Algebra, NAPX-G3-CA24
U2FsdGVkX19aVe6xrSxckci0HAptmhvQAAaCelbU1HWj8RfWxBseFw8kUhDmgTB4wngpDZNE2abIsafBNVJ581pmVRGf7Y5+SH5IXEYOhF2o3NA1eZCdbvwmk+db3Tb703N3YYHJOX7KXc/79fAeynb5c/u/UOzrBtfRsebEr9Q5J5OiMAJR7t1HhA8K1vSKpO517hQ/cXRiw1+WsuZ76k8kM0Umehth0FOv93ae6zu0AYASoXSBM5eyCnsQmhQxKKrpBdbg9jIV9UusnRYhkNS7e5xd/PVan1nQwzOD2BK3GHOElAZie9ECyTklGrEuB+ox+8IA16kTApgexAAStQKyf67cn+j8m0sBozFUhBBSBeVYOxfwuXkMK6emfmwE43NZtyTEI9mBtCIRVbkmEVGkur2lqMQjQKo0/b5AGcX/UhjDq8MuPDSRGRCfZPQiCV0DQ9snKTfXEWDefKasWKyjaXhLFDSs5zNUIVN01rMlOZjicTMe4ZwsP7jkok4UIkb464t7YBTPgAgC5GiudyA3dQHY0HqMc3wbup5+zPSrOEbvqHK9nijBCT97wPHbyo4ts0mP78n3xNRyY4QHoFCkRF/CIYxDFkAuQvUqDjSV4o/o7kKZnQmsTis00G/dWokHYvk/TP37Xgre2zyrJedt/uqIh5LvhIw9pKQbPzF4E+OVhEhWREcYD7fGqmzv/owLDlLvgkrQemYoGy4KFE0PCCsC9EuWhxCnhtfJJyEOIPj2Q1PmDJIytjZrCO9KWAC9D0hzIDnYAvgY2KbtHE6dMSsJN1khjnbYp/dwp/KDx68yfU7F97FEOeOlGBn91intcpdNo1BeJbI1E9gu5dkIHd2dYioqSv1La/loyHP3cyDC7TquhSVNMPrULy7gIdZaj0PgDo0YNc8QbGmz+pBtlo4bqkLJ2fAX4AR6PckuNTrwj9ZL0VWoxVJDodlUCHnMFrNy65SZ5kkeXn1rPS8rj6mUerrRNUuD2tYoS12jc0DBM1XG50Pi4X5afABjyZA2r2iizjP17IAEOHjIMDYmVCkfrDfTpO+adH7/kYNCfFwYwDtlhwVAHyNCBG34s855JsJfiepIZwBs/6fiy3Bdk97zrwlmMT6r5MXy9RBp3tonZCQickMhNl/7RR1iOVkMKoAFsp+8rH6Sg+TyHF8TDeVgdg+VahaMV7L30DUmNYTtXS++0xyorzkjiR2XjBze4braqqoYeVjTrMCHm0dc/x+6g/EF5u+F77IQbf4f/Vtdd9+6qLJlwY+80X4bOM/xbYE/twRd+jhrlAtYPQVijhL1lbh+IddmxUfve0gUWGFLVexjyCfWjxuYOejlXl0oqpGoZRhzS8Ljxorf47zghlE4MrbHokYi+Zk3bul3zx/9D4oXpx3gEXVSTezbes1kPho5ZA7Eh0enL6lwG37T9ElLhqEd/8H5mYY3RHGOExNVUY5609p3FnS/EgokcHypLW25dctDTB1GEa5Vs7FuFLhfx2YUtW4ks6E+sw1vP3j/ODBOQ+06KuSQkPypfREzcaB91aEUAVrKpemQnN4b7+2EGFLro5f8IOgcQ9280a8M+AgfYrjvNF/gbD2AfbmAg/yuSJm2SFxPNkWcn2Rqr4ZkmCQhpUzCGzdExXrp9Z03r72uRZcv30qFJ0sg/Lw68Fj+xhxuFOh4OiR2sjaQAIz/LhKutsAoWpLAqFhbOCPtN5K9VXPse3+RYcqIbeqAqoJBgjccAicwd/4euX0D9gQQpImvmD6WKk8L4zyZ7Wi2dib6kW8/os0ERWiDUVEw4GdJtiVDC+4UVwKf+DezKVRZWbqxF1Ch8GaQtURpqmbbPvgpOIXhTCzp1W2LpKKWTXINYwnCkJr/s9sk1xvaAHuQHJdg3JtlGmgYyfDzzt9iXJtFhT6CSzF6oj7Xp2FyuGoJK5GVg/SZxt/CazevZAxKFxM54b7bila3UvVKt/QX2MbooiZHS5pjedwEcX4nPfZW2x10Dnfm8CH0bBUVbKCbCiySI/kEBLEjCwf/K8SHjOffJHiM6xfPBTTE+gdRQUzqKBsho64wSkcI5azrEngSoZC89Vad+Owf9WIB+SYJrybBrqZPN58oy7V9isdO4n2pcKHAvaYH0uF1p/JlVfCVTpo79HlUv9yec5uQJXJzHi5/3PJ/tzvOymbSeyA6JNdrwQ1WddR6mh3jpkHtS4eughCS95jebM7CGcemGC8p3iIHIRa0+MPp7n8gzLujEPMDJfodUgNhtlMLIHgFJtFKlxExAS5RWkFhRziztT5QFBoK92zixoCjMVXSo3my32a4/U8HfgXmuzug0PvNMAuECnokf2tD0FdXagWEIPNy+P4ZRP5GItjSDbn+SuHPqxzCDRnEy74cETwutpLZhfo8erk/dWqAdcoKgoW2d0a3ayat/LkzToTk1MCjkEJodypWGUHNMJYwqmH5SfRKajVPsElLMEUWoEe0/kbFHWbTHcTvLJuxhyDjc0GjBvoZ2nhv1/mjmub0wKFJdSI2eKl3+snAQlSxqsZrPYXCngyQGKRYq9UOiOy52TQh0Wy9FU75E99BZ95av311VWNi7B9KjIiFtcj/C9q8tdFuttBFdQL9kCs+LYEzwPS9kwYBfYaMF+ycyiZfJx1mD8yo6mU4imRxYkwM7wy5ORPSW+iFBDwrRVvkY9etd7XS+bxIMYQKfVOdAK6rjzfqaW84yKSQzZ5yUaA9IIarwjBuqXUVrJ03ZcBuLFBICR/MW3Ck4lrWo2InDGm7coav3OmKn5iYeISVuwVRM16T22g/2R1ZR+298EFMy/6f2IHvLd6QLDyXoFH33ximJpoWgj7R0QVyG/2a9/JcfZLeDTYWPTJ9NKYNkP3w6LhCRzpuLhUOAP+TiTx99V52CZoRaQZ9JXsFecQYus89mCHpFWDqwYTKUp4iEwlHdITgpciQbZamKFjsdfAnk+l66IopCZ3xAB8FCP5jKL1shremGhAaBb9AjePwaUHcEJ9dfiTqMzhD0R1m70pu5bV5Sm44ckW9F0TW4NjKQKkEH9Wlz7pmbnezeaUOHyyysEAy6mZSJC2n5RiyHcEQifPwR65ogHBLyUpJj3jbjzDxwZU3SC5JckmlCS7OAyH0XPQeabeOssN7aPaop/ZP2Dns84Fr6Kvrsom8p3ztPWQie5JqCMtZcSZ8+g1eaiBAM+EnOYrDNAvjc4RqN2pSNW00qlOoKzJMh0ymorkBdxfrJcp8bmH7xch/SmaD3p3U/6o4nOUJF6ty5Hiq9B+jV/mLyUFcCYaYyY3vsucjb1ym4K6wMHQ/Kwxu/9yiyJLq7/nXE3CBVgq8X5bLM6hIol+DlHDL5dZFxQ3fzuCFb/PRich5FfXhON/4wwiCk9Rml0sbxpkEXq3cmFBk8zUiUsFotpwZatakL4P7BFaB6YJV6G7ZJbGzG+coq0+qtfMS3zTq94TmIQX7wNuhF83qzj1bLfa0YhDwAe4Lur4BBIEGxpUjjl+kasI2BgNQoPO5vF0temYjqVC/Mi5ve2UX5/C2JhCYbKqo/sMmw8WF8HTaxwVepAby2PGC/8inJjhl68I3QkqJ2a6NnELH5REcFXiLLwnrgR0iosZkUtXfRDyXtw8PAj9iDljH/f2JSNXjTMSnOi4bNbi0cy4aPwliwn3aopjidCEumlPCDqFC+ccMftUhTogx7DHEkj0CNR/crkvmf1nybaK7s/zNhOd+CiejwMdpgkCke+Zh1/zsPxBeIaAKVhbtv/AUm3MRcl1PGiT8Aip42K+c3atACES2oGAjwLUbWrw69Ged2zxo7yNaYBV4DfdmCZmzM6cxEv8UwfpUsVV8Rxm4EGnCS2lQfdhEiemh0fG2rFXdQgr2etW7F6lhiTA89kItbLO6rV5/RvRoFPBAGxmV8lVe4981qpkQM26qVkMTTH6UIN/CQMP2LWDimidHUKQCIN6IS77o0/N4yFLqQ5KQdZ+Q1cQl3qFDPmLm8KpEGdgvx0XD5FwBtl+2rvspWHf9eIxkJ/s6fGWQ5Z2Yo7kPWayJVpGgoYhfAJ5I3wwLBQ4SGPMVjnepv5NhwLospeTgtBthsSXJ+l/dHdF6dcMEOpiIW6U6R8AhjUNAmEa+dLVQ3heFh9JXdw3dPlV8m8IUuzrkgT6LKxgEKCUUTblS1PKWSs2cTPNqTaHQ+qptuWNPfULlLDLjvnkei9u6pZXdDrP7Iy4IDN6+gMKMpxWTI6IHjNFPQ73eMS0ekH7QwvvIP5/4+mVI8qfmX6/4OYVGh9x15mPa2nFM+n3jdfgJSDqEhpqBXORWZ7soit/Y9pelsys3vQqsUHJ2P4wEDxyKAlKt3xf4W8aKTuPfYbuvJcn3C5i/cVr68Je0OM0w1GFD7zS3GvLpnP1GqXE0AM8lp1RUUwW2WSGDg47+EwELt/zkWiXvvUrJUY/hyNcmQhTVLUl7J1okJ6uidqnEOuYsVsob842rzMSx4kUCuFOHjLxOSJ58C0qdZy3hGSlF/GBCqXCbfTPijuYUXg0jrvMgk8I1N7BJjEN9i0fhZbRhf6QrSik6dyQ+6Pit/BtpxRS8+UP4PuanGb9oq8oJxLEHYefD8EMD8z9hdlsDcnAdw6LoOnXPChn0s8cJpaIrh+dooau3pXRhKmBmq/73/+b1C8Ngtk08Mw0Lhgy/rAEqgsOwCox+Kev7TxwbXJR9vkzLvOgQ+rAOLynbA/t2gIE+TTzfWf5LnVOzPJ/ghRzd49NT7uEm3unLGpcJOPYmEsf+fw+WXqSZ1Wd0hEq7TifwZwM9TQvKxNIEl78o/mikik6Sgh5oPYq9vBgEWuIA+m5wWOrNNYaBwJsK8eNW7yYC6JzMKAuMf06eCR67511aPtv5niyXRk6JL8Js1bddLTMkr4Wx6PBoluBN6yXPkuA4wsqgDXn49lV832TlWewKUCjz6XkjrGcZPLF/2vtQuwAdnGjldktVMWJ8anIcm3C74/27q2Wtpbir2hODJdDg4eb4Do+6BHB2wQUaRMWusoZ8n77nBvhesBzkkp5ZyrSbIw4EsDCeHc6395/HeOy5JuQ4D08uLVnttoqesgL+N3jHBe/Hw7JIyYr4QNutmOyIOd31Swy75rm37ZHviIrOqItnnWfoFtxqmIUmq52/Y3hBPCE55AS5C3feftloRVi6sWqwLJLTg9nI33ZZR84PDwiI1N0jvm6hlLhTJZO28gWbE95UVG29CtLbbM2KYHZE6lB71OeJ1iIBzCZId1G6ktoohwbDpRkrw19W6BxTHprnKZrGnPtXQcWetHjHHbGgN5FXlxOxn1wBBiEOcOnfqf/RNgPVG98xu4FukwEsKDhJXwiDUP+ToJy0xBQBrpIrJuFyzDqR0f4tI3Os7S3q0Cvt/mUL08awtkvHBsoihJ7VwJzdnuiRIEzFfogHBZBe9Qxq5ozIVPOblRaf1t3pNEEl1cs0wFq0VTW78nxf99A3iAYvdT7XZVuQjBLnm263t+4CXxjJmWkwxhitvYADOnYxekloLVfNM5BudSqa4YI1xiOkFLY7aQEhG/X+s9D20yd6KTgRr1a3B6Jkifr/ptSQwVxaezjuK6i9oVzkeilmlz44lwGVRcl777NVzvQp1Fos2dePNqaNXOX9/mWDfcQTCJhhzycnsRScJyP41FDWE+hiXigV5aaNqshm2Es2zte1HhQVYr77vTdVT+mMyLec/CA4k9jgcw08sZQ6EMLWcNmyIbdnSYb6M0mqyggB4N+H2BYR62KvwQMVttxtVmpscqNZEm5HonSEZg3tqpEjGj4qXyMvKPoVK+4QCDZE9w893EDsB+g3NEddbcwASniVUyG9YHnNGeYGXRpjGDHHY3l6JGp7AqoZG7K4p+tM+kKG50fbLSEJ24uZy6HjrNZvK3EeW/C/1Jj81LGdVMPyS26qxuKl+9NwaLKfAsDwhqShAC2xSdBfx/+kNvouOfs1dCUhwmEh3uEKLR2eG5H7job2fEIyXWgzrMabnUtuFU5guABO5cqKVuMHf/0np8MKmW05QkrGsOMMpATVX5Crka8XgkfGzPN6ccvky8wh0N88QVRSCdPWRDS+OWOBmvtf5WyeKnWbhX1NjGPOaDRJ+wnKZPj73/t17GaN1vkRbgdibsAxfAcYedbsSqQQCOat3GGI+VfVEMbekhd6F+4PIDBRmoAFfWPU+Rr7v6VofBJe3LZ++wPrrFMP/2xtBYvuf+omd5Hy7lH8dmtxZzqfuvPEtox9S9YkdU1AV9TDC63bhGKnetaWb7qu/3AzwoOFhJJQ+e9WIUtoY7GZrIgaEDpAZx6TRVCMRyPJN/O4g+w5dZUVMWVfx6mEdsGuXizgXDb2KVN9LbyBIf8HgkYFX3p5iqvZYuzqYVm/GbA2rAl6SkiakRtTIKAhOvEV2AHvboboKAKzY/d2IBtVboItgbTpIR0yFwvzNTut2KRIVJxVv9VOr0N1wqj4GlosJHSRaEoVCwmnd05nQSFICf8umzekmlSdmiEMkUKunOFZXGpfcruxC5FpL3pkTioRN1bGtdVXe/8M9x1L96/dD1V/nDp17yrwQfB7wgiioJ//Kmj8mVf9Zp5KgPiD/jUbbX8Ii9VWH/HrNFFqiWUraG/hiWyDysbk3yNHiTSGaBcybHwS12HmkKWzRB5yOfKc8iJlT8B0NAqNLqJCl6S++WDqyPzIUnpA15hK7dFKRKNGScUXHtsKKlkG+z+oHaCB/Kt473h0yztJJvSRpkVXE3cvFJK7zg3AA8CM/1w2z69Wphmu3P7fwyFXCCb0ONthU/LY2HGJej54oeG596pfNCIFQKqLx7ihoEBz8KCkjx2zCFubkV5SRI8HbNtYtJdQDzMvRKTMdHlkRmrPEd1tRF5yXkBmlDXNx+VW4KFbkYjGjJLrJ4vm4jYSBmpUZH0GcMTudMxBTob3IGVxONmyeIVEn0OjwAaBjECbzbS84yYyEYKMtMH17qWC8P9bm80mQ4eyuvnaJrOXzR/f5XTrfhFq62ZWBVVddRHKVqf3dC+4cU5bHZf80BC5XM82cEkbbw1joEiUiL7aS+5YYA==
Variant 0
DifficultyLevel
679
Question
Isaac dropped an apple from the top of a bridge into the water below.
He uses the following equation to calculate the distance the apple travels in metres,
distance = 4.9 x (time)2
where time is the number of seconds it takes the apple to reach the water.
Which of these is closest to the distance, if it took the apple a time of 3.3 seconds to reach the water?
Worked Solution
|
|
Distance |
= 4.9×(3.3)2 |
|
= 4.9×10.89 |
|
= 53.361 |
|
≈ 53 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Isaac dropped an apple from the top of a bridge into the water below.
He uses the following equation to calculate the distance the apple travels in metres,
` ` *distance = 4.9 x (time)$^2$*
where time is the number of seconds it takes the apple to reach the water.
Which of these is closest to the distance, if it took the apple a time of 3.3 seconds to reach the water?
|
workedSolution |
| | |
| ------------- | ---------- |
| Distance | \= $4.9×(3.3)^2$ |
| | \= $4.9×10.89$ |
| | \= $53.361$ |
| | ≈ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX198MsHghHeQQzGkGDAqvgL+tYzgRMOvT6kcRa5q2eiyYFuzrccDYq3dDL9+xob/4qyKw+vz7dfQzu0POECkqQ5B00PFEVWbXGpsEZITxhoib0fqX4P4+0KYKpG4mrh8HFqiKd/b4R6pPldEeHkdq7ucajhPZRhANjDACRIqzxf+RppQoVxY2do+4ikPyxeac8EMQYrbVzJMHLc/h1XJ7amM2Qhlu7AkcDfO0vCCZiab90lK512kv1EyJKKVbj73RJnoQ+XwHLS+760oTWEnn1IpQN5BTgF4L09Jm8bcQdVr8+M1phwMpKHaFocCuXcJKwYe0He5iyH4clMGigm34y8kCVvF5/wMOrlXzG6o7hPEbCv9T+ykQmvedMKmo9MThzgrmC/wCCQ8nT6f16Kvl4Nri5uHJtw0HR/tRsWgqazYcoa9ejzXsTDl8iNJXWlnOF36IUVzR0r5N11jlNaWhpDmnIACmx+qCNIA8+Q+bHeXwssbivJ2jhEo2c0agGUPJEI/hRhotBJzhvVWg5lFEhQ+bKR3IKTvGpmEccZzsvjzGuTo8z5mxWsyfMEJtMW/KUbl9KSjes7RNFdO30mMGnnAYUw2cTAm6jS+1dLeIXH1rpt8bRU2FfSwCE8ULZfZT0flVW5Xq/CqOBXojp7zvSwrokVe//c3A0tJufEKG30Xix/9DBjIa2dfEnste1UZIedczG3RccEAxCABc0wq9gYEHE4yYrIZnby87yiWRQ99k9Rho3qH1cFwKnt16/dAaUGCl4t4Qj3WeP+tHuS39eaNbKx5vpHha0AqMjbQrm7o2q/WsKl2bMyi2McB4PnXXnPqFtmEkDO3drxijizG13aeH/iVkcTcvwhPT/hQoJfPucXT1+Qyi/QOoHh5o7GevqsntO7O1kT3Prsu13TqdZJw+qnwxuyLspaIPKpr3cBJpgAJl2I0TCvwlASloht5UKxNqychQk53wM/7oM0JwhEsNx02arYT5bEKzIHG9MB1uv69tG4HczMdscHXXJF2R0q2qkaIcN7ixGrn92N21TuUR8u/SAi2lQfZCFlpCmNbF7CJvaAetRuCVo1t/yGPK0Dtu6t/eQmHVnbIPW8/HaOaYoH/YylVPu0lFayYswSvpX5YILz6FpAZMcBblGmrr2i2h8ZTSS9gC/FJt4tZjoI2JjGDG1aPyYsg8OB/SlHl7opohBaJYRm4Ht76CFyfc2cDiDx0oJx5D3Kao6kzTk7C9TrITB1Q+uJe+v/qc9+qYkr9ZdY8EYEHte6xBIZcXXPeb7JDKaR588rbq854LstiOjfrxz2VtWanOnegZNOXxoow7oC3+YTMIPT1L+X9/6l0CB7H5nW9KnvZdnl0wqfbJYm80xhSgPLvnJURgmgMdMwlMCFp4RUchWFcQfU1EeuF6ancHKaIwbgutb0F+o7mvPG01Q0ZItJI0GqnwsT3/VO5WecB1G4bGAfkIcCOd/7H7bovyzFlAlKIZYMjJvDbygcdKKX5x1qbIHwqHy8JrX6Wy8drzgiMquWNyb/wApsFWbq7/WtAZu6zsoVcKRrHBrgtQksRMVbCq1gQfhDGChFd6vScehNLPZWVJZvdVVeqQBdElMhLxoq4dRDAEevSCK0BM+LjMPvgYHsS+/x2h6EYmVs+NOU+Q7Zuc2sRD8ve/JN4PsCw9B2QKSxUNadcJVhzg9XltqXYQa9Rqkv2aPHNqrLya7h4+pVFXzJUgb29Fi7AT4kP+m9tjBAavEp6YFNFU5+2AiC/msfcMOSsPbxyTQY63x8jaf2iszTZYh4ERlxll3bCx/06N3G2gYIgjawXyCjWoacDQzGtFUK88DTh4Aavob3jNCGMqRcaboOK/uULNDRwgs6DlRearYkd7LSkW1YnLIL3QM34u0/n9cFHXw7ihwTBqF7adiPP5M6p1zEvyE2wA+mW3vZBGwmJLK0WeKsnuEGZDZ0xC+1bjKeA1P5SPRnL+Bd+0vUnA3VGxI1TQ1nUgD0YkqGzQVg+oUa5WdtL51mzIZdcpPevy2BTp6wAAlfXP2LLNM2Icoh0Dvb/wGYuE+Mtwl24sDrsetcE7JJBIRAnyGAqCc5vLieAlUHe/Crk/cTYciEXn5+xFcQfcYnDwXgJTpxQTxdBBlZfstDOsBodc4H1yVaQBX/ulJSQcevw6MEbdbCp9jPX/QkkCeHxC13T3idiEnWlcCnqZAy2QSUmfUPy8P7qOMAtWNy2mw5uhvaeTzgMmogEZeL4oRqChEbbdjzVXDTuB5zNP/VV/P/QZtNgPvbDnP5AcqXyXR9DFh8IB04zvjpORmLbIV9n/3vc6mhqpfrVJjK8NSguk1eJe5R0+T6u8QbVtiWiFQg8nIoJ5SsQ259Im0YK/VpA7Q+KZb9b6uQxCkhEyfNnNpF9nzJs3mMzt3WzyZRnIbUMBzh3rf6TmF9To/InME8fv8o2vzH07I7Go2yQDuQ/58LAtaR4TWcN3LpYtl5xkgRiK+wT3aJ/ey/g8taQc86bfxdkFrdDy/nack3YBin81xbYlcX3uRHaE3u2WZr/T3y1HndDzP4Fg75B8YZVYn8Y4qjGbc3Ej99fVqSCX0Hr8kvKSKNS/ct+C1T/0bzaEHP/F4Z0/nnKnoG9a5SIuFBpH4zzQrB7/25Ti+oVWGpyaQbKBaZvK+k48W9lPf1bYAYmvN7IQtnvlPGWLSYASj08vXlMjn/Ygz0wsEiQWH98b7KW2Rbu/3oE887R8K66kRYkCvUAs2V+9q/N5Gp4cRBscxYTmhdlk/Nij34jQTxB3R3Y2X0C2yhc+K5RGy9K1vaPl56CFTR3NPKVqw5CBOKgLPSMXI1+b+Uy9csvOI9FFQa3ZEChbMqBpkBl14eU2GnqBh2KFfmhVCJFDqE0Y39aKAmeACMNpGqahum/mne6tVyw6Z+t8nCmWU9SxBYrOLR6ZwABiRXR0VITWvA53COypfQHoJ0uxozipl1pMgH7EJJStFIZ9jwYyHYGIQHHSXmRoWansZLYfP/hQD5LRRrUPLICMuvkx422c0krj2FTRnsmWEgSRN789d/TYClnlYIn8os2efRyDjo0Xu55G2LotqsG3CSb65x5qgX4wa3R4Qk0oXv82hvhLsY6a0LbX3jZ7l0tiOJbx2/YtBMBpUmowUndKkYNOAXbDGo/jNyVfqqDEIgjvNOdJfPgWP7NOFJ31ce8EzBSkWe29MzI7rmUzQsc47Kuger4SnnS77NR+DPUYzGnNNPPhqvVnCnt09Dginzi141QocN0ULq2NLcaMnynWu4rCDhZcsPumtgJU9YI7U9x15cEwfE75owh3eoEac1OE955o/hEGH3hXLvfM4wabko+XfuUJIMF6aszBWDkviBkcEy3qYvXSuzzGOgjblWM+4R18MMxvVPVkcbkImrkDYLI4gLEHAbPR8r2KWJc0EsaOt2cYhl49ipeDpQbfwXNoYWDKHvbkp8z3DMQPHdIulFjhvkcagXRXGlc6iWcy8WiiswuYSdKbDWDTEk37xeA5g0h/vYbf10gZBXJs4AA1GWyPZowfLZHtj4+7r7jyxvrfpx83KSF2PHSxmou8hjE/6IgUOuhnDRCiZZ64I8r+n266a8UltbRMW5fcFhLlQtspIGiD+X5jk5fhHnIz07Nq9W3tRPl2/EuOkDslGlvhGvpkfk8I6PmHIJ2y91NiOLcOUJAmTymzU0oLmzVUCh08S7w2h6EMSE5eJAcv7SfskwrgE28lKIa9t7cOvpGwLb+h+hYxYlRiB4QuOqAcM9KV0Fdp1RNLHTVXcHakVnrBSqPs3ViQQoIm+sGKAnkG3GWL+n0nxtBpF+jCiict1Y2aM5m+Gl6U18TgOJflxSl1rD1jIoecIaJfgNoJSQJiHRwL1xBpzQ3MMt6BlRpntEPGG7k7bbZRxsMoi+zLu06JiGqRp51gF1IhM031ybtsJQ78DtjGTFTKSuRL0zmh2QGi/iP5BZ4reS6xlyqH442Kdhf68af64kX9/L+I61CsFXBGo998iVHjENt6bS5sdac3+PLbG90cBeJSaTtc9MKuAQiUsspDZ5jFtveCHvA296QWLxKBnf2BwfPb6btRtNYuFEUBUzD3MLGhHPKIu4WYdnvQt1LUXGteabSFcH1fOGwHU6inlANJLrZYdQOQkwrZ8oyWjKKiI6YCu3aKWsKUu1SLbW1s0rZBxG+Fw6UsHKOR8F2EcB14LIUnDNsixXL+R8QqqkYY9UmegYC4j9AhXh7XQvoSwCRgsCLXNtfFjlEeAtvJn15+TocjvEe2llEULE7RRKv5EnRCEEQX9xzoNTmuFVhO+TZp/NoRsxFiuuClIYPurgfpNoGkP9/UKsnBk4JdKRbt5hHcyHbOx6m5e3FuKXcoryzutsm4oIiMEG0BY1jXMio+OR3Nm3M8nE+cylcKGMANkdWPIi5BKRG01H4f7PdUn8tUNdr/FFAQbl983RW/gAdxWZBb8lPIGDBN7jQVuRLX7o6UORDN4N7j6WTu9qeU/hCrBMthuaQH7H6YwdfWI83ptFNfVE2/haVE2nP8F8iiejbLVg/Lx5gbtr8Es8jepPRVBn4/Kf4mXb9KNcvcJCtZJ2uNebVuQh+vS10bHEhND5pxjI6c2A3wTNbt5NlXXJKmBuIWQ7EaXk2nE2pDtwsjvXAfMLWT2ylWQ4+MNxh9T+n+VFnmGfFvlt9GMrkcaGcjjEuFbPtkzrz3LItEFMWarMfreyRKcvy2htZpPvlQ/co/HK0u2I+0kb0aG/naPm1OMTxYj5awaRq/RJ1CSoG85qdNida1RR1XCRPNXV2dFGIlI8/8+3vjElCtWxYc68XImNigpujD0TB4zDibegZ0lFJer6An3i5ndvDd4fifc8fZ+cHrEuYzj1ttWzn1s+QnYD6vT2xJ31316c2biGMTwTyOQpliC7a7rX+MnL1PqIfk0EgrEeeNVOI0cJHw8GMKiEO5DX3O/oaH37yR7wnJqXgilz8GcHnk74cMAdJjS8zuKXmSvnE44dx44BhDoBIW2UfZrdMVge4xaj7JRo7Igrn0Qw4XgJtoOejwQcSnI7MKnuNigLAJAfT0sAGpYZMPj4i8vi8UDyNlUoBRQSu+lFdXRs9vDMGN/lw6fqdF8KS7TPePZVDGMAFAUfI9+CxLSLubgcB0VxlyRH7dpK2vUm1Vz2r55ZC6dXO8Zx8wdhbA8aq8ksm73u1VGd2Jd0moJxKwOD7UO50/mI4OxX8dWjshYusLhicNroqp/7dPN19QcsZya//Bs92c3rbNiTmkF0LLPP1eQIF0Bw9gUKW1+grCuqQwO0gnrHKLW3IVeRoFGVtrDrXYwvhQ5KO4s83UKKRCcW96gSUY/PNyko/ws48Zm/BgUOMNAI9lSTYn/2Rib/Rv8cUhp3Qq/J0BCehjOcQ4MjJj+TzltsFSoTPG0tMn7jtA2LOS26DVFv+ik7X+2dCR844MeRQ34jYcWAovWqyHZDEulfh68zjjvsfM36O839eFfsufz2ViyT/gp3yf4JtcoUZ69nuKPR/uSPnILTrtDH/TKYJvc0tnag0yyOl73Yy4rY56uLhgXDgRQzR53nUZ/hcFG40TwmkY1xMeT8rjOox4bp35SCdSVB5L5c4dv7+hbZpSkMS+NDkLI0/OQ9UHd13V2fQ4M0ELZ+NFu5c0jvFWdyRVpdQYOMnTobM7i0ejG4fz5lhX3PTAX/cmKqYF+EkWIYjlKd5Pbfp7UG7FMQtpyXRoX2wO/IwN8TfIiacXYFYeMuYxNEmKmzZ0MZjH1b2OSdy8CcHH8MaATE9Q+1XO1X4sIt9MQAYtovSrKLYer7Wz6qF9tJrSUchVeg/EL6KcgGed+fLoojeVjX9LL9qAZilMRmaaTVy3pz4J4MsrOV2oluon8psK61l/0vsc9GItXP6l01cBPuWY8UzT0KZbuSxCB3XKXS6kmJzw0rKEe1FhrdDgdwTe0AFmmBhtdeSA9g2oYPxYKEX8SHsn3+aCz7MEvx3qoNG7is63f+wv9L8wFbAqekCR3w41cVbYNlb0/ooh3Ukxr1rQCaZnrvtWid2EMd0TB9uBd5rz6XyW9J2DMIegQ0VuWeosxhueZ57PYkP2E0g+avHEZCFzqtdT3J9SUizvdlD2Cs2UCzX0UEgCs+OiSxuU0G3PyVzL295A7Tw+gARiIF4lQccR1+31RAtR7XwyY3anOVbSovayguc9buXeSZTXko5kX0iIddT/aJIxL6RdxqzzDTimXpqglhySWLNgB9ybU82HJoJfJTQwnZqDjpYIy5dF1BdaCuQoaWW+rMnh+BRGd31gNRFaEzuw5JMgd9mxNdNOfZocIzOMdtMe2fGnpRF6tL5jHIn8ztsH3mbdInzMQOFMCZz7e8xAJytbjeuFekmRNA7VJPeCtQFVkY1e6jMTDIOyraqGXa8PWvlAgRiQAvAtis0QF8hNkXH/fyJGWwWj8itsT2zqFWafuH1tauOIGBPrIVATmmCRqYiCZh4pPFu4YSG6V5E4VAJcrnCx5zjxfYLg5YVX49vwRKjUrFlSSFkIg0OTu0jBHgf+m2BDs0QU0JxIhLtKPagcJSo0XRopBsIIk7m/bq/C1rda9SqHtuVQDHNrouEAaoW1AjhiC5uj3badkYbtGom6K7vFwTtwvxo1ZkIXkr+2ScK6BFmeWg6I+YONQKlHKaQzFHBjYpxayD2RLuKuQaJY8YSx4me/UVPITodGFJqHmrHxEjOXbC+CGVhJA1lhk3wksOtdIExuZnTbsrPz6xSggP9mJlSFMMD8+Pbrg7tlnw9mzKJvn205IvznC89VvLypaMQiMpNWT2jfLpeioY/JF5jdO2+mYok3d6jNEHeEiJtJ1wWdt7BHDftLEhGYP1LeM9gZsWfW4PZScP1Fix9Dt95qRGCixYsIoKvnN4lr5cE2PhGydjvZ9NJhTYNyTuk5HKffkWYBIGQ7Q2tYK7jG578Yr2D/Yeytik6Q+b0OZ3eUn0R+ukly9bCLS7uLpRwK5hb6scBNN1RigjJyQfcf8U2A/rZfLNC3iC5HQ6EndhhZJaWMaXsUA==
Variant 1
DifficultyLevel
680
Question
Golem dropped a rock from the top of a tower onto the ground below.
He uses the following equation to calculate the distance the rock travels in metres,
distance = 4.9 x (time)2
where time is the number of seconds it takes the rock to reach the ground.
Which of these is closest to the distance, if it took the rock a time of 4.2 seconds to reach the water?
Worked Solution
|
|
Distance |
= 4.9×(4.2)2 |
|
= 4.9×17.64 |
|
= 86.436 |
|
≈ 86 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Golem dropped a rock from the top of a tower onto the ground below.
He uses the following equation to calculate the distance the rock travels in metres,
` ` *distance = 4.9 x (time)$^2$*
where time is the number of seconds it takes the rock to reach the ground.
Which of these is closest to the distance, if it took the rock a time of 4.2 seconds to reach the water?
|
workedSolution |
| | |
| ------------- | ---------- |
| Distance | \= $4.9×(4.2)^2$ |
| | \= $4.9×17.64$ |
| | \= $86.436$ |
| | ≈ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+pgLhUGLW/HfWQ56umK3TblDWTwlBvUmccjTOryBgv60i4hcWG3ST67j0uOYABDcqKsVj28eSgaqZE24nhvBSWc5YHcuGt4cj4a19V8DKmOUyptV9GEGoXV8XwziwD5vrjPgqTJgGZccuSpcb0UurqT+ahiOrCDoWaIhUQ70CG5olngZniIhBID+9R1/9c2f0htBN4Y0kIss1FifMV4jHP9QGLLcJdJxkFWJEvveQYs5rq9ye/j146X6sGOQ+dy5RSClLmfLj6zqg330z9J0+dBBWvcvrf2Q7Bq5Iq2m1kuKYCsNhuVLv3i1DwqomVDAW1k/HLKzSc5OXWS6Zt+CpmpVKVEtOmVSyIvlY8MHVplMtFgZdGRcGiPiIpEtCdaK3RJ6gff/ZRTR9bWLRZqTlCwxkaOGkV0A4cY2z8+d5oIr+HdTfMotxB4stwdBVbDj945g71GujmkX+DaoS2Wxn9zaXSweGJZqfjwA3Ebs7Hsd5n0GFjkOaEZU7Bp8RqmuG77FnvldS/kqvressOzdi0Yj+p7XofwC74/uSj1x1T0sTx0bZd2v2pG8rlRW1ISMUgFB2CWExJULb0rtIpsEkj11nk6Um8MhdHIXTn+174Z02EKDf6W13wNC34+crmUw0XPGlXH3gHwhmCUh0Yot1lhcmQBSNP/uPHDX5CKL5QnEW7SprnY5GR4vhplVJb2ldod/yZRZAd/D8G5l8fCbIhJTy8prWe36ak4bycqSOF+zMCbjl0mTObZjxfEKfb/hqmok6HnXUBlUBnS3Uu+0qVWbS1gEkRA87qCOseNQOuagjw0cZ2IJ1oIE7JnKJ/kL93m3x5xuIB5b3rmWQndvJ7h5NDIPusRTFcpOqy9Vt1edkyB6SlxMLhWozRyHRAs11weuKtQgjzVf4a434g77Nr9E9590zxJbum/E9Fp0MDv2+S3UK5DCo9JTjVnoRRXDM85njfs+VwbEkBTpu5bYBOfnkdoRLgI2g2/CPouTdXNJltE2C6x3lM3Qpqgxfk2lLrEPfNqAceouKF95frGufo1w68VM9tBpMIhRr4IeBx9LtAbzuCeKEelTdpxWhDRrnPCjmHTbVyAtkJsjcHMIlV1JUQC1HgtdsyHFprsj2WIrX+Z7iyEQpppMstiuxJCh++Qh9eAPfkBMLbVcOn1EDGJsQaOvaafPRVNj4IaNWXjYoxfs2aOmUEUWFkwTdNufCD+xxMyL/xsHQg8z+6voQU3ci/dmr+Sug2aO/lRkMRXSF7YfJnazjVbLiPq3kO7+GRtym/jvt6JNB84HISKa3VdMEk4ZcuNacyE3RxpVxdEY+//r1/So0PhWY8J5+erX81G4Jxm/+vwSIX9WkPoiBzaFErNU0T1rtdW/3H+cLxl3vq0sHwhtQaBjkTUDZnoJo+sVcgOu2zgdWZTKzGIsg9SL9smHiBzIbks32PnlFy4KOK7NCZgEMS4BEuPunF+bbwv8Xdho4IJRy3bV0DB+baEou8nbp37qXtHWCGsARUD8RTGXE0p6l38a0Rk67pgzNl9whW+I1iHAzA9PFM+hh9GocJMOFw6YHaxlwemW4InnYb7wVOb6DLOI2cw23hzr9hVQPEGPE0zP7F9ExKvjtU/tQ9yi2gYiV9ieWHZw7UKdp4+1MutEVkMf/FQm3D0+r/n4TmU0wRpOxugI5hSMEG6WVBmusGRjRdbOl57d5ul8BOEZm/JLv3lk2cc1q85egxq8U3saotMg8HPBbC/04hLQaTbymw+DTuK+bqWgM43v+GO2eyafiOJfQ+oxN0eJh+I5Jo7+GME5aKheEw4AJZeSpuSOEvVvRl5MT3eddbRFSEQTeJf/vUBAOMwo9KcQPfc0ukoheZMT83nvPxQBJlOzGlOv6Ds2bz9fshPJtrjurMJj9iC64+mKGoTTiHliwNNjDkFAlrsm+gE7s0mbN1lwZhg0kyhNSV5WZq6Sxo2KGGXdYlWnrCPI0eNL5hdrBQJOr6pb6KX042UzkhRmHvdtSSAGvpeU3darJXTTjmOMrenMv/Ya+Dc0nxYEnYnEHkIyH+L122n4usbIy7fSiSHk68lN71iU5jKeXaLt3f3dIvoyqGUnvktWOF/4MSJWnzjs7enaymoBNzFjAABdaY+DsykPiyMjnrDWHvflgS/kAcxarBccFfwjJIwu4vVaD7sFuEcoehfL7APzJv0B3ff8v/v0LipmhiLPQj7TNCwSMC71lucIhtXmGHUWRa96oKmwOcBm7Mdw+nCyhzSVGH1EdP0QT8hw1xPBu0Q0cOXsNBlOFovvXfMn3WbpJhYAz8r3IndX5Z0pNm14ZSQCHJKHTwAddxLnhhhv0Hmjne1ek1U/NmAwgjRRe8Fc4copL0Rqe4ynKlgxAaAUQaAGHIUAMrzrG1To/DnbJtUjy1KsUd9bN9tjITBK0x6GfF1TFtLspOwTjcDt5JzqVS3fPFbS/5PctQUhTFgzhjSLcEmDjroKVnF+qt3LpzxPv6PhBbM/KR4FwswknAxcduxUlB+u/JiJ/N4D6YR3cFwhzwChpqYLW+MGA9wD134sZ6iN05QugwQaAmtpUdX5F3j3oa0eDiVwa0UYS5DgJRwMkP1Fa1P6quOZbaPQo4musmnQeMRLNdHaZPoLRKEl3V/OmHlu1zCpK3eT+/ksj4A1hq7rPzZC9XvNQk2UXw8iF9lmtqpJ+n3ffo9lyGWphaq+ZYyymP2+ByWuSKDQNKlyAg/CJOGUL+UZFPfUYDJqlaDPEM2yM2noCn44oNzThh6uqg6Yrg9v44gMVf+VszEARdKioR42OJH6IUzF+OJVSt4MzM7+ZDLVsqsmtPiM/Jeb83Ax7+2rbRdD9Wa+bTcBafqSa881Y3flix/FGTOL5x3/v3TXYzsxUW42Mh4E45lYWiZWGx2Bpmh42JbBCnQ7cjZJBL05Eo92G3NPgRwT5WQzdDRdM0M31FJOhkdbvD7+APjlX6X2O261w4GWHpsChM0Oh58SEASwZ5K0nAsrGNLSVC35K/DPsPhRRv6WTV4hmVxugGUcPdmjNjADf6eh0gvzmRl1Du6ADVMf6tlQ5BdjHdDJ3onenT+DTlcqe7/YQqI00vEPKIxp/He6+PCJ4KMFZBwSl3mKIscBQ/sUPKuFsbOc5eUAnF+KgHUFHgBvdu7lSkGQFwbPbkaXwlBhGPNmmo1WexYGeVXiqTX4dphz2jPYDkxMqEFDUTiX+3ibABWFM/ZovKIJbmf0W+iLsIBfrQwCqpwvPCO9SqgyFlAj1+HZ8rUL3ZHFf9JC93L4TU6dfaCJ6/lnHlvrnsr7kuIwhPcbWvn48E6+qOlQOQ6RJkcPGcDbNx1+ABOAe4IaXZBFvrzn3MhjPn+9E0VSDBVx4aUrOwcmIU5l1wCViJuBrzhNyUa/rotnaCLwONdahFf9Np7BVrJXuSqIIU5luDvfd4AqLxxbpVsoezDr8aZGk1quy079Kb3leEisOdqfTshinvlWhHY/K5t3+BWWdZhkq5kVWbqgHgK4QyNmvpywcQjepVpRY4VWqNEPDdNYh9TwkghMdGnTk4fo4/yrQQ+5Fw8xX3rj6IKscPZI4MdfVVOP/pKiW6xVI7SELgtUWmPWRZDh0EfdyP7+caqYo5BwHgJtzP3pfHxaWtTwwcjfWgWT23maDRHFn4tSFVINAW/XCU3nwm/xZ3MM+ExbQndi+x0dZKgNOIwcQeiebsInBCmTFwVfrDj8hrZxtkhl7slX8ZW7o3lUH9xZ/g3HZopIl70raID49fCBO1uLzpnDweRtZV+Un88pWBRV4Vcen40GFf2R4MnhSF03yfAMXNKhLFuxBoh1jbIZTB+01nQM6nsTBKdU05+NmIbHpWQVrd2shQw6nBA/1mkxvbID+TsjIMP/3ae2P8pTpCM/QPutX1mZ3oSIWVynDRFR7pkP+idCMgUv7+mZna23hOz05cmINw1dn+LPJMkcohUKnYFukrvEQPosbKPTmEfsG8774K7aE23q2ZWjTkXRGiZgzhrKy2UP3wxF5ufnAVAeU05fhYGE2m2IqRQjSNwoXet4Qn9NjGsJYxR4M36GI1R0cSsyQVUAcq+kXC+IEsjwsAO2nX8LlsnaXSHoHn5oKqpg1hwFrguzGXmLKvI9unQ17IX11gjdX5o28Bf4TzeoP8kMkd+zY+58XJrntO7i6A0nYaA5WTurEp3c+iNCR5t+G0KlxSSVomH9SdqLlPjLn38mFGytPgKc/ftHP3e8jI9hlU0t7U24da8IevQVzh67j4Ozb10TYfhE0PqGGbcLI6JK4j/qs9Q0S/X4FpvrjzDkUqqgFnKQ0zN71JwopAnq4kV1bCiRQv1JPrW88BOJne8lxAE4N9UnBNcDXmjx2PBp0KDRh+xNTKNEPU0N7+bGJYjZpZ09iYRYVZuvoQ+8PtGaEn9vbUCIHML5jTEfxMJiu0sRCtMP46lr+TCW3u9KRc/xlj8hX/L1/9OhMyfc5Qu9rA9HROOHgiaLntlbSABT0Onx/tCoxrY06Zhgv9T5E6JyguRw0Pr54uJddUDe105nOROVyS/SUArXahcNu9OBpZEU4YF3ICb54unGDAME7/34VzwpyQs+l8sN28VHDaTnrUVdH/4cXgyxeWunCeR7bmGaEMlGa4pDim4ntUpCqWIzkyutD/KALJMkYu303ndgAOjjfT8as1r9IF6i32spUV59u3BM+vX1FzGtxiUeySzwigYqjoPfJ04wnfvv+iChF2HANeXl2W2I3UUtrtPO/hUHmxMrQ8mWk75teQdLayoWiGQkHpKg1BcRYh2N7DUCdokgUo3lgITR7i5MLdOVJI1Z8V5Pq/JmMy0tB70JdRR91TLGZw9SP6k2qHTrxR0fb47R8ZkE48yf+BBNJe1t4xmRkI7w7MAsArPByI5IYdeh225p6+sQtTKHWSyNxta+sGSM8FR5osE0M4adqHt+7Bj7LMq8cb3C3ODHUVQDWEBOYciGpj0nlkZNUQYNPfvIPPP6durTLlzmAlDtrlL307i7voiWy/Fangn0BXPL4VdEm5gXTXcb3YyxPQZPNEBNlQMWMnanI7pRC9xZp5zFNezqO0nW+L/kie5NxfGM1BDJ4IT4kOICtPFGBlU8dmvEMqZexMYDvX5yQFNgkny9d9QuWhYYCFCe8hUSGB3ACpmsNtFv3QyACztBo2b1SEnd71aZ+nmJguPk1dfK9npvt9Q/FmicIw787yOhpLzfilqqMli4zTv6jzoyVBMgrW3lfmYj/8S01CnR3+UYMeFTHOMxd0uIBFEdQVp6c83v3vvMmmVTcr5wX+KT5KCmL5ApYCs5UVCWJsrm3U3f6IWqXbGC0Vxo8k2PRJ8soXt+8wtjM1pjdJDRT7G1ie6Vs9AVB7LORybC0kdPsm9Xk2kb20edbuHKDH+NCPxM4rTGy1EF2Z/k7SBeub6Y0F4M7J21iKanD0R6IU4OTuJqe4ugLqfIMttCWPNWW8hZXs9q8UgtfNY37TKkTOyJ/Q5zx16wfcUYs8GVz4e4kNEzG9IKsOqS5XBqYMv7/2IKLwTGicyFq6UEyLCAWh1P5cJXWlN1JkjMjeB9T1qbXv8AaZtIfVZQXdbFIRp/uFUxBHATLgB0kHWlrEgB9Jzfrx3lbXYL6waYmmLnxF2G8FnoA/hoE+oqFkyw1aPRo+6l53df0ZdyPoN+IWnRKM2Vjw98GCIFzPnQySdEe0cx+NScFinwNkkRQZOxn1PtYyu4SQRgxg5/48wmCKD9q7d25nGw40q+8uJEbWt48iSXmr17MB43GmeiaplVaepOw6SMKnOJtBevgxwVrF2eGTXm8CgWHqoxCvLn/9/ANk6EETbo0Qeoa5DwCppSU7rNk/hpputVImSZE2AB82fUsbXEyffJhEwcwkK/+AFwsZZD1jDPrV1NUaz/dDVTUP5n14LBlg1KA9tL2DnqM19TD/V6kCadtoNCSOjvn3eC3sJmsDcB0m3qB3essBta8lSGnrPEkEh+WI7bSKLAZd+2DuO8MNZgKsvjT1400FvmGhrU55Zdyu0SvHPG8zmFLji8MubjPj9OGjMCVD9TWxMb4TVdsWqpVJi7yOammnWlgotVcEVl90JlO+n09JZSGyaN9GNYqMAL+87Dl/Qg2lOk+a7BZ3eczmTr9Y6K8UXGdfcArTpTDob5HMkEgHZyY4MYU7hL+F1tQod3e5ioXOaQz2SdyMNUKQLw5umxKfpoh4BFkr6codO3LqPMIQTzWy5nDG24fBPOA1Nsxf11vhl0eIXJvOwE9uNNnYWacJruPw2rc20nXaWtuhPOW2itO4fu6q4DXiaJ1jB8/sACGeBp5Wc5fX6KXZca9hNCse6O8Uv/OoctpxLNoE+wD/fdpitUqiXfDf643f9IMi7gcP146qUoBj3OYTwebDMzSHx6HR8iiEkYODc+c6UUJixUnZvH5QvLFuJ8OItNlCRqVyaeRPRjo6pmLt8QDhh4+lf0Mpqnsa9tmZkWg1SHido1t3HQ8QLoxRAqHK2XnRT7BawWtitnOtI6PyRHWnHkpJ0sGRARHr+//hAH4v6N6Bh34z55m23TGEkAdc/tD+v24QgGvi8y+dg0SYkfovMP5cS92cgRfehXB+1wtgE53aPwkcXOdo6xTPyxDTX3FUifBfmsbUXMzs2WoGCOhrHYyYGP+nmLojBI+kF2ah3spq+AC+NxUI9w8dLJEbrWof4772Ffqqwg1ku3KOS8txDuex7kMk76ywQ7MMOnWj8gkaI7iHQm+gq89VOG8JZb2OgVEfElZPC05SUpHp0/ZSngEq1KZAgJty73iWEpk3r8KWIXSAmQF0TXqJ6J9D23ZENoRxx1ABuqQVo72Sn77VzpjqE9hTnPOjTEeYGYV93mS97O/qvBXpxSsE/MFNUxoy7a/Xdt5LNhuiV2J+XghXBQn2ISB/cLaCPIfEH68gB/H8P7L9g/dLdlYEA7otFVQcA5WSTk1GhfFbGCzmyzErh5sLsbjb7agL/SMTfsZ/cYbdpMhWXfuCkZkwe+4qJzPVWGwwN/dHJttOKAGuk6GYo2Fjnz5JTwMMYR3kI6XcAF/Ut6HmSpw=
Variant 2
DifficultyLevel
681
Question
A rescue worker dropped a warning beacon from a helicopter into the ocean below.
He uses the following equation to calculate the distance the warning beacon travels in metres,
distance = 4.9 x (time)2
where time is the number of seconds it takes the warning beacon to reach the ocean.
Which of these is closest to the distance, if it took the warning beacon a time of 2.1 seconds to reach the ocean?
Worked Solution
|
|
Distance |
= 4.9×(2.1)2 |
|
= 4.9×4.41 |
|
= 21.609 |
|
≈ 22 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A rescue worker dropped a warning beacon from a helicopter into the ocean below.
He uses the following equation to calculate the distance the warning beacon travels in metres,
` ` *distance = 4.9 x (time)$^2$*
where time is the number of seconds it takes the warning beacon to reach the ocean.
Which of these is closest to the distance, if it took the warning beacon a time of 2.1 seconds to reach the ocean?
|
workedSolution |
| | |
| ------------- | ---------- |
| Distance | \= $4.9×(2.1)^2$ |
| | \= $4.9×4.41$ |
| | \= $21.609$ |
| | ≈ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18d0JiSXWZwepvE6pB9UbLpySs7kVLvlPzO/RdHOegULxUpZq8TW+bjfJB5SKyvcq3FUq7AKRNx93atOBkHt5F1PRNL6nNw1mXkNZ8A4xT/+rYHKmhFQWUQQEP5f5/bUQYhHM7F1cnAK2hUhQtDZ4EhJ6i8GGfCJVCDF9g+IYe70jTYdY5h2eOa2Or77qc1ydLLGgMg6uNhi6dldzvf4ABK/pDPdocJxMVGczKVJ0FON9hwla0xIq4Uxw6rF0toVPmKPnxFZqYB7D+MIW7howBU9sIhw2U7zGcpgnvooY5XOvn0+wQGPRmeBCBVbYtmSKshvYMTiFoAhBUhAQcQqtWhTq7rosR9jQ5IuIMB+I7wM/0SHZjsW1O3yElOImj9kzcKghjrs0/FRdrDq9eB/1L6F/QZ7RMsMS2F3z1YcBisPQANOJTbnDh9Y4/UrLrwR7R/uhIkjrw6QNsWFzb3fS88+UBxrR3b6xO9pSctI6upvBqF1xEhMZZmaSKcUAROYNGKebN0xarqXUKDTi0MKSOxisgfqQZmC4uG1t/UZ8LE17yYsLv27g+0lN412e5KC+ASJe7PiacK237jmGzWZApskJIckQLxEUW6FK1UDvDuHSPe4wDKg+xU5eOEEKFlBe85oxMdLPfjDxNOoKR+AUu8aNMJcnb8MAsUkYkM+v/O46q05WUh17ovnoJiQsOXyuUVrEJCN4Yggz8lcX2H4Bvnn8iWuzFxSa3dKyIMrGR1xpUV9cK6KB8Be+jivOFAIb/f8gnrS2GB0eHh4p9+RzHgor9rljb35NL9lRDPvnPKEST1qaWCoO5idNQRtSw2vwOlTdjTXDfkfnrLjz9iDfDXvkCWxyIrNzOmLNyniw5d7CIL0r9aH1kSbQUrldqSovrRb5NvCZNrzAcR/dzYikdjD1G1FHrzjydfYjeU7+8gVgcaWbXLuLsPzQuuEUgRhqV2eGv0BdpktPIItQJbsDxsKtM7irC2vcA2Grj3C/9GOWtGm7oiQ3Lwk0VVL2+7DRl/rl3MjYnK0okpLC0RxvzF8lq5OAHaWW0wCCEfZRzp3SDhnDBe2LdhC1bp7rQTLPkVjGLKTYA+xA4IwZQg2UvZMl9jBVhzE55CCz+6vqdd0JU90wfkR6AFk0YZDfRjIatVLNlqXyqA4dQ1ABGJYcw56kjPVKjacYolP9dE+5A4B8FRehr/1VJMdHynSnXwP4rGuVOvq2TvH1NUquo7Pm/Tq6WnZj7zsmtD/gUtwCPhz9RoJAm8FkgaupHuyAei2yxhzlit/iBGsGV+Yc+njm+LRGlVSvqE6ZYsyT3TSIutCq3fBhGm6AQtTlPmiuFMq1aMXGWJhpXr2brLOSlSzGcmFubwtmzoHhb1Ezpdo3BWSSi7BE/6bQZeZmFazLta9vfYlRzmwS25u5ZTdXUcN40GB8+Pjdq6NKePMlqKI86MEsPWJRec4fsx7fdstONnivGPbOqMSjzXPvqCOxIJE5cgryajufPVAVrf8JyD36aY78seoAQW9ZjRZ/u9he9Kh6ZgfNosTYYSi3FdLzro+e2PWzfZWcCHMCTKwohYaiKNRxTAvJ9bvM5rQze5eMrGL9zeh7zHo1njz9v83HWCV+dhx9kZjlw7t3casXaGpKdwSnon55vsNDDVETPjYi2V4q80XDZ005naXRHtJUmgI3zqKwpEfiixHEFpmKfFcF07V85avGgH3cVSBI/g+gwCcT1u5UAHaL8i/v2ZQOjscvKIwqSwR5sHlEQHOgygnNrhgstS7wZ5gZ/7Old+9xUjfxUAO1BXXvbGotlWKfGj3AVslxMZOHbU97SZJVyGAlyu49w1TwiwyZL2Sk2Xznz/ZoOTnbQHBxlFTOF3Xy3h7jVmqNGcgRWE7YiGvysj4hC38V6ThsihgRsaXcrgMmXvC/NR4i+r87r7l5+CHlBBOwK1APupLcPWLmGFYlmgRZ+OAJZ946Kz2t6b+Wt8Sd/BYnBIw/a+pvBVj+hlNUKXEfuDlQtBCWT4nBIxYI5CwE4uvj2NvfSxv+hc1K+YrK4E2rheSjFyeR1itKr3uYAfAJncwxt9kG41Ie8i8828VgAXDPo4DsRPguZvAdKL2d/ZyGka5BqiuLFLW8E9hoLcleFJKOq1tqRIQx6GppuXOs2ZHhvaV/+u7fBTN/Zd3+vWLJZKDZ0FTOuFcXarVoLUKmQsQDwEjJusW5yW26jaxzjMbX0CY4ZLv9dyLkCTvcT5DuQD+3onMwwOJx4MsD2sTO7wdWBCFitK6b/NdltLjMx+SWIUCiqqXLnqUbKv6hQW1vGB/cI5IU0re518mb54EDIshuQ9jgfDXlp1QSHRIU09vw29XUqT8/YUKJLaMrbjwObDIiAOgbZ85HUOvmKcgItFEd96kX/fn5hNu1ZH9+N84Ks+ZEqpYbHn4hsPfPPDJVmr3+UO1UOuLLaf3G3wrubTto6JA9or373ti4a1VTyZQ+tpGi75NgkUTXB9XxCWo0eLpe0D9rXtQtVJe7lmOVqn1nQIiVyTBZRF6bkAPnMeQK554yv8CE68rpLvQk3bErTjmX4WsTMZCtJ2zke0jU6rBgBegBhTGfX64xsUt5/umMCfAJtrezOnqh9zvKa7lTLuzvR4ip0rjFu7XGKIHAbuTGznhjGHLGaiEDOwXiJKSXqeCosh3GQ2p7tmA8+fAwcudyNVfDwzTvIpCT9oUIZKjIx3NXnsjn5lyrj0b32kaD1hY9RwNTao38O8ZUuHGkqvsR/i8/5WmMuup9LwROaKWXH/uqeVjCx7moPet55hl1ycRI+9uGarjLDTQhlkyUrj+nGa+1HHDutyoGv+lOgeP+nf3Dy0ExE1D29PS/9y/Oyuv1OPbdf362ZzF7xKvAmg7486BC8qvaMJpWHM4CqyBBpmD+4qOx27ip/r+230l8e+FxtUKMW3/feHXTSeMJPk2XQo4DXio35KDFukzoZi3D0IQeLDz1q+DDfRdq9wN7RQadKBHL+/1UWkRo7wJIi2G4oyYNpK9UdyXE6kTCgE5vncZld2GYK72Z0Dfsr56M4u03yckEikxymKtwzEXr4SmvZFzQvl4NX5rKcXb+N+PoaS/MZyxSud6oGK3+md51g2LqNMgE1/TInJPBpn5zrYr7haSx1E7ipk+63qv5exF9iOYz00pjPV22O4j6VWyskiflwj2WvQUA1aaFjMBQuROGNtW8Hsy1NR08Z2iplJkaaNhb+pfV77K3z+8n5AYAZElaMKXKVwEsNeiNlsOeOZDn+bu9MuvVDZDL5wmJzCENDYrJZ8387b709TO4rcWKV7FgvW7fSdoO6k60HPvmn6TRcIwAyeYHeAHI1G6hsLLrGnRwctOWDuIsQpZcGjvIcDzW0fcZ4Kupa30ACsroG7aWtMDCcurfX8sIxTTL0qv3zdb5/ISM7AoJSFI43s1pPweBHcNmN/Qu4/i2BjOGoqo/7psZB2vGC8EC47o0OYCRzvnjCJd9upAmRXGI8gRpxva/m0zz7xFeM+zUAuMhPHr4IdbPk2W5it3om2okfN4aEqQfh2ydO3wc1wN/5qg40cVnDvf+QcVCfuInImuz7XXrN8N3Y1FFwzeb6eFM1RzT9F9oB3/8tvT0yJR0GnSbPzesbOwRP3JdzMJ8yGKLJcsiQ0yAaHcmT4JzqiVGolFG7mtJv5slzRBTbCBtufOithJ3NvKO6wYtIbG1xZAYp2/SSsoVrQ+o3kXN30IeGhs3hhYMG9wRe8jyypScCpU9Yo3HVCgGH/PkU92h16LkQBQHCRbn8sPRc2ymYgvkScHbeMYk0l6PoErPQ0JkzVSVDK9+nGYWzip48H5DhgQqYnN4qy7gUyVT2ggrcnPvHlDDydCbRdcYOhSg0ilG5/GxcQIHViPjV7RsH6a0OEoV6Yx1HC0WI/pcsN6FRTPKwS6KtdsD4g1V+FHcLrQa5KEFCaDzj6cdA2QCo4EprCojjyCUJYHO6XkUYUBVZtNigsPquuIk0ykhJ4tA0LuJtmv90Sp4T3vYbWxfSb/WS88hlAGi5XJJRI2Hi/YA3fi+Q2lQKbRz4nO8P5H0Cy+no3S1sxDo7shDw6ixY9ocTC5Lvv+CwtwIjtqIncufwwC0B9Nqf/UuueJ7kiPXCb+XuoRdnB+3wBaPLPpYNImOl4g3NMDZ6/Pq9My+VpFrH68xKQU/nXE+J42mnGZaK5UdDPbv2YzcO27uvodGD2XarEP8y+6X3jAhWpVPYPr93/5vAs2hxi1/31C45Dn1LNdkrCly5soWfkPDD+4M8NVm21MAcs9qrFMI8cB/kki/pWGDfG5l21K8AslJyB8bAaWRX3kF7NV65mAtK/aKB2Lg60VrL24N5GqAuGcDyUH2GgDGDAiAzIWfrE+i3p0F277BCOEoyjsLt1R8XPcAXHh7QPhHcow1r7XjryuonnAqWZkG6SJGuS/qwADu8ythKF1EZT2HGO44HDLzgBXhIBSZnRh6l7Chh5BPUegY+OW7oOz/k9CnaYGlSFQfRkSlipmmFzXscMZcjTtejmON42gSEatV3u0ZIOmjQ5M4UgRd5Y3YIX8aNKxREVe5Yi6FlmgYGI0KwWkxfEbJ5gdg99hIeEWAUBbhwx5brmSKBLQlsB7m7elswGD1H1TJzWhNqxCn9ETRqikLf0ffyZ+YIK4JLZvNpjhTw2fALWYtYjNdiARqU5kB3GkmG6W4tmT0yzG9ETwBczyUpsXA6rJOy70UO9njKUeT2Juu7086RYxD3vnzSevF95iaZcXJXYy3NxbVsMB+jqb0ICp2IDqWM1DfZX4Cirs0PbxJ1+HJkHc1tXHh0jWi5YAGJfa42Z6ift3QspeshbDvAIZ45dcsht0hkp8YG/Yd0uYw/Hd7ZLD+kC7tS4ZZz1+Qr5OdhDDt9c4tgOYI+1mP/w4mjxHaeKJ+ejjLr/x8i6VpfrUHOSKlPYROH+qTH1opb7Z3EgjQAKK0HfUVkZLMGBPJuNGPHPuP7ZwkdfpaNyOUE2VOWD2uf/RC17U+Bi0lj3wkMSMJAK+4SnNIBVaSgiCKWXSMeBggKHCLA8xlpxHHbtHBvm3ERseEGXZtT+WUPbC6gjmZH3WSQbmVuC883EVtsTREdVd/QbaBcJBxu/+85yPa3pgfqHJjIC/OLk/G2XSgqmukhHwgwys3guXLXuSeEhkefVm9PpBPhUvK/BWPkiRXDxxKZAkvNZt67BVPydYdWwayGARlCZkDjG9VCAtLVNFXspPE2JceWxROaBXPlRmziJFQAl6B+Iv1cmTZR61YyoHauw5pWYDAdRAzHBzroYSto5O8kCzSPoSVh08PS1W6uGojR17SchMpz7Y13tX4cSwDAh9gBl0kZMkLZkhmmWHTs4kRA006KZZhjaFWEzVtlIRrRt3zN0Mc01aBxTj+XSRTW2DVm0xr3nPbWIG1TV83ukzsF/gy0PVPMDL6JWTmZQA9neixe3dCujVBB2KXQPZ+plkiLv6+XdRG3yHPbk7cLdjLdiTEMLTkR+NpBCAgYFhEjqINoW8EK7+92pkPKwxcY4P87EeymL/Z4BOv/1/OYEF7BLNnicMkIV3YUKKlW/GwXQHIw6w671gh9zG5i7Px33ekVfL1EVhni1DuWeCQ5tBw9/QizAkFA+tfyZWTVTXXuT046qEN4+cmwgAo09BJuhYWPARI/bbWwHiurK/yKU3F/0cmd0hwii6+OqEfd8KdbC7aQo7H55OmDnt9xfLTgkeg+A7h3fGETFwaT+7Uz3mKubtf2eX9lo5O19G0gfcpjTWOVNIa/B5gdnXuJ7QjuG5hrbwEUVGg8tFnFaLNUGHYskYrWZbZYLIXN08cg8uxueqhpeytmp72F8jBGsM18bJPkK2qFuM4ac9WIwV4eWx5vkLQGIgNJAzn1//JI7KSid1T44PScOxKyyqfE5uiV/2XTyoxlMCxUakpXuyzaL293Cbf6hNwRumtIgK1mKZoJnwwzsBk190DZJMMxZ0bWsw0JKEU1eFhW90tISZSjqiYTG892Of2zD+3ZOHGylGOd1Rrh20X9d1l6QNUZ1A8xAN3C51Gsf9RgxGpx3B+/yXTM1RXeTAAjvVMBedVP3drEyaKLdg6+szhhUF8604Z4veNoh9Rvpor33OhE9ejABhC8oRbeszbGmS3VLyvg/dABVCiY7tOOzhzxMo2kzyTgf2HHEyMKl3ILgiOIsdrVCg2xvLhMmBQVHfAGMV9tiJ1fY1CCZmoCGdghpICP/s7TRAVP4Erx/Udy3PitlbczslMYE005aOSV1ee+xKZf8gZPnKZz4+Cnv41g30eE9mfxGml9K+g14Cs1bk8L+USegMEX6+5IPtI6guivBmKWxiXmRlqmBVnjbEprw/HG0uKCG2WHZvjQlOG5ziVjZT28RSyjDK2b1ELeQp2sn+pJ0pV1UnP/lhgsW+m8qBu1XnWs7lgxbpg5FOPROEHVY/alIkh3ob3E5vcmPBbq+fJLQBlLipGX3+Uq6Ux/VpifFC2QoFat8jbWoFfuHJKN1wzDyKU0ur+gqBFI/MU0OSPzUvwiYgsEw6nKHN+ThWOOyYFYHJYuXJe7wizrGleQ7XujV5QYil3jhIbttDx+nLYLMcMPVCyffjNP5QVhgsvxvyEfvclWZj0wZHaGp5Q9RvlcgQY8CuBfMnMO2AlnwEj+6yVAtA9mIjF/8URDY6WWE9ddojzrOUoB52Auf72RPWdL8xRe48qMwwa5qcp8tntruizQ6oIPZi7uhs5+/yzo/9rgJFQmja0/IquzoEKVg
Variant 3
DifficultyLevel
673
Question
A building is damaged when a metal bar falls from a crane onto its roof.
The investigation team uses the following equation to calculate the distance the metal bar fell in metres,
distance = 4.9 x (time)2
where time is the number of seconds it takes the metal bar to reach the roof.
Which of these is closest to the distance, if it took the metal bar a time of 3 seconds to reach the roof?
Worked Solution
|
|
Distance |
= 4.9×(3)2 |
|
= 4.9×9 |
|
= 44.1 |
|
≈ 44 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A building is damaged when a metal bar falls from a crane onto its roof.
The investigation team uses the following equation to calculate the distance the metal bar fell in metres,
` ` *distance = 4.9 x (time)$^2$*
where time is the number of seconds it takes the metal bar to reach the roof.
Which of these is closest to the distance, if it took the metal bar a time of 3 seconds to reach the roof?
|
workedSolution |
| | |
| ------------- | ---------- |
| Distance | \= $4.9×(3)^2$ |
| | \= $4.9×9$ |
| | \= $44.1$ |
| | ≈ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX183kIwos8hiogtGndBVYn+bTClRmcmxku/IYoUkvqMmUawcsQrV5L5Jpq0VXVeHsTCwUlFJkt4/PW78wJdaT8EiGfVSdIqRff/qVMF+gpGsYfcIHu9+zE92REapru/5Lke7h+imZZUy6KCTcAsbeJr1mXFbDKfyjCNZoMU/AGGU2mXggk3S9oppGQttJMs6NZyjZN6Ynd3wLxtc3q435PFruIX2X1CymgQrNKI2GDmAylGYmSeE+/DytMpyJA/JVA33rfFyJvqU4d44yBipK8bMI5KSU0YL8sgTv5L2C18WEv2hNkTGEcfdC0gdTM0Vm8BRFZ8VdgwM3JxLJ2OLqG39bPIHbJUoZlgmyKoKZsGxEau0JOgpklx+2CMyQEh298RitNKHsWuIe1A/7q7XL/PA+iXob1jdTx9LD0uwzjhmoQ1M5iGAvQAlIF/170yLBp2YuF3DfuXaD0zwFdEemeG+AwSysGbqIzn7K79k6rXDV6Nh6oG9rJ7OF+7x0jn7NTHqM1QWLO1sVIawpufAnIMBZSGcHpj/EKbak+VcgsRBc1Qmr+odWPMfHrhaPvB04dAAyHxeQog6bxmB31gh6h0ydQs9P8w2BO/p3av86UYnW0hN0C4OiZC3w+1xgnF0jYSJX12ZErJLrW1vzdMTajZWt38sZlTUc1T4uuO/dNq7tOF3eFckhTjE7bEknefyLuZ1mSxgjeHRQSyHgI/QscmNboc8fDz6u0O9OMevdzWPGhHgikED0JAh1XR3GIWjpoT0ZtMofZcE9IDtYvYh4m+vqum7DG6DAYr/Su9u8BabOZbEq46GFilOrUTYYAsRXfin2yupkpHhn6DKGX/UVKcKSPLKT+ojjWfyS3T3VCHnSs9pO/CHF3qUAonUnnCsfTf4f8dzXidm6eJ9Z2NOaUI2KbFvImWv4oxfdwgw9SodARB4CAN6StGkfCoB0BbZQpF4KTBFTvdf7CwgyGmN7f+y/Ugw+DdUFEzxAVncPg787RBlkaM54yEhh2FIueNBbxm/9XgQLajqwP9zkzVJZoJny6kz6j7vgRaX3iCMpKyYC2MV9tns7Ael3PvWo34HjMGLJ36XIW8KRNC5YUYYAM4eq9bPZHgMVu/XWLSAMgn3842lJUMkGe9s7NBdc+zIBTbnJu8O0nR/SizwG2UojsC/UmkniOj9l5oB/wnu0eatdqPBfpS7XC1t3NhrppN2eowqmwkIAO3Xmefjq413LRln3K+0V6ERaxklbcW1qyL3GzaTgUboQFgaW7uCHVHgr7zYv653Oee6ixvXOFUP0gCb7by0EacidOQTlyK1TkltZMVzF9HZdJgQFFaEuRj0c3OkdwoD1j5KnTCWXrR1cOxsJRoL1Co0m4kIMUMNoJ6ej3U02YWLWsF78w+ufChYJn/s7Vsc3YxYWIm+gUsG1ppy2foMr3rgUN5bxEgLAj5Zv02+7bMgO4gn5JhG8CQI5K8PfqHIg/a8UHxIiTqJkNVBLmCsui1vYitN4qVtgNgDRf2s/a7yP0i5YHRBCwe63Juc3ujAaLbYWJp10bk2kfh5wyBBEedvue9xZc/s0hqSTkm1xRtJJtCazFctjz6nRiOxtZGbQ2l6OJmPtCtlE5V1YNbltv0Wfy7oghobhrObpyjPXRzutALJwmMXHar/ghq06fB94ku3zLplk77Dag58yhxh5qTPsGi6h0gpMVvgybIxPMFOx8Biww3qMAkSDmKDys2Vh3nOJF8j6G+L95hA8WuAMjbJ+6PCl3ZKeMxKXBpCLJ+H3SUk709YoJ1n+htt+afAyhu5RMCtF3+5jPkF1eeeFn3kST98ikpYGUt50zpa1s41u0pj1XSacrciSDJO8jkHvQyR9Li2k5x1RApyoaCqZTfULJlrNa6JxZQPo01WKhhRIdmBMMzoiMzEXe5cnaZZJMxgn2u2F3KNkg/f8zwLmYDDfWD59itqdZ9Eb9qon0WoC0jHofrdbnovDUVxENQ9fkazIrW9roaTzaBH3wFPlQ40n/t7MmvTXkYWF1u/BqJwE065Q2+iemlP+V3r7DS3lXqjZwJVnpHofv0KqY+K5MShValU6e1SF/8tBKbf1Az7jHg9UmnHgAh66P0goPzwtwgcFWERY2bxwycNhcjZ1aaIbDobZNL4ScEudZJnHy0WErkwGDPPovQft/BP2keb73CT9WhZcvKEAxKvPn0zpNkCIMfwTP1zOqnJA9KjWMT6H15N6JfBtMj8cvxpz2RMJELar5j+fIaD2SfTlZozy3wiOC9uucFUjgLJxVWN8ydMllpUg/Tz60iwtwSJqQckYIbW7CsbcOQDbZF+yhBx9Yi5TdHFb8plpQ4efnRIRN6bbOoCgqVM3+jUK0vJygpvcV7rdHf9robXUyPfPLnEjQ83mrcogZ/twgptX6Pl0el1ZPGqNVyt3EzNcyc0oKRIlAF2kSPZ4Wpni0SH1+zDC3XnkyJQBYiWVzWwoQ5/DS4OAcLiscxL6I/JG4HFLXmxoX6WZNFrlkL6XSdYo9MGdius2yE5jE1bYKZ5YD0lZdhM3dsKg0boplkwIstFtn/BPg1v4k6/l0WjLh6e/HIjs8JO3bjkEk5y48IkWeeC1nydTANODumCDHJ1yidIcuWK5clo5tT1JP8L3+GrZj+gCEsY29ex43VPLrt6aEsuUcYtXrHlpIBnOK593q/WUexS+EkmnCl5fOgkgIAvduEpAgd8J5Fix7c/XZ52BwzBsukf8cAIEfOXoBhI2jeO2Tlg3fiaz0chn92rjaYw5lZ1CibND8RtMQS36hzdyCOwtxyKv8m6UORvxZP7cbzNbvFxWwZSCP7iU8fPag9qz+iilpMnJjcgwacLMAePZa16YKVhSY+ep/V2PWRy0mm2UtCc39clKAEh1EjB/UvklzRf3dXrnB81nSdGPT1FXn2E7yzlZAorZMkPKccg63rmsjwoGq77ON4+A7EsaIwUPTb1GU5QWXMZTfyXooF9P6oU+i55NRKAAYfByod48kX/YbIn/t8SKeP42gUFZykJOY2weF8gzkJ7MIeclr8nZWHBOEAiHJQX4FyT0arIi/qBElmg2Nh3tPVxbt4aFawB4mV3WJjLg7ghHpPdXyWlC1FP6Hldi/Bf2lzSgiBxFseKhxbIVPio3czRtrKWgdxFgcf+FN47KhkqogUFBz0GC9j9m26B5OOAt0aDlX2QRMIUwQmvwHOygVGoxvUvCk9EJOnv1TmN/XJ1hNRpOk7rjEHpVdIdy0BsG52U8TxtRXbQ6LuvN46OyptXi+R5R9IHIJs37bqsLfu7WA5N7YRCvIlt99mXNvwJGXoPJCU+YnQJ4VhvGGGtrQmE241s/YyVC7LlL1+jtqqyynJQGASovSCSs/x+Gz9i2B/XXO/5FTkiN5EPsxYLz3xbRY0stwZyCnbkJUoH8anpwF5YWI2gzDRi/TGczrK/9RVjgje32ILku7SztMfLyfiVLVrHHl+kwLyOrifYMZjLbwUuLaGO4XJPWVz1FoiQdyIXpEA2ZLrkvggPMUcXt8xRkL1zSjLhb7zW349rEwInbXxKKLlQkQgUNrOL5lKQem1jNNYrCgC1fMzBTuN7G0PrXPX3JUucw7CK8qJs49OaDSyShCeguHtDNVuQPjTtHOPKxvLI3O5CtEyP9jKYrNNioR0ckr0VHm/q2MItVO8tudPotf4ZA0GwyWp/iqz6lFcpKxMTrfZ8bk0r+tskGngchCSpHfFoaugqokNg0Y/Xm6ex19cEyCY1klwryt8ARZMKUxzE3kOw3zugMBhj9OMixfIOxFogFlm8nJsSraf2UAOeSZFQD3mTV0MQu3sIDo52oqqdm9c/XKOriOfuSf7P15VUKd5fhGbkoLbuUFe3cIRMByonPVfPLRZPzbkHRL8entAq2C/5jTzRuN81/JJFvOcvtPCIiw3QwcDHZe6Mm93UUoCfCMcXXW/jxnNNVrO60DBQau4VFCWunZOAM8LmLzHcNv5XNFG9uNTf2uv/HyTK+xRmusnut5Gob0wvhcaPU5Z6rJNDsMEPQJ4yA90FGM5/D3oVSC3UC9LX2VxNz9E8pKaE3Go+z3HcBxwFQqBKq1qj30ZI/UQv4O9D1tnZ5MMhIRhG71G5k1eaNcdT7c8B6Td367V31/rbUKfWZcRdbphOgUuXr9B+RVIAaC6Vat96HmUTBcSk8nLjfebBk+/kyt+mR64AsUClvz00R8sjEqqARxOM2qYNjW4a75r23hL6pF5mhbc8UlzsLnU5ZZOOoZvzviOZNF1piQIwYij90YEVj8bpVN6AqGw1YP61EHjKEwCrL1Kcxfe5jEwrKUJhqfHuseJZ0IHVydCGgPqKTq1lwg4LtJbRQmxXN8qJ/qc5fOWspbxxBfLHAOar3wHSkGlhJb/X6D4EGVpUHwG28o+VYroODz+whLaoien7iedijJPauz1FmcwAQUa1SWuPRxjINdK5o/0NWEYbu1AcPKM8IX9nUe76/+9p129jBNt2kiPLSJFp85hMwcBHtaZccVk78BxCWPkz6ID2sJC3cpopik0s2CAIqKyzmMWY9qcLkqSABTFR5j8oBfqN8JbzCMaVebLDyqQDqryZavlpjbTvE7NcviYIdUOIchUdWXJUQpSiy+6h4gvwWUrxJ5ZvTpFPQFfWWo+RGaZOOQ2p9DzVh+bKaRb0lDravAK0M8hEte07gCfxdqOcYen2U5otgdQxb0EwgnUAP5qpjzCw/OGcpHwOTK/K2CKCLDZ/N4GMm7JUglmV3BhfJNJdOrUELJOA6TB91mKMd4Arg1FHTdYqa+DN7v6hWOlEz07hcGyHFCEBG1iE2Tk3nxY0xqxpaLFEZV9KkIN4Tcjwfdj2zMvXbyoVQ0eepoawXy4TQwmb+HdLOted4797zvqhKENKRA8jSyDVSOlVlMLlIPBpAb3CnrLRAc50zKWmLbkuF/DUVmfaOtokSImfVgQuYyU+qPkfCS7y+jOEWWuzkE/DvrMFZktHCaDqPc8+w51LXfrmKcmIBJ730TK3sBVVpQvhXCkRXyYrRtrDjrlWOvvX/QbsWGI+5xpPd2ei0Fi8PjI7RQhX9YNxmoCZh7XU1W/7by0/QOCEh6Z5glagM2I0yo19jhnXos/+C/IKdTKw+ZEKnqBLJgq/c1uZpmcW/ToUvaV1F/lDzf1Vus7TPp6/yoFaeY37FxgUM0T3L1KPpylll/4hJR8kTTymoFjIaaeBum2AxrTm092PaGWPe7yFxs/doekfpCzpDS1KfgZIWj+qwHJ9T5II2o1loPiJSCBZ70HwU4oUsukH9F2v1d3+H+/Dnvb+3QKmhJVz4dSLy+zDE9inYqIKhf6jxDqk85mmb2FROFZpSQ+kZyuZx4X+W97yLmkB7mnz9K71dZFF7oxLAACdqEQiPPDG5Y2kh8P+b2SxUmpKUOUpJf/Lwg3u56857+Px6nhfwofDzZsbzapBT7hvUuuGj/zeupoqrr+SX73ktbmqlVuTkM5mgGI0LhlOuxazBqQJSg5azYR/hV90Db+LEU3Qo2oNdGOWJ6JT7rBGvSZSWbDMO5dqbvS/1LrYPUJgvrDDcfVYdV6XKKIzaEcR2Nm+riypCvFqqF/SAGlrn0+dckkW49wX7D6+UwHqKy9Fp1u50+aQ5qqeP+sXMkz6SLUn3pHQXl2W5caF4cBky2W27OSoBPtUxZcetBK13VZXYpRAI2p2FbQ2/ouyn9hwnqXhJ/OBUU+hMIaZ4nsCODc1zilZG9Exunn608ttTmZXSG2SfJanZDtHBKrZHmDJGdmLulmkBPK+bxiTkgtx1aaq0bIAePFG2ujRnmnXOdMHJu1v/ud3F+oxL0tA+9w+pA6xFANFE7fkdNlc/ov6wcorenHtbO85WRAh5xyZpLuWoasmA6VrsvNdrcAlraY68kkVjlmmeQSU9jn0tzE2NH6/B845yrFTeFfs1bz7b/3E3JhucvJRoI0Ks3NYk/7g0ZeZg0JK5/nOvdlaUgjRfWXTBJTo3QqvSE7yzyE2Bu4hR8NdZ+tYabuXA/n5r9AqchNJU1lx3SZwlDLHAUBs5IUdXE4WqoANlvDN6XLdNk5h2NngP5peg6J6A0nUidX6Zk7la/Uq4zyKpWCyiSzDfTYPGJFWOvovXTacLl0igIjmH5d8Os/L7ihosqbxJXaabFK/Ngo5JArBO/ZT6vJ9Rto+cJ/p9tg/+gNDqONXXNi8iEwTZX68u7SHhTErSFVZ9l6/Uv/0sOhTtDDp49BnCMoWe5a0VVni4mDwLvwUFs3f1I8NE3o1Ms16AUSbi0bmzfIz7U0u3CWvMe4IDemYXJfsMZnN2cv6jMVY978Ymr0hCd7259baiLser5NzXugK91vUcUlx0gk47AwbIHolir8ibuLuFZjOBVN+MaPPaehKLl0utkN9wGUTSi+8W1oGHrg1RGJQsaU1PQZQiD/NucdQcMkEHfhDOT8GbOfneqmNRcWgFgK7Tm6z9sJUlwkT0rgyMMZzLBtBkj/NQxxr+aNGrfQQ33J5o1PxKk0Td9gYxM0rG/EIbF7FwkVvCkkEJXqxqX6NUM5VCrHVdZ3l9pH6XYQIgHlvMKvvdnK5Qq97OOFpmJ48h9jXM/GfS8PMewmg2HXZ+OvhNlIh/Nr39zNaFxPDmUAVH4hnM9dY/C+tDUchn7TKaWsd53qWL83Oh10NQXc1XfJ/3Jcbhg0j9swpZX3tr0ncH8T9XSMM2yNdcNXxhdbwyanLqR2i3zVCN0rYYvM7RWGiqgOSe7Ny+wJduTBK7elmw25abq4bq82FSFFXgfdFObhu5DEASLN7AyHvGXeAnsmOgTDdI1QIBPdKA/MroHeXw7ZzwASe5IfBjktD4GSzfVKHek6vJoGWyrQhUWScF6h15+1qxTP5o1WVJxmFimaho0Ou6oB70htqNTH03aC4BQ==
Variant 4
DifficultyLevel
683
Question
A bird egg fell from a nest to the ground.
The following equation can be used to calculate the distance the egg fell in metres,
distance = 4.9 x (time)2
where time is the number of seconds it takes the egg to reach the ground.
Which of these is closest to the distance, if it took the egg a time of 1.1 seconds to reach the ground?
Worked Solution
|
|
Distance |
= 4.9×(1.1)2 |
|
= 4.9×1.21 |
|
= 5.929 |
|
≈ 6 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A bird egg fell from a nest to the ground.
The following equation can be used to calculate the distance the egg fell in metres,
` ` *distance = 4.9 x (time)$^2$*
where time is the number of seconds it takes the egg to reach the ground.
Which of these is closest to the distance, if it took the egg a time of 1.1 seconds to reach the ground?
|
workedSolution |
| | |
| ------------- | ---------- |
| Distance | \= $4.9×(1.1)^2$ |
| | \= $4.9×1.21$ |
| | \= $5.929$ |
| | ≈ {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/th47Vj2s+vKBtLhOzACByY2xoPh/SVQCo58+Ptp0UrXPDHb+uWFQrApfeRbntMyGhDxhP3qbal0DsihOkaNn1MIoeL25QX7rf6jJZKol3Neat0AP/2SAQ2pJ9WsCKe0L8KnKAnWvrnlzqfdmp1i43JmjX/v4O8K8LT340NA4lQRr5Q/HIgGOg0DftnHlQ+oZ+MoMRfTKyTkjXsnbChvTCxJWN72wcWWRJyGEz9hUyVXN3M/fdDAu0EX0Z8Xdq/hMawYObjc0rXsv/o3JvaxXXgnVYjKe9DuUTn8tnRT0CDW3t4NUagXylvK/0T0HLrAk93o2NPcaol/PU9g7Zsg1GDDDFy/W3qPWjMKwCjw+BkYLh3qygeIA2s6/kvjUvrYIc9Y0tA4uwQn2wGJbTMxsNyl8b2Aius50h0HkEvJy8spwMJ3sRvniY8ndJBMupaySPFbAg1d2ztpPrDo9GRYaAJSOfHL12GcXLcp0SZ5gelRKtgbrthRh+R1OQD7QJrVK2nyDeLm2aUSZGia2Pke0kdJd/OaHiZn+ofmh2lYvwCFpBELL3QsMw8a3iyn87QqX/Z33WzPziW32uEG9vtrHg7vMaWqwTJswwJyeRc8fxxnJxIuou8WGyOC8qanTUWN3tKzyysixVkVdxsHmlfYrzfN3EOt6tCiVNbi+VfIpkwE7v2zJc8cPrQZkii9P9lcfp1oJf+7o6Fi8DH9fqdaY4B6pYWbX1coGIA+yKOW+M3+GSB5v6N81p2I7fDuIW0GzZgMd7vNwZkFF9M1Csy/Um60TNRghN06E/XHdAKlHo2DQ4PtCtfXpT76syw5WDc40Ep92WJqSLCyuFO1ea29sjkwNXBqArKNuDGzTazS8NYe1l03fNKrBfDGx4EEfhP3onEXrW1coIvB+cEUm+efi03tFZA636cCKY6/6oFvSy5y/nRl/TB5iq0f71O+Ep7/tfl1CIY916JZUnItgc45bF67nl3cnRHBoZDmL1otPgQUYl/MtMyKW/BXm6PKYsnw7HQOu4eplK7b0sSCx908rjavORcmRgRmEEMk21hlLqI1DpyasE0anU3moZt8JtOY1+0GHPDdDOjdHblY4uTD3b8feE0CL7M2KaVdM12c495DEdDB6PoH1wisamSG8S1Crei4B665pNkiKX75NswQevDD7+/raceoeqSW7AIqnecYi/OhtYwBqghN5QiKLCxhXTSP8TU5vd6LyrGsxZu2LjBo1ar0DNAudF7sHvj1Vf1Q7QquvtSTHTsqCid2ljKmtsxPSFEYuXOeOyP1Kiihuiu2dpYWsqVlgDOLmZ7g1YBW83Jo8aZYoTSeMViTlnLg5Pk4dcDC23psjoz1ag70xpXIJZ0lujBq1ze88Fka9Uyo0/zGssNo1fy4N4rnQcIrIuZERbm3rU6qmm29+K+FixzBTaHQ7iGzIpZjmilD4KxHMJBMEKsbkTaSO8x89w6fO/t4Lmppr6VtnvCNqXq+5vReFlG31DMH0jiM95sQwRlAhaZmzbtQW5+9NGqn8m3sYc6ULGIRMTenHlRcWix4QXhbj2nHB00sLjaO9TrTjq7XKGsPZ2Pp2wRq4QpC+XkBBGXodCVnzdL4oeyaek+Q8eeS7J+DZolf82XRiFQM27ky+IO2q7jjLUPm95PI2cxobuEst9Ef2yZY2rVp+Elu8erreWVlibGKjboVrU/B9ycUQx2VLzk995j9ETGmK+ofSvFINeIgLmJEe1nTRnPRj35NzuVkx/qwwf0KJ4MSQgp05nCJ6PRe/jJiyIrdIJaLEn4sncM6RwdC5TWKB8jv2HIgRSA9k4dXXRaqkQxoTbSYwjofPofwOaUgOeosdlQypvnpI51f7i3SKNnnn3YEYemopOrJFIe7GIWi0Jm71UKoNbvOYb2+xLwL38TG73s6WWKa8anBHK4q55vCVAGYTSBn+By45LxQAGMOfzNFsTuL3BvGegroOl3vOPcSPuaE9vApbr1bl0swNOh1TV5tKqyUFpr3YL9KyO19/0M2EgL+VNExN6IxYcB1qk01PoYo+3cTXyv7BySIokTrOARrGhlNvdt9CxUZdtk7wDOgGzp+MewCVfClMkR7Opb9MuIRWGhimps87h/z3xpomhIjLK4+EhZL2h4PgE3HDUfCmND5M1o33NkN6BPb0nLw8MCEvVTUkb4747n7bgFO+u1jsjmdqNM7147yZhkKnkQUzDdpCCfkksW5XjXGfI9Q9ya/yM88S9vXnfUJsmCF9yHSOczVx1r33jcPksA2ewTx74Q7109/yzdg/ZIbY+g2JmjURNvrbnyFUbSr4/4pNqIMuj72pZESyt7tfgqj6aRtpjv8yHqiafG4K9BKOlVFnIZiAoxSnnNr9hCKMuEfxJjXgjQeJZGGM9MQmRq86/nD7+V3OU/pbVeWIepx5SHBAsIB8QWKTa6eQo/KQPovatVAq6aG282uOs7bpFGyOB0H+JWIHBJp9l5sbT3AeoWzwgGPk8j50XPl9xvrqyoafFRZ/Se//lyAsbmTSV9D7vWWtgHOj3cOeAUKB5k1dy0dTlYyrkZWGrM1MkK9rplzzPO9sCQzTgOSaKUSOE+7iVFV+ryLxX70yUGbi1nAP4sd+O8G4HrfOKQNX+39fNkpnAxasRSaua9SkBKLHB0rA6m6behhXV75xl3xPEMaS0EXVgxMq/+AVYWqVl9PYu8lnSZ8Knag9zomeINAN4ZY4tdMDNMaUE5VKVCIoEUZwG5rOtTHBWJWRDbHGlAuZVlWiiG0vERtwrJc9ztXsb+4/JbZ6/kt2if95a2uRzmYK28pOizH/vhxq3woQFeKi0butvxoA0mFmbc+eEiF87umKLEr/CURI3iZhIKOCAb8LPijfimweZpdRy3zqMMJJfRuVYMko6VrFF6drR0yyuPGrX63Vfpen8wZ40U7UQ8lPcShdrXLVdYVJbSgOvUKrInjQrQE7rNEF0mRMTNiIKk2/0X8JmeYb6Gs+KBEx6/NelPVlTBIcR0fuvUb4STBXHSedP+PxhNH2M85gQhITY35soWuz1P6YSO8cS+3AQyeqdDrJSryUjsgx75mauIhhCYk/2uIFI4/8weURWl5UWt2eVUexjLra/P4Ii6AaxvX3+G9tnsZyvc3SiCAeQyisrmkJ2Zffc9+UPGfHLboxyaR2LCzjRKMBCCWf7xl48X24GRhceWLiyBu4HF8Ljf+kP3RmEmm5xPZcORqnblANZ5CR7m41uo1aQi4RFEdSTR/IbEfqZb5GR8k+Xh5+4NXIiHnuu68VyXatk4C9Xk+TwlJ9Q/GlE9nObacnao9uYCRZUQFoqkQcJvhoH0Y4xwDUy1k+++GSKCRSfNs+Na6R0jWS9ka38hfFOI7Ivd9pZ1wkNKa2OwBSU3DnXnjhVlpqcSbeLT+8Wnre3/Stq8A9cnSsyUSYmW+0j03KcAcbrpniNRDnEaUlG5CqRoktZG6UAxH5RbcUgnx+vIemw49IKvLMygzO3INLeWE+f9unNOuALtAMvz2QmDRVpqgGDgTVbqHgJ7JzxSiXaizaJ3ZL5kHc6fmqjr1zNuLOM9T+oPQxJobRMuWrrgRcNFRxEJEmTTSAmtgkmSDVgl1iJ72XHXae1At5Kx9IM3t1JqNHYeyarXMH9BP7uYct/vLrvQ1hRcCwh7o+MMchEPUoVy8hrKYP+0WTcec5ekaXeOp1M0j9wo4ghw07meIo+8LBnkLD0cNKNwkOtoqbWyLtcWNKHns3ahwIsSEfGNUgx28EqGArhGg1T+0na1MHu9O2rIrB5c3StSlinidIFENhxCBGSdnK8OQVF5Mk2Jelzyskx36ii8gy1KV99iODwnGGsRuDDQjHFfbk/gWMDtsEcFSA74FjMqCGwc6lot8KLojz7boYtAJxTVgZNG7LqKjuUEANMFSTo1PTWa1PV6DpvKhi+xcyu/JTLv7e2nxaGPeKZbNkdikWfnNnHPD08L0dvzYt780bQK+bG4oy3e7OiREszJ0l9uW90w7efW0VCHqzh3G5sqFT9uf//3jY48QGJRkB91xOI5VkVv2TphWAymydoM7r4GPwcFGyic3uHkEzAaIq8MUJgtKBznuT2FgCeA0CzrI0w98siDZ/gtCQxbeZ1ar5iWy0xkJEND83e4RiuwJwVvhZkeS8E+7ddfBXA3Qn74FLnHr93XN2gQlJMchvShBYxKm5jORufY3QcS0hNg8+FJud9tVkQMZ3WMLC15pM3APxVCtMQhkfJKGPDGxwwFQ6xDGWAPkjzUG+OA6cS1irZJD3zsgKeWOjFO2sVMLeLFvVXLMVabDAlvKJZDzAgcHSQyxipKrBsUUIhxgxy0b+dOxYVY4IPL27tUoUx4HUTjRo7wQnV1HWimh1K+vfwpR+PiZzVaIqycH67jtpsJSFzWP6qFJyyP/NFyq8kaS4aIVAfI7tOlkskAevk1+bCRnNaSzvk/x5hSwXzYE/KqclHtYFwEj8Ex1zpGM3JDSQkxGPKA2wx92JRs9AP0w4GBk5alCdRnyUulI9EYDn5sJl1FcecM6y7AaSxmL7mIcjrtdxtWDiJ2tmA8Ns8oHc8eRh+tkbvxWrQvDNR4POvT9WqQwrbYda5ughtAo3w/KOEfRS7OSQALnXk7u+ekFKwK0gt72z1ALwnD5AbS7S3RA+OCcYWmtDbOpNaUp1q/y7O+PVK2/abdMdfDJtfWs6ElPtJ3dLgHn68QyHHVxw3LzYZKnDu3qlZSkyy34km7BqXDipIvd9ta+mDCpBvx8P3VNR9r/3HkvgldQky2DYYebKEwPB4weZMlh52SKz6UFmSig0jdZUoEkQfXiZGC7McER+kY/VW7bvIPmIQgamUdi4LtPEdmUSFbylEg4PxTSc0jFjMvD1pPBNRsCh0M+FGhKqjQ0vezn9QLtL0xj6kZ+dU691zUEN5bghD/4pDD0QUjPrrwqygSHylBJN8tmHLgYYbPQ5dR+oBBTJHXAFQoVaX166Jm47IgcJCfsdRnz+7+7nk5hgBL2qcV8ZUcYlJDwsNakw0+sUr4amh8sGT+2ZeN4Qjj2RAmQApcC6wioGZhR4PgaPOvGlg7NH7GE+6drhM4ebQNayKpIqWED3ynFvA8jJFuYgW4uyxSokIHRey2DAIZVUxBKW7Rc58Z1k7T8vfW+aqumYMnbjnUdMNFGtotDDCNo2cf5aDPwZxKdKkR3Ek8l4+rpcPLAIzEYFqgY9MGyIWbBSRYabZOZmB9kHwKTmHlELXPq7O3WaUxszDr00UZABiXoqSTg/ne3QuRYA01c8Rbkzx3XI1xL/GUSxj3ZgywjmoqqGuB+JuV0g6cbiDKpLKjk+SlQ+UaXPPXlz/hAUKTpw0Gphcl4+lPAzaj/gVXevcsvvbzR6TJRRzjINUDZvH7FQ5ZW9uCJaoNe5aI4SJ1bveDvZ5bAtbQ7X9tPWK42zG0CY4VpKtY+5VoJPplsubAjSl8ec2dshJdahR1HqcpbuZAltPdrP8kb0IlxYd0BTOepseJhrXevwAWKzQcJT63Z0+0AJ2BUCKpQZ9D5k3EM2w3NgbatG49oUYqJvVrGQS6yki4yrzHhcdpiGPhPxGdw0BsqNXF0ZOwDlYTRExRFoREfW/3buwyQn0WxK8zVyE/civjpTn+rS5kS0svP0pSzhofhQVuOz0DSOxocgkN4cjBrw2IhwM4sb4jzJ2A7bTKIqcvtSieGvGUoJB11lYBD6tQgcQP+Voa4EWIzg6iyUDzQN49MY5z8y+UfpshhjfqADIFZSQ7xVhBjctd4esNzJPkErOHWiQDISOri+LTKtlKbuacQbu1PnD+lbP9Zs1l5CzRyk3AX5/uCZWXYQbLH76S3fHAMmWS0eJTv0b27z6DaHsURlQQv0Kns9exUya0hN7XyJMfRIRgc6aE1ArNXQkTcT3ll+wglN2YcT4xBFSI8RWGaCTqSZzLYxlJlv0TiVP8FWrrDh9EMYeP4T2ZOnnvuf8bkzbSUwrKlY/d7winCMnn17DH2Kpi9ZU8cqifYbabvRQr5lLTKTNRncGk9wMMr8Q2TF0TfK9pR8/ZpznmhmME5y3z0rmtXYTbVjRH+a7ulyvCh//bE2VmhH+Tonw+N7N7bs3Df9Six5biGhvJcpQ3QwtkIW7uL8kL/IV075fDNtph0NQ6ygFLzwkY2jjqKMEI4Rm2vj9E1QIVBnZXjq3K9dIsnKtIN53ldOreKk0AEw6POsY49z64OYqTlCyd5Jd8Tr2SB2y8OWoEsiCkibHarSEKm9HJ0kcvsaHjiFhdLepJvmeFoWx/HvGimL0hhaVceZzp884FUkSMHBxJgyIsPrkcHa5kUVNoXH6Vpj26EAODAO2QGvay4sksJh3KEctmCGhW4Ch125mJDDX3QXTH/8jlUxrK3YaURuv8GOv5fS4OLZ3IELjQJMct+j/A5QPzQR7w2APqw96zNRm7xsC1oAhrj3u9aT68PU3Vi2jXzdxt2CcDIwiHobHdcWAG9eIB9fYijp9ADVDcv4w9F2m9D0qg6/lYjmsRE6wAj+fNOOiOq5uMJTdaAUyGE5GYNx+rAYk84kqSwnk/KWRBK40rV00aBP66XgBSkSCwju8kvEtee0fKK3BspRg6QpwTykhUaid6m3BX1TKWTMoGysuZogahz2Achj1C2RbT6VJOwAqDYm9iWnSEOP7SLf3886U0h6Qshp5b1pMLE19mVbNWhZCM78M0N4YKGkmqH5ifYdBdmvCccaf5dQwPR3QGgDCIA/M0VVs6fly80vvI974BbeQ0NJgML1nhVjXZaYHm/Bm4Uyr18txpDTUztRV95PF8gbZg4e6oOfzsVdVolDAUCyBbrVna3EsDI8Sd7AwMaIOJCK5D0DwbJ1i/vZWuQ+goFEszdUHYOeqYFolmfjBLiibO7lCx9CyGyxynneKbJBk+WLJt+L4l6511tQDjUnyPZwbZZuQhblYIPxA8XQJs6KVEUKUCb/WNLsmL8LAh5IqoS1VeFS4y15v5P2+8OJuJV4b/OemFYA8iM5PPAe5czDk
Variant 5
DifficultyLevel
684
Question
A coconut fell from the top of a coconut palm to the ground.
The following equation can be used to calculate the distance the coconut fell in metres,
distance = 4.9 x (time)2
where time is the number of seconds it takes the coconut to reach the ground.
Which of these is closest to the distance, if it took the coconut a time of 2.2 seconds to reach the ground?
Worked Solution
|
|
Distance |
= 4.9×(2.2)2 |
|
= 4.9×4.84 |
|
= 23.716 |
|
≈ 24 metres |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A coconut fell from the top of a coconut palm to the ground.
The following equation can be used to calculate the distance the coconut fell in metres,
` ` *distance = 4.9 x (time)$^2$*
where time is the number of seconds it takes the coconut to reach the ground.
Which of these is closest to the distance, if it took the coconut a time of 2.2 seconds to reach the ground? |
workedSolution |
| | |
| ------------- | ---------- |
| Distance | \= $4.9×(2.2)^2$ |
| | \= $4.9×4.84$ |
| | \= $23.716$ |
| | ≈ {{{correctAnswer}}} |
|
correctAnswer | |
Answers