuMxlaQZw7OoSoUCm+WgL+8O2m3F4X9HmEGBdENaGNEJV/NoncDsn4BFCUBNli7XYq44rWCFccxkHlw55RbQ3T/bLQO2smBWlS1yWKVeCSgJyqgj+eQ+6xO808yTK6d9GnvNg3BnBYYceX+CNo7JzJDpaUyUsVMnVJxgdb6VtiidrEG7CZAsMCNcbwj7ojArQx2jDAJ8FWTfMh8wLno3+kW5NfvZiUwMw8ouS+hafUHijiehoFo1owp9ywVUYFQNkwaKmiv/jqQ47mbxgFgGi5/3OLygal/KRw+BYjkUDO3jOcOCg4if5SvLCgvsoWqBNcuv7X0+frX/ADw8SRAjCWMkEOZxr3GFqwrqzpbjUv/ftkY8szw/dDwzoXTBQBgK5bGMfRilVBWx2IrmU9jLhpe2Ro4kjTNx4tGqWgtli+T0DBoEp6dpWKR/05QQglO19o+vki5laHTKthYlUuzgAl0Vm0iU8Owk2Ig0vaqoFdO5setmzDonUsOadR4XJd6NfS2NruixCWVfrH/MCJYuXCkgGpjWQ2MYySR10y9OhU43HIVKo26FzEfbICBqsgpf87WQ+ExY4zU130C85gRo9NQoj0BJPmg5FZ8xls7VmZ1Y5C7OGGMj1oRDZF/CQNKhDzVSuLPXLmKKj0mhMKQYCXQFmuSpA7SttM8VkEPsDhg/NYoTu4q9Dt6yw1BHpIcPobxPzwt/iXEETbFz2PjtKP2yLwaAvCN1FRTHa+//XoQe9YzMcd3d/76tTKfFDpe1nJG5XOEsfd4COG4S/HGrfHrowpB4iiKuoNsHGsYMv4GwljKhcZJvIU4U7/+ugl1iDNsUpN+feBw7O92529XpxkV596ErbSR2KCs8x0QkMgudjWBO6Y2JaVxrGlLn/Y3uXAIhy1J45fUbAaNB1bwBFxZb/qWTCyrWH7dt1ayxoIHtILFYAfx8XDya4mAUcJNKBjez6VnPk23v4v+5MhecXmI7e81tqm89uFxJ2bGIBknRPdtSYptO1hztOCtvgrXNCLJRWOExcl6+LnO+VBFBuxH/jJi/sFsenyb6t9YX9vF+cCwkNJ+OhmOMZ3I9cXUuH0nV/rWnWUHbb4TaPJPoIWKIVETF/IHGoL5Ywx88MNwfsMqa1+n2r4Q2LbxQ+PGwBSamZbMQxJdCdJkOuGL3mC1iBsbwPgNdGmzMcpfTRF68TJT6x6TlxI1VN2eWxidPH6r7T8LA7kXG8xxQd6NtrTN1n9UmjVtGRAkQxApNtIwRR1+JEC9l35UQqsMenaHRDCabmUw6mHHkN7CmLkYeXT6AOclYI4ibFWyXmX1q94DaKi92iNlokz6Pgpj2Vt1RQWzdpg9BfdSEJ6n1kTufEEXKA61Cghos4mYa52bmPijP+E38QVHuq4Y0Q+9TeBkjePT4y4WU2zFZ6t1vPuHa+0zlZ6KTF0czE6RHiEPQ2XDuW+Ka2eHqBUIf8ntvhDZvmNGwhutnUBiXfMAlRVDiUw9tK7YftYYJSEyhJsilAwBPkc/Y2pTlHsH89Ek5hFD/oAOWQNoz8L24+A+t2Gbmg1j+Rj0WOFhm8v18ciVx5PlVivBKymsvz23tsE5qNciyjTZVp7ZteE9Vf0JZ0kNntKqvSZnJW3KlY/0uqPXMWTsolemZCvR4fv8JEYbDk/4ppkzAHHsnLiNVUzmyjPkq8CQc3RCeRlzycxZAdEE/BCuryG9ht67K5oeGbZrAKWCnTH7vBHCcqVi8h3q36XmulDWMTZQEEhdTL5W7+oBzYMeBuaPxTj4yMCVno4BW+jF2/a5oIGeRoiyj2eWcRJG0svatvq8mlNysQhJgRQBiZx7ttUvuAwGc1HZgnsajUWLVWXPwyjCasatmCzV3l8NnJhVHtk11s6iZWB8q2mZTGVEVC1+GuLxJvUqL0ZBAWOV/zkpTThjlBrjL8iPaRJ7heA1sUGWYue7Lz3XFV0/9kFs+5nlFSOHqqQ7Yg/Iz0AjhI4923YHN1YE5TBI+/tiJsYZmo/EneUFw7ysHFPI0qBjuBM1x37P2vUsR1MFI5WBpfLg5f7k8syFAXTdP51kROJlUdrwotewgPeBicnFclSx7oc9fOomZRd/GO9Opr/8f350ULC4Xueka57qaeTa/j64taskDtJYyq8A6FWMcacfhq6lB+yOPD4WDQG5191WaQ+y7YpBOaYOUxwjFZo+/hO8WTC+AFdSVDM62oQIfb1vfiN/0F0qyTg5CVISRseLDXEpP7jU1EKIcTtz/MPQGLswlPICBWQizltZmFe8LPC8E6knBN9mzY6K7F2oScdqz+62w2ny7oGERGDxNG3jov9hc4iBET/uKVJiRpBO60LmoAnjjrkeoNXQ0ZxgiCbkH8gIsmXVby13K4X/kb83/kpYY2HhyU2uUVOrvXiAvAVfGBN5velBPGSwc3LI39DA1laWjtQhHOTBYNe7J8nyxdrOEi1URz0siDs/g01Y/apvjQF62+hkdjnf8mg/kqACHuJswE9RtVzI7W7MVzEvAaXSudA+O2wKAv2OiQR3XfekyOEzptG6euD8Sj7SnXkzjbcFelsuLRqawHNpiZOYqtwk+5hW/sEjYHmZ426oJergbsaHSs8rjRoyGaSWyfvumitEgijP9HW7FP/htVzp0lO6kxmph1WRneFrkL4Y7BG8CqGAO8PmDvMSAwi0xnD39L1glJd8Ki4Gu+8OBFnR1RElB3d8UR/YTvDss/xxyB4Ta/iXtmqjbIB8BSJIpzAZDLmnbuOyKRsMhtuAsSS9tpEifVmDwk+mpSFUFuMWha2Fip0BZKrInD+v57613vz6Ga1cJzU4d+ucyJ2WSsiRFy/iGKdCu1vhXrMgZTcwjUuj/TeZn7DUqtFLdHo50J53/GG3yGfrJ8d0MrMVjBmqgEVJs7FYTSJH4YvFyEVhWAZzl7EBobZ1sfCH3Aowzw74p+oQ9w6xjhWprwhMYd8h1x4yrcDwvx+H1QsesRJOZMH7UviRMYfhZfbw86ASR4qYGVXY+ApDfjUa/0TLPZKC5CXsrCd9Umw7ZEjGG0QvPoZ9EY06MKwG/4hYMgTKnt6lUeJlOxlGTsxOqmMPwsvCcntPRPFLgw0c3kH4PnhwlY5wuD9Pqd8vIUJ0fdM9KPaM2qOgS/2M0Td7UCdHvtuYDXwVKY2CZgSfZVwLqnEsaFE006Qb7XkJK4oK0g/pANskQHYapHcWjaPyDAB9URBVJ4QLO5xKqp4o0wmcDejR6bR9k0MqdtBoNSBtk9713iG+KTujiR26kcNEAMCbc3LmJjhTKbt8r0n6CP3VrDHvicLPeC7GFGeZJt7iezCb2NYj0uniCMMWqqU14c9PRfi0XlkHT/dkmHEWmDxtd4CTBSaxvzWZDqV7fVkFP7GAsfOLn9dD0vuKYCzoHQYEOJsc13vmdvG1i6nY7Sc6x0vvkc8tOhQYiYET8lqdcsTFuWTGJ7BtKQfBFY5E8DX0zcrq9Cnfb1bllZRuvZw6p1s9HW/xXqyRVUyM4/pMa49LNcSRtIUS1lFu/atYi3/klULc/wS2tJ9VCosV4SKxBuccnLQqGiPA+NvfDU2Ma8vkaZ6CWDP6QqEuqWN10aboC4jxtsPpx64QGND4r8QhRCjO7ESc20r6Vm3V8ux3FcvrIIINsnczq5Ij/8nDn1Xr7sKdqMgMOdf5Qjh76mKfOBULjGhoZmse0RDr9tfcTMvhcXVJw05xSu3cpyPkjrWZcqIeI07L//srNm+aWAaCBHJJUPcDyCKF+U/MJv6VQwIVMCtQgXL/BXqbiR8G7YZ4+7OZ8HZ4QLMrsEri2qHwwKzpXOZ6Gb065tZxcp1Kz1ZfNRljy2fmbMp3gtohSWbAKUuSyY4UuuVtJc9s1Kj2+6VK3FebFhMDGGEFDD7qFatuwclm8KrTh0o9cw9udLJvpn9vMVMIwl+djY/35sflmcncJCC6GbSZvwuJuSMdkGBEZ53lj9IQP56DrUd5vms65pO4rDXVz1j7HCHqYwpJJ9PyOQEH3gr2ESRQ8W1b5D9u3A2vXpntHw317b2JvlHs8NPcaOy2TjEULiEiIvGzb/ErFi0Kl0qgatL/FjXIA2MaQWd4A2spRxsvKctL8KTt+i6+bvHT+d6Ux4+soG9LJwWdeszNZQLtc8Z8qVGILF5/1m50oqxIQ2yxcWcsYCIQ1WIKaFKO8q0CRIBNSnkPRdbrY13dbZySmG4JmMj405fws78FA5YSax4PnLDAee4PrUDgu+dq9l5Fc5RiHQUvHj/r6XTaxf/x5hBvW7aflHsmcKdPpMlBvzHxJS3jOsNixzKcJmVBdJfkzDtukF5Ahd8Tr4NelRievBkpbhHm0wjAfhbbOkFipgcleLBms1eHnFvfYscJbiCSm2hIqFCc9jjTgpjEkS8y8CRVS0kOMjhauQik8ureq+zDAlT0QDPDmrxqzTldjQWcKUM5jl0hsF9ASPqS5LeRCzckuWUKtNsQSqDe5lid2Aoey4HpCyYi8KL+k/ZzQobT2XBUgR8vyfVnpKDnnkU0sl7uy5ypgHfmfLfNsetnx3pIZDdZ93kqick4RSkrAcAEmw75wjJgqB4tivd+K3Pm6l0oXBgu06HzhiGZgrXIYVyyTFaXlwnKmu3BZ3evgG37VwwO8U6+KQ8DftPQc5cRqZtUUctmE54NNlvde/y13g1tTWmyjdWe/yRrZ6+f+cHgP7+Gm2goJPwLyUub6DY3gEbzU1o5ACYmFzlQNey8PkssNFSAQcr5JQWuyn/pu5bT1kilH9gJeD9ZaxTK0xc/eWR0nWz0rXGo98twymhjbd3JSwvlfF4UBaSks/86B3ItuXf9/qwQW5pv0ORm2UO5ZQRCcafspsGelaaZhplsZ8ZMmYSPMzgo8axDJ2KDf9GqliYW+8kjwoPwK6p0IUpno0iC3dvX2drrpcJuN8jamsg2xZ3mLaZqLbhXSdtCJmdIiHJXU7MRg49uO5EUzOu4DxH+qLyINzqkaK3jCk3vnDGZAX3fX8JyEVtlXs44qylnWttrJdRt6+xTxi1YVEP8fGoBbB1wz0OfsTjxLZYm9KU+4+Ak49kL2ARhhQuWtpW6Xc2CI1/h4VpXAY/Nc8KNQ03Ejpf9+Ebfg2FBI1249sYXPk8bXBypopsMCO77yONPrXk/uReJ2wFyNBXXL54nevfEICUh/zSoCzUpDCXqqm9CZLoJzkXREDvKIkQzCDdj6czEqMaHUkobrj6O1v6s2VpM2aGZEHfQGNOs1bALhQYeiHMsWU7SYYFuShcgXrm2h1x8ntFBqQZBIEootXNrlSGjljvoeqFjzNfNy8dFEA2X2f9EaB7jeYNKN2TH2vPGdrQxir3ZdkIjDmLh1Uu5U4i7jOTThAk85N2xQA2PxPmLSJDGC+XES0pkGRIlWWwB9uIo/BSBmEEKRsBj/7MnehvRfC+ABlo+qReqUmcyhyD/SJGiMolCDGFi2kBqZ4mzvdouxCTII//zhdGNnQMvlLoyuMC5Wb+7em+jvIamz5RQIU1y1sj9u5/uo/XXw8oQZAIt3TApUk3TNxwhi0UkjM+r47X84OdKkOqqwpcmwiekUbzqpNcflFWqUpcb6eB8wq2sXzUZYjs+KeUvc0MZdAXmf32RbbUAyYJWRAQHAgc7KoicdN+0GArGl3Dy7QyHS6kq88oaWgAo3buDx6+Tgz379LTtP+hQ9MlXkoMDTCkNZz1tPfT9mkNuwqG3LHcLJI2x/m9HHW6vTt1BJRNV7Fdp+dkMzNwOC6oqHreWlsSyeI8IGONBcCHIltRhbGTGu2fy5IzhGA+gBx2qhHFwcVpi+uK36kgsXCR22Rnq7O6QtgsJARlRWVQQMP6n3csaBWlS71dKXs00jDReZTb3afTCKViq63CiW0pgTQAiBXF356ogAPTnn1D2Qkd/X31Hat65Z2XM6/2KDpcBnCmDIsheeNxQMJNi4n3mx4YiY0xBH02A0irVIOU1cKNMr/ZxTsnKqLjzy/SAPH7VLkHWfC5eX4hE9OWBgC8pODgh2USHlodD4dIK45XNLph47mDBDv/+7YFtCALSSDb/XZTpi6t5gUoPFct4H8asUs5sXRFVEtNL/JgDjG/sPyrdOYgVxxDiHyCpFXLkf7axUb5evxzYW0jmt7b+/UGMFiS66jAOuzO2J4WBAzMMj1NmmpjBWTgOSE605nYKUbCd2Yt/eV6fhaJzgEozvKFfkZedHB6YKDtWgJMSepujSEh2CfpXUee+rTlNVX7TH9dcOMbEI3egQfJnpasMIwLriGc0dIT9a08WWJAtAGq0+piwxPLNM544sSURtPZuPDnKWeYztADMsG4XYR9WeYzF8X7UcS+kUPVDc8kz4+ONlaRhTetasetAPnL0WolFdKUjbtWPzfaSnss8j4X3OGwx+uiGq6jvXd/su6jbi8qcR8l1pTcyIVEx0MEExGp1LQukcIQ6jRlYEftCwIVpGf4jzYEVc72zesReS7MzwTJrmdMs7JWa+UhJBq+99OMV3GP1L0D6lYIzStaEhuIKEWaKPTQ0QeS2IH0KrH0GRjFu2SGSMx4/9j2xTiM/JatnD8DLpA8vpqDwyqFXe01cpvQxcGayPmFSf235+BkKVUO6tqcBKcvJMAQXmUEOH2WPBG5mTqmh1DflJVz3VD8cDrJflTPt4v10k3hL7b85McWp91vLrhYzo1MiAfYulFgn/xPzjiC915Hy4ui/SMyTha4Hslp3YZMNcjRWG/UscgLz9WQyxOz9fM3DMRS13bizwRBuvxFNqkO14sFRp6PjjAKBZ5XFLGiyaLd/XGWpg8wQRh27RyRgstutINJubwuzwRdVD1HrmkTW1nJVcxVUuz/sn+Mq6I7RTa/UFOjjSvrjnZr0IHeMCn16EhbX9uSELHiXCuz+FmAE1sNoj/wO//+T6akd52Vcsb+eJB5yaGLT3i5myHdo6M1T9ArS6maghW2U0rn7icfUHCHAZqvXUWdkBc7wdua0bpBFCsLnJs7fWJPqu3C/PsLnZxxvbB/dfXBi0AMQNd9uDhyPPhIOAZTK8dJVflPJ1qnhZH/0h41Jv+871CztZ2c2al8AwacGXoViFi307nLqFLclJKx3EF3PJ8h0VPz/n+G8tLfnHRXgmk4qed55E7SXO2rgnCb7DFlj20IoR0KahG4w9xpmzMkmGUEvWk/biJEyVSVSgFeM3FJL3Bestv6gYzUTEsMPybg3BfJT1j7OEwzAdkcLqaRDQOk12x63Ku8AA5tYORfsCDvaLjX6N3WQAZNd4C6zBsadgoAFAkrvJGcoguXh6zZASBjlQ2U7yDbZf/mUIomWKgP8aV06xEteuan50g4qZ5uKk3Vtv9nUdbBZyHhrL4pWdZ95kbAOkIKp5r2gsvZeAjnsAf6YQ99lbVHIopvuLqEIR/I9iddGwpsLt7Lgg22v2HX4ZU/tu7SeOYmh53VvkXs8cfNjt5XJAwbW1VXnKOQ+8N0CWPn2VcP1pAFAXil6XZOH8X0G9EmMgB/BYBiaIzl7yyTWDKrmfrw3EnVLOO1+dE2TAMQWnbv2aIijNJaD8RumpRITaKPU+caizf7RZBl2iIYQQ109CBZupsAGGOLKeEEHiwo3VVon7IvPe2p72DJ0FB+ETQLYeEdi62+3jemHWNL6al31GN1RkiyW/3FLCtLlVE0HcaIR2sVw3OhGUhDU0Bebi5SSCa7sONjqpq7+d+iDPPE7NxyQfcwo2pc4wJTb81hOuLHo5uIcpjTIb2Xg6uESEtUiA4dfDG4ZbBlNfg1kEXPe9XGoHHPKiOOD+bO4blC83yE1JV/InqyjhqKWx+3SOQ/tdf4HJtbJbiSrZWTobod9FlG6lBjLx/rJ+hjFNkujsneW3jw8WdfwwyeEJk1hrrvRJH2t5tn2Q3sqrZH05aZQcs3tGnRUhbG/XSiWcc4Oj/CvHd6TB+zy8C0PnOfXcSQi1DI9fuqOc3Kf0okwT/EgJ3YVE6RRDsF+pl6Qfsiq1RL2Xg3Hp5/kIqx4STOYCuDleO3+YbILsYRnekggU1y0obztFWCR3QXNls7IUnKEN9/PGnoAHEhDNQAAVEDTNLv6RcKco1tu/8rSYdubBx/TRvPxWif+qL/lF2QBqMAnyf377Z+j3VvUtS98CaPQLU3wyqujhVBFozns2F9DhV2l6/or6i64uHAMKFYiTg1QT8anQCkiJV01qAW5MJZKvoFiYEcQ2Ju7apc9Zxil9D3ke0BrCjwuluTfOgRnol8oytNyME65ukB6T44L8rjCyXIVQZBQbntFGru5EapqlbaCFswN4/73wkTfXcqHn4GzCcwXplkYC0ULoBYeHtbvI212HlbZ+6BLVuYZNB3jEiZI3H+idGurfR4XrwKM6xvORM48Rpre2RNYFdGChcJ2mF1TVZttU3EvQjYtte6oBKnDfUiCdRoSe7YrHAn+gw2OWvkFceaurxCdtZEcwzT7Qz6FxFQn4gFBVcVhEHUR+lMVHIL8Km3P/NLir/UKpcTlE8ws5p4+/gDvxM9hp7co13ze6OOowN0mpIMPEZeR7CcXbtOf5dwvJPARXJ4+2xlGNP9ranx78ZGa70f4ssKFXjFdM5Mni8nsLaj+Z6tOusjE0GDwR5v7szT7dN5bcctkjZ8ENSMZGLP0dPwW08Qo0tFhKrwPgVYF4/CTC/esWWIkNYCod8nOps0TCu+hJ17B90sXWnwkMCmEztkLdNtMItxOyMDx6YyA0bOaLQh3ZDHffp4TVmvMJFhn1StiovhtAWNNhRQJans/DZiuXO/HQSANqJieoN0li+ROUyj1R9yu4DxgHHfsOMJ6P12DP5JGFY3NKOLTCHziSkyAzkiujgkIumR/HAkeS9cL8oNnS0iPAHqbDKvMWN+nzQ7h7HAPqDi6rWwv03QFipWp5HZNaQtOy2n2u/W5inNthY76T3B2bPr2hYEBEd1p4cGh8JgeUBxkseZ52m4b9SEsEL6pNVthOw5C1buy0VUttbbQY7mQfM3gtwld5iB/JK4Tlsz1R/zrjtqPvZ+kcBKWqsnqz5acL4+ATEgbxxK80+XlKczi5GUAay91YCjfHP71kEn9RUnD5WdfGtwDRnACmNwiC1WSjv7cVyTgVYHjif9H5TqGV1fldm0ydGN75rK4KW3gtn5TAeTgfl3wwwdaOwKy9Zno6otogiAL9C7zoCCU8spN7lxr8vjsmLDH9O21nCtqBHbceWBzPCxB5fRwXViO9SdGZBkPYXNGT0vyEXcSw0GHGpFjiI6qJntCZNhQU1ESzZUWIZex3xXI6WJncPGhlpqzi5gLh7s///0TK/aCU7THXYyXfSsJ3uX91baGERwMb7fBb36X0bbL8qOipZeKLZgTz1d63T6y+hql2cMWluvHltSeW90cFG76L+wFVIAfW+YN0yZ928OcPvvxYfmmI5D0e2TCL+zmST04HjDGV4ffrFc3OXUjJIqbC6qOMa+FTLGLa85mmfcoDTr97m+yKiVwr4/BUU6ls7IJhB4ynyQesviVoWWvKtI36SWPBv4c+cshdjgp/42eMOQ7DGY3x8OD4i9GkdX/20UOtJZMMkEAZLd1KqyiSV7NNodI2Ol4IDbmIMZDuj4QNSFJCmnZTRxNkEDoCG64aIjU79WGZ+79F48wzB2zWHginGQQZhcq75bPVh7FTIATJqN4LlxJTrc4CcWFs8a/LEuNJS8LNWOeh+xNGywLAjNS4W5vUu7xOsn/J3AwyiDxkTT/huIvxqvllvgmcTfesbhJb0cSTqaFTwFlUrkFePtdz4UpPweLV+5G5vqK2qGtcZf4gqcRCMlUX1kl1LoW8u6YZsGj72YET7Ne2mjZ2wABysxOIBg4JFpF/W0/poNNVOQIaeEDXNW3nfCZdX4fF3NIyXoKWW1MePuRNeZyxKv79oZfid5QOPaCSa14E3MMDJUW3yMvWY2hoC3jiLpLeKLEvCyG+NrsoUJs7Btl0ZqIKaeRNc4C5YAMDuC9UJgu+vQXmI2PhgjEriB64jiPm77ixv41NHql49Z/VDHufrJRlYQXvg7/kU1+ny+wpvF8g9Y7mmoBZ41hQeI2qrB/cSd46b5JyQVScpjDPs9uxO6yNL9Ok+9jt+QgZmJ67Mo597zlvQzO9nvHYigo6cqYX8wDIXAODczDJwnq/84C9tX+4eTFYIQdeKmF/U6WJzd087TN7bIkreL9uSZVywxdFvfEABPLhz3LmDIgVbem/YMYFjXyOMYO1O5qj/9+uU+wl29m51OvOe4lsbgTnUOYi2NoD9ngptTzEQgFL22C9+6pvffkZEzjT5Pb8gLIqJgiYHGGOcG34VKMvsyouTfygj7KHl2qc5J83pnNlhfYGdcXHKooIxwXb5A7kWLP0+S2IsTQoFpW5g3MUeKBcGkwu51TO1iFJv4/mHpUuQqNvrAAe0WXbRNgf1g5dpxf3+lm+N0/54sQYjbyGUZOKI1Lgox0iYYNyG9TLztQZR49pSyI+DBK+VYNd/iFiA41g9FU0ZAMTP8Rmg5zsFbQ1MtZ7hdDN7G/HceGUR+WkFqb+8A3Z4Guu2/Ju1eOSDD6B3r8g2x+SB5qJsCvSDKCgYakKZsV+5197CACevQ6EY0FquIZeXOHVRYcBAeVyW5DXw4IeAy4GsXrQFhDGjro8FJOu7LCqxutfvZEdvSPhbCpRym3U0TiKDDa5DySdR4dPJM40qHEpY92r60KZtCrmkVDborVr6lh2z2NGCeFbRF0L5MAHmNHNrcPBpY/dJu0Pm6jndzds+1ljojYwpWBvTAOJSvwMVhhht6U0kB6K+CKPGycDEs2tzioR8mV4cex4vIkffBzZCSkrwARGlJulj818x3zb4kD9kS82HhjsZVIa9XX9wD80nMEeDyxJZyAtMx0B/Z02NWn3dJaUzzcworvMzquyhqxzxquPjFik9M+uUp/XSCw6YqA1Yg2+sx5ArS9i+Cmo+re/QWGeF2BYQULiO4tQkz0LJMxR45kc6uUc+wNi/x/EWTH+8EFOaJZyhe4xPXuW5N547sDXscx5szPjeDSxxi8q9ldKb6AUqus9W1SDz3i6aEO1gaZPqPP2dbtGejPieW6FP/l1TgWhN2F9iwxO/8a9TNffx/zJWbyEFKm1bFkfvkcprnovFC8OudL9/YfLvrqU5vnACf7oXKoX9xXt0sd211UjRaT0bfkDWAlz9/qPBx1S6sLtz8TtEKCr2suE3vS/sW11kogXfrfMsqL6OJaJ5zfHgvEL9JMXOYCvIkAvcsDB/ByMRl+KKxJ9objBWEVgfOBKWcUW9s9oWjeGdU4EDfCR7fg+8UDPY7ec5pUfdYzv2LAwR/Rf+zmwFi8kjATl3G7P1jVXUW4/EEAYLz0dZf5Ewe7KOAoxvpz5zpvchZ/UuSTvfKGOImFqIwa5ey+W6XFP5901iETi5GYjcaGdq/G9DyKkwoR+7mw0bYZyGCycAZr16WxsQufHoXBBjPAPjWlQebTRQ13LqnUDpV67YOdH6vTTSb8V9oFLNDMnDm6B18imEf8YcB6emeRUZUyvg8+I90C569wQHsApCAugIHlqxapq1HyEgdCbKgNict8H/+vUvixOt21ODHTmQNCqwnxVRvcXDFkBPjKd7ygVt1zi8f75Ug2ymcLs7C1/WitJ/ENZtAc3XljfSCRwZ4bBfCv9yqI9PTJqnVHqX/dZ/EclakkO/f6XV34raezbjbPcU9JFH16KJkqJEQDGaQImY41stNYYq1LE263qAyrT364AK1MOkrD5fyaQvHGhv4qe7vobVhpJVTHlxssQa5PvYd8QBb5frk5MVyaitZXH4w0WUVmYj03DF6TF5qJieAlmbQGclLwUIZW/TtMSIzZYWUgswra0iwu3m47IdMWnAkiAsY9/0IKYr7rMz/vsSlybzxBwtGXP6scJHuwU7Uyvw5Eld5V4Op/nMecuvpZTFK4N6Zfiv+VpylYYn3ZnbhxobZttuxVq8zv//3byGgRfhAWEfa0+Sxy2X5pHdahb1fZnjE58QEpxjuHXBcncVGJwyugxkpwfrlK260q9oiFr5AgZT6Fv4CsP3n9Sfk8x9fTLwy6bdPGweqnYyCApuArC/Cg89UQXPAkoWkUfhCijxiuHXFHvRaGuzi8ZWj7gou7HdHnieWbWPI7tnQlNVaq1fX9NLD8ECST5h3TAas2pkLQzLQPgyQZFGOGAhcEDl8tFyhHqNt5OYy/FfRuAPpYiijtDSZSABG26iKHFnTSSra5vLnoKbcDrX1y6ptSHC/6XzXUjl1888jeJa+wFDoMww5Wg3zwTDXtvtOGwRpZIsVV8fvU5XXS5rtsX2ppJe0i2wU6sKRFDCkYH0qxIaCs4zvEfcCcU5iGm/GVheIy0wlTLN2WEEvD+WGr9opr+8hp2+XZ28Jkz1KOjdpS9IsQleS6T9k5MxXq1vbSD8dPHaALXU8HZzQDj9OLbfGA/CcieHdCwTZCAkBqC65ClNd+a2c+ME7ZAfpYlHCACDyMaOV84wKype60uD/ctZZ9OF98RwiMyg9a9CVV6jig3x9tda4LsgEyN8sJsGekwrcfUN9kSx4WJ7uDDI/fgaG3cCp4Isy885ZDfa+UJBh84EUqkisAZ/12cvral1nSxsw=
Variant 0
DifficultyLevel
447
Question
The probability of rolling a number below 3 on a standard six-sided die is
Worked Solution
|
|
P(rolling less than 3) |
= total possible eventsfavorable events |
|
= 62 |
|
= 31 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The probability of rolling a number below 3 on a standard six-sided die is |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(rolling less than 3) | \= $\dfrac{\text{favorable events}}{\text{total possible events}}$ |
| | \= $\dfrac{2}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX186ejTUlBb8loX2q7qYlzFknIRzDKr/Kcx36XUBWaVnCL3WK3OFjRXt2h06xc6Ws5GfKhXoz1s3ZB0u+FH93uj+VuNcNMk0auDGKKQW67mi0UTyzqUyvqulbEMyQTqY82dtHOJUVSRw77lju75CZLmeP3GfCiLhVBjoNfY3xvUll4cUMxLkXOcXh+6YIgOFN7+X2hR02oRGL20W/YTszr8V29Kk8/U+cMavZKTh1yakh5G7vFTNdjv5Xg1fdsocemEoqycHISvRFX0zFbV8yR1Q4/NmcAUl4ebYFSxOVegdqwpmq+P7oMebqEnUUnyf8o2/f9eMdmdZ78AXqwKI5O0phjPMmk73ELV9l6jO2yNAlXXrvrEPCs9fiQul/sdernPMIoKwf5iBCO3AlE8lIqRVhJew4fwn2K6hb4bkieGroIkjdSmwtco8ZTNR/meWVF2KgtxjLEXcUfSHqtyx4a8PllOMdnJ2hH2a+o/UhfosdZ9UESJ/eA97yUmGGxBIYERKiPaspdcplA+IVO7zYTXHB+9FPEy0IeUw582uL2Bv5W+1tGyW/JcDLmebcg4vgjHuyHlqFjYgj0wqV04hTl0eVuN2n7AVTCNelwnOqiopsVD+rvJsFb6SI7yoezhWzWKnzzJNJY4YrfPWuYST4W//a/Zciags4ycEOClubGJQ7oAc4kcsuMJKccYE+fyI71BYf0/b/K5tFD5nxNe9HU8BGSntEIFQsEJIsLcET8qSHD9+f+zy70usL0yw9bBOUNXVPuh5jnc56J48PJDdGuNEIo9NyMNTJFfVegjvH1tY2xZjsFxZrodgp5g6ZNo/yvSLYkr0+jeRorcj5oQEIe6EC+iHlUq+1/ceeHQgNF2x7GmNnMZGY5z1DYpfZq351+cmSLyMYyinljRgjnZy64uaH3PkXjpi8GK5+rC9tO6GKYO3Q4iNZHXBmANFPgGDjP7HjQVGGlsAS+muxI5LI7LopbERGUFzL8RtpXey3a5gb83skCoADHeQqBQMEsR6HIrbT2jSE37XErjfWSQvenRFKsbCwtxrP9Hqvptf5/ji00s90IcGzVj0x6lK2lKBEYbx/BVMjUWNiTj8vI19XhBUABu1mLF3/3DE39F0AwvQmGf5NLM/+0MLfj7LP12OAZAa/GY6MMFNRMbP1DP1zP0xXmWIWLikXcFGM27nXtGzqSz8JEGW2RrPzKco6CGxk5rGphCe7x4aosn5CRh4CYzQymzAEo99esEWiuY8pds28TP7cFHIAiZXxnrD/uIY06mRcSuP9MgNwD3scZ5r6TGTYelSv6P/NrdpBRiPY8slB4pCl/pCHGHuICkqHtj/ZOsV8NuQ9NX6NRqx/pxI599wg6PTeaaNG+d04Y20z9x3kms7wSFtrLrrV/wFpQhy7xtv8L9VB5+VJZOLngcaH6IXtIoS3SshRcpNnJCb6ICCa4D3+balDGQEXVuPRgz+rotzkZaY9ONg63tygTL78snX75vAIfnjWToPOFeCHESKc4KW1ctl96Xgz4OPhu4VoF4ZKZHoeESghUALqRek8rqx07Pjcn+SDPDza85WQjxLbc17fDUQyMePNU+weHGV9TwNq4EvxEOFk3nS2xQYs4GxVWjtvy+fWQnF5wwVRXYFZuVUmL4AgCcj82s1rnfzKifd28FMGX5QwME2gcFoWaRxJpFUbzNXGDnubz/Z4AXLUpdQNodLbXS3ouTuXkEdmq/lOSvYi+pry8P145iKx56kFd9fxJhZ3a4CKpBeoQ3kbeB1qmAp8xkyj4NctYRnlNV/GWzV0xajlfd7in8Cei9++4pkLw/yLsYVy3e8Xo1K96GFuXaYRrHUOX9Fb9v2mwD8M44g2AfrOIglQZIOYbJAPxK033sDD/dzn7Zz4IXBLXpbUDgFCXuiR43jOFOVdDqok3d6llOKsQk7wbVaPlkriiWGuAfOXSmF1QzfYe88xlsP/VWUcdiGzr3ka/QYdhoYazh63x0jMxCOGdNWUjZshNelCvI1lDnebY6CZxynn1Syv6HEywB5R68NK88OF/qttmNaLFvPpLt1Cni/k2rfUZtwe4sARwsQg76r/hg/ssZhIuonCedXyRnqYKsV8d+AzpLIjtzkyX06dcAJ2+xEPRQnbg4xrkmayagL/L43e+I9rXihzVNWqb102Jg17sh3c180pZk80/Ke76Uk2tmCsqtTf09egh8eFWtRLY0UX5H7DoWyqa89xEU+C0iV1kpQuM5Ubcy4TR0pgSGH39d56sX47Tr+y7y5JwJ5mCrznX2mvS1HkyWHVJx1qaYAU/ivWOzxbEBYlhw8X9vQaczJLxjnGf77dfENUgdXPJoeSuhKHx/VkHstSxBNsNUkEEza9Gkbe/metgv5pxQjS1nhkNrQoK35aTw/iqoLq0bt9ZSOw/utuh5dXer4cUQykIIJrGnlmY64N+kgv562CWQT9ZLk2oTPCdhDzPTkXaNAX3p5nCDOSKbo9t0kVRavKJ+FLB6rf4iqhA0pfR9c89auPfWp7jufUtRwtK31AnhH8doCZ9IlxTexgUnDbCSJvGv1VlBozKvzWBBebWHyRVD2fHf0F5Ub/WvMW3BvonDSd3t5bbW/D1g4B/3MthxyM4svcZSYj+V2TTaJ95rv36/569gi5vQuIrognChGsusZATmnOjldFF2xBCRpvwY9Fy/o9IPsOhrzKRRSTKMGWkst2eB43g2LLZ2ReypZh6l5BdJqALZaLutSmYCa4TZGlZePIFZFcQjxxq2SblY4m/F6Ey8bgBp23iY7JiokYpQ+JTAyO3Cj9YUpZ+N48X53Gu7FRW6FGBF+u0LfDWa8evXHDBoi9F1dFRkzguRxOgi5qhlv2kygKRyuWx4K8TtxTG0gmriYYlprFJyqxBNOUJd8lRjSUgWXsrVtPs/yXK+m3NevGyC8WgMd9J2RjT9qEUZaaIoMOF2nH4OcqFZZFN3l7D5KO2CbJM8MZpeheTe2UFMjRkdjMUqMnXoqBuD4Mj1Yw32xwhGe8iR2DBWdLqQFl2kPaxyrKRZaCCm955lzii0TXgqYRqGmfUYJhuh3inMx/sATCsZjgCnlT0XFsb099RsS/pWqdlzro1DUX3oOIr+NLvK7HO3tnX2iv0AbOw5rLTNENk2n/mBL3bgW7YOldSoXgKQKNEyHxx74LQwHJJtczT2I7V5bKGr9hALUmbUQA6La3IbsAXUm/rg3dr7HZGmYE0WihZs6OTqZEKQOfNrJHoV/emLW8RH5Tz/1tQWC6WHTivPf+tAY5yVbJKTKjauB6rrHAxXH3L8xR7VaCRCV2G0C9ogVm3hZB+BYrhZ6trIM3umFCXPC4u+9/Z4+yf8TD1g6FOFegUCWXNkKSI+SrI4L7yxz7yKmbWdvnfuYSJiaee0QpLHm+pqjmTs7BEWg4ZtSMjX01SCoIc0Nxr61zLMCjDvi49RoqngxrTQ4X0F36C52baOdgWHuP0WvWfEOvbnrWYt2oyQq+lNGVq87GclA7cOHSFvooWaQDrgOSfDqvIkJ7jF5P+UHYoZoy+rwjzM+gZuk7mzdM8F1tvVA8iPC/5lmPVzUfH61gGUlAIjD5cNZB5LKpVoVPK7tl3tnT/Nlp+RvfEwZdHK9pVPnl65gayHBmR3zay79GibsAgCabjkUUe8NR7fsQaIukkHEO1iUPF2XTvc3i7dYuqJBA3ngVODo/4VYwoeZo/k0owxSweiDno0XMDFqdHkUT9liYSiqey5lByVdv+FmBU59j9OU/c6oqG37gnX2uIDOsnoG8twd22x64wBav3zWOPwp7TH06CSv++VUjTsTw70ykQXeOOA+SQxN0CcfwptK9iABBbtRkFBTNMLCv3JGM3jnM/ITNMqGMO8bfbA6a0GypG2dBD2TB4XSqs7wt2clGlovCHTHOod1KALqdlo6TOf0cUMYr21nTfbKQA0ednrTSDteCu0kTUlfuTOZ7K7JMxti8RWUokpEQ2l8JmA5e1w4mkKExKtZRLOFIlpVPIYtWO7qYIulmGDrYj3UX+x+5/HIiu55j/E0hR/rhFSaYSh/RbzEm7YA9o7xlRXvDTOHPYbTUkGIho7mfVIhU36lrLgy4YKlhP/jcb+ljEjbYuNv8o7fkHkrJgZg7llpy2ewuqByd9B0lwNJi1PmAu504LQ22UXAhrTSM6Eah0b/MnfkbnbhzAmKqtKrEiholQ/utspc568vAmfqrYCan8DqrmVs26Ru1PxgCcGBaic6Pzi8/HRfe97pwURCHz7ZbDX7M3wUiVdYaENsdqVFoTt6NZZBx4CKkSNIrXS43xJfg/JcQnf9p110oX4VOSvdCLGfowvjI9YZgSiUajHof3zhCkuti8MUdQKGaRNFgCVg4IoB9IW1c+rWc7YuTN3vgTKnQ23i56RuEasDxFgf5hV0btjh/BrAHd/qBeREMtpS3OUHrWajBr3jsE6t+DqWKksfmqit2a8KX8n5A8V7tdD1TIH6VWIMT5ocJZGSxxPJcOCvaoUTXBUCJumzxGQDeHe/1h+PvJJVui5aKS4F/lsKw3pnIgdshAlsnnzCYTm3ZvaWsJJuHgFdMGY/eyi8fhATIxAr252lMX/Nn+ojeZdgqoV8/cnIK7qCSch9v8hrfztOu8XmgAEQQoK39jC8FN/6eTdhhTs4jAZjwrD6/L7HWIDHv6UoiJLCfGuoBz+kOu/HmLZZxVCCj8m26/1AbJauSEmb7zZjDxgSmsz8UET+pI1WJU6P1yKYqcfLfXrxGzwXeLjVr2W7OGfw5EKgXEVisL4MNTCcEAlxKefYeGU/S9sHVI/7BMbx5slHilnCG4V4uKadEJ8H388kONnXB7dPY209Mq13cazYWrUzS3Jj8Bmgb3wM92bkjNtvV0j9j4GGu7bRLqqP+10Sks91/LyxJG+DBC2BHF4VnwXIToZdrK/WD3AIfnJ2HXM0Mn3HIh4BgE7ivQI4xYEUGhgUNfpMPtJDlx7TNq7OIV3tebAjiDgInnb6Q07RI0E/QKlfzpPaeeIx2cgkQbItgQUPyu8ryZ1HoQYsCHEuPThvdOshe6WlQdCgeCyzu3D7TiD/WyrYxqajQK9hkeqsBn3OfmJgFDFzDNtSptEvnOK+9FzbeGlw+bIt2Fqef69QAjTBb9CkXVWM12fAlfTsoVcSbyKi402xVGq2Zo5bMV/4QpisYBTmIygNFN6JAEJxXkX1boFaLLOzq4E1BR4qAO8jBdW9Bezkto2P1akUnmlyDtofkBDaGByLOxUpImIX5XB9bpNnE3+b9vmtfYwbmp+ZtWb/Nen2+8Xj2LEUZ8czA5/8h0DEn1XLXaR1FEE7L1f0V8h+HtSZko6f++pWf4K6OUuyKooF4HIhlyu9sNlyf7EIoDv+DtnUo1IrX+oAoUWKgseWC9UQ0SU1Bid/w8eup8siPzNuxT66AIjUDPe3rdgx/rLFWG1EnQax4kprJonnrDbQpPJfWgPzWO/O5hvfLe0RdUfJ8WT35Ix60d7H68Ol8omddbTKmjeAb+KQK5Xd3yUR9VyXeLNPh7w/I22+8MmfHBrV03zmndCYnc9VtItYiEiHtAe+TrobI3pZOsqOHLIzPI+5x8pXP+dF91jihdmR+VEMedh/XWwdSH/JN7O8rwQq8oAGZPvcriTO4qSyP8nnoqi18yxw3swAJiKPGT7gKqNMhGFtEKeHbw4KRB5kTJmSL0I2aHD9KDMYhynoiNSjxl+NGe0pbJexFSh3h4Fq1GILOHm7VhF5+k+0F7zNTvnucY6C8W/CxTCgdDRc2enAexppLB1BvAiiyPNAKm75H8Mj37cK7LHeNCHI7TU9HroOb8vbMqoWzqvI0MQmzDslv2ZiF2yKmrhsNG8VYB2ow23PfziqVEIStyh5K5zBHPB/f/6gx9UBJyAH4TLjmeoi1SHIlhOL1sc7pI/C0dw82nRqpGMC5vPh47av6HWqfnSBIDrvfeoF9OgFRaaESKy2nU+tekAyIYTFG/ba7kpMESO3rSN8uTEczmnNDiYhx8Niws8gZsC0ZVnXKq7RrUF2tGzY0UVBqCxite9x7oLiad+F/NylalOSJKHBGMThuPuymdk8lf4mEeOJ/kihW4RD2YFxDOBli3i12woAV1J920rzrU9i99opw95a2DfTFYBw+bGWSvS8+wMZFxXHFcNa1PH0t4P+yciQl2V65uk1lviLiZyo2+N+1BcJqRB+nqYu4/RtRNS2l7dM0V7JEtUFlC0BeddlKG4QQ2MkfLsBJHZBlNcsWEl/mwz76Xz43/si2SvaJYWCUD/TOWlOobmCrNBD0hN3mhqvx+795LfWO9oBdfA0yOqVevxe+5ZEMeRNA7D8TCurbfI+ZkTsPq0YrXd8G169Ae4EJ4HjRGEN1MWt9mD9yyRwgl00lu5MwNsxF8OA5OD+BWTtYIeQUCQpYT7ROlY2FirponLHIwOQvB8NtpMXa6WT5wnBuj+8/C9MbAr1a02HbB9CfSctPsyfRx/ZmdW9CCBLL7C/IAhXjtnuJ+B/WX0A++zhHfft2xMbYo3MoJwE8vx1n73JxoQlYTvTYZur6+A+jGx9BaLSBdfbBiV5ktKzHOP0BG/Xu9qW0JZ2LYqU82YzfWTy59lx4Z/6Z5Qk/kKbKaZVdLO7qdr1xqy0l56T4ZFYXCfi6O3PvzY2Ph3U94wkcAT/7cdsCKAGeeNj+ocR68i7KB6mEv9e4hx9JZn83ZO+lfv3PlnkhVfRYI8m6rEdpwwt5R/2o8QIuUOk7oIwQSub61SQWB8HdG+IMtEucsJ/OJDHRMc7L+wQs/qW/exCF1UyfUHoGh6mSGI+8Nq4stSd6RAIrDMO7Lk8pxNIbAfmsXmbfs0bvM7K1IYSpGPJWp5LNjCX5DVGNpKcy+ebIbNYt0EKTogfve5QmZ658grfK9sZdUWG8Jt6D9idIowa0O7Z2ahl2ojDQlKzP9G2jZCKIiAP6qxwgnXG6UBXDivwmwLaEkhJaWLWZBu01uJojv8mUxfNmb66ct928yzfj/C903eEQPhwKcGttiFuOJqYlqke8NEqc8Wilwc5g5qT7wObiZUrD9Z1UCBk3yzdl60F3Cdc//V4eH6t7qwxU91KEXoxaHdzgkl8QPODT3Gk5AqK+jEJgt0jswHgpwnkrLTvMNGvj0QLE3INGtJjzXn5lGO2Lx4u0xpRU4JG4s77c9c2w/+Z1EhC9/FutwVzNi+n5BiELeBhKAcMV3iRABkJwu/yT/mfa/1xpcnEhUCD03MkrCEA+vr/rGIJ3zC2wlMTj1KMuBQyuxKiSbelHQUt4+1hUwmOUseFxgvwMcarx0XmrRkrwCGSbCaACOgyGcsNVg5P5mJAm81W3hE9mHy411TYSpcjQQ+kGkAqzCuCczyLzSMDcH9sxRAKPzQe/RGNscGuNRwPJBMFLlTJZ9MckHGGLNVzau5/8wIFFAIpgCqsEok5kbsnMmLVYidKBq1lTXuzvPkboI/gjhX2cF9ina6/01DcuBPQGLOCXFu78pWYa8LsT0mGHu6k/oNPIWCzLO1Gb1wVzhAHXTENvbR5O8pDYnhpvLxDA4VQ1YfxdPKKvL/MUbtxbLo+f8LZqyQA0nJWTjao3Uiv/4vBIzvfWtV/wwLkpskd9NVu/I7ifeFkbQPRzFpaxdlRxzVQeZVXuQTqfjhsHdsYC8Obb2U7JkNaHZzlsmUwvk+biB8Ia91MOnU+ME8fA2KZhWUbRY3r4/qfwC2PLga0pFNX/PCDQ4P4Yan2i9lwUACN0nXExWYUp6CnUEhPlwS3UsPs6GOxYYkNlsf3X5gbEZO62yLThagQp/ocfOZX1W18fSZIcj0oKzP5znoi1dtBh76VR+Bdz32x9DIOJNdefKU0QBQJCtnH/ltpAINPLbJq7qJaQaaTqwqyPTRqRJA+BaW/BDYa/PHcAPdyIo7TxF5SRkVFDIN6uLpbM8lmnqUMK/1oRoZL9cvdYEMx8ssM8EN6v7NyTUzjRNnJVZ422j7ET/Irp0PbjBbNG9D8tOtrcnRnYci+WSOfzSdfihXYcChpZwQWqqX1vPaZOhsVnxmHEjqCiI+g2L/GLEgatpLygXxOMlbV8MIYUK6tEX7Ri4H21YDUQ1+55y7vq84fgPLfLDK3Mf6csyMeCamFdcYd3JCAgyYQevguc+hz53dFdQUecM3OLab0rnXjKj/kyEqZtnS94yJRYom222awtmesIDCLCHWvrMqZdDZaqlGk2kixKNF8s1QGCcQU+GJdprga6gpqIl8/iGsj+A59gzAtFRZqxDKUAQPuDtWRQ5xveEwUmuSx7NzgJ6u92U2jOdYhMPtzxl3LfNzNPedIPyXW9QFX5tUD4HDGv5OrHFOmR7iVF9r2cT7qea2Nc8gCMfZVj9AN79I1+Hh8dCJ1D1erMnSpKZT+qe85s6OcFTX/GR7EkrKuwuR6oNfwgxJYO4jxjYprukIR881YGv5/W+rpMH1ZFh6/su926NS1M3bUrb9Ax1oEB4vCj5/RoJXMBsyC6uZ3oqhsdYGNhaqgLHNCG/Sqv/6dJIzGpmY5+/6K6mLxW2vHPw1w3Jb6DOpD8jpIpgA/fvvG5tKb9sOSkeK77wKcAL7MQToCa4FkUFmN5aQPLAI6RUNLkAt3kkPpCRwDmwAMs/qa+ojCmXXnNhPCxOUffCcAF/s0eZZjZ0WLNDVBN6vKJcZxOuLeqvIRSCzBlUrTLV3Mbp7Tuj1C1JQPBjixNXm1j8p2pKIW5U+hyBfKL0kn0UnwkddMkO4tTr0cdJupPpTzoOWIs7WAYNcgE4JgsqOZOAHEvxx9N+sDP7IrfOYEQmFtPGe3ih0snHipXw7y3V8Wi1UnXZv6fTw4ILEK9x8WNuVk59bUaLigkpRHqSQjKRkJDMBeU6EGmHvRdFigXVPzlaWhgP4sDxfEy+Cn6aZXQmY/B+iAEdJz1zeg29207ow0Pjxjsj+NwoLp0GV5XrqGIhY1shdvM5zSjm8VHJ/D1tJWOjtPLR0pLU2cspmqcz+97KIkZBdqgjDdWwMXOY6IXUtIA4foG1vOfL377MPekg1kpbnYiVTzlcTF14Z1QJd9Dy0yOJxNi2xkX1NEgaiG/nvKSAemdkTOJjDmBgXJ+wWbr4aCRkVPKyY8CHAkUUKoAKT9f+vzVoZoH2rCcLS9oeoCnEx6XLR3i6hiI8lyXvSW3EsbTqD0Qns5b032HekhMJBtvPXbMzZIcN4y2cDOpuPPnEe8sBAaIp71a1JMMmo3LwqhIHjDrqj6BjudmihPOtZA5mrIWp1ZFK/KIvQR3DWGt/IbS3qM0IngqO+J20ctwsaEfHURD4l6NC+3+HRgBa0EGSNIiiAHJewGRvyr3OXtRMrN8/KCOCGyin0Ah4/Ojzbhr+EThlBlSvSRm7RwMP/z9V9QktMEQh0h/ca2F/6TTnEEYyCvSlVKpEoNXT+ykVVWh3QbOel0Kh4Bg6gYm4W6HAZFd9kmWtTVZrez/U4aMLb6zPsK8RMO49Jt73ITuPFnLs1Q9Z315xb/YRsblBGZXX1QAFBIgh2LeZ1FIRndviV8+16ROuQKrQoYsJ8xP1zeO3SI9gJ6/GkIyuU/8OuIYeeUgTDxoM7Gk96JUeDgdtc1PagYGU2XOLsHCB+I30AwYm3Nf/2yCpqWMBfm7acu86gIP+DAcAsr8F8XnHsOA9u9JqfVKrxPvKVB9SRPLT83PrBEPvjEDmMtLag/8wZCYDyzOad9qtFuJP+E8Di4xbY929/xT78BtOBvPfDd59/iWjSOFlCoNZAEH9FxjnkkC1NiC5z4IWT9RLJbEYUb2LiS+lZRHoXVubSpHEvU/6W4v9QEtqqnSs9/8KKScLuSKcNHjGgtUExS/Yp7o/fWZCdnGlpURfHDIpsMFfhPP/ZlcZjxw56FHcuQj8J/AaXxllMHsVE2RUoxnUgBtXGsAwTOXD0ZSiGswevyX1Zz9U5r3/wkvpwoCnpSocsIxVda/5CInbMWHG6yDk+5IQ+4Jxj2TylcD6ECpriN1zbuX5QXWKdipc24kijq4xTB+u4TAb23g9G/yAF3ZcvahyJMZ90OFxaVD5D97lfllw+tcxhbXh0y1m2Gno5NxP99yjYlxmxxosTMn0acFOklxcpKqnxZPdpMYkIHjHQjHot1QlqV5zmT8WfSAeO1JfwKQwFu5MdQ9q9WrF8Vyzf6yxwMnPMa2zMAlR+9JVzUkINM04n2qZ+dlFnMIrk+hEiF/zQbmbNya11hDj7KNoXDeLTfLcR4BLh69jIz3E84Zt5VfhAKixihUtwfSlm00uRVzbzIakGtBRPdkkA+livXEOgfV+hY4JF+G/8auLFb1v4W9mgAUQXlzVeErtVTjJYBssWDg+RBKGjXrIp+ED+OSPvtsS6/XG3FFd6+70MhJEkBhiMsOSgXlGhQ0pKdi8DkqbSyUZ+frfF8l/+yT3Tx5HLWROu7qUpxksGzyRBTgJ/Mq+dIQYY+GWlmTOOyXrhFQ2bLijlu6lLWHlDAd7lwKWn1n5b+qfGT06KOV9NX0v+4OEGKtvyLFPf8ka4Ao9PwpCW6LzCO4yrOXR9RJ6AhlnHjG35i3sN1xqHdqbKBjFOBuGm7LsJVeuwK5fhKwkV5NY9rpgWhAEyhBV2FoBl8+K8k8Ed1xGliCL31EKCH9SNVZRwOhqbL3vWaMXeah9L3EYgraNnb8X0tk9U0RTRinKMOLJSaY0ed1JSorVJmHNW0m0CAiHyqZi7PWa6ZDvFRlIe4lc1HjLzG4czny+69dAdPJoBlXyGOpuMjDN+xTCM3OItVOQf1rim1k16Ijh4saXbTp/HsMPto0v/iwRmvNmDD71S7hPKduLzZ6JnQOvXw+ywxbPCmUwt8NDTpUfu1LE0Phpx7TQwM1aZ8zendrs6PoY15ocfYIHuboF3HIWHDFConyMnlhwi0Ussi+aSwBsib1Bjd0qEGW+PYYl7UAgGcwq6+dv2iyCAPC3wtZUfWdGhCb+y51LzMuuzs7v0Ij9+9baqTEUo1RhBMwucqSrxKj4SRXIH7ZP9hkNLpo5tO1yOyDCzDB+Oa7tc7nFEVGzZb+Ivim/3hB5jfl3F63+UwzLkKXQd8No4jvGdMg98SX+FQ30ble+La5E3vY4T+yD4CqUWGEr7H9dOJo3fXfOVK1613KRhZrZVKxgeFUgo+HGQftXRdFA0aAW6rdg4vFAqRtQNn6wxKXCPptSSwzm5IOr8I19V+NqAlKLfL40RNdZ61zSVjBgqFML41+LIE+56n+7HlrQ1OYpXak9sdY57amLCm5EgO5sTtcO3sI0x6XAlUoS3I7uV4qLeDJEg2EANNoi36UmTzGLGDufK8fOAmGDngSf1R2vNxVSpbkj27wOVok9CIhOSLv/RWK0sq9Yw5RxneE/EVGCrenD/psKaI91O5phax8//MIwabiTrXVgg5nHBZ8oOnrYNfrw6nlY9wV0dHzvczGmfr3J811rnLU+8EswCJ9qxwDIXRJ6xPS2jUtDuWOVTs+ZUpK2zKxyHY7LmPkQNA9dCgQ1Ys4HF2dir9edn0CoSVT+r1o+Uk274ZH+a2Lc5F6CUDElBtHCEwwsKsYfygqG/muQ7f+R69ERObNYnRjeUNgvmk1wgxTvbjaGrZ7l0LOEAyfYASdJl07RIWLHLw+Elkc0J8K4T++/K1syfbSH9SA4PXLwfuHpsJfNPzVm2hTgHWVag6Dz/E54xrQVzqH+x1QzYkApukwDgkeW2xsTIXGQpF+ZAxt8N7ApkkIzAsd61rPJlw2BxOZY9V/aYBK3zt8zGtMb17Jo5pZZv3Xan8f7rHTJr3ce+LdJJwLgz/Wuvk2U5T+8ztnhD4BcXm6iIVFUl85fo9sAiCDqMGDf9PSHV7E0zriy1ONgXto0tWijy4rIwHzbJC+w/+TSj6a0t0GOb7ITO7x946GvclTG9X/zrRbQRl5xsVP/NawleTXA/hpnS7dfc8zHkwVyOWICw1VUY3o/EAbER5wiN6ObzFvJ0usDMnnziGYIrOSISjHf1xyxBFONwRGbkwrYd5t52HENfeOny9eAvySMbqFKUFg3+OBqlEdFRzw84B15VWzxe/B6Jyery9duy+LWB2PLXMmVAlUV1QGe2WHrvzjEKQyzu3XWmNy+tk0hv6704IgHSjcHWy0VWVX0zs1bWQk9JYuqWZE7A1Ih4LH6TUGxd0yc6W4kOGs7vDCxTHVJZCXEBJySiQsCqH3wrf4x5VnBRZ9hey5OJcweO/KDA3wMO+7Nf8LEY58uN7KDTJirk3H1mBt87H1BrNghqkmdzVkpFgew2DUNYnPtNfdBdBmTXLyOwwkr2WvvrEPRbdmRbKnXB+Q2nFIQiPm6XOYKYi4i2OtIU9/hrGEwW3+YlG4cypzg+PQyqp82W5HSl6RNs5U+3Nm+hi1IMWlrZ8WTOX0l9b788hSeSktm7hS53GF60jItfJUG46QfqQOwmhQXTc8ykSuTv7a6oiQ7hlA90fNX4qoB+oyLSNDdey58yD1GbgLCkRttznE/rtq39f6RAe5kYrtdCmdqvs5ZLn8dhk9tCmdLBIz/v2CIlkfUzIG+rVuHpmDlKdDClTvV11kxOc1KGAGEW869sV6++1fH1zeoiQ8V8D5cYwN/0zEJg5a6zYBtZH/6fIFF3nq62rMT2R/yaqB06on0Mn9FMGiRc+gE8biJrdO/vqCY/FeVTzZvN93VcJTvctR5n9sTqSOrWvBLaRkt9G94aUUzTp7yk2KUq9tO0bYg/9z3nm/5ic8QoNZhSsF++o1XT9Oz/+4+4GwiF+ELUz8NHEi0byU8LTZCFBq1DrGjqzH2nCFz+wlEbLzkKoqDdb0D/bK2rhA579VZsx58EROfOFphI5WFVXvtwsknLZ4bhP6EFrItsZOR8niEf2KpXGlomj/a1atdpeoRo9kJ2iu71hgQ4h+BdO2/D8SDZeb/Lv80XD5UkVilCXii32JmGkLro+i6Bs4hogvBN+J/E4OL75NV1hh/agsN66FHJ5pOhy7heP+tDguy9tBWHAY85Zk0/uPsHP65VQ/Jgw9mj4Owdf/yKLzl6EMBqq8kn8QVlmLz+XOuxsWGskSx0CFSoc4eveQ8iy5TN/xU9hB/fTSQqkzxUd+g9NEYXIWa+ZhGcitCJdvpz6s/dDMqK/h3DSFg1IQRzEdEcuHbXJ58ZxXCEucLDReAUHrhs6Nh+081VtapvEb2dEG49XyP37wJ1C83Opd0Vo7z22Vef9TNUkdMqcMqP6bxmYzGuJ/BQlbIA/BrczDDxOS0lPLf151/V32vDuAjKz1PqMcN5df2uj4nFJ6qmmotENxZhwoAE0hEtxm3jT7Zf0AUAqkLe309+FJIRHiTKJeUdSfOMiPEGEt2BCKWkU1mHpJ8i9kky1rQZaWwfuxjqaXXNzdGu6ZfFCB29IU6DoDxWAgbgjsyZcGG910ZOc0krJZAUXqv0WJFKkixerTAl2RuDBm1nXgnJySoPgsDYNOcXMfghkrdVEmkR7B8L/R5RkWIbxa1xLL2zhNB7UdiKKCUxsgGRdMjrBxrvWNnyu7SjZClCU6Bwwx0+rUqhwzo3Afd/ptSIy1cByVhDnafiFREbEsJ5EM82SDEuONzzEwPPwKcUv+4lreCOxcgMdytdisiQGQhg6jevj+3W6CG3Aa/GTFQ1WO9VAJhAs4Ubz318P2Y0y9iOILPv79+110Au56NEogvO3u1+Q3kbZUhyPA2I8EpA4f5uHqRS5XRPYuLPNuXO51qAhwfmjyRGTXVeVjM4VpcyTiHHrW3IGiECeoV8S8iYVYbO+OyPLRSwfg4CiLnnmC2ul2stHCzkEDP0oOomQc2APMGWKB+o9Qtc9Mmh3bq1koM+EJFmqAdsyitc0ghdacK0Pbuh2/4JUi24Gj4X/1IKX5rNc4YuG5HGEs71TpgYj5iyPXmMNOPN6YliBqyw9rBGGxPCA1eR1cj4Or9CE1a6uLkHeBFdJr64U8frK+B2YI+03voHv9OAl+e3/S9ZuEK+kllar/RP/KKIHnvlMTL6YK/iNG+L8y6j9jp0kQoSy3dn5abGkoaM/9zBEJEoDaLshviF58R2E3Lwzhn6PQ3kz3HhBtMoFzRWuJGaVBAM9VvITbcclvEtxDehQeF4qaCG4MrgRqMBgI7yp9YuWb6q1TAwI/C5cpy2Fvfchxh42NfiDfzbQYjMZlE3vPxD5l/MG+0vpj5FCl/lu/aMQRPylAU8ficoZzlAjBjZINFGf5uGc1P+vxN9ImHbhqTOXWdbeYhZD7UZz5q0fZsr3WpSiNNTHKBLVf9PdVLIkN25WwbjMFmZyx8/6J3mK5pcUCmEwDT5t7IhVYnBaeONf/2es2hkOPyXpK5jwsiWhmcrLzfLh7eCZHLWOVN8uvCo8NTPzMSmn00UXW+tKjJoi/YuLCgyebswsade4p8zSRe8DrPHvVZs2/JS08+F2M0FfllQ+VPW9McLL4XQ78xa5cC8LPLODF/zRkfQMOd3Z6ZF12DoiA4ljSp6ta+tz9OQ1M7p21DIcOhoorjgeTB1mLMcsdWWdQBw0W+KtqZKDE1iaBWq0TnSng/8nCbfFPmFM8J9n1/tTxf6T92WBYcdWtd/plbvzgPHSqH9w2Iw6/wBxxYeBRm9l3D/8yF7rQzvov2agWFuEYCujsmLb0Tv3T1f6nMuh3f1JdEICQK8S4haovtrNbUnRMuEfd4Q5kNwOn6FydmbI9/ykpRe5roDsekYQWlzkoChbw4A5Pdln8zuBhyBSGc/7Nw5bXGs3xZ2fzu3Z4lbZlXT1U7MseYGC1PqCcgEB1F2Bj2KXq1ylSdQDJjN2H5xt2itcV38ckHO6l4rx33biBCMNLByZ3YyrikGNnDaOdrMOdWUdIdKy7q2mFcDBWx2KrXbfRUL0hsCcE+YXvQfa8dAzAEvBpT59uYxR704Pkz/H4zzZ41Q2ExObXg/aTiaHZGcoObCERZXYA7vRJvlrtebW9wERSRbrCMod98ie7FemYVOgJpYKaYcPcJgK9g6moIV9HOQWgly3xbVUPb2ZJxx7DWW2s0jd1MBtv2kOfRBkKfdzryL+P9KnlsDTAkzAgG/HYyXdCciJ+dNo+getDr2z4DqN6e2wdjzE8zwt45EmIYxqf3pFUzJ4ZmXrC1YEMBfhsinhyJCLSkXQqKrdckDk5kPa5yOHIwsr/XTwahtNdywI+FZbn0q+0ZbrkIwGzn5PCeUVM7vz7C8Rx4m/HlCsfx2RFahxx+weR1FU4m0bzcxgTYEeP1GiZ88ANnRyYUo=
Variant 1
DifficultyLevel
447
Question
The probability of rolling a number greater than 2 on a standard six-sided die is
Worked Solution
|
|
P(rolling greater than 2) |
= total possible eventsfavorable events |
|
= 64 |
|
= 32 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The probability of rolling a number greater than 2 on a standard six-sided die is |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(rolling greater than 2) | \= $\dfrac{\text{favorable events}}{\text{total possible events}}$ |
| | \= $\dfrac{4}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/XY2/Kol+U15z2QwgjUUFHUKDoYdGAtYTfjmSdQ4zywKIrC6vOGrsNIWom43AWGRu6ciruH46A3AWkI/xSycRyp++xg9PTHUNIQuvzNR/WkoiHaFspR67eVdPPToCec8XIs/KHcVV91X4I6jXxGESN9DHFbLJCvnd93ySbO7ndkvcZ74Uck5G+LD9e+zjCE33IEkY7Pt+3NozNgzbS8iyly1Ulbp2NWbSCazkSDJWPHu5tIovzfWPmmH/gqf+vuAwDjcs0L65W4cCek9vX5KE8XwRy4l6haq1pwkDSo98PYp8HFgxy5HWweeEIvAuil2bUyPY/zVCuU2MCKu95YHiu/dZzdO/603px5LRxkNvHSZh7V6kXZhzMl8w/0eLkrIi1r6Ys+/E51b/o1BJFpXjd8FxhLSWHKo//LVkCz1NuXgKNFrh+niMn0waXEoAiIbCih8JNgP7AEeE+GckoyzEABf2QMefGL75aTPqzQr/5ZNhzGqoju2t7OSLg0YzlkS/Vq2s8ePZdCBYPeA8Rrx+Kaib9d8uON0mrcD5NpOUsUZXRrTPhiAcM/VKC2Ac8/uudouL3Op0Dos2xi5Jm8HGhmwbJz2Yx+rNdc4WaezvAmo7DV3yovVtW5Ls/EnkJNH//iRRjDnSxRWoRZJZDVGDD28cJSouO+bZX+AF5AhUtmUv3L/aIur/0CsQ6SshnLmQ3Ckwqs2xTPU0WY2erb6orbvceCPkL1y688JxJHavK7PW9OfkWV1d5/wlhMQ4rb/vfoaxsUZp25RWj2WSPzqummYQg5KFkhNFaUxYXPlO39FLXNJGAbDMY+8b9SxEmeMtiu01WUETT+5uaQ5t40OndCmYH2jEi8UaI9plcDX92wZOmGof9UONBleqyBIMfbv2UAoAYOsC7RPCfqreXJmkBRup59QG3KexcltRvvA/jVGtAAfTdYqDtb+zvZ8yvdCm8ZtJm8MrOlHRj6dy/dZurhzhlw02PtJU5BrYdassumiM4Jhu95KB+rt9qw3B5POs58X2qgUsAkAGsDYo/Tr8P02AUG4DKzdhHb4wG0+1dK+9m8IUNJapt5VicBKuXyDrZ22A6oWRGEuQsR30pLqGH3nkboOYtN5pszWquEXhtujDPipiHDym3yYMHFQ2e6ZE91LHjwNHg1SDKB1/cq9wtF2P62hZCMyl+sOvICEeV6PGIBoXnyyyUmxWRPJ4z5r2kq19I0osaGvxGPIqnL0aViAIv+eLbmwrinRFg4B08KqbfmJL4n/2K2JlBLww8RPa4gaL6K0VbjZPRrLRJ0EFPWeStunpyTvecnVcPQNIH/wR3zRjaXDQErGytuRJQW0zRVfX2bt0wIiqoAxPsyjsmxI05ycs100JClngX/9H1soFUAA9lFAd7VdikGzb4/FpuYEpJ4Rvyo4K6jFzHlYxWdLJEhXBkZfgv48lPeUnsimad03qaqMetCFP9ilb18iRQAEpfd9D5k8eiFb1jIGBxlrmtLBlWINmT+eKBHVYCSSXqjEVAaSPiIqysbF47GZDJFOTrMEovBZi3oT9eAEhTz2CRlma0OM5MoiL2BBPvGGuX2B+5PWG0fCPTJIWPv+cibQYCXaf7ZvsbptzF8RR8uYqEnpWc32x2+/PCmXJz4aCvwLZyvFlPWmS4OfaGvUSHXZ8URJO4UVXOSTl2EpaBapvaaalo9Fi5AvrhMmiQ6lTjRBoqGrFETI8nvcQRl6QuCraWO2xkL+YJCHw+u4crNRIei6pAbK063yOlImsMFQMzwdQa+tqfxuos4aLHOv5k/oNgPItqLmM+Dk3tl4ygW4Xre1bvLGlIsB2qj1c5G6Rkfc2AAxALa5NaJmbEtRgqvw+DFwrgBYfaKLtme3EAt7bmfskMnI0LcLjxzcr3EtBz8cUBKQpriMC+9sUYIQtnY9mP0NrSPX5xt2FXt+1qerxn8OjI4pIB0AOWBTJvNoC3xAlXx/rrxB9jsZxKii2dWi5PDfpEZzES6eu66ai9+FBVZfciBUBlMOMQiOdJ2/1zMSOvOJHCJANi6v+sG9UMbVqCj3bLRqS1dnxmBtODfOjMg79nKDtOwILzgTa5fIAOsQcVCfT1/MtMmHbEHyWo+YdS9xkCjATwf7PMg9hZ3aTTG+4DZU/yfhmBOZv4DL1S1OxFV9uRd3sXl8hyXJgsCEUYCcchSL+H6/ZMq8NxcM3XH792JZwQOTzf0xM0Mix9tsZDsHVcNwWwDC39ju+34ioniNdMLoBxxiE6ei4l0P0W4cifYyFZZ0B7dyZqfKmJ+PMcAfFtHOgX++hbgVq3XwGUCtwbiwHb0Ah3su2iqM2z7GMYSH3qlSZ8ZwPuQiKSopL4IpeqUIAJSoQ7TxmbGvKvfQC39UAs1nwG/xwozQSQfdlyahLI/qxRbvQ1D836Eu2i85Rry92JIiZnQ8QzLJ/I9jh0WSPK/pQNfH/uBjZRG+gnoOosPsnCfBFuLPHqQXW6s11smqtU0AWZ/8cID9FUxjNdwQ8eh2Q5DsZkQ0fofxYIt8quEpekG+728TJ0MiQNRccEJCGym4lXMK1EsNWGQPyzV0MtdvfbrYQYBH9Osfmb3SWqF9f15hd00dqhyPrbcAJ/58TnLOjLZCsoqSGfUlvr+h/lxQ3ajJzTK1FjAeVlc61bKiG06oU9o2OdzVfpTA1oslE0FOwSVyyWCXZwXxNWStv96dn5wXmo3NjQPyNTXJju4FsweMpDjhD3rrfQ3tQh4qZ0Gj/VWQqGG5a11ONVvS0vPbAV1+wndEti27OuaCUITJw2fU4AyxeqWPITWkoU6y30Gc/tmsoY7xMe1hdzkSbOwRqsKs3m89+lAWH54K1KVn5lk+fjpA5xN4mzxaXWUh02N+NcLVUthSOWlQSHA9H38VdB5h5yjUhbQAg/jF9UORvOliUQ1ST4BlJUO9JwEyk/SmMxzeD6ylwv+NEyWJSc5Jd6QWgIQ7FSmEvfqQYQKbS9/AhddZ7wBIbmKq8PfZeuYavTzyI6aABofYUJfu1Fskk1y/5DTUGJ8WoXmtOkHFjY+pOUylFRil4iVOwHpoyFCGAp+OHicLxibMCbQk44UW/chRtOOc6zOEd9+Kh8+J0Td7K3Zh5lCBVb+O/hPvd7JgM5tdvq8adIXPdQIJlPjySAzH/mT8rwVidOqKDwEsOOHckKSJZcqrVuw+fsGSHzMiJ5SHWZrrjNR7CoYfPIgXwNAap+5g65UB6kU9GqI6PjsW1Xkypg6RapGztj52zGX95kfyQcgpt+1v9I3oFAJuWJ9Se8jYCm2r3iep4SaIpV/vE25W4ZqMwiecdNs4/XfcEh1TTIibzU2xA8omB6d/JjOvqI9CHADPIc5ncHuQAWSDIDD00tIcZJnoIZcQSwHqnTB/5Sa4pUFISmMYLQ2YLeV5i0XLuwrOk/sHpQ02xGeQst0DZgce7NMOsTfbCMyXEMVPUwCWYDvl2O83zJ6vCTMAE0nca8Agv1+O9NceXuY0L9TwpugSgp9XdIHVK3RZqHGe6RKqL0btFaOgkJe1MMWhPafqLtuwE3m2eVdsDCrHS6cdNUz2Eay/sBV6oOWuP02o4Jxtq86KxQd8KHd3HRA7ph1ARWDDI9EnW5gvTZMnVTs1RHLqao2m9qLYeQyIbBuOBSPM7DExrQXoU1r8AGm1/GxFr4am0Q+II5sJvBHAd1kkEv97w1ay7sGZhZ7fTTtQLzUjbnShEeoyV3bbq0Tkm7M/gd3NicSt6lk5jrdEONjFULLzvMylqiJaCaOr7DF4EqTMYL5hAhYH9rbFNQuLxpGgIjg0hrOmI3b/e/Duhg+6u3pKaxk+ePdNh2sOIIYd9PjNUDipBo/XHMm1Z3IbKDiESB/45nRJdGY34kMjCDRLad/fRIAPU8W9bnEcYNL2Ri4i3LWbEPnHvTNn1aUWbQo3CRo5Tw8+U4Whf52lKNlawJp3ibpgq0y6hzQGxBUW3isIEqMwc9i0tKVFNJyLVfFaBp9HZdgKqLcXlkLeBS+kPNMHE2sbLjKlxm+CLJ5KA4bwKPGt+hhJDAurCJ6czzEQNL09yDkZwR8mbWfqnNDl748LA2TMZqRKUEAvOtbJ9QGZNQ4hlu6AT3cHnyMdfWzMOrT7VUdkJIZKCrvkzsW1bkBn2WLz4Lzi2rPBfq1TeG0II64bfttrWPoM+aq9rKtBxpgRLpq0Ku4r5BpckmFyTNstb3ozPqUzF/oIhP/2qSGlisHdGg4TwCV/OBavlfk2x7/A58oi/OYfrwitKHjs7G4WdHg3Bs8GnYn+nfQpdvg5iMyaExBg9E0BmzLWmfEiuH3ezjVi1rOgrPmPWgaKcTgZFk8lcEgqx9vbpdsorFGuMWBShKxWSPn4zthUJ4xezvvViD/9xuVPdez5nEQ40w4xfZhpbgycH7C5/SeBXWWmAxjgJDjedABlAFXa5LJJUvkt4QHmgo6L97F6aYFAW4r4wKyCZHKUjC510GUVxBgBTW5h1oJRP+/9PnAKzWP+9xTHaiNemA551j5JAHquUYW3zk7lB3zh/QN+x1ZNUq7h/bNO8W9BmTLnwUulMDv1PSiLr8aqLLllETmSvAlI9Hwc9wR13ZjhC5jpMUDwTsH+U4GM30R3N3kErA3BF01lPHcDHkKX98uEtzUZy7ubQFNY/RlGhHiAmsrnGiOkHR2KaIMwIedbGfvgLqKxQbdaVlo6s1za8RRTfUn6l9lQN4/85uaVKlGUlJaHGRPph84hMuZpyQsH7LWFJAeWoEnxbmqY3DWA6BiA2+q/fQtSD4JfmWehSfBPmGcn9lLHslhFR1S5PxBV7TgHHVNd/7IWi4DBoUnbXUOSKpaZKeAtZ6FPEa94UMddQ/uelEHQ6aePw9uehQtv5YvXwcM8pS4QiVLptb9uKKaxSQqaLa0gicfXZvi7zXfSAdHLgs5OqLC2DZqNbokbam2deNKf7NHb6ilDf1maJ2D2ZeArKwwAPelrMmpxkohaBOBDRP5SRmYLupK9iEPGkYoqGePRgpcC5rl4Xh3T2QWPi2xAPcoeFsANH2RMx+LAqdaLWiTV/drSLZ96DM5g7hrRUtPYx5QA3PmJUWwhq+fayR/JN7yqInwACXPwt3jKEbDQYSYN3tsKPlbNoOgusIkd2xmNkbermcCJFKiub1ow9yKCt6DNJg9Iw/PWy9RLaqR4Sgm/S+J91I1wq0OnMGPgF8zyslNy/Lqd3+yT+3s0esQiJiPGJnd04SviV7egZxatDwrehaXAp8I9o/UdtBDJt6VdD+tbJTAwahTg14X88etGZ7WswrJ4N1TMEKvgkCY4JEso85D1r0HOgS7hMNb55xO6wZv5KSu+W4blqoASEu5Wq8GZSQuY7pioGVUD93b3FVGW2g6PrbABPWa3xALaOlr2LkKV+Pt0pxn++lM4qU/Gize1W5edJ6q+eh6VDaq0m/HJPB1OLQOzRFxbyypVucnokhEXIW6hKfSUW8ClW1IV808JuA+BKY1/lFfj8topvtkuktafI5mvmDIR6/JzS8rDlftwlJ5kKkFvu5YfY/SMs32/Xsg+MEjVOy9Batzy//QbfgxVs4XTGkkggA20y14xtR2z2pu54ZVTVosOkCgWXGejktU+NAIzGYmWfQzJi9Py3dP3gixIPQ3r20ggMDt2ZzH4IbkVbNq5W5qp6MFbFqm/br5ZsgGB6B6n8vPFj4/QkCPqniSAC8YWlY0hBSi+Es3kvt8U9KMdFtFXFirESOngV8fh0VRewHcZXZJpLNL9MKq8OYAMBYoxvnJpkbha+DULWAw90cgy9hkf9rZx1iY0LYKf+wxzWTCNfpxI8Ukt/BMtqT/k5MhvWQnCaJg3oFyAqc4fMzBCwrhfSeYXomfOqvGspciBQ9JMoFRDrwuU13clkLsCOWJlXqLedBr78mUAd4m+HhoEE+JPHfQz9285Lp1pmEgMm+j7+DFW2pg25OIfoFEifUHP4xjiDHoJXqGKpNXjRP5NHWJmyd1ianI2FuYfRjKVIFgT4nFl7RgjNq6o/Uj2XywvomTJu5phrReyhtm1uhLswQ2uWyYEHVEBxM44R6KRR4dDiDrVUyrJ7MmOlQvxByxVmzHIWDASXXUM4rZB5R4afs4Xix6diuLWF81UffFVzGoRQXHVO33El0makE1f1WZzEpFri5abfyLcBQtE4Wxs+DU0EQ4NNbxZlLs0V5DorJ8dHbDmYmSaAArGew34IzNqwJ0zNtNHkC+vWW52ku+LYzAUj4kaBbbUbHbun8gdr16PCyW7zIsx/OEHsJEOr/EToEuPbmfYzOPD1Wl1+FvmKQaWJ6zU27z0cEpsKcNorF/9mVJVHjyF+Bznhr8fXlhk425HwTRFszsEzFnw1Cnf91tdz52kLbbL+fGOM6H0xWvRLokSz2oU+i05IyQzVD/RtlkdGJ1gYp5I/gXUSquUt9Oa1ySdKPSwzZ4c0pm32dc9XFopfHazELX1+uDxbJE8DeIXHUxJCare2fM8zmA70en6iAvdsF27S50O5ud9iiyEdDgpAlipTI0QsbctyRNkS11kwSLJvaimfPHiGGwAOJfWf9kZftE38woHBeOjYH182eysWc5NapBm6n5XEIW9SxbvjvEhCrDPlbg6qthV8yPdznj6VGup3vs1kvPcRTZYCEhEkV31eDbnP+XluWqk9wycWPidrGKdM79fsPkAUIHDiaeylx83s2wwvwWUU1prqxVdBCQ4/Wbr5KqF/itX4+3tD0CoAAhHub7xwFVC0vHZm4/ynh2jiicXdfLv6uJFc9Jk7QKl1BPGjOjM9LDFozJzcVA+OK3hvd9Lm69XF1uvaedA2ju13cuqy8ERnzsQFiR9b8W0oMEZlNd9/JK1aKYWjqwWcCSsSV0iOspA1PefV1VC/VCH9bi0tv1bZaFEQlzaUHZIxKRCqXyxOovVSyKjSY2+XcZhTWZUgeLLnEwe2RbvTieEGZMbzcmlTuHD4RWvFSsqp3ScoGJlqP6Gbtn7EJfgUHUQiuS5DPjPp5vv9ZtpVeVYioSzYnuxN2MB3KnCcL+/Mp2BjzAV2rHS3150VejMoUp2kwYIeKtgMNaw13PY6Fs6vRE55YYC2DuSdjt8ngJPf5ZAk7gGz87pWh2oDQfQD9DxklykHVajab/SdEKql7RwLlwSy/+wOa8YGavGe8Y00Ju2Mr/c+Ne2Mj4X6O8Hi7I3d2zGk9CYXdTqJ4L1A7xo37IIVbDW8zk69EVCXKZbvjBRQdlkudasqcNlemIWuqlfHrLZNea2G8Jc91f6pq68TLAerC066usxNUMFEs6eEkAE2lnmyOKLb2drYVgtAxDadXeqRbQACyohx0GPCYTYcXZfBvjOHYfK/SCswOKAjGnOrOjfXm84bqY5I6avUhbHhZ9fIcDUyTkJpOvUk3hi6WJhpKvtjzvOf+Gw/HWK7T3WSh7SeEy7/l6tRU3sacQ2lBXdyCUcjVTxXemwQ5LtIWYiyXQQ16SY5YVBH07v1ZgViIkjueVnr2e+g09/p5L4+UiI3HcBHgZEJLgQat1VY5MxJnAXPA8HkEWNtxIE6BzbeNhadPV4eW10sNmMT4dGZ0r+AJt+veZWjt3nYGA6UEzNRGXmj0miOMu8Z6ZRhpBOSmxieaS3nTpyZ2AzB/d+BUYGc+vgVdHrabTJCzfB8j50LNGq0jElDVpiMEe1I8dfwciXJdf8jSZ2Gdi2UpLWNgKkcVd8NEM3xGyoSTm9FuS/0I24hIJnEur8FvOAdrrdAbmMpNSOd5GcaykUHZpr7nt+nIlwPjOFIQmiCJnbF5o6S04Q3ayV743Cpu8glpZzd76bhKEekyrFijD/RXK7LZbMD/86W3CHqjsGU4ok7N8ovILdsTz1iDVBaoSCtfJimvtw1D2Z0aogyHIYWcSGF8ftVOdjeQuvNhpzwiLiswox5WKwMcr12hY8hh0ACaEwZywxmcnrztxI+XU2r6hTZfa+qfAoElafLLG0l0G0TBG7v3s+IOX0nvly/70Rp/6xmTxPhlATtvL/IUanzHkXAj/cZV6iRF16+QkHfYFsKLQhvjryDzD7vm7txEp9WdwXKpUUYZj4TYJCuTZaJSeGnJHnXGhFu/53D5groIGgDzcsLDKhnHfYbJilFfAxxxh0cVgypz9LJf0ckYiGva9QAiwZ0uh66yl5+AVRwU0uTOmOpcXGlbEd94gpEta/n6u05luFfxCxxHvnI+LlnfpJ9Bbj5Qp1tvgxPH5EVUS+XVfb1VRiYvupnX3Uog0zIZXqQPSKy1n6Ile0R8ULW29znH9bMS/0kAjJRPCQO+Tx45kmfedrQGeizcA3mPzTxiXOSreNmaJenrb63u4aCoRpvAtq1zjpM8wuFZc2jjMMpkl0Dm2qQniElEZqpaSDEgGxMaUQv+Xgzp8LKC90RfoVQeJLkhPK9wBlB91W1I5iwNA9HE4YFsUteKE3WQGrdzR8Baer2GfchNpC5oDijQQy09zrCw3wdl7/M9CZPsMDeqLvwMDw882agoS+dlJ7jRu6UIFfyiJbBjjrXcjAbpIxJAOgf+VC0kuu6pDuY86q10s60NjznDjzuQlln/Z1wcPibhf580jQNqPnh/mp7+3TrHo19NoROciF25yNyCUb4gSSV0fv/DGIOdbQbfaGPXtM93p9skKpzFpZanKcVSA8oKdqZQ0yDW/KorrL29XM2mZJrdCt52pEAIra9WWc8MQ1gUk0Lrf1orqydd1A3E47DOsZttKAczmkwXrtEe+ixviu+5uDlOu/rQd1C/AJGSkBWTVXdMAhQqXqFyhhSz0OEkUJ/sHQ7v3wquCQFXyBCrodwqaw/yXsWctoNUKIHVuRQh4gvFMW5FeNXWLlsi0cvhJRCICfgv4pGu00xaxTCVidAQifB1f+/1mAzfFnc1Wfp89lNdLXLQYLg/dNZ9XDMZ8lbfmg8EWc6XoPw5PG9dfmWzw5Dr6UlhZXEowDYHcEx6kW91PNOLqFU2P+xfMAM1CPN/tHo/yGs0uTKKm6J+0KJFGm3QsE+DhQvwysnaN3e7+jTvncdBBOgNiCXGdVWiKTmGtOP4GI2gMm80ie6Hi0sQd6iJ6ayfTAfJknMnphPPf99XTenZn8lw7TKdxGWRukqM4mA06lPelvXr78w7sJDJAtaZzag0FD4HkrW7rv5LKRK0CEcbibiDQygq9kqC2okcT9obrWbNAdfKrpRF+WF8R563ZyZJ6KFFJpwfgWmWbDuzQOlYvsx2chhpHJoC0gjG9l/5xlwzVFI6XVEdZd8tCXOObPTtavUkaeZCw4Xec5BL1IMr5S2aRClnCwiO+QuuP8dwftUy6e6behikD466icGmJzHswhp74v3Q8Pe+5YgHJNLIcdMYYRs8LLYXc7VyVwtd+XaYFcX+ld41rYEx350ehOVG0Z+JxgUGXtJFg8jjIkD9tZk7p/Xe8mHDcLguHSNsXRIl+Q95uT4k5u1uJMWa2oj4kWlHE9InT7K/A2LDriYFXvAamTzJIrvuj50GeaeNTEvqtBaVSIsE3mP9oU3HbZhzbP369KuKgpACw10EInyGvAiaCKgbZ4Jrjg1z9gDCwtczOshqGOEpRO0sFCC6udaUZUo2Up/+H0gdaGnOjteXlv/MGfLViw0OJt8avd/q7MhCeqwRs7QSLmetaQ8yl32lWhNTrBvSQmUwe6vwIyH8jWgGSRzh6C7phj2KVK7tCvtNzlcSSHShhNe7B6plRweFJF9dOXuBvUQxxYFREKd9Yj6CBFAdDXVsspxEUE43O5YLo9+FJQNJYhHPpiwNZKTpqzFJ/0lZWhVdpNKuj7yZZUP73y1uzjZOGAkFMfofcDUY0pJaTxsCWU3Y7SYz08ihteSmutGiXPr8qvr8tWrhejM5geBRQ6ArSZjw4BrvZxLwKXb+D6SyH31YVvJ/t+TENgMbLBQbXAWJPUPnVNwxlSHOU+8qCmZVyoUwm03rxkJ7U9VvIUgz4I38pr1PMxskT7NOq24B9239u95qNmc2/FvIUJq/JeX300dvcyyjgHvDxw33b9ujvOvZNOf0fWY1YkC2SFAPtmwWx5nDt2oW7CesyizR1hrk1k54MttXM8XskMPxXDeS/n1mbdlAhr5LrIGpV2qdjbv8zYg2mQLiryweQxXr+25Y8BzDFyrWT6AzVEuHNilscARuxTLhfa1YCqPe+w/sGrNniWA0/2BXBV894toScwwL9RdumL5OoYfPX4i6fZ2693llQuyQnbybxYsQifJUtg+au/73gv3C8zlYC3S9xWBrgDuRQSyQWxIJOd4H//BPNXgzmCk7ueXl9jcLbZwWnrMjfTOQBXoPUS30C3tLR0mmpFmutTzUOwtTg00Ar2CO6JPkuPv151c9okGikrFCVknr18xERYKuKoaH2RJhLaZGItMlSIJd5QNquSykcgoBqDoaIWy+xbngllvgPApL+ExcaREZHh8AvlJqyyXx6S/DufyeSzHC8b82dVZ0W8Utj5V7Rgxl1I7g76ec6C7PHKQ2AyRCG11idiK8RfHW+/UnBW9WjHu20en6vkvssgA8ZJ2/9QwzX4Nz52zb5B3SOYQrB7Mj1lp5i/nt/8XSH9Co/uYFR7qYKTS/iX6bfJyivQcCGySVeinoKCOLW4PcFt458yhGDUtgNeOSq50ZziZ5noe28mEF3PM/pMGtgUkV6EK4l1Sl2yRcUS/JeQAmOB9SXMkE2ebhMGwveXI2nsHsQpkZHWFtcb7kI4Wk82IUJu3D543kNxfRLEj6BG5PTzUT1INMf0SLoSK7B6Y50HkW7YXp8z1PpP697ULSoKyiV/B5caURqcySWuudfMkFl56Q8iuGD1xj3uzzemClZrL+DhdNFvwDvNZjR6XYMkfo8MbQXcVq8fUQJgyca9bnCY7cH5Q4J2KObM3tpNASUHzOiMryw8ZJ2mORE6bPhRn3GMw26ZDcljFUJT/GX8hqDO/KKraE4ZOJ3erjKofFFai43HA/pQ5zkb8uDj89mYoZrWtVyrJCcBnlfdjOod9wL5aBXxhFxkIRopn7vKPvdHPrYscp4rfXR8A7Cc2ax814q+s/Qn2yIwZyNrmTeg5lboWNvtiMuZV8ykcug55ySLSdHeCfla6IDYXcVca2gEoA4X9k7qD+4yKQxBuzGHUPF3CiCvlsGDWCAvCmWdX9boVcn/QUCRlapKaCYjXvgzJblXJ9V5XKEZxJofb3B1HFZYjQaLFqelDbhs9yd1W6Z0TDlu2xgExuixFcZhjZ0HLuEqkj9Iln5p0HqusSWrlAyQJ5YoFZxnKWGIyvOfT2/y5/PX+a/kIVNLoDsSL5Fswmy+Y+riD7veAQ3iuhhjmPEQ50y49rMm86piB0iD4DRmZ6GTao/TtMAJZIFhSrury9p5JDLZ8auDwx81+eUaBzxJ/1MVjCwQXomLDYoEBFsSLxc/6HbVovCM0qPeZAQy/uNg7HRXWmxKbwkIPn3u8PCM/l461neD2OEO5+v38EpqL/KMAkwNYz+CbNfVgYrW6mcCNvLq78C0FYG33BIokWDKiB9XHg8y3aOHgRvPipZARIALua1Os2GuYrpFB2i/hTCwzJ1YbmGncn9ewBFCzx+QeOq+Fmh0ptV2l1T6Yb1wxzb24owgNPyQfUZLompTu8MjM7sEJGFzECWedsh21GHyYJjoYHPbn+hHeQ+qObEjRDUz5kyuNMKMEp42yPmU18ZxEtUnxdFRQr6vL02/gwA9QD3GJf4SPVQohB6MAK3AfZP6hKgMwzbLOpVxfKuABKfEq3bK1spZ0QocV9PXB2hHwNYn0pXEDJ0u/dCT+D6V/l3hL1D7C7uOSN2a5nQIqvzMjyiAr7orKKvYWr2IZ6+eixhXI1xsCoje2dA9lzksW0rS3ZNsOw51Kk2QVH5h2IpA/2bHQ1sDEcfm6vJwcMx2R+aIn0P6nmoS5BGRfMkhndDb4IBHh1KggVx29oJJPFeRYHjK/HIkzejG0wWnrNvSgqyYpxkiYjkTp2ndis0LPkglwSUD7F14dmUsHctXdE4qTOZw+9ZI3pM8zf9D86S1/v4QRHE00XVPYrABcIoPPTMjsTK19DLhTCDUvcn+ot7Tor1yS2cvkUHLHngNLleZCJMhOBWnuZYQczX1uYjP6988zTLWzRL2r/t5RjynGA1lxszhDtb4dx62wYP21RGZgNC72K3AeJO6JdydW1vRKmqJw9lOHXuw8wl+IioNfAKmCeJvEEuSXlkBdK4eYV2p7uAZw5FVvKAlPN4EqAXUGzoC4JBywPtWIJ2wtJweJIKGFg67xAVG+p9T50vQhTs1EDflqp/jdXRevxeF62s8OZBv0u9kcoFe0lKMazrUJGUuL83D5G9/Nlo9ahMJQG1NxIMR3sYFUViJ+m90idkoCCQr+2FxwVbmNXRdI9qisEtEvuYuelbI0oNftrGqjuPrHaZBcmV/G1FadVH2+iD+Ju5a83si5P8r8BUUlULujD0zCM6LAOPS09NBypBOhrfnylUzUIOAgdyHB6mDaaYILJ8wJ5QD1dwHPU829lcxPuL7GvQ477MRvpiupsrWU1utpVjUOhMnwbkV0+hX5VEDcxtTQn5/e1qIxOkH/+xIWiLduvhCGGKBAAz/kULjiCYmy9QODgI5se2Hf35Qw2y11JqI0yrIYd/zOQFdyObR6rNd6EOcd7+W4CgNO6cu0V03V+1O5X9L/km8Gh0bYldk748Wm3rP6E8V5f2QJRnClSzfxBDKayhDP+BL9JSwWt5xuNKdq1eijSVJKRW98TPTONwkrnqwtrH9th6woHeT2C3M7OskJC28Tcbc+QLWHEDku7wgQVT1XWFJ6JkRSlnbuHTU2m4hKWvlqxz/+Zgfsi5IIzfk+xFUVs0DSCJuWr50eqVbsI+1aVal4b4FwOH2ADCJYIZyxla7qEHVkn70Uhj7SNg1E1fmvnstyRl9Rqj5N9sI5Qa3pFOXitejHFXfeiJL+884UoVNEcE1nLeVmzORLHRa4gkP5N5vmpAmoN1VKzD2tPYcvt53Lk8cuj+ep/ckeuFhjs1M19bSwsgUxKqOINXl/EV3XOU+w7KrVnRS3lzZz+gKtK4sx/VNRWAp5d8NwiDn4wpsm1Gm/XaFcuxSegfI10BwrkSyrx0qjk8qoU/FYHbBhWBq6/n8v3GIjj2hPj41PMBaOtEifsRCMcw3Biw/7EPZgt8LcthMpuCWsOAGa4ElDN++E55IGbMUuzGXAZanWWLhmckMz6Q3ycgz6UoWU7VUcFNQAuVxrW/GsTQjmRGWaFkGtjjUp+WKget271sKwYVbA5Xrlmy0QS2XMsw5nnMuFgLM+Th2dQvTb66pSuNU2pjog6YdN9fJeXMeoteQ2WNyymx5CDzxOGX6DlQGGQ0i4DIc1CaLznOG/Izx8EJ860v1PRKIZIK6Te8S2CoddtzwOwDRewLSXU89N13KpYvBulU0S56LSFowwNjWW9C4MaFubJHU/mGRc2ZhyGmY+3282Z5Mi2f38GTLMVADcBkObceBLwTvtUKvJ1XDEgqIzJXwsgoqnnleM6Pvio6eSNYz83hxugCn47NeeHgUnix3Sa2ceQDjwo+yOYBCtf2japzOqDMaDpa3Tyqj9fC9XPxQnrZ/LD5YW2zO5547j3yWRlzPm4ipGPMomzBNRkaLjhfxxefIPw/EGeyQVs6M8JNJEzLN+IdaKpOIdHMEDftVbAzC/V4AldqXwLJbwG4KSeScYW/uRsoES2bfBLUsOM6ehsGhuJsWr7RL5450EtTtm0eIqlpEWPTXwY2KF4COwo9QWvfd8a+seIV1evTqjBqRGQ/HoChI4D6XCnwJchCk9IMZ/Kgy0APBrCCa33CT7RPA5gO/ZONOPvtXOlxP/nalVlDSVXJtPp7Q3eytkjAmeLWo+aCmbUvpl5yby5XnlS6iNtuAMntL9AuMM76UZylZAX2DFD5yKtvkENK+9vty7pASkrXZgjy+zFKytWUAsFMf/DvAAUuggFmbfRVsmIYsNoiOk4jlcTOwNIlzc8O1dOHQDuBOplZANaAL0WpiP6ezOvjT6erQI3nsUwn7blq/U3U6gncEd15zdiM7OW0kt4uQmD9vr8CzUnuMWHeVTlVZcihIkHsWRVg/+QOREf05B8pj6xPEcekXYJDaCPHsX1UfR5o5er/Ix6cRjIbjDdoVO+IMqcTT9AzYJBF2bKKbuRJ+NMoShf4kMPQC8UsUGl+V8fZQec5TEGxTArI9CrAAABK6Ha8dmJHSseV4eYZMFRUnsDTcAQeYTfF7aof+2xTlj3OgOeY0LaCOb/vreSftKaWWZt1Hq0mxABco+FqydW4ciXocknP9R3vz607Xzd9+uvD0IAvdhdd0DIJvFHBGQN6JM5mQNgMnqCUv/1WtouhfBscBXuH57E0Sev6OWBL2Glw2bAQ7gvTu5xUa6Aduv7qZtITENNEcTyWYSD5FcffJgv2xcVxFssqrVOPyB+jM5B3mtinnj5NNNPx7XP1AV0OBN1MLlmwOhczxzOXquVPfKNU7WupRnDXgS8xvw29TnSIRasNc5w2soplKsnV8M0ksEZdBRMNiDwg8sG5rzb5Fx51jl/N5SfAByYwcfyRUp6mVB1aGFN+z3hXFDf+AoPHj/BG967HzC+CiI0CPaH+yEg21Oub6Yrk/kVcZO84oimBGespkv1l7T6odSDRoKmr+zpq+n5p7/osI5MF6NhJW35Z9/3XNVHlNgNdk2JeX6WbgCSU1uBSvN0edLVCRuXTeamYtP8bUbZwcT/7EynUNqqyTa1rHKJsJiK4XnzUjRdU2UBh1XWwc0W1tYDizyOZoDxD/G8Ig4pzmuiR86whgH8OogDgRmJS/rtjeMoMb+9A6HzXmlb7WkDpomjLuqOK5HI4SBqUxlWq1l1HDV1cOjbulY+UmIMICAE7dSolaqYAv+KN5xY0PX7HfiAAWM5PBRTIMHsjiqeg0njA1XwpNw1E7Ofd5idDwouJyNRfFl83iT5COTze2XeUQ7Zt5xRJDi17zaK5uDz8HbJFTC/MgYdFWLlnZyWV8uAxeYyiJWUrtGhWnpzcCQ+WqU3VvgGZN8PVp4qplDUkLkdmSYxXtUkNs7/sm3PfxtuytCJ7joYzAYKYCSt7qKoRVCPwVggLOfWBWUmR8th9xOd2VbEzlW5dCcLsBbDyGhsazwN/+P0X0p8G0Y7sXjnpssnnS82PSe8pYTCZV5+bQiJvK34cz8Yk0IjnXs0tXEW2K3t8fzsCl3/edb6qbmh7+YB15/7xPFMB8FyXDTe8UEs7mn4lYsSHhX9EZE0HSTuywajslVY0mht26qfkSXVKGTx8Ou9vSsWzGoeprbdWEIbTddIE15zVKSCNXRXLO7i
Variant 2
DifficultyLevel
448
Question
The probability of rolling an odd number on a standard six-sided dice is
Worked Solution
|
|
P(rolling an odd) |
= total possible eventsfavorable events |
|
= 63 |
|
= 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The probability of rolling an odd number on a standard six-sided dice is |
workedSolution |
| | |
| ------------: | ---------- |
| $P$(rolling an odd) | \= $\dfrac{\text{favorable events}}{\text{total possible events}}$ |
| | \= $\dfrac{3}{6}$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers