Statistics and Probability, NAPX-G3-CA27 SA
U2FsdGVkX1/VqbRXmjWTQrpNpDmaCr0QoIWSTqlu10nHhv+CMgTNTcoAJJyiGZKoeo59OB28Heo17c7q1v8pTU8O6H1nTgDwUOVWRMQ9fzKYVvdPkQXKRD/A33SwBnLRbyOQgDUpnyf9aAbFbcyfdDXs85xPAGrjMCziFgauPmc1QesEC7vzqd3ZjL8yOTkoNH1+R69NlsBmb/YumdAZaEbirr4CHHhyOrJ864gmGkyCrFjjAkEiW2Ppw/9WdOf4ggusZnNhS9cJtIOqdnvF8tLvqfv5mWJOEPrwKYIWX2FIwJ1/rlejGt0S7Tg7eALFNZDccXX9ys8brDaiANarFuyadVv1UL/H2euajAXNQ3vs2VKgmqQEgMLMxe9XZCkZJRHgfE1PMIbBL7hK0x6/Li1zVGqVHR65gNki5kmmdfaJ1LAytC6Uulq8nrdP3GILdah1Uzku7PoB6A7ymMtFLYJILjNBpqUhBS4Q3u8NTG6jniJlrQLR2ICvhIsfsfmH649UTpMzP1xjwFVdiexUjETlPFCoQIdMBrSsw6rr5/sHCwsa4leu1SSANbgXHQTMsNLOpBPP1y2UIP3OAj21FWtAl4S+2ElpwEaa9OJTxvDpVF5PY4YQbXScIQD1v4Vj2vGUUnrlzhpEGt3rAT0f249gzrB3gH7hCTvlhbALyCagYSI5hJZit/LGR7Lh3Ej2VM3wEtw8Nq2mFA0bcCHI0e1nzpp6y4Aq1qJJ5NeSFjs+3VYq5p7suVqT6J/UKchst9IlDIJy2d47rb6zLJAh/LHilyJHT8QIYFdi5xAP84Ih7uf/5CIBsbtlAFpOCZkz0+gduGJhMhxjtYpi+fHLhx5h5SMIFiO6tdligA12jrxraaW8P1lxieGUJw7LYGT6IdV7+D2ywk7GDPFLmfDmPfnshyy0Wl6sG52NrdGFFDt3KW5DBljWk4TKpg/Ud9R2SCT6aSklFaikbRygbEsStKz1M1XRtpL3ewVNEC2xoLBehdDb1/xLBO1qKqlJ4+FELKNm19aXXS7sURDqOLYoQqbOb2IBfeXtIJis+5ncAgwHdWvaGAbQnBe8TpnB3/nWrjqGkYexTT+rm92lACdbceCSbvHlqgzW0kBSplrK0E7clNF9Qxg2kWF+oPOmejAvM00EZmP6B8Fca+4VbUXpUuLuKCOMC+PZfVbmvbxlcTN0j9RYmCjnFYWYc5Kj/1itkBGyyyI6MS4FkxiupQnoAXgMj51r2qVhO8NI6txAmZWihSzmcgt+Y6B7s82z4txL8Ba4Ex+6TJPPrub3ls3e1UITUA8m2f2v4JCZ2dQbLwxm30IFCwkGx/1nct4W5i6b0PMidgiWa5IprxRHESguk5fw3uwvx7yMM1I6L+XakrS3TDFgImrHhfukTnDLToGEqCTTuSAFriNphOczhelZu9kh0619YLDD5tb785gqUmA2uSJjyuc/RWgmA2KxUnwEmc7T9H8gj6fBcLovKvCJkicJ3M6mSFTlzt0YVb61MwNY4oIbpP9wHMGD/PtjxX4QV1ZlgvgzwcX/TbOdQ+qdnj72yPsGEacuKuqBm7XR4AQrpe7Z+hiiaSBDX76KhkZ8cJWSSPeDqJ6N9qTj5/I+pnBIYHB6xwXqowCdGvBIWTxoLb+VzoEbOohVSf5J7ROa9MniUzQSlkqC4u+CcxZK0S9HQ2hN7HT0LUq3qu62k/t+NL1yImIs4GM3282N8Q3HoZvHKlK1VFgQkrxRKdLhhLwp+NYkn9Nb6JxcyKyf4Q2gDEj1gw0q8n2uB8X6Y5A+6/Gk1ElGbp+W6Fs9RMx8VKZxrKxoihhIn6OlWreHC/MUm049SJgI1Hj3uW507c1YqoSMZa7Slq1yJjnPGRCZp6fuWbhtjQ8cVBEz9NlnhhoVtuD/ojJ21p3fiwfOw0KRu+X4sdjZ747BKerUKJ4IJXfBlNPO6fWMzLO4GMiir4QWU9deJtCSI97+8Xfk5jxs4HGASAcZgHKbdN+EydcIXH1Ibw0cjTLivr0xmdgGM9Jls5WJ77OWLdZNjheFHSkfvDVufa7YFMk5myNAAbL9Ahv2TyO88E9e0dIDUefQJueqbiwMvrFkTcMGnboZZbI4OMnaIZcQ9luItrDS9634R2XqiCQzsw7GjEUgzWQAXjBFS+Mr+NmFrnn0pMKsBCBT+NmwHbCZPREF3W3pLONdJMlxd9D9GIO6vhtSwpo48FgCZv9sY3aNC/28GrgqNpATyqKTJ6ChTXbfi/n7+VMRgbFFZnaLXk/fA+Q5o807osg3ZyDD9z4AC/oJa6b+cucpfndNtvU4FxGi6gMUdS8hPmXzAw5R49KpdXNKK331niMb68onUxLI9JISPIGpLyzObmCgAK7MadXhCLU+XPPnp0ZAYlO0RhSWM+UEEohDxjuTTiA2TzZWWDMgP3lTr7dXQVXKqUmefB83n8rmgZN2NW5peQJ50Joha27MfJ2kH0pwG4mZxtzpVX6Yzp9uRDvbPVmKnoG+HaNPLrE0+LgRQlykHpGwbHSR+6BAWC4f2B63KcISEiW77VSiZYuJAotsZYl6GLH+eOsexeeG0Om2DPT0x9Avy65Zuqzh/6mqV3DiIMB3xA2F9TXSNeGmzyv9+Xbc4OrK7UGlJxjhK/silgutTineCrZDmgPJJm5YFZUmY1JzMc4p6V55ToW0lGmSet86rVTnNPVpYgvvTWpfv34GX4AaSowOXkSX676EalPKw805fEDo5a3KeiyW3XbEiJ40syzSlidnaSql3kvdfmawGcywPMus9aZvE4QQ0yB1JoUTaaEQmLLcvjHttte7YM54nAEBXiYFJD9la6nVjnHmTyEi3ZxAT8wwfHY8UYWHDO09Ou/5UnubfdtyHhmcCzgbLOXer/dwvjJ83VlW1vLDfumuw8SY7YA5/P+EfqTA1CaYtLZqONy4fWoodefMR/bGrmgEQRDjispLcEAW2X3Rdx/LN+7rsJorBfl51LmHfqlA8kVJO1ukUSkKsxFPFQqNPp5a+C8FE2vz2fAFgTaqjkNHwZ9JnR1f0dDQizgUyZ9Z5Zbqe5Z8AC9acWbuz0t8dTMyTAkUUZgTIodv9UPhI8A2TP2BZ0ZC6WyhIt6dNWCiDd9yIPqQd/g3tUo6/HwjBIhjulRhwudsCaZ2Z3QKghsyLR9uGa67wl0Dsa1+md4/e+ovpmVDvVmY7T6nxDUHBSHHibj0rcUtyL1qioITJzWpehNWYnZaRbtGXAx1vJm2rnMVEDIdrcqgnczuCWQYNZMsKH6dykVHgT+zrIxxhoRxJRLqnKWKdCbHkmo4tyN7ScF2OuG+fpJyGZKXKIY/5IHbFX2NOkqf7AUm4DJ/nyJDEj5MCxrgVx3J3B9pR5kXxteemjY8Fc3AxnJYCsGQKDGmnixYHRS7TjQA/ve2qv2oV10ngwqV2hy4ruJIZOSc9wDacJai4fvbE16cJvkBzUFuKcWQbygRsnlyjHJAKFHyev9TwnuU31s66LR9CRISpfKFJMqNPWAmJJV8J/2hlQjDFrzyYUnMAGM7pfr5rvHXyJWRmBq4FiXGqjifwGQ+F9xBeJ0v/YkETQIdkCjxx/mb+HRhvcEnYQg3yvp8+TwlHo9rNEvOy4/uwhBbigdB3GafevPUANssvOq9r9ULcrP6/jFkDCYQ8ZxLoZP6grPrPlrYjv5K2docWROLLwbbVtkI1Mty2VMxXkM+Z+kWdvcDg9FP5SJQ2xMbwFQ73AyebC/7VUFcaR5iXYpKt8PSnAUhtxbqc75LrpTBXhFAI1XqrO1ho2p+wSjd0OcH76W1R5LfStsKihY+etD0GwchOMSUiYrS2GHLsFLS/aB0BWZLmXKvXN/wSbCDlzanS0zJmB1gyglrAOlTXdjVia3+goGzjezmD5P8Q1fN1Y88jxOSUFQsMvxCNyh3y6NW8SjxvKR+BlxB0nH+S+7/JDjxESiYTyMDsq2sznenXN8aK9dj8j+/ho3EK58cLYyV3DnpjZwhph2yZYNcV4TZDMkIXWjyTory5FGU/N3ydc28yYeoL6X0JerIRcNn4cDpRzBa3XlLJFKdciVz4hnBIK+K/pcAZXfija50CaNbw1wcZVQnVtL3DdZpMgSGIf9nogbgjK0/V/S1Q+fUqNi9LaIXAZE8DWk/x32NqnZ0JM85j9BE32C3Xdu/cLSyielA19QKIUS6iinUaHaHkePhlqu1are/oyPrMwmqht1nV4uynMhJTJzhT5BwUpFyc3bpvLelRZnIIjf7Bfikb1fKyfqcAIhwAbZoIVa9Q5wuSPbtylsSYvH7Z4tGnb//gg==
Variant 0
DifficultyLevel
680
Question
Suzie asked all the students in her primary school how many brothers and sisters they have.
She used the results to create the bar chart below but left off some labels.
Suzie's primary school has 100 students.
How many students have over 4 brothers and sisters?
Worked Solution
Since there are 100 students and 5 columns, the
average number of students per column is 20.
⇒ Each horizontal interval = 4 students
∴ Students with more than 4
|
= 5.5×4 |
= 22 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Suzie asked all the students in her primary school how many brothers and sisters they have.
She used the results to create the bar chart below but left off some labels.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-G3-CA27-SA.svg 300 indent3 vpad
Suzie's primary school has 100 students.
How many students have over 4 brothers and sisters?
|
workedSolution | Since there are 100 students and 5 columns, the
average number of students per column is 20.
$\rArr$ Each horizontal interval = 4 students
sm_nogap $\therefore$ Students with more than 4
>>| |
| ---------- |
| \= $5.5 \times 4$ |
| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 22 | |
U2FsdGVkX188CAFM6x3THCHW2kHEP/yA8EHS4q5pOV+seo6rlq3UTzjFwqeGqbKm8gi2Gh8TL+ZUR5mZ7lLMWF9rvm6NQH2bKtPX0peMZu6QSXDfNzaxkHbeJvMPekRZWRfftpExKVRoB87OPwcDt77KjsGEFC2Pb/rlKkkifIV7L2/2Yx4MKkI/9F2hBkIwYkJIHCRn8mcnxXE6moVZns2IB6xsaWLcIanpcB+JHFvwf3PauAc/uZ27sdkeQRJBIYH/z1pQ2SASclPJmGu7D2W+aq+8PA864qw1RDsQkpWH8SG96ATPNfHfD/uoIuKNCdF5qOZpZrKlCcKueaPGUxIrZAZLcABc8LFXj+cxBgPcmLl6WERJsAP4/mfsiTsT7UUh4MT6IzKK5Dh1ZToavvlyoVxyOf6OkNQBDuQiuGaRg3ixPLHD9i9g9MFRGuDJfXdZKwUK56JT58St80tl79bK4OiAQUTXM+tqQwXeQj/K7SPHMb1BTbhSta32shJSGZNvX1Viudm08AsGdyHQtZ1Hax4PSIvmlztiWVVVV6EkrUHCTuqYpKQ/tvohw5vRpZ8M3/hVPW7W9o17fw7rsgTAc07DWoMjS4Pf45Ewmtq4TNCVvL9wqHZB3xdx6j4+7dlmBJ9WJ3l/GGUnVp0wr+xwEHR82z3ryNpADH5zlTB863G6SnG1vz8ubzG+vUOb0fxWjZhJDoQZkPdtcbe2q8o1t1uWDkSCYlUnTAoVsshOHEtw625BBYU2ogRSq0iIxB3YCW4ENN02HPEZWtcrg0BWp4HVqIKiw8REt2BKtyOIxkkLXBOLP2DFzWfWiQE0KrxYzj44Wc1Mbk0NIgvX/1zFjkcLJRBDqJmzEIRS9K3oHzVzyxIpN6K7MNLMRwh6ZQRcK0D8W4bES491CwKsnUjn3m7r7XEuEaNeHmfPHSz4vr0xB4d+5icAj5O0O2bOw75HPF/we7o4CS7j4RYjWmWOUziCW06uNuGmOCNLjwXhf9C5uoG3I7tQUlQOP+RcuSxzH9tFOqTIGbfGGZg8pTwCBBIOwnC1S06NmYhdR5wCNK2zwGAZgE1D8oLQyLQPKfYGEtQOZTqh6qDuKGKq4TCkG94pCYQmAcOQ+m4RYB2W5iejwOeMjNjaWrKOm5f+gmxHtNFMyAZ6VRxMnbw3/PsKX03VzpVDyVRXEdhir6uPlzBYoj/E4gO/a5oDG/yzEHUkX1iVDtq735GIqmLFElw9HklRobMUpn68OxFwyphmCg/jgNUg082gzyHKP4hjkke9GXR23Bh2Rq1mgDpP+fXbKKYQbKG8svFx0LXHlYKR0DimZb1eO1IWScW2Q9KhHkeb2lfiJJprQyaqmNWHZk5CLbCcGrKkQCwGfbwksnYM1rCGJg0bgpJsua3uIGLE1XIWIjdTUIve59Cwf47lP8xVwXex6w+XtnDdzj9X313nKFhP/10W604az8Z0w7ZgCPdTMsivRVbDHZI/eyAfYL8jFa1yVPDmlnWPYsRexzaQtbZtGhmyslTfTFuhc3auGZx/NF0qTOgsvoirEoeKHwIX9OzCbuslBitH5yEFKA5813NvhHaRxP9JT4cqOMVLfS/AMMmgjPyKvLB5qw0F7t0Pmi7YBUuYwh1t/kWqREIF1rfxWAJcH277+FsuzQ7a1sGUWaGzo/BtKz4Vp2yk9MZuukprD3dOvKfrFF6m8SlHnvzfOzWjHPv9amwz8Ls7/2JerjihubCMfsL8mHcaAoSA5FqIMlvmn6IFGB40LRz10J/VIwLZxbztTYxgZJAl39P/a5jcXorrlksC/8baZ7h9DuxOaduEGtnueHeWB7N4PeehMa9k1IcQfdBGdNg9U7EpqVbjkKbJku6xJoAwMHwojRETmkBZRPApiRIbjPVDYY8Z2JswufVCSq2O4njblbKksJbTnBQsgY3cER8gEG3h6CG17WZlpyhULdknVOYeBOzeyz64BexK9ILJO7AQzD7gCNpchFBGYpGfYer70caqz5AuvQDrtKBhZEK+Kdh3md9U89BUr+gtO4EH75JdHg762Kp7YylCKA1+wx62kyjanVoTNYTDIwX/Awd8cUoAASp0edIV5bASUp1shLPEvs81cQDNVxPJBEpc/0/FQPqDNWIQ6sRyYMv389ULr2HU7ECSGYTcukVdjX+gdj9o//gt5L8+60wlDM3Ej6wKxs/V+JC2+BoW1b9sW5oLYUcPhm0ndFQIW+pFUDWZeR1R2cF0g7PdMc2yF/p9Pf33oeeGodgILB980vIgmyeZUa4fioygqAcGYPXjhjjz25Ey9meoubhX/axWJYM6pQMuJwNSpmbDOamVsxe8UHI0YRa5r0Y4rPMZ3KP9xgJE5X902r3YQw4uljd6xqKjtVao9+RjcXXEZna9wkpa0Iz4i3VLy6aTYzDq44xf7+PGYCw/OzePDCDsRGB7Y3zkkdH4e+E2YPC67yxBKDg1wjD7Wrng4k4OTfKSpd2sqluLk1Eu6DwiHu72/pyJvDXaBvxZjOpVjsD7zaorAYSZCN3aOmME271L64quudH+wxTZPPxdtjVMDrWssKsS6UDrax6eaUco7hesBmG/8nbtA3h8BZA4bl93Gcr0wZe7PnJZ6RYz9l2/u2vyV+8dcnSls3YHx5DlUKhojpU+HMXMydNPZMmCOcCXZLaZ9tUMBuAtd2xnyaYvyST4VUYGGqJyI9AR1d0AdKHmRfxM3FgWE4ub16jsflxLFTv5ZqICrK8+RBhJFi35b/Ykl6hURk7xKnA/L2BRxL3vKcJafn+462m06NDjh4QEVZwFCE5Q8biHfaVdQBCkmPRMoVuRbWycoX9FAD8Nsm0ZLoo0t1w9BCI40KZidpJHYCzXTnk4OpTUq9rqmN84LDtbpbI0T2SgbNWVgvK6KGj4nNHhf5eZY+ouHOw1xawHO6SYbHvrGNnz9GaEjAaPY4tSVr0rOI5UHx9oBJHWXTu6lQosh5wqkBHQ7QptBdtBwJccaZhsZ3AbnzKQqo8z5IU39qH1AH8DgKJnl5fYqaxBuBOOz32ajYAFfKSctA6cw7U19qE+N7jTI7az84vK4EMjWsCI8u9xK5IXHC8clecdeVUsDjr5cm5DeqDY4hIo5C0ULLAcy+YOBONDrfARcwsejiBk6Gp5zqwXHgIn0hqwPy/ySY3rJ11MUtKRUW9lxeG8TrPCS+dCAqJnWGlqe1Tcs6OLRcPQCQo7MbNjm+ftOzVCNYFyUuqfLeXMt9KsJQpIJ0ndCoFBTRFgp52rc9a9McyiaPJEpNUlSH9CXKMmWjM94NMkjJRbY8hGliSVP278+Beb9XBCVa/7rcmiF81qtnGEaSlAvrI/cIv2bfUB5DnadF6c6Q5kf+hpuu84JEuCvTiZQfg2Rgl0WMBsg7IgrivK4/5FK9Jyk/tAkl0L41xG0aX234XCBxqiqB8nSTg3pFHrk1L57kbDfZOvuLO9vYXPjXnHpk4VFfFWfLdKzKp6h3Mq2SUnecXXEqCPSQLbD4oZnv1qA1o8p6EkmCFvhBrJDmwD68FftlAVwhqKJ2kkNOOUvaQ+nhCi7qjhG93pj7rMmqBFw9ZOC2zl+d3gLFKlMXEmpmCxeFK1dMyevEs6WgiwHzRfcuv1F1S86VuN+b/GB3AJydGbJbnReFkfQoZ/6tj+fJCnZodjIXDjvFqNrlVOiTFvtkgkjJn86CjY8qSIoshN4aXG3CjuiZqk+OG0p3u19lRENowAMJPaZRPtFsHtKEmfRYh82k4vHQwKUdllpX4Z+3K+qCzOjzzEuhK5pmgF2IetyRw419iqRB3dbeyxoCVamrq9b3v8tqek0H5PUTLjww+QLC+EH8otlPloMmNHysucMSLV+0Q/haza05F3iJWamVsfe8yaDIOZPN42Z4KzfdyyoiPepNzPD+G4f9dZewAzdgDHP/OKRScTkvKd4rvQ7Idtse9zc8rhT3VWEI8LAYgocji7zkUetnYt+1G0tfVgRQ+puSV8cnw0UehN0OhPzLQhExyYHIB/s9HIKnIgQkVR2MkdLMLl9WEBrcUy+ikd0VilDe4ArU8+iIeY5raoKDqYVLtIl0jcx1bs4V53vkl2m14wpr7mb2XTHN10t1LSeyYGPOaunTMfmuxzB/3qawU8fXpSeYImZIIv5KM/EKE5XDCtrCLG3oPv808NanKsKwBmxOxdHkvd91OtL8hYNxSwzCrk8iVmMa1DYWJegm1xVzNZc5sVpo2iLKcmnzLhtUqfsmHJLVI06ragqoHyA4NY2ZLU/6cxLxelPvLdS3hAEv3q3sr3El2fUMkVrd7zb+hNmRWQLE4ilmrjZpQF2WMcqP6LaMtlcIe4tekX4/wXbKUJ93NgOzBQKj48d+LB88DE/tsXnhsLvpKh1fRv/xxJu+OGB+pPJOTpWLHrchyMcKCxQ1BpA9FJ+bDRTx+8igBYWQa8KF75VG7Qfy2b9d4McUnuPF+SH3zmzu5Y6v5gLyTEbFmuq5exO2YE1D8Ap2Jff/zLZ39fFiSKYc9aeePy9W7ti3OXmH1rghHNl5fQ8W4yF6dQFzA/Y6Ig5nYkUpjUUJfukPSz8c/bdNeJYTO6EM+n9DBAV8fhmb13S6bB+ItudOAaEqIXnU3cmO1ocUwRaSNj+h3Efcny6bERQqe5t1raABpVqqDoQbBOWrwEVgZVDp1AAVBYuNgX/R+gPTKKMO6anjxnYV9wBZYIOUJ1Xkc3OBoi5/XD6gR78E5KfMwHH9Dj6pJ5JVM+itRIwb2ifkqbpAhtmXS+hHnNfyBHRtzypF/uamAN/4lKxEPg8DxrJJwrSPzvwEVXYPPc73ZqlXzkNo59w+KCZePgFBSlzlWv4wza4HpRM3iNgA+ROgBo4A+yvaUjII5hXg74lAoNnAS8+Rlj/gMquepz7n87ZAJaH+2IVnpMHk1uuZq0riBeff5LcjBcx97uJlzx5U+uwXosGO0xk4caWimaHzZkcDchBIxiIEOv8bYMy0xgpbSHZJzxgcchxXu8M2Fby7jH+iaEjy/F5t0TMTMIBFqmuLL2Sq0+8YLGiVnWTGD46DPxGdrNGbwdex5DGpOAbG8/w98rCg7Vr5Ey3a7CxHHQnfqrgAb515+TolwKwnGmFw5yOoZe4Xzs4BzVedizCo3wyoj14QYsqMT0c+nDS9cWR64lgJvyzkQ6Vp64zUT8P9qetZypl7xsd3aCX/9uLrJmIg+KBjEdBNjx1+8TRSEdw7UOrVcr6Yt2D07zE0Uzm8ICfTKjKCoWTk7TyqlW7obAQFwWMmiqG3i0GMbiLBSE8/IWph1pJ1hF8s36KOtjJHQ4bR5F9hgrflgBnTM9iQlyOLos4oTilxwtMnA3ufGrlyEnL5/8DAlPm0MesVlP6T9KSSgP51qR1bhGv2DZelHF0fUcf7qT2RPNqMs23Cx80ybgXtasy53bhkx7eAWP0UBpy5JtU4tJ9BykisF0+V2RWXhmPgdyLaYOTMKoxVeJgdq4e8LMnVj+TwwPTirYw4DrPDgsSA1FEA0oHY9kSBGviTHa+rdv6kGZ3qX74jL4FhIO3skGfUiDmB+0ISwShfz6K6wILc9yknMm5IqwB6jnH/1ANukNylMbYY/hcFA39TaHRjSk8oFwycLGCaEB2L6LWw8vurTSDlaC0suEDQd3NljgjL1kL5s1asqF6KssxoqEs2jkEWJv/QZBzElIvvJsBre3+sZ5jXdKJswGQdnHfzhKeVFC5WPEZFeAWg2vYc9op6oyH/rlrVg+vPp6DdQ5HBMVeh6+zUOP5OocgZ6EajcuVW4p6dA4K5DXf9/uq6dMMbZrdCHc5ME7gHY9TUYLjNugDeOyAh7WbpnkEOcD+sCe1DnycEou6uu6e034ZMtc9tqWbRrWz+CmQ2mWF3w3veigwBKmzoIUkRAI9CTWRzdCHK56DiIkQX2jp2h10TMpcrMucyGcL5XUGK55bnKOpKENhI/amsz3UFMH1M8zjCbQ2YShpJ4jFxSWTmYQOvHmoa7Q+n86eBwj96+paNR9Kb3I36LLBr8WUsjmdhzlriOTHlRu2uQFQ8vPVvwT8lJDvhJwYv3pqyLRlRDrf9mFl1oFE+38+EVcWSW9nHZNLWkJTd2WjLXBkzlPMCRUDRsGoPdGQodah9XaR4RO5bbnqmGt13U+C5ZZeQOvaTO1vge3F4I1LB0UOD7TRyF61X7sLe0TGBVt37gIGYxdQcRsmA2wnGE+mvkCwR/YvZ17Me2+h6Wb+Ar4yCsXV8uMS/LpMzk3wh9mIov90NKGfkjWV4hOQkRPY+FxRmxTi6w4Poe5h/isMGv6xYwxV75E+3ILNv0y+gOaTTohiPadhk6N/igX4xHAyuoACIkDRYZm518/cWrNQ7RMyQdF/B2SgDzd3Hf63Au7dgU9rvlNHvhoTDwUfkotyVujuhFghtvYdLl7PIrOhSAjfxlTwzB1ctN4uqVng2i1umwEBge/J6wYyfd2PkzqrVAL3RJ8mL1w9YoRb06CLJALyf2BsJ6FDi3pQudY63bjalQIISvExwMiTKHU1IEMDZtYbEQtG4Aw2SKZA/qNh51+PkkboZd6L3JDfWOGi3OmXVRvfwr/1JscveOPAMzNlhPt/VE5uMygvJpPb58cah7pMFuI/O/I7onLA8oE7l3FOcRIBuKuKd3dvG6af2/D4Z+fG4S7E8E/aMf9gv7TXTB60Q10Ban/5sYkMejsg7/nCnjlQ+WFEUeE/eAQL/+c5me2zx4SEqTTHK1ibn0YwqFZSzfBTJmO0VqOLL4a6bwTm10Z9PzpKWJuga6TNetqOux3OgwQ8xWgSRpedv2rUpEvub8jsCVT45La2WSwOR8hPAwI7YRlSlGc9QTMvnf8gTCpLewL/2PhXigBlqMN9FInJITTZgC1XyndCh5583JrOSK8W6DXBI+p+5usxEdbofwuxALbSwao/OEBaa8AVdG0hbPUXiF+WMRWXBF3RGTNdFdXuD4CCGSEFK3VQFkL7YXNm5P4/w5PyHIqLWz+m7C8Ygqxb1CWhAvqK9IKTyGNb1mG80x/BYlyhF8ngcaff9VFpxqz8kGkD4tGbTFOuPQNvLbDL++dIlxCNbFbx58qj8ifngImqzd3CAFkvIWyuEw7Uj8mil9wGwFT+Ri19SJIv/zeKLReqdOXrVnfOEoIiFCLMgjfoE/nCqgbycS5In0N3LqLm8Nrtu4ezrBZXD3ebuXn+kQj0xz3brxRpnQxdF98aMVvx7lFLvzl7aa0+BtPkBQAzSLnr+s/VCdso02rbgTzolxDbZalDIPc4AmTNj4X+OiIzuHtaktXQHDhqaNV7dcS6lAA2Kxpmhxj4zWQiKtgw3DWkA49g2yuyX2/7rmBzPRozNtuxl1wEE0MbI8Lc6L2w54mzaCg5CIMkp/KcSMFa53/FU62YLDgF7zZGemMsUk4Vcm4G66ueZa/rKHO0sIZIbT5hlPiNxgHBzBZ6DpElP+qEyyokxVFKs+y1aEWUhG2nuiWwlQ6m8YGswmUQm3A3DpX7YmVydshkjOjohJQaqZhxnJX5S45CABeoT4O1fla+vISRf469cp/vWP298LCmwu2ZTjRe3plxiQSL+Qx21LaTKB4wznLamPD4wRVUpSbnj+0tHAtgbqKQKZAc1BJJ4ON4i8Lf2b08olxQXrMY5P30WDpthhMq7zPdKg8kysGjDoYl/J6ZZyltgpbTFHhA8QYeqnDnc6f9gi/BEYImHsxRjm55xDFUI85CSrHWKrwW7MkRfQq1EY+kYRivtY0C5QpF/ZpswrlzQBMCF27zdDiJ3NH/4ELOSwdtHrpsw8vUe6KUpdyRupzQcfceBz4LEyoZ282LhTUs2KG4IBYyhn5caG6/v1QQnGaDMZc8oNIzFGgENcCsofUX2lxIRZhc7U4WSvjwqtxwHm8amUVtARq0OdLo3XTUfmOpMuk1sZCO1/aKGhXymxatHgSLB8DayMRn6QjDM71rygCh+WoCewAgoteAQUZvJjHpPBGXN/Mqpmr05d4sXg7f7CTB9IB4QjCeitZBXP8NrmyLfjwKTXuKGgFXvUjJWginq1g2S/E/LvVB40omkJA99IuNxuPXhlcO6x0zadBYKzn1fE+iqfTdYcPrAn90CHQGI7ys9NMKuq6BrhUazdbDXBuBw3g1LMCI51b75VKb/t0/cTcMpo0x6q3mX7UJdd7hZuICLC99jhMu4/gDQIbYaypZNA3FZpUrLk7Puyfly7STK9DJmgHPiu/zKdC75wz72SSam6R08nq7cX8vtbqoptZ86zAYL8fRtcbcfmcA8HSM2xyDcsYXpuJ183XSQ4aIRWok2W+3eCnWHDhewaW97x5cFyQYWcEpsSl1EIkMI7RyPoQtNefyjemsYgOkQ5mDt4/oijXdPjUKzlChx+AMl4Mwb4ZgmTspIEafKIvWr/b6cIGKOHl6f4IX9a3h/QN+iWYe7WSxhWDdxd0C5NEmVzbeSzk5/W0OeQPR6Vh6AbOvIRBmQOCjvWgDfg8C0z3vFI0UTyGH48S0TzbJjt6lbeyy0jV34LT5Lvl1VA4mwZ+dktfuoxRNixiQdpr4F3faSAorw5DgQXGJFwqdpdjuXnsM/4B38TgBCXhT5HzZQlisZ324QTTcfpAiBj4l7uCuJWEhPz2tAKUqtkIqPf2fuvklCcFuprzZSed1ysbba38RLRFT9iDaj7u1LUXJ2fR6RJAfUTxEKOXbM8ImWGdvvNtqv1u7RMKE/DLjSMIUubSdI7+yS01Z7cXm/VkIkCLc7n0KRciS5DACD9cTkvSUVSvBMgwF6Jd3aIZwn2bDcC/lMrL6oOUkXsw1WPdkWCsQLJClVPrVRNaqi6MsQm0BP8YawcBXjfrcWrQRwb77/82VW9ZQdsa0y6akD8scHOUJuzZ4FHjdvLHm5KfLTSw5veARLVJIEUFcG1CgeOZrLhDw1p5aH2xlH5vEP7Ir+l5v2ySJy8EskqYRDb5xm6+UTZj2EgMUdmuN6wUhuc9iJhvgE6Do3Q3vb+oYbXs98MWarPoirq1IY47UBt06fkPlqwzmxOJYbh3V9/PMBr6J6QwetLVgwvVuRQ/1wY2kE4OI9a98uvKnENiuEJoaIbo+NgjUYPoTTqMJwMATIiv2UJExCEhgR8HtUOXiqI65NyRGhISXnf7Svu+H91ngspdaiqAywKwy5KgjI08ZvpN4k9qLkemwtKEzKZJNmxuZ9irmBXogwUkIiMPfyIR73GXKRYYEhvMiDhB8JeSfZ56OrYAWmNtv3XNybvA582bMLLw/OqsgLhTL2Wp18idoglPrv+v5Z2fJZPZfGL7n7BxBq79TBsHN5sR5WUa4SZD+bro0bWcJB/K/9ooSoYIaZeX+me0kioRZ2cQSA58dOyK/Y0n628tgHdLlPPGuf8hdS4LfR60/m7LulOazRYs1UDHheTeFJ8wL4z6LjcxEjx78cKrEaWE9h3V+l9wr4/d9zkN1k6U1xLKp5J1S8xraFcxLPnOAvGzh11R3XrVe43iJaliw+RoolP26EmtL/Zcx8GQDTmWfEIgYQuskOPdmCUVpplBS+Tz3Mhq8iEn5d+w+lMISKbwxdHu0slXOiyV5etCxMSQUroC3bPZooyvSCnSDASEYGWziN6sHVRqG8G3OyyPUHFFK1tY+0Q6qNtnZDODczyVzT9/HjFATBfdJXIzqmjN2wYCehw3tlsadPfyhYrvKW2L/VEODj4JiUjhP85e/R5CkNbD
Variant 1
DifficultyLevel
692
Question
Kevin asked all the people at a pet show how many pets they have.
He used the results to create the bar chart below but left off some labels.
There were 172 people at the pet show.
How many people at the pet show have over 4 pets?
Worked Solution
There are 172 people at the pet show.
Calculate the number of people in 1 interval (vertical) of the graph:
∴ Number of people per interval
|
= 172÷(4+3.5+5+3.5+2.5+3) |
= 172÷21.5 |
= 8 |
∴ People with more than 4 pets
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Kevin asked all the people at a pet show how many pets they have.
He used the results to create the bar chart below but left off some labels.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-G3-CA27-SA_v1_1.svg 320 indent3 vpad
There were 172 people at the pet show.
How many people at the pet show have over 4 pets?
|
workedSolution | There are 172 people at the pet show.
Calculate the number of people in 1 interval (vertical) of the graph:
sm_nogap $\therefore$ Number of people per interval
>>| |
| ---------- |
| \= $172 \div (4 + 3.5 + 5 + 3.5 + 2.5 + 3)$ |
| \= $172 \div 21.5$ |
| \= 8 |
sm_nogap $\therefore$ People with more than 4 pets
>>| |
| ---------- |
| \= $3 \times 8$ |
| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 24 | |
U2FsdGVkX1++igeo0wfoViI3SLrtngMMtQ3kXkg+UkYRbe/20Oi+oK7uin6iRKPD6mI5sVgmnnmVBfkaFRfrwjC4NPLPWn7raYYoD/UPCbRPhKLdGbLfpquHaRMDPoLMFYrUz4FKKrQ92pKVIUgFEbV+CTRG3BIalCzWAswZeV0KrXAekGLu1UptzeAyNrG3Ww4z49+ut704Qyb/zv5SySqKi4P3t/2E0cluLLc639aZuVXRAE/FrPPjai3/0dTQZQW87dOu9tvlqMhmrR5zYxYB8HIDSsbcDXkJp4gXlEgjxRKMd5XJj7LPxkndLW1fjvxQ7mXJIGpKcfuzOkmTqnl0MBs5Jpm5BZIMI2ycB7EhQTKVxWgethLXpYAXzKv081fZd3bZZ6APyHvpjrx0I3OnFxmEy6lWjMmZYqLGQhXAfMRy0DTqo4TwPO/CfxjEsLc9gNbdt6LDyvVkOPoagu+J9vpjzrM6RUgLQEgVovY2wuxShMRsgPrZZqRgTFYXecXhsGZSle5QPJc2ofHVx9WddpHTvIwPZFNYqKuU8isV1txpPYqb6erFV4sRXIkgEPCBEj8MJlwj6s5cwC+idOiMWR+lB7K1FGwQa60gpgF9MprxBuStLwGFteu7Vqg9E0H9mEGW5YeAevEUJr1K+s81xI5uvyIa3ItiCoq7FvRv8T3IAdrPZv0V73eOr+LukoRkSBKP2a9fRtn0+iO75aXBtvxicEGccUDMUGkM4ZqrU8XxqiC/E6HjUdltQmHx6rnOA0uwKj81BpNdGTtcX9CKYfPiay27yT5cDyXOO1aHr4ywF+0DfNzJSpEgH/UzcynCDh+jds2JnMhu1FTfe4k+qJ+Jm6QZDA8B2XIA17H9i2sQofsiAr54D7e0hufAjGkkfjllxmQsLb1DBnXaXGW0mngQYQkElgb+HpYIsm5nluxa8Xsx3rH06B7WZggg9nL+9smQbrzgwBha58svdxSuwTi5b9iY6/Ucu96RUDGYPEPCuYnMrVxWc2+fsCD/EL3c9Qx7AOnfnSfVfLfHparMkehCbVF1/J8kbxMFCRd1v5q+HvhLeS8KXIuK6azAHS2rIYTT3VkEwcHU/ZixZXITAaHgc7d0UOgEth5sLTvdblHVlrMfK453FL2ixHZGcUdL7OGb1Vr4FR+V3nAOc/D+ZAwHBhLC8sccY3oVfot5yslcRQBEIzWOowKv7G67oweg2wlHY4Spi1HmbJNQnhseF989198ySSCF7QFLQScOpiyfkYylEhEUxKRq1fyIK/BzQCWUHFxzT9bULfyswF7kKCWEAjNQ4v17Lm2pJFD9Rb2ROBOSBooNxrKeSiYS9iwqQZNaxxivx1u7hq8CF/VSVIHZm+NvCHnz+dEZDLRfkZmV6wl4uJuSSMYUfAjyEMvUlR3N6XQuqFaL92Ez3Xs5J0W84CqVNQPnV+RuiYGzM6iq9Zlstz4l+ak0AgtpV2tv8U22Sy52/MsfzdIozzIxQWsKV6TSrzxH0ho9RBY44evYJYmqaRMgpJKDrDRDTgYH/4bpcS9I+WVkBSvdJJXuvoCIlDb91M3AsBs4VrlL9vMrkiPkwIw2e5wyXGWBovLyD0TrmlqHx1kuxK2dNQuM3FO96F9FNp9jzXbVnOHxm9nZdVirF2fV/3RkUylaJyu/+r1sMEtkYiIuYzQqvg/E6zbQUnG+6Orb2ePaRJWsTedhVCOCeob4ipovyY3a6GDLrMGsdjkzJrjkfod/RCIxW2hSDwDt7hpMSSSL2zivw/VdmWx2sZruLXuiseRWXxVR5O/AW/pC3y82hj/RwiD3UrIqqCXykl87EGF0HNo6UrzZ3+95wRq3E0ldZvV6F8oTP1s0moxbtOhAZeR5Mqx+grzqvyv59sCnAH4BE8Lo8QjQryyrVdQe5coznLkaQ7P7VZTuRt8i1VYCVRfw/zx5ixHBGt1VnangaQE7ws5O56xwj2FIJZue0kbYHkHZEEPHO5TsFK6urCBT3FSMERNmx24xghFwHzWoddPOv+Eb4wAhyHfjP16kGYm6zPnuYvh2NW2czuLP3EzaFuBGy5PHucL+m5c/mpKXylXb2CU4UL8wuSd7BM3UjchmTJPn+h+nBjpKe3UH0ksB+v2YS5vpot/rHwGp2JyfCVHW1OkpZjk54BeTMz98X2KIGrqGXk8CA3FISdOSOdnky770JD7r+dMOJZcufb1A3D2k0cUCSZWi/AdYM+8WzPDhCywHtYUSRS7NaswgX1/IdYnOZffPSlzxMdx/17V8/SIV+baMX9ok4j6oH5VivFlBo1urQgDnoBjuWrehdBzbN3GlnwGTH5HXrJlpf+t1hat1/82DNAzF8nOXEmxycWppl0oQRqT8mY6KOFkgCOQiNVT7jTC6UtXVC5VnlB4v5VnhwrRT3ruAKCa8l3GOTTWhgktcDLCoGbH+VPt9rbygfznfrvKKa+1TQn01WcwIOm2FtfLnW20/+oDIlIqRH5dRwrC9qR0iW8UwsTUK4TZQOa+LhjFkIyKqSeS2iq+RtVcSygPNRj5Jb0kmhufd7ItQxtwI+fxJqxm3ajNAuaCuYmncQi9h3xFjgaI7yIi+73JDmkYkK89uE1xbUrdk+zZfoj2XDWaHFu9WPppzzpRmU36P0e7Tb7b57qxpQSp6Af66E8LqvJb4TkuPSBzs+CClbomgv1h49wavhh8IIUCn3levhfAfOewDuY4HBisnV9G39UGM0zF/27PYlL/fyVyJKgociAHSqRFPW0lWW9tF2O51ng4PjcBIoqa/HbESESslyXoU+DMrGWgeWEiwsayElZRUytcCN+hMcqoouLWBETv3XzPDwE4XWq0rRlDdLVRt5qN1VgO3ccVezSLbcURyW1j4pueERceNVkEfRL+nXIyiKKX3HxnOb7hVc/j7uyXUHdAe2Jemz3HSXgC2bAnjojOC0Sk4HBusd2KbfMsv4gvpU1DjTEHVocKdWzSE+7X9Caojehjis0jjpuQe1Z+PZedPCHCPL3ojznPLDQcU+JtZR33cGxn2NjUQuzLvqm8Q/dEBF5qNL0Sp4rJVrgcPSrn7pf3Y8pRliuNqy5pnFbBQ9kTVfZPKx8xFEvDjOKdQo8TQYKOKO3nwo67CoBRfNAzdA17UTuWvAZzz6JkDN3dGcw4Zz2rM37qKT5Me+dUi/tXVoNgv8fgqwSYawZcqHs8a104rdEBMHU9F5l7P8yuBZrezk18NpyosbAlNQm+OJLAP0gAAzzyccG0OS+q+4rLzFprHs8IXvnytc3FtNAtVtoCvuBsz0OytBdJz6qxDBYNqDlfLQruqwjWouB0RMHyM1GaYRjWD+uHUG+ZzA4vtdkoHmnhU6GJaVzBKglQD/IISxMAI/+SBABtW8SnyTnozm1ILlzkVFUsi0JmMP4kVaKvkFt3DYJJUP9sKhh6Dw6MoBIrIpfF0NanCmTglsfhKf9bXe2WwlZH5THuBIrOjyLbJ9RA72Vi7dVNz6IFusObDwiCXxAVv7Cb/CxXHlHHPfFwFCweZ7Px3raeP2E7gNVRCNhG4Wbj+36HbtEQgAovsjOIEO+fqUzkb1X57a70cEKsUjYP+pD3NByeQ4ZiBYLknKhbiMeFHkN1PgYWKNWVnCZvufBGLqoNZ3l9CqxlfwHN4Duc3aL5/7jL3FZU7o0JJUhT8vl/O5vXsoBKb3YDWS+6V+DmWYb7NTzG1XoFrOoOvt/CKoX+HujQ7/UYZ96blwzXduTy2Yx1lyIKlcyDYEzUNdtQlUa4CuW1zZ9ApHuUYdVfVlsr+YHilMw/1sZAmHCpRhfMEOuciuStoCBLZTRPw7JLJgUZu0tj4JeeG0ekWuBFjhlFuGLyGP9DCYWSv1fdhDkFt3Vfv+9nyWCqpSD00WpW5MXzBv6H1t+rWZF4z+iBVyfKqR4H/fFtbaeVq4RtqWrkPNmDLYb/aq5w6PZVq9ukxT07qwMJJOlIzSJDLpEoJrxzvCGgHwuujZekeQNHWktQi1bPLwyFtQguohgThAltuUznfUmTWAj/kxb/rX+W49k7wMh2pFxfJ3zbkTKwD1ybXAy7V9blifva5JwM/pSy8qPMOJjnzU65w7TGY/i/9TCv5BpgM5p6WWpoJPuM2KvF/0a1ZOfTohLyd6Q6H9cjSz9KtwsIcE2hgLlLH/vAUz4BhsX+iAvvlmmoakl0NLq4QCo+FTACv1DFBO+i7cKdiaBNRbcAiFWp3tHbDurEgwsHSidYioFkgTSIf8Txjmb0rP8uYaPDYGCCeVLBXhYJo4JRSVAC3gHfhlDf2vXmz1wH9FiBVmG7jiB5sCjKi0bUfzZQVLFdcKRT7193IClGHB3WS4b2vNhG1vetjzlZq2TJp/thXx2On9CCnVsHvE4qfXSQ+IhiAFFBtH/EucRjxQGgesE7JK/NBYY3lzrbd6NL+zXco1gSDs2UZ+9e+ZAMnXiZ8J8wmvHouipzNLrk7gGug5WlLRrAiM+6piahvh+2DVCdXvTmF9sIKNBZgVyB9vHfmxf8HORx3XqaVFTr1MyUQktZEx+0WEl6odqnttcj2AkC5Zge6QD703okf2tjwLmHfCwAkLohABqirD/+2oA6exitM+Q5Lv4rNR9mwo/Aq4klNsvMeTbcU09yeu8MMD2+dQWB+lD9v87l4Euyx/VhQP0YOhXoYNMF71jKapvvSkcDFJsImEIfuFGuDE2ch8yaqkWqOos69CHs7+JBPdVM6wvT7ZCP4EVUDCnhenm9vsbvXkJgQxrF30+xEYkHrpus5Zw9umKVXYxMepvR42BHBBQkLwmZc3LSf+V6H+sVElcTNAjnsvd+pArc+8C+DJmqNmOit7Q0XHTQBQaaMou4RFzcHmpHoRIdkyKyiG/+C6WuT6cKPIKZQJ+KlTiPphfOjZ9wFatSP9XduNDJw69haIxJxJgtvF3ESnW68OUsUOp+6X+U2+czgcCQP76Jcv9LGCBbEf+BUhBkX2lGo7xzlSr6nFyzZrdN+L/V+SwjuQi98t9Fc4VKb/PWMazpGn+xl45P7G9ISn28R7kp/wMMJeWWhtI0+SNGepo9vPOpj3FcEPSvh/50MUeJTM6pz1gtDd1olHCRKV3wQEy56MF2fpL1q+94lKKvXEzoYRuEafJOSyh5ZzI8Crx5vpISMbN9L6rgszw/ZWvMHG65WyOKtrsu5IdCEIvs4409S/n9ogDJR5HBAfzjWgSaHGwcOoLz5QSpY8RXU/cNNDTYrlvytd8Vj05tb7CLYwP7DEkUKRAIYTLgcuGl3i+qyTW5IyVpl6HXzibaB19TzBua0e9Xz4XvyQ/ymXenbzHibmqWkBWWPYuefoFkgmD3OoxFwHApCfoKr7BODDBUZdIVoDg/TMNcuyTWihmGh/HqfLhCb6P5FQ4D2HIi5iAvK1LotVvVSDm6v+RgT3uEIF+DKuVL6CZXXfmnS4k0Wun9v4f9XIkpvKGaMs2noKv8eqD3KUuelWLtcQ4xHW6kt1uYXc6kwMpSo/PKbLSlfntJuZkJWwfkBmeEQrJS1JRXta3QDJrNKlMdQAr2Kv8onUyzdxhaP5Uytr4hMDKXyUQtYdKdVt25sDeOmKg1nH2UtdGc3ekCAAXPjNBCBytoUnOrPmvVwyetRo6nfm8NxFO0widmKwywIXvXHseGPAy0qoAHbPspPDimdDmH/D64FzIDyyW57qHkeUKkaKIKkZrvcL7Dy+DQJ4Nai//AxYs3NanapQf7Aay77LKQzcGydIsFD6hXzzu6TwAur90vntQxc1dTXSJtQSQKtQaGeuUkdl945D5KwBgSnIvw0Ooy74j4ZSeO726Re2f4cC4B/BwyOOzMTr3hOaT2eajFwC6YNhJNkKCwk+jC/3p5k/KAu7tnXevQx6b4FtHOqQfj7xZ3d73a7bVRZ7BYwRaxUQgBM/5asry6meiWwUSH+3KjwUdYtWp4na/p1bxHXdvTgMvSc2YXoK32ro9eAPH9BcmjdVzLm9WTKLJ2VXpFtEivbrKofSIxFrFjZE4f9LbgprrC2HckpuvIwEbO+IdvsXnkTAajQTCZ5iMMC+9rddi82wigZ1xTzHKhVTLhGXEHuyDIjGg1qovTO0FDrFAockZl7Oh5eT0TFxIfTVT+AcRviP6DSjx8IQlwp3PZuZiDbQA1oWvYA0edSP3yrKoASfmTH/wIZwnbmyoSZnWBbnidd6aR9GKF4Nc3USDz1Ylza+1ezhBWMhf6+PmbXChqMtSR2jK6Bk8hi5nxTwkeIn0I4GiQbum0nphl0XZScqGa7rL/pVnblD+eSp6E5++fOTXY0mjtFd8NZYvM9pllRGeqJGFSZuvculJ1RvEnAPjb5e4WWCU1hW3VO/dUmeh8t02YBRQnOQdTeDTbZPLbqlVKb6jl71G4cbBYDuq7wqkwixeunT16daAXOMkwwkLzZcKhj5Rj8t/kivmuAjCQnSpEBaGkR5YKuPHbE5reuTer4xgNu2UUilt638NbhHdGxezvJ8RVrSV9ZhVWHRCSOQEwHhNHxlpCSvcy7nNYhCMK1ziK0o2w2Ze00tk6CrUypZFUWatcawE67yvrVAGDmgt6DPb3EgAQA0jR7cebNE22LPTnWjd0RDyQIDyb54NcEHlpT85KUEyPqSB7G96nZGmqYPtmqbXi24eK9cEzBsjAvzeSCBdEr03DRDjE7jy76rl14PL3WlR4/35OnUdwvT3HVDfE6CZnSiqBbipaSx74KzNIdrocw1V9VQI7FVAIa50m6T22S7rCNKa2U+zgSawuM82+PdTj1kdfkdDKzp6XbED329V3SFOHwZsttAaPBXzO11zhylsqUjIJDBvgl7RWhh4ykGPNsz+BqXbXXF6+DLPeudyLFrQrGqKmuopfjd8LEFFhB2QADkW+nse6Cu2+Puc99ENfOda5KHTtmlhHlAYjXEmkOzE2sHl3Hhcpa3KcJWytjIhYXeU3qfjUWqj5LTZTxxj/43vPb+U+hcABsX3IF9En3NjlBVjsG4BRT9SonVWMB6uk7JJr17aJMduvjAGXfr0QSl7OLAef+Wpvh0rTmnHpQTkI6GqEhMa3PlUmOyX35By41KHKhzNPQjGvw6/zwHqwidV+kGSBKjf0R0LUw40UhyTW3bp2jsLtNhkESAeHpvu9mU8ldt8yli4pjUhfR616RJfTok71Y0bTR/gsKXIyObUMAA+9moCQwVq4CWKCv/MmLSISV6bcCB7ZqMd3bej5He8u09XD87eU5dz5XF2ljdOi0tNMcWkXi+1WGay5FdcHpn8NQ1SjLmo5RqjTSai0LEooLGzbTR8cLYnRFE4lt08wMHKWz3ibtLTTEfSyr4ooQqCfieLAIsSdm9xRUkSPkVA3MIw9o5MtWGKfhW7QyU9ICNLNxH+BbGGqKo0JwshxOMEkD/sInMYNlRA4M1XLY/JQ03P10tiVFIHA4JrZT9fyQU2Kl1BBYIs++d+TbBJ5fr7bANPDwAOWXk82ELVdNPbAPJLgCUhNMS/evvPfb5MusBC5txXt0I1OaPNtzHY7uel7vLFKLg7mWX5FPXl2Gg+wOJWpxPZJW+4cBjlbiRC3J/y5J0+1hvdfs1yQ/LQxxn9fr/puqEvsn4E7WnDU3rAnkSvRHvR5cIqx0QkuiR77ilbFIQaT2cVdphueF68DypF2NFolzI1LQomiIhKtbQeZWbhoW6+W4rRpb8bCa9ndtfxxMVEfph/1i01kkm+/X0VKOlLzdQxLYACr/2JoWcpOaX3sERQl05X58Z/ShKcN9zkhBKfsU5LnZenMX10Mv3YQMTzk/GgVlwh4uwsawGCwXKUoXDE2F2tTdTMSsWliemTFJYMiIDvODVON5d8Wl8nGSI8ShsnNtned3NldoqmucLgEg2IiKOoGfJw9TH9KMvaWVO48PXgiqI55FIufrkYCud2BzCHOh4z3yo+QJ2eHprVoEe/Za0kQaIqCtntWrzyRt3joT8EezEvOgfi+GbUKJ+tLYZqUVKFji7k394NHIgGlNCF03RSYYZuoVpF9MTj0TU5HT/87YbkAjE9THTG72pfBvBFBFJ/J1IE+wsmx+1dA6LKBgFSUSuBrdNkD+pXkpgI9fDom7V8QF6druEfU3ONxsh5bTVbZbmFhlbgYlaB3GnAYwUo9b+8UBWTF7qqiXD52+Xy8/2PRR0iyGafPdixcvOJy8tiMqZ27swI05sc3wXXkB+gV41F9KHajKNXpNVYelbazL20Km299LJyjLJzqpSBCm/20LQtSjMGsNawYefxCyl9PkLvXsC9XmGRgKGNv/evP/3+4G/EAvMYn/Rd7fv9LoYUqCMy33qqKB5Q5xmHiHNBgXM26pVqPu0h/OvpbMM6HyuPg0gSEKqpQxhxi5kwLAr+Dyyd/MX7T+np+VOxqFNhXmeGfInRDcVbWTRtCW/KcuXbykSLk+DKzTZexi1Zz9DR9BDrCxs84pg/V99zdWnCJUrQVu8PbQq0CBwrEyi1tJiIdFfhWQn+RId5XdWkCp6sJ7+iwdrYG97kMHjQod+Jxabv0jGvXdSKJThCPWigtmG54bouv4lOqYbLxQESZDXrRBOUqnZgLrb5m4ULzFVYbDGv9ltxQjD59kHjlWiLv8Aefxw2ZF6+fmA9ftsgbiYLO9ogSsLob39eXNAodwi08m2zE+ky2Wmgj7Q/bplJAGkAHqAfEPc6irBUr4u0NcQHZ7ckcxxqv14q2EZ/zwfRW6pGYZCKyUhAusHjl4NhbTPledHm8LPHmISJnsqJMUlWn+PgkC+7pcRnToVosxhFCQapdklKC93nqZ/bwqZsT5a/y5P66CgXyVOPZDk030vsk14Glv9QUU2HK7RChdB6rQLZl8/zhlDlF4pDvnygGUPgXcnnWuh7mVieKXb67zIZu08H5qEyDCRdlo/RrURUFGHfQzmD/Hy0cZoZkVw4+q/e+KM4vg6YMReRdqhZNByntYCJ6ufNlofxo7W8UqhM45BdOCyhvA2+gx1kQt66dwQ2foHuRZmuMxGulY7XdvH58Ewjh2uL2R/p77d+Thm4GlesbPjOkUeUEVYg==
Variant 2
DifficultyLevel
684
Question
Jesse kept track of the goals he scored in the 2022 NPL soccer season.
He used the results to create the bar chart below but left off some labels.
Jesse scored 72 goals in the 2022 season.
On how many occasions did he score exactly 2 goals?
Worked Solution
Jesse scored 72 goals in the 2022 season.
Calculate the number of goals in 1 interval (vertical) of the graph:
∴ Number of goals per interval
|
= 72÷(4+3.5+5+3.5+2) |
= 72÷18 |
= 4 |
∴ Times Jesse scored exactly 2 goals
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Jesse kept track of the goals he scored in the 2022 NPL soccer season.
He used the results to create the bar chart below but left off some labels.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-G3-CA27-SA_v2.svg 320 indent3 vpad
Jesse scored 72 goals in the 2022 season.
On how many occasions did he score exactly 2 goals?
|
workedSolution | Jesse scored 72 goals in the 2022 season.
Calculate the number of goals in 1 interval (vertical) of the graph:
sm_nogap $\therefore$ Number of goals per interval
>>| |
| ---------- |
| \= $72 \div (4 + 3.5 + 5 + 3.5 + 2)$ |
| \= $72 \div 18$ |
| \= 4 |
sm_nogap $\therefore$ Times Jesse scored exactly 2 goals
>>| |
| ---------- |
| \= $5 \times 4$ |
| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 20 | |
U2FsdGVkX1/eXBsLuXj7RRH3qmd6fgyATpHivqtOGWeBZ88638MTvIeUDRLCHkHKJm/FlleGF2Mrzi1dDQRlNyOwORcJubiN2DYkw2DAAOxNPfV0G2e7CuoOCfChvO1UN7bJ1sisDEFVbyQXgbKY6SkLHZ/bafA2pDXfxulIkvyblWzw6Bo+hUF/dOVEXir7hp6Q1c4kLvVA2DnL9pOHHZ7ux+eKIzfiwFBerABm4zxcs0xvlZkj6O6YeBYiwccWPYmqDRRNQCA5Yqi/vQ8qx0E2ynUMgdUhxJrk+n+w3ESUlQo4x30Y4y0cW4wMT0bPlavNmtBf/Luw58NJpBSSmerfpiTLO4qrdEpzGXOqron8ZDzQzmAkwFhL10GbHUJQGz84lfJZK95LqryV2TNq72GmGkUz9wbhGI+bY1ZHonbaBuq6cSgkUKWngUOpUJWTqZ9BLWJjsn0+XJlp/2q2mq0AakofcC4Cpg38IKqwmNMD6vwJjDb0k4qjBXIBGZmPz8scuY3UJrxJHW2Y1fkN9SZUwbczAn9Kh2YmcT77c3ZenCntF1Wy+k2gitk5FPf0hYZE7KE8yOiL1bv7x9jPM3EeRvzM5azzbwRoDbsq3HNQdb/8olZwELZZvwOyIS9yaTeQH+PIgsQeOOzLegrfNtBrBo+JMvJdFb2X79r+aj3EYjQqi5g1z9uJhn9be64WMqdtbQl/zLyBJABJvEiwQweMyZusK539DDG+R9B/1WC5eTLq1xuwCKL1QQWzMxz4IJpi2MNN1Ok0u0xufA5j8xFQt7XO4vN8CEI7ibHuOnwKfgA8upLlL0Zbk3iBGHG48IR1Jvx1yZhuxx96o0+Keb/KvzYVzEU3epCW4YeZdHxS0erg//eb0lxH1jA4xoBjSi/noMd31bSbFmhMKTqM35NN0emoATgVjCI7pjprSyHoZVJsSXRqNnKjySRlMgv40ztvDHAE851pzSnO/kekd92OCcypNOzlfzlwHOk/1uhdV13f/Dmb3s8alp7AP/AIcJxUPACrKF2J16ktmP2w4WJBRLWsqFkjuaaHX4iWQQdp2DU3sKQ7V9xMytKaqArMBjV7QA+pmCm5CJJPZwR/EzOOdEoAB6A+WBcl/btgV2Fbm+uW1nuiM56zEkV64EcqgDp4pR1iLpZVo8BH7frKtrbKnnMQihpsUPI7Fqs8/e3s9aT6mQcvZaLCqfj70WLYS5Uz5GJu7DnD7jOZdP9WBhMRk227Yp3V7rgHWQyt/vchLmig4X1mbO1NnobIr/h5sL98nV78shWfkLIUIMHsNNomQeFdh7dmMR8/jpzL8CsaCrwJatUoeFhXbvjJajxiEqWKaGCAmfALfwRI2XjJQELr171hbOioGb+ZQdiYkjGJFPIlYfm9oXVSOWTEQpnpCXNtNeQXRkOfvy/u4slTy11SW1UKeghV1uT+Tx92UkjZAZiYln/tBfsIFELytX8GHq8mBQiuSzsTCdx2wnK5o6o4TLcwI9DluFhva9Wy96Fmt7BzlIb20ilfTfvRYtHJwMsyFqOMDIVzYODKDRv2gsf1wQOsmHELmMmoJNAA1Q/4qXfTp4JN5lVXrQ9JEfp10ZPtWCpTRQQbdnrQcJKg8j3wWxKfG5esez8KQGWESoltMVb5bNIcW9VCyRIMejqQ/OwJ0at+nwnN39sEAZjSVqvK2LZG7nw/EiDaKHpc1pGWyUdKeD1d+ZIZCcomMJxuKkJWLGuYoI3XikszgHeq9583qYx4c7YoLn8C6KHJFQ9QQyAWnVdKnOdxdS1Zwqbt/FXPGlyJOahRXjLPMBYgtw6mbT8kBoeLJ7tOKMCwLg19Abj+5N3CGF8XPHASDBXVCq3WI1YUF3QoMQ5dsoZH0wBDEBvXfR0ClfXs5CIBnVerYTLDT0WPphzYcpAEX+ooYe7PHwbAmQQGL3pZDLM4otN7qEnZQKzep9BgOADeLkkpzQ2mSvFNEZtepCcvJwPnVIklPDmB6dFoX/4ZNRa6i/7qidZb9e5xlGx+1enLbxzaI8VydqZgU0+1+9AfUkNvKqgbcFZa8xgPC/u5ZXMkQmvdwtawq/sJNCUwlQ3u5TT2TLJWBBl531FGN9rmOnKBpwgAIPoqNuA6/HtDs0UgCwablk/vQZe5w6xhdIOlVBy77yuKT/Zpc1up2pM+T+wm0FRoNvVCbcL+Hpfv/NgHfMiZePSgggRXkZzFx++XRMfuLlPWJls/ZYkNxnvTgizGEWyyHFmWsLQJ4htYpd7IYhiV/9i0sUHqDrMX+en+6/pBmri6DfRNhg7bE+KsEPWEcHm0D5ERA+5lg0mjRL7SRVm8X8HWhLerM0P5CaQkAtNhABNRzybANqxTOnCt1OmAnEPzKJEFA2UHpmHCBjD8oYCGqto5TH4X1tRWPWf+kMVFbqbVCTfWOhCkhPLogvgvyDNo6YlsaF3Z41bQH/Rl0DfuI93PuQVFFUNZFrLdIYYak7DqeZHjjukW4sXrOzFfAJk4lbFrfAEp8A/ydTBooYNlDFfTQIvE1Q14yMsymZEwqsq001AGfyn+72TGBaCr0RjeW4G9KTkOeyIrVx65OpNcF1vPvq5sVnK0JcuiBPsBP7DXRfzuOm1keZrAPhvBptjQpgRcpGsC0/hRGlEUgcyHMp5i7ueBJttlUXWJJJvPgFExaXFOavNGm/XAK6LsDpdP0kQwdoDHoTi2/luvm2E9DBBJq1BRWzIxMEeD9ZRX2tIpDCXZA79qm+ZIcpp28Q3b+FK9/TDOXhhVNc2naOzczMLjCWrYMgfm2e11wUbIXaJbRsj2qcO/NhtGXA0z/ayNzwAdZIsBr4P7wIxRuubEeaUfwjfcd96m+cyti1vGjjOY5xdkzkqwQhycC16g4FA+/zP4UCtHXuwt1KWQodgucBkmMKmM/sBRwhVqx4IUYMKMd7iU07wWgHlnwvMjWcy9C3uhx7eZDGQU8+WbAncItFacCfqvjm7wnRAROmh94FgcTGfehoRcXb8FSnS1J8h18hploiRrYb74jHtE7MoCbUjlf3xXbtfv8I/8kFA0dGdxw0F1oy5AB6IazXfek2doOaxb5k+byVcEL+wo722ehAIt68dssub51Gn8dD/KMOlESS+Zuc15ONSF6OQ0GkEQe1j+DYhoy2ZfXSICyjLx9/UxDgw0iD1U4sRR+TjhZyyUN39tfruO7LX9RE7+PC5m8Idg57Prtm9YmB84oInssu9ba7H9DUcrSCpdgO8daY3wSbWL9xUb6K6lAzU7iOVPkf1O+CPqm3QnEsf9wyUyfaTniZjKGRriQVw8NnpjcSYWlJhZZHTfNdQ+ZoL8+MC1QO7b40WC23Ghbqbtfb7k9SZio6kS3Y4UC3X6HfipkGra3iWM9UA03e0OgYkQwFVgumSMt7nC1Qw0AN6ApWGdxehjermYzZnUos4NE0XVkSeoLme8DO4xugg8am4OVbSvfobAIGssd5jJwBlXv5q4L86uW9g6PjuJTUAc3krV3gRYJGcRnaODIUt1cST0qJ6Sl2gyGt4VeRnKnNflTDdGJeYS9d/1RTX+SPjSlewnCI26OW5Jl63Kv9ieNR44D8ZrHw0FB+MMfqhVt+52lR1w1jrLi09fkI9JbGRT/dTkunRopnV1kevuvtmjM2f1Uzql9cMALELhub77lLmk05DrDMAqhojU6TrtCHKnOkyIpM/ZCm41BGphTs36BajWeA99YXnM1ILOLJCb5j6lZGeSlrnOp94UAq138ixVHUHVNoOlAuWMzSkLWeB2OawVswM1zequ3Tl+6xUV3pXNOB+RVPCPsVw7DHku4JnEFThXozFoTS00rJMYuQlGu1q+UReIW5MRYWp/rnOrXobnQ668WX5o683fbI08zZ5quOQCveBK9Xii7fGQsRU4qRj9Kw4ES/7CaRjHKIzy38QFjTI6tfoKteyXUEPzpcmIOduNfc1xaxvDgZTMjo54SsRdOVk0bjpRB5uLcoDTNpmPKEk6RWtczEV/czVP+5sbD8qMREEizMufn0F25IFQrppSG5HxoR4ECzUAe2k4BIlg9sJlutTRniuhxbkcJaAmGZo/mfkS1smvMmLVfKjG6B6/7nQj5eWsHOtT8lux7dXT9a+JLvp+6O4mR1CPc3ezrVzjou6o7sgp9WCgzXsxuZwza6F2Fb5HArYZ5exvUdpByWT9edCZmY7YxPmo1YQX91MmLgu48Kp64+hurVL6Wz8m4DynqJ2CWszeBFwQNMFy5dKg540jXM2Vp8XokquNEhag2k42It1lTHBaCIyrCiojau5NAgdnH2g0sLJ6vQR64Zd19QANOvLYqCjEOzFHxzJTu6u+JM2larD6QZo4k3GCDBEiideHcrPxcd01x5jHNjDhyhUfnOQrTQihG/Ey/CE9CfWQDeV0fo6UPcS5uhtLb3qXPQ54mCFeoHaG4Qe+Afy/2wJLJFpQPvTy2RH7FRlClNyvPjBNnSff+oc7zUPAsXfFVt/FWyL5KH1d2mWfSGlQ4xs5I9WD1BK29g/qEhjQQLOz9E8CX+wtCEBR4kWYbhKAk8nSB/30C3Uj0HlCT2tFAGfHwoRvhIpDdtTZF8WsL4bUNuv/CfkUQFRhIpKs8CDr8a1iZFpDglRRZJ/UqDBK+h91GNrLksIa3jpMO46XbhNPMULy8CKUN2mFWjIbP0XaYGwxbz3B35UEcdVCHCdEideGjCI5LdyWWANW+oVJwUuimRxL9i+L/smOnArUUfIc9Sj4uguF/OPQHS086/wyesJe5WSVx7YGjq7oXo0RXIIeqITSm0BtmI866gmo1p67F3RTpCEr2nllTvJjBEefLiGNwpwleIOdW3+tr//MCwexThUq2GdKIPP+7IBx+TvnEHtokSS1TmapXAwXwnyWbgiujLx/4AhlDj0yPptvbM807LbISTvxdV0gy5nWGbVn+TjyriSvv84H5/hjCQK2J4LUasB+LaAazFCb79fs1hmzdr71ML9EdJZNqQjuyJ00gBnkw/luZ0hVw9eopxtcs083ML9sDShMcYsE+ECeof4fiVPhX8mO5DW6oQ5sko1hSaj+93L5kZR92JyTe2VB4xXSyMMpLGmhKsDlk5rhOsR9nO79V9ZUfcR5cjT/+CTR6/AmCwbaUAbw//odBHgfua+JVO+MvWrxpdFgtf2qIk+CYvMl/dz+GbaB/56EKqhdXnNxdImi5H+DKmDIZB7oRkrGeIgxmuCjuIwatfuMUgktYMKYGohYWEq7FpqWLo3bW2ZsVR5s14ntg6cvnj/C/uvemEEhXk+LvXa0SNfAi5DePAIC1rFOhw9x8pK+UzvPgoZn6R9QYuYqstNbILv87/Wwxp5m2WG2Lt7TO5yUzlS+EyBxVJrCsL7MzfTlVsnJ6qZ/9x57ypTF9DECSj171ai9/igmlqcUFSnWMwvIDF9Wf/QioI7XXvRVsnvLudIIAlu37BQ0rr9fUC/2SWl0GqQVu5lM54vZdAgC7JwOwtuK2uinEG9QTXlOr82d2LGCz5ZmNbH0J1OURzVHvMlzd5Sme2sSuCE7/b/5lArFm/iVX7iH6aoIuEwBGb16MD91WVlcLpjZBdhpaU2GRGrHjSWx1x+NBgNnBqbkwjYutU0sWfAbZNPDT5x+psVkhn/IcIx5/GJ51ffwT5E1mYOhnVGdx4Qhbx5W4tmQ8j89TKuhOBuZyCY2w3GlGMNpXVYKNSJz2MDtn90i6sgM+AcS+zOeiaxN+55J/OLzXy2T71YyxRzr5XAIFYYgQWfQBoSbpOpN2yEUtljnISgZwE1sbSeBmylQwbH0zdmhj2FutYIxIOEYpGXQQkRpA308iYGPHXpBx5O1ulMSzoxblUEaItgjhTAFxOIW/AM3Do0dVW8zV+H0pZXr+q232+M1/BLa2+OnMuZhQxKplMQi1L+u7Mq4680wzh8QBZ670+EKtsdAs5I3fXIpCYdzxmsSv2IyB9oRecyD1nvMUAq0RV0KK1G8Neos+lvnX4h/sSM47oUOlWykUpyvrcFHol4RS0T+LbD+LkfOgtqw+Wh16Ov8/SI0pvE0KnIUGJj1vBaVs+dpSD6+7/qIW8vZMy9i/G2tdJ9HuIOSrmquVofML7/jxm4kUMWH+GUrHc4NCzWj+SlQUq26GWFTR9vl70yFfNQciwlmk2uV/WT+DznaSBhOHXgt8q0VxUsxZ6huLvnzZGmFzgLXvpB4DufMFqzwYdUc2hOfxcgLsyujU7UxHpLTtwYYBmK4cBw2oJ7G+dqBg/DsFw1da0R4fGrbLG40FFTgEeYRnyMn2P71550KN6VOBsS8IhKEcx4/vtIxq68eLH5U+2wi3A54ngyJU4gGZgVk5f8mWhp1eUefVIcwhynRfPOE+XC2S+dAmOP17R8U2SMvfWfc4YP944s+ZicsNT+UgUhOI+kwuhZfbuHk5yPh6NWmXeGAjPBJEjYgnWL6KOwNAzv0oYGc3UXP9/Q5eG3MkErh8V5AIdPYtalheAE54HLU4FQSJqxsso+SOtckw2Blx2cSCNOUGLahoW4JOMEB56Xl2NWCVaP8VuijwDYPVJSpI2UgbAuY5pipzHjTq6mtucTa4vGgRWFnMNQ6vQANraC1Gu7MK7PPF4LlDGt6Z7W/wiR1SKevXe7U4cblaxEsy+3NZoS+ZWq7KZJIieT4XoO3KEpvLd4n6Kl4IXZlVSNIzQIj7O9ZyFOmZWkv6/Doil63GBPoq0kcvWrUi//IyxiIahWTz2q76Y5wWA6/aqXA/u+JZcw8wp67d3t5uz6lxgUs6JPOpvemHwi2g9QAEAnqRqwj7yV9nCbd5Mc6wacDHOUMEXCgreFcSSa1UC4guxR0cOXhcz/wl4ViodsuRGiqpD5lTzpcSC8dufPaSkXJaZIAc84UgxyekDh4aPsPcydB2rmm+Sias/6NSHeicVJbKjWbG5TdG3h5nG7n+ipurcihnNhLWe8895WrzRZN0iNBgTAiVP6aiSy0VgjvcjmjGevGRBM/BKxyIlPpgWttmVHcf85sk0jPHuZcbkpOfRBVKYCWjcuSBc7J0R0Wsvq9o5kjbso3oKXtWSbCmdt9Uu1isnhsgb+5CgE1w+vr7jaVLOjFa0/5SbSbEx/dJYvuqxMf8vMlSycXXCJCfnrJiz7mUW3KRPi6CzoANp7DRg609sPQfXqM7pTrmynY+IyKlUkkZpCtEGnts6QskTIRpn5WBjubIHzoL4X2QXBhC0N65RlXJ9vtNTFlEkPn18iadXUsdPO/ReZ96nUUiBgGH0r9epwAM86GfdKOwD+abk3aUvIO1Bea2NZ0pPMDiIkb1Ns/IDU2yCVmyy17M/tQJostf9qsEiIdo93hqKcYbzf5CirSuODGt684mYXSKS5Yq3V9WlMjLiHJlAY92fRAeDSLLxjSMqCKyyaiJ09fe66Kz2ADSiuAMiqQVmSpXe2qpyieOOPXUBaj8ffwKJVyreyc8e1s1tXL0MYig0TmI5ChNfG7SOvnKwLLSQlvhihWwo3dnGs8icCnVhe6Z3/2xt5MP/oPY02hnpP4dC30s0WeI27Vr3LfHbl1wMBFxcnu2jz5oJ5GApqajB+VW8QN98i98lTkabcXmZn1xAoWs0iwopRAaF07M/m2XHINt7vVaLgFwvmj9VHxuX1dr1PM+Z43EPpdHpx9OXqZbIpl8fKfBc5YboptfmALFWyCipVo5MCT+q5PaNTu/DMzTCsb39eMWS9VbZZbe/kTVBfKWX03fB4VZ798IEEJDJGhRQxj6M4KLFJ3NDfKlqCY4dzABng3on0eMAqKOC0OOfCllQ6+XaYbUZKWMihewm+V8i5+yCuGnrLv76Aw7QfapqgCt1/Oyj90GW9fiVz+Fl0yRXY2IpqJp4r+S+36LXHHbPa0Jzokfc25vbhjvsm3vc9OoPyvFWmVHGZ62348362xvRLL6tTgLRWXBdkfbhPqMTZmg5geALIHHu2rUQ8He6P2POt7bphSexewXvbg04YGrqTM4Y91Wg8K2gPv8hhE28aAIPQz0nR0rbQfIIHIXrAYJD8NIqhcKLisKxlz8YCOWdUepyKepeZHyErSAxEGRsn5HGdsDfH26TalrUFcMGphq6JWTMkorz/VtHupFoOoASiNv8qHjs/2+5/Y3LBUMPK0RZ0muBIVbj1Y0a+SqbUs2NS24h51ZPITm8qul0eNvqXd3ADT0/PPnBRfoI1TCRO2R6sDiv7o77ChRGvHKccAjKcmkHsqUm7PF9KXb5C+DT4jzUA3nOf2hpB79xYiHHoo7BoZgsiP9P3iYSuTfVmaH3qnyrCYaVW+NlAYQfmGrQhGbEa3/91RNnWI0hfC87wJlUyVWzWe9oFWg9rSzKzkbgMA4gAB9MoF/H5414nCTJDyO1SgskSC+SML42a5i8y+/a7Kvks56smykzitFlMquPMS2Idzim0lQ2jlZcQCngpmCM1Ro0R+OLpCuN1TsV9EmlLi6tf978KGJOftxKawSNBG87qJeQzTioVzIRTUgWtcKLvaeRvGJQ1/9Q0JmHz21Uq+4S5D0tZpESvm1PvoE7+5veSR65jfyi2u3mt54WuH9lJWmSBY35JtKf6prThA+zE8FtVJwhtmVDuzp5M4rUL1IlFlDj2tcmp9LlHdvh78rUemxRZs63pGXbYMUF3UlgkNcXqGAA12sBtI+X8fhpP5VGSoAzu1D0DtsVkpddy/6cNOAto0cj5f/qFn2L+3patr6r1t0UQg9mLuN6oTC0a1favP7sOLCSCkytqlaPc+gCrslDkxK3iXaXbxCQBM/qm1MVIPJWL6chS8OEhMxO9oKw5hy0YhbmZ6fM00cuwqhB36TPGh71KkiVG8D//qKBvLNuYkSkw3RUsmXqJJ2TS2dvwCHYP60TshtyowqJUHvC5mIg0qRqkzfHqX1vkMpLLkNctcvpqYpKLKm6t3ywWwDsSgVs4m5c4z6VPTJOE5dergbvi6hIhpvXnPbxLxcG4IqQ8KHjd1i8SRKPDcm64Oz7GvAVmm2AyzQMOi6s3D6jmjFWzvi6agZYT5Wztby5TZMgnGxVN8H70OZPLY1FcTZnZTRF6fp7JDPkCnhryiOzMSbqDMyyrMp+cJZx6ukHhStd17l86LfDxb+fpCqyZIqueKL71XBLyqiB1GiKwtwfHIc5YmfHfrEA/nf7orc5vVO+lHV3Q865et7vYmptECGop24cTGBaeqFFfrn8eAKV2B+1cVbMsIaWyXZj0fBwbYKrCVQ3s0Y6urjigi5kZgLzzoxWE4vMVfP4qkmFAyCcrT1nFxAZGOS3PVcm6JF1D5K7yk6/bl8Z28zJuZKyX9a3r/EGvKEXVWkCtVJ5PBN9K1OdGlC55m+H1QPs2iUrmuJZ3xW/iQ1NZFzjY6EK/on80QaWlJ6kWSCAPqNrYevfGu3Hz0Q+spLs6s8IG7SZNqjLxp2IQPjtVguaizcGu5g5eL/saD74QuiNhTrH5wekupP8EabWX4Xbm43uqZa8U2Cdge6yyOoVZRFSdAwIRX7TCUcdrujJeAyCgpnRr99lN35THKHVSeG61SRsWSMIc8Ti6988pnVW6wGqlT6sF4pZuxf/l/2Cthh+lxPJcYEkB4W1GqB0J0hTBng611U1bU8gHclVR2pssoplL0pqRLmptIh6YMsGnTahDxslALc+5ZpPkbAM95G0cxhqc2X5mi82/UtFp/ufLHETo+vwevVHvN+6eiMkS7Pr3F0tpVI8DXYA5pszHe1fmFAYECQLLAyWN9ElVXbARu7fms8GX5zuz/eYkiKwBZzn0+iNz2B5GBjXiCseur8XxAT2L99cfyW4E8XELTKzMTAgI27p75FyoctX48CPcyJvtTluBebdldnfvyDDRXHKmWemYRXBby5f9/44oHK5opMPZnvQbFXic56UtisdGqv9ZuPw/2oFjIqzuRTSeC1bbOEqG9+j4hOb9/m8ym7gcECM4YRtw5dezrO8uO0hZsOBVbPxNEyVzLHREpg+vhTCqHU32pMWuElTkBvziMf+UdhOK94xgk9m5z/iQOwzYT7FJEW9N/HAkaKC6c6jxAjrq+tz6CX8E03akXWrz6zhZVjBzWwupcphHgCGznSduQ6ozHmnNIO7h8Voi/jXjVFqsOkTbX8kg1fThHSZSaYdbc+wld+V5Au/S6kSh5ChBTaPiR7fzGMip3cWwQ/WCGWv/qpafmav9/aMY0RCeEQoMAKwVJyynjVDfp4Li8654SXihzY0j8yazJR/azR0uHbVAAsTcBN+GWjIkZK4grDot9qNaFWkbtUYAhKmJLbAP3WPEb+MY4AUeAFVzE8pGhwd1BMY6/0d9L9H/3Ducyxxnorm08MlIuyFI/QCP7SbQt9x+xYuxOq1RKwM8Ka9KVUFdsvOwdU6+webI0S/dEipbinzj1U+K0H9j4Qdi0EGrKmDszXn6QOA7K6lHEfz743LDgsxOWTGJu6CNhFG/FFeDUiS1N8m2ZxotdNTH4SQPdDQSsfFppHRnXJHKuujkv1dj5QZqfopPqAD+k7em6MzBnqQR8PCG8HiwQj53oJKDCFzzjZwSBPB/Ekw446dUc+9W4jU7DnOvTD8gvqFsmfp1xoXVv7THVn9xvniWQau0DT2ijVLbUmvj6lW7OetV4HlQ4XGgmwawWVFRxq6oKOskxN1xjOxdZ7Bf62jKT7I2yEXmkWsBXV68VsXB9yDyqYQT775e79EBlUOUVLh+zR21eztVDqP+gz9DMrl6tdBsMShbCOhyWj28sCZfk1IGNU4kkyFwWXMK3AVBEWv+yXp1R1SqtDTto5NU0gPtRT3Dt5sFLaeL0vPN9PJe8IQGa3pp0vqPT1SrwtsXK+nuZQIo1iUxoGIlSXAvIExcmoLFH1VOtM4WZqgbmenUCqCJLH9WOX7/OpG+8AylG3gO06vyYt1YG/hMbvmy90gJdTxqqUbouHYOYsnColyBxcfMf+btvcf8Y8aCshRGAxrfECMiFtUGE1VXVhkh6Qo4xsQxciUflysf1lbgjOqkhgfNoXzB1Zn3e9rl2zgSuVFxLo6Cv/3j+NT8YRAOmKuzyeC/mA7iyXyDv6okV7pvQrtFQKbRPVvjgLA2sU/owEzOuBAAlZvpCQ0X4XbrpxlL9VYHnyV4W6vrt7JeOeIay6kgqz7ei7/pnpONsAlLLdLjMbpUSezwUMgvN9v22oZ6CYQ6NOMXKq8FkRrdyUkKSMiNCwCenqMLgEHlqf3GIXEChrGzZtHs8YSexwb4h/PyC0Svz5AijioE1POjfYJ5GxlTu0mDvvGY/5U+Gz+jvgY15bDsK2oj5RgskE5lVhZKenIJsB54MRhjNKqvLPsHqn1AINgWQPBVsRveFbQFXYJiYENIVt+i7lK1gXHG4zKEXOMS2vzKE72ph3kXt3gwo5oJKGot/HEa1Pnm4B0kJi9SxGgafva/TS+QDW5OKI0tfa8bW1BditZ7YKQfSg4+qj8F2bYeQbu1xSOmYEESy+6YI1T/66S8KHjnOStBiBrTB3BvyaA+PGezgsMadlL8U4wyyW9Fdc2SruV+GMmS5A1bG6h8Fsn8MjWuoiRL9aqikjyP4RJH4DKmpCXASEbE1yo7ZlV25vdTOjXzCtXbMGBamPBE9pwQlJC/gFrrF82yWUIXucKV5mxtxwauJ3G3H57nINzLrVPip2Fg+T3UmFWPYeQDqsv65/8Rfbtk/ImXF6kF0zXA8+Lvu32ZhLdTe8Iin408AzKOCBew/J4u0AidYhGrOYxmgXshGoOKR797dXB30JDCykKqtyQKkm3EA4byYUha+aMlgnhXd3QLw7Lj9WKxKTlCY3/powdjMdlsCeNyS8sf4OuqlBIH+WMJSMKt+1BtaqH8qqT+ki/Cq8puGaL3uQAGZBhlnmiGQRe2FRIQbrUj90+tBRmoEzMJ+ZgYuaLKbR10o8LMZ2J5BvLRTe5i6EyeJ+eduD5sL2T7jecavKEg4yyMSq7OKijvAQVywe986fGowPScNTBCSgt0pWivtZR3TRleilg3zUY8AW8AliA6pGUhuS7sN0OXwLjDTZ6/p9/0eKiQhfTOngLBBRCx38jmvjWhRhXVJR4XHpBpUbfz1MgHcgUCJAGnYp2tz0EdNxX1GBNDvNkhcZlLA3TzzQ3wLezgmlBaQyC6Rbo+c7jGtd3pp2dieKJyXqvSR5C3hFh5aGLXmz3TR1YivmnnRScWLB3T80V5k5GTZRMvTYKuCeH/eDxPavCjW9ke+0y6gG83rgC3zaNdLxgKp1I7LYRCJ7JkDBmx7gZP5khOa6Vxmkdn2a7qFnKOekk2Akpe/O66y4jNIQ/QnXLTUlkiv+mROD/llzbSIswPK4hAQHYEMdhdrTWgBbRrjWdeGeIUA7eYik+k47xCu4biPsvuIOQByZ7TogMjrv7IxuLpcAFUM7b5WwwzwgvVL9UYEvIeOc/zH2JjTVOXUAqQlNCjNmfwxzEnaQv/sQPlT1DBnHnXwLxr1ORIyWWZDWfMbtJnrVDz6srnJo0Tr5m8ODaYZBuOk8ZXRLY3B+HeYNQ0fFniDlTiCNexD4QX/pCoFIWUXXY/YO/kf+IgfLZucUC1AWMcTlSIwOQsebYy8IpH5BHsYtP3Irxk+dfRIjlQZwiEZ6xBkvpD+07JiNXjKmWd0s6f7VIcfuWf+MRlB1S8IPN4whVHDNYs0UJxK0vv669c1GnmuklQ0kd1PI89AuRRvHtjrpxT4YW+gVNRTd9ukqs+t+y9XdIrahutFBXKLyLUClHR4MIIphSVh+kQhP5NrZQZfRmUdW+Uydp/HffC/1mVitDrU7/AImU0a+mzsQDo4SsT9C9Umiy/WL+I+rD0cPNxEdEKfMl5tdZ/wnTI=
Variant 3
DifficultyLevel
690
Question
Ashleigh recorded the number of times the members of her gym visited the gym each week.
She used the results to create the bar chart below but left off some labels.
Ashleigh's gym has 616 members.
How many gym members attend 4 or more times per week?
Worked Solution
Ashleigh has 616 gym members.
Calculate the number of visits in 1 interval (vertical) of the graph:
∴ Number of visits per interval
|
= 616÷(5+4.5+3+4+2.5+3.5+5.5) |
= 616÷28 |
= 22 |
∴ People who attended the gym 4 or more times
|
= (2.5+3.5+5.5)×22 |
= 11.5×22 |
= 253 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Ashleigh recorded the number of times the members of her gym visited the gym each week.
She used the results to create the bar chart below but left off some labels.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-G3-CA27-SA_v3_1.svg 320 indent3 vpad
Ashleigh's gym has 616 members.
How many gym members attend 4 or more times per week?
|
workedSolution | Ashleigh has 616 gym members.
Calculate the number of visits in 1 interval (vertical) of the graph:
sm_nogap $\therefore$ Number of visits per interval
>>| |
| ---------- |
| \= $616 \div (5 + 4.5 + 3 + 4 + 2.5 + 3.5 + 5.5)$ |
| \= $616 \div 28$ |
| \= 22 |
sm_nogap $\therefore$ People who attended the gym 4 or more times
>>| |
| ---------- |
| \= $(2.5 + 3.5 +5.5) \times 22$ |
| \= $11.5 \times 22$ |
| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 253 | |
U2FsdGVkX18ueJrMP8EwTQNnFv1lDuacLKI05a6tBiBJUZ7wYRlezPgAQuvMn3igFjQIHF/10UVkPd2Nr8uYI02OgLDuycGzDYMhBwtQ5EaFkr5c0saNdUQpats0DLno8I49k1HixMD0BgWwuk5jhtWed8eE6YJlwy3sPx9/DeXYE5o2QPMHrIEsaDa7ruAO4ZUsFLi5f0mQwlwEqYSuPHZtvVTBVOqznxer9WXYVNxvX7WNEL/q2ZbUhl0QEdh4eK5X7y7qz09Ms3naimtP1987hsNSNgXst3dW0wM6RSPyNvifPus6ZLA7DRS5ApXvR2lTE1INfHxH3/h5Z3H74vRI2VGJR8f6GkjgY+dxrUzigJgrAwAR/XemQSHusaK/C48lT90z2/RpuIND20PeWaPsyHFhiunkhUbq1Sz2PCXz9D6W6qiJ1YEZ6dB2p88cJlCI72z/zEJLTx/vljHStHLEPZQl/03AEGKQwqLHhl9V13PUD3H9O7kfah7H9y00Ug29BPnX5t1aLpPoIcFTaLPc7fonrUUwUYAyfW+QRO/h+56RR4IlLHFM10mIgwj4HidyIzrnCV61PQwcjZSQ167Z8I2aPtyWEjAoNnTnXUQ265X+ncXdynGYFh0ftKbOrzL9S5AOGAqxKOaOosjFsLUMCCajvhzr+qDIz9FXNQJeXlTCIByOYrS+D/ZCFGWAR7BPyVRJgIYwNghfbdFWq+KRjTDHG2U5QPNiQShQaTdLN3fSSNTeQb7sWlaAIduFQGa7s1Wq7L+pwR8hD+RmIm9hEpltW0/oYLqEC9iGj8rq0RD24iHndLGwhQdEf7zcvfMCsV0Zy33GBacsPB4wGsPUjHdgfMMKe9pMXcJOB6Rvbcx+Sf4tOWNEh8mjlSAU6ya76zhSgt02HlMRjP4vK4hCea88j4uHF4KRUEIIMWzL61XlHmldgu7Gq2aEXTYzAaOfGGfrChm8r5DBJtlU0VyK/Fp4tRu0oX3bBNfwxxR2B0ybAWoMMmw2zT3tw5vD/20JOrzUd6bKAYoVjjUXYZNMBoTPzKtXdT2jfpZ2jrZ85MpqY5PnYuxI/nk5WlQRNaEk+yYLqy4HzIe0WYzbqhxer+534FrHFQSfSPml58oqM7+mKvqA9w7XqksSNLCUl/sP1XweVmCF6jJP7HoSMRSott7nFKctGC1bg1WhtaBUrQWtg6eD20nOACIbC8j8qCgVy1bagkHa5EeYPiyIrA8NNw81ayi7AQcJPtBY1AhNuGs+6A4Rd/tKLejOEjtYCpvazcNmICMPZcop/hFHyhmPgDqMfXFApdcfp4rEL6dalATjPrH5seqlpTvFoaP+Gqf7zvJ6eM5C5riljFPzn/V6KyxcxrFZxDuQ1k3ixFITsLXQruP+FLXpPgdPY+Hs7AiWK10LZdmwVCrKX4gtn2Mx3hos+c8PExQPDZcbHjbs/lgIsoNjx0lU53dRpcU7UxzIYGBb4SeN/dwtOCvJ22ytJE/tS8P1DO7CW3dOc+gJNHV9j0Pd4CIG2HIApbxa1/5SY3fbN7CORz38CkulPv6ddHbh/x+rRkFY5b44a109FFZjx0IbdSvQAwp9K+3ZFsO2EF6gdIVOwdidFf5Q3Rgno9BXgF9a/5TsC3jiTzWOa3yMKmdyuxKiQWfGTHQVIWwywkP9m9ioNJ3Jt/QJWT7TxAS9PdVHCwGn9DRUCB2OX2FmFs3fY+7yTvg9N2VmsuWTv9G2mx3cxV05NUiX17crOYkpwq5HEyhex5ViLM4uQGhyhwZ0op4yJdf5eYNI8kFBG8RUBfKWnYxbz0YPBrDtfrAVIc6kicwjqeYgozCwGNwcMHC32VE3Uanets74K3e1b6z7YyCd9ovMhRa5HSPLVaKUYV64TSnUvD1sjxBAKUIJNZbAZ0a2iBtyWVX44xPfs0BSkJBDtUEuJcb8qjn/+xlUJT+pkK0U5rNWUb/wYz39J+MqHLzfgUVG/Vy+YrIoLufftWpNW3rNXo5HX/XBktWcqZ87ANe293GScVgtwCeG9odqXDRlZ2oVFJZKEdx5fD1wNQx6l+4CBCNaK0Ta0dW0yLhaR0DZJIu6hLvj2bc8BSuLHIlbcgqbBXg3EGTENQQmEbL2YK3ujrSB+ucOiKydiuq+IhYBG2DJZW6YtK3KrpS1qwQcDSsZDhuOhUjNEkqFjJ91XGpW4JaFWPapJnLeWQtMIqFY6E+A+4IyLnQqj8KriAxFoqQlWab2FPt4GRBqUoipKsZ/PG/ZpxsArjdz7RKR8PUvwywE0jN6jmdRmApWkK9P0l8RuRbxXbdTr0G7b2m5Smli7ay7d9ZbW3fnT8gNzR/3KI4n0z6taJope244QhZWczpK0s/qreF7kxmsw6rY5/znORLIS2GK8GwWWv9ICnEXy5AVaS3RI3OfTcw0RuKIK7HtFVWBa+qKDIDOIbpRhVTAHQ7T+CaqtbRIY7LFX4z4fRE3E+o7J5at3G+aOvMB2dydYJxNEXYBc+kRHGK5EZ4kkT8DDpyZNQcrkSlV1ZQwPtIHvUy4xMfO1HJ3FY6q/NR7dC2lF7igG0vfVhtqggs70QXNKKQUuk43Q3y2FSYPCe2N+StyLyErpU1Vn6+780/yYLmJZMDZjqowoAQWDP6d/XagAsZ75kOM71I3WIJlfhccb3HPuuu7nW8XpFALwlHmEq93aFDWFd24bADAHIbotgEZoDNuMmEp37qDFCIPjKoNyIUA2DtjFBeAEAAcez+HV71n4FUod9C//7PG6dW4ajZpw8HNVAhdyxXEtm+PdVrLkvJQrd6vApH9Z9gNBWbOaBfwHiCACRl1Nd9mgW565c4MYCO5IQgp/p8AqIQsWVs5XVpszLwRuOKdnw3FdoOM4GuJgjQ+P1+ZlskWB3wcKTQq3d7ZDR6D3U7R+meQNsan+F1JhGfKbSkdyzc+6VJ+SyB/Csrudq5Fthc1lagDQuPhQ5Y4VoMCflyHLn/iQCWOXvHERyHu5M5V5xFKwkKa0PVrHSRG3t6A3gvpzSILyObVNwf6iO5j67L3OOm9RAiCNlb7lex5ih1hERus+iqw8gqbyyn0SEfTGt8IruPFW/o21wyv7+E5RWB/fKuPFc8MD0dPtw5DY7WIVA8Pi+JjBGkrcYk6uWRRJU5CrVeY5+BAhG6MaQItn31mP2ffwRnlya+b704Z0ZE0kQoR/U427w3zSCWPzmYZuF1o3uwrgLnR5ytu4MiB6UrW8u5eJT5YKOXfyOKWRDILykJtiVGJBIh8+D6sg401DmWuYFh4FF3GJ3Bh+MEBKwP1LAwf1uG2fOJeZRCYdxD7YIBzPCfL8aCyb32r9Vfpm54Kd/ZjrM97EUqvLhkgXRn7uCvsKc7FoSYagn6KOUKMVf5hKPDfDSPxKy9Qh+motJvQePxW65F/dHQBulmhAQIquevbKCT/I6y31HkSv3p4BG+wkwN82Vd/tenjZAqucJsLDHk/g8ytB/juQdVlPM6YYXIjV4wHk7Gj2A4NnRuW0jnOTK4VkokeIg9scqONMKfDqHAke4F/oeKxQG9sz8zZAIG/lCBqWAbD4CeYmnXShAWW5X8WreQFar6AnE1pN2RM43zlQ8k20XYHqLk+INQO/RxtR/TNwuuQ3GT4UrHUF8VfoEMXfe/qM4mo/sQCmBk5ktpyog8LI2MTuKTKQnV2mHJoKsj9VPCx8HNTOj3ibWpyEssjlUBeNymIMerKG6LCB+SvGOKfS8eDKv8rmbgV3WowrB3b/vcSShhv4diNlpGR5rMLT6rttRZGNSGMe6CNR4rDX0LYTxputnnjJIRHq0IIY+jYx3hhV7aHlRe62q4wPJIpE0KvcFxYHTCbEiUpqMj9BBejr28bdrTkVzpyjsUj8Rz7wPgrvFKvH2yYgeJecQGcMVbp+aSsQJsAd/A5Tb+RLfg6CHapCsMl50SJZfBcguqVtm0mUO3T97R2dm+doJD90Rhjs8OYA/XwG7QE79cBiL8TgCc/nmwrRIa7YRup0IEXxmwnbFk06pDekCwYzO1mzckC8ukri6/sobpQyFoJ7hot0Y0EKUJgMMZUPoG6BLZoSYyJgVtIYgy8+i2AT4svrUwtSNY4XJ3XV/agw2BJ2CPwbjQEDyJ4tXik8PElhBty00Cx5ZopNt3eAHb8bZJnVRp95j5tA+MAQ3B9a8VvvrFhrk6ygvw8qPuZNqPp4IY1xxGKthby+8iOJfJvuag2mnJJ/47TgoBqd79Y/dLvLC6NpGTpNpQvmVpRQ04V6P2f7dBssvQgRoHE5Lls8kltH2+GAofPGUOsh6yBDrq/OHn4+vb/OaaH3e8BHZdXqNOnDO7Tngx+cwGzx9+8xXpjTD/9zOKHbWvMHMnEOEl8t89+iqI2AZTZbiIn6A60ARV2acE35lveMvhZzJlqBDAfcG8lzxPO/HdDz9HF5mElxQ8jtY43iwx66AUYAkD4NeI6SPO7NHSaPzYo44tOIFMW4aYGK2GJFg4EVBEANdWDblCONmCH+u9zHrmelSpj5F5Zp6w+e49iPVwoA1HFRgcHlWZNvPQiT+vVwK+8pk4kzpMem+gntIuzesrUN9ZePbHuywEDvdQAG4mIfxjHIu+xWrMirl+LzLNmRHkk223sS98ekPOXE6gb8+XOUasuVp5l+nHtvS7RAwX4D81PBMFdUTpTH6lhHQmyBCTDv7Qri9tseSwgZDnbZOi7VWSUE6SHfJHwNv08Tog4YZopZvWvX0nb99A4FXqgmjdw6QzgMhBWhfK+2GsdnPBdoniXMhp7q7Hgx06WXDrpr16k/z2AJqtbvOTNe77mxQIdM1JAE+1fobtczVgop7EuQuWLsxIvznaidijYtcZ7mQRr78VRDqkw1x0AlYwXVhc8PBM1OGaJbCace42SfnwER/lHI5IG/1UCe5LT3RKMsYAIme71XswtymbPDEIoElCSVCY3o+lIfQ1cOzZJAHg1xr4VBog8LFCYeekBi+ubn9qPHxXIySv+Hf0rJNnBEhhtNifxueVPmg82mZ8ogz7LPVJzlkk1H9/FxgvoOdm68WCDH66sGSIcd1bacZ/w0u7JHpUDfkzbtMSY3aboCIt+507P/nMwbY4JWg1RJF0dJtrt3Qh7tQohqEaVIvRZlnsIRxe+aSr2a+KA8ewLGWJ9HPh5FfFBgsjtLbcC1aGlZsLYZq5juGyKQi2V2MOYgTZjZVCAn26oH7orc7tmgpTLYJ9+REDGnJGwr2vW20YIcW+AEDhzjKrrIASiZV98JNIGgcuF5OzP1XS5Wc1tHJ/cYS6VhvnDCrvXu0Rhx0mJHChNsStL5wSwWvdX0Btz7mUMNKkn8sHw//Dhn7WfsTY2Z0p7R4V4zktpSclYdedDKHGzJC8e9mQsfDPwRIYwn6RxJTo5gj25haAP+KBPaafLOCNw6werj0lvRAglGA6SAxjc3dNJMAhT6OkCSn1yvCcD8By5IQxgdY/I6tNn/3JgOco3BJHbulk7EgRB86Dl6a2mELf0EKfSxMSaeATkhrYZwp+TWGXRYvWOwLMqwWfEV1DNiEZ5dIb3NyG8Gvw3DioUPBUMy4wXpG4bJ+CcU96sc9IJ2lsLC0gXDdXIxoced2GAC8XNi/h/4ikqm4DwxrFENAVNHwMnvtDTR5IwnROHEggI1OEZA1qm18ja27nTaMQH7faVjplLbJnsvccwN554LEJiW/ChZxOPAyv7t2LaguNJixXloGhPod3CIJSYhu2sQ/7gbCSfEZ2Mf1k+w5FcfD8f1JFxRjPSbo2ryMWlPQXyjyJTvC2AIqoXcsdp4Ppx1vO5mVsQCj0PH3y7d2pJwoFPDFy0wlJnJCZUuh7E8VO79cmviPFMPGJuU+kGaQHr2dxSMO7pis6JPX8vC5PdMFR2AhOCkFWBnBVms485E5Cx8vIts1GRPxPZk2776cmmxA0upY90uoepNB+AID3hebQVnrJZjZ59o8Kw8wrlCmVvKxU6+LTnl3aPPfT8U1EfcxnbuWJyQQ1/hpSQCNSqhGbux8EEaGKwMvgPbcbNOAKksWXp1NLwx3V3SNPAIBxt4fJf1dhtW+snWYnu10kcs19KdbYk5VnyctvQuNlpDujM0Z3P8ynOzvhZTQayeugmeqxw/ARsOwGhT/YcLLkkJB0Tf6dJy7ldM28lxEyc0eB/waBIgwuBv4DFlJ3vKwwGKpGsTtRY4O7SL8DUgQKsGEwrWruCxBxy9m2OG6G0ksquo7jydCn0w28JbG6+4AIaWQ2ycpwSAbTx03JadsfvSmHsNLFraYHJm0yvtROcmY5lM9qBD/2MTotfWLGhzRe9eVhN2INQJ9lw9Al1LYV1W3BKzxCMz/Q4qSVFGIunz6DpPwYrOX1JfdLP70Iu9FtW9pq1y+ovSWyHYebkKYdykvKG24WkNQZkKpflClcJFTO+Gyv4bt3imM0uzsypmqd5ecsQDqV2jJ+3yYnzydnEs3lypWb2w6viPY5fgZU2BL93QjLxfq/pcV8Ob9ObDVCM2plqn67RTwHviWhwLWMIb77w2bOcJ+zer1QKL9uTU00mGgtcNC48obCPAbpDNzZLj+YUpRkjMHJlL8jBrrqFeSlwy/WUIaFLT3/gVFneQE7Dgu1v0UAoqfjuuLxO7/DEIN0lGl5IHbZvRkc+B+fXr0RjPQWez8i0uL13AyFIxXNXfX8hKApmDIhRVcln+sEixqzFTKpW4UAh8ceBz8nsRhB6DhxOJXHeD6wF8H5wn5+br0cNjJqCXbwBr5/ZUKxfVlKd4jHrZ1g2SVttGeS2o1KGywrwCqHyqGv5tMu9v5zWwt181oK2ele4dkx+/ST/FqZCDOK1/59AnDgXtXG+GOpFusYrj6D69NusdbDCyycvLwUtbxLBYLUE56S2bjv0yPA5DSEX4CVp1qzE0ocuL2OjXs13wP+4aNcyfXxHeM9DOzRm2ITTm95cY5KpjTrsH4v7TTiaQhzTCeRpHPrXH891Orr9/+sazvvY8rEyVSg3DvISDfZcYaefp/TPBt4pRSFZSaM01XQNLvGF3Szqcy0IKMYVvIFFRwXdHGfrIZTGAkBhwG88POmCzuHy/SXGA9yEtjasBiK3rBIzrfyQsU953eJ3ASAtQHSFLGQ772Kf/4vnOITGazmrAELYc5oLNZsJ7KsAgu1v6R4xcxQ15CvmVVpMA+NhlN3/YZb32ue6MmJBWALl9wsGj0kgyKt3i6dHtqoFVU7fiDrUzTHXy/cP3J5RUEuO5Ig4IEuQADqzcsuiyiiWvdUDMtn8XAxrgfB9kNkA6iWukcTm28ugGDuZkIsuk3Ld/f5sx33lllarkUKXzlWq6rXCHHMEh4UyEFFxiVh//7GT+Gw6PUR5XJecgT4Ln1LjuVGw5rZjim47veVVB/ER+I7Wf6RfvivRuvn2YUK7D/IKcRVrOf6XwG3O/DO2A7+uySg9vF4AJXWwAcXe5z+eOBcC4EzLU2lnDGrD5P85z84Gmdrx7lbhrYGmkoCfViO5z/izmUaeK8NkBqRZXyTMiTdSA1Mt282aDTZSEw1V8XeocvNk1YeqeTtPjBiYaWhFgTyO2rqTPG7eyjuWRIG6cwrqYkfP6aJIheFyceP6/8/i2zJfNlkqPIdnV9x+YftMyGAeJevxR16YMvlvI3sf+kqFnLBuGIww/9pK4HUzdMz1Sdozw1IK63/2Qo0VeUUvWyhv47pZqFK5W3UunAzBPk8gjaBBUb4R2c3o1HKBDluoWRXcUoQMc554XF68+/uYihax+anfNMHmA96oU3tXzyivW/Z7eumQcx0bV1wfVIXNdIYbOua6Hch4yet+ErFfN3LAR4s+irFIXgZc4/RrThjgVF5syUAzpbr872Fhb7OXSzQ+6dG+kEAKhCYYArLKDsptStSxDBMIgBcEEqak/VYVWwzECPPpnPGuCTw3igarn/mQ4uMBnt4jtP2hNaBGcAmP85uPBiPWcBHhoUwjYigbVLXq4vVnkZeBCqTfCGYBMl4Wa0vuIuA7YSYQ7L2jehdgOTptoOlDoWunphvov9lZ3ikPHDf2E6UGNMREvGVJvnjtHs+NQRHBlMp3iakGuEZ0Ly5t36K8cYHliN9F/a3DjxrI4DgSV0wOe7ELRPzdMP6QJrVD93EYrR0v+6r8uxcRYgCFcw7KvVwbQTxqknUn1+prYIop4aBpyoCbBHLI60KGHwHs8W9hKGiuTupHYzEzIj+JzDjty660pMdd3KnZfili4C5RjgoJT074K9KJqMqrvYbRjKhyh24ZFDhRGNwOfKdz5tdVWLBrWYRQtEjFj/9zvR3/88lUCYdfh0e8LxCi3p/MLLgTt/XaGxW7z11y07yf4dpio7+O+4Zg9L3J2+RrLR/Ck1FzDK8hcDGPU5gCJfjjo1fvQZ8dyLkEOXnMcFXIHcmXAA0l2Qg0MFwPILPaGECKNmTUpHf8GFyMjaBOX3UGZH0ZsG8lFtl4yFOhDepiiphR5SnZPoy0m+hqs21pCAavrkhYF71ASVzN+p4XjXDzFttiZcw+TPW6AE1WQNZUqamnzCAvpxa2GTXt2wva/4WQXE4keOVa1mJ4Ct5iqgX+U1oYRxOzQxs6VMasRQBAfEwHG0/9bbpOI8Pgm6M5SG+ZZbL+NL4i3WATPpoi61oVI0C2hhV02+zy8GDLyB6e9MWk5ZlP6P8wpo4HKtponRCSDCFkYTtpEmT1MFZwWt8bm/1CIFCh/dT94IVFiVNWUnFi94umYSffbr/zvjAQKLpCGT5Nix2cmZVK+lP6Lrr3j1h/KgOZAQJwDWuD5PHVgFnbQsuqADKP6FpRtn3fPtH34IVW+Im33Qn0JTKSDg/WAOKPGe0sQXRdJcHnoU/1q4VMHprXOrEte3U9EYxMC+Pjlfe5jyZd7fwaeNX92RCkG0uLJ+0tSQlG6D0MdxgU59nyEeHaGHba1mYa9hKMHPBBTqvnyjyZDDzwkg655ua//O366gQ/dgGK+17aSDhztWLa/7eozpTtYTFgZ1pjJD7ImGb1yc1oCuIX55M9nltQbQ3JWuIE1WTGiPe4vPl9hV0IqENX543lqHNWhb7YvueAmPp4eQ03cQZye2ZnlKm982ax7e2RtAiZPi8VqW2u+nX7R6fVbosSmZdupDIPxCeli3UCGTHhO1x7Ulxx5HaRXRKfXBQxuMqRo8BjNNZAF4ZUWDCK20EMlwSkh6d115hUub8UU5m6E/SkYvHRuzDlg5p9iLwYSEyBZs/FBRLV9qx6cjXbNTslEvnRKtua28ORDilFW6gq/kM5Ggh/4Iou35VnMEY7Kcy0LuJT3Hvsx99kS3Y/pbIS83cULDd/Buaa/ZIQ/SgV/NurtU2fy1NBt7Stz14uJJ/Wh2cqTCnEYb4reWtkd3o0K5O6W2xlikOAhJyoTcpUu5JiXtz8GvZPRRu/IlzQaf2O8/EXsYj+N32ZmuT3h9WauUu8izXJGRxApD8tYy0/S55Ty7FFCU6dnytxgVoWsb/sOXN0wDhh65cJT6zvzeRhed2XFvmT5YnpcKTJbrPqtCKT/g9HPYfbejXKMPb2zw4yZFEtgkrtQkrMctOh21gFX8dOMvuq9mzVA24hf1lhybvExpW5ycKnx4J1d4qTDLkXIkZLQ81E7zxmyKa+Tt8bcTHzYDBuW1KkQBAtGZMWcB44mGmCMrFzo5MLIdSJWH3uptZtHP06Bz5Kgo/VFwDWD1KrjIaKc1P4CE4KaipZnm3u9bz+DZaHpvtQVtawvMilkk4rhGEvbUHGSf2Bq6bGP6HvaQ06ShPB0qB6184Dsnqtw5Oon/tw3Wa4AvyJyJZBHm7JBeu+EjrcM7yDWDJVSZltWtk0x05YnKLIadaqv7jKKL5WAPGQZLcsyfRVJBWH8fjg1yjKODROTx94v5oaCFlq1tGYeXqfOl6yJsKBFwUcCl714Y5FdBWzGtwlZYDF4/SGRSQT6jgJjM21xBMh7GXtZ4M5rkr+xOxmUKSWQro/GSdXoYF5ejjBx2arzrdoEue1mY5rHMHsvj7pdFKmaqIQM0NmjSnG94O54EY2g82X2wWM2cXo+N5laUFV4KrdAF/5GbtEquEtW62M45VHOk+8A6PJ+fmO5Fb94I7J3oM01iSRlloNBEtoxBsbMkbdBiUzHQlv3RCeAulDHstX23A2knn6CiG7IOqzE7nVQtUP/vlKGXYMngOY6awO3t8OU0uboVkMIsNDNNDIZPbUt+WqVttttTE2sSLfZ67np9kiDlmW2Ptw25Mn+8bgHfRCntoN4fbHhL9LlNSPyWav9DOOqIQBypXZpRjt/384UdD2OL+WqdVtxHXzKeOAHjxqgxbAvuqU+8VRuC0+myTRF6DW+jS/xWY2e7+lFMON537L7vr9snTjHtiIWMMfDWpWGNMYslkZnRREhCbx2sj8qtTQ/hrMcIfwYiF2hr+GMKRYZJUhiY0CXAuOi/URstFRVSkkgy07UIqO/z1fRgOdzfB2y0ocQBEwFU211mzOGlX2nQWuij+O2a0oVjGoMdTNDRjMTuwftfUsq2rMDWSf0MauFu1FU9eXyPL1JUG2XmNcYSzkUtP7pB94R8usRyiS5VRC30VbbVbnbhGJCJclaPjqoA2rWV1upwwUvEWfxVSstsNm8SbRSjz4YM9Q88A5GAwWS24qo75DvYGHV22oPDvo0qgotdBIcCBOp0mlVJ/TNcYcaekWSxEqL7lS/5Pw+Oi13a22+IUrI2yZrCXi8b5Ri3vpE6D6tRtLHhAn3FwRxMSoMv06i/9EoYZdcJ8gMdK0hooQiNCj+giKkuetVAwsbYvzRkFrRS4jqeWQUeNbEPvOv3pRr29YE/yrhvDUz0Kd0kextvtjx9T8czfWlzRWRcLdkCTiZBi4sLUvHNoUkk22NMeewrpBN6XMUsMnMAK9w1NGEXapziCpCMaCc2uRGRjee7OHG2QJ9F8LFi/vMdeUwlO+s5Qzp4MBZaU4MfprocV+YmDY0itv536gHbzVBbCnlqxirvFQi1lNnRyK09rHHULPEN4d7XquEwuflQxrGrF6K7ZI00p2uuw7ZTRQrz5xBOAob37y6WEuudgloMeH+C9a++mYz8nGyOnQlgh/fWhxG6EzswixtAIK/1JrdjSLhY0N+WBqtXq11TinMGy4vLRLFwN563oo3eZR6Xnyz6/gtPAHC1VfPNL/FqXUb0q7GA1UKp948RRa4poEhag8DxR1160MZKHhmYFRFAZMpfR00dEqbvyOIt1uFah9lHhwmN2uhK2UclhlLChshl0dBFcosSs6m0fxpiTIxkuamKOps5STiaRsamhZU4fLzKVrtXxqyfR150TzTsDMPpm2JaTFYPwTLGU9OJRW26Pt8Gw+tmtmyqI0e7sR76ZWnOcnCK9KeShbI4maOajr24dYOMtQuWjwHFy6bbFvY+NVQup5iv/aGv0281qOJC9rHfglTukKNnMp1kRvG5x2VWF9xPWoHa7qT4XGK8aIp4ehDJrejajoXSUxQNZltmiIJb+TRa1zPUXniHuNk7XRH9F1se8xYuPjlx70TixHc2nZ1aipv2HGaV5rAuCogPwhTnRqQOCWP79RFjwZsCjDK1xCF9NhrhzIr9PmMymDO2YOyqrqvDSoY6T0eTCZsXvLh4K/+fblU+4xy/RDkTrRLvVrKFzh9UPh6bWPqP9DA+oG5tyCwNi3/bUev0ikOZEw9SjzTNknFytQA7cAXledoMr9+XGov4i+NWyOJPyUIPdXEz2bcetqkn+GnNi3ZnO2J24D22mpLNO27+x31XBoWtXbAh9BCrd2twRYmKAzYvi3KUmUvi1QKXNi7GWh+ILxBIIpcdT0MHJUMQAp2p1y8UjbW4YwVpRo9upStZECzo5wRTB/e8NDarW1DcSu2LeufGdQuXIr0NWGUErJDL8CyzPWXWPEQzblmb1G5fZPjXxw1iVkOFh1eDJOm8h9yPIknpW4x9K4tkSxTuz9aHOfgcuFOqtHFkbdZBonTdBeRxrOE/9PR9kLp34RdLFbUov0iG6YK9HI9dKcPCVyiEDCpKDB9XvjWseOMJ4xCsEXS5f7opJRBp2PoD8jioyb1wW923ePgMO2QqeLVKvDIMKtflA0ksAadMZR0PStkF8OwUlv74XwfTjxs48ApGyyboLT9dcMIEDB1mML8ixCaiDzQY9v6LMGr3jzLQ8D0VVByFUx7s+lvR1eNVF7cDtiMYfj9NkvUQOp5UhcW6CSDzmNiP4h71vjuPNSnDBByIgNdRln8CPVkDy5St3DukfCCv1s9J3KlssoBlhyufiJ5xqThpLbPamCv4mHTiZRmwc5mp0+5JHA7If3zKEwpOTuLMGNPAVMDumxi8bs16/q18efa1rm5U1WpGcXSqhuDtD5qNF+mLlLnXYI2d9C/qbT3/KEhPSAwdXWEgbD2gOGXWtrTkhf6cqclvShWS404tEvJImBZaUvWtecgbgP6O/0GDvR2lvQq+0ghzD3lgkV9tWPg1eVEXPOrnfvp2ihDlGf7Jszs9CiRHJY1ndXq4mLRAzeUF4MOmjk+GFuCWHNIXTCgKoCw2G9LKIZIyzOFgulpsKFrncHOhJD5j5pCXZd/NV+YgTPGAqaZ/2rnfLC/AgFQiu7a/AT8AH56WF0Q5cSlQOKDBX2R1+7OyxlcQ==
Variant 4
DifficultyLevel
698
Question
Martin recorded the sleep patterns of the residents at an aged care facility on a single night.
He used the results to create the bar chart below but left off some labels.
There are 174 residents in the aged care facility.
How many residents sleep less than 6 hours per night?
Worked Solution
There are 174 residents in the aged care facility.
Calculate the number of residents in 1 interval (vertical) of the graph:
∴ Number of residents per interval
|
= 174÷(2+4+3.5+5.5+6+4.5+3.5) |
= 174÷29 |
= 6 |
∴ Residents who sleep less than 6 hours per night
|
= (2+4+3.5)×6 |
= 9.5×6 |
= 57 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Martin recorded the sleep patterns of the residents at an aged care facility on a single night.
He used the results to create the bar chart below but left off some labels.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-G3-CA27-SA_v4.svg 330 indent3 vpad
There are 174 residents in the aged care facility.
How many residents sleep less than 6 hours per night?
|
workedSolution | There are 174 residents in the aged care facility.
Calculate the number of residents in 1 interval (vertical) of the graph:
sm_nogap $\therefore$ Number of residents per interval
>>| |
| ---------- |
| \= $174 \div (2 + 4 + 3.5 + 5.5 + 6 + 4.5 + 3.5)$ |
| \= $174 \div 29$ |
| \= 6 |
sm_nogap $\therefore$ Residents who sleep less than 6 hours per night
>>| |
| ---------- |
| \= $(2 + 4 + 3.5) \times 6$ |
| \= $9.5 \times 6$ |
| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 57 | |
U2FsdGVkX1/0PaHgCiD5P1FFiTUjw6GP5mw13lYw47laHKOUVAFfbuMTCh9om3gu1dZAwacRsC5mH/AUEIrpyw6hBdryBAqFhZgBuKzofRbGcZ9oNrMBlPD9RLmZbAN8nb7thvMys9PoOE/lzEsoOwyk7aSIL8FBB77mknjbI8509888mQOHdx19fy/sgcfZseUGeL+JqaqzBgeAyrPMeDSZSuH6DkUXzr6PMEcI6tLAb4vNF+ZZm8U6UkkDz6K4m05lfvCo265tEF/cCUPXTj2uD/DE01fZS9BWatVQ7qy/UmfG563uRiWCu7sLW1yu+PmWli6ZkvcCe255RoY4bs4Lv7hwRWTTxzsm3VrPk2UC/gaFB5ukpLM246wRhjdP8PoEhmyM1iqGQXxPKOCmh36wjATpzCg5Btd9j1+dl3TPy3G28Q8Z5HWmBTO1sjXa1SnH8x4PdSN8BrGuK8E922f6m2vIQyvl1BGEIFTYTTMqD6twP9cXoqiQP18939qEDsYCglZI8RcedUBMhI3NK6oknqmWVcjXhNn6n8rbcEjGO29MLljh/tvalN804J9k8gsfIDKmLQWwkn0+BstHlcs5jeIQj+Jyy4zEqIee1ILlfPu1E+f/pJ+odtP+o+glUJnR+O5pC1FnhEmnue0Lm7TPwU3EITWB716ogdx/SAcOyeVvbw++UE4emELp0XHt7bFuY9WbgiZm9gJSPKhX5lMF3lxBlAEps5WdBFlsGBMUVeDamEbmFa7c0KnYn1ACkkUWa30/Xtp3S6175v62YHbSL7skjzQbUJXoARstS51SL/V4UFx+mq5YaUgGS9xy9d0H0g+MPXAXk8FOe/hDJr3h3tVI8ezreKMjhVIMzx0Z6H+KwkFFXnlVC6ODoMfP5XzZ42moTzGpAgnbYNTctumIvD09GC14sXHR2/T8TORP7+snCppxDwSK2T5zjwP/sjXySlPeCiwDDwB0kTKLJ/lBpsktz9F0PXXM/QHwNgIbxYJDWqYyGdl/Oc2JbakTAZqvfm/S9FOW7hzq5q1i+Wx9slW3EJgot8PdsVqaLKNWZc2yrqDtK4FIvwRPWsdjMeGomxkJsTJsTCp7oU8iYE4EbkLN6Btw1POU7fktZg+CJbmyIetKFGIUMu8wPoMlUTjyvlDCsHhzSUPMTS72b9WAeUrmxel8OYqWXU2MQKySLrhvMGU/UwFweK2XmuhJ+nIV1Frvlft0a2LZY45wnggpIXKcByHSEdv5b1SxNGUdPI0AlWkHm3JwdsucQn2ygfM76pnxcS9bz9QaR2c+4YAqb7K/ntmjB9uKtF1+UlHoSprN5J2MG6XMZitiRF/l5qeuINN+RNpyvqLT8Np3gwfpsh7Az3XSb1+fwq/9JwtvPDUVIrBiJRswjxvlIVs3a9A8Jfs/SZs6HQq+rb319oSvVBnGXpifuXUfjS+J4qznuXnNnKUd5Qj2IryxdPNFtv79R8/EhA0Lr+s6joigJc9Tj1lu1xChk/+ucDXCOk4s3V97BUdOaGfa295cTPYPRWc9OBdksKyfuG8DbeoZMyqt6Zz/C5JZfOVEPllQGnnfIwVx+jF8T5DX/HgGC7pIDx85W6a90v+/kdujNorJFjVjwkPR/ACUjp7Br+qCNqhEDp/tDn/u1RrJFnHy0p26kI1e/o5YlCVhxtm5IEA+wEqGMBnSFUkmqwf0A7hDNqC3FcsKqMmHGnCagamAi/Ioma5Hf1f3mHPI4toT/gUzF8VWylVURK3nUY5hfX/lYljZlSNfMzPLRJ3ua7ljWN2ugUUOD9Pf9P8p6FbswY0kZKMqALvusqEle6x7yFjP+q8F1nNCskRnI1xKipXoi+veqwCXDpWgfX4XMQ9yo7dC/9JIhFuUs9/gr5An+srA1x19gLMclz/kZhnBmt+MLzYmb7EhFkPaR9Drnx6BEYLNQkK9d2qr6D0sGxLUik6IAM3aiH9tsCLsW3ONM4JShQcFH1Pif2+FihqxlntInbJ2Bk5ob27b6JyXs0XICNIH0HxoHN1BX2K2iqtFvoVGahkz+E606nVLSlMxIuSCHTEjFOXDuS1a9iggt18pyla1Gn6cTXZBpk5Sl7m5hdq0IvRDVm7ZPhCwCHpy7pRnwTx4orsl3wixjNXAM0E0IMb4D1gA5u727LPpK966JvQYfv7KMatKGNv1CdrtbbifGExqrqN5Xv7aOTEj2rB++3yZ8O3r8wTDu2J0041Dxf6t6lMg05C0aHpEuSXNIUCE1n7Pi55u+Bv2WhVUQoFQR2i/IWdyHlpt67T1EWutDsFjg23E8/ivNxgJYynzRvEiJmZ7Roetdxp+lOvkdHY3avSxtBD/eU6O+PXvrOAvumpGPfC59TiG/7pW1fGnrgb6u3YDzOoTN60hg6hT+cFtyjV1ZTOILYJwMzLzWE11bCGTrYpQA7Elv2lX5P6AeapxmGhdKCZDZ98IcZdoLWpdugOV0nWL7IvUAby5k6xEizLuUoa0ocjtEI1kvnFskjO2AfC9fwzhox2nB6OBO1HfWvT0VP23IaijGdY+hHyJMIA9JhrxbPyXC9JjsfZJ0oX7U5eJYj1AvfV2cg1JpzLAuIBiLE8hiS3E/4pLHwjaP9Qz7wnAVV7QSAMqccbFwzFHD6dhiQTHCB/SopV1IVMaN7MsAMg/W2PwUPQ1euYDLf3WhdZIZCCTcFuI/KW0QGcgWMUtGah91hI9VONQTOyZmbv3JDSAEWIirNCThaGqTeUrO1PGHmlALsQEBWOhZBXpm4NUxg5QVjTL0N/XAhiKs4LilcvLWTuLEeUaDt8Qu+13ej9Yw7pZvWNE6Rpj1cfZJvnrAabZ2y5+6PWxXRbvI8c81vJL8sBrZix70SpRSf6cZSMkgiiDi3TS0llFLWknTVg55UxIqk2+pmTxFlwONWRCqxKsKoPEkJiI1gT/QFEHJenUpuaPoiM3V/3woatEa6YCaQA94oEtJSYWlHcnDKa2QQMn/d6ILlUeAHuZDsSJvNztK1ihuaMevyyENysDu+Cz1S/UKUWXjYB/UMi31nsK7NAOymU0HdkLjGpKe6zj8uUkb263Aws52VVLzaUtowMU52wFtmOgydFLlN7CM/PYd5q+gtd+Xg2myji2Ty2bxQgCRzMIRt1RLBSv9lewa5hZhl0sectF6JtD+d3TEay3rV06k6PWd+knaMLz3YMUjJesq7sWaJ2ZD0FlMJRsTknTYFP16+TueEMv9LspzIHS0Zh/jVUbUsboR60rjFnQfJGHP7Thlrtv6IVUkU2VuQE3sElZNLlWhhQEO37y2dopEtw33323yX5O8tXF75WBa84S9cDUPcfSg5tSRuU/UjfQ/XkLqA7v2a++KcLIWVilG7PeNXB3Ybwe5Us+9zWwjqXMVSOVR1QM+SKcR8qoIfQcRge3wMaxUxg117bJei9DVbv59MprHTrA7aNAI3zwC4OZUEdOhghkTElAV3ngB+GnItEifwcqpz9kdp2cBwFfsqidtM88G0Yvfm8lXqp0kQty2bgCoqk/uaCb6pEkPV2FVVP19Y1mrwX2tI8HP+9gb036K+vFzMryu2JfYgRksN0Lfd5jejCt7+/Fyy64qPtMtCE5U9Qq2GURCiex8+5dwELlMgcjmxpYST/YqYti5KMr6S3RIzyRmWFNMhff+jV+0/UailCwOCnDgme4zCFTo1SBfChq47a0WWi6meu50rohkR8cxtBdzzb4dxJDqjyW0XeXztSS6oHBmq/XX1qF+75usV5B7VtrQ53YfKz2sfMxgyslen9L1UxKAhtmGgMKXu0ZAoGX5o9i8B9rN2QUryEbQdQHm06aZO/qf9YXsDCfZHJhOWlmAx/g9HRzbbC/xG4CuZa5/UaGkf7dLzlNl1mCT44mGP5ylMIsdwXMzxNQtpkMu5a7H+gkOjqunTxUQYmQMk08WIViTZEaMXKLHX28qcwgw6/bsEv1pahvtMMXZXfy1lGoBnKaq2vAhB6rsfRk0GleU9jcDdALNASmTsQsmTKuUpDrs9idhatlR8J2puRtiOjEH5gChLzvblJbysvMIyYN0DcB3D9fjYjlMoChG7XwIj56tHUiBYGcTb1lGMkj3S7faRltacz1WILza2gGiTDGiPyhTzQkr2iJ5+Mn7hrOV2+AdV+a9iz64sqop9xJW1boiYC9ylzFivOtc/v2XKOIE6b5dXfP2NhtCpGu3OYPczrvpA7pAdyAfMNLeMTOnJ8LXe9LGpaU01B+UUjOCkEYhCTPQXjJGIDcEBIKeevWkJt3kJFU71orQoY8sD7YWOCOD7nm9HY7Ep1a4CWGgXip5ywHdyW7hrCCSztgTKqa2Azl1voWrPAD9mKLcQ4jX7UWrqRrCahyBOyKdk1qDoOsT3PV1QFhux8T+c/qJJ8kfNtQ3VxSq6RNDqe1mRIZ4getkHBxUPCar7SdtZ/v4l9fQFerdDGel1LkxxrT6f9VjOActZRTfYKR4rjj+eQnWkJIRajS347EOda3n4nIf31BBsWgnJf2ciK1Y35MfbgmVo9HXhgnOCtlSBtMPQkxj3j+0hMqnQH/m51/ZuiZBsKtFpccu/FKk3Rr0tYs4OXrxAaK+2LZQZa2lUh8As/Dr+bDcLJWtABFxqhgstA+iwQXeIBap7i6Iq8ZN6ffpcnohUWKOQveQuV1UXZKbvUqV9gYEy8d91vuiANhYT3aS/UN4UIDQE3SpesG32IXgPqpbw/Ragy6wA88Q4BVe7Ul/ywZCScDqKrnff4EQeIxV3Kkv5DPgPKULZbZATw7WBxekSs6r/pbMPjFprjNyp4R/LHSsRNQ/rQT0j2cAnRtfxRUFgFoNxlNRyKtJI7s5plNYDT9IiOlTAdrAmpi1BuUH7a+46vAd6KC9f+fBkRRWgkmrBQGz8zoAmSXcJDUGRGCajD+FfvKXt/w/ouRTlhpsYFI/BypdvvX+vOWMsRVGl+PLKn8noZHKj8zlK84vw8vyqrgjps4O0RMd/wwXo7/xbOPasus7PD3I0Eq1NQvZEnbJkQj/P2AyqGPFRWsmohZOKq05vw+2MtqEyCB0Db4v7LtUZPHjAaDxsAGlmpRf3EwfE/TVwfsXLJK9mlGxxv8sBua9rB56rlSFgRpehyDTpEiNl0TsjoIu0A3vW4LlFn/CCvkFNbrms1xXO8mYebssS2mRVsVI8lS/V4+YnsqZRoLaD6AgF27S2Ev1jwIvE8f7s4Nsu2syI1PDXzBsVo+PI39doqSNVtCWFOQ3cN4Gpr+dFkPgSUBff19YdIX+Z/1OIgWynx4u+8mEp0DykpF/znJkpKy935muIFiOBgzdfaI1m0ImzixY2y/p4/AMx8Hap+gOuFYuQc5ee18mPEKSXMX+dgKL/EVWDWSh34XByy57H7EX/pPs/BNhyzd5JuOqCLmqyg62X97o1qbTYXyO5kj4Iagm/guOukfEegz+qgi3o/tOPTeWYmoXhCh7lU0aQZTNJS+RWNZlHMVJH0IFsg8auNcQ5JOhq/FXXcSTTu/nv5kCNzogTT5Simdi8QKTQgshFIzsSYk48HmdeiFFfla643ljbWDFTaMixTmoH1tWjmOp1zh5DDLlcBKkd6aGT75yhdHdwEY6uAK3e8/J2DIeGpX4D1S7d2ohE8pSw18SKiADuAwzFqkKQ5jb7CwHpzO2H82HIBm5CUM3ZMbsMfkEFcuF+xv0QblOoJbzDv2aHo6VCBGPPGNILQLznDTxxrHs4Yho3DcKU+L1MwRQzz93J5Dr4kel1/wIM6P1TAaCihrW10FZRLEjR5MZ9G3wijNtrl836x9zKvE27FDDqkSiMYasXLOVvWzLi5Le2wVfjKzoWScJ32brKXO+Ck87qMjggXbS9bOtSpLloNHCPTyqAFh/vc9cWITwY8LX1oFXHTzlZKNvGzWvc1QzselR+fC/vqcMtD/Sfy02Vjjt0G3wVjqYFgZPQz/21ITbE0B6dJVY1lmYoyqTpRnLeoHSGbLuqLVt2SKPmLhrC6AkMDXXXyCoSwnH8cwfbL3wyDCq/OQ3YzZwVbnwVFojRMIUWj2O8pmkbo6XxiSHLoq1ngQH0XWQd4iYaldEKlB3SkEojQstlPZ2l47mY7jyapJkk0dMZlJMZBcji6Lm3uzyMy7UbWj5y6wzZZbSHkHGeRYiXXyN8IGVcJRAeFcKoVbra7+bVKjU+KEdwMZs0m8Il8ixXI+xBkad3sYB2f3+rfSXiF6RISX+mj13pJt9f7R5kp//9XQdaNe8rH0WYDUXdlFIg9p0eiNd4BqwzqW7pcxaXHuprd2f4kWDMhnPankLZFYVGPqR80wyM30mX6qg9xX9VeQnnDBU+ol/EyMV1WXmrhxquNlIr2C/NtLbPm/lRHnStFBxqNI6dpdDLY/VQFOA0Y25u0zIL5N/tYnVMc9edD4CCFeFNe4wEEI7scKM09OZZIlZh/76HpkRN5NrNAAaSumgMqIMZW1s6Hi6dswn0M2Axlvk0m9lLCDDxs+1PZYQKzdaHRmXNT1PvWrfDh4zc0KxcNQODfzVn5wZiDHr/A77fzD72KXgTumwHlwLm8dSKcLzbFhAyGFz8M+MqLQc4iGJehqYKofqLECa3uHDbc0IR0kTgZnZ2XlNUaOLYJQrudUotyYtAdW5CRz8e8Quss1LADKHd20ypxl/qfVWJf/Fats++vu3HClAK4kmnJ4+aWQfym4Qkt1xS1HpiG0Cr+VAZJQWQczs1xyKjSwkdyP3XFmTkB4oepCTxesuysIOC6kriZ4vYeIioD2eKsFj0s7YTdd5wovpslZuREWArtEZrLnP7kl6VB27B3t1Ob7TCPmc0IFtwB9bMKx6vhSPeGtJnps4T4UaS9xmCUOjYkz1fCA7hW9e7loCV1iCVy6xJ18QbT487jc702dq27Iw0MtYvedgsuUJwUzIvU82a325Z4jdbRKqDY5Yo/V58fPva8iolSQQ0fwKzuf0gwq6j9nr/rEeOAA6DI/JfGU43gOORYQMGhwOSEEeF5PiDX/FVG+d3z/1c9E2JdqgaV+yhvnYWUApPQZlrmVfu0FLYsMC6HXEriSrzmYTurFCdv0YGvBk+TL1vUO2EzMtpF6glHt1k4A9z0g4BjFoffTlBvKPGwJo3zXaSIQ0O0pEh6XAPckkGScJr59XYWziQOBSxkIUOUlWeXHGS1AEkhEhas4Qc2tl6wxt0wMoVi+Iz8BVdz3bThXU8WulyBGb89BHCJegyjeUAZDtZGMSzT10X9bCaa2Vf5iq0xqLCEquWtBhCV3jEcYooL6MYgxq+w5pj8usJ3acxH6RRH8HCo84/izerXPr349YfLap+1+05GSzWYsMkp3vLZWb4m+f4Y5HHdHfvzPP5nQMC2uCjTMbBWL+2h81BxMu4jARTZj97t2sCMegNkhKr2SIFBGZbrmFuhN0MULw9mCRdlghaWXhfCyNb75k1bwrYo710yL0JyoI7JrwOKFlyQ+qzPzrVm90EcKozRqm5NHCl+33mGT2B7l2qaJxqr+hJO6UH50X50Zdawh8hU1o/rc7xg891T/ZD6LWfFX34F6Me3lylGmh8QL4yXQT6lCeir3nAFX1WUpf21zugIvPj4CXjsovGhj4wXf14g/u+1BhsjizmfDZd+ICjR2TJqVngALD0sp9uZSKXVsQNWQUK65/a+tetP50VLr2SnX4sPSciGTWHlECh2oQ6Dbd3cr2CoNQd5tozUV7J1OhEKfECqiQ2vbd5ygmADvH5HpNOZr9WvGJNmZddZJVwWbxe4HtLnZEtFCYqV0M4y6RaWXGrG3dtYe/ZCUNgCdVTJUj1vk3pHkETRfHvLOA4mp+Xy5wEF5r+czHhnnfi+RwrjZHl0jKtlQbK1OOLh0UC3PUktV3BSSAYPjF+gPOkmRBv2CTrkTCQi4ZDvA7h0J1XzIHiDuXV15w621/lyG+J8T/PSCw0jQBotROMI8+UX6qvd7oVJ9lVUW0cmK4ZtftAKYSyRKeGbjc7/ntnczfCRcqxhrvOtfD7PJ3+5kThLboTlh+ixX/z7JlgCT14DJo5SzFX8+TTqs666MRPlXYL+gCtPfaogLtuIPEdEEIOaep/nva01GipRdR0enU+hgKuGCpn1f5B1SFINC5JPZSmFtObnnG3qU7CJ+wUHApvKYRM+WM3RCvrd1Yd22BECTLanEqeBfUm7MMa0vf+4k3YjaqZncfgGrjzKQBeoJQweDuduYZndrvQUQLYLNH3kGeFDKLn7+MpUWZgUZ5BGeVkIuuQfchyoYQo38V+vUVkZfYy4anNuMJjMPze2R2eEcYDZGA8iQ25NqtZaaTHDP39/bN86mklAFDfIg4eQNohvvP+/HHnzyrxPVt3yZWFunVU4/FhfTlyQykuQuDZXG4/gq5DqKUzy5Xs/hYWXVStDVfFg06CTR/BDZq0owAnq89Gpy3xQoPnproIDuq1lxyZBvMw9AW/H8PN2uq82Ad02Euw24DQKldSEpK0QMEHaazRXK61BLOhMixKvUhlipZI/cVHI2EuxwWoZB/m3/jD1uahoFxL/0+ywOr8Vs8axxf794gDe7sFyocbAtLJS+Kw7apoehv0BkOUpKlWC8rSQIEb/sb2nUuCwtlf44PBUAOXOg5ziqHITeVfYpyQPRLDfoZzYtRAFpOC8OLwNL181L/6BO9Eh/VWp/HsMipA/UiRDt1gA2VhbpkBBrcRwAARhUHRcjxvydRcml0ssimqITbZtN+9Ym9Ax6hmK5pPD2PXTovHe/4aQoa2pE/0CRlZVYIT7ua2pTK46NFdKOYgH1XcqHn0ke/8FVCgwPCLXsxYiI1JDwvn7RTTN1166G2MeOa8ArwEId8rMLxmp3iSbgszYh3w6e1MbfUKJoF+xq0erfz0nRy4+ZHvuEXrTh0Ds8jAAQM3Erc6VcXk5pzV8ykxR8dqvn4gAMZq4XVKrMCW5zzoyup0+yBrGTWg+LGtVxoaOBIE9xbA6O8axYSCdupQOBjQzlqNH2U00LTRrCBPRz7iwmRH6/sxay+vyGkkgEQu2XixqyhM9XV1IZsKHcaYSe4Kma5kad6oG/TahdfaUFS7DBbHW0Rqhb63+pb1Ttw7e6f7PwlsqKkpoBHjysQ/7PAQ7HvJHuanKJfEGsZkNigTGQMf+GcvF4co8IxqVeAiwFsFt2+icwOObgnh7gtBNgka/lYWLxDPtSrOg+bIg3p0IZrgYw+xPQ2dl3eVoAFe5xRO7XP1oJEDCSTCnk73MzqUNVxT7BFsYhAOjOsDqwT6kpkw3L0Daq/F9n6z70TNFEv/G6xKa5V2e43TEPDbljf1XxMcZPvEzsRgUxFwdSfs8tQmdRyzep273YTAb3NztNT7S9pvwIEE8HqlIVmhOJyNTWZDwDSi0QYRr2F4DoeHl/5dxmosvi6ALbJbSQ+85rZpsh5sOwKMqCGjg7vRqlAqgcfhDWTRLr37YxvcO32rZQLrYCp5w4PJRFRmOhZ8D801MLD7osA0gLl6+ag6piKoR5YlZAH9CJGgy7CiQPBjHaRfpGZfW+oDre3WZQHz/F4KUOYxZ7GExHxxCUUgNxG3VMU65B5hf7V7cfEB3lGoi735pKeXCCVaVZsDTpe8ui7L1iu+SLkWYQArnVxyp9K+eUrilg2GrjHlz0YCF4nmq7DChJVf5zLgSn1k+rnZMd4TcsqsrB72Dc8T88/NbhDvVu/nrC980izMmjV/Z8zu8msH7w3nEioEUx8NWhyYM09WdY8Rgh8bbqF6Y1A+i2JpOjXemOmyBaPCNUlBf3+JjLJ0/a1pRsXIqU7QzdVGQIusuq1emg3PRY9b7N86Dk3ZbH/R33NLpd9OgawRSpZapJReuTeLtKFxY687Pxmr/WLlUIu4+rdsQhxaMQHK1talzg+Lhx/0L9S5G7xn85GMhIW5WcVx/TtjakeQST2Rq0Yame84Rbk83b/kAQ0JwmE2hxg5vCkDsBiPiPj2YDZGLWBRIBWOq1DbWJ6R+QlkjX7IIsnc9A4WXN7RPavegrG2BCG5dwL80rHlkEYJYBwwCR72g9jEEOnz6FLTjo1m0Zb+LGSNDHwtmOtTi/Mz2eYULGtyLC1amcHer6Y8rcnwPROZnRAFQVof/eyzH7TA5mnnoF4uKhJ7h/bxS5hBYC/h54qEx+nDhOdoQ3LooSJgBiqgkU0CB0jAmKSHr3d5sp/ROKogG+I7l+CcZG+8D9gRbSoG9h0i3gzgnR/ycnwFA3kvmMSX/uIkK2RN+thORlyu3dKOwFyOLA4kP66sN6AzbKyug0xJ8wbSe11E9UhhyRiP2bLiXcsQAjLKwkTWiioFa8+MZwzSqrUCpAwl3gKJ1Xhz5HNSHHDKBYv/Ugw4Zh8Gh9nnXqDyhx9AeMHmzYnJLysV5ZuPoIQXvIKWsSLYdp8cVoPtsBoLLCIonX/8DPsxRj7Dr6UF2ez9iOspzsMtbeW6gKl38GHXDMn4ZvPTz8cbG18wVTtcDNcNP1uLKsy4GD5tuDEAuOn+Nf4CMRXiHU/lSXZbYH7HwAWkshvenPwUW5nZjRvrDf4RKCNI/yztj8AeTGVvO9tXxUJ+osSbacaDLnluCY2Nsm1mNhmb8xmadmifvYgbtJPX2cOmsX73ma92QSSLUq5hAZORwwJsBQ/b1WBgGUwlHrz/c2KvHKxV5qlJMhOEWgIWCvFOwxgrjsP1NSoXC8e4ab+cR90GrfeSXBTJiTVUgN3KDRZaSWlJKJQ0TPrx+mg+k9blJJbGAHcCWg8ccwjrdVxkqeInG7P4QmhR2GU3sZKObwtfg31/uIUwOstCIAptnWqw3Q5kEbAhQIoLVT9hOC2TVLhUP2TxeOxeZQ9uAxbf34RxAIsgqEX+cyFH71RkW84ZFt6PvjIBxJ777hWJpDQvRGQhiYwvDCGO0OMAm48C9rIO0831ax29DaNRHQlFN7SjV+RiFVMVE3nHIFs292UglufjrXkHAxgK+gV5c4dHI9iwiw1VHZkzP9vQygTsmJy0Ch6lo77sG2IGPxr2yTbLlcc0ru+3fU1zzUc8eRKZnbMvmFYmL+XSUJwFsYCdnRAt8AaP93pRylfnB+XcvWUDRMJY4INm5ooAwtT/m3Nu6Ndw6y/eHnvXdHv2ssxzRdheD6y6VexIbcaaYHCXabikYGHOxfsqs67ezr/IFxYCe9WPdL/yiqqo4VrcsRr4iOAQTCR+Z2HjXkFXUonPsOph3zevBExe2pqLwATIUZfgJFPul6Xx0P6qtjmQo5EAQnpaIqjqDEKTYTmLwSIRt0PFDX7hDdmi4b+dUSTJbVkKTT1WwT08B0ODYRNQG2UsWecyHjz1NE0nvUuYP1ok3p3S8Fzr9szvNRq9e/h6Wj7YBST9cV9nDrJ+zZxiN1Rt8WInPE7NvK3Gh2AwxrIcZoXtOYjjNSptV2mWyEKg+Vnhnb7KaJ7iwhoKeVGy//gZPFetYeew6YiXez5zCpzgjgCepGoAYZFhnfUvzJMH81daCM1/pWfA6w/TQoWx+lvBRKk08lMxqShuGyLcrKVyvduERe3PSayYAMcZ7wZbs2cJRbOsSxPPQLYNElxRFXqDd5naQp87NNvQxsRxRQXs6WE+TNc1zG0M11giLfyK10SrZYLrB0djYLRCussuqjob852vOGtmEyH0oQue6zsUrFSv4hiA03/1XXxPdNbVVMlSuMIWKVDvs2qpuBZa1f8vNwBYk5Slc/ISBLoS+cOyQpw1bYlF3bRzkdzWSQ99jvDh5i3w5dksyYsBxTgIeXsDQQB1EIBCJsexdrZ4ytwGi0byLq33PKMtLxC9ujYHVUxTR24vJ4OkT0rvdjlKOcAFZQZK6hJXot6F5MjZ6IHtQ0xCDyq9bjljcLNQ2/t0+t6Dma0Q8+QdjikSB5RIfINJmurgCnykF72CHlq7WZ3mz66YiOU7rYV9791Dj6YF6h2rzJxO8pAX+9wntk1IQTeFGTPhzdAQraAtVhSt8/41ixJ114MVQeVrMUiYN/2pq3J0QQ45yTPBG09tQi+kxOzltNfiQBb8u2DOPVEIAZ87UTbUcrN5nGPqgKohFmPtvz/nCQ8Ux5utTyLXlq8NeOToFa2GBDH/c0d8E337VuLxl7EHcecVKyWZUCjQdWe0kKbWdRMPAgKeG3yx8A5sqpYPSuZfuyU+ZuG0apS+lIjKJxthHm468CLTtuGKHr1I2K6d+o00QaU6a/smtjmvLXwGb1SbsDElZgxcEWUYvRtIAIro/DshMTf5oEByiv94PfByafNKoWUL8LpGpsoj0seVHdNpZFiYqf8Gupp3Iin/wi901qxwKWBqndoHXVIDiTygChAKnKs/92Rj5FuTIDpqBZyGDmklCN56U5d6B141cecHxHlzBkUPBlmqfR/It5XtN+v69hy8NdeGZ3jxhAu4AN/l7Ff4paA46F8IOsD5LUEkQg2OLttWhsa8X6plkcPLUFFb/owdJiYT9Af32TVz3Chy++pQkg0Afa3fAXV7ZC41Shy+elMQwLceHo4ypCxfzesvh8diH6xe/ILdE6C2GEYeLzj/OFWJyQfiUUv4hBgP9qxAcNZyyb4O4CGIer/txFvw==
Variant 5
DifficultyLevel
690
Question
Susan recorded the number of cups of coffee consumed by a group of teachers at her school in a week.
She used the results to create the bar chart below but left off some labels.
In total, there were 128 teachers who took part in Susan's survey.
How many teachers consumed 4 or more cups of coffee per day?
Worked Solution
There are 128 teachers taking part in the survey.
Calculate the number of teachers in 1 interval (vertical) of the graph:
∴ Number of teachers per interval
|
= 128÷(3+4+8+7+4.5+3.5+2) |
= 128÷32 |
= 4 |
∴ Number of teachers who consumed 4 or more cups of coffee per day
|
= (4.5+3.5+2)×4 |
= 10×4 |
= 40 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | Susan recorded the number of cups of coffee consumed by a group of teachers at her school in a week.
She used the results to create the bar chart below but left off some labels.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Stat_Prob_NAPX-G3-CA27-SA_v5_1.svg 330 indent3 vpad
In total, there were 128 teachers who took part in Susan's survey.
How many teachers consumed 4 or more cups of coffee per day?
|
workedSolution | There are 128 teachers taking part in the survey.
Calculate the number of teachers in 1 interval (vertical) of the graph:
sm_nogap $\therefore$ Number of teachers per interval
>>| |
| ---------- |
| \= $128 \div (3 + 4 + 8 + 7 + 4.5 + 3.5 + 2)$ |
| \= $128 \div 32$ |
| \= 4 |
sm_nogap $\therefore$ Number of teachers who consumed 4 or more cups of coffee per day
>>| |
| ---------- |
| \= $(4.5 + 3.5 + 2) \times 4$ |
| \= $10 \times 4$ |
| \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 40 | |