50026
U2FsdGVkX1/Q436BjWgmcnP2NLqPz+rbVf251NxdGbPZGFCTvUbbtaRB5tEQeKU0sOxXfWFs1WbZqaDzh0gjfOo1GbUbwmvehGEKPSVZc2AwoN/+VYB0C9Rq+B9xpl3nkVa1UaQbfwyXbsTQqnmbiqX2bOXmfDxja7IKzF0ub2iH2HhLYyEhWdhcjqbDXkHaGozLWgZP5sL6RHwXhoL7f5e7XOKVwPrgSMWZcxNcJsa7O44ryAPBRMdYF5JGXNZv6kkuuIRcoTFR1Gk7vRt2kGKJ7htJhBiwvSbi61+Er+8a+gQsuI5k7UH1yeXGAKMbDILhSeYcddDW6Psiijqquhbs4MwgeGGPZt7V+WjhkH1sf4xQHKXebhaa3osIiAwFYMsy4lWk9Ro8U+dBE/gPvRbCJMjDeSff1/dKg4W54CJzjgd2GY3SqEF9vummvHMHvqRdwu4IBHzD16xfVFOMKYDmVH2Pz4lk9VvjzmoOHGEc4RuAmfKedI86fH6TnuFlqDTGWX4zWET+8cbNGZsYXZQ9vzkfdjOwSC2YeB35G2NT/mgTUBrdtyweK8mLjQY6nHAxbG6J7p1FqbnO9qitNL9+dg+exI2Xt0415WAt3c4vc+751fRgm/X50cLMJBvw+M2a2hxIJFgCtp5nfIPsnH4HesLEtRcnudLjCfMzSyUmEuRSlgfXO2rDE9vE9SR5xKr77SLZ4gBPL99Npx7WMJ1HTKhmj7nyvLzxAkKejzxMnQ+PJ97rOyQC8jnYek0E8Ot06ntfOs9s/qUP3IM3S37fsrI/FCJSuSaZ6Ut2+3faVyIXXILhTPJZA3wQhxW2hv/f2i/NygHkXrELXp2WHDXEa03XyYzwvkRoRP5qV0vT7XICXOCmR4JChJJe448eHUUjAQGrmh3bhFbbpu6eViERmHzYuTEtOynVAgFvenBHJ33gEv+QU4QcxEv+4rU7JfeoU1otHeu8EFe/cOag+jfkSb2mNKcsTkGuQyZx+HTwkLMhnQ4+y8nHz8D6sQfgKYc7KLHdSFgq0p/BqkiyrJqxhfvuxhHTP2fCJ94kMDiW6PI1OLEY57XWPyiALCPmz8a5C+SlCcfWTjtEYnQoGHuuZDxaq7U+l3qHGPhUJwj+3a6PJw0XRUlmU/44/tyVigAgxP5ndJCWvUVHzhyY/dE/NP3H/lbrbzryJIn9dBXgNZRlzIzdwuZKarfqiSvRZfGqEdvCX2cF07YmMue59jnvK0HlArLtEFtUaEoY7MTYc4AiAi5kYul5W4Q8L2RyDTPMhWdmZopLFQXZlFj4cE5peR09PcScJCKhH5ufih5C3ghpCvBUDHUru1cYVWCbqV/8Las1y9tt2eB1nINQbDi9sGnCm8wa0anxS1m5ghk1EH3zYv5Jl9H3aM3wnTiuAlm3W/b69ewK/uYgcp8c7m0hn3DZaHbzTey5sLrw5Lf7mK7HculbiOgdTmFhC9M5CctoBLDwkUvND3tBKqV+qVc7/EAnO14HmLgA88+lwteDy0GikDiaA/8qDlV3RTWj09oBVOTXrtNo2uyaw4R3lpdW26EDvTOBcjnWjrhhWpPpu5tJH+nVg2JBXQ2oqp79a7uXUdDyqlikDColCgfwm6rJn23fpq13OXk+Voe63mFK+1YbZ2yRbF3Eyaay5tYssBx230/bbMdnZotHH9YFWJ3NP5xTRmUloE1EG5E1rctqzwqRcbr/VKN6Tw1g21qEcc3PKzdmyrmWsdgXYuIluKjE3HhbbRMEAwBG+4es5xfKuNkJEv6NrT6rgWnA+KQXh/yQEXh0K1m012YaDg0T8kXV7znxLJYFxNZufj8vuRiU9/1GgiFL7It5zX4lfo7TA6EsVW470rEsJ7e2jkGhP9iJvycPCbxDTHCVdHhu1v1xRL4YzvjNjcTNwho/5SEJFoNEFJdIEANtCLFahTSSaqWxTU5D9+YgKGBGr6fI+WHHdfl1vtptlt3++/wG62tCNVFwxLXKar9f7Ey1psBemXpKiJHhDxRi59rhs4MrX9E=
Variant 0
DifficultyLevel
499
Question
There are six cubes in this 3D puzzle.
The puzzle is completely dipped into blue paint.
When the cubes are separated, how many faces will be blue?
Worked Solution
The number of blue faces on each cube is:
= 5 + 5 + 3 + 4 + 4 + 5
= 26
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are six cubes in this 3D puzzle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-F3-CA03_1.svg 170 indent3 vpad
The puzzle is completely dipped into blue paint.
When the cubes are separated, how many faces will be blue? |
workedSolution | The number of blue faces on each cube is:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/08/NAPX-F3-CA03-Answer1.svg 170 indent3
sm_nogap Total faces blue
> > \= 5 + 5 + 3 + 4 + 4 + 5\
> > = 26
|
correctAnswer | |
Answers
U2FsdGVkX1/SWEMLNv0MFDVyeNLtRfe9zdSyks17ylL4MyAAj4SqJCSHYdoxre4QGHzC0HlMqbukM5zbNGQzjWQRUZM1BTQYhJoqdo/HS3otZ1zV0W+VtDIsIRZOgZtooDLP8gEW6X3fQcCtmpn6xwvwtrlIv3jDSLAwH32aPEZ78IuZ5+H2bJMT2CCXHFKfIbbSgfm3Knz1OP2p3UZyv+i9T3+FJVTOgWgjNzaHPZhgjLGsEnY3geBsGDxJTyI2bNkcldL05cPBKIN8Yv8GbhKYbWZjlwaPoeCTyZO+rUhVgSWphiZ1iwWKjNv/P9YobE63kW3XDj5vaHANMPEcYMArHFTh3Ccp1Dep8i3aMeK+qV9Gz+1aEJKoUOSxpM2acmc3J/UycBx4xRVtLQ72YTxpco7JrDjTOmbEFAN2zX+SF7gsEmTGJ4fPzc3MJQcQIClUPbBWNZgFN8wKyLix5UCJVodpTWkkYImJ69mxdsdkx5VzfeJdFAgp4BAx4YpPc3a9V8nVsigpCcXkyfvtMy9hZX9uQeUaIinPOOCcxcIZwVKfs8UTIyR+uS9LEa7iUfiXVIEhTmD728VSsm/b6PkaxfHlajYHRuV8XRom0rXPWPhEI5jneXvbQHHQ0S6fA0LNwOdmTDxoNCjjXH2F9HgBKCiRUkGcN59YqOItcJ3I51BY9+GIPUz6RgavwREbZxCxKQu3zP4v2dsZLl9ZdtFWWgMwTMUfk5JDEkcQiq5Kruu3rIQ142sBIgA22Lq2by6hZIK7I0J0lC33SBQOHO9AbcbH0QmeoWAVATN8JMRbZFScvHhpiTTtezCF90Oojrl85FFwkiB/kf73p06ck/JbllBm90XYrAuj4G8iJf+3aGnMKv530B0ylUYuKkyZLzmm6k6DjbR4x5QGXTPT9Eq2wHhrPC3layNhxk/UqeBS4pUyhNP23hFXAAPBUicYUa0Nwr/E0lLw0ijSLT49ozZDh8RvYXBEhX69IURNn5FGz+GXvI7wbHQsRHM54AktpMyizq2qcrjn1jzVp2Q1brVnrd0yvrlNAVACVTlpAO9h9P/B57UvVlE2sza3kMjM9PDjeeDNBzLjMHpijJuuIu0O/otTUwqDW/bIdAe3TZFCilgnwqGRmHxvKMISPS28ORAfwFf99NuyRDEeHGWfjF3XzTujsVAA4s4FtA+Ln4XTPEMUiaYoxGwDF5aun1UW/Hqsks51MyO+ZCzE1xzgIUnX1OUqniaM2u6cGhXWQOuzctKswqpK6rlKeMdDIMtjeLsvZ+b2UEdS6BiWHZccp64psl2LdAhxk/TsBW6W3gCTwyuao2Ty1RXxBREqv0AZwd7NTvU8HoqSnAA4zUokYL5lsOMwW0jYfNeB5l4G7NmdB/QLYu/a0YcUSTVEShWzr1EjxqTJpOAjY1iiYpE5J/BFQ/qqDT4YtjwkAmzC2RA0x5CT5jpcwrR8Olvu53jIOvtjpagWLYKlqzjcUHy8Wc9IQGBGQN3hmiql8wtro2LJEHTi4J48+mT7iVxHgn0D5oMARhPBzP6YRF5SOzHHf62YeStLqbSG9bRkPvZRReDxS35XWKlZJC1KZW2S5XI8D2V3MMniccMXNNHW7GQhJU2EJ5u4Js3csgkbwkBXHTMIVuUAXJTdCrWOEtq15zgrx1Lo6wFkmuzDqP+JfFbWjoQ6clV7EW//PtWosRjldGfNCjUyiTFiL5qrg2/CxUpzVncyDnfg9U4P+UxOgv/Z58bW0Mjp7z9i+Io9s92phkFHxmAYQHgzU+zDJMVIi1ZpzaGz3z3DalwPV3Rc7eWxvw2AELD9h2IPuxrqiu+hOoq4RzN+NDChsUuR0py0bwoSs18IdzGbu9E+eE2UF/JNdP20nVvPbfRIEXyAOMJ31TTcqlldYhAOsBFlxLgP0eH6xV7l45QZ+omor2yPrFHFll+nzpXNG37YaEu3DOynHLhzkKzXsIcSWuzvdeYkzOhv+s8vF2nqf2U+UnjCYsVJyDGYmeEwhDLIpExmQ/19gbo=
Variant 1
DifficultyLevel
504
Question
There are eight cubes in this 3D puzzle.
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red?
Worked Solution
The number of red faces on each cube is:
= 5 + 3 + 5 + 4 + 4 + 4 + 4 + 3
= 32
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are eight cubes in this 3D puzzle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v1q2.svg 230 indent3 vpad
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red? |
workedSolution | The number of red faces on each cube is:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v1ws.svg 230 indent3
sm_nogap Total faces red
> > \= 5 + 3 + 5 + 4 + 4 + 4 + 4 + 3 \
> > = 32
|
correctAnswer | |
Answers
U2FsdGVkX19z7ycHvX2sJkMllrnzBmyNniGU7F1jj0TUl+MYoY0ZEbr2gVyma8WF+Ym32MBipfBxNZ0mjlUPdfStnsCnmyK+1zkIrkv9XHBh2qEBFOjR/i54BWLJtBPB9kK2Fb7YSd3iH7zgFwpX/qIfG0GbieriYo3Bz/bQ3dhu9uucY5IE1BuxdNta61cgn5AQItgUm8ij/zJlwlg8+C6dpZPqm3ZYTeEfBkTBBaeBmO0fwn2lI38EK0Lv7nKslvwaK7ar/UMI7NvRaybBN3YLTbeGfHSfT3tJQcgTjtR4EB/flhH9AGfWvO5gOAWuBsgsATyQiXEp9KmCvc+eFPVEMIK9ZIeyfugbqzNrgnWjnSTO4dju21oJhikzk54HJ/j88rpzr/tEt4/q7zU3oVRtjA6GzuI+ulfPU5Ul3LRB5oH8qd0sV7it4ZxnoZ+PSYaLLImsVQf72Vht0pA2cknAbYLpyLmyZM/quTGp9bZOmrJkVyTAeQEUM7jhEqMpiJQRQYeKnd4+OKW0IZjY1GxNkuGx9wsejIfSVQWmo4nlZZ3gaZLB+bK5eHxFsM+UpIHIFI/Ls0HBHsSBQyJXUosNuFGAFG8YNlDQNTk91ty7owxiFdDKbpHU2dIUfiOEIxua43tG+8JJR5bLaVvKOXeTDAHld9QRyvvYpntcEuhPmNCt1Q+LCkVxxmg2s2Z8XYt7qWH9qNLzkYrqXtmRNNHqQSXWNsyHyW9T+Dw+rj+k7BrplNpxjkDmlxLG2wI8yRnsOd8PXq3Jh2j5QEjJlH6LMvaOB5eum57UE9WPxLMq6dYAtk0489J8iX7FOq83FsHgMl49r1UYmQSwOp6qFCW7LrOg4H481RvH7+weR/7aQYNVA5Gem9Hjtjz/Sm0JtuIjxXb1lcD9zkJbaMOSi9lZ/MgHgjKe0nCQ/GA568XRuq9QyrjiTPOY5JWHfQxOQ32JTD7QO9cYMRiEF8xSV+Bwtnu6/Q9c02FU3vQj7pI/1vM9RFSlepbGEVV8nYzBRBpm/k2DYlT90Ye1722e+EE4472UxmId37/nJTxIqs48w4jZIdBPJYVMQtOSDdZHav9upPTtQp+9Gl5hxN+OezwnebtgXwH6meqIYdcjgEb5egSqKmo/8QakNCq5bw9wUiHGfi2x/gHwFPFAViiYxShmVVdBrk1TJ4cCa24OI9Yxd+k7nVEaZneI8V5NGUgItBsRE6TwA9MoAEmLlzl3GGweSaaK+F1fe+CpFawvzghJU1eCH3yQuTSTTMd9R+zjeFNCquXMeGYqBxGYYmp5KE61CnFG/FRpeynbgUe5LqiYEhSxJkTgQdce8nYck70kB8NMLFirfL2fVrPY1z5a0k1ZcR8d3P1GFewVQ4Qx7rW4N1ITNhpMsYyEkdaFEPhK1Jv0HC9GBHPwDmiYDfnFOtWajlLWOVswtBksHuHXQQ7eEzxPl/ee+kYIxzRHj/GNwkFwiWTrEkLWh7YDXptRdt2SRljuJPcAI8GrbL6sqVoqHol3Mzy2iduvDOoYbH8M5xc/Td31w8tvwEgWEvensmQu+ZzMWG9s4dbgmhg+/Um7fvdRnQCr2s34toSC+Kd1JNMHERQiyTqzAN7r0M1+ie6MwTWiL/XoUWZEAcGUY4z4t5QC6PsMkn7F86jAaHAACmGK1yX0qPmq4dB/VV5mmmusUBXAfhkTirajR+jRiz9jUaW3p1hyDik+0DgyhDZnxRvUqThnzVyrsQd5jKfmv/L6WQaLVZCsrebuuHD7PuZH0iNOVClqKZxcNJcxfbWfiDMkoi4xRx3VwnP8QP5nG3pVVe8gprEmlceE7LR5JQUIuEDKU737ElFB8zLqTb1ixClkJM30ThTmuyliXuRTdyvWfKEaspmi1jGqBJWGlyQb+53n7QE88bMZQVIlPDN2cAIlbfUGQ1W6NDHgbckESWLw2+sACgP74lUBDKLwAxfXAvx/FIixHILhqxmwhlJsr61cUsl7D0vc++wPtRNmzT9UsIOUMfenMy7RwUAtNpk=
Variant 2
DifficultyLevel
506
Question
There are seven cubes in this 3D puzzle.
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red?
Worked Solution
The number of red faces on each cube is:
= 5 + 5 + 3 + 4 + 4 + 5 + 4
= 30
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are seven cubes in this 3D puzzle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v2q1.svg 240 indent3 vpad
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red? |
workedSolution | The number of red faces on each cube is:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v2ws.svg 240 indent3
sm_nogap Total faces red
> > \= 5 + 5 + 3 + 4 + 4 + 5 + 4\
> > = 30
|
correctAnswer | |
Answers
U2FsdGVkX19IkLqIFeW2kUFWEGn/AdBzfm4YeHzWy7mkua1Al8/dZ91nllLtCYCohPp1EgLo+r3YAAT5MXYO/0JoBkTGxyrOQ4HCgZPb1cWqJdA/UxqiRAmOFyNJ+plHXDOUTltoKBDqC0vQ3oZzBANOxTtcx6Di0Yk2wPYbAgi5993COq8KQ2zSnHnUTguYSdmbMsdFCiWLm/zyyKBYkMLgYRSrfTZGO87CGHK2R6MiCSlR2JI27uzxc2OQP4tAuBhARsYGA6oytIXOQsFwEwnA+yrno0szPKeJfiPSd0W7ZG2ZndUQDEWqiVLCtmZLRF2pVOvaOi/LxL+a9Bq+qpmg6+Bxm0N7TeZ+SdIccfQoqTt0fEUpcDD1fAJByXU9QrN0Pc9BKPqsLywagz52aConq/2ZheThQXwnT5I9hYujjyZBznNuDPQ3g7TYHi+r0OfIHYQH5En2KXsodBwTvJQ9pOhhAuoYn+bFu7OZXWkV/ZXfbyvxY87XLZPgfVIPaks0pVsGhhsB+T0kqGOijfBSQr7o/D5kJqR2+HWuqQ1HVALtA/SSp01RztYdQVc4UbCI2XrA/1Uk2287CruDWrrZs4YQw7DPeyHKfyi7K7KTW1emuyT2E3seNcVJOK3/qu52dKqy5NwJoVny0gSdru+fhCdVUfPnAGSgK1n7FQYXlNNmZbWGqNMPNd5RrutyNzBgVDt84XY2NTVEp5PL4lm0fv3+gv1xlwEYrG65q8b9NdEIvFN6iRM2tyab596ZKPFCl07UW/jmxaBoyS5/Jj/3DZ7cZ/Bc3li26f3v/fbRkcf39TRw2soF+ndxjzeVQF0nfzUJmeLu++LYHFs4VziWadgcwpsWz4ibxRhVZLxreCoexmjLZfIn/Y3ddch4lmoubfflFq5oGlvCcVsNnNHTlFqoUn+smWH/Z11sm5uK1YyYb16wytk6LeDDJyKpq4jwhSmIDrrsqOa9Z4UtFZA5OoOh0d67EElFH61NNY7tIfacN7BfskhhqYtS3WGbzO4AU2Gm+pBbH9YPqp2v3AQRr1oMvs0RyO0J2HUQjzOwij6n9yhR3ySP124bjdDYyZF8DKWHzFoWlWYzDMHng/T4WpZk3RD4+KDKh6m365vM29WxhM4mVgEEpxhMVK+rpt/0IfnaXiBLI2h/7Znv7JvKvoSycVdRRjfFsC0TIA7Q59pLSpUJYTxA/o+eOIgGrNs9kEzxYPU3RuZB+VhfqzMIg8yIZJVjfq5qqlrXiM1oVx5a5GDZ3f4F6SvxeIlaID//bgZbOSQDxjz4pOMZUI1tszl4Cb3Sqp+dv5OclHZYm+pLYI7r0uT2XtYvyi7gPdVvCrhoTkK6B22uBGPGI8hLGJT8qhkQCiXX5FrwBZ5Ug043m7WQqfPNiBoGqAKVsf8dYcUHUfzlnq5cZrE02UUARvAWBmKHdLN2b2h1yV4S8kuG8i22oODLGKZhljOq567833wqEBE0qMPigeYomlOT84yJrKrv0BuNY9eTJr3TgjbI47rFLR6Iulbb4lY0D7B7GvyqI3JDipYFnI2M127ATAWfeWbQvl4aftaBcuJhH9ikAOxAjEINUB1CxXazvtl7TKqwwS38KLzTxU/0WANzPxx1dvt6kjCEX+ghvQZCZFgUta89YucUbqlsS40rHtb8FA4CIy76rQqEL+sgWXGDUfFAd40PHbcMLB193D3RXE2k2pI1wKX5Ssj1a/k+HLphYJnMLVElu13e76hIBvBh40ujtegiMwPeQ//DzoV4W3rC8vGdWYy4amAWnIughj4oaNn6Hlx+fDnHGJcY8VaRkymduAiUIj+aYA6s96PvMxCTO1BXJ1j2IJtGP813xtWUM88pQmRqU5KhIu9FET7T6qtMVx1msKA2U+PssycF1bELZkZ0rzhZEHrIK5mNNdujfKQ1yMCbinHXHDE6WJVcIwhcqIyrnipaXvw3jIpbJ/wtX+fW47GOlfsZn3vX4d2qjS2QHzuh+d3o4WrbWJiEuQPveoW9og7kEM+fWNk=
Variant 3
DifficultyLevel
501
Question
There are six cubes in this 3D puzzle.
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red?
Worked Solution
The number of red faces on each cube is:
= 5 + 3 + 4 + 5 + 4 + 5
= 26
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are six cubes in this 3D puzzle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v3q.svg 170 indent3 vpad
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red? |
workedSolution | The number of red faces on each cube is:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v3ws.svg 170 indent3
sm_nogap Total faces red
> > \= 5 + 3 + 4 + 5 + 4 + 5\
> > = 26
|
correctAnswer | |
Answers
U2FsdGVkX1+Aiu7u4cOpAbDLs7zZj/NjQtyu7ZPBPIR+srjrwXkT/0ZQOt/4wwVVgOW8s3M7uP9nnSRECmu7Mhs7nzIWScHPdZLsCZCVwbAEtREhPUuXGsFJXloQr0zigjy+rMoO/jnZdRbSJsVqby8Gm9I5dSzYEZy6+FbDMZa+dB012BQirkAwN2ZlQzvGiA9tSPI67hewZkHFDhzjqMSfV8rFGaZTWCFXBNyfVgU2EnW6jwFNi/NkEt7UGFGOB1GK7cB7Px/2NSaHSNpd+jMfWKKGqRbyGeWJtbmoe7MOJR29Wc5cbvv9a9E10vW9iB5yrI/gwvOorIYSJFm8k943jscB5F8IRk8/ixkzMqo7Vsi1tUhg6+VYvVRDAifGGSd3U9WRLxEM8FgrEmMEBLS1e6W0GNjGsaxeBzFL8C5QOMwYA/4uBJ7GW9tPedtcQEpsz1LPUDO3C1tczMMX0aWAlLcfI4cmj5TYmlAzTJPlrun/RoJ70B/SU1MfG4cvMaqUyoJ7GKIX+7ZSK7Un2qkwQ9q0oPC3OEYGJ5lE0KALshHID6WH3USHW0A+ni7CR7TJeVAA+9XXsw1OjYsQWhCyqRX/OPrH7HnhKcVZw1wPxFBmU4a5BsLM1Q2CrnMnNR7GDEvbjKd1tKLNDLq+0MbEzQq1AxKLOdPkE7ccfif7W1vTNMvSlwQFXUmQxMo7KZWgo3fWwK5cJd6gJcleG1mq7J2RUOR5e5fU0riY2UThPd7GAgcfjcRSi1LPL0eyVgdIeGZ6H59Of3+b7vYDA81rWBe0DUSCaR9syZfPaPg3xkMIoU9TPpTJ0rm2E8na0dTjis+aj6IKqaWqS7LFKjkv5bhTFj09Cei3JwHVVzxaurRc0KcK8qpQDmhMu7WisG5LjLVlrO2lcGfBEOf62EXsNtQu9xDhwVVVNI4m2I1EEqLfRCv0fKd1geNbf3H+VhKJVDR1pL9w3VXwU/okeJAqzEaCH27bdVGqpqvQfYgV+Z8e6fx/3AxKT8mrki5KU/EV5lSjUeK9ZnWIEWR5WOdWD50oQsM87KezkTRovf3i5wMwgS/a/KRerCVPovmD61Tlg5WwsXziRTr0prLJK7NhLNekPtLgQ9BZ+IkI/jUtwMExy1I+JSVdiJfWdIqZpFyxk2tQXngPBY271emlv9PdPsGF+RRhcqlBf24wfXhlYwPUOKrb2HEXqrLf4aBOCw02BC64UXVokq903sn6yIDgtAv1TtaqG7FZ7JiV2S0Vq29wuUHB1CDbYG6xyFplEuXqB/jXwVjWQNVJFS4ZP6W9WSPKmSl9nx6LNhUVGdPq5SUWfc3I3f8wu/vUi4EBefyzU1fPWY2EUALxUg7d9L5Sl6Ltqgxtl1L7re/8ECyo6ZyC9EqSIrY/4fkC/CTLNSKrZsiIkCWLGqQOGObiwB4TLmARW6vJSAYsIa/Wpard9nWZyMAjy+95Zr2Q2jbffuDPXEYGUDobU3iZ7fX1SbbM7mmDjyTF5CU7pqBo67ONgY7qi/xJ5nrtMwobLyKVubT1JtCQq4l+VgsctVgXVjIKtrtiFjh3G2KeHC42RvSB+nQAV3TNWqh16Ew8DimWst4j2JbB3FDhPEzBnjtbMbkh9/epRexabtn9Mg9qYBBn7eQ4BkftU7sswje8xJ7SaWe45qod5l03ANVBH8GDvv1Z+RESWvp5ZMKvrsfsOkthlVbxx9ewSq/2V4yvNuhA5u/sXyqQJTQsaio3jaVqNEpVlyXTgbADy7Pults+L+Oc8hhFTQ5GlUeuoPsodvZb2n3TvellKcoPVl/d2GihEAx5CFuJBeRDUhYK23PU7YseRncJ89+foOhKQYd41BV6wjAHNoHisEyHtgpdOqVyqYBWO43x0sSGFGcqZndrmP/6J0FGDObJrgz9VMZNHQeU887/He0b/OSklhMt5AEbn22YlWdTHEXvySvw0yKXSvp8U9IHtSxM3drrisyDramJCJhP/TAxyJlKajauUcEvSXA61Ih68ZA05jEqCdu6a+o=
Variant 4
DifficultyLevel
507
Question
There are nine cubes in this 3D puzzle.
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red?
Worked Solution
The number of red faces on each cube is:
= 5 + 5 + 3 + 3 + 3 + 5 + 4 + 5 + 3
= 36
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are nine cubes in this 3D puzzle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v4q.svg 230 indent3 vpad
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red? |
workedSolution | The number of red faces on each cube is:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v4ws.svg 240 indent3
sm_nogap Total faces red
> > \= 5 + 5 + 3 + 3 + 3 + 5 + 4 + 5 + 3\
> > = 36
|
correctAnswer | |
Answers
U2FsdGVkX1+8s8h5imywsJF2Cef47uF+pdNywZx0YnCSJY1QtBOmAdqZwOOyB0yjjj4m4W6dkIxh0cYkmEr1xp5zZQYt8VlAunvX5rbUTVS8soYcHqYMHQy7zW4cej5rwVQ3402gMAyTQpxE69BwdeILHSMS3KkzkdQDUlgUHy0XCRJxWhiq+1Aem5tpp6zsLS14u9TwCecZTWLombuTiNL7aylyjVqLU2a+ShM/F7FxRx0DzjS82xLPpAfuiqkLCi9w8yCkgY+7JMh+n/6L1ddG4/GyCkGvHEdb4sFRYd8WCJGxOjyCE8+1Fjm0EnvNYfc49km8LdRwmXNbpUa2Z6iA1uQBtsXdLWVVUwNPP6OK2VTHqATvgcPBXEkGF1pDY8h3r8pcvNUWw6sdMVwsvbFxIn2Wc/2yvH6BjIz25UzPAW8wkfQVqQLo9dpDe5b6Yskiri8xqlmv6JUYaRPnsLjfdyXsXMhG86yW0umQABI4Pe4Y57iW1F7kT+UxTfBsuY5x5i97AC7Gi/NhqwtXO+uR1kXN28lQFbdKo7hDKVYZpNMHQvojcjOLjOQ7ikfQrWkkXAB6SRcXglBZDSNQQ8s07QBaWcSp36msB0fjBHYYvF7/LsaPSESAmxi4yQRo0IpeqBAyltlVHe7oFmJVfm4EfI0oh7y0FlyEOysTMSd4rmyZtJOs9+IlBQ5/7FHX1AxMKTmw82OOePIuw7pStjWKH+7/2DrAthir3F1gTgd9r37O4AMluo1lVZ+9i3pCSNqYnzvYjbRBpCk1aNrsQt8M/ZrNek3l4rWur6j+msDVBau+SJkFCwA06znGk7FjoMEZLAvJxs9cO0J4hW5Kn5nyJ42bDwd6pNLDXBiIhQO56mzoh2YNFsiUvlM5Z/BgHwaqyIXwrlic2puknNZRn2elMlYHOt4IjRIZrZFW1rO1i/E2021Q8/8ILM0Lp7Yg4867irS9wg5zIcgnH/7SW8LWYfklQkPVXYNW3lwv3q+A3uzVr0xudR0tPwIs0ZJgx9WsVghrF8qTl7IsnLJb2vKQwFB8tJGRDiqCwl/y1rG8IbF1tbrqA+xcAoyEWGnPQPIJKfKXx40UNNGAvODydFS1IFmXaRDA+Z2hK8mEI0O551ryzizYsuxEFoWBhnnIQA0sTx2vGLM+r1RffaxYQdH323ahVgZNvGcICzZD0ZTG2hbO/Jt+kjcG6dSRG9x4YoHIMQyMmobUqN+Pjyb93MsLoMixydVdbFO9r8XTKamLxQRXUHJAhm8TaF9XxxMBp0zShE74xxY7zuR02OhBNwe29IKErp8MRjn0tOlpvjxsfguflI1LaI9ud1LpmLe52zzX3uwzvHZ/Z3KIn7dAKNOkuGd8u87Wx8gUuqwzQNCDoV99vkg5FTHdmr7kwreSlH/E5172KCWhBXscG2IcUhi8dyJ3ojBSWattIQ9HKycKoUVUte1GsBtbqKYF6Qv4KoJ2FgsAt9QpLCODn4YRvticCNiSzM/NTbA0G4q7LcQGUWi6JDNF1MyUqBvpmCjjsBVFE18FETzseN0gC2vhsHoF74hOZ9Jiiu28HBymN/vQGoAAZb4Iq0g7jk/8n6ginUx/XPFXQctzCawyejgrSkR4XYcwEFpDd+xTim6ahvMyqIYfXD8wO1tUw4ojL2/exVPPC+4zh+pZP8ycYIBviSvCkDlk4vzrBqanJUo3B53l7DfxMjiCkT5OIYwOx5oTsfWy5IiWBA5to2grYbuG7In8u3qgPeTrmjYE8lz0ghpRoqjGIa3IPN4EDXa1MRIoarzVSBGSEB4FBKVGtuMBy3Fjpdf9k4fOun1vo0SAJ+dXCIcEhug2lXMAKdnZ5RIblQGaIV9ZMMZcWNvzlCnJBcAbr7M+e4zxhYDlfcu0J7o5FkAtBmH/cv7M1lhV2GIKTr3eJ4ayApz/7iTgSM6RZXrtDnvnUdodgdrHfl1+24IpOsfNoViXkHtrlzmFvYW/mmITCuoxUsONm5pxtXlGyA6WhMIw5nQ5cj3ZfOddqHc=
Variant 5
DifficultyLevel
518
Question
There are ten cubes in this 3D puzzle.
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red?
Worked Solution
The number of red faces on each cube is:
= 5 + 4 + 5 + 3 + 3 + 3 + 3 + 4 + 3 + 5
= 38
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | There are ten cubes in this 3D puzzle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v5qa_ws.svg 260 indent3 vpad
The puzzle is completely dipped into red paint.
When the cubes are separated, how many faces will be red? |
workedSolution | The number of red faces on each cube is:
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/10/Geom_50026_v5qa.svg 260 indent3
sm_nogap Total faces red
> > \= 5 + 4 + 5 + 3 + 3 + 3 + 3 + 4 + 3 + 5 \
> > = 38
|
correctAnswer | |
Answers