Algebra, NAPX-p170065v01
U2FsdGVkX18bSI3T0u6RChUMbz2NjJH39hqhURb6387n+zAGreGGQr04tyo8QfdzTjP2445z/X7926/+FMSoV10R0oRdYV/MTtin0yI0sLB3xLvKYzNdNPWAN43uvSpg6kVPi21vePdgkMHRWikyqjz/xVBFHKtQYGcpvl3WIhHdm+cMbHU158/PktE5eWGkjLB/rwZOyy5U5kJTsMvakzvXODlj79HP3NAcRUy98obLqQN2OpDRbAtSDrb5MUFy9GnnumIl0+rtSa6IHFOtSyZkdTPGSriwseU1B8QTFaRn225YOIQnGRp8v/aW3PnC2jkM5pUTLKqhH6K2jLTFF5+NM/Q7AUY8uLj9fi9y/lI6urDzHDP0sFemN4s6gc37LgYbrWqTl+dOf2kMyULHDVYqOkNNcVLVWkNdB1UPlqg7Q60VORnMnIRuNT1DJAs1Te/yldbZiHbNptOaqQM3F0O1fYoKWofJSPL1zrh9rj5XmczpxLRSTXoYvz1o1GpSZ7I515WXND+DqzTMzIRG+Pg+nNoLq8IDeEzMxGGiv25FTaayX+XTO6UG42ByIcOPwtchJd4n1PN+tWe9lD4iUAHJIeQUS2G/Lx7C/4qKXjiWW9u4jVqfbt41Lde5GMFLe8hsTSNz5dprzli2w2RvlYW02trPnyQeJVailIY8TyvmguprRqg9k43TtykoPcfVFgoYKYBpGeSEAK+plIqGKzgj7QFH6X9JZN4W9TjXSxxcirvNsWZENhh2923hDdG8YSsopPQvl6VuHYCHhqP76t3yOpDnlHdAzj4ogfcjyPblzx6rRuVSLT7cdThK7H7RR1tKkx/Awqa0Ndy2VIw4W/n4Nq8ApO3W1II5dSC3CWxF33/qa3jHTjpBbncIbZ1e8k3DGb6fQl5JTTFbs4bjq/CaXGSbG81tELtwUwU3c6WPrYzg74VNzXK4BnemZMdKmy6NQTevoCpWQKHLPkRwmLTdoy3pGGg1YgqnBp2IotBtq8eUgp1SY3UoBVEYU8mMiN3LPpxJassfCsKGdM8ZyFWyDtX+P/p+UrabNFwmYnL4hmNAOHDliQzZ9Mle3+3RfvWy7c3H2+0YPUh3Y2hjVe2m2A65xJKYbxXG1gagOfy+cooR513wqVSWeTy8mzsuApf4/mXyjObZN33Aarxryj5JugFnBianrTlNH/4ZvsS8teYYLc6kmgqFUT0pcdjscTpRkqLJI7CSyy9SdwopgUzAqzcshI0RfuaUyklPyTTxUeJINv0v/nLJ8l0xQwa+/USy+tSnLz+ikxPuLqnRQizRcaugrVLfwU8Yxrupy6X9OBzBRVHZfeuxz4sVMYi/frSV9tEGQnyPtXbJ+MzW2NU1c+j5uyS5yUmpU3ObgezT8RL3W3ko+b+zLCTfa27eAwmOMpjD1q0oXFNu3tKYjMm5hqxWJFQYe+vgvZv2/gBNErslmReFDAcEU0ZibOlYaDN6RQLYrnVJRff925gCHksXFnOg1b1pIrJ877eE/JdWQqBYGtyCbqgyl/3oPE/yCPPGm9EdOcMUU2FvSbKuuKLd8KLKN30f6uFcbU9J2Q3uEqRjAgzBPPzqoSLrhCSwbhPv9hID7e8WMHXWbW3Y8GJAnwsJpXJ0/Eu3nOd21dorUG5SavJMkOEd5Z8DR4na5qjgC5IM80RHMOP6aBzIu5KxoIDTDkhyyIrNTnc6I6wfw8uGYNhWNOqX891wR+ay/68a3mIPzzodpfn/Yxiwk2qQmzvXgpeSsiuE/yGr0c16thbzA5c+YRUC7WSDs1DbQs9yWIdYCYIzNtAhtqHWyaBQez8R3W6vE1K48hjENNpzXg8Km20ddOHJCl/a82lfAWYcC6UuOTbtVYMy9/xs7XMoARn6kQQjVb7b/Q6gkm9+HmARhwTuMBUdXW+8Zo2UPzrTVJLGrDzpZSlW+HIfl3H2rkuzGgzOU8D7ZH3xDpCwy/S8ygOrnpXJffcS3RmqIQ+uIladrvcu9XNGYGPYs+VOOobakuCiCqKsVgkMdOTPysgoiLsSYR/eyk2bn7JFAOB4DcCa3wA5+z9p8Yl3unWUpBp8fanALmjn97X0LsmgE+KfR+eaY3AIGqKRVy5OWr0Eh3FnT0+RuY/032aOBKYXldx9G9eRVRA9SYR5hOFo75DXGcZ/h+JFoXXpvwR3MoIH8M89XSYFE/vpHZrrPmDzbPy1FyWVvGhX+TaZPHd9JfLVWkQrJ0WiOcK6dpj8chOHFVuLW2jRIAtyMhQo8A+eM8ucWR4G6TzB0qNAb1GG4K6IdLmXWuCRjcZMymfA1uKCJleHjldoYN9PJzzv2GkkZAbOzE6YFNvsa+6xhJThWOcWCn+CU7LB/fdmFqSWk/YOUHbXs+rW8OOGZ/uUFa+cfbKAWfDwQd4At5uCh6RXfN97LRYOXcYbcHE/bW64pfKQouYyXaVVsFnwaWxgR7uPGrP3SYnmCu0RCCfD/OebSTxXxsnovYjQUE3f7mqN6yrMgXIh1zi/ULVoLE86gQjzP29ux7Vm5fpf8uHl3K2EiKfUguC23AgoCsqiO03lNJ6LjRLC6nGUfqAayLVZVLDgJdRBoVe1wD7X4ClY0D/jiYQ6CPyixau8uLd6DXBK2IRvLIvOBamJQK4aYrTEknEJL3etdbKi+9n1k6drBE5hA3g0AbnxVmSeb+xE+iYCsJoRq8bnjyWQw/h4WBBmXMJEztOp+KBHzOXMukjgfDa6pvYOtvECFF6RcCsICrZSaugM3/rUz2La727LKljg0dVr229cwLAjgAZhzUJNYe+zSiUNvadZGMfbLDPx/aUHRK8PYau1JTfCXNd1mE3/XBu/K7/6papt5zDa/Sf/Hg91nmL7Lz4igDOcaBlN+P8xxBzPrJIWYhxbtSrh5p5KEFd702WhCdafH/qrUn6fmaTEwonYP07ZZ82kkD+V1BwYLBewb87utX7VM+936n+tCmbGyzKYDTWSljWwJotWBUNTrRYu3x3ycbiCHrTJAVJ0G85z6OE5WPTTxuhp5lvdcgxe4byNbWCC5zkgrBTGsrfd9TO5f/DpJKoTl1Ft3eVxy9XVAmOYr/m1jZMt2CPSXzKXbyEG8IPKdAPCauhmbpLzC/E2cpH4vbbmbmIkM6AWydyk43A53S06uqJxr0IvU1osJBlnl+F9v3NvGeWBGJ59yD/UBXH/BjDdD3w6zLemuU5K8Q4iqVkQ7+rsrSJF/q48pAp3Fy3Od7+3SDHhJzMNs2bO87NlgLnla0ungdD4YaXgeBvnoTxoCUntDffXnywTOWocIBb3gsvpIbHiaisK2aXOrv2gDrFVoa9g6Eqv3/dHsb7dn7TyfddMfxz2xnI0XTwZV6ZjTZtrUBTHO62XV+BiJcL9hzefCPFbrymirsD49VapCTM9jsqLDdvXRERmZUM24VCkww8doH+q+83VTXlvfvHIXMV1jdK8B6CGQ4dsD57fCic0oAYNJubc6luzMp6oXlTx1bIqv3ZCUHUdXxL6GFWuxdR+r8ncbF2uMA3IcCwoMVPi2PXOwY4LQWTEmlRtH0QDK/4dJSnSvw0vKN7s9CNaL6rhNhnu3hhehMXIevGVkxB65pB8NcIH+sfSe+LJIi2YHssU3buFGJiR7DnA/NVHs9dTQwu4Q16hJC64pj8fTLk7eonxRHduX6sQiIfnO4n5RiNm2eBIerI15cRkZViBjlEjqbsgSG0CCzjbnxx0WQtjhG/4jqxStxMsy+lmwbQP3H0OrrIRO6llv23bOaQ2ebdnL0il5crlbYHYa0L4XJraORnOXfqvfg/XaFqVpsD6L7jdjfPNPsb1572nphp89//0g7rrG2D7nkl6GuIgXzC6vy5SKoVWfJ6tx8P5yYKekdCja4rOZDKo0DN48j9flwxeWAed6Hbdz9wlGBO2px6BpTvWM4MOX+mtT7brzOnJCclb2Pnd++o7I4Z2vLCX85mLgcs+2TGNUM1rshMd93KEnvk/toSndsBzd0LycvWgh9/EOn3BE8iOlExDSpCRge7TxLOw95/zYxHmzRg/fn9wZbMb4rSVzc7pGt+fSeYHyoCPckXnE8XNs5gpGBniU/auUAbyUr8Z9U93ERToj7Dl0138JIYZE2qMqcQ2ew7mEewpWe96FKP/k20macDvnkftTlu8JED5DVjoyXicz2XJHUlbSwEMDCD+/eVFPhkd/fPh+16m8lU/qWQKyC1jga0r/xAOVh/2pWu1XcJGC1ax1Z2cIFasiWpKpwL+8A5fpnqysjwGxcURyr9ZAVfA7BKZhqOkZ+V4K5lwg83ZWCEt667XhsL0fMxnX7PbvGTqxvEnmYHzy29ajZhxklxApLbHphW6IrDRI6zWLrHFDInetb+TuXrg8gFsZTlZqPNqm/OCWcMRq84VHIGmqj5V+Cj1p3oGTqRVOlYmZg2JkiGxTA7L+YD94NWPXpYPhTOXH+wN/hU4ZloMaHZrfKDWXvf0eF3Hsj8lVFSygWekKQoPaTBvNaCrGU+CaO/E41t3iMiMF7Ij3heDHtfK7+Gve8LNjOf5sDbLJGgI1h2suzVvup1IGD9OBVHkND8ImeZOb3Cf3stH2lJBdbg0LkOjTP21Wtk+iCxntYu/a9rvS4WSr8rnIsPqppw1g/MahAPsb5IAYOnEl9Doyo5buB1sZNiJcat6bYAXkF/DWNMT3wcEeb3CK/ICitgiIXNZrx+pec23iKn5MR9+Cj+vnc2pEMPUI+huSsQAmJblcfZFuOeQkdFAp162PBYXW/6Nn8vQWN6D2PnUux94pAXVf8L5u0FeL6YkvR2orlxL9hv6pLiXjUd9BfdBS4IA1UEy+aRRp3WFqGbZUO/QV5vCikxZqWSGDrHd3CMAF8j/KSXtHuYv3pc01WCfv/SWjocwkoRS4zZrCqprEK+VyzgiBcrBQeaRWv+9/HydK98pMMpVhInMveJRRUYVNEsLF/XMmnVP89StJVr7VIlr6mEXHRCLZItX1GCVOVv1y+bgd+WmQ9FqX1mB/ujq6Yqdpm1iaYTEEvhMu+y5qDJ5f/5tH3oKetwwD8PiSdNKuaFi2pLSh54ArNgK3kGHAh17AJRwAbAXfrzrjVBCSF0f+aeQh47b1g1gkJ/JFzr8+z21+wtG1S0zuZDs6UjFtR8UHBG2dldMqJuMcXYXf1Iz5NIAwLBm6QjK7Chx8QQu7ftICdZrysixqwnm8zU4DHGhQCunBnmWZNgg2qUGKhIC75fItzhaQkpjpNPMGC6DuT54B1vXWNMBgh7Bhv2Ke5uv9yBeIW5XYePqtZlx0tH/jwSkmAzqAREPdFB/hRIUXKNqxhzPbLwCmv/pjeIg35Qae2rOXWrViCXgij4Ck+uOXf3l5wYZkjb1BjL3gOkvn21c7jDxfJ1c9MFIrkpKuOCoGmJBa03BTgj/RknogQ9B4pxVbF2LGBBusuX1bc27F4mhrhALGPY7+swlP3JGQcThKHlMVbY1AAKOPmMT5H9jzSWm2EG+r1kkxEMJNuRUiXOlLYk1KKaDRalyRN0sv1SR5BJCxqzcp1JbPc8l3159umIluo2ioNfD86sgwkmf/7ZXw+HuFDtfKPu9beJII4R3uwU4ovyRP85wVswJH0aC10wA5eFV6S1REsnolwSdXEVrtrSUYCOOz5K2ElDGD/cdaMtE8LuNuxH6OwaiVx47zYAYAj/sdi/+ybzgZIjLprqGJVe83RyDMdZxyKEsFW78XM8A8ym2cVz7ax7xJoGwcaDxKdBALPTpieUms8HP45suT5tH9O6bPxQcz37eMypNnaGj3nAs6VVqXQitZ2cfIpowLfUGhXaZmBZEAaO7Heu864hXZwMR6ISIQPSuTnwlLlRh40InjOT4YlTdBfzOH2+g+DURwNGqm40xafJgIMAj9dtf1W3oBmUaUV22QAFNCCQGl6jmzCeFn8G1neRULWbSgFNOIV6+Ec8Wqi/93BX0deihnbouDvCLmdbvaH3Q5DCMmtOftuLxCJ9NH7cZ2uM6LwS5O5IU/s8Wn14vvEbbSlyQ6yrs4OXAoqZDKjEN1zf1Rat//pW1bLA6TZJrDX2dkjGk0omvWu4z6GKEHN8O8yl4UmCBxS6VeX+wyPY5dwfcd5hXhK7UmTHrbEcw2CPeTDbNH0ZV6sKyhCnuQUuF+DycdbGFAOKs8lEy92uhiEJuMpDQNajdRLR1OnE+KRfH4ir1WzGKiRrUtDWTmjiwyIuoSWwJW+FfHHwyyN0IkA9vv7GbX9FicxC9ksxiaooPJ5PuVFRVqceEyf5BZHl3RT41P7YokKNIUDKVh7KpzJ8MFzle43vMTh4i0XSv1LFfa1mf8bqYeo3dCLUJ5KyLVHPDEHHz3nB7oZURPMnkAqDWK3UbJsKMmwAiZGlFqjx2VdMgiEeDLVnziXX1Xe+5JYN7vfeqhERJnGzc/WBZWtNdnw+2cyu14ocFnUAAYsSY2qkrwxdW4Cu4598PwmCVIZR+acKUKKuVkU5PR0stnk2d7HuaPTB/b4Ua5dI+I9led2MjRl1+2QqR8KpGEA1YnKtd3ZYd/J0oKaQ8Jb7S91CynD3B+Is1wVw6ztSvz1JZxOhpgKerxeh9xKMpZ75HArhOvvJvWKszgzCpybPlv+OhgkmtHOpxwoakFfq1oKK//PMZCszbXEYVM67XEHHQhkLO8uvRSLcVMIyu7zBYLaUzgJwCs+qL8u+fWukiTpGa7EhMY6wMLYfMfOV0NYLhO9tetgyI1hU3daNRu1OyeiGmuyoUCfVqTlNdanhuwKkG5ynnbKzYJc9j+wcKMGcThYlmR7DxzTnX2gknNEnpo8BTTCEbxkFRVDXXYIFsyDTeJzfOUlmtRk1rbWR4K5+/sVlHqjh3ScdX71no37JPB5hyOCxZsz7JyTMXl7CBtGjXBW8kfyvHPEEPtq6ORXSvDD9Ut5mbqGPHzRpsq1TXzpJyUN3jIfoRCtyfcV3ZN2L11HLPbkDFraP/AZvueSONMhY/4ICRFb548fKIttmEmOIIBdRP1iqfiuON8AKiBYzmNwcCCUjrIiEQtaeQbYyC4GAD5Sv4viH4iMi8mAaCY+UywO8sTYBDNFs5b9MrHRF9rLKoJvVDf1fn3GP0ARLKayzVIbxgQ+WTdtfh2GTH5dUafYRCsybd2mQypaC3vS75ySH6ouvGZhgUUB6otPOCW85CzU7lmIELfzNw+ahIfxaNCWM90I9+xdZ7qB7pa/OXcpdLrsEEaqX/Dwpu8hSppHGxz7XJ8ce6kNEKVbHL36Qfs3aiweZa+1EzEyWbN5VveT4nvhDQFwAq4EYRPY6V/v6uYSyJ3dGHFuDJ1i/vIVpszFR8xv3XZtKnp+P2QOIVLmLf7VZkgGJSRWuYEej5pnzNq6wAiGpDKvj7u79OobL8LEfAWCNfagCyrlV4LgL6q47poo2oLkBmXqvOsyCYA1+SHf3E0GPrCP8OZaJTUOedaX8PmVR5dMo7hKLX09yJZpdLF5cpAg8JVcDY07jT84+Oon3qDdhpguZDAvjRyYEqwK+MyvakjcaXMVadybsS4Unb+OC+Txv15kgaz+AWXR5VgjQQABjsEs/4yg4ZvFExqlLQoMhSqV8T+xgzTXOgwXc/Z9incyBsKNKyStreteXwUhxmHN5BrBu1tGSJQIzNpZyQ2znFITL7eZZDwcSSISGWjhmcjlSET/ZeZE7zfKyfUPaGIGb0o+0yMiTnsVti63X78ktlcbPkJ8UbJs0CCe0frye4XhEyfCU2zaFd6JrOg1nu8Zh/kaeamRWcdbS337GX5JFsyuZMBT1ve6qW88MfmnO4FBxaWP0YqOAX1DziQXT4zU87J88reWQj+YYu00o0k3VscbkAmQ4q9+tVNYEiKeJMpBMwgZ2LkONJMutcwb3SKJJdC11QVAgPUprpmOEAnwu8X64zPXoRstS5qj5Anh4w2vsk4rxAYboPwbaykZfamqdF8V3VaMXP77h8a3xKPhXiKMXVdmZlF5EfhCkzWJaM587m95CMvdnXtbXNBViA/0JDrrqI8S5gReb8H+L8hWzv/2kFt/HxhhtLhMipt5UCrGLmXbEhi22BDoVch85C0sObrHJn59nDQWrHoNrRfekjbXA4JgvChupoun7z56vDa4IpEDwrfv2ct5yXl2YM6lS2yQp0QghKw7ygBuk7JiDP4BCFEeQo5e6cDRN99EmyE9t7mos9u+m0/8NKokDEzO0rt4p43hRp6eSl0J29mMEXFyLBF3VLKY2xrEuYqHwqANJ+OkkBwqm22DpLvRSsR/IaImKzSvhPBZm+D3vbst5dqbKvgL1Sn3PqX7QfWTCjEZ6lu3RncqouD9cQHnZItdTq589rZBYI8GCPWzzw7MZpaZJDC/bWOzOd27GolFFYaEQv+vmwfGi4FsPtnV1CZbFi9LMCoy38PCzQq/AZohxNYLg//xrwoy57EbnIH1AvxuzrWC+j4GTc8c/ZjKB0YYCpNEwU/Ud5opiKKvIAp3bLUYNeqaVuX2dZ5sndXfyTWzjKZGwXBtOa9S6J5GW6lezIYP2bEwRjIdZghwto8duDmSNMSUPFrZoQE/RSZbYpLJJ0HFIaLKNnFm2iebKnuoDTHSRPpMP9e5+1Uuv8Iq5gQnHlixcL0MfZaWTdStjOu1MlsKXyc//BXcwVELQ8Ca6yzrfeunbdyiQj1ZreacQFEcmV3ankiCky7mFFn/ucsRVgG2YZJlgUcqT03yqQouzKmy9M3Es4YC/QPssBpXGzkR9FhHiGW7elIuCkTHKVachcXJBM3hCjHuAvfiSGjzoEy5CqhZoXO6XPatt+7TV5AfddLA6arhFCGbKW55OmWlshXB7PAR5gsAvr6191QIL0mO7G0c0aVIOP0/MFBQBT8WFgA4oimsaBJbYNV/zcfmU9pGV3T1/2PoGeZGXM0WlfphokWyinkKBdP/U+PeZ+ELx1oeu9jzsJlMfzLAILDStb6Cz62eOTGVj/sbiEQKA43Tiov4V8IoJ+R2CSmmKAuMzRxmfGXsnAfqNmHubsZ90OnZlNtMwC8WSKZYn0lGByIM0tWv8Ka7wJbqgvDrFvIfVvP1qCmimqsRCvoxrwwy4Blg/EIrvB9nq/27R0jy4DPwPRBdJiMMcBbYRArNYQlZ6HT/42lRQmz8IMUfyp/C80Hl7a0CLZDdVnzpM+jjmb7HKuOgO9CdNPQFBeeA1cLaBajJGf3Vh/PVB8/tzVo7vobt1eBIzoUYhoHYDQXiezEFc4X053R+6lpmQLTyGbGSAbmAT/e/98axAOKNZbhGq1g1LEVDAqsIcv/nDr2lcuVk2SW7dtCjYACDPstTFOgkYEm/2w5usAovEXdaYdh1WFenz8LxRuckd2N2Zd8aX9ohh5yUbYNH4fnsc0WwVu23FCc0I+UJWMJ65pnd3FQRc0kdGd7Sx5CJ3dHzxVTLJtAHKZD74qSQFeew2zBzYQP3iBm/vXFpl8fobujPchtI8ldWm9/roMT6vMl7f7F75HIGIwCEWFUQoatbZZ9nE5UGvnH3sAf75A9q13oEmN+zYICfxa8RsIbYLY8Wr6xh7tMDG6jFzSJ6MlcpfRlTQ2Tr7fpmv4sd0t7znw+108xYFweEkY5e80C0JXDqZjp9NYE2bU3lVBQ/m12U8oGlz3aV5UvdnNWoM9Dlwg1JGmvCwvu2HMXhDf0IeIPyroe7zUxK2gPyNOeovgZSNQQN3ylcnxwrfMH3GvM3BIs1uFtVapUjninklk2KiCw/c/23dP8LuxEsbcvHJQqX1TYWtbce3YZ5OH4FqeBh1G/ad6JIabq7uGjaz9Y6LHGdLnCN3NKi3M8UpvTjfXluYwssD5WDMEdkwJ27J1TzLI0wcNQ+0+L3PmL/WMGIPv4jUGo5svTuzPyfN/Zh5RLRs8tOZqktwL3ydSFidr2aM0rllQ4+yhAyRtaT93qOh7IuvdbWqoVfk+q0Nv16VUY/KfYnsiBnSESRDCOmtKi+lFMtPW65h3TUpdRzinFWSrLs8FNgbqcIzcHCw8JY1+5UYoyVGkoixGHNFzjIJGaJbY47F2VmMcvDGkbPch57v5CE/WpVzJpJTyy0z/oKTNin7VIL01Abj5N/fgIbPgXkr37y0E4QHxwIX4a8p04Pd61+uPLLRf0x5SQsEuxmc1l57Go4670GcVUEQYge7vDvzUri0tFwikiDlFvPSQcaJfm/pthLqVJAkKYR2cYwVOM/dz2leoH5QwEjhA991xrx2WruTVV9+J7IUtNzaefTXfJAsWMLlXnL7rY+kWaQYnvMj82n/4si2ABpEWNYg0DDeUUBMOgV3Aj39QPtYwr9t/lTa72ox3V8t6e28U5QvH5Sx6v6HAbr05dC6Q8stF+LkyvnQABHyjOcTW8I/KuuEMtK3GmcKdzAUt9ybupRpHUjLvoBlxGIE1Po4dqgD6WBBQNnNzy8JzUum8ejyouJhhntO6++qaJid9tqawSNxVWR8FcJs/tNsykdhGaZPxvrFvVAVcOqnnSw/fgB/dkLqT8oetSNGLzNXkq/1qx9Z38B3dBvRpB00qTapJ9INwIYgaWGEcvjrSHF7ByLXfxpwQwukMDkGf6GjlA8HIsTK1qKPoySvHUb4ZzK0Np1vHXhtV80WpTqUvSRZ1Es+U0/ATiSrBYt1vr7oeEguaql2tSbr+/Vs/bcsXJGjOEgSdNv82wbySjlvf8//mkeBbYvUjsyVfZzYQr9jCDDVFc+y+F3YtW/6ohQrFxtpkAMt7O+8927MC0tSWcmwsPWad62dUSvdAdB4h2t/nF4U12Ig3d1oMHs1aZKKleXgXxikjUTiDYjVG8nxC53/CDi4DuqUQmMeSAOICjM/Dlzghy3JycOPiKYXqSI0PCflfRfpS00NGbAil3vjebNJ9XGwxj5WfjjyijnckDyQnVi/20FA3bFQS3/XXLGqhLzZfmMFD4/bjY0hsW4f/c7SLeUj2EVHRjNk5A73euEAebKc6+Fm31CpUoZNDEnfby3Kheyv4EhRt563NqTE5mTuGC/tu7UGC+bV0rsIj/QKrRbwpe8UmOyavE0bB8ZLuEdzwms434YogXEnusaJ8YsMuxsOniHT87BUghYpLbwQFaBZreSgJ0xlVf+KZO3e4W/waO16f2uANaRqCtUG9Z/4JEc/+U/XnhAuY86Qw2QfIv02+o/hq7udTUItD/dXh9Q3WevPfMqEXBowdmG6BnJibzkAERaRcKe4bUh24DFwIEr4Qk+qYIxAeVvs5CEn2tHBCk6SI3xaV8mNlX0Im9CwXTAVcVEOAuhQh9jJFsFBrYXkHQ1EGJZ+bLeQ9oKp9QEMei7Mi+j+D2EmRM59TVeHl94Cu/aMvAx6YyYlEJg6Sjzm8mj84veBKvss73Ggp+p4Wse94NayuH+eHr6XoydkETFCbN1A1BOqKw+JeVhFY186rL915Xecx56qZdtDXnrfkltNl49Vdi/i/2VPOT315XSIstRbpm2kQHEgSr5NtnE7w2xF4QeQ9uziEbMHER33ta0WynigzU6tTD/tGxr5NJ+jLNJkEFqqXnwJHfagfNCVb3zZEek/zCWZKv6jv29JuDITuvt2TjXM5HDlZrJjr/cMt4qs9zXEon353RC8sM9kfLrg1EgJTv8ScluodbxsBWUZmKNlkqOgRccMzki8pKkowjchyeLmgAoW1JHs2PYYILx4tVPiyhpmb5nSR6MPty6tgyBz3fkfzn3fa7mK6MCBPDv2ZmIS4k3G/1AgfAC3wLgPePbaWJ+cgd3hNc5YqJ/iAucH4yGKWFxZckn3694G356uwvXbpSIdsEbRZsk6yS2dD7J6v4RGmIk37N6YevrOIOJsGiB/tGr9/Hpcr2jAPQBVXtO8lmysZeVxYYsj3MB8HiwjBBHIS5PMdUFrUMlj8nb8Ff6VK58R9ArQBXjoUKNYNbSnEmol1yFH1EF8c0LWex8HX2quqjq9Lj67MBy+lngNp51+BGGpibeX5chwa3vlbYnOm8c5ZkaB27zR4em32bmuYGQR4GP1gJk4CoCEQH8SmRSt0NWgvqn/8V9I6fcvqCb1z83TfCuMBrx95mN06Zt7Ao3oUXbClLkDoYFzriS+sCphECyDwkB6hBlglVE+/X+EK6v4RgqoqUmvTt8XHM2RsXzz5Zpuo2pKHOmHVpp06HF0PCgZD2+mVaU8Kn3nHyuF4WfG9DFkR7L4Y+j2Va1R5IMmvpiQp2jsDypZtSD9/IWSbrOwlKmhglqyhpRa9rsDxwWhifIvrAHyWMR+aLftsixaU3w+RJX+nU7BTlAkuTiWwabIxnpZ5chcc4wjBP/wZ2WR5RqaNDMAl6YXhhiia6M+m4lQ3I86QjCld433J0HvkjowIgHZlcmxypwGhcS4GYgqS8f10ysjbkqlW4dpDF/enuOi5gnyJCj5rmczmuDtkBZqxD9nMkl/lv/hc2ngscajCKHyIQ5BzWYZJzg1BTnnHJ6wm4HPowIVWy4HxbzMRvxoILLW9rJ+n2TenYqdtlxrGjeUxRsLTOUwNlM2W4u9o2YvzcagbIckxbok57BCVQLJwF8C7ApYpiua5IVDCsCkKu0uueg08Js5nhNqwZcgPIS7XuL3h44IONUqfqbaf+d4ThnfrkF521J6Mk+ABMGXrm3JSdpV67x37YS7pEAyZFomUwrmcI4Zj9oavOUUMeSyhUBhQLshtkzsOmNgQFbsCVUdgdMjxOFADWnC0oEPU3FsFQrYnsNmLIilOqjX7xaCZB5SVpgU+lBEs8XxMcc1f8bCVfK7coI8BP3mgBlCR0Pm8X9qd66AyOF7eRK0px0iWnaRPgiakq+1rr2SJVBvI94DGl6UHB1SUXVYLpkbxE6NZY592P1woq4KeKWu3ZabnpRBV1kBJoJ2M5nNm2jXvTzC6P8tU0YoLkJqEicQo/j5vTM826XhPDTCIKItQS+UkjsORmnEcc3BPGc6dKlA11mluwz340gmh5FbiYufxo55Yd73uRZBHhmCZDkHGkZ+sEdyRfFVjCaui9/PUgvoOis3uQEONMQgdouCjojyV23lzReMOyBy3bNtOyvMerfWisw1MYoiJPfPXbsbNUFjYphzQmovciSrjfazXci6YF/zdARoEI0DxnapjUUCNTBycZQtHwUS1bzQCnovlFq5ND5rRwCMtcvdL6nn/iSU0ZrikCVyiDlOBq1qiWgxdmWOExmH4FO+PISAd/h8x21u45Gy3zX+6emCX3+VGr/rXEaAWTuahsLunpH30uo6RDcBF+dqjIBaBiy1hwaBsKLNIY+e+bpbRqdyMbtZKNo+WM4KPeqFgra205dogPNBZEH2E+MBOWkyFkCoQq0Dpv+6pmRZYVs0AyI0kbgEAsZxMzHAFX2yw9QZr1V1nFyH7kqLeiefZajh48MCD5nQC3bPQDUDykeve1g0OmwPOUJPfpFL0glit+LXNm+pUcCB1pZqR7qV0UIYGGJrzEGQRpv75YfZMTVqnm8VjgQmghQNfuzVbD6Al7ZYAit+cYDLJjb56aeLpvnkfowMC41Vt1Q26AwjSz6t8NtjGmIhGhWeE+8B6v0ydQvrQnpnsC2BT8X+PF7n1N8XGwJyrUL8SsiSeN2CtyFtz950Z6xh1KeyB72+UILOIM1+6AfKTFr+SoHDA0VmpFAbWITZqT4G6qXtZ50+48vMVc6X7d0Zf+4K+f6O9swhkSTeg5ayk3Q5vp+ISSTcizTd4FCTrGap4wvja2UH9FEYO7ooJ0hbasRjYKMIz4WN8L8EsiDg7NhGpaCdT+pOGTwwRzrdoLPgTqLBu9QVolTBXsxOYq0dL+RIX+ktmN/ce8FnxkoLU34EE9wowxHicfOw6Xq7QPvBIO5ynq3HkJKBfYScI0UutbbcVDu5z4kHRp1eQtL/kWl/dcVQFTCk7KziFRkqDCuR6Fog5AvUxyT5ZUdtfgmADpJ1d/C3nngz0zWzmgBXlf/g0Qw3vFisN92kS6M4KOYVlX1TztjKsh0aQB0fNhMmT3cF8IcRvlTgQdrDNDBL6ZvlNTs3rwp2RcpSERExdqRPhQS0tSxxDbbyafdQCp/fC/oqUM8Hy02dp9J9yiqh1E/JUi2TdKjHTCnbjNaYeNToejemImT/zZs2jgaR4MRw/Q3h2ZliXGcFr60kjwuMn/LtglC52xo3PPj9xMx7G6NKvyCQm1rWGuCQUnxMZFe8u2rSzh3q9Oio2uAWK6zUhW3GZIJLtgGxnAmf+0MjpCtLNktXAy/gIEdW/g8GgSt+/bAi5hVap0sjjA6uqNXCDkREfrkP/Xicd8YgunZhLQQ3VV/TfpgDLdz2Z5V+SY3VTSLps1GwuO0OABpPfdy3bea6V/wCZPe9bqpDf7yZdRK+k4h1OiJOVf4XlyoC1iZmPcYIBGgzkXCmGwTNqnank1e+fI0o3Msu9KJHs4uZY4jO7YIBQNspK3kxXuI2CYsLqgzyJoetnYEqaOR3HS3K9lF18D7az7bAC9b+cKuiOpHojNZgyfYLlNPldCCjfRAFk4ZR0s2OqBfhIynCmWuxYMrAwXqelQt/XHfo3tG0gMmAiZygTjo3p0CVCFnDvmyAVnThRNXvO5MywWrTtoSwaX2Ub5xeHMcxxFH/V3DsEIkT9I3mjklnWok+fshCqXW+JIl0kCcvqwm533bREmY4MoVH+/5JGB9EMR3uTfvDol4bX9F9J/rc2XPzzI+yC+PPhGQBhQ85RTwRniKgUcBtfAWbRTY/xobTbWgAcqrOqAHrHnOCVeNgpLdRoYVgmG9wNmVtwHfXXdDc=
Variant 0
DifficultyLevel
594
Question
A salesman earns $84 for every 7 litres of paint he sells.
Which expression shows how much he would earn for selling x litres?
Worked Solution
84 → 7 litres
84 ÷ 7 → 1 litre
∴ (84÷7)×x → x litres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A salesman earns $84 for every 7 litres of paint he sells.
Which expression shows how much he would earn for selling $\large x$ litres? |
workedSolution | 84 $\rarr$ 7 litres
84 $\div$ 7 $\rarr$ 1 litre
$\therefore$ {{{correctAnswer}}} $\rarr \ \large x$ litres
|
correctAnswer | $(84 \div 7) \times \large x$ |
Answers
Is Correct? | Answer |
x | (84×7)÷x |
x | (84÷7)÷x |
✓ | (84÷7)×x |
x | (84−7)×x |
U2FsdGVkX1/oXxnhjTkqdBlK0paervQoFaIvc7QX5p41IVY1GVYlGlHBDZstqltNqUrh8gkJ4f7Ug4ur95sL5zIg3N+bjUbTmxbaLv8d+vwGjImtNFNGIyQ5PSmp2dTIOLMyLCNmdDp+/H8iXtS/DkkbhaFpc7QBMevPuH2kcIz1CnBx6STs8/ffB5gfRCzQdvZ6Wm91seRPitupNE1eCZQtPv/3nebrQ3zVHBjVLUvI5FTJPSif6xW5eILshzHFvUM3cZq+uJLGPKQTMaGYmRlSxWRuRYFj2h4+Dzq0dil5WbENexwIBSBnlT1f2+o8ZbE2oDkUaQ4xkGU5E0Q2V/7QLrMlbi162zJj8mbdV36qvPceCI0W5DQZLkRDJQltFd0GqMfJr61yNX8W79UH+ph6VIxZMQh2o0o+ZDuJEX15+j13J0YAHbZSYtVJ7B9LeLJDV+hcqPBDG5AIgV6k3L1JggIEaIZ/Ck9vdVEvt1MnP4fAgDxLnJWtYouU31t709GR3mP3J8CrZWtJ6vYWQlwuj+DbTMlNDGbnhMqGDwBANhnedVkWEVzZLTCN+XjPSio4jtjSXDFTSimSeekER+wG6AD0b+tUP21bXwGelHPbP+u3EDxXaPBCagkwunAWdaDWWsIjVKZQiMGLkEJFB+ltWWavSrhxkUVoz78+vLv+/0mUIXAcVfxY98DAhGVVCbr1mshAcSpgPyJtHNssiBSmUf8uDc+iVSvu4DwuRjSrNEj/MWdNE8CxniUjN46pPYtErzynqnmomy6hDBLBI4rfh+VDI0zO4TER/iuzw6UKyjB4CuuoIOowc/n0ToLQeobQxkZV2qDq+JcW1W1vUd7tZOrDZPro5cgP70dTdGxzB8uaMgoFc63+tQnX19/pjNudt+Gd/ik+h7xUF+7Wce3hch6EP6SDTMgeQkok3i9l2/x+Oo/oZOtdvnKPGW0rKueJLGLMp2UCxOOEUREkbR7yBDB0453bhCuygFHQmPjlK69HkFGPbHhy833bCDqO5HtBEVOj0zUk1pYMw2qJuahiXGLphjpLta9Zxb3MHAd8rk2me/WUzCBcFC+5QG7OU689d7DNCJU6LWCwMaG8Wsvs5WUA1l62D/+cIWTeKJLIT/40S2ChH/pw5QQcB8tt6juv3lgX9wtXKBHAydEdQKCJQ7z1GmFwyvmvdiMxNV0QVIL7IMem3QbE9xFxTTjkhfA09wNHH/WGs3OsIJduO+cZKOZATghu2H3CNdkj0dmBpRro84myjI4HLd4h7YZG7r7wRmpvTEYdCcJj3nLA5RYOen9NPQ7sOqzXAjkREHxmX5rTZnUPuYqtuG0reZXZGFQ1CnM/InXuZFsVuPA6sG8n0bZH8cGMQa0q/7cn5z5HsE/f5unYM8AGuQ1Gzd+mSK+uclJpwSrEM8Nkm1mTWk4AYsgbo3EpXNKuvh6JFJBZEjVtKXdJ8Z0WZwsSJbhnlL7ZNQdPjFwk5N7HlgglTrRs6lFc1ZdfD0feRmMtCLY/fD6ISnXBRygjr762J22/SaoXU7OHFNkkf5vTZu2ohwHxmO/W9Hq+mUs4+uZZ/JjhBnZ5T8oYk2k3iUG18YOuvShUblqygzxAnAQOZGndwDK4HMFb6l4Nz65w5Pss0atv6c57o7KCF6KhWmcssU0eLa+XRW8hrjGhvM2FRDvDJx5hvF+RdAK7Oy5Ig3DkbOLaI7gsqizrM0EpkiJsI5dw1+liFuNwNekJ/gX/cCWaFHgM05WMh4Lxh7XqHnEFsrPhagys3KF9HgcRkeGbCUndkW2LnMKP9ZpbrKpKRa7HKy9O/KqFeA7PmrZ3KChMG6pOJWq98AN2hyHLfzVbncak0VyReOy4K/w4Bb/Yg+UNSFiyg+WXQbqp8/UkA7Gxv+yffn/sAgFPkm4sRJf5+ZSr4ZJjn6Z9aklk1EOFm+vHQJZ9FiZi0aKLVzTkvLH3nbHcV85XhD012qEUb2cPQdqr3v8Yf4aPC40FD/QsGdhhrPYR6fOHHPcmXrhYzBOdBCsdQEW0gfIxLQjxOXhmdTvGGrsXMBvzwsjIwr5EztYeRk+DZZWQFhBsoE2piB3NE4LdM+VViAlBJ9aZ3xa2yJGOqKlcS2fIfZRsSWgSXPniF03iGJyRzK1p66V/nDbys5/Go2g2auDw/askprNmgHUfaLGWiCThJGruDUn/B5hJ6ZgdRnsgueDOjamZ14L7X8JmvzpJef6sHyfvfJwbj/swaOAYw1PuFIr1McYip7JPlbClZbZ+CH1LzxDvjVoKHQ3nyeLs9vOq35fLwblAVjbxtr6Tgc36NiKk/QInqM9/COaUIq3cYX7i6/C+0xePCxq2j/7KlDDhUTLm4wS5r+p1J0MwAms3hcaZjGsqCZyYrj4Url5kKIj1FNfgv/dUOgzL9JyI4xzmoMBtITJrdFWAFJ8EohhXRg44YmMgERwFf1rsW1aViER4RsKCv2G30/Mkrf00nUsMBeweQIvZx/+9b3B4UtNNF3gcwl4nnCt7vEciIdmvQ6xuLbBTeL5EfXDDwHAKEUvejr2kfGvDcIY3d8AdqhFP4SKFGdOLdoYrqSepky6XVVdaZcmFO5DEcCWtg8vfS2Zgt/TkTaEaKjyfSyBuLkRemjqOxql+UNPkYJcVovie4eHpdTr0gWvo3e+76LeQnz7KAhqtmBLis6vpQe9SQs4ImUlxQM449mgyjEmQVDJavUIXU1BB6Ihto/ftz8Lff8wUKGYjEg0txM6dGht5mnxmbmjjuFXVZ+N0/cLowpRVQA0rta0ooeEV3lr6ixOjNFicLGCDfTu/bLUp933jz21IXuUZ5LUedoNqDjJEcOmpB46Tb6ThsFSnzOpxbyZlqCnf2qlFtgnvrRkbuMdAPQ2bk3qC5YccIgzuhZbZyn9eJVAc01qX83cnvDWCpQq7F5QH4DotXho0Ny7MGsK33NMzA13ZOSiVLLHnuYp+xWUyVC6muQcZtyjBLz0gn/3q3csq/ZqiulPq4IZmMxi+RNeKXEOY0g87EDPjgISA7831cZms3CuDFAl0rwiI94RvXXJ50C000JiUsNO4EbM3GDHNefOQJgwB9CtRVJxajZrQSubO1QTUsXu4dHa+cdv83lF7ACCh6H1NK+IHJqFIrYzeMI9wc/7VIVZIy9djNfplALENoXIV+SAZsBEti8BbxtSVUXcffSS7UGToTuLG8Yp8orAcmPEoaSC3sCQCSDYbocPC+RjIrhwpHlQoE7KbT6esS/LtqvFGIdTV+iuWiY9UpYt+24KKzHtO5jVFmoyZfNu87AOX+U33egqgVX6GsKGGIxoyGPlDM9MmAp3CnVSbJZTzK0dLcOxLCcrvZROR7PHZPIblwUKTNAFHtMeavhGKYn66/1BzRAWCESlGvQ0NHcFr4vhS+fuONL4sG2juSrEpfRWqBs7BVN9LCtAe41LsGlSQICfejOi5lBaqlKZGKccmq6CxbnHGm4SFxpD5pB/ggvpFCC59tpu0/XHazHdFg2pHScvMO81OndZElUAjZeE4j3xnblIzYocb7Z+rq/e3vdCigixabM+MgTmVfx0pslYdM88gyS5L4uqSkA17FH3eukvmuE/YBdYWhoHQ436KZ+Yo/kEf6q0iZNUG7YS0HZZ+aVJk8HrU1eTqtXnYafZ38b1w8vw7PptY7ErbzFEUhFjPuHiVJ0+pBbPaM9x6x/ZDLMMNm6McAWkZCyPmUB2cRTANqttWFB8KdmCQV07wyONqyA2S//ERZcE5TbuTvx4rLakbSBNF2M7rydS7P+cRfIZhrzO1cPlsurA4rqKdxTBOh5goebRhayeg7Q2fKuhae0CyBmAJPyf4UNDVMNjGDfRttUuaA6j8ovdCES53VcJCDZCGsgoy5S2uFHmTOTSRJWl8genb24fxkHUDeI5lDUu3FSTGjxWQS+WyR+e4OBdXBgSQ7H12UN2dnpZOiBHzCuL3AgXv/gsIr2sTUGpu0psIShgXkCoUwCBONMvmtnrT06gOyvY8BVYQno9aTV6uBX0YiueIiju6aJ5ujnz02kogkrVCp8qlpTpZakqjS/gSU/OXg3maDD/txMkO4rRaBxyMFk0b0dKOIpRd3IMQutpg4la5bIZSPvvve3cHPA14IuAHXaMU29uZEkRtoFS72wyA3adU9upMwhJAVGBdDStSEfj/dXZjk893aG8KLe2vZw/DRKONLuoI2Y3IYz4zJNel//dDPS8LUuXdAyyDESpJvUzyodxKFR4KCm7zFPeXvcto0QT21tqfWil/7flfjp2pfIkqDDaE9mO6cc9rBUQuHvxUWPUnXvvyOKrukSWgZ8RFVxfwgKMgSeXKRBJPfHCD85twICnAJJjorIO7ivNpqZ21AmrignCFGLLJM6j88W/AohytmiD8w9DWi9P2KTzj3eD5aikM0urEwq6gn59JNh598g13EOqq+mJnX3RZ2rwXqQK74kOLA2sQ9wjL0KGhncnm1B+zp1D62TitJIsaPECSNnzlQjvPAEj9pO3SoHCabBM9C6zOElO0R5qPTbR1wyTW+gN/EgWcsM9zIiqvZiDnyNQ5DTF8S25RWudT5+fsoOpA94jtR2ycLz/CfFIgyS8Vszcszw1QApXsEo2/qvbNXHTd3WvTiUtru6hvN6fBjaoPwL6RStX2uynrBAb2M3hjgM0fTmP+afO3QT5/JyfyE+OkkCJrFFedO7nEshaNxGQQq+t2KH08nbLC/+radBeZKvJ8JIFtioFa6lxkAiQcVIgzh5Sd4kCXD2xabdkHJsJmfW2L8vj04mXG45vsWiQ7AujLL+2cKHc2gZjXM+fJGk450ys0s/BGnU/mM7SzYOmo/xLvWp0d0PUH+4rTrvEjxq2WHhigglPIJTXMTuGkjruFmELipL+L+AamWRtX4stDP4w3M/NK3gLdJXLUDxPcU2Y3NH1jDZjuuRz8a0hHLTz39P/BiHgJE8NOYyCmT5p48okgpoAKxMLQZ2AgRzjNFVFhW+FKq738qKmSybc9yxxzQdRRA/iVHAM4HzkpNLEuxYnMzaO9MAM1gDyc2zzmipjkNwWYCmeJv94yEDtKVc9J9kYhNBPRQXCQwpJPgmvKnSZi32EC2JZEnfOPETxNvBsPHKrKI6Dl6Rayt5z4Vf1Dgb1L/M4MfGrazf7veM5+8Z3s+a/pEerTFWfdW6KNJN5pt1fmbYlsiw/BX/i2adj4VGUWDVNsi6re+Y2liBEo4kXJzLQfNOKoXm3kh0AVQfA9HxdaQXajaJ2h6n1tSVR3F5BZf4L7doZ7I6Vjs7VX2ei1R+b17a7226h7Xwem9C1ESlsCLoMEtMadM1KZk+Wvp/JDjVYrDeXZpd2fYeSxr4jcmzi/jdUvcZN+rtx8jQ5rfBKDTtgtJgpqbZT33H9mX5p6sIrMaejRooJn3U6jLSo+cCCiiJJtGkTO5A/8D0Z1kyzu0UEmEubeWYlaoTq30oIZOMqX3pptWIV+2HSS6V8zrEXcA3hzTUt4N/cA2PDMRGuPd0JUGwG59yimFlwPphMelQeZgs1kbcVuDS/p6czAIEJEk4GPf1MDYlClgUT05pM5cIz6OwuZPL4w71EMq0sNy2btZKJiCuMqyfe//PODeRyAu8t/soOIxR8W57L3Hdzk4In0bVXEijP7mnqpqSnSPsoMwCVdHOPNb74Vap8+X4b0sfS9Je3oE/r0A+ijM+VlK2vg87iT59lAK2tKo/nsXIYZYNaY/M3q0VDzumQP0anTyTqgMkuGEK+7ud8MmOjEppq3jBrBUKXg5+Z2aU0fyzs6FeumH0ixzx3jGJ10hc5TO0nMHK+89hsA+wf3qii03YNRpdpUxAFc0pIYhhEwNUTJMpZBMBaWbusJJ3ivpCqvjcFDo8qO1ZYJz967UJzsh5joCkM3k6uyP9ucKRYcL1/gFrvGcT5ZoewCWCu+mDG7iK+l+BljM7k3kYElfTBd1fu0rERaH6ddjjDj5No77jP9+QqJkKFdIzyQ1OxXLKW/r2ebDkPM0ZWe/UtgVvdsejyVtUJLYZyNr7iYfh0FAvNhqaYo1AwRBqGr2weQPqvmzD5fc1HLggDHXBoxRNLhfmbhhd5bOQ6WoPYu+nB8kQ5+p1VY8wJsKgVAr6mh4QjAm3xntcSoBqpe8E/V6vhwMhAZ7WLbXNsmGR1yJIGGr8a45Xtev0UQgxd0G6p2ymxjJ9wF7scBZGgr+z/NH7pGYq5EdaC+mrWgLk7klXLIBZyF72HKxSFektAnsPGf3qiDNjX6F2oMigV4nTbO+3Gb2XLUb1A+jO2YcWVuaKAK/vKp4liPvAdD1iz/AO7Ig6xK/bOTfqeNDD2l53k6dzgbYiEGE9Qm9smoIqVb8Gfip2e6NMQioDlPMYXhqisU4CpNX3RTncujT2RGhJYrKFklnb3iUeBRcUjHN6V3IUVfBG9/ogftsodTrjQCrUuR2EmKu+ohKMGZ5i/yr/gBccZdWTLwfO9KTKl5f9bHWHVmyX7daTUCn8AIbS3GtjhIpaNz93PCvNFQ1mf4ILT5sWz6vAByNpZAA2sYVAYvzuopSSqQ2duwaqydprlS86YpdPo33F6eCeIvLY8B7ehlCnK5AHx17W7rIZacq83Kd16aPtuYQKmailf8zj1+dCQQliFh5ZzFSYCW+mRktC14XB82tCm51jasCkYzNVOgZRqajR6+vc3/wYyDbHYtjXXvNB4KTR2uzR6KStyWVtN+hMbgONeW2AwHadU1U4MajPlQTpqWZ539kkBKvEH+muyVBO3XE9sc8AKozNypMoYFytWUh+IOTu6oFIGCzhsR0w+n8a27hL7n8jYjOTUrCp5Sue/kvwJCmno1ccmpe0Pam9Dv5sPiC4KN3/yO/0Y/QyuqErifjQMlkeiEEdEl2suxgm9zGRaeFwjgtpEsOgjjjjo2vb0+EeHTgsR5jsQ/qSHZQbETCRnYZC+xVBy4clVOzQenn08qqaLQyH0qSKw85Fz04FpdfmgF0fUD2Yrj1Y+YFhx35B0lPlytkBH7/P+Ym9926cLtoYCLvmpiflSFcnVkk+zHq3AYZkALUCc3F8Oop2j/wSEsA+MYk9OBthCKqTBMfxJwmEVt08WyfbOkD77332y8aA4ChhQGSxXRgh9abiRgYMJj9CeyUfBTZDQiNPierPNDMaoZDuh7ES8iLa9Or/L/bTf5SmaPaGyhfIWws5EAAVvJS8akfsA56YJeCEdjtNg6j6NUCn05Q9uxG6co9+7rPSxLXeyX+R3/gFiIzjSsEYsu+JvyZYjKpSzzLqOAdHPXgPUOeTnC25sYjQOpcarZLiuVtvupX5prfDaO6v/9UXm66JK7/xRijKxzrgrOkGRChOeQ/B4Vpbcb/3LktFHTDUmGAbyi8piT1uqh/2MOdYoXYVyDPh6noWNqIsfwh59KrKPzTWftFD0c7VRpoh2zUTIc7FAJ+4DdzzSHNYlqjdCS53sb2VkK18tepbn3LGRxo9BrfXJlJLvkelUIVzVCvEvaMqDtxB3rQgnOKMMKb07Y9c7vOuet9VxySqe2W0Fs6xGkPRJdSynVDyGHUnqWh6WyWngfV5u39Uk7s43+fH7quRbbjbmKe9Hxzq+KMrltXqYJaK5S4aSB3a+NwCFR9xbqqMKCt8t19mq7B2dp3CpweyKfZGmVv6vgMYhEfjJUMLnIRoluiDvRSaCbA0PNru4wRuPVLQbK028Qj6lr9j6xMSN8DnMHzfVAJk98O/AjzMdbcYCAGvEtJdCWpKTW1uIAWY0flUXLFGbwE70JafAjpxBSZW9Fru0QVGZ3ybwWx5//rrqHdlBxxyah52CnH3gn+nsMUhxmBdLUP82vlsHG6lq1flnhVJYqCUkd7XUny886Qabc5798tlCuyElcZHskwuTHV6kbIAsnnsEkjEsIaTpbwt4S01WFxClt6nxiB+wsxduKhrKCSyUOiBj8SJRnZNxSV5UqDjKtMIPuzSQ6tX3GdUR2a0fJFnEIjRBsipkho1we/zXGUV1qdEc4TwD4ZEg3TJx05d0+KErFQBbNkfTOcS4ZYGUzmkd5PAAqnD6KnRIeyZX2eAy+dZ7GVLeSosmmmYGUMn8AlDG6Icj47R32YNw9UpLbq7t+2LfPUQRsU3+2A3jxKqMVDZKdi0wsMYOHl12vM2wRqNdotBtq4Ydr22WCYGEkk9hIQi4MsKAx+zw0b0x0cK8BsLVjFMAqPf23h7pWgIWgUyeMwg5lZymvnk2VWBCls3TO1dflMJhoMzLzTqcLkhM/YQnszvvQT2cMIBp0Y6WbAltQdstbsdlao5wU9oFrJ21yGKWd3RUENttkYzzrZpknvid12PhsBTLA7d4xqI3f0So2hB+ZqLsDgsxzD+TV1aiofqsT0bL3ILyz3SgDzYyi9rNHUrAOJKzrmOZR0PM/ftQqzQL0NSkv3Y6tT8Jjbic6ePNi5As1luPkzdIArw9856Or7E8cQryfJaRDth1UWMA/EezGsQKtH3WTbotak9DwKfrKHvqYf9jHsaxmuQ54fjBcMQL5ZNJ6l7830Z7zi3rkdPw/5C/AFSnB59ZBoYURjAM6BLLt/k1r3Krq4RAfN3SV02csBKHN9WOPOiQ0Vz51Ol1zyL4IYlRq+AZST0JGuguzrRu9J+iISehl+fVrwEwigpgfmANvLUYNaZG8OuoJm95AM5Ta+Mul1gkrfRGdMEQ3Ra5HUUry3N4WP3WODOJpzRP8YrHPk5UgBHMhefEJILvuXNPp7tr5/Jphye5N2Pv7DezR9V5FyMcSRtbwhG4fn3+DSAX0HU7btLnr4626lvz61a2zGjAquuXcG2hpHNuesa8KvSKVPBVYF81TxO/aBbYVGe+mb/d7UqPkWUILeIh1jhcur7k2iiW2q6yM6V1Em/brhsfUxlrndKJ9MY9zMG0XFGfbNfkX6ju97CCXwwx0ewbqxl0ZU2jKOhU9dWcyvomSCnzJfMLuK+fSrrXuhBlPZQ7qzeRs0WsDEXlupXR0k8PBIl9htuPxt24V0edN+tpy2pF5OTZPntQlUkxdAaW6R4lXr0A8aMheRDddsup333N3sY4QRtUIP3TWfz94sxAMb6TtFqr9u/kqpPhmmeKK5r90y69mIvwATYrjjUmLUEuVCJibDEBUd1r37yQPIB/zKVQTzOVVwf6uP/dKUaywFvwipHKv188PxP5IQ3RH3SjFmWhkS6o2GvSsk0+OnP4WMhpmiyP7EuE8EikJFIhKfNF43YmDufpL+O2pMrBzpnKlpAJFEadGfDKnoCJd8uhJswoydKZ9R8PSseUTLpu4SZGc/sg/pz/h4KIsTje4ZzFSnDsTGryIVFCFtv3g87bzA+tlA3LOq7lwrZFdXwSPPckkGjW5Sf7zspC7/1m7aj1aGn6unYDBCbUswqvYlVBLus8OAg/Cqx2dlOtg7Z0BM0eZrLU8fQ+TSINDrR1StcbFojtY0Ig0hXrreOmlFuJ70CVGKVWJF6O1ULOXem7F5M9BAPJpsR0FevjdBnMDbkXDGhmDn4heQoJ2G11Ycy3M4fAciGmXIydQdWxUTuOL4QsuqIU+PLgEhIrON7ufU5xIfe2/mkX/N1j3A+Dgwb4KPdLrW5mdQHibMKutFow6sW32PvrL9z4C675s2ShwSK6iuiWNEm1CLzMwsBjpOpy0Asfmd0+oqKMnSyiF5BdSFd8RnHt03wiZXFl/039LAbmI6CmerUkyX93rrc6HFGBiEBOJmUQCM9ClHz3EwCcCGH30vVMpbX5W3tq3MLYXNEOvNmSM+vT8pZYkgZOeSVzjvCxfeodbtgFsYTZUlo+vLXOq1NTgekphdMJjJxjqExHw4WIovOOL3jUniaOXFbs3yQtq0yxqrjPZvtGZWkEIiYddaiCCbXaI6Cqt/FlfIWnACOxGjxglcendv4xuZqKEH7n+BHO+A9Vdq4dJwuqy7g0zdnkWjR9B+vCOFYFzf+nRdV9BZ1VsxzGp3X7oDTsmvjIad0b5GYz9pxYHMw+rT4dZNnhdbFr8rTtDUBMEqs0Dkr+4t8/JTZJHFn9xzl44aIW4OyFIuEWTnvYppPArK5GhRSdxL3OLDdbIctAfJVOQNx2+CPzYCKMih0ycxcsC8peBu7LwvI7oh+7HXsTT+Z+gRSAmjYHeR1aEpqYGlqw65eGZwj5ShkRM41i+j80x7xGXVn/iLavdimwAGrFws/icAS8foDxqb0luy0eVGARVDDlwfqlxaiFVsJQ7zwn1GQSoY1byAhbD2ltvsFdJL0+w3eOeIm3iF9skIJDyZT2M0pSDj/crS/JtHV3c9uxzNed0d4DGuHSY7S0CZ80E+YergDJV7eHcfT/V18fLDCwUNsnxL7WJNKfUqUySNS7DEamvVWSYXF79qKv5VDVNK0xwRqScC8lcEuUfU6VjZeN2JgxpPUKR4kZvvkY2S70oVZZQ66FzvG2mYmYLJnKqF9GSA89mp2s4I3yMYSfTVPn4JZ/0k3brEEDL9hsmpXiJ94CWtxEAX/VeCDmvYfa7VupmQM9qu3wARuIQy90JWZgrlrflvCik/95axIYtdeLnDIWOseb74QhODbl0kOdV1ezeLVcozBBcX50QTXody0MeTkQCeB3TdBseZFOxcI2RNYpOY5nJM34NsMxYE8BlkbA2thHC3aeYb+s5C+2R+5oBml7VOF1LWSxWLwBICPx/ooOSaha8A5b8q3Q9p1CYIG6cvD6R6TuVvo8/NHrgG17mJSMOwO3zrBaYz5+74su3TgHZRaELGXOG5KkkdzcBB3+W2GbIhNRurezUzBHnXtTHhF0HJ8gYLBPAayxHLxcW50x1kaUqpC4Cw70Aw40B4XuTht6d40pk/lW0ddlZMQ8rWR40T4iBbdHRhcZPF7I1QZYfzznDKVwS6nhlhMa27zC5yeDGOS8sJvv9CVFDAtaX2Fnjqkgo7hd4Veb5rOEu1fYNj3JlxP+nehWbyu2nNI8ZeZtQ9dp02pIImyx9B+70MrKmv7dA+L+TA9DNJ/vG2XNSYC7xUFRtEXaAUdXzZ2fIqji3AnWewBIwg+ldbnoh3MdMHTXWVYWNPS/lICqePHxpvhrzApnfa+yMvmkTYDBWrCpaoOa2cIdPpV8HXHcJ4/6OIwjDLI+tqzSDvdbsluFC3syN4eHjbUu0ZwwSUUzqBpiN4pLONdLRFNdmeqIOte8HFGor7r1vcZhpjidWH+JiRF3kIPZgItSFvGPl0W8D0pLnqH/45pWxjAIY0jMpgNqFCixvn+c+3UFQ3C2DnJizrS8iULR4hJKVK6kLZbjsLydq7+Cbuj++pSb1MpBD+X6im+yxxbQ9LWmXLU4G0g1ulNhlEDggEFCDqQY1Nv0F6+2Jr70/MmFBXY9i0oyhNT+6Oob+IVCdNBxmBLVhS/wR2x4lgm0irm0s5ff7sGDaOIzclQZzmjORnH+y7NzlaRNHbQm4SPfV2jsTMVAsgbuiz3uIZt3X8BXATtFC8Fk+U2kHRTHELoKFYD8BobIuq8W2/qy3JRb43Zw4PSCzY2tK9jDmIT0DpSY4NPcMeuR/R+kRTNkl3LtXhd2U0cyKvTApX/AnAzKYKrXOAltIlisMcIgOC6TS46w4b/BlWmzZoLSQ8luuSN4bDSXxAtKg7neDbj/w0zQKSk+NC7jeuZ4pfX7Nq6CRDku87Bh7ZA48wAHcaabnRybX1fQ/A1Q5eGlfLpUo8LL/GmUdCg0fp3GQqNUPFfKxFaFLr3uo/EnQFq+Gjv5apnK6Eh60ZUw5TO5qkaR1de49tIa54xhNmHyBK9AFl6kf3PNPOkF9H84vFOLFBP/q6qaj8clz+gAI75W1+VAc4QXJ77UImMZ9fh3m8lOFGBQaKA6YpHdkcvWn5m/jr1apG3UYwE6u0+aDSEOZrQ9f6kwA5sV6vxVKteKZBQtDCOwtgVeEq/+lZTuYBag37jsp+wr289w6NkoZXMrgt4I0vjKbcXTEwtbzMx+Lz6SMgrUujvZmwXcn1WRDk8DlL99oeoYou3km25FcCadw13oNW14lx7wYgTnrP1m0m87S7q7jecLQL4h0vYhrDVDsm4AjrNnU4NpNt+3JlfXnUyzRQV5CxzDZOLe3o+xVXhur9Dj30boybFYk88F8A2CluMo5peyOAPt8VVuioxva1CZPSrVPvkZ/tAhtD6ELpKtNaAxHrkP9gUyP4ra+RSy2FRIwSeZ9tO/3cSw4dL4av/nzSIDe72RbGgmw67psJnGjSCkqRWVUOipk8RHBPCJvegajlGoImNjwWocW3DV3jkFjCnx2YhdFsp9tvrfC26124zUrS2v6/na9Glj0EdF/kU+jacx19PJgMW33ge7/R+ZlmxhqYDsRPHOy2QbwtpHK7JP5s1K9PaBMfdpJJS2hHugIYLaFeKh2pvyeBRzWLjBajl1TCHre3XT4ckBCWU+FLmkdujHKIkAsnhlW6eJDEwg1glvYb4GEvxjURB8eqFEhpX4LnuGO0fja5pzX4B+sgypXVmGgZrKmX58FxjXbUxspVUDL/XObJBxkh3MyddxguIZx4uba99dOe5jO2MxyatmeKMisakQ/TvzSmLs3fF/yyxIgsrvFXAzSBvApFl5N0amOhibQxpaPLZBE2R1L2ZelPE/NvR3/QlNFn8x66t+G3zUy8k7RDRU7esg0AYBEy/4F0PfxiQpXVmXBhAEFUi3xqLjJulTFf/xgyYw+qmt6MspF2onHIP5QrtdVZ4HNgmOhHKPbVmJjnls7QQadodAM8CConj2/I98uUS+s4atNU+3OFu/V5+sYOM6rgAy39M6x1jTSbgXPHF5Mg+qczjpYE/hx6PMi+jDX1FsEavitFAaDarF3uAwSyC61OGjF1NYHM4FjDBMZvye9NiyDWJdn60HnYdp+MMxGYExFGWHQd6LjgsoRLYsvK7SI914cfgoeyjWQ2K/hbKlUcmhIPozcyKRWoOiFKDyfqVFMMAlEt8bI4VErV1d80vUNoAswvv4j09XDu8lK9BYlWiaiWWZGh2K8Uhxt1NUDPACdBbEJfQE1ZEl9U2w981aYNT0BjA6ZygzeJA9Qncv9Al6AUtAG3ZxyrHQMW/HP0mkCw9xMSCcbv9tTEuqc9t588/6I38OLh/sewah00BArh0y5EJqr6dvSsiJImiFgw06nx89+EedM+kYHvGibetAYfcN7C/fGwv6trtlPuLrBGoxJWHhdhoUtpqwXQFEnQPp8//d2vnrISCv+KbESsPjGS3r1tscojsDvxkks/kQV1MVbwMX0EoSMaRbne7d+OYF7n/UhtOwl0jm82CjyIOvSOS++BtpeMKBuNJQQZQcufv29EcvLe18r3fkBGHq2tSnVrCq6I97ZCfvaoLGTMpirgUBJFJSxwk4i45YoAfMaw75N73B/8fFP6E87q68SXqwOAJU9qyrhGMJPxk891/DITcerj9/zRuZpQXx/hH1yPhFbd4+hgFHJsMTiLNZytTWwdZPaFGX+cH6YT17yGFjDssZwsCFrTdIlEsQ9F30fBEN8BrQ+r8rD4A2GkTh9XRC0Gcn4X0RALplq5wn4JVN1l5vBSMWl9ULQ/bh4Pc19PEDQWLE/mfww7xcjUb0lDYQwNKUOAydxWrGXayztknzQRqnfzKRpjgQSsPe+S+1dzZW8hRMvWbOU2qyIjEhhYED3XHKZNCDzh/F6muAo5YK/Qpq0CJ9cMSIkCaehOhNbheDoWpKNRXn3hyRG+VEr7QMGijsVvQ5SUsKOcZr5+7s8kP39JIeX5I6zJUwhuX65C0Zu8d4xleT4aPsc4bCp357SyynHJcOi4Gu5Ub50w9QoQDweGAu48ZnpXBbESNe3RuU1ZFUjkzb2K1rLT+w5HhrkargX9S/VTK4Hi45xX77AObSSfKk76VXkomPpl5yhpUj/PllPOkakN0GLtgjoca8WPQyNzyCb+eIuSo7f0GFV0T+a4w2LKellr5ehN9MzxHoszDFYLwcwST8vCMyo+sj39HIlpw6BBdGYj9yXiCJ3HMYB0sPJFlEjboXt6zuAFiprBSqRvj8PJAKev/qQu6Z3fUIoyG+vOzVWloGFSOLIvQ8eKyaJMfqx8SWkryBoPn86vvCjRl05fzxSRr2JZDdtM0HhCe/gzOEJ3P7FIevFM2mWXyKorj1I+WhIRN6EL9fsEN7spuaCkfvt40ejjt3L8Ge3sCwMJKeX8x2oxvQsPFCEkT4SemdahHn7cPJH05N+pjHL1Ojr3pYoXIOOXlrvEiH8JlG0QM29uH1WZyvwjIo2iJrC0Jxx1vYrVEhXu2b/egiszoTYg67bbDBfNns33jEGr9Hohbo+GHbq+cypdCh9Ku3rcvLsJIt/2H/PMr5AtCYILlkqvfckTJkwVIHw3Eg6RNRSPGTNh7kAD00fRgpH2IGTYdUc3funrzKS4OurZOljj1XuJnv7191Hb6c9cxqGjpYzvcHcV/85umlDzUZMMmSK+6qH/DiIs5tkahOY2QMwy4b0xhbNrfVBSyqT6XWyZBjE6fPM3VvSWj9vt4ygcciQv5uUhS5zStmn+a2CD82s2nfQU+smTti31yLEaUBMWCZ+KkRUrry1m9wzqPtjA0yusM4x6uxLLpFnyldP83IClPFYNzDlW6KCdSJ+5H7HY3depTJtjIo6b5Bo0Uim/WPYLtrCqMo5p8/rUHD1Zcxion3kmupDxakh7VXQRd3j1cjttsQNxRbmUBVtUr7GIn3fLvOgvulqd8BOTiJMekJCX22cxnj+EhgLCvqDVl+UbZQ9APw8Y0w/BmWfRuov3o8lGVwoU7sDAy4Wm4r+kLlFzlVjpcxPImuNpA==
Variant 1
DifficultyLevel
596
Question
A fitness instructor earns $90 for every 4 hours of instruction she provides.
Which expression shows how much she would earn for providing x hours of instruction?
Worked Solution
90 → 4 hours
90 ÷ 4 → 1 hour
∴ (90÷4)×x → x hours
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A fitness instructor earns $90 for every 4 hours of instruction she provides.
Which expression shows how much she would earn for providing $\large x$ hours of instruction? |
workedSolution | 90 $\rarr$ 4 hours
90 $\div$ 4 $\rarr$ 1 hour
$\therefore$ {{{correctAnswer}}} $\rarr \ \large x$ hours
|
correctAnswer | $(90 \div 4) \times \large x$ |
Answers
Is Correct? | Answer |
✓ | (90÷4)×x |
x | (90×4)÷x |
x | (90÷4)÷x |
x | (90−4)×x |
U2FsdGVkX1/sARaYs3jBJdhJhXk90R9asVNuPm5M21TOluquCu96+sz1uW0j/oBMCw/Y+D3JdkCkR7BUKBnpgO4BT9YHHCtR/Duu2o46VmkLfw/pT/5YRp2vo0L54jGJvq0++r5FGAFy46y+OYtaIHy8kbpL0VQyDTfR7jACh2KxVQYa2iztN7/rIpb0SFoWBMyKogvR6pKwcEA+vrAr8plWjJYphv8DTGOydJdzXImzBxqOiCBBWnkM1ye9Yo2qhPAl/t7YEQmpyxzDf5teMpZy6SM/qvHtmHBPWzmdSIXTZKDOlYvonhojPF57rsTuklTkNBdXtIscl24xbTUEUrb/+ND3hptnEKxRUWP+oM8+x3vbyWI3bznYk25go89lQCwJvnHA2fX5sjALbUcG8WRMQGs5Mgp8WbgtsH5/iof9qE7qOJM+ZmYmbQvqy6XPLSo1uopnzkIwr59B0SO7K3KS6IC+WN2ttNQ2UbumRGF7rJ3+U7z2+jKPrPpyejlR/4JzGHqb5yMjOdowtMN9IDL6o7SJjMCZW936UcUWyaTVXMJwihixitVyTV3Y4GUFzwnVdJT/6kTPe2kxBdK6nn35kqUgahHo2IgR9paXb+RFtle3ycgIEo5Z7ZtLqu0tpWd6L0ZZqkUjvKIgQwReZMtEy0yD+adZCByUgYF3KvJv9U7Pjme+d23MiRy0vKvWpdYp/5eELigQEFrOWKdN+PGmNYkrW9hpmWzE2wwmEckxdJ2IKTtkAwN6ZtaI0L1+cMpqsPOaldyXVuM0IPvDGfhGHogMAU0jPhQD54uGGmiQM38uOhm/byqvh6p5EYaO2Eh0xa3hlamy+Top3jOX6FQm+RVgy/sj1+jjAmWD4oXa4QsFL6OnHxaFK5IqoUvNQ7JAADGc0KZq0Ly2Z0bgUqODJzXDg9gXZt7divW1xDO4rUgR0sx1QQx/k9NarL5DNYkJQ+j/mzA7/YknIsLad8yfDmW8vypBAWn28tx7LUD7+iNqAMFQfHC+tK2rzBwBo72CbPMZ2cXuE2AuO0j/3m2ZEK69R2XOZA2lOAJfAYGxcsNDUqqKOqvUhTuqi9V+TtmWfxNPrYcW7IP9PcRP2S+8A0bsTq575U4L+eak+al5JDOb1GT1yJtTIu8uiwSB/JLBedPaDLhWoq987DOx8+EXRlrV217Jh4RkAX2Xf1IAygEZSGeqBo4aPiZCe6gfJk0SLvg/YTyBQPNPWtV7SZIPFNoiwCj7YFQqnC6LZqxDGSMz77mzmGHnTG5UXSiTpvhmM/Qsrnqfq9/+Pe9WwManuZhmtPsRJb6ja7nnQKwNl2teLn0GisuKSunwhVh/v66Bh+gEBYVvSiRASt6g/zZvX/EshoTHA7bmVo2k66cUUoiaZYutWc8O3rSnCL3Ci/KnCN1sUPIr3cNKvbsUKDEHoVrxtyI5bnx0Tz9Dt4A9XeXQgyRRpS+h39FLk6LsoFCJgQ0Xhor5kSMpVxWrxZ5go/O2gqpGMKbIUAezKKMxTyEe/hU7RaZj6WNXV+5pTnEeYbovSt5p1rmz0TiYtxIycc788KgeyYcJykN+nsWt2jvaIO3W9mW16gZ6ZZ2Tm2xDkxQKOU4zpYhm9VAzvATY2zBQa8nu8IoJLi+XpnxkjVkBdRCUEYzre5o4N1dbRR07tv+j8xJswWsw7zqfDYVu8ggOwqOLcZ0zb2s+SvnIJMVTJzcVVRVCJkDXcvacn0dMClpE3tZdp0z2nNNVHl8RfhLCozOhSWzYkD6KflXO/NFdJCVQsx04POdCN25t+Tz4TqrE7kryrrB3a5NGpC0rIMvbHQ3JrXYkvJYNZ98MAmP0BJmPLNOs0pqculEn8xIrsYQSEbqd0jDU5XbSif235MtXcp7iGrjMjKyoIUBR5ucUP4dL0v1os5oVBkHAYJ3/eWDAvy+dLeU4DHTvV1/18hsAAoiNe6rZ7bDrdCo+I+C+cf8jNlNlyUlGV5ZA5rq24O8SBHsIGyqJPEG5DOojQqFqNhuQQI2eRfeFLe1AUC/v7+vW5ou/BUP2nwh5RRl4aM3VBX5nCj5bFSSlbhP8dm435BlF/gGwu58UIOF9GhX3p0btJ8qcyMEf1dDCVqLp1Xd/Wm69qjnAOLXv8sj8WIF15QJUD94ClBY2McBddvmaAoTdA8AyRG+PhCzNJTEUNGxI9vmxj2DMooSN/LEozgEYlBwtPKcyq88zdKxvZrz3PYa2shL2LRWsE360v/ygFvlD/Qrfd0FI1gYP/EfRY9ZoBuDYpAwd3BWjpEdUAgdmQXBw5PcOVs9vbT63zBjdaCryVrekP0xtUGV66Fwv9znm8HfxSL+DMD0d1b7onn3dnI/ge5ey+ZlzJwl7woCmPDJF6A+vPzd5ZtGFmCB+qxmKLb/cH/IMfwHGgSA2hTEsnbmgVx95wbgUIOb+alsDJuEAdP/vPTWZJ0bajvdMa/ebpF3dcwXT5VpPF76mPOS52jj5oW28vvQEutWXSie/B/DuhRrPVUQ4FZRFHNGYUXTtIkDcl9Vekv5Cm1LxEpdEA2jgMrIHMgTjqYYUUD3vwD8QS08LeCurtcV7HBHh48Pga3XdUa9tMP823lI1b4G7zJ53pSTpUhwZnvyP/TVuiF7DceHvZj4PzXvyNLUOS4K0Q4J/Qp06mD02QpIoC5u24ZY7hquEv31WBwM8Sqw1QezvZi9VK3/vnNeGu8LAW5lZ81wuXVOjq1cQ6XpA86Y+JPZtXlvKJpMfG5YRPuJ/by8XITzlkIxzr+oxcBu0AfsVZZVZxI7uCpnw6Q8pKXUjIlESJB/GkoLb3XutlR8H8iimJk1SZfI+F9DWKwUidgI2zAquyx6oUnRznngjNj6WhdYrktUCwVLmRlSf6d3A1CgyvKWMXgahDxjv+2H9OpVCYTRk58UpLD2PJeLKz4C1L2ZN5oYeXdKkiVoggrmxMJtqwUokJSQJsM0tTnv5E6QHwEH1RWiv61r3/X0FK/U8gobLRuhjPaw+U2mfQ3BBjX1nEigMxwryk3PBB1jJ0Cw/wNTAYqmKGkgaK8d9K9pLOvpAYoYZZUxmBUa+QOGfUkQvUzt5Jnu6GagAkxZyC/U7gG0ylpZOboPbCkJjArMavwhhscaDMlkG/Wymr/9F26vEILjnI1POK0qi8oFnWCWN2cE/uuzaIbXqhbw4d45O658DkjRBv7zjnVa0Gf9Wz5OPTxDebJkaqlFyWLF0a8KOVaG9K2cB7Xx03Fv85Kzgyp9o/WgZ8odq22MQDYh1pTJt/j1A4aYOGTUgtcRQc2Bw+EoNXCamU3cJdSPrfhXFyFFvG1/7LqddCQL/Altal1W+7nRLpebxpwmBP4YxJIGNFY+cWo8/2Mq5bi3sOHicY1/+kocoZnwmPGTIQBpNqkc+IwflA3VQ0ljw72xAqm6Goy2AB8ybhKECXjb84Bjg9gFVYvJ1buSStnrFaJfEVjD8/iFCNfCyhOvzI7t/5rcrwBgh8VlQA6ng6ZAO/batm9bq11zbPWYIl9AD37ZHRUP709lmD+9SGtN33eyMG5vku8GpeOJzqJNAouVuk9y+2qtfrkUhLORJO7quVpsQxcC9SdOR7xcYFv/KMZP844er/z7y4/T/DrmAoWa2NBwI6wOlo4dhdmUwQJqhpVt6+9vBAGCsCjZo6ReXy9E2cFTv+10C/y7jfLetI0WfF3bDqONGoA0Lp6me+U9ebkXdn3/Yf7fPiX1lDAstnTv5oiGuF3ueBs4RW75fluYvAYqMWSxsbrba1enjRahM0YDrjsrPLabSo/jS3MWDsgR7hRQbS1lsMQAw4AP5vdzNHh/WK63o3iEB8gqHE7fedh9SpkJExic+U3vWOfXYJrFKg4ivmLVTBMf3+yBMWUXHNbykL2jNtzsh7mLxSiWR0gRSjKsJBiX5XXaNT9WN6m6ZJJtZchJNAg8mDeVx/Lgd1/0jg6E7wu66GQcxW3d1OvRaq6Scy9HLoN9NygsoB7M9MNaiunw+Rt4PcwPjo18s1McbIag/OhtiSJJ5Rs3xk43c8Vw5CL9K+LB+qx5Vkw+3MuyPIwFZ9f8qfshhdPVK46jh6CO4HAGur6HkCwfL3J1QueTD9nAm2m0ee0GnQwci66z1AYC8LgpEWl3PL1jLMdT49tn5Ax0eumL9P+z8mRtyeOMZRspQZsTpqmRqCY1p+4bTBwnuA8Cwv4SqeZv1Cts03YxD3juC2wMH+jabdhvdIO5QbFRaUU3JdHBX/9cP5yvDM6RFYRWPQoE6yt7HtWxh1Er8jRWqQvnEQKmi4zGFZpFAlr1RP7f1j2VmwfCnep7W+kDNMSGJ9y7Ewz8pbiciSf1T88rKNx1cMd/6U9LFJvGMHeUYa0TwfUH6YCo4LUGQkKmJiU9wi7bh9cnA0IuMy9/RvGb+Fklq59sCVbJ/iHP/ZkzGxGavzA3N+mXAu3k58zzDS4l1rtOdGNyd3XE2BMxfo/AJK3Q7Z1x2aDKf+pTj7kMOfXqkS9gVjGaZLNfs8yNiDqhAcqg701Hwqj0XUKtHrcqij1DumLXTRx1OxgPLPeI7UbPUHnmeYKzQ7VijAUDpunO/w8qDB1QODZxSTOff4yQed2N20VZ+MpFoTDj0R+RN4Y989WLSqj7l8Kd55dt7OSiGttN9njGi2dF//ECx82/pKsADFwReNJETPMg69Fhxw5cYymAJDOUv/+cTDB2RJqVLBdPZ8vuDjRzTB50U+jKJcKZUV65J9Ontyc2RYMfd/0zP6Dlgmf5SbCoreqf7IPZhAz+Ze2i2N9LB37w6x1Zi1qaYEp88GrTQl72cM4Ft+TDR9DKQ7Mj5QKKOdRbJI7Rw6iibPuauHUfyWqLqovFB+QK9Z9VUgokN4NzpAE9vVf0WIHvN7PG4k3vSnxDvv1YznN47dq6r5gq2xRJymWrmbTssbRojrI2QntUZDyLoxv26l1tEu9xCVQS9K9N5HY00oWmnvbQ+b0v4E7A9e+oZlGYdTK9kNualKDhmZ1owhnHHqAGjDtPKsJTT22U4UtITvtdwR3YohVHrNFWVFz94HcD8Fj948v7vsieD4oxNxKK6LDoXyn7pgnb9cYmcnYupuALh/+Tw3NpNDOEH5GqErM7l3a+xXEKnx5TAzfAGez1gpAv9B/FE52zcMLeGb+1SLVtqzJAlg4pfv+3NlwS83ya+WnxUB3C2ucA7Cor+O0iiFn5YY9XOYR5+qmVGZGnam7fAYCuzYj+MEoX+L/7F36v5VcQ8i6oU28yMAToM34T/bKznfeR47zsCSbBzvowzqQsyXXMMySob+/i32pxixajj0/04pYIOjtosyJGXWvoVPcXFLHFZBprGuJRRFDnGeFxeVAiViIqVC0FIEpCB1tJvXdLR5BWLoNiVNCWukMsvZjo5rCXbHLj2BRs5FY6n/D+2WoCp9vlf1zIti4Qm4Xo6ZAYPTZnQWy3L7jhIwfCTUKva2fmqLKQW3tCEmg2gn+Ab0wu3N5ptW9xxBFEqw8pPaO3r43vtO8t3QguG5Bf7u4fvK10w3RugZzzlDUyGtQwoF0ikMcwU7PL8aIkjfJ3bvu4REWEftS+pNMgxdQPA9Q6kxF0kyFMU2IfbXVn6kKQQtKRD7IK8rBox+pRdDZ95m9A/zfuFziRdjNHAFx/RqqQhRYgQHmFN1/CXXoS4pkzXKKMeCf20I5Y+JZkH6nlRlupSeMQkbV9QPc0hEz6PG8F7TtK6SsoznlMctXDkJg0kvx7kUTnKPfvj+etlBASpu+5wlHt0kkm7++kbQGsknEubom+L5b2reFM00gLcz369E+/NdvrEvip/O/xlTsP8TiSpYH5TFIBRGkQ5RtNJmePJwnWXqxlUSHiMKdO6MuMBwEbU4TiH0VrHT5DaJJGuTwxlerUTgOdHKS8EwOQZIvDqMtR/uHz9fGSTev1zHdEhrmYrNXxush9emRdP03ARxuInKrrUUNcjNhJR5TDJusAAp11PVVXDMmYYy60STVD62pWvPK0yDvo/vh0SRl9P2x/lgHdu0+u/ImBDhfgJ55mddrGymX1njzntBNCnF3TbH4kJx0+ZZA8CoUiczXrAr7Hwm9YT4JwoP1hzHTWRi/DMYZyBOhn4k+xesqoZEo8kVgEDLXIFqshmpN/miSjIw4K7Na0G4FYSXWjn0ljJ8kDl67s4sSDKh617R+oi5qoa3kalXnatgNcFR3w/EYYBuJ+WhAPccvq1CiO3kx9fWwZ2Orly5kPDQ0KkxyBxLwrunMswTfzkrzEnCWOFPELQPxVLSM04IlEWTTDKKejuUiy6KXQO5hC6wRlAS5F88GdRVTT6SVxOZ8xsvKXwX8VCzkU2LgE44r65IOKwZXCcFGMpopO8WQp2pNCSZtcm0cgg66WcnroISheiEpuVPwSN+5OlRXgFGCgUXTUA+AtavjrjQoJI2K/F55SwFHUDhP+NKzSVW2222hM71HNfu7DRE30b2FuTsrqMKTX4gjnknQ98WxJ6otT2LpZhNMJbNDLBJmYx8X6EaCg0IgFxL4vUapXNfJhllT5FsdDXX6l6lFGZqR/RceXRM3r1AiB82SZE7onpJ9EkFRNmu8LgjR0qx3n3Co8i8UnBnievYI3W23Qq2XqIJyww64s/GSjj2dXTIe2Gey7NPcPG52Svj+mUqKqnVhg+5zXhfHtFKG8c+ovKcKOBrV9E3DfdFjvxk80n27k2+Vxv5tXLHno/uNHzC/Jq3fM7spspdgKRdpp7zvV9Uu2hMI2i6RIKiOtvnaPF9SmBr6IL9bMVsr0GOhSFb/7cXce4vYcCFVRIfmjuGpzXpFdiH4ck+NpS/l+Ile37HWSoO3P3S3IHEl+s4RcSBEeJ8alYvP+zanJeNwOz/7Pm/ATOZHEl7QUE9rUrwMlXJ7giYJqvv5GoAv+dTeNTAJvQh6kYpp5nQiheF0pNBnQyWcxSyKnOlgmoitF7YuC27mJOfBRuMnyIYGzLyBCqtZmphYVQHES8JwxFEVnBJlk+MevOOVnw0Y+pvFmuHhDEdh82PTnCp/DApg59QSQEL1zjFXn+UijiqwyUMklSD41/DEWC//s+6IFroE9kvmardg1HFjm1UmvxQmlKy4aFHGkkYR1HJViWQ/rV9xaoeMAEfBTz4a0MS7RozoKplcD8K87a1AVLW2pD15v2FzVBD3mKiYgn87XkZazvx/zTutgDNPpyeJ4scCj/ZUZvhEVdZHhUuVIh+/6yjfKTcB3QHZCyn4/Hkxcxm8fEBw/ACoYTbaHoxRHcyHEfgPDhbBZkTS2ADf2YyNQHewIX0k71d6qOPHHr02PkG7SOIsAeOZxkEdSgP79jnWEWm80Rj4KYgEKMwiTAc9yfBDRctIyj+m0+aHMFUUhxZnxxIp2DZNIKaSZ2xtXVlvxzMQ13j8i3Xd9OVB8C0M0WxUx8I9Lk7dXkWRYZq2cg4iGxhe3e1uTN20Qy4iuq6t8NhShRik+uNA62Pwk2UAL83IXrZThdETXJatYDSRr2HQZc41RuqKF5jUzQZx3DmE0JrHeJSaI2oX0sWUb2qyfXQJ5Owpxn+sN82mb0/HmVdnvftlU6g3OHwyHydNeheUcPJPrf/Ua8bW9Wcwtnv1xGXrv/fVkB8cDAwBnd+CjsYCS4JaTboFRR+et5CU6Ht3H3VqKsrgfzrV6o2Hfry3U4rpku2AAW1223p0Ga2h/myt5Jb5JeOXYrgkj19OkrZBM0wYd7G3uPPVlUzvTYk4BpvIwOjbmtxXTHdaTx7B5ZOpURBqSAQ399VPyOpM++AKZUUdmdUhabgHMxol9rCWFmXMeOtTtTyj9nyNpjsr+rOkdTmuRMhBBHr8nLPUA56pk1cH6ZqktOdbCxuTUE71l9f7M1EEzfKSe0VWtV7YG4tqoZ1wXr8lElCwe3jwfsFJnTfDe+E4VRWo2FAakagBxI6C/dzKOfbjaqKaj88mxrOGN7lpQlEUibhAq6IRFUjMs2fZzwmf5OnP6v4rxNXdq5EeR/zvhkY4s6RRy780/T/R3kN8f8KnMt0q3PJREJpLF5UKOMI3KdhqQo73RRksQRcp92hpQNfZQqgmrCONIxPmkLmSlQSen5zGTtRypwaN0ybIgcYKLHC5CNur4Mg24lFRKSwgzhizG7WEyEGmClQwCrybQn/RVMs1BAjq16JHtKfNV54Q/3tUv+sbl/DjGXbOn+WE2b0xW/Rb1rgl+SFyHTkxOxsLtzi+i7LrtvK65FCv4O3TXFTVdlYSxUmULc+aAiSBAmIz6p1Jyjke9GigyoxR8zTGQyFOUAYoqlySyraJyoTdkz2BMFcilP30XwujLO5/bOnxvPaCTrbwjOBHLQQXqvofFQwfRjhSSFE50cbJ3IAwAWovlGeL9rW6CO7DR6oDP7XeSzMLwRXr6vOU4Bb7ozYLMdQJncqUpbSgUtwLSND8B2OFwiBcI9nnKXEylwtPyDYwJxk9G4oOe7fLxN3l4XlqXJ6nQ0xfRBoPKG6I4irDI5MJglZ4K3SSETT+OKZgcdOzhTkRlOAFY79kwVqUJ/ifrE3lsnK5bxHEqsZUNmzD4Suinw6OQKENKrR7hFCY7JEZ6w7e92zhEbXSsHctiAJBmYkfWjWCqX9WdtjK/6a9HRyBKrIHXw0Kapf8PlsUsWtm+oQre4Unke34r/bybpLxeXzYre/6kwbo20hZqrYEedfF8/dLf4N3aN3p3DtQD6WtCUJT+0DT7vR/GjcaCAPHrC15gBCnmWo2rOdTDhX1anmZRh5jcBF/5sZw0s3cf0/kAElOL7J0WqPXPUh0qIuP64gFSQhYUZ2/N8fIcf8nILDc80hNESDWuGZQGaup62mR49GUu7VRxo3aAHo717WAXpRYpiBjDFcFCgNuW8TcFjQPhLUvEPhwfCUyOeXrOWKlLUrtSFLM1xCuIdpxEi7zNRbAltJ40NNgtzM/xjOL4kfKzZSNfJiMtbVc+lUCmqneL0GhVQbN7TtVotcwxctk3Avb2Z3BmZAKZnBIsiRQSxZhWrRxlDmDwuWMdbyvhS+BowTLtj3hf3RuufkskuSXNMHZhJNDFldvllQUlV2KxQkqDS78ke1Z/Dr86isr75EC6/lp1v7ivRgC1EaPTVWXJCu2LsMIE6IJ5QXE4SyPcclOVnPgLeUYhbhJlvcfhKhX26nH7AyX8YXc62j5cT7ETsL+g4kksOvxhuxVfgIMVa94e88WOGo7vC/JJ9UHSAIO+VofcdRmTAuG54WexJIwLTlakYr1CQZDdn2BMc/UuHF2jCfcqUZtE1k5gJfFXdtKXr45qOMcnQTJ3yIKa2jHDQik1C/FzgraYZ4QoCRNVFQrM8Sn5jhuur9rk9O0m+pcp3sTYEiNOWIsOLmjUatLRrICXsd7ih+VH+fSSlPJjftUrYh35hGWuO2GBi9pralV4uPT8wttDPojU05uynJfZchsNXYHAvPFo7KXD3Av6TnwtAGRPU4BiKO5hV1MbX66kppijZjyMdhuO0vebXafBbxaKn7vd+N+GnmC0zahLbaTl50OPpQBsBBJeB0RI7QLsJhpCYm+BzAQJgcQpZB7uOJf/4hSz/I2nQpwOS6/TIgGYXsYDT8vmuWR6JR7Ht6xILXm0YwQgwGjXJxOyMn7W496UEhhJC1kA4IIbVOPvPbGN+7TQe5GUQpy5EPyYEjT8dzC0pQr9zTo1zZtfpNAmi3apWLqTHpS0OukYmrOp2fdnbv1PFecuARAWLTulVnzaT6+T9NDsXpmBBxR1FfxSgeqXSpBWQMdmnUvmPu4tPzMQusgwqwzUOH+uULf4wyV4hvU6IzK398pHF9PQ23EvMpJ6N2lNmc1INZXOedWwgRPCIbiRPoxiWVWovptL2V/3DPVcWCCw5+UUQHy1tDtchjIwF0AJF6SqwPjOHkXkVmaPFyQy9ecR9MJyBYEuVhAfAxcEkS+Lp1qiom65y6WWLI4Hohpb+aohmlKq84GlhpN2lrgmZUsdkwBlD2sSqkB2HIvUFoouMqNJlq8mvAXNf+jl4PXXYKuT2L+62xvtBhRvfYnpUa58u5qMZ0v0Hg79sO6Q8/NrbCzY2+tHx+TPUimldJX8lTMyHcD/BdNRWvZciKnz9AgmWvMI6PFmNzXdCm88M3aqCYiFPJqFpB8edI3gD1rTfZym1F41HNrU+1YJsii9x2eDmfks7Sp45J5EIIpYYi5lxgrUiLWQaBIrFQvGBXNcildCy5znEMkZwHlEV2nXOmrbkbXKBK9TT0y2mpKro8z3j5ByQmpR1T6ddaU7+y9IO3ob1gxCUP71Ec2Wopwn257uOscvtwaB4qjP9VUiLteKMUCyuhkTYnstFrFhxSI3mBAHQFTYkfnZ9ef5HgJ5VfpFNKXvqUCLcY1v6SvOv9adAHgGt29GwCVycvE2mRAj1CdUhLrM3C/zZVrHlMh92FS2iX5zWE/BGb5IhjWyW4exvb4Dkj1lMwl0DeMEZlF7PEGW6XgmTQvEoHhmBUhn8efw4+vejQj5XjVO6z3vU3ZlLWiz015ygq7oPpSrzvd/MQuMN9LXUQPin2mkHFLrdnvCB71hjw2+PUQ4jDxyIf7nXQ5Nu7mHStfE9td1x69y/6bSb/4N7Uv+Qz5FZWaOKcqiEdsZEFSy95/tGJzgK4gFNpw7/vne3x5K/Pe4HIx1KWQj7hmwy5LwYm2EJPIY/aXOLrqiMw/ap++tUDxCmwIq2mJf2Frnpl8jkT+qYmncuw8hu2c8qPItwcDH2OwMaocIZnIW0FpyPeh+z+fY3z5DoEzMsXiByB32tpJoZ1FkXlxkyQSkoKioTN+J8hGfOwyhsHPELBSl9MFNGYcty/t4rJ3jJrp2rv+vV7y8aYP7He8eoxcquO6x2Gk2iv9lW4erstIpkfxYvPWvjDnmWXf9eVwGgqaQ8/5ZAuxUddh/DT/mwP5xZnN9itHxObhZEitcYzejv6m2geRTyybt/DUczmu6NjlSPhVbGBG03sg7Kxu1bNMFFIzNiOdUqf90VLrme+4dZvfSJ3ckrZRB7cdLY/dWqq3a5N+VlG4d4M1T9YLsxR37CoolEMGgo9B5Y0fLqBUZDpBTtPOJI9sL2NDvEzbu4rwvI4CjmdTFyc/LKROQ7tntp5ksgHLycnVqLYT7vjJLFFJm/SG2CC99eVI8Ghus11zpzY7aOT+kNdgjkwxRtzFWLJmY6Dt2AQxh+SzLzpUz7AYOW9jv0mLoxUNrXo3VnmK3u+xLCjceJqy7liF+8Rp/YrONlwSA9B8/AP+jrG0d4RtNexDjCnuQWfwMwVlJYAFVI17g5+UMXwDYacBdVyNsSTUBc/RbhE9Rvn8r/f54ZF1k3k2wXGlVgjmUXmI0L5gUr2j2GGGoWsRJa/nYzWiaCnf0VYqNkWFccJqV8QU77EeLIcHonB2JhBppA+NzmBElGcFDxODR59W6bqpLl8QTaP51tOsPqQW4lOIXVZylDytJ+jPaSN9USY8LGTYIQ/X+NxrQyl6jvj0DXHdflhGQbMK9EaNtWmuCj29vsyJsqECVDun+B/lK22ZYXCTBn4FDkFu1HUvD5azsTQlKg6r9fLfp2jc2YGA2ijxBcNJFQav7esD7klAwxqz88TUDBQ+4gUS3bToQSs9gQoE0CuCW2dnC03rm4acStOyILSrdFMvjthw8rWi1UJAJP+oOzCpGlWFFXOJufYb4J3nTNCTsddsmLeSrT/f83UfgLW2Oopjgyn3gznf0FOD5fXhy+bwcuRmeraSEV6vzscXCywusRp6++M2HCHXvh3dM++jtJlvQkyL7pIIyDjbBXwhyUuTSuwaZoru6QvhN4MLoBpA5Ka3HKeFOb/65mrwRP0c06dplSxRD65prcCy605oVQApZ5nir8wJZfesW+wrn2BT7sw4UhM4Q8yHYh1fd8M2Ai+D2THWhjZRFCTl2G8cZhNo6ohzISI+e3pserzlc/l+st7ZUI1SA5KTiB3SNCsmenqr/ug894MxNDFILPdKtMMJkO44vpgZXOeZ1ZJw7iwzcWu4lt4Ek6+kTxjXnNnCvhUh+KJUqVLcUOFNhcWUzwnfRByMQ6qUhi+s3OqGOS6kiSvNsR1+zUAHSTTX9MefZoCJ71kwj/gb1Dp6K67jMAucBDIXbpW48jGOmXeV4kNXjaDyPVqTT1HYbJpb22PohnzUsm8Ys5bWSrsk7qaspXP+j4WHIRwJxGTc/8rmpNwt+mwjs2PEdwy1v1pJeXfS0pdBjiF9RczYjYjFpu+aeuOCRH+bRY2u4vMe3Gvw2oU6dvnWZz8H5NT/sC/IbiRlN0NNQdg5QZVdvVg1XWXmEJV+pDxXBiiP/bHKa+/dgC65yv0M5kqoGiNzCRoYJQRiOElySTjZ1ooQUHU9UUoWcW16JyAIRA4G6shN70r2bKvH6dSXyMdb6C1L1cJC6LFN/T/qAkKM+f+/VYxRaw7JOBBZyU703cxlDma5VXIICPSwXsYE4SMQUwA8rz2tcuXsnd31+CFEVzf0vmCtWJk4iAOJYLh0odpDfZzSEME0nedPebQHU4+PpI4ETiaRIpahcNaBOc8Ra/IWk1r4jEPir3nLUDyCQhJoI5RedVUIjsZ72NDcQGy1mqLIDjqAqqTnOR4wMZJ8lF7D3nXYBUXArQEoRExxGvmbOjDwFoIIH/LKgqxsIVF1kvRD7ecEBT5Nnc2UKHSz/fYrRUkSzIEp3AJ7j3wfxCEccu5UiriQkfI39E3SByDYkdOCabcLd8Lf2pZ+feu/4239G6+vtD9yB5VOLDqTlYWLSkTQz3WUsZQIwxZDY51UaS7CgkaLE46evzQATfXKi0xBjtDEBtvI4MY1laHE2fkxeUUq3i5l1gar6XxugdLUAEB/01u8aMncZsrrt13TgLj8sjPya5ZEIYGrD5X89wMXUT8lTayUJYWwRMBybbbmmYKwznH8dyRI6pi0+zRHL+IcYJSyfdMLpZ9/7yp+ZFc5TC9yy2Em1i2sk99//FPQFQrefaT+uGdItJvuqlbe29m1oUBIuOd1f4SeZS7qv5r734VsKfAmxFqZP9dtJS/8MIbYvsLDeUYCEmijTStGSiZ+TqOQZdCgp2W4dtvdRIL6W0o1yzNAVkFP2QhZpOCeOvXlkdgy8MJ2cbgT4dNNZqvhYDY4+e0sOzoE3hdODxIWmPdkMJYnQapbxRDZSv8ObpQb4i/Kvojqc1gS5PylLu3zDFxU9zUMzbAlmQOUmU88KWUIJTc1MNJ8HqOKN4wNM0EHcaE2ubCy8Gdp8bx9lhxkiEXVCkafOgy0xO1e20Nt1+l7ZiLvRkcA8WzzV992DetBKadEtdri2dezdBvHOGgm7rnrcBiLklWdqYrwTNlJDn7rHCh0mdSY/jslbpvOQjT9VJ9fLt3iE2z5Cd4W2PiZAFNVqZ9QXfIngiipWc0zWDeSUGqBJqBZNVU/GPtbucZhReNhgeTuLk0m0gCCDVD9IvXwrkyJypmnRBljEKGl9aqjl4ZnpE6lS0J7Qo942ZKMEX/ObGDTA1MZnx6S2/k0mWPf/Z+36p3i25vEQjUIdxWn/68M5rcXZJ0IgDZL5JQ1jxsVANlW5oG14YgLcR5vpeVU+YDMXde4+ZJk95LTb36Jq11eu4Raa34V8HXVQpEg5xT0DB/8PYn1rUPNni1T8QFZPHB3ba4YKp6JwiyMja1fnGNivPnmkDU2tHHyKXoSyox/ESnX5oXxWSNXJXXQdYXIaBH6cYgt2hdij7Xtbk6YldarsCs0QEUb1ERR+A/dDSTGXyO89HjNv8QfDPc+/A7j+4nWWNKScCvh17y4xmVIWMq/KpyaMPZ03jBYV8jCq3hZUoVeX6VZRUR3csueR01v1MzEw/mX5UEj6atrvg9G7amahLr7vbwmEGZyVLcuDAXTB+L7z2r68amqqoH2oA0KDffhKv33WPj/HNJvlcjmFPvDHnRQO8FkLD4/FxySelJqqZljp2EqglKtnquGxl+dJgYXcOeuzQOMM2LKckXirBSGPKUyd1n1ghPPrnUrQBNC5CjR0vo0XkMdh6ERF1n9K3JdamVfJye98S2kuy6K93h8KIyzi5KyUYqx5BVXJjsgsKnpR8/zENZgENgI7MONu4CGKPBp6gJpUYxw2rGHfF81strwPd1vMK14xsbN8jr8e8j68Dz4c/jDVdGmhBjdZl6dCJo8NlUBD0hig2W1tF77ViGAtex1UPgTlQXS5c32SrgpfxkX2Yy93Bb1WduLaDOwvkQ2vdXotFgc7zdwNaD3rQ2GY5M6x58BTS0Uc5gut4QUt8iGXpNTSJGWref5kwtBQuAvkNaOpp+nnDWN9Yz6P379B6T2Rl0ANj3zOyJAbeBTM8LCumV5QWYuTqf7MNNGxFMZluW/gwF4ghX2cjQG41Hu2LU/pSicg78Rfdb+QYYX4BnGnHFRa5ShCKEdSqIwuww8bsLERfC7BX9k84xt+7w0ntA5Ewbp4bUMtAtbYIBoE/td/7bBjKpj5eG4Vyg7e+APVZET78vVIAid0uwJlO17b3I8nmsBzjGTrADBxTX1hN88iIHuloK7xyMmfr8HGW2fyJtENOshFVUN8Vgn+XWJkf4ctkFMeqtAX4FRkTnpbZODWZoYmfkT9aYNhxTuoSpBsPsiNcpdBkzhnUbhauURx0cyFFsgPqR6gDVdErKycny+rfRVCPd3mxG54zE32Lm3D47eIZQRuWxcPqjp2CHpfJrOd3a/wUEsLg9unf/0DqYXNUbinqB73Ppffvqko6luxJgU5Jf1jjYpnza8ZvNyG7/ejDURVn+AKhcRxVijcxncKy8ig6txJdADA+BA8S5AjwqBl7P1yItWRAfx3OgwROGe2WB0dUBdmMpQj6j2lp+Fe44lOul3FA+SDbbc7SkNlm0qbhE59j0BdQ9EYcRyIMnXer6eLjhZBDky9Fcmblc9lpPkimO8Jyb4+E5469vJ8odVCj0K51eXhR1j0D8ufgh506f8s7sAdigSjDGagDHkJrEdp6n+RspSaevPxHJs7N5GApdg==
Variant 2
DifficultyLevel
598
Question
A quad bike hire company charges $280 for every 5 hours of hire.
Which expression shows how much would would be charged for a hire of x hours?
Worked Solution
280 → 5 hours
280 ÷ 5 → 1 hour
∴ (280÷5)×x → x hours
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A quad bike hire company charges $280 for every 5 hours of hire.
Which expression shows how much would would be charged for a hire of $\large x$ hours? |
workedSolution | 280 $\rarr$ 5 hours
280 $\div$ 5 $\rarr$ 1 hour
$\therefore$ {{{correctAnswer}}} $\rarr \ \large x$ hours
|
correctAnswer | $(280 \div 5) \times \large x$ |
Answers
Is Correct? | Answer |
x | (280−5)×x |
x | (280×5)÷x |
x | (280÷5)÷x |
✓ | (280÷5)×x |
U2FsdGVkX18NKI3FxIh13SX3AdLzjgv9upmbArT8zeU9gewJtRkYbgtc7Iz9C2vkeqKADRG28c67l7EaEe5rDozEvGlxaOqWiiMBE1J7sda1uXjFy7Bv3ycGf7GCOyh6o3TpO7XeikHM+xh+cqj/qzM+TaRT4HwiJ9s16WbzojFjIeiSCSlofDh4MA0c0sCrlbsybaENDb1wfVDMmfWU0XTFNFXQDJiUrBQ8KI/SIC9fYbsXbnYSLcJfKWz3CETQzNjP4tZQMXvqbpUdaCQ/i7fzX4ExJa23g5B6qgf7cevWF7zUOckDOLqsxpg7VoNX/GIgRp1kyXGwksVdhOxcvmhcvDmAcw63vufMYy0C+zfwEN8YNVWYl5cLNrIGJe0oDTDe3jZ5gOQa+bD+43PJlwwLIw4XVhxwPSpDlSiCd+eZR++4XaWIScjpODx8hsDkguCS0u4nwMh/PwaLn4ieRyxxZJj3xZD2vZ5OItwwQ8H/SSntqErVAwlKCEvEiEJGNzNwJP4cs8blUofZC8vTFkJwh3K3bGuahFBMnk6G7iYxiYioD1CavBngQmBv1OQP4Cwi3GIagwstTJ8zHg+iwVUHdVNlB1zGzV3VpkVV67jYv3p2125M8/A57rdNOlDS75u+uG0TAY7nlpli52Is01wS/RA1nGCQdz56rpiid6CrzqSDQ+J7So/awTaMVaUOFOsEcdNdOwWLz824aqFALc0IX7yzU3apEUmgxxgW93f/8qSEg+Oq+r9hiQ+RGDRwKrf+osZl8cCMkxej2BcZFMVYGdXn9E9QzOyN51CJCwZs75paM6LS2CwqMMeAVsQNnnIx79zo3QPd3JyAWECTDEocb3wHsYoEBD9jPt4HEcJ472tkPlE8ZYVt50Ud3GGRgFr2IJPcN7C94cf5/B2qlfsyFmAlo03yTm79GXkmqsHnxdHL2GD9O1COioUjKda0CZB+wxFtA1fS3FGlYe2yfz389QeL0aqZVxvqW5OEVCQ2ipFqM9X2ZJ7aQrs9RvZIBWvMa9WSokeiaxBniTYEcmMQbZsYfQLH+HG3C7te7LxZ6voehTMztukPmBcgWA8Js6aLgamebSWFHOcEbe0Y2jpJip81vy9x5+lxOUPacE1cWiHGTB+o0UFCIomjnD3czp4T3Bv0OTyPwZaotHBIWoVf5SRddGiLzboDH/ruNUIIKF28oAp2eW1QUqhHu1rDXPMOEt7cRsVolTwPEkzz2eKe0AjIbFAZ/jkT/YnO0fqK9sYHVMs44AaaycUdmnUt29Jxnz6RtHf0yKDqZ2orl4OCmXe3VI1aq1I6/MiGi55B9GJ2Y2GcCh+ROcEIE6H7/xG//1dP7wdJcgCvs9/q0R5tJHjlpciKDJ+3m9wV7C0F7hxfzPmoEwrN0WMAQNlDVz9uqYwtBIIn0r9CuRaYysEHGQdCE3CHz40YpFXhBYMkX4UlH3xhs8Wih1g+oF4LnSs2kJMgpEl0Yjst9ZSJ9K0v85cHZB+ivO7ZnASXNGlugj+WH8BiYNFRYW3Xz9Nfr7Ro2G0bF5JUFFJsrPQ92AoXnp1RHZmk7U5tiEvIgAQoHFmDPjdG5vf4m7XKKNF6FR6oYnpYhlgIbRUeLhM4IswI/bQS/PjOkNZu9+5LV24uGsbZJy4ohq9b/gW9kNfOUdpsb8aUpOa2YL2BEPe1MOo5xpAa0OCUyMbbodnml+6KJIzwLbqascLQ4mSwrhrDff8FRiRjQ91qOXWWp3BlQ7LuqmSk4DCDoCqy2b+JZ6FCr91SUYFEmdvxBJTjZ2BQbEwh9YBe4w3VQrbpLALoBiLDJP+POyvWxFZEQSs5TRwJ2czRltJRYueMTEQAtzajOotJiCgL9WukoIQRv2x4Of1MEbLV0pvQLkXScqSa2MKpTpkuLLHnF/z56QpS9b3Obf9A1Oe+uSbsUv6CGmuCzbyNKIXcdI9o6EEuWzYlWyFpcBMyLsdijSfqs+psUl+mykZ4O7k5ennS6rdiSIITDp+aB+/bEdytTr3WLBbwgKH326aCLkhtVNsmEu1tAQPW8UdERViiP07y+NZnLasxg6ViiXUDYvfVjHef1l/mUi30ci9Vp4PljaIOXyE2r0l/kL26x4pkXkl1pXR4JhmJiaUPkmKDJoiWPQGk/Zrna/31OXUtfXa/0HAoPWme0zJueBxNLgkl5C98Ix21snWbbYoq73rkeiYz3TEaFftpaAsXj1/FgjU/C+p2ZenpcQ8lNwl+DnSp2SYwV202OhXJvbjn79AxXlyiWGu5jAb1Yc7QJUMWuKHconTIk5EHmoouawfJODpu6WAl7QpeKt1k8cJ9C9WbK2ck3iIky4SwP5GLOQgyrg96TuP6/RChcqE3te0Bx9WMIuFCYuNGeymXR/pBbYhA7B/qgc7enpK3MKzu7AW9o5ccDH0huekHFN+fDUjvsFIVIclouKc3L/9RuRcg5hAX6rhKjF4nseX3ZfbGDiPLNWdJfzGAUyDQFKOiXFfWry1/FZj9aNiMdG/mW2C/4q3eE9pjnQHGcZC9mRDs3iAJbGIl+mUOLycK99gUrJwyU4e9Sf9ojrF57BBUzhgszY9ZuxqQ/MX7JKuFL9AyunbAC5jR/mfv9UwQJ9nbaB68wQB/ZuTDv4mZhQDYPuO40wJded5Jf1DR/9WDXINioTk5S7gEj2+sIGJ1MXxp6jkctnrAU/kkajLy02PEpakxyYSbyjzvbkE7Dnf/nT2gqr5kX78R6mfP0n5ynyGaswDrAWekN1uIP2Ls6dTBvW+wJV9llIT3uL6FYjB4kpyCoxRFpBpsbjILkrqDKLO4Bg0X0fiTRX3+Pgju7hGOAH8oWsKnMHyaEG8f06B+JcS0f9X5U1pk2Y1NLF4SzMB/QZzkGv2Jya0Zwb/B5RcUjaCCZNi2fFB3ZSb+OUfECXwZgZGXfRuBbs82yEWequAlaLXPyP3WrEBjyEi/Caf1skQPqbtttyUxJd2Atxh5QVNGnRP8jEQqVjFo0SoG31jtqQRKglzFBj6FzareIvRozM2oywxLO83DE7Ip5dHJq99qc7NP1NQYP5J2XpHBybDo0Dt1Ho/Whta0IVxkLQsrxIdVRHTrZ/yQa427w3uKBRvtbzcX1huho+AFcdgBBahjdXwoozD9+fwRjYYZviei+ffB6QQgfqsOsK5Z+iBuP+0OVkscXJy/70rvX02la/thRyxSU+TwXEmJbEI87sziMZCo61g7ZGTeYtBBEqafxQ41vAooFlmwsxpX1VEjBrdFr/XNF4q+THQIWWyKVJ6nH/0GKzhx/LcPMi2ygNSJS4cnZRZXs5fP07pCTfRmiaXVI7ZoRFcztjmGhwC82QHZV6UhHWrZFuKXARlyHoEwzXk6MSG0bj/INkEaP04urX4bdSDeRwMD5by7Y3yDvESsfx3FUO7BYzzS3PoUlTwFpDZyz6lye8zFTU1JxLwNGz0i89IA6dBT8nTSLRXb7sSjhNwKX/2n+D1gVbukUlHz2NSM9M8x1/Z/h6BWzMeschdAWGocKWitiAVrB/tKXO/ym2dpLgpGA1WxfFYq5tQefC8Xm/iLgTFIqfb12Ygj0l2hkOv4AI8vc9eiOY2ol1qyzhzsob+mwQFsrNihRQSfMIuKAYwAmIsKbiZkQ3zjE9pqaeG8OSzfWyDIVEeU0x7aN9QFlIP5zX6rEBIOnpH/IgtPbvkmqJoGxNaYvC9o1iITYaD7Bqedm+AA+SusDp6AcVDAfujiBKPFG5BfHQ4vrmTnHKzItIyjGXrwU8cMlFpf2MzjNGE7n9KpJehhaHUoCQRWHlBIKpK+T0h8ILH/4KYMAOpJo6xuM7M2gC/LgCDGK5EfuyG+GUElpLMPoq+gbdvlOpboN2NZh5AVwPfUKVetkvlmybFOpRF4Nhi7KBsht/4ttOSp54YXvLYi4KNdSIxRdwoNNqkOLVXR/VwePDUsLUza2G8v1jdFSwylqQF1aQDRu8YFwCghK10RNZ59bA8wTx1YJpbJ97dSo5BqcY7qwM0zaOe5yGEkYUCiE0eRn7KXRhHOIzPPDyW1RgNekFv/78ZOCBBHNHMRWGaffUWP8OrZ/ekO417aUf4h2C85o2hAUyXqwIWVGfFChzbnMLkYe53UPVDWrPn+JBdsCumAuLMHI2iG2yFTZSzu5D9wESo1NGqn6iJdwhimA9xN6HEl9QhP+CAhtBc//EfIHTgfBWgHJAnt18Oabm3V2TwHIcAIXBkJRpreAogBu/gn2ezSnxKzETzCZENt/ewEikC5qp+/wjizdWhyNDanCz9IWkp1w8AZ3yZDvfZRerak7bRXNoPBKLMMUc8GoPI/XNAWclt9UGyIepAGBM2V4GcodberUGRRD7Bk1VSOXJwW637XswNjuNv9Pc7DYjGqZ1sM5l5EEqSEeKOZ1uhSXufvDPnXB2tYSNKUX3tOZt2jsCXtoIcrM/p+a7SJNtmj5GzMMlmCKGLlfbXU7eK4pxrcW+lRSV/lBF96nlFEFfF/G5A4eRXW86STVKUdXNMZri2cNh0AUYpVVG7P2NYSjMt7f7f1XmeKru6ZWtRt1nQqlVxXdjR9DYmiS1rxemqo89xAspeqO13S+a+VimIdEOLoUrqU2kp/lFUrWOP0tYct4ir8y6uCpdOTj5eA80Chi6INcODUGrhf23rYwr1mQ0J6lP1VuSuQDuHDjwAgLVai3+iuCWwtE/RNd2QWVMHYmGFI70uX7BcLFohNdbW3byRnqENpKHSt4/NwP6Tdn5UkWKCYsujBId3msoiNZksroOl5vNIsWqm2Wu0UxxEf0Tm7/fduYa2FLANMhddoydgbv/DpTCIXyl85N5jj9aVWnyG/7opG0keeXc2ZNV1ms8hPaj+tvB3cUfNrU/xV2I3ga9jWoiOVb1wWnYTmWe6ZQbcdCvd2JxHNuV7kGnIDeAQHQFW0asmYQcB/VSNp1Tkvvkm88yaf7lhuGSEZBdSjiRsyQiuAS5FPtH22tFNSRREZpOsg/zxy39I70StvLUrPTGTTopE1TRONKOZ0ssei9uPcTXRnOoVWhZSNKOKyBylOi57Kz3yBAnZHL9IlPeKRKwt0MdCUEV38zyCs4DHqw5OcmaXHlLxqEPLVtD2zce7/2g4JMII1cFSnaFZlU3w7NAKGSeVWD453fEb6zK/fUMNrIh3xceAV9IBl9vZaRkk1z25bV6eV8rwAKGmgX0yIPbYQj/49IwWBizh48mhmU0TNZzuHeI7XZ45bNYrP4G0j5V0EoRt0OD+ynrWNXUbCXpL40RGAXy7UnWOMkuMF7/eSRDzkXadeXQDxR5fskmsH4yGWXiwccnvXbD4AcZzhEtpFMFa8f5KNJmhWSKeDJqtGPfB0FV3mF0+xoxkYqifFrUUnFnliPb9poBJx9ICLM0JyyVR0En6pxjQi4yLleND/cqCcbzNi0PCMYbpAM8Ikk0LNes/K2ytHoHUQ9GdxhNXm5EF8XJWiG9yKCT7rS0AQundQ3GT1oos2hBHmTxMy+T/TwFdCe5cevZKXcN5Rk4XVYMLDCferJKCYUUqO/y+9m+sO0B2aGq5LH1D/b0vprld4FqdRoZliGAomWxcEdMnVztvxx6U1T126AdJ2k3M5HQARcoZQtCoJG8WVBzcnEZjiRfk3BrBv590rnH2aQIyvM9Yay/Pglwg5aPFCerxnD8zUWtWgzDQ2SOtqdLf1kro+oYlIqnx0pkrJ0XbUONt0ZbUE2z6GxT891vUjXSnUJgs8jeYkY8rVZrpMv57/FM6pnmBmQqnRaPibm73Ky+s4vMWr24SiW7yeNectLlHYSBKE7xvt1+db7y9m2DucIDHvunMAjjAFAQ/Nd2zpv22aWdO7fE7dAa94hToBQPxOJk9BAiS9EWQw1iVUn3F88Ys238vvzifPDlfpETL56GE+s11uYsAhg595iQfGxjPcrhNOHRaItdmlY9jRiyEoB4q1DL0iieagN67ZrcR4bYiyJwK/QeRbyr6Ei89qwKnWyXQBAAkMayHcP8U9+AT0dEK1WaJqFhBizkU10VM/Cw+f5hRj5cZqsA4R6GAFh2Xoydcg9ZzAyXgZMgZAA2G7v8/gFxAl/pbyXQo6ScLDRh3sPesvyMt6hfA4IppElcGHxZwBeMJgDLgeAqB+5CDlwtpNOATLcJMNMuylDr5uIKmvzzJ5cil8ULZM0qLpUJ0dtsx12dEICWROOQGgL0UClMtosGMr0/juzO8KR/ay71IVtm3DM/8SvErRpOyk/br5Lu2zQIFtfaT8oMfkcdy6x7ApznlV2DyIHh76zURZkJ6zAArhL9/31WQD/k2JsF90qyC5JyqEHPMUqQtXNHsH38Mw13gfGqKwHgX8s3HT7NByPgLGvUq6kyezzOTMbkCm3rbRHGQl00JjFS/yvsIHTgflxg9HDdj9Z+WZHgn+uXuZqFffbCpLA9F2ZwC06lW43a4vbikcHBy5wPAIZNnrw8LvohkXK3d30Y+AkVcoAdjKvKUXHpbbaZ4jT9hoJkO4lXTZLUMhpgJk+yN6MnsZj+naSUPf2VdeY3JdCgt5HpYHn7XfDOJtf+h9F3tTkPU0k4PGbWmSRpUWNTvcuns4gg04Pc+M9bKArOXUW+5fnm0TpKsxD9afc/kjiCrIFRkc8/M2hK0XLVgJC+gOYRoA7XKUeNdTnaLRC4fRferaEbiHfcp4P0l3YEpQYIF7pWuBelxfgPc1V7VRqpNqOAilNCW+hapJcQJreEIOMdraarBoPEOtJQHnAccpC/KMB4cdmn4bgM7DeZu+nd2KB3dQ8DFoRk4S5GGbPwWum9KPfF8MkbDAkVBvFFZ0DCz7epAP7ad4d1rJQXrfc0YC3LuBNsi30yt29lmerwW/HO0t0Dh5H3ENsStKErL4ZN26fdJ2Y2nUBGgnTResPygM4axHkoJavYXtUVcIip4nVkJYQjiILNEseklY0jjO/eBayoC65NPohlZI9soc84WxCiKh23cqE2GwCTXld1F7nRSU2g16p+tE0F+6RcaEn+KpuoVhsUQjphlxEuAQG82suDSfkLZUsSq/cVs6djYu7lAumjAlkMYZQjJvDnljQQoxsLxp0YzvstTldBaHK91UJJFvL3KCxG9OTJBSX6qqlm0g+LzJnyK1z4HrAdz89pCKl7oufQHztNQqNIrYJ8stUM7SVCU2f74lZikvK7v0DNvz9ppShXpBRfsD2wlqwTpqFsUeH3JSg8kJWRMRqoRanoYbTqdPQcajGuzacBwyd/t+KN6NwM8BdRiRK4AuTJXwgoLPQThUW0gm+fvdvzM4e623gREzYXii26Vc9AIxboZBaV6fkt4PZLwP7NXy7RFCsvxNw6ZchyvnGddFbrR1T7HEC+RwduLTJzjgggEnjVnW0fJfKQRuiogDioimsfpeKLunNruBODC0XRhFaLTAMyui2SZTwaAXpMGEmwuyI3XwmpL3mO3Ir0PSssXbdZl+jlU1BbjkjjzrupKa11/5jwkys6bYZ4IKxZJPz+1joXYFIWId1VzQ2VgtCRse3uwUKVLKgaamj2r3QlbEPUTuOsqC0xREKHUj6VlqMAhGI6KyHUkWTc+6njBRzxAQQWDhsm+HyMswtjVmpeKWdk105SU6fv8PSK42h7gYAXAXbeRiCer2n3I5IBArA1ZqoP2xUcmwm05RlwwAeisVgK7s3ujpEQ57ZVeRH2kinzpTKbnAsiWHCxtEJ5+/G6WrhS/Jyp6iuLek3ZZKFXFwhALGvFzu+gpLzGpwotrO8QMskAbz9gIJZfvxECTRkNW8mQiPUSZT997e1rl12bRVveG9VYUu63Z4YgY7x2iZg/dVEBSZqlUie5iPY5+ldc7Wr5M5scg13Dk+GDnHQw18S6oqqwEXmk+0Ss4hEvWtRocyQNKRsb9dwV1u9FyiiUUoI3IhaZum99gg4Dqb8Sf3oWi77fnRiSpbSakN1YYahkXbt1ntoqK9V9UTELwiXK90bOoMKl3zEt5ncApatNJWyZxWB2D58grVF7cLh4Y0RBEKTvFwXoI0isr+Duj8Q/ByzQpf/cyVa0A57m+IutJXOEx1d2oSXxynL55K6aGE+Nmp7Vt7Ie4eXvnkdk2hPPOa4J/6+022+BOQxCxsJn+T8lzeV8SBw4SP/eSUrAJDFLacIKnyK1SqWaar9zSY3IcmK+EccZWUjuCqPkJTFynAL2c5B2IXtNSxScj7o4JPqveZz7/qGZxhozVOPkvasoLfrYzhVyZTEXpqMy2ZB8YwkU87WhFhfcGm0FFUjRNmBN2SGUZ4jEqkhCMUT7o4OGfpSSopgiVTCFk7MrG/ahBUTWboFQmS+75nn1ffjqoNRdKNRBfjU9EvNUTBqpE4ia3td67WKWX/nBKEshMK/SYa/APKalfHqKmDljoWVsUAuyn2nPaG0EC7YXtgDsQUtVzo2t96Y906ZFcoXiWgVLpeNQl9UQHJhXJS0q+Z27Gg6R5mrp1pg4aeiCUzXFAQYiMkPRxOxP9K5rpWmswo4fbpppxWHTMAgPHUCDpw2vtvgUmg6hiS/Ra0/pEMfQz205QH2+t6Drt2XSn8fMW2VGCfATIdEJLITVe5o6mDrnWA2n+f+GalHVyLLxIqvg2rqYnxpPNE3gfYkbxcGrl9/8xqQmrbMz+fJJ37cPJt0JDPk5UTZPCKjRcTsSfhUsvcJKak7wqH6mED91+cn1cTehV0TenV7SxWtsd+1Sz+NrUpRekTJqmNVmcoYup/dgY12laYh2eLQOUvoJjGLxoJUE25BP0OLq8iw0qcvcCdPmeUDvxu3XeZ9eAJcRcDN0UGVoq8C/VzbYCwbc6h0ZNuwPjj2LZnWdgjxeHsYw6jbq1mnrrwuqGSWDAVL+Fvlfs75uUAQky+/w6QbMsMX2l5dZ+hJBO46/ong/t8xJbTaVoCqEZnNEGiP/oRujWaGbKwxZ6Cx3DtwFSIHRxQNhv4B/1ztbNCKDwyNVntjf97xFaBaFx8aa77X3Pyg0d0y867Acx19Tntn1MhsOc35W7KPNPHqbF3rpbPhrTkH+PdgJwIfUdLPLq45gxLgti83l6AavYI8gekUB5mZVQv7wksui5vgeZNSQx8wbQaHBf5ve7J/i9TpwjOcLJs8fPRc8ejO0GEwZSCCik83HifusTweeBfUBXBgxWu6fXkyn5Pe4NYJQpUeH+lTQfR12PXY1YlMGJmfKdGyFlp/tcyj/bevZdp/nwFhI/MxuJDhOHlzrOnYUeTjNLULvYHbAFoPIzF0ihnv0TGIWqE42G0/Wb4oJXy1me31ruAEyw8l02Wu/LGCyV1RK5clp1NySez9uJduPcTm+qtUGeao0SjUtfrQ9eoHC0Y4nkIQ71Iu5csMVVhFG+CxjZnKHQ1J66gBb1FgU+c0CrN1c3wIfK6cIUbsPne6uVC8dRXrMFbB7q8+P36ucU+hegsXZftkB3cqHut21R4G41h5GnsM8ERjiwYpWcANeEvapuWZ1EVsatCf5EzqqxF/9C751JVyFoN622VYtBbahO972VkclYDLgfOC7Klg9BYUvBPrs83qu4+3s/+Ha9oxlQ2iGqLiJAfMs4K0vQ/Vt61X+RT+h5eSmNtRXdB3tAiIGKviPcFS7F9OWkrrL6HLLeyNjZ318kTXvpDbiIqsXAjF57gK3VR7dB8L57OOWOy0/RIfu7bAYsCf1f5/YFQMPRbzhA/bKykMpW8d3ek/qRSrsQ2BQ1UI3BKySm12lMgwQ4fki3SRhSTyAQ729kxXMYSj72Gh/JN9Phmn73lf7w6yfOt1nMWx7anxqfovYhiEATXjbw5IdShcVzG5RWUxAE304fVxmvf6OOMe6+09+TIMMdbeqzaQxVfkR0T8cCZ1AZYG/VMwvTSIPdVuHqR3kiCbD+5JtE/dUFg+5mkA1zpX51EPndox7WG9yv30hAE8vZ3lLRk7+LQu9TXf9KjfDA6G91EIdoXsmUMyw7MbigU3aa2PjRjamtz2BMVTuND091m3yZ9jJmI5nqlPsm+yBI/HQcYQXHtm20/YejicQIRggmXB+eaailNx5kOKUmCfMjwtkiS6lbc/9ewvOflL1Dw2Ol53rLoaPF1hm7f4Vlha7IXhtvm0CVAFyswDC+uNiFXgDVq/p/qlFoX9GP89vLMDASHFkceuYc5qe4bHeQTCZpJW5/tmlvGLISDowIAVEVa/RSj5bYZ6W/1HvZI+sv6xd0TKTCLK7IClrx1qMDkPux6GUmR9e5/a301UR2Vt3EzXma2k3CFSYRlPekd4Y596FK0EUPIrK0YbP3mn4prj8bFEs5AD0kCNIWS8Ds0kz8VStTDWSN4a1GsfjJW8Ef/kqDLsFKyGUomE52lZ8g741FAlBuukXVQehKLLCZBbxrRkB5MlwhjzGgUws/EW4+FPb7RRbn6vftZL/jKyM0Wx/yApDJaypHVgzoYOwAwQ3vIpOL4/DNwwDCS055fMQWNqouKU/HjpE6yPx2OFAMWkLmVeU5p0i+WZ40NjyPOyFLT/BHOnIblM/uPU5woUW5r/CXJDtMm/zZnIsDDPXC6qGs+RKAp7IQFIgDA9uxFeNV+a3bY+j71xUNpP6redhLLjnbTuQg3BHAAsIlTXrz6fePYniY1c5KUKN0p7qPYUgC1kpI35wQlTOngvGroL586AgvecK3Tq5Dv5GiCOqRrED+5nJENlufOkCQTPlZ4CjuxEnYJB6B+NVS5ojANAPz5bGv/PE4+ryOULuCw3oFRV2zlGUtBlg02FBQlSFlly+rqVq/H9YB8NlvKARXN+rw4Eiy5CqKcEEnPB3Mw4COkEakbPCakxN/nSJ2lgKBXhVm35mbhdnmPzwMOHgLSzxDNDSPaKjC2t8avA806GxrvoAdc1Xo89Mx4Qa6jjYvD/xmDmH6Xia65tk4Y/3JXVvMpUzB851Ijor1JGTDiekgFInttqO7yM60EFqs78PA5MBxotA1SzHahb6I+EYKvreekuXHYYr104wcnjyeZd8mFD8ACT4IE1M9yVxM1VbfamPIThDmTnKnxqaOUwUy3AU64GKkFLEn55ZLDbBboTh6z2NrnGLZG71O2BvRgV6P94X1nk+woY0jigr4wAVOh4Ki25b+UqSHePcRCHUXSkdaFY2QvVkFipM92aqOrEEYBFlZp/G3rpi1VAHetHiI1tVFSjLr7N7CxYBUxDzKAw/ETJe7ATIs8vLd0zqXJeMJHSpDX1K19t7nZVspYth8nFuKg7txjP9GTpg2aPDLZghIfbQI+2/CKTVcd4rALkNqokw6T3M5wX0JzhNtCIGjJwKB3ka6WEoZxO1lFYWga+94EWdnItSXXsgdN6BcBhQRFTc+Txz8GAOgubzRgbe9pHj+lCcCxsqH6Gu1KETUe20W2DwHJ8ZTVzUgw7qDcFWHG8wtekPatxhClFFx3A97Nj8S6NzOXWmmNJbtmgvpW6WZs+EPejkCrxVCQUTbajrzbLsAI47kutbk2L+o0k9qGgvLNymhlQhXzJJ54vvReIEK83fVoKkO9V0FYFAxPnQ0stW8Yd6PcEZq5JACnsQMvp/ZkD6/VqDYtYvx37iqVpqWEVz3WAUgLfkyeMB/QuRkeb95gw6fhUqWo0rMayQ7pTcFTUYdndRoqW7ZlJfDRWQTKfS7Srti6WyDFnibFcSL8MMAtIQtGuJ/gZ4q1MduQt0qS5M+wqxRg4Y38uwZbz++YIq0eSTWWUjCdN8nAzGxWhFHB/7sgSkK0tmSCrNWts37VcqY1HZrRcDpZjK/hqs83uu9xM/Aa+DJQO89VyrB8vrfzYZdYYnlK9VjhzZeNky6ZPm5hvX+/Ujve9PC2oKUDa7Vc65O3/POcDOvo7V+4Se1UjtAYGzAKW4S74u5l8lAAAl8GOajeizuyfEl806fLBeO7qydJr9JTTLbTUnUjRBsefku2N3WcsEXWBlje1ZSQCy7Cc5PnidGOXbcAw2HSXyiTI+s45CVQiIxYvbh30q7FLq6RvzfuaKozZH1RRQgxIzJUDP/O4a60u1wUPu0026ReIuh2dH3fntoeMHeJW3ONc6zX8Hyh+DBqoolHnklTIAsNY4XYV4dlMyBBnE5GBd0K/YCeAVuZhkZNV4vUfWIwOJHxS0zcExAPQ38uVV1oE6hNiCbjHQrV+Y37cetrezRrH5n6HC9yklEO2ky/KEAdc2l805WlRiaQiz93FljBn9NazR5zYUG81Klfm52/r/ORZkm6THNfv9rUjvHk0Ify1D4+RLQXdELsbQYmXgBxol5wLEXa6XaAe90GiAW4N9YkYr/qlbcKwQ12PYFPiNs5qzB+ZV6Ns9gktERWuSOt+mexz9WaWprLzPMksgSAcFwfACWY1Pc+KeRgQUvaUYPOt3adahg1MxqCDfPVWSO+eihgPankn055RWaGMsbYmvwBzM9eF1+niflH1ejH5uN+mTOI4kRSYnPq5iLxHkfPyNteNtCsmIDkiXMb1kpo+lb/j2P3TEgNXRXHKDOmo/srS0kiNqUkJjO8GL/1vD11eZsYLdPg7O4q3izGi9Mdzo/g3cadELl4a9JV/j8hflEpcqFNfzrVGGhI3rt12VzXzEMFYqc6iyQ1K+MAOqRPG0OTEpHhkxVTtewHakz8KcI8CAp7y2IfbPA2JKQpJwFS+Rs/bHMX92nTHKbG6d02J9BvmyZLiy32sUZ/2QiZGBy30BjskliCMSCwoLE1kqWDzvx1pxpnJfKaHl+QtuHc6iJozz53t897dqSAYSQvMP8Biplnndu2dZPtdZ/oeyXkGI3FdpvvSc/CsJ/8ewXV1hbUh8IoeBslODm40MbpLfklcZJT/jizHC8oSycBaMGFYOnfu3t0K6UIv+zpXrl4pG9LL+KA9UpOn7r0gYoH0Xy/S1gcWrtkzDD7r97kS1GNDTwdrfnQorRo5mch5HvuFVDppkUVrwc+WGLlJRm2Eu1ke4tsC3mCHbdHgwYAq7TgCc0m4f6b57+httl2XzF5FG3hWrqZgCHgX0z7sb8Eoq3t9AGpXnq7vxcsPBDOFU5+KCAD1ubgOWgfEDwCKTaOOEdy5CsT82HOnpM8LBc2RgdwuuwhTNzawwK/7PSFIqqhIqmIs8l8QEWIXfq5cFd6HeTnopgv2qudMLgP1sVXT1LP7BifLL1wQt+lMpN0k/cCNgMZqfRoG+AkQxuJWHRvataP7HUgLE78SFs5rkRwqU+6vViW1HuihpLoEudEimLJLmF0Or4Wl5lA1ArMknv1nUy/ak5TL3kW8btRBUMBeEXqMRgEKtMVqhhrINiaf0MVhjyf5ob6HGTV3/YLBUhqMBjk72DukUzFCG5fmNEL7/n4TN03qzqDdQ/ZL/uvLlz4LPpJmTASVLepXBiJJuGhqofi63wfuEJnivQ10mi3sGsAxLwOycfTKj0HQq+5oRo9ElNFra6tIA9frjrWFnWhTeWLTzpv6pmbKKl0vkkOYnuEyBv6n/QYF0obM1aLy6QmdrOZLxas/N3iqKl8FIc4b3KS69CUxUXTjRhMUGBO1MSaXFF/BT+LGHU0qnwSovodJKNcUUK4Nb58rsYfN+c/pJRcTWwAn9v3FAWIN1NZzQ68Kfzpwzbyq0Har3wxCWA0xLVlO+FnF4ZJqpGlM6bFEIsT6WJtR4Vkw/X1VgUAEfo9VRVP9XXFHnZkZW6CNkz74Z/7hAih8yZqimiVzoxpDPiptj/WqnpYtHoUInFMgnLRiZpxHLQcohVkgiIaZ7CMRjN9rwaNPpix3LPMrOJkFGIS25dxLPiLkef1QWKFCqi+jpGeKXWGm9CuKyT7MQQqU8jQlm98FLiGpb/p1Flq7JrKQB3r/PT8mbFuY/F6kQrJDMyy2WXwRHSGIOtokg7Rzii+lvq2h+Lc5LufjDBuLeZvwSbrvrZ3sdpIeaSL35YEo3D6Qxnjzf0faRCWCz/AEt94LpT6SmjB1M5bHPuQg6ZJlZr+bIArh88Lt3IuX8oj+rZ3Gs1uhCA5fApxfgJYAnVhubWQ8uUVtzDqRvubJyZXx2bjBWs37ropdPeEDrF+4FTr2Xa0HcT0A4saAa8lNKYhaHO1ea+D5iLE7Cya163Inth3Sqtk1z8dJy4iZPJb7iYnS3PTMXYBVoOZK+Z23OPYdLaqtLTL010Wc/Cl65/qbOh4XfsEG1uRKgJYQ2exqnfolxY/NST2RsgIOZ4TaRkY5B+Lg+AJY+0/XuQFsTBGmDQ7GnN8ORUiPUi9sjOwIx6KPmW5yN2vjd8nKdNeYd5y5AsvuHOC5/ggxmQpUyBwMKPcZkP2BGRJuyrnivxHVXZpQjZXBXjGYwvsOQBnvFgcPvQNkfmZ2+AWF5w9oGFCzXJGw67A9E6bHWecUk9zorqZql2RU5D85CBFwHsjj70GeNyjDa8kxeqhMucxPBc9NB3lnU69kQ6K5GlHRJUM9u1UBGI+aEID1lVRw9O4RcJpj1JRb/3VU2s6AVn1H8hqfYvm4Gu5TS4s0vHjdfj11Wy3r4BVBwU6QCq6K4s0ihBxGKb5gLq1TuIeIUTYYgtyPzFdKACHtCcgImbcKE4ginS8szJ9NDWxz3Xg1SE4f51mAM+bwbTe0NN/m+uLU9qzevAwF+K3Eq34LSZdm5a5mXeXHIzQPtqLETzP8hyiPCvKQIlr69oFtIbmqyMO5SwQzSI0om6jEmCXCBwWYrxFJWH2/MAw54v5q8eX0pv8OFCu+SWHRFbAf8m9x2L3KG4Emy8dxjsp8L9QgLLMRNEpY52pZHMk5Es12H022FafwVBI/B0Aa2YRqrc3yuVtlpSaSsX3A/W/hpr5/V18cKPatiDiSF3rbOcWiM0IF/4S0eLl51w5UxyneMixoyjS0qCxUOtgtXSR4mErBZTUDKQgkw2XQi3LJxNoYa86dPAWYP6jDM5+erX6fYpmh9sYgAOpo/5JrJKtGbX7H1vVwVUSqiKVchSbD5Aqj/Gx7R6GWXV1cPIijjx5XXgreGD6c8S58nWBm//3g9Cs4VCSJ9TC+VK3P6SaGTs8HFF/UqFuOE/PS8kQ7LcoZT6fpLxTdEQ=
Variant 3
DifficultyLevel
598
Question
A pet shop charges $120 for every 8 kilograms of dog biscuits it sells.
Which expression shows how much would be charged for a sale of x kilograms?
Worked Solution
120 → 8 kilograms
120 ÷ 8 → 1 kilogram
∴ (120÷8)×x → x kilograms
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A pet shop charges $120 for every 8 kilograms of dog biscuits it sells.
Which expression shows how much would be charged for a sale of $\large x$ kilograms? |
workedSolution | 120 $\rarr$ 8 kilograms
120 $\div$ 8 $\rarr$ 1 kilogram
$\therefore$ {{{correctAnswer}}} $\rarr \ \large x$ kilograms
|
correctAnswer | $(120 \div 8) \times \large x$ |
Answers
Is Correct? | Answer |
x | (120×8)÷x |
✓ | (120÷8)×x |
x | (120÷8)÷x |
x | (120−8)×x |
U2FsdGVkX1/enanGkqA7t4fpJEwnYEzON2Dm1K/GIufSo6zR5YDtd3KqAOP9eQXIjjKI9S/VsyEtAn6rg3WGluaRS7YBQnbS1kzFp0h9OeNxIv0a03lPti0i10FwienIbjpDWB3yAA2xyd4sZEZ8WFGe3jipDYCV6mDajxTFIXPgW93HUd3kd7Cugz88oMu6VHe7/itup6zf112AkCkxxVOUVf3Fptozq8IK1iOFLEEgwaK+lRwz2SJV76hKx00xHEz9WKdL4fYGlXpnGlu+lad2ZHt4oIIMZzYw9cVJd5yWPB00nB9Oe/TJxu37FbBCJTqDU2gvpDmwyHvglKM0jfcbKNxWuCEJeeYTKIWqarZN9SQ1Pnyw0rqSFV/7TnsI3OXFs1hFcJhjyR17iWGTOWpj63wxR23abuE3g6IHYFDatBtc6bcuV7sIHV6+BhrvNBR4k0kOqQAMUIJMtjR25Ds25hHOGHuubiw7H65Du2qon4SYhe80SS0vOVxCNlJ1bv0mCpSwO0T6o68qq63w0HHkP2fcXBxlG3KloEuPQ2i46cq78qRsn9sZkACzLmD/c696IYPIarggj70AHLLjKlC9roa+jUjczO5n7ZQGnBhGH9QgUFMWAPfUz6+sxlct21awJ/GF2NBSsRKhce5kfh/c/njGrzkCwjL5i5LTc+VCsK+dJ0Gvi9pf0SxzS/jRkz333/DJiFp2gHqTMUC2o1cfxyaRBuxzJpipIcleU1icOMxJOCJspjZNl6tu166sj/8IP0OdEKkccFo3n8FGXriPCH5y/e9JUZex/44Vt222k9o5m918bkwCN31gg8C8hqxhpLNUFhfV4OkyeS/CezeA0yX1xAbiz8Vv57GG1YDdjH9cGZ3SBOkRAkLQ6xmclD4aJguaaRQDxBzw4TKoXWT0jk+HrDo6wx2b6ZkZLLreFPTC6aVpJr64x8YvdJSMPw8GEmX2Szq1lLKS6gB8vJPBeeFr/vwuptGRWjJ3iIRmY0EHOW6Phmw0q+lerne7koP7bbR+8l4W1xGmQb1F56wFnTYzBzlawm3nuv76Z9QNLDyt/Z0gpl6Wn7guIqaUAZFdDy+Ftgvetm7mSsJjSg2jtil4nwxakeMwRT6OBN2Znu/gOi8ZpXEsgc0YIcWi0RjR5j1G7cn65orXduDUf5HK+vM72jzEvd4a+dTHS+XzP5LzZfVWEoH6+LRqxhCKnFe/zIrnWLSXPDMN7m43re1JfhN81fRb6elfOi9PuwPEcLXhxJKMJdFttVxK9PhQRuKKkasYiaz1j04I3IRZJoUHDdkV+3f/kVGv1eNBix48Zc1Wqpih97DDTPRxkLKzEkpALHoWAZZkRSo92s/zoO36DVwR3a+mcwNw7aw8FXPjlwm+p5muauuQEpqUv5nWBGoGoe3365WG8r1sKufcu+RrbszaxPky+tn3aiPjFGNWBNmSOToFeWW06fJ/a9FwdEaQCKwQo+c4V7P3M1W5N2v1iILjYTpPPKV+VBW3TlhXAWn8ExJC8pP3zz0g8dmQkaYLgzt955AKwOqvmdRezrTOL5JoLQ4Afw2nsjaqpcbd1ZHHN6X+msYwEmR3mRI+8goXmtqnMf7GVM0PO1JrOiZsTeYyOROOb1/D1OFrdDMmciT87+Z00KlkNklvi9ZokEKCjabNntR9KRDNRNXsof9GrRvCkoZadcSEvIaQJosy13bp6LoGzSNu1W4gGTlMg8ZU4srUkpvVO2yRSlBsRPNjxmQaKWSGko/wPoOFMpMnGWZPTVRJmM9tsuzRS+kCp8/5uJH2V3Z+0ApXlwJXVzVXDXPIc40K2W6mBtV/K2ZcDz7OpDEgaQRgIKQkN46FVP7nAavOpGc2peHJhSblRhDt8KFzitanJSwNb7Q/k51fkb2DFPzKKUxDQ/1Lz6l9tOJgenF/P3Dbb/5hpB2UKjEFpYubIrrTVFu7UZ/+sWWgULUcJeLh9rrD34BW+IjBUIF8tXle51rkxv3EBOgcxtxfEtYnmMNvq2VE7C6pQdnzI7LCMPru2VNIz7C3RR9+co8FxfnT8Ma/wdo1iRDBtB3Nbz59RhIsReDnfHI2FWZ9QqzCnTsz/QM/XgIm5+Mmv3DlS2gMLJl1E9SibTNE4+IzsIvECO1Tas+i8wvKcUH5rNFOKtLLaW2m5qwwuik3adBPAaEcnyYDqdQg0YSBflsXBdXAdDKKpiX6N8MsE0g9BpqiJaD72VmsrFXWFS4J2L3d098/kqh3ZtRCLxroAdW3t3qIMI2ZhLSX9n27zAeOhIYT2NKB4NKjAK4Zilx4QZcgbu/zhO7KeS6WGvD5cgELrChq2o9zrp1TF6EvstrvVGtQBmZcg5lyurvIsNHfNTKBRGPfHzJ0uKvlf0OJft2kFWMwtEvluOdWj36bhl86n4rMllQlmEvsi2633JeQ40yELj8LIiXMWkm4iO5jjgXkrpdK/iHk4YPIS6OcaTqyttqc59L/xKNgwmdgY0U9jfb0FdiYeyj7zm2zwvT21SRe16/sqCYFQ4Op1nARUCGpIuq6qsJArJv10GP+6+wt1CUf7HtYLvpS1E55w2e+Ljs8+Vl6fY4kOm6kL9OqVzIikNstgffJ8Z3wfxHW1O5nBR1i0EBAcKKC8vQD3uRk2qdgDHKTkDggnG0dFvm3vTFdCzVjWFtoD1Qm/yfPaH5qdf3yB+lgXBg2ib7TLOUloinNOwJeXRxPlc2yI/Y1tHw7aXyELufb2jlFksQnxoocz6txY8QNmLzrZl5PfkB4ybYGX36KyjfJCJIaDMiFLoN5H7NleZbdR/puPejZxf5Dzm+fvHcX2cVyVr/cwtT5rsT2th13bPH9eDO5krc9PTPysreqI4Ac2TQQUjLJlm7c9QzOj9asRxB4uKwhTs8N4Ml+MxWMBsWzB4hVPQFw0FGTylZsT0sNjJ3bWdIjjQpOTpLr+r48boWPxq80QtlU4fIWYc+e4e0ojpGxlDkt4UwIMdsxrOduSEIezkQM/VRpz49bZgvs9tZKN7mrRKyKCpQPqpHq0eBlOE7kDfBYafXm3Fdu+hNw0ieYqvLEdIGLP566lJCl7X9c3jjakdNGy8WCupYrfb8dU+9+fqUkub9NVfL6mkF7Edm4XR/IvVSt0Zq6q71G6Tlj9wTdrPECYZNrcFcRQ7axwRw22RfqaBbXXcd6d4ELYOGhiyqiTvYYAMtLNnxp/Qx/q6SUBgkeJyUpydNuKYFJZ2/vjFZvkIYFbiFD1+poIxGgjZmiFv4pUkynLzqwqYuehInYToS0GKastTnPKc1ve2o2Uf2x3e57xptlRO/S0+7IlDO8u923WPZeyEIjWm1GwBkN9wP1rqP6/dUPj/wYPt34zvyn8hu9U4NkLp0oBOj+lSZr8tr7fUwCDcQ5StMJmPhsRWb2hGA7Ucwpxga9NlX4GxD23L46lPt9vEWLkPGIOQoAP3djjsn4F4uBZ2X6hrtyPF8oTOAImIa7J2yX54eCVgQ5HHYrNobcyMeTrF6krM52cwLmGNeWPHpB3EM2/apqkntE9KrOG0ri4k5pOvvKUmFbPN3GncAIuZMrOPfFWsQjsq1R+7HV3622yJ+IZ+o82UpMYTLzbqicMuHlI4wPayY9HSkEOD2GnoOWzEuOSdd1DdvklEJZJn1pWr2NHGP+4rl87Uo0eSB99689dzY1auGaD8nhxzGQ0UHHvo+xcYGc41sqwWG5TzHsVJ8dCfh4+aFs73ixUNydbVTkpUlOOmQchDJgjk5/Hy98kW/M4lTzfJa+oA7M0D3qkUk986+0o1nF+h6BSSrDmqHi+QXxgXR1N1lATzJ5iLAn4woFWrL9fgYMkjceEkXSwTGMCKmXONomGBjzI8HGKEfWVaS9MzO44q6atHGUcxv45JM0Jip6KqOvrUsaAuUGZd8JA/L51aiUrC2eENgM/36vqO3yoUr9HTw0QZL+Rf1nlSTYdcf1twWOgioleuQXIiaeDA0W1XN2zbRWWZRdqEXbNrsjO6Qi8C6yDl64gmRHWDuOXtdcop7OVmyc7aREtsgBUHkQffhE/DE3+WibjBCViRg+dhIx9k+Raq8yM0/2D+PDZyniNxrAtG+15eTHo3jd0QeMKgcAw5zwWLgKHIhuLEakdshkOH6gIUidzHtf3pIBib2OUU0axFsTgaigj9UhWGy1aJ2R6hiVjz55037HED3VBOVM95YFBvuRUUNtxWOJ2DMlMvwo6C6ewCEHWT48Qev0buYKK39eKxhjhQ3UI2qUFtx3YKM5HjQj+YnShN+Ali4l0xkF6NTYVqYwUDKbOTvjz0MLAe4Y4DdlKJkkSSJ3K7aes0BD8KrD+zbFg60xatMBsykzcIF8fCyJXEberU+vVJ0vCEdooSgYKozoK49lXabPPtoxHXRhl/slw7FkkZNoXSgjs8VIlZPJ683bZG5ziPh25lu/uYCJUZ1LHW47zMUbU9gT3z5hYk60vrL6eelX3fE3U8QaMY3ROsuj3+bVvEwpa8doRB8iQAiDnErbxp/0sPSH6LFf5W3+XB+yNpt1G4LoAFWOLtvjOU+t9abK+FBxPWB/n/INZZLpiZvqI+MZL+wPjGbRUqoXqYqe92lRRM1K+VCpg/y9Q1B0n36R5lTvAunVOVv7GropRfCh6+YcrBWprfig+xOykmthdalFDJu3Emn19o99kwkGwyUDeShRAnQ/ow2Nf0VU7DR7FUaYgQ8ehoyLGVdkutVhEEUTvLY45fepGRdyC9JnSwZlQC9Jfb4GZUgfm2oFje7WoGmyt1qqfi8Xt0xetBjWF9kSC5fPA7HeAqp9kTqZRT+dl6JxcVBKtj080eN5QYv7qOun0NcF8XQt//lB4MoHES5m4WB91QbNS8sv4sCWkHJOVenbP4pjiJ+yz9cSl5OpRy3UaSk9sXEbtECGq6nPbI5Ds3Qrcm/lTKBBEgRRjfyg2tIsW93+uyuIDwFH3ZC0pAaBa0dEiwmCE2LDCZ9N5e9GFwoCjcEiMsHC71zdh56wogi7oENJVCUAlnXzBu7wicFZH9+faCtiBVicIesPcTlGk7tUqEWHCD7Ak/ArFNSAsn7QCgEHGD5s5UoUGCW8I81UYAk09/ixZ88wMUbPXbc7pMDOXur1jdYlH0U9/2YUcWmKRgQKiC7wAglFxA2dHUQucJpti27tUEHmiebqkjBd/2ZjVaGpzAt++4h4mGG29izutEYkbihq9XzYYoecmdHbf+zVh4sW+A8n5I8X6LpgZOnTSOB9ePbveWCgXysuFWzvwGGYmvreEv3+G08s0j3W3JV1D/QU1mP5TlBG9gpsAVEzgXn7TUusWJq0xAUPH9zbBjjzvKy/cIBQO/SmBU33/zA5Q93xFObcZIv7E4/QOykX0rYE3ARtpB8hyg445STyrfL9HQUx8/0SSPZ4PEClQky6gIoxW2TIDHRgmFA024Oq813lOvVQS5rHlHwe6H5FxGI0NZKK0OSw5Req3U4aLQCR5K08WlbPrPwuGXkwswSwaC8YxlWN0VhBxysygg/4oR2zXh8zD8oii3vdRlrNtymwugufMyKkTTze08S8OYcssgFI6cIxkaiNf5opFfwx6RPu9lxMxkQI/7AlGG8q2V2BA/wLJa5HprhmQfRe+LvCqo6550bZE4NNVzbORuzxAqDv+wcQnC7alZLFDwoZCYFBzxIqEHko26peumo0ngFQPflhuNKrVXAqlBHqPJHZgBosvk9PP/hHhnVOAWmdXfmwEn0OvjxtGPB0nlsfUZQpk09zgveHqMfTCWjUyHmjhmlWyPKmfDPB7IORg1Oqd4FBjtg1LSssIRyOA3dsTNA3khmHhZclmqr1Hg3UQd3tf7iaNtfF8DG06ESLPJ8vqSyPissR4L+l4dIdIbUq4VRiNeBjqdfpT2Yq7+cZBnQjYepQOkpDLMEQrqrsmZQoUFWz5M5Ji6oyryEMgccZmykTSQR18o+krbPtoe4jUSM8GSmYclkvqIT78OOhJXBsIq+QC7pseejsnTlYr/yk6d5xFqUcmLJe8wH2BfJlayh3AGmNTiW01QSPie3zDyDySYNYW94qyS8ch87e/TJu23yjYDPHwZr6GcdNk6rW3Bhr8RIDMlmr7UshTPaNmc5FRY6cB8wDcaO7PrDvrIDVTaNxZJsW2u1Kn8JYbz8zbz3rLe0SrBlKpTDce5/1pmcK3HULm0/hI+TTjrSW+yItQ0aGbvy7fCDLA9qWFWCUublht33Y+AItb+J46FiG5aSJTYmLfjILOd3+k7cOeS67oQvxaUxDeJGlTUD0cfLVG47g1J/ST5ZnDI4baVZwwFi7JYgC+RgjTIlFm/pZe+U5bl8CarUTTTUFAhGmlUZPaMob2Riy/2wOO0Q0p24VoujG3Y37Ch7KI+InVtbcEsGsHDbz81VSFoOrA+732Ovtj92ayySY8VgwZ4FrB71wcFb5GdT1umoX0sfNSlKL3g07Z4o0h+rtarS/4hT1I6dJVuZ8Q/1VcP+2dClMh6z0gpdPIZIJguDTZNfgvCsKR7yOgXbyzZbDRyVwpiwOiK8ozNLpw6ewoxaXfkvYqtx/G94PwHzJZLJoHLIJHzXSdusNR4VMsNn3DCV87xvS/XwZvr9eY+csYoSO814E4MEBREYPr20I6kF19NyI2NYOW/Of5tx8HB/u37dKrd3W6usPPAGLKL65I2sUqnPWyj8M6zyl3QZ29Rd8AWmLOuegTgCm7LQoOku63Nok1hxF1nQVmBHptbYAaUYwgiXJpFXwP5tD3eCnXWqpfnhDFzc/co9Ogzvj24kQljxSl+Jfb5/9fXGBGC++cA3nRLk8MTBNh2LyGSa4h7LQspEwQfDXUz+t9rpp5cv7wfJARK/bUxotBmAOUnTRIczXwtucb5xoP1pzqQdood8gw4+/fns5mb6KD32w/gGfOHyxpySfqvYStK8R0ZJ/VheXoP2r23hEnhvWyaWhS34ZT+F0p0mmgE9cvVqirxGYGIVWZamxBjDOcULNZsgGnjj5qlOP8zuVmsHrchT8afHaKaxsmJaY9+zzdopnasAjfHRoA8Y/bPKdpg6nsCBvyUd0qpiofo0ZFpJzSj7wAy0zdXeR6wX0fwrs4I6a+W9408QLj0gfDxi3eDFeqbavq2svy/RVeZGPphWCWxHIdjtfAf5vA/LHQzfKSrJdBVMIp8zQ+014ngc0yUb+o30YTzA+cXUoN337rgxqnV72xbfMSsglNLdloOAGe6OxE4bJh58FqnvIAUHifydq6PSfGfqa0V/id7dymCF5MHxVkz7M00MTJGRRe+mUCKV87VmEUi75sXGiu2TMKq1PVf00PWLuBMdJAQeiLpeTwjNeQbiEq8grj57ZKqZJuQ1c3HbaulxBNvmx+4A/nHITgkH66djTUv/2PUIDb6v5rGnarxLidaZBixFNwOl62msOIgo/MTawDvjA7mBRcHWk2UX+6yM7/rzkcpdnsOXFNxUZu53+Cn7aVES6l3yui1VWhdUQVt9zt69V/xmr5Fbqd0oofqFhWXxXFlelE/nGq8BPL2JFVOBptmNS8hlDdH7Y8k3VTBB3bizulsF7H7LG2oXtE8TAyxqWU+sZSb+u2l94qw/Ui+t9ITUiNtYA44qi5P+hyf3DHnBzoEGcAiCuLVWjdq0ElmX48nk8J00zth00rddQsR4vOMSNyAXx2aArUcxQuOUXFVL6pWe4Ot0NCekvyAx0y05oVns1kYDu+IrLVXVpixGCE2W9meiV60/flKJCq83YcOpLzypkGdackYwNwy9T97aoCJPvQL8TQKO83eXDPHqv/1zzy6LjpdJP3MJCTjFEibf9HsTVvudtwlYEWXTQRbIJxfOpyt0buZOS5EPAb65ja5LBEl3BOKqr/tuykvpQ1m8BddZ5F3Zh9LxzaDgV8cOhmFUtrINumkSuJqvQjB+hU8isd0mTC++EOBIZRKQDxOwBX/8lXCn3c0O1hMCBLE7TXvq4wJ4ARrzQmrBnK73grE7Vt0bxXnAWRqgyf4fZ1872jle8oVDmRcxx4RoIUERZAJTSzMvNc8i4uFwvt+wCk1WAf03bNdmXiQciLTn+UrlcoVvh5h/UDyMh+2/wF6tJa0con6fUIpJOxMQaufBLEzYfLMME7jEqcNcdIlCHRZcvcmXBg8LdPmy4zpqXDGoGwcm1tFwKBpkuUixAXOzpQ6WdSuo3FFWGCDFDpPUY/W52cHe0EVHFvB9Mabh+3AW1mGe2pmOCxUJ/9Q5Gzu80yizmMASI8jMhrRWEiYuFuX0Vc3gZizPy4EaWM8LS0f9Z4Ns+LNxJmwCkDIGEaMqSmRjna7KjUl9N2s8g4F6wVSJ1ltfiY9QuSsQTIOapD+9CUMAskRbrhyEynDiw+BC/R8KYwbLclfOrMTyyPfy1CPwtzlocdGbv8Hlvur0McYDI1bDrJPsMc5Yig6XCXgP5YxqNLhCRAZCROiwQQpHe37MBZ1pBHX2oxfu+wD3jiAgCfq5rh2MJjWdLZVhTyZYuSgk+pUylY236xN1XWOa44KNOwffewkvvy2mq5AZpU2rqm/u7tpaGWQxV+W4BZEBcxMESwsj2FAMZO5yqoZNd9Ht3OQ8zp14pZmjLhJ4E7vISApxZW5BPKTA2fDCq26UnLdjgBqlZcaqJiCBnGMpID1mdcdAT4oavZcGsTfuSTCGTKYLWOoiWyOrbum86+AbGf7R4j0/9t5xkAkXRq42kREDTwo4os8VsfU0AnnELabYyPIeVUZUq9PGcxQs23mVs9VbhG5NqhKNgBKKzQygm69NAsy7GfYpYiE3jOZFqa0kC4+RzbK6Q7rteTNQhVQSWeR/7o68Zffu20H69fG1WC71vufbA/nCQub8yirgrJ3ddSTJ+iOUazzmjOPx62+489TZJgg6JlS5E1hIZfBASvs7KPUDuyRhcdOFeDzq70WLchBKWBC5x/eId+l62LEWq5FYALsuRA8n5Bc75b5i68ID3/bYfogv4CgAyg0dLPC/CAay7gF+SbQb47Tq7D/xl5yVS9ThH8BEjAA31eMtUJRE4sZ5YqgSvDk+/egmPut+dTlv6xDXAmIMGW6K45kFRwJNHvoELFobmnuivbFHZPr4y0h7tgIT5E1Edy0VwyLel0LH/YQs5RoSsR43FZIgFqZNgqvEuqGF5pbykuwHbpkBMnBlkkeUHRFf6y6SRACT47Ynk63QqK6nf6uzHaImfE+CTvS3Q3dv3sge9LYP/yGOVNyrHP9vN+Vyz84dJYYRA2QjI+tYkLRUrgwgHbggfZJCjZNeqTlmswQKm7SCIu9XWsF4uLZOLdcsh6R2eRB60rpD1uyDSKsk/kKZelsTTlVRZnOghm2T1Xo8LWwnuG5mmM0mBwzwq4w2Mtl1oP4a5wqktR0pIbj4woYLeaQ9bEk6W8AMHwJLyBAp1KdVITMFjuik3Ysb3sDJySEACH7w5GCf3JfK2m1LCo3dWXncHQ/Qs3MMyhfLqP4E99nCU0ZBiuoVtA+mXaVPY41cglCbrmX1EY5ujG5s3o9hJ4+pFW2hyiomv394gEjxJERj7mzgfMcysfqj+z1AbhAODyL3POKLBvYJUZDZ6mDyGb8b+249lfDxgsfBRnXrGD13+LC+e4MDwDhE6I5+eQOaAI6/6DmNvMj+pSRA495kiME1+lMWto1nOOmD/GwXs2E7b02jUG6zsUCLirwGuOYHNpYzNOjbwfZHtRtTOKXPTdH9xZ5GeC6wi6PH/4U9aeqUNNxkD0Lq9b9Z9D7iV8wTHX9/G4a1kCye7JPPdXNuIlkHTaBBuYmCXdda2/asZjbeLJoLX95l6NWGgdHWz68kGPBY1N9yf96B/B8Fbpxi3+4LPgUqdwIwzxh9qGzF0XSYqlFXHrF/r9RnU+XzvXGAwGU5UzY0zDip1XxH1nQqPzINZAct58ptR8IviPlIWG3oSyy0lor8MMtbwsSMKbtNeXXriq2AWA8zqXs013SJetw5GeH94dQpZqSVkTKVCNn5rzgklaCoo0JN/Ip2VwRGc+8NnJRu+Bn9tNGmbQMrdwLmDotA8WE0OeXVyp5iQewkf9o/DPyAepnzH/W7Ds2CIz1f1L+XYiwbvoojXYUJHPCl8aq2Y0FIkcEXHdhztZxNpzKCorG0aNoi5xbb1+dUGwDRAXNEwTaklgLx6TvGrjz2gp1cEuHpaF84vw8/XTw1WZWF+2V7PC7Fze/UE5U1PjH/on9sBdFlhTx0ythsNCJSNlCS8yaUleR/ATTI1NBl6JfQxEI+wvEirZqwnSrvW7ACuzuS5i4uzf8H9ZfOboeZxMvlo2wcnaAy+9xJapj5nAAL8PwxNMvlE4ow4O+5GACWacmRYuKCU/+oa7cjPx/JpdI33Y1THp3f76XUTR0D2YvDnnS4LF6riFk7Gd3AgWirNltUgjhlOvHG+YrKvLcfjmTy8z8Pn7LnMaZAEv6Prth6suhCdJfzVK35Qyg6gfqF9vDRgRhIUliqRse0M5BeSSLfAhDMVcPTLa0rbh8kt6oTRtlkCsRCYSqoCQbaZH7UnR5Ha9d8NmHsxRWrkwpkIDsCApM9HSe1iS5zKVEz02YQC088aZXgZRVg0fSEenETG9NxUVhMddrIIlYkO4OBygkkN9TyUVWfJrt+HSliMCDGHJpomSQnQfePnBIlMUBXPyBLwuQeAlt01Ta65zf50iZjHh2U7tcIRgDdqTz+I+bHn6IZdpO3/YtsXypnUrN2uOeh0d7TgUs/ZZbf6tzBaG5KxHBzzbN/FYKcULEkP9Fm9svfmjx5FspPrqS5rzTNyMX0os1wlchvPGavFApO38NDM0VGY4NFyOOUX0XcXCsxGGI8GbbnpeHB0gQqQlTvsSyo9akXbNSeDdgito3S1h8xDLYG1qbjgM32HD5d+FOTJvWRozcyqDRTpfcWxUcTBYJudHhdtYa72DA1uCWlXpNmk4lwjnMKnuJA5zznyKX1zGhQQz/JInMmq9KJHxV/gIQgGEO0hU6FmoLjCSpAE7e1hgpiGs11qJy0c6+OELily9uzbJfdIyOSNqIrefvWxufniZvhqyQCAnSyi4qZee+mybgNYySahISw7lbBDZ60qgAIJCLIZ6FDj6Xc6twQ6FAHFJX+j+xBCWHIDAaulc67hFG7FIDYGpZ5BEuer5kOtGOAIvGqrzBNI5WZkR6HwT7FKE0kMLhzPl1LRnJGCrKI6zMKnWxaz8OsIvlyDvd+VcTJBWW2CQqyuQTozudWzKLf9H/+hfHMnu9HVePCnP8vp1ogyrqGK/EDO4n/YIpAIJvqCy0EaTwZoI0B2FF1UtfzBodj0ALwsesjfmLDCrxHi4coa5xcuOQLsmF5+1s+9jokMo4ZlVdhX5FM6S19b2vi0n4u4hfvpj0d5QZkl52zrBTGn1tJVHCdUgZ6YAt7hT3ggTYerU84tDMUVePjkyJjdU67c7YstOfIKyRBOH5bqCpWaT6Jvxh5CSr3jQxpSXLJatKd50hxpiVIGDlwG989hdeYJarVO5gZLJe10uGT0Z2PovJdO3s/GQBQCNUY63uNskLD8jdIUmbpDL6ohnL8fERpwmMYSD8/OFJ7kYXENKLKkUkFsmLlYhLkeXeAvUgl9tUpdug88jzTXivZvvdICchE8GEv6ALsqdfIdveIYbBRzfwGPJQ7S760s2FqcqC6LLYLpNWZtyoABqXUxCdoofiMV3c7jVJevdKsO7QMVA9MM23Recs5cDKe6BEzblwSlKMulu+EQfpiNBlrUqT/S8zRlaKSIoKsNZK7WT0MGLcpa0Dkqy5R63DRLu72IcE4nBh/mGZG3NNrD4TZRsXeUcWVX2aS+X+Fdcj8+7QD3029GIkwu7c93wh9ixksbZFdhuKpiqHPgosGhFwYNTwyCI6B3OaQBIW9HdtXTqVU1O9sJaW0IxVkN8GZYReTW9ryrvb/2QBEu4QTNZ0mEXpAHXjT7gWW6+70QHCy6oRY91DTfDUKl4+yIjtJQ3rDxf9NQyOC2wbSR6/X7Nw79oIdGQk5KptnA0028Q+RSvat4jeYJZQnjwLcHhGP6pQ0VpRIe8wnA4PNE1MDSaBJ7uS0iCedN26WUhYffTDD28vl7gvx338dX73rrSXIiWY2kfnW+rEYH2CbmflKUQwoSqZ+lpjIsJSnnpB4adIr+hxJ/lgNcLwcPBaKc0KfhGOXc1zCPOav3VwZd9HL/C9cyQDGbjV4HnGzg3+5R2fySVqDhTD5zeLXa308vgG/hOXhO87E0MYqcPuxSO5KYcC4VVE1shSI72Srg76q8pJ3sPVt7HxUQmafmKA5AWEL/mc3Z9w/hn/E4q6WxaUYupP83gVPIx3BzYXbcYEr6jJajUehr/FIqIXMbn60XrQBYBDyUIWEbY5uCZWRdmP6OXdO5jwv1WNdQpGCVRmrrYkduAJ+LF6WND8kAxj+38gRlgBHZbRwArXDcrfbeUz9EICmotWV5vO6t5lmnZSzGkAMIg0bYxiDvkAB9MxfT+LMdHsMRytHGBBhbn71RNzzTpRXUaaCq96xtCf+DtRNj3fW6LLNraq8aEjJXyzujgRn18Q6KJWNY589HWOPfW0JietcLu+XH2JrFuIB0dhmXDCETZbFwdlpSg6m8rtqdjIFkuBDxZfFPOMMdX4gFcYQtksCyCxOhGg0zwaPRjXdRsSo0lBMBhkCQcS8ekMZVQ1Kc0Zail5fzusEZxj1jJNG4KSGjoRPYX6eu44c4D3IlBIPuwyymxE9zYgByFJJHgAJr75Lp+jr+h7AgFXEKiqz2omOyeycmQKcO1BMmZ5N5RbcpZ6qG6uIrxMU44RMRMlGXx1Pc7WTndcLiiEjtTpUzaplUKjPyZgs+6IN+j+nRlHyF7RlwCaBT2JxuYWX5JqDbcmqE9+JJv2VOagmgiyK+2MmsHgZV2TVn9/RkA5bw9XDsbWFOY9MZypwLzoXseEl6tawXhRC9noyIglaaOMlzXUMTSA1ggXHQu5pRFE/iq4q8APUoaE0MoZQREwvazb6IMCV/w/iqn2iLGwNmJu3myfLWZeUHoXpr6IJHuFyCd3K1NOi8vN6GrMEO02K5AtHWIN//0Z93CneBfb04SPFUOLwue38PHSAL2UOSIqfULC7pp4qNVKjjgBimrRcCko1c5QpySeGpQrD7w06hYbL9ZZ51SVcBAx1bsbcJZS/tefRKeEKRvbP/PQzA+euI9w2+a3soyfPjsQvet9C1eyi4e6rY1kxYOcZ7j6Ow8Of73dQ8EzFDI/bUjxvmsDP1xV99MrmQ/aAMu12v69jA/+yj5IhLkPfwDo/NvIdBVj3m41+RtkUZeHOZqxhXz+MboUnk3Lu+8uB3tFX69XeeQM8AA6DhcBTt835kPaNeMY668O9gWw4uNhjJbS+8SGaZ2ALXDSakHBV8nobn2pghOh/FZjYZNnuzdkRQFLht2Xe2t4aViTIs00xHJKoBOO4ykEJ3APnTLnsUW7neI4hFDW7Y69ccnXxI405ujs81aBSssLcq5vufPZFljoUlk7ENqcG6BRyqxmP4H2B0jXxVxG9T2GCwIZbpXGJXFpEmkmEDE1tLqCIN9uWszsv09DY/o5j4RYeyBbOHIfZmUpn/y6QTo2UOVDFhr6qyCr63dk0mNitXMTj8tbBTNeizSQqnhGlPNSYJ5rOA4yhU9yVtRbE9+p5co3t7MGhLu2gaHgt8kJoj1s4u/aRgWbIfHzYYpoluPUeHECvLxJ0shTcbLXSoxtW2ScPijDwFh/mRWYA9/yH1gU4YIVKkJvaexSu2754dYCDc1l0/509pJ6FtnTy6gJXNmsDNjIzLgAKyhkx/OYYRjaW7S0pC3upQmVW/wf4+DZOQh05fyBzim67RZqAVlqE+2PX4HvpmJXvWYimAkM2EfP1G6sXHEKpK44hUHFzfAnK5bCy/uLzaO7h41cMYoaUDzrQxunpAmr4lew2JVNzR7w7En25QZk0i1f05EGFeyHxeZwg3Q0WyqEdUKf4xAxJPp2xyLMJDsA3QqklRhZOK0ATL1UjZ0ae8suMLfYPVMYXiF67bfo4TK2+f/uEF5CWpqkU/Ph1JWWpGP2iUOp6aDvfCwmqV4UTOSVlkR/SO+hdrLVY9lCKtMkKg0NKkSwrXlyWmQLvq1LIEuhaMQndQaB7rEpatbBPgLQKdVdSzL4/ym+kOlpXSoMs3KWzPHVo9AcwdbQyzNZuVJ463k+fgsxny64Hrwom9VH3Goxf9wN4ibv0aIymGYk9Z+8ZdEJR6rbH1wLdaAg1Q7wCBKXVM0t2r/B9JD6tcM2zbcOHvBCzTKeABSX7qRrohzei3JqCz0Dn/OTMR9060Wn77RZv5BWmcW4DBKNPjmkhHDz1Fn6fMKLAkTHaFbh+jxYJ62BPD7xrjI/jDfHLDsPaHLMdvqwLUqnctne1UqF07grs5imwM+0vBN5L1GKhjfsYZmZnO7na3D3HkWSp1IhMubA1GGfBceiHI54RzRN8EKZyYs9E9DeTk5dzbwVXF6aCgRGuxU5mPJAO/r45tUOYwcsyPwdVammb6wLRl7xbytGexAOfqdxrj5IkfBNJKDYh8QO+NkBrZK2SbH0IWPPWe+b9KJ6ZNYEKpVDCNEvH2nOQtCadSOjB4iD66k74BD875C80i874ulX3O9vfAwADgsF2D3LgUfyu7bo5BNNuGQLKq/X3Naxxogr01iFRhq5W2gT8NBRaJu5zKkHLS0E4sC+cHFtYTNNj8IePp
Variant 4
DifficultyLevel
600
Question
A market stall holder charges $36 for every 4 jars of honey they sell.
Which expression shows how much would be charged for a sale of x jars?
Worked Solution
36 → 4 jars
36 ÷ 4 → 1 jar
∴ (36÷4)×x → x jars
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A market stall holder charges $36 for every 4 jars of honey they sell.
Which expression shows how much would be charged for a sale of $\large x$ jars? |
workedSolution | 36 $\rarr$ 4 jars
36 $\div$ 4 $\rarr$ 1 jar
$\therefore$ {{{correctAnswer}}} $\rarr \ \large x$ jars
|
correctAnswer | $(36 \div 4) \times \large x$ |
Answers
Is Correct? | Answer |
x | (36×4÷x |
✓ | (36÷4)×x |
x | (36÷4)÷x |
x | (36−4)×x |
U2FsdGVkX19ekVdaA8q7IQ5Noc9kU1ecqVVcgSOQnSmcf9zY4Bi4HmPuXICk+vhX3k7+W7R8pzFkw2VSJ1ox0ZVZCdc7RaE60RhMJqT/7XTPZEs9eR/o6g9eo9JxOdF7qfY6y1X0U3ec9OKh9J7N+fhxvxk/MNe11GyaAzT/Y/tmkQ5bJLhqDpqiamd65faVzcSUIdB19r1aBgcAhO5Vkt60AildSP7mKmPtSAP4oBHKL881fR3MQCznn9rEzKTykM4TYPqcIyEjM0GEj0S5HMWrPi2DQ5IDKJS0kKBbV545apS3KvpxMft9YUOVsZyJj/6ErL9W/72xkEQe7X1Ey7L5tpnFxyu+8OdtqmeLGJ5ZM/sbTEetnUk25pi156G1T2kYrj4aYylQQJ3YvPELV2Ac1JhGu/NnuvZScm+/OmOppUrld6C0UUCKo+KwHw6hq8P+lLRgQbS+jsaiKQIaF/svwQKHU9I6Y4cIXKl2Eg/avFE9nATarsKjnvbLl9PHBk9rUyU9vll0SVsfSSx3IHhtuuN2H1VqnDk/Cv8qvClGTHdApnpCtYjUmQtCJm8h2H/IvfpihgDGCwSJjACNFhh0DaEdIelw2uRo8TU8IESCzpfU1zK5qyO+589lq/DhVboR4WJRLCKeOVjZ4zpC4eZhz4GISECYeVW+IRTpkz/IYa62j4UV2x/ZD927R3HeRNp1xNH1KRLoltRak8BYyWDgh5hZl9QHcsHdaH9sVv0GGm8Efo55c4Kmb5SbKOeE4arwY44G6LsQRRHRjQjH9LDp3JbuZ9/Od+50qqisLps5ciV02V5jWfklhViYDhDBxlpa73Hrn6y0fgEdovgr4MDFxnxVE+mG0cTAJdFMqX9jkv0rHBICEd3hOGTxMz2wEMr/cke99KbioFLwwhZUw8PvS6d8DYVXvJLhat7na7ZlXiVY+xfe3qex2oIB53kxxQNySQorqcqzuThknDojcBxFqDv2w2xyEcAl9kB0Vq1L+1y7OXly0YNBs5QZRpmWeroq9q3DZSXKI98e9o0TfjoR2pd6Xd6qMnoTBc21g/MxT0+H8qy+/JArA/vcRMyKf+n4Wf4RMnZglIKzBQEAgIrOF3ZNkTZlf0kumkL+ckQhawdnLT/9i9Z//xnhEEHtsYJmABuQ2TC9z3nsy1tSrRR5ZKyXBtBSrwMF43jTiWUfnrEk7LOBx0YAVGxdWWAb/iw7h1Xfu7x9Go7679weXbnLXjMQ2Lv7bJr22Dtd6XJ+B/ztcAU9ZZCTgwZz1M9FlWzkj2Xx3TNbV/ggmwYP3908Z+HTub0cUwdEOJilW0sYaCfn+PJhLtA6dn5xYLqhj9paO0mNtBJ9ehCTFjHTBaus5zQ634y/0AEfqQL51WVi0fEQszgEY+OO3bWFQSYv2Qljp4nrvkQN47rPJ8RccSRB8NabRCSSUUtFTAm1sidzM3n9Bpri6S8xXqOk/EoQJIuSR1oHsrvKMHzlQuWqM+qNp4L80y7YCf5eW179puu0x7A8iAcXoYVEgZTQkbJCxbxD5rH9ISdeN/FCLQqbTp2Bj9A2j5Mee9Q+gYFCEbmz/2Kc/MFtEcH89Lnf4unQSuWL9KhialcqcQAg7Egia7pW5Azq1QpGUb+/SPZzK777uepd+3ouDvbVF1RUEiSXFiyBILN/tmTXwNJKae42yk/55Z5b7FBh1rQRCY5ePD0TQBVO6FNjFn12HOt2y5W9UPGGIKUvyC06nbs+xYyRYboGldo5rJkQQmv1Dw8hz510I9PdmR5dIr6QwXoXebVTCYPnvkr8PvSMS93Zg71j4mllaW9Ubzh8PyOTHqnzxnwayyE9tZ/2j5Sw7THEestokHHz+9kcBOS1OuG+HQ1rfaRbFS4SIqKT584vttJtOJc5KVoybnfiK3N3xeAszva1BODw2TktW9HlN3lLR8WPBpYMdeH0xYodAgB4Z7bPMQmnGxmoo2UbHoI+JbWaXWzFDBJIRYQEmv5API1mjTLfHDOFV22gqqXZL7Vz1I8Z4+P+UloP5Na54HG+C1oRJUFnihoi6KnuOGDXbJbeMf8Poe5vGyvAJrOk4ptGu+gjva1zaeRXyAbiJYHvNMGQ3RtAlP1HW49yDojzCDIOR/a44Z++YLvfhVkkqGnVfIEA3bSyk98kTvFGZVuQyVgs1GL3MYjF3wZ42U6NO5KbfL0kMSk2VRdJm0xUpAD32Ok9xIdp7tzP1hE7H6RzJt8vAt795lfR8IDtcvcStfeZ3Ewout1qnX4RSmXTQnoBbXAE/9+TIH3RYTLPv//FfH69bANAOHt0mmIJfaUnMc59/gm25fsRgQp5lvkJKnr67blus9emMD/EwACi+SY2MbG96W7wjiSA2HHsas3e6gY6o9SA0QPqaWlUc1V8EmY96xS+SX3asqvCH/bJ32eWqI0HQ/hV2Byh02eizSMfssvOufxN3SFtWnXdgc8FoL+DV05sOfC1yNc+LSRunmVZvfGq5DV7V9Sen8wooVouXgKGgDZJoTLcxRL39qC2gyDbmiPFKKrLaT/ZbblFTQ3IZkT4jWzDxWUxe1tLSYpzi3JjNiZPEseuw+2Lj8Ly/g/14IT3Fi9Wa/Osf/Hqrd1VXkH3mxmCBziKIPJTqaPWhxLwmFvsj1jQxPFDHoe08o9gE/TOaeAhaMyjmQSFa520kllnNhxi6aLfiXrTgfJQUA4ySCXxOlQhqHp0FWfDc6WYKzzW5wUghm3d+ZUuq4ufzu0O9RAlTR6IqLABbLf89Sz9HzaDD8dYz1inNkQs0qN41fNEXxCHYmxH31ZAu0QPd81CfCPs+LAjhO8It263oh0lCGVl0BzWchqzzDBdSgyH/aD9pX0Or4j5tsUh9BrkV3AWL8xb7/jOv04mWihCqm9UW6xs+GOKL4E/90lGjq2/pfJAq6B3/nYXBVQC+U2ssOmIU3ThMkrU+JQcWWPGdAtvejuTumjtczV8QD7xMFOyOrkkYHJ89lgZMDXoz3jetsq4j5YLUb47eIhnKLnjSZk6v3Wn82+YxkQsyFz1PeDpKw36RZjB9h0TXN/TjYP43DjuuCBp5q4H3w71yd6yz4vApXjzhNQbXMV+B2wY2IstYUGrLH92W+QYVhmYmX6in+XfklvekNu89t84CttnaiVWVS27P+fXzKM3ogIFJkvp2BMJvNuOVJ3Q0YGiE/DqtaN4bGmBCplIq6TcPXu9o7d2B5DPbZE7NFcH94zdPeh+moUmpWIOEJFMt6mTIRmO/Mg0O+EFRE3dq/F8TgZvko9tN0PzBikxPRuGdosh3FV4yo3pmWQabwOIEjbNhNZEZk2mYnDIFJW43P0RrJdbz9733aSYU0uL0sR72+jotGbKHyOZRdwrReIc4QoLlWcb+chU3bJLw4wXXp6nbiQYu3tN2ZGTzypVWp92o9BFFdXIc87nVFa1bMPukIpNAVZZGfEIkuTARnDlutHmvGEDwDmnu4beQv4Il87fWOLGLLyZPlINLhgvqnNkkKf8yaj3tDwArtrPArPH7Kp61zZTb9XmJAmlIjYA0VILQNibRMCyhinLO0eQxgxVDXaX/2E97Ea31dsdByS8o0up5kVCjhQq0WjkbYuAWTTfwyp+icI2+eqHXTnnlCjA0DUNMclfhafHz4r9IdsYsThE87hrZqKe4IUDJg3YEAZAJHxTw/gY1AnL/WAnGb7Vs1q25TkmpVOUnPtvFsjlSnqWcZ1Y/u7/jgURxOpO1oh0hXBiLL1xGVUbYTt7iMYogrui48UPRgkXpdgX4XkDwNJPH9iv8Wo9Awc63bXioFymbSW1lIhK20FE/7mvTwL5kjMHzIf70UCQtVCoq0M0ldwAg5HnwTZmRoYPXqHqTL6Vky/u8qTSjY41ZEAwYGorchA0JGlp2OaI0WP0zX2M9HKZ7Igz+8kXrDiMbe9Q050kIeWSHk1wliCiG5MTA/KDAkbrpQfqpWoxUIYgAkv7kSHxzVfgtDHwFqcOLbxeUE7nztyLe1StuvH1vH5WpNlZqoK9l/O4kAG1vPCS1rq9ydWbbL7YAAwofpfo4wSNh3FSN9e0rhzCrCu9LZWW1dMSqXFtkyolU3Z6dQiqVFcWCgg35dDg4ZjRRIjw2SpuOI1zyl2d3w+MyKltgxJS3i4cbO1/wN6AcndDnlYB9V6lD0VVFI3bL6Ync3fwJycQoIYKj9y9eHzLdNBJFL34aDMilDra1X3m966d7PoWUqcmvVPIP0T9AatqN2dXOm7yeMRig23+AfYFkf911KF4ZFYHx6qxiH+N9d1uFh6MTgXDnN+dCOBiN/W32DlaEZFqslteYKnHCISJBEt4qTLBcRQF2h4BRw2bn/Qp8T2C+bSKYFSHl+NraYtX2TfUiFgu6+O5U0v5+Oau6i0nEySEaUxf+ZxJ5T5CyrSUQI+U5WRWP76v3V6JCrsSgefVou+9muEMUXH7kED5MlkivvBNp0BjHaa2PapP6hfcg7Xhd/xk/Pkib30LKoIpC+Pv5/CRViiwy+yF8PBgqR5bJgM0x78gbpSbGVB2A8UAmWVYmgrYHnxrphBjdJw6oKL5XFMBnD6yGy/YaPVB7HnGfhIZGIuhHjhAk6Z61ZQyAl+NS5HuejdOXvKiM5mKvARFahpFU1EdtAcQ5N2pp0R2q3oUb+xakwuBqD8G+PZFDDAz/jIxzKxbV8RUyjqRdc9+aRULUSevL5/aNPpf0b2Oww3sxki35Q9MKT75Gi44N7IGf+eJyh2d13Gk9dy23oYnjtHT/ImYtqEHEDaK69gG0dneajI6/SOV+lmWOKJCx1eJlTzAyV5euWuuU7lPxVa0BdYeTzwbAHNbWY6esw+yq/ezf1o9vdaFK0aKvWeSh3hysQL9sEFDyyvf+4e96ZZyUDEyn2tT/JYY9dcnP8C638SmSXvrdPja+genigKHcVE5mvH6joA0qMwXdnZwAgemH8VDI8QZm6j9XnKVhKCwJgrAgWbp4zujqHp384mQLkoWydjq+1dhVxvx1AOxURbDoH5Qrlu2UpEgVEsamzA7AR1z8NO2z8XbRgs4KDwwsDXP5FImf68by5YkQYMSwpj1c/PVAswL/I67REJY5bbrjoAZAzUNO+lrr/TtWKo/FQuPmuAeUJQnCB2sRLqbMCNrLA26xLJHPPMIedjraXWyH4wVSyBJ20cK+Q447sxjkUyjszD1hpCjbXWE8AhK+radCEo9oJ/eDl46Uk8Wyhu185n82caryukhakRQMKGTAg+kRc+BxthGuIjpXurd4YAEI17VY+NmyhWYtP6Z9Id109yu+7rUI2JWSqA25PFy2HdVoxSVYoN390UX57AocmKX5m6BX2Yy3kkjnKFSW9+C0m7xuuN0uUcR9bbjKx3cPAn5CVhCQwwu9KJg70M2IaE1rDeE/QwBJqrRfTeQdihonmD9Sb9iNYOcASDslWwzeNh4nstvdDfCoIf6mHe6RkuGG7269Bj1O7Sh3adJzSW+KF3pTokXlYfRGZq/suf7kecsz7SrjfzqfQTW3RWL6Cvj1fKEcLqvZzCVdR7911HiGCbhS20oOB/RX82j9eLut+rBNlK2/Vl00T2vDZ1yrzcUM4ZLCCqMlf34dm0LIARUKN0Ws/T1QPNIQBA5NidFKpPBKOh5zkqwwSObLiU4wsTuWmBOZq0c1GqXcbhB904Thu+AoIYCeNj1dSNY5ZvW4p7bjzr2c3lWmFjHTyFPw0/mBDbxB+3uLOH+71t18o3hL5BIufwLQMyljEUzrmoKdUkHWsP+Gkwdcno6+NizUJcA7T5dC0B2+rUdfWyfLAvxhT43xGh1vcWtZyRoLnl0HGxnACmYUNjbFza5R5tCVSzKQr0v6dcOUjX77Htz9p9U+zyGkfbvx9Vx4oH4aDfTZXlIXCZ2IJlUea6KGu/zSPqq4oOJORbn7c8KX1eV5arwteeBDBzlSOdPN+7cPPUMCrSlNwczSZhYRcWwyEd+LpIxExyT6kxqde64lZpQfGh9z1XmyrUaOIr/zX7ccu6ow5RL7dPA722hvPebcVy1vSrZT34jEHqdLoDiREfDAxhXzC+ArhZ/Mnsmve8nwmYiqeenlFMZYaQLqBJIa2vy6SMF5+ikEb4cRatE9w8jbkqizx4JXykk/ECYRjsGTf4I9RPvG54fLqnV0m9sOOr6erwOnxo+qHzePOEAisSvE0MN999TN4er0CTi8ditFyuKcYatvaK+wSR16FWQYSP8iTydVTEDeWKQi1PRXI1iy9wQFqvSM7/xkAGSMKbo27Z4UDAwsELK4HKVJh5Q6kMjBHI39CVJZFADBiqcZphhV/8VTDQLXLRrQUTxxrmj4ddKcGVHAJ0+IWfzbSQ5V0ZbKPBgllGzpXSQaRjquZevngwFC5Q7jRf/15d83gNSVWkWiz+glyK6qCego1JGiQgnwTLNKwr01+EN5AEBB0MhIQGjob3PQl9ivlXKAt2Y2xime+OoVrcYWUVuCaXTblnnhXGq27kTD1AxWd4FQMK9pPCyFdwXSzsAVHRSlITfS/DM8MHhkmN3+FCyz2aZrpuCkZpV2OdXzkrRbUcRQ5wEDvs+AIpDIXPN/7ymoctYat9jk4BTC9CeLE3GcQ5y1JLRiZ//3ixeAjr38Tgfsq/ZWqnCUyUvBozRag0iQGiOD3wxPay22D9cGCTNO2yP0W9NRjdBIVO/cfCgQac8EyXswnnul9MYtAWGqL7RQU00/FX0fCb9qAE8muf9LrTedAak5vC4XwrqQSET5s353g/KX36eil0FEehOKxcdkwt+A+PqquVWmk0P5Cb8af15XQ1Brr2VZUDQbI5BvfSwqdWf6wxsjkTzrRRYstxSR53gsJmefbNdawd45nzRmakCgQ3lfjbepGG1CzeKJO5KUWGGEBGE/VEWc7n3HI+8mLFIjGUzSAvLisCXcqZxUsVvt9SpStGnlTWUEKJ0pcLW2EctqxuVNdmGo8M68xxgLP1W3C6gdOKS8TWAMk0eS7sIiUpLthQHKb1dXYS9H+SoxkKsAa4wXHMkvjPYp2FXPlEeIDY/7H6wfNXTff/2xderGWjxL/ZFufzHDHj3Sdj8GLpSt1ucFDEpqO5RFH5103yGi/7YD357KvHs7yLRFX5Bka9dGC/1grv70YDQ5L+pwcoAyVvH436IFzg1d+1/RfC9aYF34pfwWuMs+No+bGxaKbTBgQ0A52A9v/KVoEKt0UOA+9vp1hdWtHIsCK7YKzRbc9350oRmq5M3dw/VKH/3VWloEdzAxS4oaxXbuGiodgzyho0/w3KZvCmRc3M8q9TBPjOAe5izdcsbKslUOzgjNzFQcwPE2nRDIxb7I3sq3AlBhksfoacmd0/v80cvFjcmVUVJwoDLq+vi9Em85Lye/rNM5fbEtVEMieg+nRTvqrUwBASg6+0aM3CP+QT6wPWgHaNdnQVk3/7t8b4KuUlyeSLzUlAZXOCFxA1yNzMaRAFKUP8mt0NE9BvrSUud+q3XRjeWQvhMweXReiyKZjrHQal+6uh+NM7+rME9NDmlVBRtTsQ3XY0XbPZWix/9V2Dv4wkQ1EjbkNNxJtzJMpU+4AFEqsdccmO2vMnKwAn7v9olj2UTVc8nPTZJsHfGzPQLNFadKrh9/TPdUposdaW7lf/78GFf9CLUsK10DEoM35zQOEgMgGKHYidySGCpPK8HoksZPD63B/SE9FUNIj0XaLvuv0HbKzP2I3cKY9TxuEmxfn6jjkV+Tz4plfiwLVdPsxUsTE5+GV8Es0uaqcjy0c1MrC/pQpRTQ2zw8aEnaRJXYQKMfJr+8+11JlH+1lkwpCKkkDdHqzmWD7lKPk17I4FxqtAh0HFDGTa2OncKzPH3CJJD9DXf/rl/u9yV1D5kLDe0s7TYVxM7FwobtAgL0DU3lxcmvCek4vfcDtabJFmZNvsU7n0ZVZOv2zn76p/DjrBVq0aQMVBNUEkZRUTJdzfsA1NmOAhXnzphMvyXZs/2hscKdt2ceS61ytx578Xp8gn8AibMVcN8tLnMSa9AGzPru9pa+zVb1QpVymrmsPpNyeYbyx+zLA8jJh44tJLl5nW402K0VaKXASXHYtX4w1qB/vXCj/C4MgIDLcBQ9uoLIqjojntfXhpccbaGsEcTlIPNYpdLFMiVYFpB7qUUA+dczIskfbw9w1HSfni3CEBG8TzeNulblVv2fyxvVyu9RG19TmaCdLBHxJP60JB/eO1kEl+bAAw0NLFjuk7HhZA/RlMTXjaVKM1aWmGvVnkedpMGIjfeT+KlQ50mQbwlch35/c8EufB6qeN4hRiw9HnE+W+T/8Sd4U+E2YeXsnmESSvZtjUH89gtX4QHPnrvwjUl/cxXFrTiYei3mhbjkdB3ZdvhW9pFyE85RHMjqOLWD8g5upiwCevAVW/o2pEnowgEGSriu6zBsr/XUKWjIS2wSYO14buKTLcFap3oApT/EkzN0K4b3bICdIlThrpo1j0wYuqjL2cYHO9NIxHFZx4c6x71rMYqeP/hBAGnJ7Zs+qCi5JPeTzhi+telQnJqd5WZtLBphPHbx7RBtQgxVn7LFVt7/HxMfNpaWOtEFpxotJtdeResGSxdx+GiAOeBpysQUkqOxFz7rphrCzR+j2cGrNfJ09h8rdTpS+zB6e3QNGwJbXvE59JCBKasbm0nNQrHgrGKoVA8ajx103PNgexxKGbYt+9zOcH9fQGOTv9+PrK2Iw34IdSgeEoQcd/fowpk7y5sETInbrLzyumz8Hi/19JY4fX7Yu7JFxRw53COM8vnLeHrzpAFvYVydEHlq0AYrn82eMWrXRKpRUKoNFy+mYSZ8DNfX8RS2wkOAiTFnblltoqDv4thgW82lwJm23Ma+cvlT1+TqfI+sJl16lh8ZXVRpXmhD233ueRwUF79LlyCZvFybKimZl5kJI+vtVYx8qtKSmNKSbQCTyg/W0DumJtUEsm5hzE6iMeqlPzWtDkdRz7iHsIenGOcxR7eG9dqExEdghhdAhDfZap8fYduG/fgnXXozFpw//5NDi6/au5luRV75ro7KH4vI5gwPeMcn0fK0vKEBT170K79mrPj3D79GK9bTncKfZaqruVM9+q46+xd1t7jl7Dh6MYTrk6wRTAH4Mb2xibz/fiqxO6Escd5z23G1/qVO+u8LpOSfwRiRmNCHkkS6CL8tu+6d7W/gJovPse7iqGgmX0i95kBYEij80CEuuZd4z2uvMazTnTxuiBQ4fLnlsr8h1r33oJ6BxKShmXUg0uEMwgzN6lJC/1LtU0E8iOUCp6g/ZImix6aj9OPqR9C9XE2zTLeu8tTcsy9eITxoEo7Em1Be5oHJwl4Y2hmu7X2kwulh/gw8n7JbknXLbeabFcEPWNGNuiDWQMfEAG/AQiiJHBY+dEaGz/EyozF+IGbdWg0IlFxI0i2i45utgkI4HmRlz8b+H6Jtnfys0EBaPp3eiorEKzY9zPnoqvJ93FgLG48KJ9t8yL/s1MleahBE0CKTMW65QiFnzAnOMmZYofToEej9yzlzMs24+bNZMWfZWY0wZeYolWLQMXxQKTPs0p0tRTv6WFQLne3Fpnpx0vt6yB74jt11IQ/V00zWDaJ5VElFp7Kdjj86skEYMUa0a+a6YQIm1hX/Sdek4L/qrf2IXylxh7GRihagQfJn7B8GCzT2kljLEl4xYynbnhkUNisrVd8a4HXyUs9Ow0m4u4HKDm2KEOfrA74KDk7QnleGUj0cHVS/3e48BjynyY4Uz62ko7nqqW8mG/iJDRCgzbBB4fsFLnQh3viOULajcyQ4RWYmRKTMZ9tYwpNZwtgfE+x8msrdT6CvsOmaSrk/D7Wyo9XGcTbcpiQoV6PEmIrntxQ6aZ1Vmtx3JHiKrltSqN2AssMDCAtnfWJZWLX9zbytiZZKIznSeHEHLLqecow7cz/NoeVBIzf9/vc6lBYWabyvCMMfdecs6bWa9Ejp8WcAvEcxLvOoNDAxPJQ66QSYn7YkvVxA+8mtsJ8hzmNj1TUn6SLox8A9k53I9GGCa2gJqUCAGDvdbtyvGE5ZjSCLdkUlmfiRc6sek++YxySGPwLMS8ilQrOhDWu09X4Slz3FSlgr4FOZ0I0eUVKsIj2B1FXfoqP5aQuG3cY1HE7bo+a7uiAAdMgmUFWOnbqFqBbuov96y4mM2HlPmHKeKqpvKSe4fZNj6f/pYFZtuv+RT3Uk81XuzBweTs61Th4F9Q9oyI5Sc+2fXL4XZOtBONTipMcGgzz4ZfVWrltUsU81dKRnQl3dPbpJuay4lk3orVy2+7Tak/YgUUsCj9ZK778knHsnBOg4qFwH82RyGJb2DXoiQBBbvc/U2G0GiD3gEyrXgev7FkHbYO7A7p/A17fMbsftYIqhJG5UqFBBY19mKE0Sp5yaRyOEVkyaUmQtIi9G1HoZTxRe6sjjhQIDw0fkxxRZ2ciEjaKteIp4gnadu0KC6URhDHJVY+fpKJ5LFuN56ORBHtiWozG4jiOc5Ipko8WnUVzXse8DGmfoBaakHYO2lnuIgEIZr02mUy/sRkZVB2MgSN2XT+hmkQeZqWUL4blItms+6f0AQQA7Ufl8TZBUfQVRIlQj5aO7qSH0buwajnOO/KzTRaLGn+FzMB+6q6kwoWOSJdm2mIRAwLoZ19L+1pLCgjmJ7azOQzapPq9JIuwNwKQWVijEB62Ods25AVVFmfZ8XvZPXFVfSLhTxsg+E/B/seWBJkGwvsVFKho5PMSsdyim7NfRbSEhLCNkPq+Ez3yQoJ1a/LIznSQ8ldF6FADBU7fFZH/WU3gG7NwiY2HpwdoYfEp+wIFr0K4jc2ip/YYeJr0dc9iVrisEmq7q14o3rgpWabkdXu2aHWSt/7g3jzFyXwoEjbOI48WMZ+s0k7xVgSKQjIRcmSQ/JCSVCQcJY1meJTQc4pcC14QwiyhuTR1MLy4WiU+MpzfMkPqO+zGtE6cSUP4H2CAIalE1j/a/nPMIi2Y4V1v2rgIOsITou3watZS8WsdAjrINLvMGbzFoZ7SgLoH40gGPLUGtDOx4AePliZA/QdHgaa3BuVjQ1cJSh74rmQCOlcwLqwdcrtLCx9FKJjPcL8w6MtTF25Dk1flxHlfTRt1eWpULk1fx8NxHzdojc9Yh1mv49kxVZTWkF4V0BlUw4fzFqx/ajEdWvDINe1PLjKQTDSDEWF3FtVlREF/NEsDrfFpN+YELOR7UBUDx0218FxhXFlezUdUOfcbd3P4RVFGIJpqfBKTVHNCg0SWYFIvfOYOIqCmvyGNU1atYD0Mx0SLEMm0uVz9hqEQ86HZ5ljr3cBMYMxw+I/nnSA8o3XpJQXPEoNSOZJu9ElpnmvcoNDdw2IE5mdKnnNeaGmAjNtQKLVTbs4kTmrTUyttGJagtqntm8fEw6Ze40bfHTT5l9YObDG47kE7vVLZ8uZLMQ2qXOIynpnaF6kKr9hYhmeZ3qyc6Vn7DznI9Ahq7LRV35mZutqUN4UapT5lBRMiiDFIHamFgvFbbw/8LvAWGtO7z48m+gyQD5JqaOCgE40aMB9CKovFOI2rtFQZtRq45cj07ru9EWNRGVbwDCm7SAwdjDIUK4Ud2Xk9gUvVi3XUIARDrzACVDilhCmTeRcJI/vLXY1ClW5U4pm63dLV5U+kX28K8pHNLxocsSYh6iD6ZOcRAUMftZsipgQ21AdEshJoehOczGaEaSSrxZpiaECkH64ieNcNQ39ldCX4Wh4SbGQA6HVri9TnrisoGPrce+6bK2jG4ziVzVlETBsKPnA/PCG16chFpVZKWPgvAtgNNkUo+qgKtwdfhwlWPCyqPcpCleJ/dAuPbxHlg4yjVy+VEt62G2lNN2j8jOGn1kZ6W4U9TsPBr/5iPWX6n7keZlqmla1Tst5558QUDQPb/a6Ocek+ZFOs+sWmpI/Tk5WZBAXfN6T3TrG+IcDEx6EnzFf6QiuLVq1CIK8SWUfHOd534dR6iutAbWr8AxblLNmthzbx5ekmosj/tOXUlu3RsCDhLmpfTth2TA5lgIwpxN8zHd6YSR1FDwazkmJEo7MWzOb58hK1VMuztkwDw5nkaEh4mDobDT8dlSnbseozDhoYBLJzqBkEciO8OcJDci4Gg2jnaKgFBnHPV6JVOnX7Q0EzQ9hovf2I6ZiaTrbN9zfuGJY7RC6bAOdIgvXZTwNG/YHIndOoUDfX8TE1Inf3ABEh9xzKuHoma0R/ouIBLhiNhnH4vjloCdHWLHlvjRhFcfX7x5aDJFO/gnlRFoeLvDduv0xQYJAxYRfqR5h1lB+hCUtrzh/AFWSwgjvScsbLkTemLOGCwX98hk7YUDpra38W9wHW6/3IFLzCSo6RO2Yp5h4eqxSB6DBQeib/fToE6rpNRYNp7f1YhtTre0C34ofYY8B9AAGaeoZmJSnTupbsGV7UphApM+ny8ktSNFYQf8pFauOa5+RG1+AYHJjE/8GxPCM0vpWL3dKym6cTz7iAKAAGHktUWbJKk1OPBj+0AtAPonZKP9/zJ+qTYliRzKc1uhGkJUhzie6ruol0ryvnhYNQcT5YKkEz5ZiVlQSZZ+POtYsxDvtEhcFS0HHhI5v9hnaleJ39knSCMv+i2Mnk4omHEekoWUiE1939nj5/rNdEN5+aIcNhPwrZq/KyFWJQjriH6zL2T6/kIiC4RGHl7RhTW1C6q6c/dMdkJyK1nbSYN25uhLf/MOq9Qcuv0QnwgAk+K6Mw0XJ5oE/H5EGlJ5hC5IFlBpj0M8onBffG133vuXd+2zk1JTGRD9JiNdwLmjDc54DU8XfV7hCYZrJk/EvfTQIQpqK8jKylF3u9UcjtwSepc17XAkWaQbeUDOb/LbGOnDa5OmKaY1SVl26mNewKLhHN9P3A/qdz9NIGyllWJYw1mBsRhpS9NW12PuE6pZs6/lp7rUV6cr0B76VXhTkNvE6vSBx3KrUzoAHhWv4ilGGRXyA3GmRiYJL3iq3dHzxIgkFqcXbS5x7eeYEs5XHeOLiAp4V/kEoZw9xo4HPQdbJitzB6NpICut9md/k5PG2kD7u/K+/JzDUpU3bMwq7+X7rD4yknZnqIta80M1rQqI6nz37EEr6FFCm8tcyP1AM82J2oa0nB/MNyofgFj67HUd/xclgUWwQpcM7KnkFNHt3VUsYRuta7Xtbzh5aclBWVWJA2a0OnskiC6wkYfKhze0LdTXQTs98/bxeSprgPeaNc4MHKxZEXjrAHcmm5tiUCOZ564T0krjnTOsSbRVUDjJcTPUqclvmqe1wOvH+T5BSngaEzuGR0vIK6ruK+HqbhhwvWgokeY2Hi/7Rq1mRYUd10Vvi1/fkl7A2bux3ML/2P5LtyArux6pifUmV1ONiSQX9kBGahZYR0F0wubAQ4WufFCIF+sIyPOxZqPjiibG9rErVtaUtRpoIipwuw9jPMAaBrkYbI2wbRcxa+30ynSh5783jVDJ3fQO4LW0N1TT44Cdxl0OYbihFNqzXKDHczncKcDMk4fTL41ACyq8R9wD5nQ8MelbCKQ+nSw29WikUgB1MtSaB7uh95DewO4IBC1VjYvg7bEryLidJPlxfLjS5lCJ3sL8hC7/3M0y7DCZQGc+KZDbuKDTBdoeDtPiB4gmdcKhg6QBFHmEk0iV6hX7EX/TSK21Ho4ORY0iPJRfffhAKTxtvzfcaNy6EHYE7CylbYpFUmAgDGlblaI3cZFJtRDVMEBcvjoHifH3i72go9nwCJJw4qWDR5c4o5cpOJ93pL1Ellc2VGit9wOcAZxp5yhb3BXjpPRF/qO+KMxKStI6UMg5r5ID5YOAkRCBl2KhU5s5SM6L7ZwMqIIGXV2szRzGZULnp0RQK8Zhm4qolM1PEQDUlTjkwtlB3qLuWrm7pF5EOb81Bzlbl4M3SWVImtrtXmb4DlOCBrooUrH2NBJWYOjjKa51FdtjkikPWwD0ghtoK4H/xonXCEwDqrVgnBGChAz9Z83g7x94LtfjYApe06AlzXpvFqG/PoHzT7AhzmunM2Du3Ng65j46jcgLpd9JcAEfbIEJAOi9bx/17S1NhOyNr2ojDJwU/8nXWBrXslLNFTu4fPdatpjsptRMoSy73ISSpOJF46w34G97FhSH56qsimVoiAdRaDDVlYrzDOPOx00o3mIt0x12mkyVuZzTUdTMAyWmouoz0PV3pikDehGRbZYTlcRuPymL17jx9xkP1zgV3Xrms3IWZ3DE+ZYiKqFd8YeEj3fONYKo3ZIQuu2WZv8gHHkjQVUDbVt93HmH63JadNvlKOFKp5s+SEdIpl2Y05PXeMYRBOM2wr+oldiXhZUoA/ECFKZb6XK+LMY7YG14GL45E+xFnhYEsmeVKoecGJ/XHBBC26RwxUlHs+cc11z2gnPO2ONArv2RtR4rtBBl/RyXjsKjk87tSL9neoh5bBYwRqVMJ/Y8wL8wb4moDM0QUhQE9CgDAhV/g3LYBkCnE8Xs9T8nuaXJvYjp12ucgVrbCnFNs4KAkL4ActItidBfDzjN2jLrAS3FqBy+ywqe4jB1Hi1TNswe6avFLZJg5BlHxRN8h3yBwjrCMrJ5cRdcxL+ndxjTA6BtyWeGggRIPq5thH25OURd4gxeUNLEQgjrGZO8QEufA2dkVDYLzjs/sjH4LCP+wOO7/a1v32IsJ3zmdoaEJhSHIf229vOzdWgmhLMMh/CfSSwg8/iMdjA7R8F+XnZhtpHxJKQkJuo53R2AZqaBR4ffuQOxsEAo8ByZiB8lzvTvFD2e7kVn/Uh+qfzM7/hQT56uSO98CG7A6Vm3CRSl4czo2fCaNZ13QIUeBBVgBWtys8Ho5PUNhmw2NX//rC1o4xRWgE1n40dvskezYJ5bsNvtDEGUuabC+5hy1FpGME2b9Ihcx8EcHetPlkdKCTNFD/9PdOKeuY1Fs1h4WRDG5OLnQhyS81bMN3tK7bEqWHgnyRsCDKkUAHtXxjahJrpukExNmBebiSV1jk1NuxLCfjZMWWb4vAT4ueIa6Wy2qJZoc1IiPm+lFA+iL3XFS3UxYy77OYEo60uvnTrl9Am0FlBkztOpQ2SanFKVOBW3D0NU1S5Lzu+vMLk6V0FLuP+z34zFUqQeXyMwzz0slZDuiVH2Hyv7dbJpuRimdnObKOw1NNXp6bNQpLuARLc3ugwNVYIxvmYX54UtkivksRZaFBveLcTyfPdBc5Ad8rFVP/y57F4X0gYW7EmPmY8cxOxrkyJrnc8d6FmRtoZeUGVoKf2Ilix5l4Eu/+abO4gkOrvvr0m38k+UnxpmInn+y9F01aE1fHSyKOEX/X8FedUfbmZqCDix5z2UzIuhNFz2G3xaH9F494A0MKO/iUkOSss5GFbrnSboRoMekj+biOkGEj6NLBITRSt+rjYBGPIj+9ps3rUp7Jvzfcv6Wew4OvVcBoA+J3OGBcBpcTLbGAaEHzzX6VcJBN2Vo89ACxe0lqgyH+JF9wqvH6mdXcK4W0LZ/zHmXYONj/Gs53EWXLDzgxPmab0H+FaB4xaQZKoMCmoAtlWypqr1ImWzDLcw8Hp+AQ4dW1dumBOlw+pie3Kh8gPuBUw/9xtLyDlY4IgJ5cmtnsXk/3rVwHfrFKsVDQsDYIL85a8mBbyD9GYM870U5jVvtCEj2PW9+rt7YmSlfRLkYAjvUP8YgoxRw58iu3ZpVY3mVUrkGb4mndTtfLXaU3iamB2NdOgTGxtL+RW+22jrAeQxElrBAJbkYb80HerdCyt+oLtjtc67B2ojg=
Variant 5
DifficultyLevel
602
Question
Jason paid $102.60 for 45 litres of petrol.
Which expression shows how much he would pay for x litres of petrol?
Worked Solution
102.60 → 45 litres
102.60 ÷ 45 → 1 litre
∴ (102.60÷45)×x → x litres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jason paid $102.60 for 45 litres of petrol.
Which expression shows how much he would pay for $\large x$ litres of petrol? |
workedSolution | 102.60 $\rarr$ 45 litres
102.60 $\div$ 45 $\rarr$ 1 litre
$\therefore$ {{{correctAnswer}}} $\rarr \ \large x$ litres
|
correctAnswer | $(102.60 \div 45) \times \large x$ |
Answers
Is Correct? | Answer |
x | (102.60÷45)÷x |
x | (102.60−45)×x |
x | (102.60×45÷x |
✓ | (102.60÷45)×x |