Measurement, NAPX-J3-CA31
Question
Wooden beams for building house frames can be purchased in a number of lengths.
A hardware store can supply lengths of 1.9 metres, 290 millimetres, 185 centimetres, 0.295 metres and 300 centimetres.
Which wooden beam is the longest?
Worked Solution
Convert all measurements to metres:
290 mm = 1000290 = 0.290 metres
185 cm = 100185 = 1.85 metres
300 cm = 100300 = 3.0 metres
∴ Longest beam is {{{correctAnswer}}}
U2FsdGVkX18TxABlZt8n0jTitKuduK1oXJFuvk6S3sa1JDVbv9XF0Gk1IzMdYT4Atpkc3cAN8V5ul1wJ6v1CLpO8PpVIchWwKWajx9xN8GRMtu0Yn1XuWhLd7MIfYbBXrr0OlKzU1HQxtOwgqaMox4OJFf5sDLzucYGezvAKNf+q106QH8FDHX5uRSKklBiAd3VilPM/DyM7o+J8e1lSRsFkTjpwMY8bQgJhGSLWnNnZnyiFsnXoTMOxT9pTTYhWtW/u1zOc1ZGI4S0+rTavgoejKQfjR9i0TPjSZbjirCPUMYkFimnUQRqV6nF+JkYqrLa7e9bbt/UYRrNGwPui3gcLCLvDHOmYTaRBgQPMCuNwrikvyEOraTD7EhJctu1BOujqVprIUza27sI3Xe6qJMKdJYIsMANa5EGFK0XQh/pgG4d25H27H0LBkqIg43Q76h8/RgclKkvcFzgwFJir3ZPhEY+0Ob/MVBnxe0Du31OA6ZCdnwq0Ndgdg/Hvm6fZRV9S3y4U7nKEBy8AwD0Vb0E3pjQS2QBbiku5ev46NqOLnZwLK2GAQTYZmDLtNgcYlgcxBZp2F3bbkcDLF07swwvpuc3IhkyqZcxFIRUTvEEwmZUW8WcHApyjxNcM8lUlkAYp/U7bddcbd3Gi3Nl+c+j8oIKgqkYCRQRZ1nGGa0491/2UuhCivlRMFxe8DTxDnU6l9v07I0XPISGC1OWP2ooczfhBSZ/5DX2Mn+wbE6+F8V7GWvLt/Iv/FOBKmvODvpX1Cl0/40ab/bb3VMEQrNTQIZlK+OtywRYJXjp0AbQ5aUpaCsxiqH+mloL/46b5Nr4d/Y7H/DxG0eCDeWbsoftp9tW6isMOVU9gNy/OHBphQvAHevCpxC0wAdrDL+zZ2jf8AJ3to7G7ZAhvlB35HoXYLelaNCn1bSjpZ9wmnf+1DKgDIQaFLCn6bZWAsQVfb67LlGX55mb0txNkv2UT9A0nAYIX83CVMUDBo1ZioIjB46ECo8UkhZfMxnxW9awysPegRXFofrzkBX/qFe0dPfre26mw3u/Q7T7xNLTi5Lhl+Pj8TPG4YLND7cT3+LPCCNN4p40saj/NFcwaivgrokJVVs45+SgG/629oOWDCKlOEsIfYcvZJyqAKrKaEtl8+IHZCv8+CU2rN4AUmDlFx9gVBaOWacpQeLUpxZwMNoYgZZoXDkapFnR84l+3Bl/HWF1jJX2k6Sj3amEUQizZzHRItZ/7Cyw/4E7/YlJFGcZLMzQGyp2xFZl3d7U8GG1hvog4+0VRUEI43JlxKMWOklfz/pqJzaKFEKgGeSjSrlpIV83zeeow4oUhupeZz2aJ2GRiVY2+wgXII9bpgBEc1dkPrVOEpAGmz3aCdU9pa0NO8L7atRL9j0mXUP15RCzTgzYLGIVt9zgcuM0N60T/e8IQGR1NWBzFpH7ezqehhQJIGAUuJWeNi0N8pRfHkyXR2wLGnZcbzbusWOgDnYshfs8mdh8+ibFPsdeAcB+q6lp1VQAQjJFZF5WuHwpU+LJGYLunzEL0lNTYQdB5eWTOLS/8ids4MkpGXESUAZGLLbEJkYl8dGw9hOytb65YIwqlVG3ZkVHyicllKaVukdnWzDpUVjuxSzCcEb7+Be0MMmQTfcCGu96U4VxxX8HeMDP0uU3r4MK9ZIxWwsruY4e7tkTHWlm1aFGlgmxJMdUo/d80BY0wO32cVMk8QvDDOu7diMMHgK0Fd4aISItgYJToYMBRrQke1zSOYSgwawL+k9W8NMLRCq7hv78PCoLiSbaB5kx8+gFoVIw92QFiNtdWVZ0bQgx3rcYSx3/0Rk6iQnD/ZfaY8w2UcQ2R/DSmuhDmlfxhdU1wwhRRK2xOpUBsodpqAt9YCVLHMeyYtUgBw/Av20HAjDyVnm2EWA0JLsuwkUWNENUfEGyNg0UW6CfqLd0lArsXWXYfSKeG2v/QpEjlsmngITUPPl6ddf2dfuv0nhkxF1k4SmE75sEyB8csWKAdmNSR2zO5JukSBg9bHLJlT3cV+hjzJNObfcJqMImauQY5/TXz/piBED1tDnFYCs+Amu9ZdyO4ihwiBD1fCrv8XlaKU1Ozf1TujEw9mlDAOaRRLbd2DlI/s6lxY0jVXLlyNZ4Lw9NslCCZ6RtPFLhW+j+jmEjDYe6O8cvkeavT2wuzrkiEupHTgDF35+pNb3YAO9Nr+XkDpnZy5wPAFuIwbZKjwD4FPTDGM94d0cbvU1ErNsOf1iIX5wj2iwAhUWB6cgU/kKxTr2lBOjlx3LDh3J0rVKfmuPtp3qP06HrMkU42+Wo3DzTn3dx61SxQRcwOKMtFjaiTtR7NE2u1b3pgP0FsF1wuge4VeowZEwX9a6zsJpj+lFyfwFJf3OSmKQhEZf9ePG9US0E5s2atHdQZ4sxURQMUjwu9fD8qLDyWHlmFBYx2Xw1JJPdfsXwZ6rm1+xQ73ZVDi7LlBDQOy7ktdXqCruzsCfhQNBd7ak+oc5sd3XpZU5smrI54aAW7N3gS+gb09bwCh8+UCWgPX+6D47Kk2KmnUVMteW9wmTqUxLGYfUESwuIPcyUybUcZZFGaAInkYlFBRQ7kbploeXVBlyibjzONffxX/HWpypoa+lPgqFtGV2+1YtcJDd2P/57wLLnNUI4NrIHItFg9mCfHnwb9JdCLvbVVkR1TpP31XTazrtQ0bvRo0cx/B3FiSmxHRAUGt1DaujNmlkqjBZH+ERynzw1y03Hcz3X3yTRHGQpXvZf0s1iIg7lbtx50urRCEXb+yhpTei9YyjY4g+czw/jVmoZpLhBvZkncMYJBOwHatjCd0V6XQh4NfCBQFiY+csvpu7GaStmRhi40shp+8uh6KX9zklxox/25iknU73lvMrXCfhcP11qnWG3i6G+E+CN+86/NszPVQd6r9iosRg9BwTYnsBgF2wTZk/8dM/DYT73ck95yNhAvNO4iyISRH0kG8NRmehtAiYODWbwnBvUwOuoSRarI09sJQ9McFCJCfHReWsMtYaE3PGD43Tb0aHya4JF4ulODVY2g5gv1r0VH6+tSjCR5H6IWS0ayA29sMJ3HPcOYpMk+t3mpjWj5G4nijEbgCzTCdIuNGVFawOa6h33I8mwFb+iDmTyItcxcllPWlEtaczdhvGV1k+gZOVXPpk1uZXCkOjP92mV0/EiHLPS00Gm6bPONsdu2/oUy0g3oAlUCnrpP9l/OdT76bftRoOKJh+I2hgeGJlRNW6tcXDDH1fHL9dmZYMqF0PQMuB0q2WX2Xnv/+rIfAdD0igvUXwcCYAT01UCT2+/izjo2wdWh6ghEeqdvq0tqbek25Zd9GQgJzNH2DOusTxLzyKqHH02xHUlulnfWjQ6FnEPISi8YbG64lERYx0EsJOCGTnpal4xwNMOZFwQc+I26UgVxQUnYz0EfGbgmmexDnE/NDqozyVWH0THU6DbBCO7e+RK8xLRBdl1rWJEL2nh/AN1Kr4QBv/uTkQv9rhMZKsf/aPJ35AchP5dWZswrD1EVr2sq01vV4PbZR6Dh15fzsAhldcGY5RDoaZZ/V1RwPEewh8q4zRZbwfDH2pjNj6IIMC9QUAiCiMFVMd1GbT+27x0mqPjD+jFQqHwbzuz+TCDa48HeASWhFk6+ImnP2Dm1ZJEqJJB1Moj1LY1Vd/wrNDz321xW74OIjOgfWHC1PsMMsd+MFmn/2EspM3qy5xf5XxaQpqlPyHT3F5VYMoBLGFG3rOOazrOICwmJytJ/c3BxIp3aGxBThlgdy+Mol8rSb+qOnBC/at8dPO9zaTb42JPSra58OYeQiLjgYRX1eo1rCCFsgPgO5TsBewOS3j7AwnJd7wHEkamlVM9AXky+7Y4asjoL86FjWcWvIJHAbCn/+BFmIsPcQnEDcEa5/gjQyMoblgeMmOah6cu7dSsQE6IDpwwRJMsxjjSPojlJqVn09kg+70SHSAStf/LOL/h7iaOy7m8lI/H7YnLUy25RCSg0zVybrTfYtmsdqManpbRHV5T92EVmFyks4AtuRSk5Er50a8GJSA9KA7pz6umxwPo2bNSPTzhztdd+ZZJXD3jmYLIl/+sLqz7tyFneF/eE5w52isvTMayhf1LlUPXDDrYtBe64f979FfoGQxdDFbWHjBsldyYaAc0MVFGPNEVI2ejXoT3DOdAtnFb2yeY0coZ1MPKbZJv+VCcp/2KJpAODb6rhvkWjzl/P6G4OHwIrFTnZNTsMqVq8rmgKTqp8o6fb1IzGrmyO4ZR9XA68K/258kfw/+U7hfcYGIi5wjc/a1dSg4/nLtDjzbIAui0uWvfqy5EbA8dlSau0lg4WuAiriem327/EJnsJDu/rNkvlmOl7BJfybUwwanL4WMgzZhjJ/vgZT51YK9jzLSDm8qhnPUcxBjf2SXflVqnr39zcg9z+E2b7+dJI6fdZGfz2rowRB03Sm8A70mzCdxgpHNx1ustnxivJ9rKywUygEWBf3n9arvdNQAqGzO+yWFw8snQO4LlGzc78bOUXq+NQP2s9Pn0swBDLXcSr2SNutrBrzacdVTDOnR+4+luTaRsXWpK3fb13itsq8Yji56ynKd2h2dp4ZNnnrhXWqxX9RCoxsnF3up+Wkg/JbRhIITIna4JVPrgShnQSZC6XYhbhAxMnO5Ua5jFc7/giicd6h/fW6WCDaX9lee3kogU+g4Aoa9UdmEUWaZwBvq3OK0lBK853r2E3kzOMGsDZGQs5ug+QGGeDH4n+xBepFikMIK2Vj2uZwPIHffnGqdb30ZsHzGysT/CawjwVIo8PMIzHFK+gAHOJo5n0xzXcUHIs3DoRNlKQ306ZSBKXb4zxQ9D2EdVQMq/Pd93x6mOMLCmsmdPjki+lINbviCJ0SQHaLnxxJngLde9Mxj/rbODWCgYa1WnSab6E3JWCuyJoSULOG0/JbFY1h4iRO/h+GebWZWaNI4Tp69qVdJ+9t2fARN7NVb+o41co40g0Ul4qfs5r0ZB7Qp3GPA7/a14Ty3YhH6vJo6JOVuXuw4rqDXqLA2nnHlU/dnY+cOQkoAqxyuFoW6TFwvnBY24MOTlhDhEex6JQej0hOk7hEn+OHu0vVRE+1S2iGf7II3NPevZW1qQavhTykicMrVVNnx6HvzIIEmMQqvmyRK9axk/TIugCqcl+jMtCBnpt51TAikjhq0ZIpIqyo1F1lNW9x85MKr/N3qEPb0VKOMfUh7VIfntzYPawXtSP5/Pf0AfPZY4jp+uUv8OqSsDZVsYjlHVqHJU4x6XoSAtYDZEtbPnKQXqDh6PInCJeVSsKTp319nM4Bzb5l2ZUOVJi185YvHfzk5jnoTwrMSIyIgTtdr9UfT0mCuEyhcC82+N9Lkq/mcaDZLL/13cTQNZY/u+0J9Err7ZDPNZm/HKHm/fb1ArwQThjernEscKBUf0vKgBl/k4e9z2rZsc2c/15jG99BZcy4vGFjSF2WtqeDHShLwgq9SgSOJow2/9zYa4u6JRStp27ksIiI2KunHHxqiq/u2+FyahkKBwsdO+2RshSpIXgUZWAkhS7NzAjVVEj5TWlwiTuKml5JCB3KhGCkO285XhRquWWAd2b8sUFd4ECApjV/DtGrIlemJ6jWwOz6bMWPPVMg6f3sogXJdRW7jI6mkT+iViu11qNk3iL8aetIbl53UqKyJNQH4y51di8OCNf4Eu0TJPb5u9gHH6iAohVHomG7nx95TV1Qi4kpfmFmvTJtWIZEH+5ZvQJvKrGtxB+SRWgK/zxM7YRXSfcx3qlapXzab1k1nNlx7WT48diNfgWWFlDqMdPmA1j0YcrMJ7dFknN3mzEjLQN9PoYV9pRR4tlngN459VTdrBgTgcPIoLhMqhwa8+Aq6xzg90OAmOXcURuDRGd9tvenNrpOUWSOCB1v6fOQCUSN811x6Hm9x35bAGJP7DTnS/iJOBf+32nr3NxzYIYmw7neE87TYiF72McaW1cgsv8z0ldPvjuIbJZ2uv2LH0QRSoKJ14vzK7LZefQF3KU64TIR2M85lP0BWr8JgGO4K8hrJ3CwEMkkNA+LCD426ozAvi2UKyzAeXOkfeNZbtDcbKFVzAk7sv6bAFxC1Xc2p/k38msODdE4IVAhtZu4JBsUWBEsVCKCD4r2MYwoMkUYU1OfOMkiIiVozigVRdVKELkYW7UYctEJ35eixnPutUBtaTGrx2BTYIoAfC2zgIp/nPqPvEjDs39+IsFIjQwwjkfyRmtV6zabIHeK5WL0ENXIHI1VTV+P60dTkIPb3cWH1ejjN5VbcGp3WFQfu5lVM4BZjcA3qN10cCsgydne0nZCyKazvG4FyBIhuPOdEaQGHkLzPXxEnDKr5p+ToreS9fTbh3lyELLrEwp+AfkjrmkNidSRmJ8hhfZWqa0TgkrbcWd7UjeB3Q42QLW2ScduC9HFDTR/mZSOOFBPSv4MHH5N3Kh0NL/Pd3W3XYSAreRabq/XaLPSuUvmN5gN4vX7wmXeosgm74V6hG3adti2J40M88ubye5QXMVQPxUG8maf1N0iB11a98QBpJ2Q9IMaMDyCPW0YwLP5nY17N/B8wjTrdwnOCbT8N2dioYQ26UXk4oOTbAVIfT1bIuDevXvDSYIC9tP8VuPQSwRMciM8TL1a5TafQcZ/KW6AMn/HCyBrJ0OUYlWDUi2UpkFznIbKk3ThWbY94BqoRA1t8nEhoLby6+WXAhOUEOBbVdxOnmO6cECuhB7Ay3IpKlf2uwLSxB45Dc4Ur5hHE4m8aQj7gEgbRWH6XaSKY73guEGMgHTPeoHjEUvW2ow6P0ce8B4WV7uKVvLZPiOjuyOqLnrjdxaBfcP1UjxnuZC5/Vll2MFdpnFzGs342iKlCUpNmMpFYwLsZ1ex4wAGg0SwgPnQU0fidRY54xnqR78CuatO4er5KbPLbgA0qOtQpFvc5DmY+2taSb3+LD3KG2tHsWrqeDHQypmPxPd+8/fv6OAn0/QvLottODSR4N9IhjGY82ksNVUpCttO3MwS6U4c2AQYVaN9PGq7FlvNy6FdOLx3evNWgWKe1wfjZZFCP9oaUYfbP0Y0zncns0Oe8Lp6fH8yyoV2ELWUzabt8wGRrzk4zTIa3CFg5/yA07vx1CyuZwnQxpITIWn7CQD0UNNz95kKLxCbgFXix5r14mh/ICEs5R7JqtXHXgcVnbp7kvDjeTJoENgaU+SO9/OtdcWMdQWOHz5EsuAN/Ncs36iglyknXL1IAHa4DGGcRdRlzpOhcPEkZNvq0/h6bt/8Q7IOj4NxTNWc/2N8HxbW9PDph5pOKiwCNEedcOuOTtSrnTOYC/jsIZFiIjsOI4YaLQlV5N5N+YRoqH8cYPiLpkOBPdOOQXhrg0JnF4qG+s2hBOp3NiaIYyXDpHBrftguSM2BrUP7cnipSx4PcDS98VDOANi8s8jGIkDRzq6TJzLMnmOEJwJP4uMZW2ofuxGs6ZQA15rWrzA2TioZKqbC7Nil7OKiv+A2b55yQQcNbTBfCf7xuZ5NKU0QJiUzjOnjIqD+brxSuogqKvzHkbDTGJEO6kOJUL5HE9kJBq8ko9IwqyEIZiLD8RnSCWuPLwNBT+MQ1ztlhmqafQdOFTc2pm2LA/Qph4RtnmAYAz5G2N1fxYP+ZyAVsazdLOLh5/YiBaqFe7uYmBXyTSoYxquJVuPQLdX6yBEnKMn361X7PYVaWiCnyGOMhV7Si09wU+SO2Uq3ySWdwQpvx8fKC/tZ2BSNvyLxtR+0KiK35/L9yO8cI5Jpz5tBtXESCV9lP9Ia9q6YtT8uGdCQ2VJ3lo8Mt1lXWl1E6lDtZganILGMLmUGfIQ1GW3SSUoLLIRBG3nZ9vrBE5NC8nieTmJpwqGU+8mMvebYPm9b5iTjRfRZi/uUC67eVtxPZsoGZ0u2rjeF25/ff+a698Fv5YJq+z39c3xWM32eufLwKne1m5BZniTdgr51NIYviMPmG+QOXARt9bYq7/b3bwp3YimONkgCU/lVFJanAOV0FmJAdhS8ztj4nIPtz/XtUX94r84RK+UHoyyh16ZSigB/+jjKoUhD/mxOBe+8/43MU1Cr7DwaE4vbKsNe6+xbw==
Variant 0
DifficultyLevel
584
Question
Wooden beams for building house frames can be purchased in a number of lengths.
A hardware store can supply lengths of 1.9 metres, 290 millimetres, 185 centimetres, 0.295 metres and 300 centimetres.
Which wooden beam is the longest?
Worked Solution
Convert all measurements to metres:
290 mm = 1000290 = 0.290 metres
185 cm = 100185 = 1.85 metres
300 cm = 100300 = 3.0 metres
∴ Longest beam is 300 centimetres
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers