Algebra, NAPX-G4-CA29 SA
U2FsdGVkX1+5fIAqwU11G+oAZfx/OmaB+KVr+wQLl50s021wrGnAYw1jQnJ3/Yy7Trag8nXAcHWKdMLetzJ2Yc/VPQ/lHB7TdlpmF9NxV+jeuEjX1MKOWxOrxPVzAWe33WYxRGaAD4JQWsDl/GopGVaqaR22t7qzFf4ztaYqyygK7T2cfIzDJFjYpRIHtmwvobviwnvoQcveH0SkGuJ84EY539YhnV9/VuydZt/WG4HOBnS9kHaZcGoOHh6a1IEcmOGP7x0jYmKYBd4F3JjGTcsjh4u1Iip8sZwi4rmw7ZzB8fHx4C4/3R8XMGeVGUKihkWqSUfHTtXuzCtcjaVjCRu4jozDKRasT5OVjflaxhQ1tko1x3G4xqjfU8QBudBoBPVtXrm4SXzNUTrNttYtuBDg20G2W+zVy/uFKz1R6XymmxgH4T5susFpghk/CdxvW+WsQWIHSPk4ramvoLvR2hyiJBZ2IKSr7AKPh8zNxFS/O7fpoa7edXmCfLaekc0cREIiyFrd47kjI+T2BHH/Xa7wK9KrXyXG7th/IoJUpToQWSB8Vs8W3sa2/4GbEKgJCiGCcVE47Oonlpw6vQGzy7F8MRxyKI8wYLLrSBpSXgWzeYpZhY+awLV/mGbnvaW0a1enHcgrUmmbm16YNJG1gFYfbM9qwm7MfUpgtXtOBjGG+/ZuNNCuEVdLyxv3C0kfWdSgfEKaGkfkW/i5CxUZrfWDIr8F4Ak5UFLoYEwo0YkGw25mvkrsuK2AvRm8UdAKTd4GXym3JCmLQjBSGO+I+awSEzj/REO+7X9G8FWjXE/pzKdzjwsal4nTbF+xuW62aayDElnnBVN0DcccKuz7rZvwkeh5yICaqwrm607lZzxO31Z4X+vT+iHh9dunm2mg91QOXiGSbCn1ARmseUF+E+YeiZ5uV5kDq2gmr9aGRD0yeokMdDOHaw8X/wZmNCYHMUbpAu6xHswIRuI0HWF/h+WGP1u/j1+a5rYhk7Fs5XCnh34M3j1LbHk/q3+84HXh3Xxx9b6XJAlI4pSa8SfQAol0Aty3uxxZ3m0BCdhbQPrEnbG9BmVfTVyPBsB6uTdIOAxP+wteWU8bhyouznLlOB8P6hWY1tH9HiHKP3A0nJG5+x5l5bhkgzq71ctHAW39yKussiuWvIMPjqZQGFRl4iHm+uycdSOpMbs7f6W3ssjGslPHJgNfEdQbDdzco4JhUNXskrhpvOuuVSVwEDVJ1w40ZCQESbjA5h3eE+NEKH/uFG0hegAd4f1b3KUf1gEXkP77KLYRh7xvhNm/8vtnrBZ1NWIEh6BKOGXJbsfHC+EOwtiXuAftySr0KjqBVOn5rmCC/sr5wQZ2EnKElgG9fe2cT7kKMqBXpkqdpGnP8IxVcmA27nhyk8cv6h9dvQ3FBdIkSbexZyO9fBQazLIC3UhsjGmsX3B1WWmYgfbNfDSD3MOWASUkRtMP5CBh1p4HXeGmSl3FrRrHq4+nBhAaqvf1A8bsntsl1w72ouC2XRezsf8B49L/r9icyi7RAAfU8L9novJ79mba+VM0jbKeUL/bBEtRUvmFGhiwmRrYEahK8QqZ42W2gORWPIdD9V31DgaPyeU3UX+CyPWAeHvwQy3Bx/aEDIeGFhsmv1ebtHK/xrXRu0vSJiHO+HJ+iyVXYpxTJ7+HR1kb22aLUe7c+fWY1Q/f2TfUZsvqnSN6h24yciE8b7okHYwqkSHpajXxZvuNH59SAqBtyUAcXaJujdnw10npBddNQaleFX/KZaoN3Rv9vc+1LYCOJWHW0KfUqMpd3QcrdvWv2U4/o3RCBw1QyoUZGcHvyl1XZY7uLf5v5uQc6KqCPYudiZt7sMzcFE7Qb+tYaDPGW6fe0SyVvxxLXLn3J5dNUvAEFKHa5FGgvEIWGOtbsY644DrmTQcqAMmuOP6fneChErvxzoQYjrgvUQyQq3fktrTl/GnaIuNO8wPLONfvOafS79XLhSi4xi5I/1/gGVDDIEFM4Wt1iJFEc10Q8DvYwl0Q7BY6VHhdIRRtXLkjcJjMjXJ2biSt9bRDyZnHx4RNAFYaNgOKGdTrbAiDSm27czfpKWaeHe+qcfBrHUYqBCzAUT4bxw8byJl6KbOpPvb+EPwZewvu3XUvVPbhBsxt5kBDrAFtFqfmcGJfi7dxvW4TSXDtQMw1sgZflmGoOMbbaCafQ+0InCqF42opWonCEgP7jervA+e/nUNsGSErvwNrwlxcQuo/YwEAXUYwjoJhPrya0xdQ0l3+U1mRWQql+RtS7RgdX6aR79Wu9jfqJj/kzutlFuwZokcxk0Pxn30IF7UrUPWNRiN8n9D6ih/SeRK3GbUCdIv/q8KKTBYBP62PXoRf328Xva23Re4t9ljr5E7ueS93LfAeTxoQaW3LI0SdtcQbm0P2w713QfGkPjyayahsSEZVfY3CfoAA4fdVhDu1N0NDkj7STZ69EZF4y7cQWISVrnsr8t8Ue6cDD97zk6tN6TNKda/SN2y7wF5w47aJ1hyYoj9wjoTLCNGulFaWwnVUpKEsrHiFDj8cwoZ+1xWxI/fX/oaqic6cYfwi5yjhckHjNBABaXhjs0ks1pMp0SDfzKvSlxfm0BfvomXjLMEI/oNtbwt5glx6iSrLnrvg4ThoHgIQu9r861Lz0N6Oz5NFcDm/Vx8SQ6ODrwIX6gWsXjNTIN0DnTqyd7Z2TOIp3C4KrzW+4H6Az19iUqKZl5Ltmc+46O6Mc5aXnRO++/Tx/pg5WSvAczwg4IXIbbOu2JMZsgY5pSjLw9z6Y0U71k0amPJAmQpipnTCgr5ipDjrSD0AfXHCwkYOkRBuXdLDVJOBkNd8KgDWLJ2YU71od0Rv2gpPGoFPXtEgLyNTYbTHMCZmiK2w0HqGhPfpZArf8zmAWKDj71Kr57q6C0oUq7C1Tx8dlycj2MMBOmhkgyO0rbyRPG2rZ0bAhSgfBAqbEV3oK5MmkyPRtOwAF/sZChT1/9WyH6lHeQAnSHaHq0/4J04x+t21uJfPnkABQPRlhpT1M+I3wwg1fpjFvYs9TzhRE6O2FdWQhlqZYMD4AD+D6aMa4ZHhu/HCYq5UNSF1xDpVbXFyIvLPkz2V+kaQO8PO6Mp/hTTk2RjPVZUBDU60OCvyTVKbtlPuO9VfF3boB+6QMyuNM9OEINK8/yZef9K8lHQ41adYRsaO0mms9X7krGqEvNmyU5fYROToiGmZfXu90e7DzbrkQKxiDPe1vHbvpq03e6UqLOYkebKXKJdZlic4BF8ZHJCx27D1yZ5S+opq8k2qynvwk9lHewKju1PHIaBGYQ3saFREvDgMkePDtZoglcdNzXpoH1R1ckynl4Vm7hEtgc6eqfEm9udBnhnG3oImkSGgw387NUCQQ6JXCxwwMajZqlOX0lFWW/coMmKB+65cKV5CLeQIHSsQqxw2CpZDYWtH5LubEFQITu1PiLVAyZYfDlSAcqbad7r1THcBfn6XFyjZCynB/2dkdSdHc5St1t590HYGzYO+wFjSZGWxylWz9iTc2ZsvQnzCEYjAQMDkDgM0Vg8SXwwRRSZ93aAOO05diaUHBNr6wqeuRobpDaV4Zdf3jI+ukTcN9xFXeL6WJx23Kw3kDWMT8O1mOhiuM7ziUeJTq/0HHzp4e44QoUSGhp1L0cm2Gyz6zhC5CLGDoQRU5qhlHJ1ifPb5lGWTdp+Yc3k5OSE9HiJYNs3r7wJZloOFtsm968LsfQX718OwJa9gqZXa9mqk78oB+hn5+iCW2w82pRWnp87YLw6VHyBiab/SfMKk2R2DB8gc6PNWYJg/3kfHE/71SMKT0vsnVeTk40IAD8tWKDXwIFMfldY4AezOEjIOst6apyNdfyPqkrnlVWzRFUF/S+EoJuFI39RcMBWFpunUvNeqIkW1K5pzMHYiC+hEPFH5AWw2OimgbKbTqHtxbp1FvkwE4R2m3mheE1qpQfgrettcdERJwPDAVdsrLR8dXIXOCYkeQnoyKvFLxI/M2gRBVWfY3Rea9grZ7oD3kq9HM2JjskrNFkI1ggCIgd2DcrQs/3BRarvJGAq0URXNt29x4s6SQhe6XnVgxwhHu1FdKQigGWqAgn+iQu5nY+VLuUFqc6sMtQzbzRZU+KwgaXgeay8O7XROKa0G1ZkqiPe7Yp3Kz8H/W+G59jbe/EQbXwgbWsPhptSpdr+4kF4jvm1hbzCo2ArhgwbjsR0GcriIdDPIJfXEnKiqyR+zhdGW2sVJrXu87gHOi2D81NVlBaLqnsjsUB6HPETB4FnxlUl8IRNyvs4LK1UAY85Drjk5P+3eLVuh0XHM+Nl5qZGC90F5j1Atx/p5ho57EobF+dLt/3PosbHoOZUAiYgewSZjgwQF+pDdHkUOWPGsYdwFMHBxNteZFgUpAINS3T/fib7qMRhX7Xi5huINjyFU7558q0AfF7A53KIfrA5eZOSXD3KnAbfxTil6pnyi/092MaAwCjL+5frocy+I9/8XG3TmWRkexKS/4Ta+mt9e6FiS7Tv65rJdSBgGp4Yu/kTzel4CW8sfv/gxa60zY3YY7/iI4c7V4t6x47nD9r9jIDYR3ru1Ph8JA5MN09bICuZYVimBAyvQrKE6jeC7+c2ygXo0YNW/ZnNZu4WmBLb2ov9u7WER5wkI9SO6H/YOog9G3tgT8cU3uDr8xss4Z2nh4KK36GgzvOSnSRXmLhJz6EtFfbSgvyvo/5+mxnZzrNRK9xySTiap67iGq8xEQRkPMzTUIC3bTnN1/W1p4o91kSnJiJa65cQUb6CKTz2d4qgtf9DsWk5H8bXxNg5cqVLftqLHScq+1Syw5lqdbgiRtpTt/XE6znXiDF+Mz/umv0DTZa2QrjZ2NlWwyScHQsCEhSHpqtC/ZH659hvCpRCwpHHUpyBIKit8STYIlxCqpYlMJxZwrJsEqIPC60ipD72kI+BTzIL1/bbqkpW4ns70NjlpmjzmOIpcn9FNz5Vj9aGICPfWRiI816J4Hy0zd2BG1Hs70eEW0sGFJ5u3YbwAa6Sb659jxJSRN8LNYUqa3wXzmXpgPVfHxAGSWJsCLxjXD+zRSPuaFnDpjDcOz99kE44LfNEypTj+AHezYqxswiUZX8HtAuZ1YAqseXCMERiV8GpDaaqKSr1j+2KBXMfMD6zDllC4e02PWen507t2ADpmGzC5Txl/8Tf7VanqchUGILjl86ixF+UYAdWRF7DzrBvcjttUtc9tLrhip9gOw6GS7vFKHdlQoqfKa2QMovXDxhNWAulcLxyuTYuDze3rlb6oSmFtc/HlVPlTDhQE+i4qdPvnoiOi23jhnN0gUWOPpunmno9ntZmQP6yFDC6aGqOxL30OqD8wpz9kNlmtv3ur8zzCO8j4jpcdJ630tkd/OlliI69qeHZkektlHWvCYPva4HCrX4nEvcWrFAt4HJDRT1eNbLpmWRVUwWUj6GWeYMaZL/EII6SKjCDS34N3ByODM1Fh6c2qsckdx3RRZFkJbYVwNGKm18315Erlsl6bcwzrfbmgKQxp/7MWi99H62DJcPJfWQy4RLaDclvkSrZjPwyGKV1yWu94AVnuk0EhC3Sr4VedwwU7wIqK8lmLAd8wBzEsmSPfIoPrixC7raMmU8IBzv8NPlJnHkKMc5MrgpzpeVfUVmVVOrpT17eFLCKGNSqN+QrHjZ5qIoY7PNza9J7e7SQ+N4PCuhYwRo9JO2rDxy0aCtk/4j7KbuT8yarPKQC/HXY43Kqq8CA/abJr4UEblaMTzh1zPtCr4a1iCAkdO5ZZs6G2S3PuBWyPlzPbrJE9Uojhr327HWpdpf7Hqhb5R0Mgu/AkXgpRF2EybNw3IZmNTRx6yExp4Mg8TEF7Vr3VDOoiARQ9hEVBD52tm0TtuU1CA+12gJeKNkpptzVMT86d477dt198JWo2ygC5O5CPYqGSTtl+EBjL+Wbf1Qv/sR2UWhSWqEBN3oCxtGIApEYiY3tvBNkHRpnvlM3XAWLT6fl33xbZ0kQd2QFl1M8E4ZTJ/dytym9Inl/428trk6klEc+9NyoOnwcZK4f4tpM2OUQDxYZPl6kTLa7BwJBMwH3ej2zvrQDezJsX6+xf1W6g+001+rLzwKf4bQa4G3SsItCgB7JCZLl7EhSVgPbCdRbTxyVOWpg2m0y8gjLDpdq/b558xDHGTxU/iX46F1NneiapBGSScwN6o1vy1bPajUdAgTqwZ+Xknl479wM//1LkexyTM+Aj76IeC5haDEZfmZmmap4YuA0GAC3vNVE3mIyxJC1lP5qpcjl5N6duyqddOkYPq1HDfl7WJ/h43uPxJCfrB83ywx2jImdDk5sfYrY4Ya3v4++hGKDVdJUFswH4WCTXbxK9zfLny9fBjkGpQk25b56xUB32IJrQRxRLRu2n01D2TGxHjDWSmIUxuUnM0BHzHbBGJ2hTF4Osu/W1BnHpR8E/XSpbK+Uu+IHk+Ci9Fq+l/f/jgNxUsuIhOb+hYkvPAIU/ZokEYrvpjx3oHKRu5Kcr0iVsLrpRYevACXjePCM8rm45ljw7tdy6vumbbds64l4avnBFjqyDuZ3fg2xcFyyCw+hZFYecqWks8L/cUQ49/6pXMazlvR5+t0s//xYCkedBRssnNkvJdspphjPRIf0gR9F5A9JqzyPk6CLtwr0YtFpWHK8PMvIKEIJuCT0GoqQLqzvaDHclnGfPfSJwQkS1Mkvl2g1aP+dubb9OaFSMYLTStvdpql7Kz4uSSpyKz8PlvlSjWQEmvNF9T5L3vPXGh2seikSPVBemsDz0zUcEv1y3VyS2TvEVrmpKkkbgvT010B2rDZFSqB3WYrEThIejeTNg/fFVSKbmOPit220C4HELzePovFQxWslLMGhYX0BvoUMsgZcqtrmOdI34zxhcsK45VoNdzU9pIylsNlo52oSH4d7xH3XbKm2JmMDTuVSKzmDn6VZGtPrf1sTvisfl3eMTjCGQwhKycOmvWkkB8dXnwj+3uwPYDQzy6q4VxinQIXaNPPUgi3NCt0b1yGAAT+YmKUHLqHU/M4Zl3vtc8Lkd95NComAGFlyPwq/5d6vlzqWQlAZfpyQ62EozkSm9DvUr/fw9kY7JkLvvaa8JhZ7mCVf21Rt+SMmFpVtfUdOYNC1brJH8UbDzfmJFBFBBSl7W16uo/NsvxjqNBioLmcD7eNv0kUokYB2MpX6cI0UCvafy02ZC/KxQvpL1s8r0cUQvrN7uJ5EKk4IYV4rHhfjxuOqRPze3Xcy3qwpNx4DxHM9c5/LPU1jKuWzgPq9I7JlC/WAQjLl0gqYkUUmwD+mgCfY/wN+y9ECPPC0z2HnffVG5/0IpYuEIRHCrNzpYfwMAqI4VubyAvIAWubr+njmwjFNd/1gLHeZBHjcOEe2rz43BslUmBKPXsbWPLeNX2662yAd+3Vn64Bn1Zfeu9gcHk1mxJKeUMEw0YdyUt3W+ZQKpOKz1IcOtjeh4WERi4s1SPga8/HsKEawRHmRd8VvB0Ca0n6RVWyiQR/9aHH1NKHFxymTNW1Mh9dXn3zXGlMlyb4yR2ZBc1+2HSiAbIkegDJZUqnlz8wtef57/RVADoMZVVSEd7iP8IPn3pj8vj7WyUBLfQ8z7RtO0XIYyMNU/8VLH76XrO2B4XRIR1LyprxbIAYtBrrsbOSgvR0BcVt2b6k2RP7CdtKKeXJgx0Y/GCWP+vEBETTOzBS7Zwr1jgJBY1LjOCUixDWr1BNdnx4nx2juRAAHNOfQlpuesy4V3FHQb7JcbpOxS8Dc+c2XKNo/2qw8j74oo5Wtbh47MxRU3kmf+a4+QpcTSyEl6SiFyu8ZmD15qOee8sn5+uPrCQi02RrP8Ss/mv9yriR8UNq8Zpe0QZsmEEz5uoWYc6xyLqn2p8Tzta2Q/b2bXhBOly9db2avdfKvjL5gDeHsJXgKd2aNg16FaioGAbf7TixYH2Bo4DQSoJornDujIXY33atBJlTbTlJsUR3ub5U53y1IxgoH5Y79mrqVxJhUlYtBheqD2lYUC8I6Et70t33u26/7hlXLMsJdhDzeJ70IaoS5OVcQ6RkHU7aulirPKskllHs9pRrwbWfB5CxfGlPPm0vCGMau/VyFO/FQZr96mDG8ryNqn2rxS2g8cyU5BWJF1Ud+v4py+8BhrpUC35m1pt8j12Bc036q41ULoZLTlIOTH/hRF01gGqUo8ANfD2a6Hhe3dXVJqjCdmlxUayWAgQA7L0AQgQ70CBfxllDp3gEObkKP4Fqhe4RjymI9ikaxjeEyGBhWt0St2/F2sRaix4r+fFurJZmpcDY2/NIFdySVMPJ3iWTPBukj8BqDK4aiZGBuYXCSOXlUUxJXAdkbqmsH8j4E67mQO34xJwJEPPC4KV2K4OMgxLTWAVAxnltGK8SiDSzalzWbyYkOZTqrmEcdQpNAx5C0+s/mLqcY0wOKxBKDdJ25g4C0DNJsai7OS0Mxvbd8wrlN0pVGD22d820dedxcBjHs5IYlxzljRFF2GbrUNEtHKJQP356vYx2hzHGDT458DlWzrwaKXkb90tt9WtciB9HYB19uh0iLg0kxM0RnJjyGwQygRsoCWiy+EZJ1V1clKZC460aSUq9HOH6V9MHtsDnuFz8xZe4uJkm+dY9G07W1crbmJs4lDQlWhQbXfmWy/2qw/8BAtpacbmg4Jg/rrhHPSQ5iy84Mht5cPAf73gBjNGTdOlQiJV3d9mEPakIJnO8eea7ydhtziuZyPh4kmYPOWPAIo4LeldfXD5oEZ36SBVln8JA3mNdFlMBsYLS4veZfX05uNDfuk51pAj73qCtyGGfmjA6+7WtgKGlsm4eJjj79/oBkT8OL4Gi3R+C9Rdu+V43fgMKNhRS2ErLZOXwN1Q4SXaDqvBNaNMkOlmlp+IVQNdyCVYXyUjKqygUpb3qSMjFKnsZgQgUGBOhR/3zK7TLiUwwJzbvRVKWBzMs69dLXEpHYFWMkEEh/RxSU6cP9hm3ykhbT8J8flzcfAdZBpyLagAnZPrXvzKXjvdaDEm7cdHir8Tjgj18LQHgZugE3BinV7/xSa/idYBMjgKmzPqi3XGpAQpTkH5NMH7UBIxkyYIkovNFYM0Iib0kMESKR52SorVmmH5ojs+b4uMLLYgRLFbs1HTRs7DwgkR31/d6tg46f3qttHHzu/txzBfYSnUOsF8Y6BBicQBBFavTojhFM9/ZLCsP7Rhur+IXDIFp0sDRaO9uGZ0L5aqjtIxJDStgOmEFIagTiDq/sYjvcbubHzANLXRbquz2eYwaimj6Hxf6qXAIX9qTefHQYbGup31BqMOrIK9zOBi+2P/jSgQ6OfR2XbU3Y/aFpgm/pONIo82+7QAiEGEmxtxr8nPeSNOVXR/DLj3uWnhw1R8QBSJ2umO1sveEU3mZAXfKXgAuKK7Rsgrc1IfdEOUS4rDdAHtDDm+UiH4S4t78T5434pZcjcHd7by5PGMzwh9hAKV03+A5/cCzu71QNmP231Pf8XcbK3DcimZmL5D/rEcXJ1vVCO7WFC3+4dtI6P6TdH9lECmFaZkencLUUtu/J5sQA7hm1XcnF5BOWeS58b/OMebb2DQR+5V9CKN96wbkuaKFY1kHT6Fwqqa6CfYWSqJ/pyBybUl3nU9nRIUJ6BmsXl0FX4NUw7SSACD5fxfppAKozaEtmOQnlwgjUSCLb7ohM5v5p7GSVyxwLQyXVVA3PpZCHyR/FotB4JJK/93r+0Y1IAa7NbWbdpZVBhpB46slbHrxNt9mNkymLMDxqWsRogHompXzPzw0dJkFUZrl9TQxVvPKIGnMoVrg9phHBiLYuBVzC+/a81djDKuX7hGAVDg4inRGpYyI+5jp6lNdV6A9mRSGtzZmO3smnOtPIMjEf3EZTVKabndWZIoQfr/yh95BNmf2UNy1vMyPHQ9LrfqwvV8EpqFEVGDTrP4wdasqiMK7SlmuaKM/xAZjhpEOP+ymkP3WOM+X/Rl2LKw1q88Z7EgvJNJwbh/IBlyOmbqE9GoMMk8tPWggv9yPKw01b/f6Mw7D8SCAdTQTHyrJlTodUWHfcRF3CIbZvJoZ81TGWIz2x8KHAwCiz9PGdACFRrn6taAQTLMvRPr7RZQ0wdjotKrwTTBb3JTLzFf/zPpONCM4h2V9nkuncJ1G9eiqhLh3S1dLXXJbMNSc9cc6wSbdUuRl40C4URVAYT+pR1Ue43+A37syOXnfbf6tiyVaemDyEhzi+cgDbQqFnIhsI3Kqy2TG6A7s313JS3e//zfK4iok+XYrEWwCMSg9/kxzDwp/58XF6aHr9U3zbohuJYbONStMY03bdRGiXT4SvRjUOIAAtV4lLKPl+dnttYcy0cQ+NyvMdKAScn5+Ugz0KwkSxvrOX5kqxnhI/65/BE0z1zVTXDs/9yzW9pk/49kex7bmtKfpWXLSGMZm3B3APFhwKGYt78s7MzNGucolMKpiqcYZ+kGvSVKJO71a+Ac3Fijgk96si089FrpiPMx5mePHbtrnUR7tp9IB6B0qG5bNhAHqyChR1GhqpFBkZ24Tq9zaFbx/TQHuTmiQUhK6Kw3iVVz9HQAUkQ7t3fr///wc4T9hEqdWQIQdJALOIe/0BkvbaeqGzisDmsdiopSEUs4ZdX6PUS/+Fnj6ewjqCmlERXjQA5bgHroMqdBLo/MhF1ycfL7qK3TwRScrxExeJizAV2KsVtVeMtpYTR0mum3E4G3MOpkU836j/CqKKIjLkbr2g/yAElGoGCbyChbnjZN3htdd/gERGJtGuOLF26lfJk2Q5ReKG/S6WgRfqBmHtlwJRjOXDiHwT74haOnBnA29+o/dvWn1OntuvzGqqHhpIujDUBB3EtQ+gAu/5jHZtOHW/GPlkMNsTYqgpwywFoDk7sNStkjQY5uJLbLEl+DIpzZgHhHGb3N5ztf4CqN8DabXLhx6LhIU53lXXszPWJmEZusrN2eS5qX8BIAIBOSjNPAQbFoWni/b3SD5T7idrhhptDpUCT6tEz+sZqWqMH9XAzVCHHUwiwq3O9W7opBUQLmG2xsBWDJyvChRH+rL3IEHmMytECYVyQ2Ufr4VoT3FJwd6ahmCqaQ2j0yutK6WG7gFNSNBT8+ehL/oAd1NETRLFykIgr3QbhZ23Z0vcXpddChfnJ5v12OaL6JaBASgNjRBq4MnYfoyobp0s3ILQHdOLMLdhzQnczeK3TcjfbC5boriQvIZxrbs042E05SMJ2QD2VepEjNCEBjhch5Kw1kb6j8AyUFtxXi+JBMIydjWvRV5bY9HXmx07A00NS3vuI04IrQpfe9fOkRsmnJWDrVX1wn300z61yrHZ7jc8imSV3mcqj4n6eo85cGhbecVzdMfv12v33lKZNaAmGaN6hya/4SVIwsuck0nZfJQh+FZneIa7UiTSmYlFD8lVjjQ9IuDNd6VLM0zrHUM0bu7cqHf7XjC3ZrnnEna0YPqtiGvIRfOMkneWtGLgWCukcD83BjjC74WiL0Uo+1lMc2GKXhUmJ713mPeLieIK5Ed9iDNGBD0MPnpl6l9Ybjaasl+dyOOn+gEEJmgtCqNQfjieEqD9JX1ZrL/v9TBQL2I67+f2DGiNhH+yUF+3SCGUQYWdWqdtfvaoe+ZNJj9VuhA6Bsy+yQbclxGAZ7KZ9m6ecY39XWwE1DMLSLvQ1ULYDeICKBiPU5NKtgvMMbpE4tGLoKsGXi7XrrZa4ACkF5d0jt5BXs/vpK6DjRfZWcSMrA/PHzHyBFSHP6DWXlUAufY4P6ZdfPZ+huX9LhlhH9JOxeFaXQ0lH24e6nnfRqDNLeuSJ+FSXYYHszLwHOIECLo6o2rpgjaOwM66Dowm8nEJDR2+MWgDofwhw+SF41rTDOkO37hu7p486LzbfT0xcsa4oEjlUeaMfq55ckZPqwQVO36e5kPrUNDAEDpuGSqcMWUWAIqmRTmJb34T0v/ApWjaG0M8+E3fzdNhW7bPJ5KE2qLEOlAPfjJC519DFtkAb8jcjnf21FrwKFX/+9fzBryuyXzDL7GLx2kNdm3hLWD/UPVOV9H/VfUWnSrtiaPIalR3MttRnjFqd6nQ3JC4V7zgNH1rYP65hBLX5Vk846fsBPJVIhGOmab1cQFlmRdPM+WldMFshfcNVewhBKdZ9+4dDt4dds4AQbXZDhufTC53Af77182lpftWgtw90MAtQ/SaxSWWwv91c7try0Y9TkQJV50AuAVMwAKk+45gWE01S4sAgXD41I9qsrgRkIl6mztrTgTP0p0SDI6HIPhax5ffYOMJQrRHRA+6Xj312V+GN+Qj4ihoQfV5cRKoRDH/b1Nc5ggLpzt8igcNsLSDY6DmVfc4B9mQ+FhQw679dhpdjH3mV5RC8uzuEUmYdYC73AoFhkjpTOA5jNyxxkLqixPmcBXhgPbTGVgzIP69I+Y4ApHxkaBudgbGAIpyrkUrQhv3BR9cfgx5mUCV63nVxYRWJbGSQnvpS0qCxulEq+o0du0lldQ0rgIdhiSGuO3Q2khtoWR4jLqkus2LET9FZH9/9LYDvkjcPMQ7iJMYen+m6+huOA76kkVKiLZjvcUBv3iTa/4C0uuZbBYKX5IrE+ghlwPrGBgBOcfZs5lFPRKYkefqgoNY33kyt6rjQ007Uu1vnS8uMBBvofdirqmTEFu2ME6IYN0oGKSqWrB2EiG+QXXfSv3/Th3k2O3LN8IKE3UC1+03b9oWzU9GwV2R+qzkERag4hAWaeu7TLPEewU/OLaFjcwXtNbEaFTL/11Svu43IeYmsRg/8OvLHUAnI0xWMdOL5IQhPtell73mCBdJ43N62cRGG1BXFlJW3zo3R0U4cgkdrN+DM4X/aEnxn9pVO7vlbn7tsqANLxh1XBODIenpid97+p59uYUwWjrk9IKz4uGoFDMunoH1Aw83bj3Maw9xKK7cavRODTjcwBN76FJzgvArxN9gd+8hBwejbrJRK1swaTvkEqmGmmVzZngYdfePh6JJ22y66QaKC5bY7zbD50gr8jECVskvwhqICx/hczdXiiC721kvqd/a/6oSFF/YN1JsP/fousWMdjFUMbMlU48UZbDvLQWrX1RlJh4KbKmBm1yURjNd1XOG+W0P9MKeRkz4aAG1L/BjpTBxhTS3C/ISc/6doKf4+nTTW+XcpfEUYxypmVW6RnT7r2omqrPtQg2ReHpkJhQTUG5t0xht+Mv6+6nECiL16LwRh+TO9pwaLUfya/14TTYq03PZmjji0OZS6jHOox712ZBGr6YE9W3rqXLq0P4VMe2lgbYmEuuBFD+ygD6r01yc+i1GUUtTXzZfB9Ushvin31/BoaXMjmuaqmOx/wg9cvHg1s37hNfsNjWvUTIGzebvhdr0wB8qvri5BImOR1F1CYkCe+tSS20aH4i5MHxh+FCquz67c4QIdOn9Lmwm5Gw7di3DslEwgA9Sx9DKALy0Rn6j11RFZIE8Mm1R4hH8OZ6Gxuu+5tZQ0tUEYyz4Ee3vjZCBJue1yZs4PJWf4iKQ7IyX+BPzuD0qiPC2pLsBZTLycC2IRLOa6l7LBXZL3IGqGJwCK950Xl4vxr8T6KvocVc6c4/bohtX7HpmOjOEHRSuMg/Pfr2+q/pEA3yHl21QBudUmNp2vzEX1hQXg0nHvraMwqm7vhsuZqPYUWS7jpIXHBVRN9QowCQz1VBP18v24A0t6argsA0vuyUkd1E1FUqq2x4IK3WqtthqYPFXWqzHGY/TE6KUUuvvU3RwTTBKve8D9KqTp3GqqKAKXyiJPNs2ARzg0xw5MYhqZmXF+4oDUNsXiEefG9nqtlThdBm6ecHgeGfLD/kiJnwlouhJ7AliVyf/atnnyfF6GL6n7CcfX8r+S04eGLGJWJ3TOzryzAD4Io3WOmC3877vGaF7BxeKVMUdn2cx4TZjrv+yL6niIppco+9F6G9yaxrAMete2+88seZ7DY6jD4ekhpFTWiOcWLAHPo6/TOaOay4YWeip3IaadFamt7YJNMHRaIzA4KUqoMntsjhr7UyXdSl0YeSgGSCejAwesji8q4Y8S78igLEtGeDIA2QgdMo1qgQZagXxuFSDEMcGGSjymstAxmfFC+0Ze2pjk55Ioc10O15rlswFZNnvkktBa3Sx3bpg8K2PgTTC8iUcZGoP4lzqwQUlp6rv/UGa58OH2BdQzMsAGMdLEuVgBLAhcJogbhtjtwjJUORIiEmwKkm1pbZxxDmbxcguvxy2gEQAD8iNVGgYtLVcliWJWZF2myPzH400C+xWChlviviJxwXabCJeBoMSBVPjCoQPZxpARHEnS3UGbw62Ie6rfOqLBTrBhEHrYI6cHbidL+az8dK7oCZzGwuFD5i0OH3J9jSXrQ/HKwrvTPjhZAMDV9FwQaBFvhw0X7ZMlVzfBQV15bm/zgycGxiDnwgf9PJ7bGGbLrahQkMaT8rhQ8jWw1jIyIiDLjlkKd36v+R0YYjAbdEcBchZPbuzsmMcafIVi7/XQ1NytJNxmzQiOIZWBcPXzHTdhylMUU6c8pvskGQr7tOvYT0hB6lXTbnX0vOM8QbmUI0sXJ9PYbWKCu+3Z7Shg11V2Qij+3DTNh8N79xzczOH0yWBUKULWqcckaMX5gmOqCw7TToVMnHvPIcYsfdgffIWIJLZc8LnNhVY+1zJl8N7niIm+Upctqwdcf3yaLgU7d4FoJ04UalFh0R/yvGiuaH7b3jVnRFhHdO9MMa2HARDGYpWLvDCOEEFThdn9/+a/B1zhmKP5gPeg++vNRWYLeZsDmr5DCLaLglGKGbRvBUTVGYiEhkoxhANG98u2uIbrWOwu6eJBQZcS1mIHFl2WZaWf5NBOydBJ6phxXihwOl1hWcfTfkGuAM9KlgodNQPfGfOBMarGl6MsoUaOIIWijO8k5ayUCNMYdsNdKOBitYTa4h8e470XqX88ySEstQqcTuFxzJjS4fhqfVrJ+kiCizlV2LtnayMBGqZdmkKb5nivARnkcxZoPvUowN0PTQv4pH/vtvr1cw3U2bafGwhTLhAJLz/EUuRLtYGSD5H9iU4oxd103XFNYeQdW0MRS1Er0LJ/jtZW4w3/uAATI2uJnd5dqa8zxOgRJlDGBQZsfLFwyAm3zjp+7l1Md9eiZpZyhpFGsMqgHrrg/dokrcjol1UrmRXO+zKhCP0WCjN5rUC1cG3cn3tcqPnsW3TqEPljm3PCQvIjf7tlUrhXH1ypQONaHZf0DQwOrK56/+GpVlbhKwpNtcouQVB4Cm19sGk7NOvbL12lm6/jW7qvRk8Ps0CyzXAXU+Q1l75LFeTF/ZtY21JQniw172pnA5F4kRQ7ynxdJ1ieNnmtZTOMlaaGZ1ZSDoR1oh8byyj+sXYvSp5S2uycHuOyJ4v99zQFSAiPwxtK9PQMkOobpkxx2aZQaKrZy3JgUQ1hZ+IbwvFMIZAr1gPJwmkvcD0LErfQEhOaMPvUj7hV1g62oNnVQCA4T45juY8aFiMCNP2Av1GlOipUfx8gi5gfqCvSWYMvDT5afpNx5sKsD6C3JgIrQhh2xfiLbhXC+515B5Pn6tyPUYj5YyUYYQzhQ2T38g0Z0FQ43cZxYMOFgWbBbvQgSqRgWhS+q2ooTWxXEIWEz9dnAhF6FwrRUOW6eTDnpWP64ms0DtKNpXD0UPZIpJc9/QokBeMHojBrcZ7mrYReIod7eIFUtZ/wd+CG8aUhs1br5WHInAGwTr5akqQJTn8KEB7wqqYhw7jV4U9Z5KSj+NH6k7qDSDZl3aLFkDb36ZnXc4YQ0MEoWOZAPXJU/ZFZFh6DJTJ0EL9q57Gi5nyNHtGyqKD4DpGC9prfD/IQ6rY31fcp5XNG8T3UbQiNCZRtB2fyC6vDdXXT+yWjHxkBzu3GMmHVgrnTLcvK2zSnHbafStAjhHIST/4lV7dlL0iogJHEPbTIGUmmPD8A4dNdF1gWY0WWkPZoaW39HFw8pchxOzFAuyOUajkRUyaofjPJ8mNKORoOsXSKnFA+DiojTU6foiflTA5Ggk4P8jUPZuWozSLa9xmePRmYND13+5DzewVV0uCen4OsdbjRTj98WsR7F+vlnnQZjA8dlwCB7Q1s986wi/EN3VIXwvfj3flOlZj1jAESyllPeBCn6EHmq9Qracm6AAMKLQcHqNf89FhSBCEwDzwAO9wNGlvr6nuq9vZNSAr7AeB581U2dDjdeJ/6YANfd4NAayZmHKCYgC9C4r7iMvKGztThIGeC6jDVqDOPNanPyYrW73R/rSiGAAMNJTAZih0oAWG/NOKvp8Al51eucy6Y/WbWGfFrq0Tcn+UZ/uHMII53YMQo1wY6+PT0qCCEVNWLx6F8Ezl9eQCJ2N8mCARho9YTxFmT8gaguHzW0CYTGuL0KWfLpghxLPxI5O/iByxV1v5uXs4Df+9MOwZ0wladXPrqhsLA1Yzz7ZYb/ndlzDyLdMR99ggNWAQKA6+tzoAtHXElO9nGhfrLODCqz+PQfDPgy7/o+FKWH/isZ3+0Bilwntt9fiMu343XPRdF19CYE9Oor2Y0hEhkCs6SNNdxAiFZph0xi3IF9zVgD8PHhGHv6oazalKztQ7sgX+7f2fZPUiae7FgNKnMPIq6CG/EuyL3PJoIvJFDCWUD+FekIo9CCZAAHoJPK60ge+VR4aHmh+Ts9Ag2fsF+W14caPzfB48RFcPl4dP0IQ/tcLYjVq3MvFfysu84mFkk56tGAKnaT7iZl3F1Hxtnrsbn8kQyiNG5t7nr0Y5PavYvxNPO392iwU3mFgRev7TF4/aRFJU7WE4bK7cMIFy2sRj3cI+71XXpOaqkNbB8GUmCWT9c63Tw1TF0nxSQ/hpc53XFxxCU93CwUmuJf5jojeV41K4FawSFxPmvtPwrdmJz86ZjJtD2bvmb2gWlf8Pnt+PxUlB41zq8EyaeO6RJWZj7LAoQzXP0to2ZxlNak2ii+UfwX3c9q4dw6HDTUufMXqHPTsrsVAByA9RBrSniN/TbnV3+herBNhgE2kmIta4O7Oyg+iXXEZrzMWnGQ9LP40We2ABQAbcIO2eMXeoWDxz52X29e8SjmZ/34gApJUoukfPy0F3yh7pVzeFlXMTw/spF2vBMZTHzY6nhz/gzHm6Bdy0WoefR9qE6FP0Uk8VcMrTLfGRYeyIKN4xZfRpgiTWe5KU0hvdmkC+AxZ5q3AF58V0kQ34DdONMbcpVMOyUO02PbEoMM6cuAjKsW2ebr+T+924p37rnfJ1hi3uNzT1dN/Mzplc1l8uDmntElhUOByWvViHiIYzs1LMAgLezwnaBOyzdbZWYWHYQDaGQciOEnOzbeXl9hcEP8oFmetktSxrLHESXFo2hLBjbdDB8t9fGrK7gEPKiHBRb2TsM4ateX3UIi+Y9Zzrj9eI7eaBQPmmpBRJdaOo+ePU9Ox6au/K4JuO1Mp6E6LUibMSu1hmJWfRf4tsprBgN2E+lVvfsU+ElSlE1Y2Xwh3iCer/OdqnjpdG2PfKeoX0LGX+y7GCKIb0lrCZa0TDFd9pKwTyV1A3ZRWZbmMCRFqWBcCI5M/6SCL1QCaGVdey1eIVf+B0eE8qyAijF8U1KJBQWzTfQFuz7WEHYY0hIa6z1xujwzyzj3gJv5cfJ8vZ05fWG4aENJAGLeY5wHF1bXvqDSOb+/Ifps4Ik0kpXD9Im87g3zHnk62lsnQupIevtWx+YpqJC35mlluRBob4k09kv1y790nfMLDKa+ubminVBZ6RNLWpHSFPDlr3xaksz+6gogSOjghq+POWM5Uih7cQpCUiHYyA6+rXrgZUOO5rLMuknTTY14nbyc0sm1YFMfAp7gEmUFXEfFr2RGwMxB5CqjgMaJpsQtDqlNzdcNsXzM3AslCqXRMBmptY6E0cXUCaZ58ef2ZlpoUcQ29RUOYDc9E4kYaTKQfR/VezND803gQl9KvMg+DFwauvlJFOX0IAIDl5NLuctC8amOi3ySXlopj4op7FBpOVFwmkKFuZIiZa8cesk/D0Osn5aoVEGddtFhnUZjCO8HBm4QVyyIZdmrjMrP7zRCUaw2jLHqjgBUs5WCCsev7qBAtOHhKVxaGJqEk+ul7h1BR0kGWyk2ovt8E3orAFiirOV6+4K+wBeKqaJ5M+pIRoNIy/blH4z2uR8cV76WqTxDIAfd9e03P6ZNinF9mv+y1OQOwJWRr+04frMykhfCSd1d+Cg7bg3fCHvVIvqwFVyDSYYMNSHkHGG0ooRKVwJTFvyWuUtfWnN5B2U5GmXplrBOg/2tqAKVXysNOGsmLBSz7nd5LoF5GscLGMjJbvSJrepjFiL8IUq1/nP2UatL3yjubCBCH96/O6884FxbUvAHaXFMrevXDaY562VP4ddYmL1N/oKYWkoLXKZ8VWJwnI1dt3mudr4/WVz3nbIpATZ52Q56Cwov5ZTlyZM4rxdBhLR/6ySll2kglSgm2erU6rWjz9hzIWPPJondSQu6LP5gtmOR9ywVmlIsBhEm2Sy3bTgwpyY25SRkWaELAaObaATNraFvzweyuaNYQ5pZIsJb0jhvcA5907ZG9KjR+aS/EwxocffPQ5YtzTJbD+nND3JElDrzfNBy1nW7HAH4NGMSYi20kEnqUEBD1DvguiaW3Wf91LGZspKplM5+wqjnpMrHvC1ku1jySCy6nbX6NsLVzdysBG+aUhLDI0wry/RkUf65nCa1pxkcFh5DXJV00tiDNaMfTYCb6mqVU8G2pj5ZoWYUhLohJwqqK3ubZPBbxi4Slt+SXu7U+VpYyFc2bhOsSbFyV+Cbz61VCJoFidifvO8kNk+CgRJlbJ1OGcqf3gldJ4bZdWsKU47pRtaqWbO2A5+h7CPBSUlOg7c9ZEDmqZ8JEwvLxeEr2xs2WInmeBCoddGm1Fa8TV6NUf29AVsEWWYEMNIegVrCNr3vt4c4oSdw3D7OGc45lwRDgS9ZspG3bzWeIDJeEBcB3XpNdcq1jDU0XP8IF0ajh6roYobg0LGPwBYXtRgCIRHiwiVmlizynHjodjKHijUX4rFVWK/Dmzlv06qdmVaP3bMsAvmPS+QARGrM2lEhxlR/10VC+YCkh9U+kQMndQedDmp15q1Nnjs2HyORvPYsgxjHQGPfDh4JBsReFU6g6hZXr/3mjcG76WjfoAXzTvze2sv+FN6KVPJIG35jYF/NrOuWMP2OGt9tvJLjxJ5gAbabKhXXLltWUzfsGFbSscwWFn/Fo2lKYxvHMkVCYp+SAyWyr6cYlEqM/al7w8jZYUROLGSeEE/Q6QSPpGx5AMKRWMLbyFefW0vsfntjiKf05ztgg26KA1nMClkBa/ra8QFmci4SSWtprY0Oh2cIevjE5fewXGyv6nqoj/jHY2t3ldVewZJy+ghG9HXxSpakLtzoRx6hOrnIcgN5+Ev1/4toEzbBRIVWZFKnHwuegy9FfCpKAvUcmv3FhBulBR3ZMkWqzxrmsfNx9meSByYcJ7qwQOJatMrYjTagXy38BzCFw32jlx4ON+BXR9LUyzob700jeh61skkuNCgneyo7JgZDdAsI6gp/nN8cVrlxQ9ROyUeoMw8i0AUuA3zc+GsFnU3EZBFgMjJ57W/8e33bBcp/6r4+2Tx8QCKgvVQ5sKilcAOyKkev5SBnULGfDQOKhC4oynfqjKX/d8JA+lexKyNAoYc/NCIvC6TBAR1uSNeOznlhZadsATa4YfsFoN7ww5FZGymo9KR2UeC/cMjS42KByHG7cPLF1eVVEXkbHXruS/bkq2+wbrkb5e43ttkyM/HBQTk8tfJtDCuY9A7xzJ3GUdoHkkbi2K77WEl926x/R0p0/m1JHrWSWSsrjtX5R9O1572EFEEmWD2hBc11N4QJtoD3icRfwaJMhMKB/Rho/x+lT1fua5Qiv03j2ZcDGgR1HMl6QrWFhpkTQESWroP8SUzoN3M9yV8uSPWzmd9sXOMI7GU94XmOo5oYJBPl6SMnMR2+aqyCbuqEt1uGg4J4w1xQUZAdjNKYgmoZsgjfIsUZCuXFyRq/ZbigzNqhpen2XrHrVNbs/kD7dyFn8PuMszl7Z8101R1c1KcczuMfXCuYo1eOMguqEMduJjRGU2p9r2eq2ywP/UtqzWr12ubW0gIaQY36TObpGnBlnxQlvdIGydwOr8b9ncDv2Tn8Fqoa/FHb0kaVXunq5pIgI8hnxlvbEmVVRj0JohOl6KRoVlgUucfUH9DjCpgaaP35AT7qvZyZzW9CyolM8j08ZLvRXmVwpTS9RJqp/f2FumOLiysIwyMQW5if45ukPFcGh0aoFWoIJJ6szG98nhQXXpqemSzQTJoPE1l//YM+UTO6kSY/3pLZYm6jfDBu6+SQPdHYTiATqvurkoxPIX0sp5ZBoxcspnV6HdYMIn8+zJBryglmqxzQocy6948YT4ETx8a+at3lXntcLI/3pbGiggGZUnwht8tRrykYPLxf4s5YWb/t39wk2X0EsYQTA6QswKpk2/oAQG5jsdcTY5rA0zzw9hSVV2h0T47UyI+glW67N43hZMbTRXAbxSHhdJm3KSl5bvksb2rzFrfIFIivo3Uy5yOMOR/k+CzCyUCje+U2bOBFQ1yO5jfvTK8UnSBipNrem1woXPOBz1zDumnNw8YkHdY7LxCcTNrHtSCcr6nA2y6sFpPtitp/h99colE2U6EH3N8iQjXh/LWx0iLgk3DjRNYpiKI6SIVx7wt3TlSjuiud+lE2rrle+n62bAjSOfjghtEoR+wIxSUJgtXrKji4QK8iANSut8+eZ3FGgacqs1pwcstrT/FiUVHzfVHoYKbouUJ8/8Yo2cbclRux0AKreciYrXXZrlQ8ucDMQI9ztZfUQNwevpjVdkKn7YmYx7RLAmTa50uNfd5cEU8TIaNWbfcUtPwSyY68nbaYnyG9J+SQ+ZeHYA+PBte+kGZQ7ZrbUozkg5NYSJP/cSTr/tzIbY2hvgbi7kX97xH79eDqO3G9efiokRv1dPgD7U7TohtUh2irggTqXW7zn7QlO2AP4J2iVGZ4oVJ/yijWfRBghPZFMARCibl1Uh7b+X8wKq6aBXfAUkH75I1xqlAmQ51s9h0lkRpoDmedkxevww2cWPE4nLiGOKjSkk5KdnvCkfPlyJ0eweN/JmPUyjHUleShlVKl81Z2RsBW7asu2KPVykmj+XPnWBvEy2snKIMOYRnzayTDlyT4/SpUa5/ql/uimOKFt2Ev+HLGiG+xSqWUWMhj0dd+dcp4DWSZNQf0NyH9Ly+SbqW5MuxPP8W1oGm+Cz8boJoKsPfFO0ppKsnojDPkn0tTZW97jH9ktcN/eWwiNPpMSPNeLK6YHLOTI3aEKK3npOeh+BJmxRUgunpG/nkEoBhwMP2Wyf2y3sOXerVd68ntfCyo0v1IZBsgkFD9RFCQV1y4PgvWSZ3SfoYbnhWjpmMUyY/GQZGK8WUTdu3mmvEfWL7wNotWp2rYio/67kss6O7k3PK3w83zezhS1G7W9tuu+8sIz8aHxCf2BM/3pIRfZpmt2yOVwFfUOorVablKj0Ounb2NHeuce0WPQWf7x8x+PPR/LRVj8F3cLUGYvMOYpJ4Zruw5wzg0pzwpNoQGqapxyGQx49DjrwOU675RwiaxPVVmqPd5wckjuk2B7ljadmWPhq/gITCxRdqq5uMsFhFA/9+PdWnYa0tDE6XxyeZV8uUBtQIH4oYHhNydNfUY9HHdOp8KozCZyffat6wpV5n7wCzLOIkG7uoBtHjLCqdS8som2RymEEi/ulqt0UEeDzpJuPXF3Rck1176/aNkht3xZOejz7Lo8+TutZ3TGvpaBoFgJ6aTth0iozrng7OkWQXNj6k9azLHPOGwPvtMfhU4qzYhT6kPkk8WHWM6K5cY1w/bDC2IHlft1bEbQME93x6YmH9eNRtgBRhF3cT5ekpenQ+q5GA+QVtESijtIAOSITqHJT46pbHxtNklJDP8rphqssdIX+H4LBuX9M5rhO+sBcSTyJiXuHIaNsz1c4Uoje0bfS0yBoOqY8wXpQlky/PpegtibVG/Vdx6G9T2n2n65IaK/m978NKaoqTkTQ04oUMkCUy69iBmjffKpRsCOlG4jMYeuDLlgXqQVK7LdrlWGfbaNSMg34G
Variant 0
DifficultyLevel
729
Question
502=552+x1
Find the value of x?
Worked Solution
|
|
x1 |
= 502−552 |
|
= 2750110 − 2750100 |
|
= 275010 |
|
= 2751 |
∴ x |
= 275 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
$\dfrac{2}{50} = \dfrac{2}{55} + \dfrac{1}{\large x}$
Find the value of $\large x$? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{1}{\large x}$ | \= $\dfrac{2}{50} - \dfrac{2}{55}$ |
| | \= $\dfrac{110}{2750}\ -\ \dfrac{100}{2750}$ |
| | \= $\dfrac{10}{2750}$ |
| | \= $\dfrac{1}{275}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 275 | |
U2FsdGVkX185Y1gJtjFHkp+2ePkFi+yhatAUnY9LPd7/mBO6VT3stqSAz9uoUZA4bcIDsTKCbyjgC6SfV+wU2gmi97ewx+aRJ03xBpzWlHRlOhwAUPLBySO5YdltM/gtTktPSe0VxiNQomY0x88Edx+LjcHsB77uZQ9TseHeb9Uk4hjk6Me9Ov+tqEgCt0/Q5bPlCfRp3sBkFFqhnJIn46uu97EWEX+kuhHg7b3btFAp231N8gU3ssRjjQ+rtjnY/GPX261dDHG/xB2I4SlKIQoALeg48qBhWZvwtgPdloB7yU+eze4WrUk97BXEQBveJjSihmN8yeRbrddD+wcPJHL81388GgiP4rqddj0fL8w8KJ+m87lKBnlCU5gZMcZknCukivWiT/Tj3bTcXdBM6W6UyVWXqwgC0QeKuv1Big+qXBi+ehBBpqis+uwvDnkqfaiFMIEOowaC48pIuQ6dHsBScSXo9KYjBaFlrJV17+C5Qo8JT6+JPC3CrSSV05HBACX+4W1zDb5xaSiQFmPhB+9MBnzmOZFegBfysZcFU5z3RYgINxYSNXRsp7t2Fyyb+35y3WGTLdKoke2cfgSBDRMdr7j3l5aHgQ0a7BVkr5/0Le/ooGLeFFAApTTSw9dKuXmMCDYNKzlW1FmO/FaMXCiaRntzr+g3VmpuGxX3NGatSxCHXGRAbpC4HbFer0kHXM7SPvjgXBdZ+FzpkWtUyRcCThQMrpHIrban0G5RAWnVfqPQx4I0KP061nAHwT4vD38NZTJtEXBir0lR9/IsdBkKV1iMROyHUFyYdvhtUL4iaz6+opM8MY0LXVikzPLlcbl+jbOkyIxHfG6UtMHV4ek5O4VYECMr+Io0cJX1H5RViDFSFHULD/JgCLEJtfQITnUa1sr8Db1Ee9Z3AMNcKvIEtQTSRV7TQ7gS7fiKl/x5vOIipEC0mMEd1Blmr3oFq9wOeZPSRhpW8bOAUA0XDSg4rruClyKPrtw4nuuH+91MtbM1ZzILDetGlmypq+cpHqt31BIPx1U39BtLCSLejBvMk37CaFL2wXucfhIqCPpwgdC6HHBcRfVYGLYVvKzcCDJ1ulPXfU1OdF5jlJTapdkuoYNeF2TNwHa6J7aFq9ljuSJVNphH73BTAUFYwXY8nCERd1CMWC5owpvo42WZz6ULkdWY2kc7iNMY/v6ppNFXbogvHllGyklFF8h5KIco9fzObUkghcNoQujwgnVQil6QyQBmXRB5pHVmWM7p8B6r3CkiXH0xOLCCz+UYANywXFitNxZXBDcZZ+blnNKnT2tiQ4g8G2tZ9luD1IeZEt8T/xmqJTRbUTCuwmQGxl6or5Cl/TtLC/HGZYi804cEbpSYswaoAlToijJ4VF0QUtjY1+kvkt+vMAQtHcIIPy4HpXddKOwdBPLJ+f8HsJa0HZ/mSZ+oBmMv/aMxJOfxmTIzkpSMrcP9r+BqRggT1Hn3sz4Y+FxyelNXR0iyp4ytay0ey2wa392RkHyqVPWn8vjfnsIPsNM70o5L3giECSNgfgKPIUiuHZZQ6TcCS6UwsJ1z8ckZDqVou+mtgzGTftNQxLRCSRtCyh+Pu+9DRgFwhAkVvJsu/1q39QGW7vcanUlUqfyB36PN8kXpL7ec1QmP8ENmi9TMHknq28ci5/+PJslj7nXwwSoF15YxA/prj+WjM6jIL5vFo9loLPi13raTzpn5FYKLyQC+z+hoP/cJDXpoAQ9esLZzoVbNFHjqmwSDqfm2tJi3bKyAA6t4weF7WgwrQEHjc7+nsfh4s6ztbA5ow+Z8rq+CrZl5V5iR59YoBfOkwrf0UWgxDZpbpEPj8KaSph/191iOVqZlGsyuVh2Tj41qvoFlrsa9B8QfwTluxFxIxWzzYu26TFsg2iBRRm0I1Zo9JkRLRclraB2Le9xuXUyFGmc1rFwNp6m5GMWteoWxGx9vz668QpDRTMaKoAU5ltLzYM7NQtWJIt+M4XWmLWAYrj8sxxFKiW9NKYb6xIz0YlRBc6UkL6Z0kAgLSinhbbWULPevW2gA0X5p2dHntpKpt6xy3Lz40OcKGQF7vn7GJIg/IUyn5y5RaaGkD6jR25rvhn3Da1NS0a2JUl3tDanF3RfZX3lLPEwhrm3U5F5O422SVIderH89gKhD/TlWqVtylkKGkdeR1796oIZFVjH8/oyadO5fbPZsHYN4IJ3/LSlKNpZgt1Cxm3OEW6SNxA7QtySwqSbRE7ty6LOYgLv9XEGYHRciZVP1dG6RgUZZyigas3SqH1R2fE58E/XZU+deXVkwGwSGjJcq0hjf5ntrcXZRlRv6nh9t/rfinu5s8GWBUkxz0J/oF3JiPGJlKZ2M2uMRM/JI7TpA6i6eM+VDzjZO2lCRT5RtGxjaRiIzAMqdMn3k4MD/T/GAHcK0PNtv2NC/8mH+D2VuScAH0JeOI2s22dwB6PyTq0OZfX4iIwNOlRLXCXKtrJa4BNO8xHZMriafnotJR+MhX8Ar0IbhhOoRn9vOp2leeopaM1ITGHFm9t3TmaTLhwXzoDR+tniRY44MqYu2iGTYovVXX11QqxASVmOyiSJWZqdbdPEys523WhzcGjWIiiq0HPtZROdBlbSlJ7PzGQCVswy1Zj9itiH4kcTa2MP6xPfR/R4zGW+xCOeBgbjlWsP7kNCWYhsNyG08A/PTGnhXbRGIwMQ2BSRdPhejsO/N+rioDQUR6JHGzI6cKXIxm2C+0dvxZzwOoDqENZt/zZEUGZsSijAA94G+LFjXRBcaVeZsAiL7McKgWih1PT+1VfZphy68kx4xRHJDOubehBi0iIlZHn1YocOeh/wuIOXxeU6ErMn2pX4QqtCXS/unb/S4tv2EC5F75WTxX2nCyQM15l0LR5BZ8lW3YHE56/DT7czKJVfL2gKQeClNgJqHf7s7sVCZb4cOCrkioqH7HzbiVLiHDOeRtW8favovyf6ilSEJeNqaAQfq2W+03YOOM6oYImy5KWAB9KC+hjur75DK4ghJpwoPIiMmsdG31fSQJyTtJqUb3iK5wLCkqWqiZ9cFb4u/kFxCcd5kB7zc0Yk0xFOxnUnPXxOpIqmGpSyTbruHKkn+aiewc7VlZ7rQpjjwiRI5JHgUJjB+Jgn2c57GVWytUwLUTllO9V5R+u8BvKCT6CCmGYMBl+ai+iRWNR4QyF/5/yxPGwB0PlIDg27Z8tJMIl0rr7n/5tH816m3j2HZh9aJGNbiUF/wTh+NobrfXx0J3it0hRIFZRor6m/9AjptNi14cIZsQxuC49GgKgooc9uOGD3Sk9so5/hYqm+Y/vRAB9O1qIe326oEJW+PLp5hP9pcyM9Uur/ChlNtZhk+3Dut5pdHt9lkQgi57uHuh9hBye/fuUlHAGxbAkzb5BKcknc39tqi4xtbneZMOHs3gIABaT8PB6IVBUx6CoiUUI2d4u6NrOD5J2skmrf8mAGd25SEH6/NSRbRXLaLabMq32Oewo3g5p2swrxH3C+iIbpy9rCV2hULgh/C0GsjN1E8aXzE5uK/WhvSJaxlJQCq3+YTnEFWtmjjzYQn0FaqrbGDiGIphOidfyh0XYTQRhXRpnoN0CkaEfpIEbpOtC9NuBGYqYmq3CG0guwMnTP/IyWJujN2AGAGLBmezG6ExxyKTuXidoJYjdJCbxliJ6efZ+3oHaRAhXWWZG+IB7UO8uNz/oP+u74e9oX11xYHHFsqHMZ1emJUzDGzmNYMCR+3D79bbMOxqubLlcFJBUi8kzRx7jW2D8MtF8/GVLj/Qvs0sc1s9sxXDFxDYEgYVGkHDG0TOY7rR/5Ksm74eWDfLw6N702AoSTkK6ey76AWe4iVmKNTxSW8RCmijbm5/uvUqCY1iw8Z9x3wxUdZLtXGwD4tfPTaOMVCxWlSva60Ne+dMG75OZvx3u53VNpwDn9YMA04YVqzgTnalksBhJmorRTmPsFXDc6Yg6z4W2giuxvfKAOkII7TFuMRpsJTgyRrDu/C9W/ZiJS43NSdHgc3d01I/x5YeKPx9iE6FJGutXvJ9zDt8F+UmDEGtFZhYfv0/xF7bC5RJDARAcVvJJfaSfQFRNebqs5oAW0pFCyUePaOGG6cflwc9JDhcfELotkzb2WIYb8YUn1mkKdW6QpIpE1ECwY6CwFGO5wxfT0JgqL3OSC15jlxpJ+yy92I691ywuRg6G6ikuizrdXbmmMURdFlYybTUe9nMv85oLMbZDK+wY3qTL4PsMvNRT1Lfs0alKXP3B42TX7qsnh0NF3jzT+3Q9MTVjmRmsofT2qaFwW7e2om3adkOkvHRLrjvesHwtOn0bSubjXs+fJkssLEdew82g+mpHhkEW70NsXOCSRQ/s6+Z+Zoyj3N5FKL3FvDmrXGjkenlKcDOZWr7PWvvdw5ObNDLcmjpOkV0HBxffMIDnaj4squjYtwL//3G92LOi819XFS1ZQIQWuQGwksoGFaylfzkYaIaYq+E9EoOatPJE3QrjeD5KZD8VXFRp4eExhHh069C9GKkkqXUv5xffAe615wsv/x58UVAApd4WJE+QjOB0vL20qZIFNfA/pYjA+JSxCAhIDiioo24hX5h4s8bre7oVFbrpAslodEt5Zg3X9Wpy4f+solqee+ZiNhNDIWdAIyzVd5PncJ5TDHh8cLBfgJsDEMNcMa+24WJz3GhE/fsinTYHbRYwYWZJqeiELrqezxLFTfbx3d4AuQ3Vo3u87d3KPxdgALJkfOXmoBa+JSdnJUioR7AdGoP6NojhEjtTugvTR2rYIQLMiHhtLmh6QlLBYlJ2sD/NNWWveEk8H5K6GOZ0dvpZ7I9zUPGvCWPFeMjXdDrBRCabO4SwVzWQqJNouMTlr0MiUGbxlaq8kShUpVb3zbroF6xr/JPO/ZfQiIoB0fkUbZz0eZ1ZONSkNDAZ+dQiJW4OESQ9eX+THskWpmzRrP9iizEm1XJgK3595I6uQbm524Zdx0KY2stqzCR5OKcZEyneC8FWTYXsebvFXZA8V4TjGlnjQLupIvJ1jWJDTghWsjtmBq6FfPWjwM3MyW62S2SLCGus8o9ZkPFtP7pHxWV3gI5Kh/9L1WeucmxUNLaKQ5AiUxMGBy71702D33HIV/cGLm7Fz6vXmJyZ2VJPI9h2DZTgjnqza1B9AKkcjeaWNwXg31wXlFfGtNxK+gVfIBuTTaxei+0s0y54665fLl7meLee1xyOeN07q5Rs2i0YbMRGeWTsNNIlapggzBjc2Ph9fFAQItHXI6M2PbzlpeJRYMduzjiw57oQRypPbE+1WvkQ9e3feE29UpzYoGCrEmRf5EnDASO/un+huZuIiLhJuF4ATmsx1GNFVm2DLQxIxFMaljgro9qwOIQpHMPB+k79U6g6WdkgmjWlFO9LfL2ysmYE8M58BhZ5ZxEbg7Ip/cypHPdG1CO8DhAMZL4JghFGjorNMy/9jlSE+78dqHqm0a1wtGmqE27Zd6yKGu9EvHYSrPGO0C5FFeuzt8mDZ0JVowy9TCaDQLrrgVb/PTPoiXPqgSDu9qsuZGY7AjZFkLO0Ac7KRc9sd4cQQa5Bqw9CmtyB+BGrlb5rxn1Dllz3zAdar7Pn8a871Rmg+VbNXCpmhzK36tAglijS8Ks3FRluaxb8brxvzPmM2w7X51ZwDDaog0mA8r1hq3kdMOY426C6hqVH21WIUU9Hk/w9fetH638bC46C9VyEQ5RhDYXjJX6L5Y9L7jpgMUbg36++WDNBP90YJ5RNv+KYxUpkQJm68FkabHov6ZUbEkmk7xU1Kf7z7LidQGbIo2G4MtoHBozA+VS6Jbq1u4uMgRovS60g6PGWL1c4UFszIO2Jkwj7zAROufoDcjWxlBe7GMnThfyT/chTIOnua6oS2qwQVD5plZ9orrqmpyGlfofpPApg+VJE+I0k6IYaloglu+dGbCXl+qXNjN3M//HzkjJ8/UNhNHLymiW3+zBvZI/Fi4NZlcVyfSTJjPiXaefY3j8WZiNjQCFqEUDhfoy6Zzy07iHuJgUfcZLKJMPtpRMsV2h6PZx/+ohx/m8t4ZqOAz9TO+tHsD/UYl8nGP76248Ae6eb9r1IVnMegZotEtnJd7DnCPt14ma5P5v8l+ETv+PmPUEOvYWAcwWq6iMwIJ4WIAZiletKBlB+Jc7CB6qfiTA9WrLQyOmXjooWg5F6Z0XQCehX6av9Qrb/rlBj51bdcQDUmV5Zwt6XmtxTQw4MD7FPMyOfkQVx938r23SBOfgRnASEplaIrkqQWd4tAlhL9Kgg3ySmmaSgEzZR+mc5U4cbAjxqYQtl23Q5BtJigba7glZcc629pmw4+MH9jWEMOyLukN+Dr1QBQvqCmv23cffJHKQVQwOQQ/5w8GcuUfmhi/aYb8KselmOHF4fy6AEjTGyQU6IY0smAYePkE1jsa2qoFjXyH5zGrDMH6gygVVmVlb1KzsrhR7nXOXiw45JDNTvEtTGw6a6wrJByTAji5muVmLFZrKizU8Ek6VPtmS5tNH/ZUB+jAI5PdzgRkN8QAPwe3wVq6+OcPMz3YIciuftQwEyG+YmI1lwj7ZSYg+qbCiYADlGMifmMiVHFm3oNOZKR2fC/jNbk1mU28Ima3kcM7IOobZgfYpcoUqxC1def6xMXqG5ySkDzVoJFiR4nvifkWCzB+SO6xkxBVuZTAV6WHqUlknoPK1kBOvICwi/BAyBIMX2nxIsU2ETWQY7iAz9hQfkmIIm99W4h+e/Y46iBWkME69EOc7JkaGT27cVt2SaIHK7K8GS5gPRZbDoaBFXQaA9GWzVQV/DB1zXuqSaA63ZqxcwugTS3ApnXfOpDyYxuDelEXuCsTN4jiTHNdBTZS4VvVMl7G3yZVQg91VH9LTUJDCLKO9H8DPqrkIfHkiUnHl2MVxSLrwNnmx12mEhJ4s+RNGI/MaEr81/Gh5s4KOX7hl5dC3+C6UJ+TF6IB/S15MI7YWHNiZSJ9+8SYwv54P+3UxAH/fwBf5tdLBKmTgApv05Jv6S0WhWz7mVfpUDmMhG4X2c/BbghK5yrw1/J6bEH8SDvefmEGccKL/yjLak0VZbMjwrg22W394KGW/yIQDjiwxcVFzuF4Xy1AzQjmG2ETUwFOq/GguSA+vhDz2FvVEn6qib/dmaRGwMQ2KO66yGxXZMfiIynAuO49iG6XzRX0VRXWcnI9SXGctNm09OJV+j5LrwA8fTwZ/cb8sPvXt1Iao+pB0XonpbUBf8+c+ybYNpBxhiz//jTExFY8GeTG3t9VTLfM4lyG1ftTopVKfIN4DDxRmbty/Fg99uJxjYifAJ9YJepAs6eEePqQuOypCQxSizHDPMEF7632rQ2FTK+Dy5oS/7l+zxx0bn0A6Ughn7Fz8FajPCwgI8XDdZ/gmCl7sWckcACks2vHs3bvfqxRtI4aSgLEvA8x7igpxtisQHwMpo5MzMr4TFyQbkTKnKG7RYd46M9FQC80Zv8vuRaV/pnnmUoSNh5wScy4QGoxiLw11GHw7H9P5tKxJqlyRIqswSIPkcVLBQVJOP5V3PfbhYQgGu/xkyCwTA3GVsbCz4d5qkak3KfuNcpYOokKPXq4QE0MTD5/LeChbzRtMKOIf/ulqTE+XpJ0RzP8Rfzl+PjdEx2qXJPwDB/e1dKGQjcvH0bVQNnBOq8jELvnDDHCFYE68Pv/VZaIh+BWhArsS2cvGbMY4UZf3mwUkkST4SZc3jkR+aDi5DPaPtLnhj5s7/omMDXF1Fz+b96Qm22JecgNlFzIub4MGNRg8poJwKNm+so5SIkcLRELCG3u5Pw3HJRsnTeNfZXTXOl1u/f70daPT1lpwXpXe+wzEJ28T0r62jDULFwtmYYezCjqyN2aRPbbQQducZdQvG/FlbFs9vc5V+yy0uaUKqrs/IrKObtG81qniI18gthRl60a9rmMkoMFSy/+MsHyDpcbLynvJxd7uHx2wV3KgBBW8r8cVR59ZxajYZB/ZAvUx++1aF6+e4yR/JgAr76ofIDihJOViG3UKvq+yh+lnu2u9L/fJdE2NUHx0tOqNA7JLCCnfawCmB1RbPDiUjJUqLqN2Eox4IT1nYVj6B7lGeBfzDDXul3v3yiSE2nGvYX1PjJ5F3XrvlM/B51ll/GjK/esoWgAZ4vV0HP0lspuZfn55bkkLiT4fIn8EN+v0T397kZJYrSbmq/L5ooPXUKhGWsz6nK5obQBawZvzCFKtIJ55gBjfjauOWYdvjw/dIISUeasEn4XOe/yfQNMvI9Pbx8xscjTtVbMax7b25X6SohptdsOypPwxCmUXPYF2lpA45Z1ONdZsVRYD9DqJWFt1jnurERYJzBHWY066H5XY/Uahq2yFl9gOnvlOFM8P25bnaCmzibf1c7V6uRviCrNSIMXexN+VN4Vpz+abeRk+eI/hU1Tfa0GW8cS3zkULZmQXyGCOAQe//UHE7jLM+HB1dsuzFJeLkMUVQ/cl/JHIdLQGulseEUpaGUwBl8iA0XKLLSAixD7nEMiiGAfZk4zHPcrrVRYV499yUxQ6K7NojT69xX0gKL3cU7RhJ5UIgKeJPQ7nb31eNaDOaAoOtIHQzTec+8Z0k4ansywTDzqoZOiG+NLqXuJIxjZPx8XagNiqplafZkjAzWMDOvtUpvZL2H+wNNqUTwNpilvYd4aDOguUMbg6F3BG4fpOjFB2t0RWPWfBZbwXRvGZ6/ZpdMqdhWkdyoBV4EJYmCXo4NDsle9F7eQB03oXpc/5vW4c0jBXbLKcAglkneMxp5XQC4Hmk2YwcmkNKanww7D0lmOy3Rr/wTHVyDyQvyDrt8cManendBRqrNBzs3OpNcJbXowHMhjoAcC7EVtFZoN6jAR3ObadIzIN0o8/waHvonVkd9Mv+LZ7V0+XZ6WbajXIf1QkgqWzpAp+M2oDnCL9VXO0aE3oHPJ7HqERIwsKgVTojCguwDoUQls2cCTdjwvrouv/G/Pf5nbgwUFYS7NUw/ZUJpyfYxz20Juwny2E0mX5q1YMscbJ6RVMDLHXr2pBaQ387l5Ro/lJ1XsNls8RFFLiRaah2MhXaTS36eL9hUsassgvxsl+PlifDTnFZjX8Ex4bKqu4AkDFOBKZoJde5k4FA25VNu3RC1zEQeEvMVnXAKy+zzwu0yC1Vnd0eo7Uun7k4x0J55RXB8P65waHOB0/ZkBJWxqME9nHP0QPF6Y0ZWpbOKhGSX+xMuMdMZ82osI+ZKr3U67Lh92z/WU+vzpaTcscQqv+rxSHnHoLTHlRYuCNQcx5EPq5cKixVU+1rcYK/0GSjio5DotYWrvDEQre3N+fN2UjwY1q50vJbbSkaWKLJPy03snxExVc9gxkiZnvqNpbEodyHjCdunIpmBE6N5eM91dubdreaCpLC12xjoLyE7R5hbqr9fTAa7/FgCzUkn2+4DlpG5Xo7O3i2BP/u8qLNJmmWX6gQSpTffP1H0KNq9ihvJ8yjhky2vvWjkuZeIqFRjaWTJrbpu0C0NyKxVOO2QAfjgJNPyDMGcnGKGoVGazHeYBC9LubPdwH0PHCqNX8UcLG5AEsu9RyKq0S27aZIuZlgxJS1iR97iGmJXuxBKKbXY3Dg0eWZiNo3dIBh/fPKMHSXYi1iliuCkEO9vIvUMIc5N23ErQ/jdh0CeRBWjjEDr1Rpttrhi4Q+qoBay+nqaPUurIY2MeEeRHIWYG7cqCP6QErtS5UJ1VcPjfEjvbx9J4YYmt9PDcPVU8DagSzfWMM55llnm+J5bOrmBPc/j8jH7bTXuhCEzjDzSsL49pTwnI4bhzXJaI3pSB6eLdCq3hlVKYJK3oRCMQTnfdEppuQXLZPKbBVvZoAJEy11DtQlD58UubVXZ1c12y3m+50D+sXvfGf0FeV1JuuH2zg/dQjZzWB954WZuqT6H4QgnooJdXqiFE6byXcmWoJgyxIOebg+UrXHLwv/ZJFwsEv88pvKNUo0cqaAtpkc/R4KIEObxxX8IdhQS81uGxCkkaIE8yyWcaUL1s4M4kAjxaVe99ZKRRVKfW7S7QCtqPwQSefiYPdDNN8bjkIWOW04nmkOimfUecHcbmuBmyHEzTMm9RWMYgrT4krMIbc8joEes5kFCXVfcvAR+epFYZWNkhyxqvXxoQnD/8Ii2dMfOml4vYgJuXEDLYKtgqhXWY16mNBGhdFWm0AV5bKZj26W9AXXqCtol9RVq1bFEy8q6tgo/0WoSklRwkzni4em4abc3MHhKeOAHxp1mjtram3J4mYoVcG+dV4Dn1b3vFJT6xD/qicc0f+o8XQViRcU49oNtr9YNGnpK1keY0uwTZ7J7vNk/5z7KShJvC2+fPeRD4OkCqbeG44jpSmIDg/9LWCVC3sqWKeEnmt7eT0AC5bpCCuaSG0Ybb/6FvwUusaKwS2pInxNq7VFsAOdM/ZfM3KyXdJPU5Pj2FQD+qyaZxWWDe1S5NGM22nzzfM7UVyDpuZztkd4HiDvde5FQCNSGQi9bgHTmjZLj31DD9RJGreVW5WXy0BeLCGV17h0CzupVBxjmkubTMmqJoQCN99p/hrarjsOoZSqUqkY5oQjXUUTJQqH2sg+4mA0pEQLrGP+T7Ch/36YAfZdPeLWKsDRr3roID9iXbAzIkT4NloaJ7XxfvJg9vEzjn3IQQuurqfYujHmzp1GVuIMmLAcci+2Z+Ik3FGAvizXc+d5YyDecWSQ8cVKwsqtoXGpJiaaaN6Q65SbYxWOdfr9yENwFHkmkYJCjv8GuVcgpESZmP5OYMZ68A1Idh8FtULCvuKid5YrVL95siYnNhOa5pvb8Xc4Nn7rXXsymTd8wv4djngMN2mm/fzcW1twHKgXreYovLhuMpUGc6ZRxjpfNPrfdYmanUanwi6WK/vMwdsUGPYdx+QxtXQFxv36GEX/wmW2wl97whDHq1/yk1si6zSnlU9T6xglKhK+V7dLqiayn1MeZ6rIss7ACd8Fuo69i3amVvbn5tW6r3dJoGY7Rv4UE2vu8R4edyWWpw22WyUYHuY8NZ38b7YeLgfbkqHwfpL3/yxs69svLT3mRvVWwYcae6pRSaRTm9GFGz3Z2OzddHtTaT4Y3+LTgMkDzJLDeB/j36Y5AntpjWo/HLPP/kvBbUuDGRa3d97/MnJmI5ZvVZNSCvID85hBX/FhI7UqvOktMP43qZvxaXwOaZpJ01tV655VVmS3MUoQxAbQLm/TJFGj6bQ6PTgzsXTICg1XXynovTH1TPLhOuTPGeKC+djZPKZarRnk+g1CH8iukTxM21Mw13ILdr2S9K4mbdb7fm/cs83lW1Ma6md8eAaoQUlgArb88IZYqYhjisURlc/iBXCROBW7sw+C8L4WS2kDlMVCUeU9NVsxzJmiAFphlDcVzkg2zwgzHsHmZHDpPfBuGZFE3B6I7MMBh5DCz9nCMEVfJHfrCDk3krZVbyMHvfnEWWRIjm8BzGVuP+v9ds1QHIzT7tdtptpjrWccBHokQ8IMKnUKItIE7y7lOHhioTPEOjrnU9+6ynGqTeQodi38VPeZoFgBJO2x+1gNt2kiSDNwzeSTud7gX0rtWAAUZMYInL3w2A5yy1UKNYtYvd2wvlcoak8z7lMmQurmxICju5E9W+5t2bq6BujQ03nNxVdzliR1r1fk+vESZ8KdGu+zCoNn1SvXzRHNBKE+OirsfffWWWFHnY1NKd88h1Zd/RIv2UUQHK9ftGETsmes0yX5kuXFRG62JZC7wLy2Ygt+AwVVhinSELb7Vpug6RA4STqjrrG/yYUQid0GS/piyAuwOsm6+NuLcRqmJtsQsx+pAKI9K0EB4DpqVPrx5KPhdtbrQb5Nqrpis7rlKnr2mh4b7aum3vULq4RK0wqDb3Eh0igJu1ScTunx0UkIXyoOvVPGhxNKOHGeujpzz7/RP8UeEecd4wA9/n8B7CeLBL0sf0lnjBSRYn/DbMw8GDZOTes5FoataJyQMGZNAkVnyhPYBgMljWKvmzQhLkT+TsvMzgW1qRUFIZ1dLcqCYAmgZTrG7j4D23o+/XtHAiZFemnzB5Ys/u0kIpqsCBZlxBWpflglWHYk2uYgIedx/qf/4y03+aT7M4uTkJYcJ+PRP1fkINIFWIXt6OfjYCptagtG/3DwM6jjbQI1bFrmB4CTXFEKrw5mcyCXdOUUOy629zZgg76WPg33XNEm6Cnyiewl5t/j8Q4oe2WCK89uBSWiIUK0xSxGGmF7Bg5i1CNJusqx9QWfcSzre6seR1Yp2F1N7YndY0Aj64fL//DgGCYdPBl1hwUuSEaXdshrApZ3XZxxE1crMVytV9XY0/kMrsLb8iDas8tR62Ya8BzUSJW/bzPgSx7fPZYpe/erZQOHoI/5xqro1pE8CfhF7SJrgSifVmWYf1R2uzgt4s2akF1EeSIu1Ww5S6nzsIQ8gFIvLji917LZ7bsHDC2pnt1MZt+fwLseS3gvx0Ol1rYTzTDiErZNTo86Hk8cI8FBSspgsVE7zvH4vvuxBkPT3wpWNSY/y6orRBPm9fLuVhrdi97WNq4pYQSyMEYAwF8MnjjLpKjOU3fXQFmwm52hOzGdqSU6IbRAM7Wj4iyD1Tck8qb1DmH0Ryn+pMG/sWBQRanUdUrp9p7vGC2lQgTEzpwf12SkG8bBffSuisAcIEGrp8OTHMgVFAJ8JjyBBM4SwckZgThf2ymL30hGU1dkWIrdUhGyB3OgF/+lDkOrUNd+2HwQh/NDbxerCwDzjyffr4Tqf+MnHtK4XIrd4O1hwwEEdthK70Du0L3S6+vbkCwrRIf7Qfe3pi0V6Zvx49hFh73XXVpqj2A1SQQ1tgsA2Nvc6fG2fGGPX4HIjk/r/EbwItmZr39vSOtQrCiZfHbmnGmE2wO1shrCg7ZQKrlExFwLetkKfDWImQIRN+S/sQU4wEcaILbBxNmc0sYiw8EhdVbzvpNAET0Zbo+eOyeODhxHT4j8yvrwYPS08YopSFR+VFUnNFWNbkecaZBG8gnk893VPekH0BWQXO524R0cyhA1v3ny9LJr7DiHJMaSmZWRq9MndcC9fpD65ewzvcmYzQrcGJiUArOUNRFygfsnAGfq+QDC7cZJoYfhBHbWxWiba6+nNWl8szFXf3D6rKgqXtbk4/L9X+i0YbPB+GXwNMhHQjyOwa4/ZE5xyAM3dM5IFJZcndLJhRZteTLzZjSz+OGKyHjCKsVWS1B3GCvu5elri2ySZ0o/+jzx5XWrNXoDVrC6MhgwW/wxEvNgHKbvsdeZ3iibvtY7Hr5AOWDF+c61w567GbzluBOcij3WhdQV3rX+3ySLuCH7GZBs/WUlhLu3S8VmLR9/ELckRGDppMqD/+Dwo3LNzOsOAuO3SjaE0y9vq9Aw3NiSsu+I4bbrSpU8e+OGx2BhPj/ydACLXx0yGnLbLCTFOJuJWY6dfrOjrr8RvqWWQbdikDUcjRUbCjJ2P+pBuD1AiIysn8g2m9yqYUX0D7+IG7f40Vx09g6XJHc2JYYNbJKBbyit1XthjIEZcktdx8hi/YVbcA6/OL403yuzj18AhyG4WsCjoVAuBbxwmHeTFzsQ3yPXUag8u5km3lZ0p7m0Ak1hhfcNtWSQtzNP0D/xRVCweL70YfngzrvzFa2r20GUb+2Zovlc31cTpcPTjgbrCnBrd2tyAbwWUxOR7ri/zGw3v851sOa2JNEdHNL7odzBezSQQOIc7N5HF/fCoLj1msyq1pw/ubkGeUnbPk+O+TZxAxglSQ8UDM9WGVHGEaKl2mk2ZIV8N+CDRVf+r7PnLS6o7KsfFDMx1pXKOHaq56YNbPSGYRTyjZGjNzB1AfhUHtTFJEViWT7wzsmSCZCurRN28CVncBGsJswUvuAJoPzZ2d3vzU8pQKlnwa20mxS78f787cUiPzkxLqQyWImGKbMy6PbeOyjmjmw/7fpUe8QJ34gDe27OwYPk7ccTgbzBmAaFlfpRA8wKnm3choIQI9NObkkGYhrw5Y1O09HAPUwk0lNpaM63gx6dJ8C4fM+ST7RDrwVtzMUM/dmgX1mEeTS2dlivu9OJ6zV+MkvbQCKwdwFblHVAjgrlMoKyx9IqFtuyGmCrepFtGpFrG1y7j9A+uMwyPFWFQmwnUQUSOwiLlQOQklpNE1xL9XvQT9wEKa58mD8v5UyLx+jAKLSqHxkGmZq2WimoI/55QD5p9fFBOs77gG+3fRHa9aZn0OngB0p9dvKRs9F5YO0lIwWYVJ6dtF/hMTR/RpABzRbHhhIy3OcYPxtmxWZRjO3E+hva2tTbKPuODv410UIixb4jChS+TogrsAP/sIrGuCTzeWIg4o0EdLgVLIjJRDb5p6z26hlEMObpj4OM9C3wpR3Zt32TcuKtolth604llWyIVR5TAIiODd54jtVSZQLwxuUtADbe9hoQmied7OGxyIsx6QmIvwlVip0qoNyJYWCIy/RSBbwP9+5+SqnXoGHkpOHDzCIpAT+fKOnGdL97lENPxNRq83TARehJOGgft6NcWi6f9V77taTOdNOwbK6BeCCWfMe/drBTC/SIbR9Z/HusJ9/ir2n/ifBC5WYlE+ryN/Xwp0F/MJjfpLeGOcz32veZEcXv7Jcdd8gErPlz3k1MRQy3OfSqEQzZcQhqhS/L7NIFOeiNl8p0xwtiGex7f18XLyqMno6F6fsS/il2d95sZn2pMy5gJrkRoXMs5BjYMUn8a8y2I/HCG8SdEDTUATQNHw7jkU8hi8ltDS1jxSR1h3Za2foLnuSRlQOd5FggWInZLS2Tosy8m+6hzdFpTeviYL+Rw6L86ghMwe1DgqMLyvbXDOzQ+veGF4mLwG3aQnzA44YNc32UWKIXr0mYXDNBRuTNdDHRUgfGZ3d6TrUB9PrY9cfDh7MFsRlgfOW5dWKHxsjo6/nC5fu8eZTql7jFfFY4NdmemjJtck+EWM3H3Vz2fcmO9R8R37bIg6pghdxDUhAcat451TxUzgtOs1PIvhSvWhJzhWngFEW2FR8NjLnfn2rcuJGum4Wtap9U+qw7UTT8uSWgRn5IGZ7H1OQHaUZjNr8NR9mW4pA0NF0U71uGpzWqa+41Rc1ZKDErmjHwjF6YsFOsIJ85eWpB21oj7kuqPDVruu8IeaBWvP0N37zm/0N9Gix9GjTrxNY33o/grIqNNR089kfXGhQzM8UwOI+nVQ28OjdO0iJ1oqUsQ+XpG9PLGTn0zmvmWa6vNVSqpvswmTsdfFXykeHWGk7/c+XKKK4xD8GDk7HNQp5XS5pqautX/+17RmtBKqMdWid9ipyHIqfv4VPJ2s6DUB/gm72UNzgz4XMK1XTLTkqkBCji38m1QTH8/WOfpBW9Mq0cnrvTKapEgeOakSQLakSUs/Fa+gygqtP7HEu6B9s7KpckEopoovf6Z8BbmKC+oJ/MWstHjEaFtCddekpK1g9WNp1pUi41IZdg0PF4fbIcj5bD317PXGUE05g6sjpXL8lsHPK4vhlbOua8124F+TkhTOdKxUr3LDeOHZVglZ7JdnpBHG3Wd+17KOciBdgseeBdqGBcDiVRFWKqfF+hflnKB2sgNjIfRcIevTd/hmtJGfh52Umh2OMsexA4TZPXjCj8a/UKLyAclIelwUFd35h/BjUL+Wcp01MiwDDxuEesEMn+ebm3wfYcc9hPUFXM/CBtVa3EC3csO5PoZ+obkPfvGtIcMrSkO0UlRzSqEMInw/Ohe5+0fKsGbF34RrTvXGrXwyBboCRTnTZXiCUo+tm7QBAsVlklS5NjDhtzeKQnjbyqzda4A0Bxev3FLVLcenkGbITT2muBKars8dgj5JZr2SOsW+YUEry4vly6YxCSX+eOWGTBl93bGt6yDJuKMBbJolHAFRklAHbLnRWPKKz7v3ZREXV8eO3c34DDKmY7o5WBEIeeOp2U3ZDRr2MncOph9LEis+GPD9kovXsSuYVkobp3vU0bSaHCdKaZvXtbxsDNHOyW/5Kw2erohuxcGiaN7S1aAJRCJwyALxhWjnDXweXRZOB8OZV1OueTCSfRi5LqcU2evTI7pT3c3xDBl0+e9c+FYyXyKDEj0cYwnqkASW7k00unHjGXW3rNtFlk+83cbQX/QT3IPlUZiAexVZX0JHxtNomYPEg8hVIgKfGBaOpbV5iqhV+vsCvLMnR4ZvV69ORf1X0xfjz7zu6JPuIiNzUIS7oAO9y86bjwKidukmjiLaQvntYd2nmMezGZvnWyM+IFHBCoRI9ItFhTI8N6OMu+W1yOqeNQE0YMSztrSJa0QMCQf/bCSixFdMowOulnhS4zT4AKH9Gi3OuTi/XyKQoyvi5d9+s7pR0EslYctFWjJr7WQ4w+0iAtjLp7WCPA4y194vgRQMEzrrXdOQ4lv+m0M/dnr1H/fAL2rhOtmAHuClpGbnVqd0axpyMQokeuldSpbnDhsyQwQriduIq0wUdDWwSqzCwLzq6BLRXEpsP22OpdlWb0beIBJ3Bn8xBLwPqKMw9Wz0iGlgEjh4ddTdJ3UEHVQWEIi+1Nyr5GH33BMVlgx9zhmMJdsaYI/dOwgAzRSqExbA7tLXl4b/CO6+0v37zSZIKtGy6EMSDIneFrysrimETz1UXq4GnMFfW/8q7y5v8SFTdtVWaAC3iSXivnbWKOcjAXjJ+7NHoP58Mi2Avm3KAskH20kFex9QrtRchUCWydcAkGYr1ZYQFOMJGsCCcJI4xsSuIhFfFez+ftLP3onXnsRz5xFKCTZFOGZ9b/xyYS8HcWAxllBf360k7ypnQDNe3vwfJaFBFCV4ptg/4WUglTXCZwHSVRS1bFqnN/NuwY+CAF5CRXV0H4BP5+RpZ5GJ3SGgosRZXA9IuhNT8EaonptYJq1pQvHYr7KkMmL4f92+vmRT8o187/SQBQWKGR+l9P+5HfLX8ZG07haQ/r0j0pCvccPnrOq9klD5S1eQl6WPHtvQwMendZq09nRAYhtkjUyVXhLdb3HGtmGuprpBSe6YhG3+ql8PjNzw0QSW8ZNeis86BfqfnZq9i1wxsoOeE6FJpxGbkGyo6+MYPGHQFJKGH2GIL46d3KNr2XOKQC0a2Kt6mRSY2qUq3YTbI3DTB2a6waOhTj8rjNiewFE9IdCelgxfvw9sYV/AaR5N+huGYLFMmhokm6tDSFlCb9lFXymmwsl2JRwhUNoG/2gCMxTgvyh/aanLSE7SBYHWCOdOMSQxSIMQ/XKYBr56VR8pFyPNo93ImFXTf9bNwlUTIY/G2mx8ukCX8znzdokB0+/5CNQSCUyce6vc/5keJd6vXXN2d8PsxLfGpY0Klyoym2eLFS/FaeDaQiI6hd0Fozrrh6FjqqIEh6SwRogJ53o7SaNCZDw5tuVxpDwbOEfNpyrbxqg47rZLhVbMUR3BSZANAPQC+tzcQvJpky574E1XWHqt+gezyfJf1P3drQZY2/E+9FF5P3+xSQMfZ1lgz+OEuDjKD4e9EpfiKafnxKELojGVMKHa9sviozjnswOkDa+GX4JqQbieeBkbqf7Kz1lkDhNARULCPeoBGUBOfA3vq9N4a/N7kWDBlkxoew6MYEnff7RFQQgsO0t7VZacg0ID2WulfNP9VOOIaU7z+TABP+BG4i01SSxlt5d+hEehuqOofnQml3jxQH4MqAnB6lssGAPQzw7GtOVE37B7hCTOnW/Sf1IuIkFWiQyTF1lFrPWk3FolSgkNHPQKbEtP0KerGyS1+ChcStoQCW4u+KXIDw9lwAEFpFqLBzryh5HgdgDGQv6ESoFTibMa+bdBaChHncJ4vFob2Fiq49rsa6txz7tMSrVvH862+3W7R1F93JlDlQLz9ebwL2tMvNXoyTjBQZubpMhTftUNGnZuliOoT36T5H5jLf/sLr31Zun1eezUUu3CJAyP171JqReb6DXfYoVXFxR/FNurcqvU0+4qEsybYrhB38hIab6Q4FTCT/9IacchJ04iO3K94xmWWsIyEMyzWxX91BgcEV+GJByn9y25NqJicXS90rwkcKgO2YxXxDXGjjgOYXbmdl2IKsS1TXMoeAFzvqpTpd6BxNakAoKja5HMFybgm5UHgQ1m96eZiwt1eAdxPGcUSS7ovgxnB0s+WxEQfLRb4Yc/M4tTEJkTz+DhfPAO5GJPKKHT7Gxo6ou5GFEaM8t1K7qzRBu/pve74JoR2u4LF105UPbXKHzh/g44RKZ3IDaU46psaePPCe8GPrwO1NrGYSelkysBisFgoheQuEABZOBIuKiXcE5gvO8lMNnrRSa6MmV/cSFGhuNe7oznSy/KhFvYr0C6jckmXHDzYpq3VcETkD6QL63IvZp0ks2sRwM1q2nNpn430XvoGT2PrYbr8i8qH4f7fPzkK3mWY8WSFFGuWivZkPMhnncbkjqWueyZpfoJnsTr8jG2tp+hZthaHI+7KE2sOvE8Ibh2JIwnOGa/eLamP6nq3TMnXM/MRZqJ8VcnMeBt2MOJR8e40tLwrTG4xSWpycHoNMdj5rX1279ng1JBa1voXksRAcu2bzKtE4Q/YoGKc4De4e/LTjUecHocESb4zvtiZQcH18X+/wBrbYPRSkQ+8BEdtnVe8PmjLFXVuVDTHC+SUvwkrm1TCF0R2QQ6Qm5m9KgL5sOFHi/7lqAw288neSAHFs/m2KGOIZs2KbZSpgAQ4C3XwnCC8/YvBThbmgG7nMtqhFOswNElo022A2ZZ4PNx0vGxNACJag/7TaG0kO5DiDtskfPVmBzLOfES+LFKQHuHBmerRg7zKwgtGCmojA3MUoa4FkUmFWh1fxoCWEKwF79V5mG5pzhnyLhpME8UggSSkDxUsxkfx3bL5MCL8km9cnig7Piq5nOxA1Hd405NByIIQaGanNzAHT5RvF74w0aDNtGFSYFmSQFimNzmriFU6RKgyF3gck230G4jaWDGzpHyugi3ZLRqp3kHilCOXWC3/FITsiq7Zo3fkghYRRPt+c5JmP02JI3ObsQb4EXgRW6+opXAPPBrwkA+RytsoRHVEVoi0FKTH5TvVQO644FiVJ3BL6kyZrouWDEm5IQsy8O5ddGTSOhNq1RkFlHCNWWvT+P+n7fSjwzM2cV/2tQwLuk9aZ3C9p7SXk7vnsiNbJPSDTq60rQoVecF1p+lSWxkAsmKzgsBUJF+6a++6iG2lo/qmktNyFoXyi5HurOgxbk6qrL9CzLWNnSYXloVH2TAUCZpUVX3oqDBblHSDvMW/sw0InAjS1hCZWfSd7Fa+R4/YhayhtPusAut+nXw7b2iRSO2TZ6X9hdPGoN3J72FiFLs15vHoSv2IVHU95tD+qTM8x9JNkzT6Ovd8wVq2rb2jrCWne7fiu4EEWbDrlOdLvwSlYNhRhxSPfWSdED4aWNVUkgYd9NlBVpG0AoUZ26wjR3mALudR6OgPCEafi4OGkgqqtw/Rz8yxZCDCjLJziSSHPovRMJBcKwRu8jbAnmAQXwRQoCaZGmbFi+FyDlJ6lCs/C/MAb493sj1buw4pxYhf/2nZ2TI0zu8Vl1oAlW4yuyR6yLvkqmBuzEc7NJUOknfffnYDB7odu2bvm6N1W+fs/Wo7E+BZ+BlVgOsqLioL0aDFdz4ASQH1F/l8M8FHqL4IsWlTti5PMXdDxRXuAUoktaBZONWM+6Ha9rEHamg7OCKJtuqDIotS0GZKgMvV/ROGjwsrnk1Tr7UnUp1wm1Ffyqx7cXCzjDJJkWeYfRosiMFj5UK8/bD3f3JGeFa6EgoEzRlUJ8pFT5Nv2ej0xgi2IJhlCUn9bvYvdbE/zRcIN+7RpHRJVVLBY9sMKcxYhoRhG49g8R4cmj5R1KFAXXydLno70wiZZiJOnQddq2DyA8pwDoLg+nJ4Shhf8pOZiAXXbX1so+Slc1P7Ile0sH66f7GoI6HpPZULPPsLMRynj0n4i3iZdAx5oMH83o5lWj4KS9gVBwNwDlXZPShQJMzhEDMS6VfZdgPHkAnKNind1ldPeaV+dXqw9e3Zq3NcUxnYWMfO8b1538IYFCnQN8u2qdXFUm7GBy6FtM/3EDbCUW5+hmGmb7Ia93RJ2hh4Cp6F0j3pJZuFLgpMeYAW1WyPE+ix9zSou4DXuif/Zuzpt4rtkFNKL8nir+4flmMHU9eN6nCJCivttf09E0qzLwzSS5d2UFCf9M4vPGYEenZpiBpln0eH/sKFVMDIf9qWIFKGSACcR//ekiw6nAfJNA2MT0qX5jwbVq0YioMiyap3eV7hPTeEbjMxdgo4zleNkwXeNvhRv3NZJG+vwrvJfWorNlYHDheQKuE+MZLet3KvCb3UO7heXFxqzCWLvA5BlXUS34LLWNfS1hbsLslKg/PXwHPu4zofPA+j1ilJnC6+9OslikF+GH0u+olf77ug0NdArdJfAlPTuiQrvdf6IhlBqBd1SDfqIKOGH8NE9oJ6TbhSVWR5iSjcPD8fZVWhYEm48G+eBKvb0FUCE+2Em2Tjh8w0OX4hxq+Y0TBuiimh5zTftGRgZfKO9nq6s3tuZpHLByDE1P2Ev7OH9/zntY/EFIU4+tijS8Bhe6X/BNm5tT5GkBn6rphOEJd6sBRkdkOzu6GHj6IX96MB/JARathd8iHu+x56VwbVnah0OrpMGIynp5wY4EdqjFp5VrKg51vx9+97vJJT8lvADOefj22a6ViwGTHtmIVErIQInlpu5u6cxMai2kJPBsjsSnq9oC6g1DyS3x8m7//geeUM5cC2O+/80HQgycVYFI2TZe3lQqy6SmV1YDfrsqfocndNYrsrp85D31OhjHzGX6F7qOCgWuXIWje11GpfYIn7yqN6rAjh03f4KRJWk/68xSHAYmTo5hlKT2WjzJY3qXwjrl+Vvu8HY5udVWdz3i/80Y5c2cLrgUl9AmoOokHIiutNRkGyL74umzJkh1rUdpN60UrgfTgi6+1S3vk1RXVsHiNj1c93UVHXF5PWrrTpaWyVrhJ7dJJy+ZVCnL6af+hwcjm3TB6AJOXoYlG6wQ8Be5RBLtR1j2vty3DSJmm3qYl2CG4IghnCLEs+Jz4Ji3WMJQ7J7nDg5YjW8dIRlhnkN5LFyPthHFHdzSppnrkjnqhtvQWhbBHby2081yp0kz+sDrM7ASQa38MKH4aYvB2lfPeGmxIKQiG8DH70mXJ5TaCfJnH17HsrxmpQeIV3fQ+tDIB50n3QKYfWwWlBB9u5WdC5WK7kFacvBh+Nz46osx5r17threBsDOrMCmqYJ/afelAvmK8J1dqrT2oFrEcq2B9rANKEp2nrmYHzY9Akd6WNO953IC5PBJQvk1IUtN1dIwRKRePOdTRgmhCHJd/DKI2MF1CkSqzQ6n2P1fh93mj6+0IspJ7NEIAPnPzaCz1U0zGD4j6pcb+jAlgLuDBwJ5iG3wV+UJvbQbyvKxY7wYrK62PZjqRXiZLsC95oNd5kwqG8WKbgQ+RNkmIFNUNHvSPZpkML7x2nlYc6TH9PCPCQ/Ox5rDs4WjjJEGabH0SjL1tTjs4YwKlGrn6VHlO678mXi5EsM16ff66affDIJkz92SWbXUH1AMRZExOPHrYB+G3Nou0g3EyfakubMN6v32ZN9JqQiF2xN1zkw7mj5jyEuGY6F4aYCO1KNBBvkztOf/CxEIiiLQtCazlEzFnG/46J4PBTeB9IpsLMo1bMSezmCu/GCXD6tip5FmUnrPM9xBQILOlKbkTfyEd66eJQ+I5UQ8uM2Z+VH9pf5YfyfJki9ZH3GqLOBOnPNt6myC5CYWGSeVf8xfbn9mIQsq7eUR8rzrBM6/1JMBLE8hmkHZIcE5LjlTiPT0/JHJHIleb3zNIUm0B8InUME7ZDHkommJauZ6vOw/ZzRq6Jq0hTL6G2kD4Im+RpB5AIUNn8+ISiBEW/pu2
Variant 1
DifficultyLevel
723
Question
202=252+x1
Find the value of x?
Worked Solution
|
|
x1 |
= 202−252 |
|
= 50050 − 50040 |
|
= 50010 |
|
= 501 |
∴ x |
= 50 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question |
$\dfrac{2}{20} = \dfrac{2}{25} + \dfrac{1}{\large x}$
Find the value of $\large x$? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{1}{\large x}$ | \= $\dfrac{2}{20} - \dfrac{2}{25}$ |
| | \= $\dfrac{50}{500}\ -\ \dfrac{40}{500}$ |
| | \= $\dfrac{10}{500}$ |
| | \= $\dfrac{1}{50}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 50 | |
U2FsdGVkX18UrLHb5b865MLs593gsdAlsLWjU7hZ5kIYi1cR3TPZRmeY3wYxELK5QhLWOhsZSoF3XQ4Web2b+Ghmr3B7JdAen/B9EcvjunDy+7yRQUSBVbLxHEufn/MYVSvRCvuTKWh27XqOQOw6hXhL82hevb8xq/SK5ItFhLDvL5+JOe5pucVgIwl9gXbx2nLyXTIeMF1sMY6aMPskuR2/74g2uVV1xhd/M212kFh/miVT4AnFEUjwkf73jVUxLPtziFeeOqUxmDqVLf6Jyq3EdUgGdqGfgmA1yPNHGSC5iVbiDjYu0QWUy5lD/fDBdevQG49PL6tVD4ua9l8F/cXXuVfIHY9g0jWAAgPm+KqF0ggmQXISsYciM6cs0W1qq+R9AnxzuKXhDYUYSAnAL2e1prPp3KyCynrsSaOYlh8y2BIF8SPTob6Jwm3pKiWi+E2K+Z1BFC5Sh7GzxVXcn+57b3wsN6NGKV4+yZvQ/kNh59FAfKg+RnTeUwvYfxt1UXDfxhaSdBevQA0OzN3nWBG7RL2CPqvppzX8yDmb4lZhNFSAJH2e83REmGBAsv1k7XjptgPG8nEPJyvWKF6Npo8RH8KM+uDWeI+SLKa8rn8IsZtI9zVadfLSZz92+8VFmcpbRdzfDyTGKX0BVJ01OAWXY15QoIKSU3roggziHr922KBuGc0dVJJsEsjI/3S8Ok9D8LAjOsrSeAFX6Ega1DjtQ0Xf+j58vyRDQcdzNCzzyjj8lzI7gXIveXog/j5sG+z3h8dRo8FT9r1JrnJr4Hk6f2MvsYF1jp96nT0eXulj29bQww2dNiz84tk0gFLLfpxElIZ11dDtU5Pn/9qArq0cMz0S/Us1B+z3xPv3g5+7+3BnSuLvs1pii6zn1rmy1NJNXVaQ0CzD0uNiXyPRhQLiF3ioRWPChQt4SUtEXtQsNim9Vk0gG2s/M2lSgYLUjQ9YuRL8vz5EnPzNa+/OoXA42VIqPTzIJtdyVw2day6piMMRdJcH/VwofimKWRrZonXgDhPh8G4v6u4zKOBegunKmtWFhxBQt/H3ge3pNirzbjGv/PY75xlcMO1CvfSmIQmq6YL3cV/2ejgYTitYqY5DNvwnu662ffpGlJeBN9QcHWUZjsarEsDnrgRgLvbq0B3cKdeO5JUVbWZviaY1/UVNx+1vv80HDMY/xwIeJx4ATsRNBvr9BbHbfTnuTk+DLanAQ8Qx7oE1J8ajThvYpmGhFCCGRmCZWL8DQexUzYDd41DdsSawo5B1kE2Ze2ACO6TmBGQpLJTIPvqvM0X21AWiOHvXSSVCnpLmZutAEh4R5uha/vya/MQBuKOByiqoEcwFDi8L+3DxMyY3MGV+W6TfMio7c4wYEGKsaJV78a0pCSgks8tQPxKl83gx9/ZW2UnTlvdtTpEQDbNovCEQm5TaxaIOFcvaFt21OP+MOAiL3I62GoX9mwrRtMvf0etnvK3bQpo54vGHoddYWZNjcaI9LCgWhZIZC8Uz9PeeDdWW7g/0BE3EowFwnPzaQhSXtqpJTNfZgeDCPTFLw+BbGiw22ba/CPlyQ7si57F4QLcdrETBLLwu/AYFGj8A/RM1/a7Pu7hkVf3u+iXiIzRP7pdCQHMvUFY4b5nQ+aXQ068BcTW3In91LUkmbU2VMKkgaB5K9b5Yq4mj2W4PrXerMjIFAXSWIj5T4KKKFgjRElN5CLFkhBex8p6qtFgyYJcdjFlpkX05ku56cl567kE0yR1mfcqnm3gD0O5Vc3xO7DrlfUgDV0mOWvOC+RJGFdUZZ9EaaHZs5A4BykWscYwa7iIeN+wupj1mSeDkNfNqFURwNWvzmCq7n3ga/YHJqsyOx6dtQ5R8YqGfeRVNxmNHzbZPzR6d612g83pMyjlJ/SaHi21183BYouiSpll/varRSAfoUwo2GYsE+rhsDm7sbNGQzN6C+z9r66wQEcQWU6w0ilSftlF8bysnRfh1j53cOcV7b49Ae9dGTbPTIwBhXfTll/6pBffCc67inl1ineLIol48h5CKRGbK8uFeu6QBFGodIcQd2qr7RAT4o0zrgMJdzopG3WSk2gVV5pKf8bt2wi1NGfzP6EeF/45XAscVzZVjzo/HPbuMWyJtj/GfijzcLH4LvU1MYIcI3wWTDXBEBiAYB3V7b2QD15S3oq01Iwj7ydQY+WlC07eV8WT5vfbjWyOUmd2279ZCYBIKIsZmypEt/ksegq+h9ZQFMef60MxTTGuoAPEVxX9ZocoTQxdzUoQ241x8gpWZ0voE4rJKHAdoRw8lYipgTCTVuqTLGLC5faZuUe5rPUJ3hsi4iB0FDGJ69GOpvzTS7m0+8tL7tvnHEyBVVMiRfgdtX3A3q+6OU3728J90rmnFDzklK1mEOb+wqclLEpuEPFH+omsmrmA82jUdKx3TUE5aAaEmnCbJm6QrCUaBXdt1fJACSd66LQEsWKxsUab3kyhznP2qOh7PSwGsCDZ6+czEvCTKCZqbEcKtTHdwo5qIQ+S5OQllij8XPJtQN+aZIyG2GtJa+2PrccdbHb3G3PsaAAOVG+F4z9lERwg3sMALJ4n8qA9yxy4ca87IoyhCtXpHpD85+gfB0VWLuKDwN3Xbfb6NmApqoeUgLUC0G12V8pKFsIS8q/l1fWb4x4ATFiMmvjLojcJJ+B4lVoyej5yo/VeUCxm7U0heZ01zCzSpuOn1qeUWMv9vyrAjuHcF1wyWyeawjshl/r1C655f3a+EROyz30W6UnwYa9b7rKIJUmx3v0rAS93GF3sZGyM/9jUmq27LcQ60L0evmjLL9VGxu0WXbWSX+sRTeKBUpWmB0p8EhLFZy5h8J5YY+w1T5jRjQlb+x/UjEMGJqLAgy0F56z7B4icgSC0Ru4yiFOVAAd8DcDlnU2gxYaD8CSJ1HXAW3LFC6MncadyfatWZj6vJGLS/4hxlMswyfKQC63FeM21EhEl+SciaE+qRWvmht96U1DFxrLhnKBcGGKByIEzrVZNFzanslM4syvdMdeiHDXCI8cSUitB5c3ps1+h+qkil2cn4EKgwMSLnFebL9XVUaJdYEMRLdr4CGEpWW/CsQ1maPjBm+Qlk6sW6dkfKSSv8RlFLTjIpU8u5foVyCxBPpb0yLZIdxkS1u0xtSdC1ZAp/njilg6CO+e/RFuP8AJVSLH0AHrjO0JK9ZG7B+HFnGd7n3ebPNXoxkpiS+/9rY6vDYRyZJ+t/4R0XOe+6QOlkjEh941sdKi9qxO+Lh0yy23GSdj1H7AlH62GgA9lR28k8ot80xFpOJ1b7VaMv1v/xMzQwl7GpkY6G1C4z97FMvotlzQgHSHi/nA65qRWuk3OtKoQQZbRve3ZOJBxYCuWrvBM9LbtpusRKhitli6vCUeCl2dbaBtumbI3kCeZFT2JBVTN35SfI+5Jc1cCLC9Bb/qLjCiUM5OlIBH6KN1Pp48DXSjqkcw9hQxdyxpNbNklqXgLbKfPRoWMwUvFFxCzSdhuTxfLn9n6m72qtqPtCnsMV8kDhUhfQ6tp36Ol1LoQqiIgjgf+f9vATx5GnP632H+rAwILRy7x346BRie4X/XhidaTwwC19K3IvgacsoHQj6SQUFeuIVsbqug1eof4Rlotg6R1zN+PJnmozbr1ugt6den3YsMWq76kztKfrSMRLYxiHs7IjTNtT7J+1KD3MsyVrLwhlR3p9u5TtEvxx3knrAhLj2NxsEUkNCTVGbNWNR8LZmYgswm8aXpkwBTq9/6Q9+JehqmAHM2H5vrf2e/NVTrRoryUUc+4m9X0Czx+DIfLIfoBm1OYqmaAPCrRzv5Zs65fERXFEVpt/2BX1GyXokYbl+kWvyM5IDFHccXTlxhqtS7P12kSf8kTyLuP+JXhy9zTvlWxhai/lfq2uqje5ueNZCObodNEuXkFod5vhhRlZIVdUqpx1ehO0eQJiUZR9Zk4ZEf/OtxvdMJoShzBZm68yf0jmo71raSjVJ0vrRfwjBUJmnmH0l7W3eqzUtAqdGybG7TNlmgPk62UJ7j/VYBTxqy54vl8j8+pw26KumXk2lewnlSs1iGvSWwIu1V6PkaWA4PgZ8lfMTITEpzmXjB044ORfs5TmtTkL046HJTEFpEitjwakyE5bWTXzv6Bz0HryPzKLK/QJyNXaSGDiFrSkJIj+6n6KGS/Sm40qL8STWUlHqAtwMaur563zxAqoGRv1D5je1fHSWoXoQCLX+86msqrbAG4tFuBeqobJ3KeLtcS8H/s3WSr8P/SBb75YJv1vGJwLZ7ryUduNvt3hyXuLDKv1iel3tuS6zjQOQM2f8EqVhmIgK/Jyt9REhKtqBkO2Sl3AQTpqIyav0QJM2Lm4DK8vVr/4tHVUExw5ZC5BR0ENFp1ORMCVaiBL2cf/cfFPNwpFZKupggJiU5U1KoTuP/XFhJwlwKqKBRWqOdpU8pDhoZNwrp8Q/Z06JPFGa2t+U6z2BDOc1cKbnQckLLb33TNmMHtTeyGRMYSdrSayCdmBhvZRXdZtsiZ2t5pH6GDz0MtfOL20NMdqgTDBmKdYfTbrXUzFMIzxg9UyEHUTKkM0SI4gWhYoGlmFboumlIf/SM+iu1xyC8svlkbGFwZ812QaddM+jGizN2YFENbGIPjZxEWXfV/6xYe8ozeUWiEjpQgrf7CImpNBRHyR2mpidETksHZ7W8o9fzvZx1h24oCNDNxo3ro8yRtO9NiqSMPiVM3nrSM/CdHR2I5d1l/kaezGSOP9udz/TGft1u4wpfMDrESWrzh+JM79Py7sYnKx0/rRZATnthwzOyTj/Ge8M/MZSGPTbv2bFvF1A6Ce3cBWBO5yZGDxu8xP0rg5YQWnEi2yaoRa70BDjU/KcUoPsPy0KIWrlBkaB17FgysFREaxW4U4V7rO7Mqnxi6cHkw4OO9bIbuxpVPlxehObIvKmJT76kGjnuafPRMS0LE/dNxY5ICv0hubxWPOYONcpqfrFEpzrAuJEZ61Dwrdzc7KwFqX6GgoV8nDP8vLlfXsegaTyVXGPHLdn+JISiPXNmkWDz8S+LMEgeT2D7qKC7pVwHuAzuNtM8U1GR7x5Oa6pWFg9x79tf0Sg326/aHD6NJCN0tQ/ArulTTJXZ/lXznVYPfEnp0UF80vJnlgbh9enWWZMrrO7W1Qe94tytGijGY+CYdQQ9dN+kfQRIc+76W+Et8QpzNjRr37N/pZUtfIeAPLU6JLORSZHFeQgQ8xQzEvset1zJUd4ydfWuc9Y6Vk3jl+1XYI+eEgw227PEyQ36ssRw6RqE5c32OydfrE1e7/8K4i17qbQC6eErQBIL9CjI7pDSuG1f0JSVQs00bnjKpHolQ2xyNh771I56JkzKGMXdaFEeY7TCYCJ8ZnzVi6m77lUrhBMu3ty4DC9yAwLpBu0tFjPXxJISHbmJoCdyhClTQuUEXPPh2Nz5fCnFeMLKIOWpx+YLnt3xqx2d5EwV/WPICv9K6OG9x+gPK8aHRp2m/PeQ62i41LxtQRdrnnhLKBcFA3fJIC/n8HeW1kK43ZmB8ruBheUSQyRIrRF2WM24Fekw6saEv6wVrAe9ulfKPJFliKW6TteZ4oRhDFsLJ+J9t7iwKpMisKYinidUQcHvQYIwXgPhiKtyn3lfABkkCFg166x1oF7q+XK9A0Kw3fJMsjBwlgOzkdH1A8viQzw/N2ToQ3ZzZ5DBssCRD4XlyUR+rDGOafTTWQg+Yu3+71x7/iKBN1tYAwxlauanB2t1yutiQu0GhBoCTb5zNQef0eCO7DtaXe1oe6SmzhaV3PU2cnr1oAETCV9NEkmgjtWMUWoWub+URDGNOQx833QAc4sEOJ8VUTOzANTP7W0HKzP+6PkayCnjrNlgOfzLIKrLlsVZklIz6CbA6Yy6XwlpbvoL7/dpOysSaRyJc943UVZqmWrm4lilIFX7cRmqoWZgbJ+2hXdBKUU7fgK93Q+fJRGLYGIIH7SElGS3kOkLpsE0va9bP5MokABeGOSf74x2/mNBgQ1dVYah2udxrt1hYcpdm4T8rQmbNq7jJ6ISTj33R3eKopINYcsCQufbtDHQNhduCox4tyyzpWwlWxRZ/9kJFR7wfB5II7LYm6wfN1G/Gku755GAXt8YNjoC5yJUuiZsnH6cLCuRXxj7GWPp0dkxmqNLoMLBQEpYOwKUtO10FnXxDHLxg5deVnEac8fXIq76qRgT4/tWyd9q6ZrF1cBuLtjZjOvN66QQVjdRiFJrRiZyT6uRH8qSx7hhMj1HPg5vy/bQBzJaLLuMiyLiCDThGYGWcUxrkw20ALHkaBmsTN9yQf9IPE6kdnJzk9uYjs3h/TpfEN6AcNWkvEIuqYYwie4+/oy2FekfwuOl04+Qc6pV0zH5XWJADlEtSZmiskFWgRpMWHMDuOMkX3q4fsNwsGvxkl3Q60q7FIOZNK67rIBeqi0Y+a52TLcCDxWdmL7Guf77tNnn0mygZQ+8FFFW58VDmieuANgGL34qOvJr9gisDrQK3lVpRmdjRPc/Oj+iKfxAm5jdFSDwDzkKQmR5HQbscu9Ss56xoTxHHmJvcQypZC3qK9FvS1ToWRbnCn9cFVKFWijLJa9V4/3iehCNFy2cKldgkmLjeWU47KKKsa638jCEwZN9+c1XMYvV1wylo77KxPraupHnveb56gism5EcV3oiLbUvlj8iF7OQtsWskTK3l2IWK7ZoE2T2mzjXI8MH62+6wuDMVoPmyzeTSJyIpPYzcaT7xzlaPVN0lxelKePc/HDbJn+LlKjsvAKwFnpgzaUkCEiTuRD7cTw0UW5/eUkjvfXyhiBksdXn4PJ4PVpg2qQ0B7Q07ZetlAJ2l9tiqwBNjfF5QrSJIhzXbiV8P2GWXjdPKXhRHHSmr7EfSZy7yqsj5ZVUNv9Kj5kD9MP3HUdOvE/hA+C99OgZrPDQ3jUr0Q0Yw2S/UII2ylWy4IWZJMkfInlji4LtFD/2fRPFwHvLugUk/HA1xJER8ihiBZcN1S9IvooavM/KU5e4dTG7DNP7U7R3Bd/Xfwhc4iladvyHjnIVBK2ehU/PqNVOBnsGzRvRwfwzYpFWzIyS8nFuCMVfpzvP1egkDXwzlEUpzsYpyPKaoMgRDzdncEEFVf7uGGxUe7pxKnXuXrLDB5jkSeaK/qVSC7dRIBJbvi5HTHaQIUMQQ2joQgHJkHt5AhByGf43nQZK34e2p+lnkge39itKk5ryQwxx1NTaa24CQ+h6MuBBO4qG5U5zVHI9ImBe+0I+6JTk0BWDI8Y6ycc1GE3Wn3tP3+5u/+EJu55uUUY6Udd9YviEDki88cHHbiGj57eDSARKpI8521ras4sUe+SYtCOrNwE/t1b79TItM+fiZVOB/kVMd1bXKruwfDuA5Zss9RNoQZiFG72Xx6mjhff1q4G9kHdgfHgeqhzBhrBJ44Gw2LY3pLEG42xVF5ggo6DJ6aYqNsT+Kp4JbodLiCo+0+P2J83M1Njl5ugm8mQ2hpEijaW9Qu4jTqmGMoStZQtDZETLdBK6thFGa+4RGV9Dx+ExgXDwfuDU7ahp9KmJW3HeWiXvHF8EW+FelOdhjMoIGDFsTS/Lb0Z+h7iOY58zi+oX9UpQbdf/GKPQUo935yYEegQZILBaeC4KKYuseFqVybLKVUS1N7xGJCWgB1imN2viSAyWKXtrDdmKJmpz3uKbeOA7qCP7oEac3F9WHEFdFyMN3h/SBOt56QFXkoAPVK73xWWSQPZSCu0uc6f0LLirm2vH75oitMggMxtmNuCPmiXCueAQZekpLrXI+E+lMPlzpjm+zyJivluAcP1oPyFdwI5WjDNXOnroR5i/lUzLOVSmtEOO3YKoqxe/5lkes3bF717PlA/HBC5yhuFOz6XzaJkCspnJqlWwUN2jvq/KzL+YBcXHXN76nUV43mG88SnYJtrQj0N3vUQR/bV8YXAEdaBk2RiOAQX8Un6Me1XRWn0oFkAmYZ04Ws7G1OPl0KNgbko4zIbkm6Pa7M4Odrqmm3X5My3TjEAbZ6dcZJ1cWtV0ywGk9u0yOG/3q3pXfvFOxvhHLBoOXpTPkokWDjm+GTPimwCaWWN4VrlMNmIw2IR1VUa4P17DV0gU12esG2CHYlvExvHCM0AEe+p9cmwycIbTs/eTl4LKQ/0FD275Ph8GPeIyZ1HEyRsYvDa7UDFlkG+ivbcgIjqgT5KyP1gD7t/x0ywe/Fot+iG+PTpU2dWeu+q4b+q7liMi5K1P+oltfXFeRcMl3Unppy+t5iMZXCadBfIQv/UffAxnMPg2RnTmkM+ml4jxSJ4UeiP4EApYg8K21WUW53A++LW3u+7JMaByDSg7gaBf8xZdIzR7rblriN7M90pDvCKJ+tjOrCY4dTJlksQV8ajfgAcYvUeL4xAanZLQJPu2NPUiSHKro8tudD8HoVMCRW7iBz8ePLNHn3PFVF2I/LqsffPAbITM0iDzoXMvo7oGajXveEd3j2w6oZnONdVfRg39hkJdLL2j8CSyBnCcHq3NyEmaoc+E+lpma9wqAc9swzj24OAjJMWe+4jt9gZOaz/hr+hgAggqsQSDqObMA0BJtcC7x8zgVqA6WUNgzhYF2HkZkVPf6JP5zlISdVjK1x5+o0Kdzrbflz9ElGaSLAiPT4sggqYDUhq8Ykp0Wxit3JK0YIAGGEg0LjRAkHtmzATUoYYD0d1vmUyMrN38HUfmlqrmC8z5yE8F2kGGbSemHarZJ3w3aO9Ig6S9afoR6sftCXj1jQiUEd2NS+qsh0FHYs7bPJRCxSBIFUI11+7uC5mrd3t5EBrA6DNMeCWmsKe/ozqPsbPx2T27ggp3KgKyfbXbyTlUpgnWmRYxg/3UPQCAbjhBWzdsBuB46Yv3RZjCcN8sCydY2AgVT48C2nMRqvaoiCCbljuBUgK3m5daWd3STAydRbWRZAsmhzLeyXK7B1cUII0wrJFpJvseN8zB7jqXuWB91y3y7j9T86QcZLRPcb/kZ8193eXwxDmoTmQkq8eR9vvdEAyzGVKXyv6CIoI9oYMG6OaoGinvRkhfxpQurVG1EnspOzUPg+BbrAc2+Agtwj4yNkjlnUSbfeR9G4gNVwvM4o2/sR3OQUdgf6fP9wFI4SwVo1WzLYzc0LPNOsseb+HoFQSQJ4N2Ex2lgbgCtSMlqXh2Xv+Yj+FVumjpAqjAVZ9QGEVBm3kQhPwIg/aVp8cobM9rA/ZPH47rPcl4tosBgHIGk229/3Xao4yqrcc/n32HS6XqlFrg/crsOMV2LdfhpQTrNnuvuJBG7IB/qsjvxdkYeIZdIQmu9tp7DfckSjMSVLVmtV9u1LMeQ74ilJQqf6XBu3Lzd3rcf7zH/fT5aoxpGioM50A2Ni5WbATqSSgRpU3e5L1fxaBLTuZ7aVu1y1ffIMv+f7Q3W7p7nnkDwJpOJUIp5W6wz0zwG24/8x6L7NAV1v4C+y6mdar/K5EHrY0823RNetOYGxO8ixiwc+gRuOPFfcfOfpw+ZaslLJgUqORz1ywFg6AG2LktTyGAKZm34seAPQIAfNJlwOEqw00/+UoKQ7eUQBT5nUOq0kUTqChd6omlnm7OkaJdeyzbzoeDOVBZ65F3x7sUyfyyxgfKiycLkdPkhNANxbyKAJhN/CXVRNTWiK+8bHezEusfMiHbhWDDsn3mnFr3E8oeTAyq0kXT+wSzrCUg4Q/5tNWHJHLSH73uINN0TppgOo46H7FohdE17CaoWBfXoPqgAKYNr6dcH6BE9U8a5bfpdmiXqKNoFVvEAxsHut9YjPpjHtqmFYyVYcJzmgWG+ZxEMbD1R4s/PDb2V7hrFb8/KpMA1adtGBK05RbvnZbLNAARA7sptb+UM0OfLyyDXNrT8/EQGnioG8rmv5tKwDPXZclMqLQq0AaprBzar1McxNkycORI04s+crCxcjDJw4iS7qJZtKAfABhZq0Pl3eef6QEkj7X4X8pkgYRLIr9jqAXK7LnB7I1i81L6duaFKzM9iWWRq8HfFCbop3kykwDYmY2Mom5LHS4ov7lAP6VXYV7vpW4y7sfXWN/vfwgSDZyuKouOjCxFObOGIUe2brof/fzzho7ays2fuA2pxgB2VKNCeicfifu5y3Sg5cBdMGJBnkKiZWTb3mofrjmUys/BP8GtrnZ5MmKXGma7mi6q9CqmbMhb2/C1ptwAGrEaL2Mp3QFpnIcqJ7XJ1dRJXwhGMtsAmSKUCHz8NWl7k0IW6p/bqT2Vi8FwTFUcm3OtfdSFL5c8kTGSkEjGy7vUIpUgG+jnvE0xThfsCRupO6Lt7Ks+GMcNA2LJvfe9UlZmod6eOl7PfXvrDHVDgQyOXRBxYFoupkhURdvHhWUuN+NOm03DsPA7ERglgUx/UMYj7akxJGJ64d7soJjF1uRT1xr9vJsp6JzJ2mCqo62/TvVWEP789ucIuV2H4HVPyZ1hSLhSe1UQXUsIfOIeLap/jBfygK0RIm3AB2QxEm8pVzorikPefwhZJnccaHc3sByZ6vZqDRVmukaVzesyVIUZo6/7YRO8eYEFLTcJLCUxpgAdS6S0v6w1LIxVgb5MiI/Up9pvtwcMXo/SYzg7MZu+NXRbWUuM5WJLf5OK5G2e5I5erqeGgaxJSqxoNU6EXETvWOwyr7GL61TrENiYL1ZpQ+hutFSS7iuKe7yG8o4Kr2Aldhs+H8RO8gwE5bQpRwV0xNwd4/I8B2gZPi24/wYpK62f24sp2wHl6OZClUAUnzx9astbvab5SgxW7QPIwI8s33jNOq1KUj25mWPkn+hRz6lgLdT+V8zgWzByUrrmsQpS3BwJbWNq4jFbIemn7VDYIOVdrI9rlgI1OmEZf+iWA+g3CRoMpTCZCzJPFemyRo5LOr0B3x68ApazyXVeWarCcJztrnMJO4zWuk4icreA4jJC+5AOpQxAp68dmctmRsk0RLsWEUxdO+3WvFPm/CeewyONg+hdKmpMZ5Kh6R+Mbnr1Z28v6HXCUegQWxCnWUG8ZBd4XV4+0keyY3S3mBarwbNrwt4mcK4LN3uuNF+hk+FY7lTwaU192I0gAtCnxK3ibWrUNSHxwuSV9P7EC21SJaQLOYGdQsDkL7dXMpG9J1h/zWcTNJQlBF6YqiVSMUYTQyGEwK0vLWGeaViIFz5Ic565MVN68r7MgfYS9f2JxrnMav8Cmc+yGREzFEr0rLMkL9+7Rk3bYOeHhzuSGc15EhIwbVWJo92+mQucFItV7Ej5AC8mSkezVRyAVjpcT0bb2f7hNGNucLZYWGUsX1cUqC25BuqTipS5YWWT2oB+bclXVVwDU56C2jg0UHHTVxrK7BlQnT4YNyZvpn0Rn51srnLIGIzNdgVRwFOke5AC0owWjGQRS5zEjNm/kFW/cllWfPqVXjRjZb2V7oMnPjgt0vS0xA/zi1OaLEIZn6+0I1oXaN1QZVhA2G1XWBYVw/D0BueH1qc/uQnZQTMB2wkROQHgxrOZL9weht+8kqmBdaf1H/LkId8h/8jUcK9X7HIsiXQTQga9USjFHQEghbnO70v5WYzIeHR4ek2jMWpKiiBXTyGf6ZMjDwsRHS7EoNwMquJ3LI47XLdvjChqpNhOUq+s905p89yCy3kUlW4PkPIREwV0gZbpiZEMu2xpZjtvL+/mxUc0XeAkxEGiFkWOHJWqK78RQWCJa4bUoBJVFHy4JgXjCX7jRNgw20XNtFpOIs+HGZwgvkV0GZLUbq8wP41AUjygiADkTf/SzcqffBBIp6luBZq8Pc8+mctxolOtAjixMUe2qe/80cRrYyBbhNemEB+SS+Y3o46YhU2pRnAk0qP/k2oiD+lv62/iieQREy9QEa3L1Fozua7p7nK2eLIoozM0VpMTli0f3M79L3b3o2VkAtT7T+MwbLEd+DnEfSenkMjQAsgnEPXYd3AvXDRbAt6Jo5/b9LHfBavY4vLLdzMGYHiMvij5SR+r3OZK6k7wcvDmMSLuWlz/48LVu7C+vMy6XgB+UBP8Uck67orDAY+j03q+B5laACNGhUpfesoCqGiwo0dAzhc2BmD0s8UzXYQjNrNXaNwpP2XlBrfQTjBdRgavQYj1WxEVO5DsMBZbLClzvumflu8/XjRHbI6uxsWs78v6ilFcRYhFmyyZVEnISOuzDLCfE6N/Is/enI7o2SYawac04SwKFsSDrx+ZB38TNygX8liLr4uTACCrTL0wJwAMt2ZGzi2G5XB4wHn+j5pzFFU8JusQE7qXo7nCYzkVoBoE9epHXFxs2G77YldNELsp8QMegVVT6zcwU9DjlbzdxLicxHIuYGaoX1BPSNcBo3cmI+G5K8Zd9Qd4o5RIlHm3ONSg7pwQKlgDCcoMDOaxuDWzNNqULwwl+UMZRDD9WNbNBBTavZMKc77MObvKEWEQhw5ejytbBIaH6LvJk6tc5Q3TIDRBSZ+c3pgAUAAlR+eXTA7AxlKavz6fIA2yCJqK5WV5yO7m3GUdKT3Xqa8kK2jjCGgoEHBQ3bEdmE//mDa2xhHHlrtxoVGUB8vOF+nBH+Rwz6v+x7P3gya2onToBMOl/6eIGR7lbDyvvens/rwmpyM3Sm5zHS48U32XyyAPIRgXVfHGp8Q2s09mjpP006a/KonrC/RhdHsbs1MAY1ngIinjhffieBu37WE/1RXn/zCYvVPyYpvezJIOuyrXumaYzE3wWXu0O0Iu7OLE36Vt1BrdWulxJCYOs+NATs7qj+EW0wjojm69FspPaMCMyjmTPOm0P9cLYv8LB3808aHKHx/LWjMgMdk5eHcN519sVX3FJ0/jB7hBjrYoHKPcfxfcEy7GOODInrpvqEb8edOyDH0GehtGwpyo6J37D8YnO2YYby/tg29h4aTNbLHXHZQC8HSGH+7mCb7Qxd5pfzMKte4ZPEmv6td+ywopa0DaxNFU+xRFe/KBe6c47K5WnmBYRisqwP3K61kzgrzCyLpnfIYvUaeTkbAYh9o+Sihzx+G9HYc60iQUhcuwEC3HCLO4hRwa5WfumjbGWUXRjV2cj9Y2kjxR7cJZv5P16ZzxZRRV65InYjGlznbcXY7pCrai7Em2/76A/PiTGTnwy6afkfGLn1jYPPMlkSfhTCEVHobiM0IS2gyj0so1qsLZCJaTIjZU6/NyyfnxuuAUepWcwWIOyzZrBD/5nO0f+KaqKl0dfcq9FKT87Z5Q715eFqcIdoT67erXMOR83IMFdpPzHqVOoLgmZr2wLMzVmp33gW2TP+sBlOlecMa5linf3w1ka1JbBIU4zWKUzrFnuBYJm5JLBg3nJaabkmm2Wk6b0Ye6gPhvhQJ5xv+8jG6hlts74sCzXLEZpGU5MC/pYsHASf+kxWpm9evq2EVpP5/dAg3vAF5oSRqx6Ter81uqLosY3B2VTWv/Uz3QN9ZJA349jf0bb93f0OJ4t6Sjm9spy8QfDl7fp7IZuQjHuKrjMaXcdymEtAEXy11VCJCVdu0H2l9tWPPYYtza/XH6t0gc4nGAFN7cLOxHDcE9CzngDtcBvYYdsW7rwDgn18N7Tu6M3RfN70I1Fp10LzIqa06YEvlZAeY/kwVMtREmQxraj/vXPWWrC2jT2BJ7oG6gdtuu3Gt8UC7O8tsd18tpo30/n67gOLcQ636EDE08tG0gkWYRW8V9GrcO7vkYjaxSpjomedOnkMgwW9hZhOl9gkqjLwJsLS/uiKwgEq4Vt4Y7sLcwmIj7nuemPONPV6u5PNGEAawxMMQaWACedZj+lCRWp4LJQ57q4p9dxppWw4nAsbxfzBtINwXRxA/a/+42yp41B6Ow0+vTXDdBu2Amn4r+5hq2Ks2kJFhLJKKr0CPN1icp9NgkZFPs6+SG2H7+AIrAcXSWIoxtnZ5dHVsf5Ad5n4RyOWJ8kyLQ8z40ZZIAt1I9b5hJ4MhvXAUQzXt44SoVc+AZRHOzcYfQofO9jrrEweY3WSCo8xKviBuiZwVqDY0ATqoI79Xbo6FaJTEypm+pfsZT/wa4QSSbmJM0mEYacmAWApiGqYvzM3Uy702GTxjBmrygzY7LlHqMFGWxFsd4F+6zPM8MYMkRNb2ZP9DSamhpqOPf0SNSEE+T8TdUoqAadTnpeF4DqJheNGoCQJmWzJkUb4rxfX46KDj50kCQKVuxdeHby854plcoPPwKRDUIcQxJ0Yu3WrXjHZ+VRmFAnemoZ+xt+erklXV7GfMOUHMahSswzNq+2xH1s476rEitbdD5GG9BOjwIyxxuei1R8piLjld/d9UjWhCEaC8t/gZ9DUgCRw5JjtbpdFVLf1G+fzxtuN/X8/Yna1TNR8ZqoxfBoUKbKCVuRwkvDHeygn7ZAxrslFdCu52FKOAcZ3NYBgOkINlvHZ54TpFavQIQOS0016yVZl3//BjBa8MX/dWynnnZ624g4aWmOULdaCRH3hJ5YZOpNhnCkLapbOcywEYObha+3rkOF7fSNYvn1t1/a/dml1zmZMawNcIzUlbY2mQw1LLQIElqdYv6d6e9bxdFNrMN5CrbrVR59QN+srmssunfjb3Dc8YciEExgEoyw8cDSxyDiZPcQykig/9UDvLEUcK02uYLcgXwZWNU/vJA3ysayGKkpQYWM7n2YQX1YoR4Ee5yqaT6Jyey9qg/icD/r2iAe36jJVCTN1TuY3YIvxyHBS47okHjjjfc07AE+pDE4eHLAc6QcCEaq+f1h74Wefm7yDRy6KBmbNKhZAWp6jw55QxvqM1F6HjjEH23XWWTdy/YtoeVwrgCjbc6XjVvKRoXcJFsmyzc6c7QvRMiLbnS5htfziADw9lZQ9rR1OR1q3GgmHvpJ8nAOepJy7IxMeb3hf05TjSnB/tHJ4nrF19hn7TRUSOB88vvoQBErXPf5kuRJICWMTG1xskUQluocb7BWu0QjjNDPux2QVRRYyCyLTpW/KwV8NVKBcIxbK57ePQdeCv5UE43fx/gfFjokywXTrpg3xsM+vMI8ADgDwk4BbXNIvVNH6CnsdtLP+enUdfazRlZd+OL54JCGI3q2LDkhYdSg+heFOecGqpU4kRWfLmgHUh1F6jipnxMxsXv2/xkQGIEGWHgRgGjyHyuKty2EsRWLf+xQVRRbmtRKTZEDixs8uIDi2qLPejS1wrtVevS/DGe+FAGdK9xapciDkn87MX8Oag9Od5lOIOgh80N0So6iY8J8ROzcJ5YRrfuBS22ez3bW8O01p9U5RpwvghBB3GczVeHAkY+rBHkR0WlVuTRF9mAulIr6vUmEgWCecZWuJtGiX1vy7Yq7jS7GDAwyX93I59Mz3CDBfEVupFO0ikO4qO/G/9QWqucRE5WYQKlwOxi34yWad/aJJD+sn5s4K1GVCvH7iwFd2fBPsrznfmGRV57i9pxMyT73sWq3yi9s3R/OUCw0eiVTD64RhRgoANucWopyWumDboL4nbAXNpRLt5745QMXBj1+00lZWOHwzCw7XnUl7ym2MQiQvTj0NirPSTVLBQ9g+pGc2ufNS87C0a0y3Joipeyzf4EWFU9HpeuxKlt9TqMhc0Z9BU0NIzrQ8B7l7BdqPySSoszq6HrWOXhthSYaBF2g9o8IKHiRGKMMKYjCMXsbrVXI3IA6goAXmUxwuPc34fvHuhNCO1p4hdAjfgCIV8Uouq5z1z2V/K8+ygq1q2Vq4YFMzEEH0vApPCGyYXJV+CREFbUyhEkoy0xevahQRcIT402NFcG1fDGMtd2fpv3Rnqf+KewzrPoxCjgmAdkolTpZNWhP6nlaOECLTTdvo1sWl+/Qfk5PRYj34r5jO1OPiqYzr8sK2Vudsu1J48XbvePHi/Fzrvci3w7eK9JsJbHqQ6oynQnzGcd4Kki+WhMfxf+z1uMnE2Lwnuw1NiAYq/sx3uCwJZPGoEsmZkBHMIO9lCe9K+Pu8w4xLgBIFSj9Ho/Z7Hat+dl4AFthmzqsXJz6k3K/e23CTGeypXOBYewBgOTYDjxG0BMFd8bZNIDVMKhyoQiVqNRlImK8ogku3k09I8uE2TSMHHlLf+yfyHqZAOkUS8PElQkusw7yJ3CoIAPDlToeVXGGSlHk8j/QvEsnDM3/jArfDt88Ixt1MwoTqsOmEQFWtA3trdOGH3UN4eUmb1R8Tbsl1TxdjxF/GU8EL0zILrn/Un7KO+E5Z9VFcQyjio3cXHYBsM2ukwHx6q7V8gZXsiggLmx+aI0LtDZybGgXcR2H1UBnoOmXWc/buxvgj5lf6iIBL0wQzw/7gcvNMeefa/3Wc8wa9knF/CtQYd3kYS13ngfRpiFmvZIkEHr3HBIpEQcirZoF0upTu5WWikOw1EKZp8/SmD3Zf7c0CmvQOYgjMzeO2Lf8iu6j6P2pNrJ1qaTM6g3SOjAKH3URlaplb2kF+PfjYkFUB2QPDX/9h42P5QXKQUwiyMTw3B8y0JM0eDR/8N8FBc8S/wjFg3iYmtwWHtzV9RAqPdNu1fmw0vj46Z06S6ie0p88cxWd4NXU2pSqh64f5l42DjlWB06H9eDOq/wtJLC/h7G5/YdW+/c0WHM0gYU2uMdTvGqm3VIQkaEh3+IMTACDZ9bW8gNGWKtvUas+zI5nuQxiZluS+6HvJ2By1Fdy0AZ+8dt9Bf5mVkIjOd/5L58upWaujC0WNiOzcr/ytnWeDxjGDIrOWNt1s8wlEWs8lb8r6e8yXScugbKNA7nIlSUvA/NZUfxsjuJn0OO7dOMByxJ9rlzakeg9OefW6LkbouiQLFaeIH1sJmevn1f/FL9uwGLWBnrwff6VSqZ4PGE6XZmJa99U2n3vmEY96mnzpqrPIZFtEuiBrJE1vhoQjBF8ahJt3CRQ7aerLII595ukPrunjVJ/FGtUfgq7zKqtqezXYRTIR1LB/NPQ1/ksJ/QNVS1tOx2wGMLhbyur/ntbRMkR/lNZf2GIa3JvJ3N+wbkhbA+9+dwbHu3+xdc64IlwlHwgf5QBFYvoHSOmjWMTAwYJkpraQsM+AYH1KMTj+MWnCpx7flVCy+OzH5E3G8DDzFZprLHKQBzXa20Hb1K3VWAqTFmIO6XVeNKfwR66oBMtIQhYojy+TBLkRXcb1qR73efDVUfakDhKW8czU/O2eQpWuVebpvuR9OeBPgS6AM+IQ/an0p6xe80wFJz3yyyrXY3dqEqGG3Dsi7umYm27mgN9IXN8g2enx9BaSQQMsAdHse+NfBUO9WppiQvhjXhGxJyK8kaxIXWzaBzrZx/MOFqAb3LaDumppcyN9qdR2ubRGEj5eooeTB2S1GMIkHNYdXEkMUzCR5nbBmShqpWeeGBLeXgUYP2RGYhEvzY6ykcRh9gj4x0gFaVedBiZ9sJWAZ5NFnUTzjgUO5MIYZNaok97pG7lz1sqcsOGh0JzS8UHjVtdTXeovgsFfx3WxYENQSJvYK+6Yf7ilsJ0OTOjRqSaE0ZYUUWyvm5QKcqnZeZAkROdgywpi33r/htqxe1hWfyz+pYNDjhgTY/0ScaHp+v+6jiTSsFwEf7OW0eDv5etv7GREQ9jyVdknP5KfrQF5h+SYUVInrcE5OEHdTqpw5pYwnREYwAjSN9qONeQj4UpDBUOAx4p6StnZevufnhfKF/q/HTFjGXhwTD/P2SfeAIztuIsaCsb/7Cxdyay5+zX8XHoL/12qrHZrYOK612Ftc00MhTtEOa1/E3nT3fJDQyVUtu7jvhUQE1M9AXk3WosLZozmCcwjrQHOTp6e2GBOYZ46DOTqtQ5Cuz6HYK3J3A1TWLl4TYmITJF+AnvCpYzLgMoJYbbKIubLqAUDa56PdqdVkxWW7LPxzoBl0Z5oQAEnow+kE7B7mMmOhrjXq4lPbclmqt9/Qupg52JcVN1WgT5PfBzAsDaeF/XJDxnJVNBeuS6vRQ1Xz5aSnBXYbXmSEHbdwdlVTfVX4Y1TTNgXyJkt0vUBa2B9WNBwwIMyCUTtZd00sIre54OSwhyCXc9l9s5CP24xCCXL8Ag7eKo71M2YXDZSqYqJat+rb/er6MGq0MOpgkiyrHPFwlqCPh8P6jNopY/zwIUra+EOquAphbcWnt2Du6up3xr/XWPFJs6warLX3v5w57p5c4e81o7mDaSICx9sgeiFm1xzGREzxkV5xIIiyUp7EvekI2it2mBxJp77NtA8xn6fPoaj/47bR99SOB9qukzNaeu1oIU2Xr6AL+Wep47ynL0AuaQP2RHrWTyY2qUXx4vDNy+3UJTYaEaf6U2foArker3uhpSGLP9buWHX/K3YgwtUzG8olYomSM2sRpDXLLMfdIm95g+E7hM72xywH1nTekkHBR5WXRJc99+BDLlGl/o+VLkOGlChhDQjtUn32fmghTuIPSB4jGgO0xrH74ST9Ahfrs45ky8c+jJux7r/9SCZ+0fMrjmo5UTWV/OGBpft1727FQ6/A4h/aNysic6TrNgjaYjylK33qz6V70g82mJevuM5MRNUuDeLgJXMMsMegFRv5yYGttaGU5eMlyX3XtchcRoBjLTHJSpcH3qCwrsUMkGbk27zzt3liz0WB2RUlL+c396Odip6oBF4peTxTRsNRLd+XzKqtlNBn6wLmhcDZjdjDBoNf7FCoAej5pmXzvcZl/xV28fROMHL5+RHqdtBS7/N7WX0e79CdWOFqjRt6ZQ+psLgoOUrg1JF/L4r0Ecd9eC4WyN89jnmePUll7kxHjauWvaq+iRzXE24RuXQKJRbPnArAPWtriE1go+ld/8VZzkQFRPoFqxMUaZFvL19JRAg8Zu4QiCAb4itdvQftB8K8yknmXbu7l0UPttTrWaWMSNEe6xf2/eaW+dN3yMgSl8JQd8St+rjJ1nOtCp3mgCmKprQqRTcmB2wZaPesJ4DljUWbR2yZ/Yt6YFDuwvKWktCxwm3uyD8tFAw2PeR3M0LOyogVb+Hq0Sc0gHcBXpkRP/wWI8WPB7o6gvcjgh0M7VEz9elUCkVqVtXPtfDJ38PG/DWXdQhS9CcEfthcrXDAq9rj2a6gdXd302PMtmiSJGEEI66YLDEzqdbfscXWz3h1+llwxbj2lJK32lwWZ0bhqFNKCb8sh47RO194Gw1IfOLKYgw6pKFmTj9tfKwRwlgygC9KHc6aBPcic8EIH+c3QXmE5yM3XYKKcVjHbXAqKfIN4I7fBlZHnoC6wRRQYW7HyyNDRfN508iQ2Ps/czeqhqJLp9d/D6LA/QNQWfLwskKJ54yHrhCUGAGucWr9aWbBFa3Nq0GdXJfcdiqlt3XHJokBllikHntxaw1mZlPRyhCg6I4z25NQsg7AnX3HrxseuvMgul1JGtZfuJBExlFHM0m0omErmWQCjjECW0JkMsef7R0AiGx2z5Ja9efPnb5fld1owp/jDMKF48jU+6QbZT4vOsdPWRyNSFfsjmCeaj4qG9leAzeZfaEPF6fxeG6d+PItLOxGrCUBwlsxuMXQDSffPPihEJAMYfvBI1ic1YcDMO/s86rsKzoce/gLC3tQdi6KgPAqH+2GqqSgQQBxY5tMSJLVFjI4jFRgSTm2rZPIYy4DS+u48EAdSCorHMWYMBMLgWCDG6WWUdV2J9tPHM41MUJyVujWIymdZoD516lWggyaKz7BpQbetTfNSRSacanz4Zb+Ulx5MA2y0cNYDWryi6vRyy2/VQvcU378/EFIQyck0oLnz+f6AOwGPNZSRks1+wXemmgMgD9nJclkjeHyqqIwz48BG/64HLmNmOPkfCu8Nf9hbNZsm2d4BH8cgwLTAYa6c/7CEGM9v8O71oGRO8kDh8COY2AdT9hwBBkPn1gFmVep6Y+ZSR0W/A0wBqn2uR54dd/K7UCi2b3BXk+b9yjmC9HLArUQzNw4cXX7MFPR+RN37sXZp1Ssqos0LC1ECyqX6m2A0+kNd2h+1vfmH1pfdHe8usG13S5p7YcoisJScYn7aNNFNIqlR09exm72aBewAG34uy0I3TsliFk1+NaaRCTYBCwHk3xDBul+TbSgmo53P1GlzDsgHrZ4WOQFNaH0SRq9xLFZqkoIrP/XEpfaO3KIJ/quqEGeEs1kZwYmGqXf9uhkNibTrhjsb/8JVD0zFyQ8KPEivfsrFUXV3Byz8N4gT1y6tWsT+1TmOmmdjcGLycNfuTupcd8Orc0Q+rJsarf1sdEHpYXlF5F/5zUiF/vutIqRa8iyaeZ05vl+pkZ9BFaLlQrIuTG1CEcUaou7V26m9x7GHZZ7D13l6WVFW+uq+gTk26OBpnaB2Y5XuFkVOSADsfOZe43UWXglHxKiZ6sDGGHn9M/McHXs6sYHhoLDJcN+4O67C0NhGGybTadm66vCyw4VjV1n399Fw5dDiEfwwRfRDn4Jq4Kgx+IryyTy+sEjBgKGA92NWa17zsNuYpeR4SoKrRZ9hWdT1hjqotp12Q/sXAVmrbD40nRAx/iPOWGI+W6G6qpVTsqtovCQW3V2tOZTditmLBkwNdvCYQIo9SC5sj9XBqliAD02yRaejNBqwmw/OfZvlJoyBFw2gVE16SeE+3i/6EtNM6LYZoc6pE1UPKrxvb0sFOJw4AeZNRpHO9w4nfI8txHSREJpQuxVdajelZITos9urIscW6notK0StLtyAHyk0DpvzKV37JbLFfA3OMfJkkupQjqwTXOJnNGO0MV7fkFYSrj3JT5YCsWK95bB5sabnjALlfi7uMbG+Q9PpED34/ci24J81RVyAmruNqwzFS1Qc7lpTPKGTGX12qgTg7Uu4AlI4siPIfyiDLuMAHgM8hNmBgUEX+nm2AxajlRsYvlY4nl3sEXvsmIwHxke/NFdJkAslq1p14qsCjGXK8g+aPqcCsHUL1MvLj3LeYOTIECKUBOvlUquy24R4jHCqkP4dQeqSiN/GTHi9/HEhBGhWD03myVEYbPzHwoJpBKXDoMFHZxoKdrDq1vItzCAjhcE1MmJPoAjwvC8QQFxlK9zRACfhrS5nicmONGXsZeC+0WH0+ofEQRU7EgqXAy0WjaiXCBCdvM6ZcsgBJVfO97cKu2BrxxFOo32FyGdqRv79GFYSKRi5cw/gsh4Eesz5l30tEzB4FRowQ791+9onZPy1Ue07Y+WU4OLCmGk5hXvUAuUfkKIcP4KePL1qmfv9L4E2+wqwnM18bAX+ACEYqNhonfum3LPumtE8se9+Ftmczv9y7I1xzPoYWffK061SOdr8NCSZydWOsInTb68x1QGgjDvyHYuAs4ZuaenE7cweY+z0aOVr/OxyFRP5YS5pYaKD2JPLIrhCwY5GtP9llJ4Ta3KT11uQchvVjdDfKmDIY0eRELnEIMaVm1dEg/zHTEg1WX6tV+6Qpmhy0BPP+B5ydjiXMHbI4WTKM+4AdO/ar7dkzoZKezU7u31vySOftMOuklgaPWkiyS9eCgnGalE2rUjDbhTW4eD0hA5NUYxCO9dZz263SRKKqmFh1qhpN4wjLFhzNxllPlbiaYCXYFouwUv0/mlNQjc7Wpf5hivMym/j9ak8t4VQGWf1WQkqr5SqqVW+NCKETfKgIGMG/S6jBmYUwelMMPpIyBTWMQn+KhV6QSJ3Pgdsr67/ODB2D9rqCg9usLMaKLSlEiCKb8cxxBuB6vDZ813MsB2ldrFwwlCMkJ4f01AHiEjqKZ8oC/WbzXH+L/ZmyhoU6S+QGno7tAAf4HnTnnxrt/Qn5zpd69qSMGVmwcuHnOEu768pcz1pIcVLoiwxmsSbK73ZIBsbrCeakWRlGt/swH18gIRzNQkqU+z+nOm8SBkZsP8Um4/s+3eJMQtgTM63nY7pFh98kmxGEOmQvyPokShlBq/sch9278MGsFhaZR21NvtnJuMFclZRWdFVpkc3ZB1Kv2V5PFOaK83hAgfd4lWlH43Jf8dKgF76e6jUhiLMeL4QUYrDjQ/TjP
Variant 2
DifficultyLevel
725
Question
102=152+x1
Find the value of x?
Worked Solution
|
|
x1 |
= 102−152 |
|
= 15030 − 15020 |
|
= 15010 |
|
= 151 |
∴ x |
= 15 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $\dfrac{2}{10} = \dfrac{2}{15} + \dfrac{1}{\large x}$
Find the value of $\large x$? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{1}{\large x}$ | \= $\dfrac{2}{10} - \dfrac{2}{15}$ |
| | \= $\dfrac{30}{150}\ -\ \dfrac{20}{150}$ |
| | \= $\dfrac{10}{150}$ |
| | \= $\dfrac{1}{15}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 15 | |
U2FsdGVkX19Gl3ugOLSF6tihWXcPb1a2cBnbIhTEg9LDmM6V6UcCae0Rw81w1Gp7fcC7hQbCZ745nKsPv+TZkWvFjYlken2PVbf4dnWqPLklSXCAwJci/egkCBORbNG7K7iVDPNqptS7+58eVLKETET2d90uQns5lt9VCbQajFAgr8Pbmnqewdxq5Ve0s/CkyJIJKoK+74NwswJ5O4h/fXUieqIaIYUBLvLZP09Ylh8bKYWolS5JUniIgtu/sTLbZsusUrxgozWZx9+/ONaPOdkKZHvL/BQnPtIIQ9X40BLB1u7GzQXo3Q/FqVQ2PQrazeOTWUiuFWGeS4iQ0V00epcnGgL0lv1Y4HqwLm25C8RwcwXHPffmWz+2tpidkBOgmxXlVHaHrqEzo3EHXrdzTwV90ECR4EMjpfsGL4sCoqhw9AdwGkissybNzmoPw/Jcss3fJoXz6Yb0cHlEZHrZ9B6SK5wjbZK/1h99/e3akbg0V3xSXopoArqKSDuf1GpsT8Rqwt9daiMeahAwhpZnsdBM6Z1UTBtMkoeIzVuZaDDGem5KA7y7jpp+YzutZP1vodqeKRVZZIga7T5bOq+IBF0me2uAt/ANJEkhIFwt370EZrl8QULdggPO415jWvclv1bC64i6WWTWQIJ7rVC6IcA7DbbL1x1d0TfBugfVLN0sCQeUmsmYOIzVGscT0mKlTVcNXKsC2BHX0cG6YLuvyYEvoq7FGzAvQ9TWHxc+qz5aEHSvuRnRPBJuxLr25jWE4o83j4k1lYwRWaMa2t93HqoTQvA0mRNOOJQ9hBWie5gQ7vIKrbpLe/Q2rT7poP/CGS1pF/2Chzln24rbpQPlG3rf/Ipi6+Z+PoRRyYpA/mmrhnr/4X74OkHdGg5OVdI+w0bQHk8uyvXTvxjKTppLL2b0hSl7ZBm5PLUBThny5SRnCmBeBg4TH/6dYiyTxPagzRkmjpGs6R2D0/RqeSWMt0dTbfVgh9CdvI1M91oi+/ndCiFqy1YWItKumPzbKmRj2tv/y1gtRVEZLSrTOQHdZFXbeXg/fOaXyt++V55uSSqc9JxxjBsDToG/YTMxkSa5XliE8Sg0leo4b/O2r2r04IS5y02bQbYwx2Ssc2p2L2WUfLzoIZrgDN7w762JWjjlqyVgKqjtcrYpX5se9FgJ5mA2No4LfFbGaotUAqhxlWFSCc31+UQRbGsquyP6O/AiiiPisrFb5bu9kukf7LTciPQfrkWSfoR9Q+ER3v4GPHSK52CL3Y36Ns/8f73KTTo14cELyCbPgzrIWTzmBzA1/Ud9RuWRkqeoHtNXoKVl4MF6rZrJ8Xvtekqzon7VLepjwcRfFB17eth7YncdJN1r0f8tAzitujxU7FiWeZOXC2NrImr7LOKnQG6OpkCMmQiyDGTUU9FADo05wwWbnzoOg1wsxVuypWXmXcKrVC0sUnIahtjNuO+UoCx53U2z0o54RwPzvdZ29rx/0DjofOp9SUMuBKqPuYStagAo18HKxZHFdnGHwjhipn1MmbqPRex9RJDIAXzn9lLjsnDDkqIm5wtwnm3mX28Jwc6C1RfclU18XeizxNON2idLJ4U4Ndh676zXeDhZ8dSqbuYDwpqiShLL/N8KLEu19kePtsgL1zrVDU0ILeLuI9Y/17lUMi/H4+CZbODIHG+U+Fjqs0YODEFsfOTNylmd0HPW6Q2/TaQ/AfUxk5Hdr+qmN1eQe2YPcbZ2a9PZthFQry7tK2hf0ZHs4eW1zRi3QcxFpS3KfvDAdBCAkHqUKNL9LkU/F7Nri5peODjwNDcUj1OYTQ5UR0z1vEArjSVFE1dOGiJ/pJYqjjf0rVTyBQ+SeXZhwpntfpU6/lQqAEnT12KmouyS8y6JhxgmFZRxT8CkH2A7aMiDZQMDK7/R8bDCuUMwM2S2NGoKfD0w1y+PodK2UBChDVgihYjrLuu5ata3l0r1nzwrEP60eLb2uYeaMwB+DKpHvfbAyzZnp2rc2VK9rOyc1F3ek6yAocSUjLZ1Pfh/aywJQ61KkvMBTP9cvcawmBCnMcc12iQ5Dr/0wjxZHOnlyzPpZBjZJh0qV+f8g+zDdi6btJ/Gy0LsWxEQFXCwf9a18dIloOMwTCacwUre6t6kfXeIDraljB9DwAALE8f47Yg25riyFptMrTXKn9zRNU9dwteNhcW7Lqlm+VE604jH7944J2VXyndY0qrrDDrrB+vPvFdd6jG0WN2pfjfoICuhFeImK9yGC9FTmJrmAmm29LoYYp+JaIMK1x0/8yC3lTDHvhJMv8v69DHuknWNNzoML6NbrjegCLwHZyIO8suxx4ZliWSbaB/ASoBg7zFS1VCIncfYoV3SFGjLcXV1Qhn9jKMq0QKWr0sbM9eAHyLXClDtl5tZnXE9GvC6BIbjD9kk0bDAvuCfL50d+IXcC9u0f3wP2dtAYnQr9iAcAOPzD2u5O9H6SbJ2Q7zlI6sAK/unnXcboy/ln5/B8tGeVLhFipxQwevD3mib0bUN38VXJQTEiue7Jh2Kdk4uv9ZhgyH7hHk/fBd72arFWA4ec9K1sM0SesKh3WwyLVuX8vLJSBbTSdoWCZ/UOssHBIz0eWUmHV2i2UN3H7/xaVjbeDmSE+eKKMMYumzf5m74n9bPaQRcLSEkh52hlWznm8Fy4M0VfkSj3s7t71YLXj51lKeneTtj4WIp+ECNFB9v2dERkoZBgaCxNpuQx/MVM1pubn72NM5WFDIWt233c1iRSirMMzFHfyFM2M2w9A/s589Ez6dkAlEIUGwtTWVDlc3xGNk6yj3CO+zMv5GPcIuEYkqdWmP8CSeOByoTM5nvLnkLHcnKfsz6LMWoZPxU9pvNOIwpV1xdmEW6n4ICbSt8Sio3UFX6DxijgkMml87X0c1mH8zpJFSe00cCzlLP49HXZiqLSrGyue14mjScY3RjeqiXZuL/jMLwpvqWc6F+ub+52ImAqDxJM9tiqO/C8jboNq4QRQV2aSptod1ucQBvn6C0F+K/4pdfejVU2FYlJ5Qhzycz+Zx0DMsfJAEK4vVLxyK8eODtKud1Obxmw6mLROoh2OrhiVqaOpkPTOD6lxd6wPtC70TAiV+I9zxAOtJyr1YlxQV97YFrEl79HTZkovEhBw2uj6041skhBb4pRsJjEPaRjm0nqgSLM9TEGPG65AAUTJvdmbIm/XVIXXSG1ur4vhp1O+u2amyLO0/Dz2iQ/cnnWYAJX1yqdzA1apIGWVy2cpIgSZApmaR772PLOC9Nc2r6CSxWP5iN+TdNHUcJUNcKsuwhi0HVTYpMRuvjhuYjbjFdK5EIOMxzw86kpJGEn5wE1x8X8J6qnLoq1qVqIm+q/r6rUfoI2PEXmgM7gfbyx97V5EEzJjCP+ASiVJo7320l00/Eauf2iIWNjMUeah1Io3Wr8iaelRNCvLa05Wt843loTDp7DxaPb82rRjGzbaIpZ2slKEFYlxF7GY0p/0fHpkdsvMCjMFWVAsmX0UPjyxeIzlVaBJpOk138TNoyxNMHNnWOxCWEpieixdJQu2MYV6PleMsUZpLSVnD8leZ1c1SYzdht4crAZcf7mQFdfvB2eI644k8Lpyhws97tvjTL9Vfht57K4tMwbWaz5N6fXmsK723WhpdgJXcyhanKYVkPg8hs4Ahyb/rsQ5Cy5FGqzJekWE3JZvyBrLVW5NFVF3H5Bac5dlmBsV4pyFipBegp0VG+zzDu1KAN3Ycs21aPhakbv2eLgq18CL8DWMjAZdDk50thEMY/WO4Gapw4sBrEKqvUOn6Tf6PkOPbslgkBQp6+X4QiynEowcFzxoPlk444aQxM+7hVHb6RAV7PRELAFaB4Kihb19D+Cs3PH5j7OtOuUawKvkJpKE6y8G+DUglytdvWis/mYbhJ4jkvPLebTEQAY5TVQvsyoi7VIFj9E1Dc/HlLAI5bHFEjJi55Aftf7kMU0GcTTyrQtegF00f0asmGB4kLW5SVqiqYq7K00TVgDQCVW/J2sXcEX5Qk2wPz6u2KPaDohaZkB0ramViKSQFwouTNa5wCEZDJZ51toUvMU7u1JOXqOQYoY3pVWrfd4wKbdDQOIzOPvKhzDiTaSm0VynnI1ohQDZ9L7bexJq45zjwQXe3TIshgXiXGf1HwTJ4NH1T28UCX0VLs9yR3NOUPkQwBvkAaO8YWw1TjsOKNSx3Y9GLn+lZbOQhltHHJpQ44SzC37uZy6SGXlpJk2bG3tuEE5d8r9kgzYhAcXpEadJ4PkDmMFyzr+M497yAhOO9Lf/+nPvs/j3Pt5TwzozBxK7l0lT8XtIIRIdBf0teg6eByphl18OFMua6MGJDt4sSLEh8mtLOgv0pUEGe+a7B4rDan1z09yHi5laHs3qi3K8tZhIwlyPkE9AlD9DuCiDgxBy7GkbjhcGrGA5JxqfAoka6H/GAT/nUuqYRLvRAvK4mvyin6SOWxII3yFgGLj+9asXxfqS8D1wP0oqyZcd8VtsxYUnNng+FvN/24PHFJc56X/m3T+Fp6swo4+uSZamuccmHadoQJi6oyhGeyKbzoCBR/a7yK+AogmxOz9rFI3emWLzt+73uFcR7T+8RP0ep/LTQ30tOto8OhUCDH9VmzT7HHnntG8d0FvnFfJVaBoUfRzfSBcDr6muoYNKr9rSfgRnXU7k6plPUQCk1ewX9/Ys1EB10oaUXsgCZVrUVNyD1NDQLaENv10lkLLcTHGzW+WqPzzvnJAvjzi6oySTKmVDVEbSRS8BnIbQuYhEdZUt6J9saVLt2w2Iaql61fu9gH7/NSn/lzVYbVGQmrr8pY/1EGYbxSQoFpWNb3SJED69h/vbIZHwqPgp5Yjzo1RHndV4TIFOaXpJwK0XQJZlJgM5wLfjnT8B9v7c6vi7xEZ5XXev4tXGqNQNL+mGdJr3Ty9ePxPuREuinepJuQxTbqktxwgDLI3rVTZnAl4CEhHowc+C8UkhgvEsDdAzSEpI1//+H205ybqfFQyMN8tFreLexnz3HqTqEcr7NFycw7+QSiSC3Yk03IGnQeMqZ5PPEsVYX26dp+/fkISzV+TuxO5YhtyAhT66jg2JFl5EbaRrR5a40+8E5CSPZZp0FMs2i1S+OaRsEEw5iBdg7Kdr1cNp9gwNlF5O1lXUc2DvLvb+tHJE+bgXaPFUdAvkGDUvL1HSc8OuTdFKz2R7RN3NTHZ1mjw+HMXUyDt5Sv5bdKBZee7Gjh4ZL2HfA/rVIX2A5ByGTIew9CyMVrpiOqentkmHhbo32lCHlXYcttj0zTZ4JkEylJnHzlhSqDxPHFZ0Rdc2Np4vKRyhiuECggR8YmcCeTQxTSSAn4+ujD8ANP+NxtkxwvSYYWYoYG+nCV7I8KBWd+1gVvRK1WvrFc9ZYrsqML7FBI5qzCoIXeUcLMn09uo32qkQwSq7jYoud1kmG14XD8g7MCQxmDGFN/ha8XwrTuxgA8SnBmL7b8KyPqbGUeUL2MZsK9JVX0HTt/oq+HOLgG+/y/rSckqxGxNtBzEjpqj8BgurEA6HsHighIR58K9FMZfbxo2SXpSmqTfhmfF2mQ8XsRF19Hwm0tv018k1w8VY7RIr/eqB3zuQ3Sr3W9xLEX0rb8UsuwtAxEx1yd4SVj1WnVGek7qXZT+/JpcyLyAvWAsJZ4R7dmQYoIHETK+2ouXkqo/F4NRVLfXCpH5/pThbpt26dZWYD+G+r6OrxKjbj0arusY37+HzapUH5crS0pRusTxnWeZ920TQkn3dCiPY6ZRmCB8mUF0HvJRPbiJBVn4BrdeUuqxS3ukzMR7+y4yt1ckyaiqJDviaHmOf6XdDBfOf0a7mcyHn99dHasaqfI8nvNOiXBDJUBA2Cxaqb2V/VI359SzJUTRhEYBDyXbzdPWoPrrs9Yn4c3Fo3IlLA+vt+hqQ9dTz1u7skzQlZ/TYX0YdvJB+R3Z+PPBxZUDzddERZO1F9SdgCUxNquVFZkI9m7gfFHGrY9yOYKtdzEdF5bdHCxmvXHC1tWh2VP+1R0RHsX81qCG5xDtPz3082Nh8xbcUGELGXyjOvIWFXn5mF/KX0J9Vgm2WhN2gATKBJNSywcl5IF85n4uyqkO3HZKwp53srxaOTLIYxKZZmclV7FWbpHfK+MEql0aHDuVWFMNpRfKxjCitRuca+dycd96BIj7gSyVQc67mb1V/dZQWyFSw8kdNzV0jlYUYAi7ILM4U6XAT/Y5dpeETKYrgbiy1T/RaZUJmwJyGja/7MDht5maUcxCgHcol42NF31E85JbF4bv6o58yCBDDqHy63xY6SKDrqXKbMJ0QOAXxaA973jk/bQppuWaMxiYz5/Toc/5vWJ8jA/KrrTZL4VAFJMzkUq3T5vnxMeRr9oZE2JxZ1SLiGZrGo/r4Ik3x7b+csPReXyYEoqpkqeEDqJFLCdNk+PrZVqLHACMhmOsTbqz4yplRauxKM/0k9sacffw+woBfzq1rH3CpOfCa1LZB0p+ikNj/UFR2ekIUn70kgKZ1wG0NzFPnfv8gSH1dUnq1OBYbgR7ZdENqd7GTMAwXreJ/vVfFFXVEAE0Eox74AV7mlUY3un9iTstVrTgG6IalULnJqdVMXgvvFNounFzs903+Qkn/Xyxsc58OVKrNUi/IbNvk55WY6XR3F43NXj/DYMnrGxlZRJttfR1AfSsJJUll3hmFC14IlamN2bTz/OPpoKsyzIoA0yeVLpcixTlr7AHr0lshvEZKXrsd4PgIHCGCLQFnguJp09PGqEcVUD4lRyVNq3DZgI/Hsk0zpJ07/5p2HhVDE1QpuyecZ4cZasHfA/lcxSBGrujdFc8hMzQkcgr4Rwuj6ojwqQGhLs8188hfws17mfIS0/fhFkgbaogOqK7A+SD/noFttdhwlsf5g0/JYwhUUUufhxCl9O6Q/Aa3OGEPR5SWStCB8N6oT/j0kGQjVW2Cqd+JbwWyjSKt4/OC3FYp1zvqC1TeP9TuP2VKdBwrgU37uC2XeZRVw6ccS7vgcqsCErEZVaZd5X+SCbhH+R5b7R4iybVo/4vJLuhtyQUOLpNuSe0C1HyMoaZx+cU3+jqzJU1hhptJ0dXiTHN5ZXIhnSkOfzyuTuBhx2SqJoEDczjLuiPLWoK39FVn69iN+rZDC/63szovPtsGbFyk0wxYpkrOUfeinScJB9VK96sIFQ+lIGxoVL+LDFPXPlIYQGjL/nHPqVHX/TAqR6JvXFWHTit0L3gFfO4YfMsSP0O4LYTV1EalB/Q0bRvM8nKrPfjKSMiLElwvLMVPa2F0nUbDaH3cqZ6SexlI/DxWKeIKXCCTyDWh0S3VoHJEtwXBzclqBjHJ+sDHPYjs8Bl27qHLEHPELEwewHlE1w75Ol6SoIRYBS4tiwMeS1LmRB/cLfQGNpmw7GHU/AZlLMa45f4nB+3hy32A+yDbXdH7vSwiCtt/IyBwNZes+uzsH++MxHgV6pBMdAcMeFcUhVHvWPs68pcJz9yjzxRSPPgwEoyW3TAU/CaWA5mD2EN4sBr5rdzFPYEsmQ/InnC7adEgUL/RkXT7nyThIIsPNeX+SAAI0/TuJAwvEMcGYJgI2MHgEYfEoLWKjBDwPB2E8arLMcxGF4aAUJDpVBp+U+fOz4geVgW2mt7GzYAiVXcwnQMxOURqQocH7ZnRYcHwIiLnvCHFLbUJeAUko9PSJ9blGBEGxnLD1BILd9Cyq1GR6tr3VvOWZI6bcsMiACzPNrIYVjLgsuyRe/WcujQUDtyEFIpjZRqeKU5QCFiJH6eJvVLQKVkT5x+HghEBdUlZwd6v9kObTbGizrKbQqLA2+HVODzAWgqlYw0l8/I+TfnBtdz5LZorp8JCwdUpr7Uqt2pxYwX1evNBLaabitVvyijhSskyf0lv+z4gZf52zLrvnSexsYC03LsRB8LL8ii6oUF00Q6IA8zP3867MPSp9EDNI/b7xfQ/KD92e2Af6g316k8/qgA+3/AMQpG/egp9+8OMwy9nYoPKLYxpKhcPbBwmXOFhlrW3xp5KV/PM3oed/aO2pjoRwiPaKhTTM9WQctQ49tBc03qM5O614T6tDu9Gc0Ieux5jNUKTwwMgGFb0mWuhV0AVucwmKEcxcYHczVhY1I/w31e1P3GyPwtD9PoA/SkUo6UEm/KQfOUEtxbCL0Yxi7904p2xv9uT+YWOTi3HymenK3XnNO2MH7u0Xsaele4f5cHoptj9XwYuedaGaRC3UmlzU7KU0LpzAJLgLC1O1yzk9IA69Qxiyoj94Uyzj4A/DTE2kX7ThRM9W5TRljS+IyFmkjo7fXukXVW4cvTqlnU4jP8qj18WPGe9+KXbB8bHnRT++mpsPFF3U6m+EktVlbDUlZ8WQ7VTo18CUty5zaUtzM00K+cyD6F8t+tWZTiHiiSU1T14Vm4lIn6DvrEcHS3Ydy+raDSFMHMw/Kcui7fso9uDlpIZWB7umS7vDHn5y4DFBtMhzburZsY4lptEbBUZPwaGKAu9B3ChnavDk+ZDv4zsRgAHMEex8rAOEiV69gApQtlU86osMTsCKwIg4MQvq87vT3YalTa77lakd43GcNOy60Zz68rQLghUSB+lX/0XFAwep+aXg24qbBmmmZJetUg6EFrGVMHNEx9/X91pm/B/9H9xrWVVeWM8YQI6afPmDA2+v0fWTAX39Q2wuU9A84j3IjkleB9UsF3hte7woWYpsuenH+UfBmKNvdvhT/F51NUhoCDYfcZ0jzT3jp0rEQuYm6VS65wXeeWEIeKhQP8biUPR5pwgzGhV2UVyQfNJl30cxErAlyTH6fdip36ESRvp0cEVdATFOFf9qqt1ywpU04S2IQjyc3G2BBLZPi2lWuBZVqvkRNROLRmvzNLk7vmxNdOmOlghN69RCv1aspYBA2qwFgtWTvQUp2yn93FHJErD6kSKLaNjFfQMJTpoMDWOY3BgacMJTOfz0PzmgDF+0PCpQk2aITBEhcTmif8qELpAQ/keaomwmIf6Gvex/vx34TLoSHMJ51cuwqfOIvxz8zjkKk21wykg5osWaxHhjSSjng0JGU14hup7TRMFBDhh25jIR5FXbKRC2HApL8TnJNtEFutZiGugIdb8MHV2XoEG6fNltZApcNgTBOtxCqdZxPfnWLbNix2HY90DtrsNvnykU42i+2OD7MGIQ61dKoFNNMtzQiiiZae6qjchKmlHOfUfltasE67ZR2QDjWiiNOhXdHJjRuc8zQ4O71UzclmWUJLjTKYAjOFxiftgT/OhDOe5BJjCL5BAREOaqq+TJQbcy5MSMqiBWFmo1NyqqWGFAGLTG2sbvOs57aGNvyMQhaIu9I3p/dZ8LKwlTPrFlOqUTF69lz9iA8KqQJNCMnN+d0kRvb/P2g9EXp5lkpoRae0VzU9SteoZDup+iRlIFx3dsVsi1mDOias/FAIump9cBfRjzsu6ZALDUlCCo2W8szV5McDqUTk6J4Ws2eaO509FoxMUwlwD6L64yn8R+DFcNRTbPV6MMua7/TbPPhrbker4tv2w81otdedfD6nanS9e1AZbdzKS54Pa1jvciEtsVBgwsTVtZ+g3h6qf0TPm/4ErV6L0knRazc3rjjvmHbPsm9B20LVcSh4AzZbdKNLTvZiVF4npY/WIouLGkRV/dtxgTneCXHIaaQ7qdjlZ3UahL31Me9GtsVQ5lHveSRI5IRSKDNZ3851keLe13Hbt6BwNNzIXxd7WZ9CTm+Bm8qVa1w6dQCnyfieJDAOGWzUKnbGyKxr/joKk38HmSqbX5aWoLSU/Eep3B5aJWSEJkMOzxYJQiWVU+EyXzi+6gFCiQQmZJQN8+nr2GSgv5cQwLdKJyaTDy1v8vVYpgophH5xdtt8kHngBEV06TRUKxZu7FqLuqWcYwb8Bvek9jrQ6AtQjWdPFlL+OybJKIIrR5BSYUNTU0uhmRw3gI/7q2jVWrGjA/LLSNE/es9VLmfgOeJKID6taYyhU8C1UvwS0KqP3ku9XyIrXUgzM/gp20j3+3fG2LteEQdeX4LV8YbdiEakuWG+FuXhzcpG3gqb5FwCvmyWRLRDQbr3ynS6FP2hND4oUVASbn0aXIKEplY6vRh4DUxxrMaFfpUF9bX3HWZ3co5s6vOeqakgy5eeBhIMQCtkMOSrGKivZR7IivKVY0dPmhnYFzutn5Fvtxhoi66BoAqp3v1Cfpsbq0PbN/z2Rd1T+zasixVbWtZH5xQoc2sEe0cZ2C/vI+KuqjmxWKqXPV2ypIkwG17Dy9rNK1a7j5pUA80t61tLTAwcSC/ZfoP2p4RUkAtgELhu3k+efliQy5fHJyqAvTJZ2fKczIW6qVbA4D/BJqtjdgCXiTstzqkNJuBNR0fuNOEyjEair9dvKM9KXj5X9BGcacZ4IqATAkQrJ9/aQHRoleLsrAXe2CZeZcqC0nP3txsO7yczwCJutzLVYVLadWeSBeBITRTTrq9m0aFl1SlJaRGQOhlqnqLu1D9dFdKF38tfqPOq4vyMrb929GuXJdlqM4q6TBFvz0f/FauKRb5MII49Ql7d4kNfFWIFJq0dIgf+fHRxjH0zN4d9WpUh613/3n28nm+7RqhQ/V38Mvy3/IaMZCPojKkyQUfevY7X63Vr55y4S4NCB/XrpWOzcT14EasClkBs7fM/2WD8Sp4YtqCyht22xITFpr5iPiLeBJcLvEXMDSHfJFcQNhVfpXqhsQy6J1pijCEvEtdCxjhoixSPPhjwcy9oDdJcWC07OcjQoSSNSoYSmygUB4PKFqtPhKt+9FrNYU9yU5Yb7ze7M/x9z9lXP+HCHaimRU3Q9m1YidvNRBeAy7F5kwyJCyf2ylLo1uwesSiC6YRz3wTOHaUVLB17Pllo8iWzpfl59geWaj5Pyd2WtqDwxVVPQK0zL2BNipqH4XQpjtvX+uf0TM7LVYKDT6qK8OLIO73c+k+YgyQBACXtCnWcITuYJRa8bi17t2FN2nIZgnTwcjj4mL6PEKm4ErFln6BuyqANGG9ed6uFlWpHJE1ftfK1akxqiX7vtA+RwLKPW4giTyd8R3nAnnai7kDJyWgchR2BY6A2oX45dG1oQK1XNZh1nqIwmSWXnCyA2LZi7N26jKElFLWrYMAx++kMsLJoF44sG3AknbsdaDrBZHXXXhBcsg67F+2pbCfGgHSIdDzngVVT1rC9qKoKeQd3bQTD3TYP5Zmu/0AwkEYU8dlh7qmWsw5TzI9/QxcEIRrG4yvQ5zxfvITbE2rRXAvsXe/jTjkFZtiiW0c32wEwlYVpvPjMOoldPIjxxkw5HlbGoPk+dMQzHZazUwMyVJ/0I39kYCUJwNRjRIK6vzJy6q4QeSFz6x/MbOeLrFNAgNLb0iTg8koys3s1F0jsQlckecVZAjzSK5ihiVPJYo7kBsZUCVer8gXMGYZzppqZGbwJ8noO2R8Wehr8qB18ctMF0Xj79YVXVO0hBBAf2t9hw3KR74kGrvBvvsu1hV0GsVkUMD71lEbDJfUoSqr9pfI8GW6CHhRxv2ZHYmSBBDwj4hmiDZ7eM1eZJ6y0J0OwkGmwbPppFxFGbf3YugJs9PRXO92PsTh2Hw4KwOxX8/CzwxiR8VrxqU6aQc7G7VhKwOhTnm1CBCUWRppZz6x6S5KkunPE5GTY1B3/6AXSzM5B0GjL6utf94aSWL05KTyUzPybhGWYnbfVQDQO33h0r5CJ12E46Vg69X1KiDJE71RxSTHBFakqXvTVAvyBxBpD14VnvbGjzkmRoYP5iAqTfWeAZ4X9bQBB8fn++44961zwernb4hfsz99XYgZ/gdickFxabDR0MhUoo5PrEdUsiIQG+BQ6x4vMDmuD29b29Dduvt6MTvb6ze9Y2esbnUEmpqLnRXJzidoRqPgZ3DGpollQ9E2VpM/R9dj+0XOslAcBEHGeyDKOr6IdxWFzP+yTDBheKyMdXLQSWUkQgdjddoL13FkwiGmEs0bdoqTUN7tTkhGcV0+b/WYjwAZ5dAAJly2g5rFFv7A09fehsvXsXps8CspHQ+gNVTzEdz7GxLh4oBUINhGlq9shAmUATg1EqAAFNw8a1HcOnZwgbYHCmbIqbxDljAUM6kVhUmLIgRR+RhMxS80LWBMQvxJqxP5qJIL2tqbaK2KhJU+4jg3ku/fnNA/Wy9GEQkrwRz66h/ZGGbxHaCpOTMcgr/E4My+oCl+7HWeMWW8of6YyJMCg86RiqhfMugk82z8widc3LVx7wMTKZ8Z3cv44EpMsXcC9peCJ7DwVCtjTo5uT/p1ThGJj3ay9WCQ+qZY51YCJiYCy5V/84TDbLdGzCP85wOCEpxeYFDjkGTRrSLSOLBQGA1uR3zEHg7FrAs4u0X7+NM5lSi75cfZNQHXBakJWVTGTUfjzjQST+SIntK/bgQXIYXB1jW+WF0jiWGSjQXMaU/u8JbL/O8jEBiemUcYQ+T//9nAgs0UzHqm9oqlW+79kxIBtmfQIXDgHIKsAXOBKSI5a92rirHyzTCV1OJjlmKLzMloKDFqoWNrIboZVYD507qFVj4Zh3EPdX3ETmf9dq89t4Jp3728aZbgM3LwoVglVLyIgU6P9OFMZ/kJ+fCdP4usgtN9JOpNEK5fhRHS+CD/t+HvR9i54BA+K3wkefsr0pKAFVUrA0kYd2ALqPOmULSSH3WCiXbLWc/c2wzREr65gybI8CVcpN6xihGCsIO/hHbJpr3o0JbWLxOGa6cYqIlMWPb/0RYdLbbtHSl2iNpcdk7S+SxQKqWMsw6pMxduGeMUWMU3rg9gwuMniV0Xo2YUSagiGj1WDc9LIau4jw/Vexu+SnXSl82dmQHVEmBCgWGacsKZAITUM5qAdtBreO5OyqpH6O8NgLuOzjxbGSN1JnbNDl6YexW9BYDiTvZRi6egYxRSZ1E1gxqb3f0hfAbd7EwR/7lhKdleOIgc66Hoocub19vyJi5y2LklrhRNNHTPFoGxaecvG/cQhIaCAklD7JnhTNEzJUiOyygxo/iTyA/gPNlxBRBERpwabdi3c8Y6mzoyUWNFuORnRE1kpMSNvrKTg4BLGgECAD5Pr5dIFLf2P1mWQxDvQqKp1BBybDgKmrg6OtGLHaBYwRirndfEQ1HucdFMgmDlFiRUl+cP9rV+XJP3z6eF9xksdy1ee4wFnJf67fIwn5M8iN1TdsJlZTedOBAazhPUTpPexFVTywdZ010ePr6kRC2ww2Y+MH0/5tQClWin98HvJrzt5lvVvMH6R6+VR9W0vB+X8FGq7ikLnLpFhwlOSkx297ccZ2+vAxezvLp5QBXNjZSMXAaHv9jxytBnAC8RxKazeZkqOpuNtyt48Isk/bEfqfknAzEkuQmBxIO1Oa2OQhbfEtPUDv4JYz7NeMiJwnNYim3zcK54We2dfDTmwJhDFKQs+t+cFqM15t5/y7rLSAmpmNWwnCalyzuZ8KXf0ypALvhtFZ0zoSJKunr72yoFUZ14AmWDWtDLmA6U5UevvW6BpQhVQr9LVI7ocJRwx8nhfWtopOiqfwlyyltULH7G9niMqIwXCz2waQi0+RT2U7vmwxejSRM+d6NZcAFnkT0TSM5J/CpWBMRwr33And+BnmfZ7dOwhAvD0wZaMBvBdVjpbmR2lxj7KIn7BmsUyqo4xP5jQ4veMJfcNiuS/H/AKq8qVX2J8aKt7rKhwmSKaj6/mkD+NP0izmiLt01WuztDcjxcmkYJncoX48aUr0jPuPIhIImvAI39/HHl1aLwc/67ELt9lFXVjnQXsW7O1EJPceFb20IQ2LgYquU+Qf/zOtYP9MkDYriEo2tjuGc4fMHhux8E9AYXTWRsHIjc8vt04NPTY9aqoZtnHKneTZdRE6KGoLRghqPmbJbg6zbuS2E8ir3HNvkNanjkWjHbcQh1fTm3RJglMcVMGVUOjT+Xntjhu6ZryVLuCjldexhQjSwEoTLp4sYENS9TUbPtalhVq2O65oX2Mws/8cX6wO3+fHAC0sfPoSBjO0qz7Vrsxvv20uPqFc1lVCpf0Rco4hXNMB99DgUtCr4ZmJoXa3dhhuDba1t3mqwbJGKQGKcPOrU67E27XusWuQt49PAD/GU8J6f9OrdnHVPySmUI0T1tJ9nNtZBMgtDqQ3N+S0V0hg/wHR+zbj9pNbgfxFlw7qnU65a+yvnQ+lHy7gciC45lPiAHa5U/kYpZXRUA2BqhSea0yanPuehgzsY3r2AD4SGsL6aQtNDf23iJamJpkFIVtRR0zWoD7AbhdPmsA129qQ/oypHvhX5R4Q4Kt/XbOQ8d/B5fdwTI1k2mtkan8/+iwR2LQhbRGkyF3GEcDiLQ2Mixm5gilqpshJTUp8cZLLG043n4/nMoj6Jr+3TMUGFJGCy0w9exOZQN90OzSBSyRC2/9Qn1WqFrdbWx0K9/Z0n2UZDaG6QHtcWo4IAXUERDV8GywwN127fVzbQewJYUXcAHjZkTJnmDv2AZzUC0Ma3Mv/5UJq1tZMt3jZPW5Emne8Kwsj83rwbWeGjmGmzALR42pgVukufqs2AniV3+SHEssIaA1KG9uqKU/WVU5hIfXSE8oeCkJaJm6of9DgjygVUyZI/6yLrhPm39HnRZ+2jZ6/HIBTZG0Rgh/aI9tJGH7ls8IPUkj+W3zRjIrgdirHxRmu/E62l3GO7Kl9Pn6JtSqur3sxFs/2hlQMELINErldUn/hIi1YtumKb3+yXH3Wbm3z3WNWwE9LSshNgrbJyQhUDujcvU+VpROY5RhA7Y2wZtZ6cqU9YKDYKwMWHKrBhNo3gqrFLT/TcpayGBOyAubghcnb4eBZXzcfgsHG0ThgMTsTZTZiVI/ItJNieB8LbYN4sSe3Fxa1fNhe3kSEO3UOS33xtCvmy/OqvkJzIYCuk2n5w0+23tuymgXhUDGEeojjztiY+SmRi9a4E/9P+uCG8oJyy7cVhcnR5SOwzUkuk54ikAF0VUB2f1F2beOsHOMydgi8UWmz+xiDU6NN4eTwXBS82ML2Zl0sqYnBV/oM6tmj4mVK+ywYvaxkSbu69pEswmkPMcdWABu0EUBPXy80ErbwQI8R9Z9UN8kBpSItoR0vcsM5+nkegcoPVwR35msoPiXHQxoHdRNYqtx2b8vm1eIcT2EGSOFvyVKv878N2jJ4tb/2BLakiQDIxYQIZyAUWnHWZUluMQYkJ5PmHrQ/D79OVezEvOAE8CmzG539gexvrmepMnRMfrmTNLInySwnU8j6ZlXXpBmz42dBTl6K8kvN1Hb1Zxh9sicOJ8L29bL4qJH6AzLZzlDaql6YhzSj5MHliiMsz9bP0vkat693lZVBIbJsgcbaxzl35euPj7KNb44QEaKmlvD2eiBwYFOyQv7ZchOPjZWHwydM7zeNg3nMhgb1w/OT+W/kfqvEGP2pV+s1GRXg7Up6qqtsL0SqwVJJuWyMsISJRRhFeBDgwLFlqpoLNpBX8QeWF4+ZTekdiqvM0po+ZfH4GzBSPvjReFlGcvJJPeUvfA+qz+J3D66ZWFX+O2XpFcnsa5pxM4VHvw6n0EbaqZLpudbIvynfyslV+hiVDngK3l1fp3QluBSkKiO+02W5n0T8OO/1kAf2wu7aD5Zk/8eOA4cYGdb5nc64O9EP+T0sp8RwSiaYCtqz20VMv6c292us34YdQPUWTWe0+nWQsix6orsa01IIbLZvNEkMGwcng1uT+EXFfznbSeGGL7uElSq5Kkj4NKcNzjdAdczNAzrRpkCa50TirDCi0aRiZojUuDktxw1mhndDK0i/Jt7pY4twC/AeLqL8vdVdKF+7ymYCrg8fdKEccs+BBsh0VQZtW3tfwg6WANslolVboSOFX1QZj/kVl3L5Epmj1qp0DwyzpF7XOAP1f1OxcmHschWyJyJk41rI3XUIJFl/HLQPXUKGoRq9hLefUQup/06p6GDdXh3NvpyH147+Vd90nJm8AJ779v2EF/Tqxp6zxEdoZ42XaZ4EW/DWcPrtx0tI+i0f8fClmHYe8fPi/7cgVuoRxd+YsC3N3C1Wpv5G+7pBK0wyM4GrOLYuAb+A3zgmtdpY+ADKyLtv2vQ1raL8g9MKGqPWElPyeFt8by/VWcM4ArYQ/KPBMQwSeU6fV7w0EQXQ/6yIHLNiCc8GjljOfbLJhRrbMKPZR+/LedzTgTnn6FWdM3doVpl8mHOEES3NuoNP+riJdJu+2bAmgrJDxGaObHFaFhBhL7aIkyTw5WAmlvKQC/aiophLj5XiWZ0ZURfAtAXYwyZNi5zc/KVEUDH1dk8fNDjMq9EVSQ6+0x4REALISaenqI+ZcrN5VlQ0SrXauB6RNjmk2DWQDF0mcjiOayh4Mz7kekNUkKOQh2FXftHmFAJKwd4RRfo0x1kstcddDiQGIqgMLRxMIeYXxtjyLS1ruXfCucSLc8hirL58OXvreBdwWOx+9ZesPcC1Uq/YqOmpDwGNJ42DKCqMrIUkXtetr/4Bl6U5ypOP5LSq7Q4iY6Tgb+5iut5CullyHh3QbqapoEz8rec9Z29P3jVsmwqQ7WXGvz4LKQEgyz1xFJ2zA1niiVf2AF6URqpbeqh+tEFzhW1GIALRFp0aOCasafozudaaBm659GXtoW7hmHDq/U/4iyo3oZpiUN5dWIatOdoiaJlxwYAyud8N9BeMrtT6uPcZtk4oPpJIr3Cog/nx1Oat0Lt2YTqf6WGW0cciRFqqACnWhLrSV9DzzARq8OWO43gFK1wey5f5cLJCuIqf8Ot1SPUEHxLJavprelzYqgA6abu/N4NKFMd3j0Vf7PiDRYMzrrCA4kdHa4Cfes8RLfdLENCaD/DsoOCxD5v2nwP9DfbBVnJeHXpdT8qRK5wIVR5i49yPAVoLOODHLT48eeMQ6CDynR7r5DTxu/sbcoNSYGOOserTuDrCue9vXrDbsaxJoCFJ1DPYE/vRMx1oLblawpQ3Ad0BoZzVsqSzMG3Gxjgpei1gqW/+3gXWrK3mWZACBMM7Y1tvCixjWJBjtmiQ31+pI0bZ4VSmVe32NmK5uO+oSqkeFRNgUMG+J01cOUPy7ODez/o4QoxVRvyrFx8a2AOZtFIg6rRLM1zOZBO2+lb8VcaZZjuKCacaZzt85V0xuWVeTf3wpxd4+knEdHD8shIdr6HEStAIy8tiih8v8WL3+ArVnYzb7uO8wOtv1ysLDvsy3FglZ4CQofrCkyh9NQ5r9QpARzZeBvS0Mnd/NtQeKwhLM+0NJ+duzkGhvicRN+jjUk3gnwo8bUG4PbmpyA8OmW5jaghIf1rGVcNoHoyaR1cNEjKFHGhaup3zslrbJHt2ydTx0Uo/vGQStAagi4KgPbsCtY0CsE9AC7AvwiPJFlwXroPMBPvkcA57Pqyg5CwUI6TpgdfR5J9GcRlsoUZLnHSSjUAo8nJTCv3JeK7O/XsUMzqsOymHhVAc7G9I9qRYwNcgVJvtGxf5pKAiNO7UgKFGcSMlN69T08mETpU0GKm+ZxyEez0uRHUT7zRA2JcmbMYl3O0aA7Gl2gD0acJFthYq7iBtVjTY4R639/tqKD1ldoaFMf5uM5i0zguqeSmuTF263ETChutY1nreJ63Q//y8OfRdwwFtO/URTelzEtFGxeaYzKIQf7O+d/THgQkM2KKoQOAzVJ+ziAqsj9Nnjaq3g7GqGJSD7WdHwEpUMMfAd9pb7DrdqX64xV2AoahKnoeVv3u8pf4XR6CJhxUcvQ3dEgX7S3yBc6O++GCJiCQp+2MCXy0FCl4hZa6ZSsfeX83wQ3sVdk8mpXnOISBPy/FouwJyqyrBgAfGIwfSdY2wRnzq1ImOCBjiVfET+YfYaQkcHnG1X8vvyUl9l37wOQU8W/a754XKWkUDtSJwDc36x09G6IwVmjMwVWlP95oxGZWPJhnYk6W9QF7wKrLlg0SlB6QqHOmmLG7+Kv2adW2wa/LzrtxRUyU2rC4kGQPOhSI5YpCxjbJsTsAq1FCCrvPXxiDd40IiDf1T4UzNlPtaezIo3IHBjSN/sNtKhO8TASgIu8AB5uZ8XprKC2jGUVtDuUJ5sx5fGXIVA0afsMEOROdb8k0tyzSzdmhgs/OmYtkorMO/7lRqsSPLtQkbccnBpxbaK4jAjM06khYf04PX5JqQoLkEYUqbVOLN9hjInk5x/25p/Sj5862FaD84F50ghmW9iGfifK9BocsucfjERP7T1003rsx5PIXYvEOXYwCBrkr3rt3QeeHWSVDgNvSKiqS9Y5Sg/v5RSKEj2XdxWoi8lqbUXDtp6H6k/w9CR+ZrEWOjycUYLiZIhjzkuwFtQ4moiwWS2cXLhrpFZGzdlntFQdNxKhgxK9isVDdIC7+1Qpz8U/Hy5eejS4a8ooNC6Wp5BdAYGLcUt53ROfgX6mVOdQcavTIfz42giotusOePMHG9za/auSkOHctJVbwSL6m4+6RyWwzYuXYs6NNn4KnFgBotZV5pq1z/qboD8lODCBknGfGcMz+DhIM1K01MdDUQvDHRZ+9zkptquhJOPrjX5WVPhjbgzbM0dDfwHZg97e6rnSHCYqEXJV3+rG5CDe3byN+1drUVbspE/YhrMPeTekHw4VidZi8kAyL13R3uZAC5gpXGOBvDLGurPTUavqmUSyFDiASN4P1PTBATdSw1es0Xv9ZOGSRmHKl8zAKN1TqrNLXH6hbAWT6JlFbozO35ZuHZzjikV5CWb8b/oo9O+Lv9Xy8Ua2BGn1k9XaT7gwueeLo8k+ZCYbN7OK7eRudvM0+3FIzssgsfHc//P++IB6Yt3UJbO8HZVFbAzLeJaf7Xv9MD0T0TBeMm35kOcbMrUN2t25nvBERTvHRqsSk6UUGkCsSlrEoaT2LbtYA1+SxU21NML/30rS3qj+xEWkLsA6EL00KpOAy+Ojse0tHSIbWnS5NieG7yv7zGquaIJBbrcGqWNtWG3PbZUe7aHYuLfUBYsH0Sc/ybO8PeYag8djtoFNNpMCfb3VXZp8WXRhWMyIrcei7rkaDLpak51jzT7kB3QeZ4ab2WjwnwcbVqRi0rK1T8V33UAMBDNERxTfrL4IK3Yq39KQM0ijAXhSGnI1r8cr2Gkfbe4ESz0Ie7GMTbmGQSLHo8cNLNUImxujd9pCodd7rQbinRL9eXKyFT2DDGg1RR43YYUOIJQ4M5E07TVKXFZYI6BIOuut+GgEobOG2MPZjduvTTtK7VA3MLiSIo201RDdq3SfJ6xJ/3Df+LXb1SRnjIyjSGGQEmdlK3N98ZAfv8DGd0w5P7gCQJoP4HmcbXSAuu+QsGRB91KFRR0nxTeBRSIbAqmJ63m2OlUDfnJBVhnwUwl+nWgZpW/KMP73izvLHmF9e3IScgLThkR9i6T1KvRPWhx5W9V2H0FMFPW/THWnvxDFSxu92bLhOOyfxn8G+ov7l/iAbtG1TSIwT1eWZalNQE+gKE6h26voFj7m5rDETJt99KaeGTQ6Pb24tfP70/FCVRwqi7Ux6fxbKGdb4VHgA9KY3EP/0YlDgB8JZ4J27QEsOel4YeoCMs+itvgm7UkqnrDXurHsbDYmU/Sw5jJwtQqxMBYCNHNFnIqwouMbunFm2gXURnJK4nd285RK9zmYOD1ofgv4CdRevjAwTTf33wTqt39kcJh8sb5enCtvMYUkId8qslvyXkh85Dlh7NZUSnw/7z65SICWZWY7DngmztYIVI325vFmF4gVBa7aAfEjlm1/SQydGhqjqG1BzezqfbYcrnMgPdOkVAvI7sf6ykJeJFSDQKflUwXUDRkkKc9iSr5tuw2hhrQRksatzmV4TuSkJxVNOHMG9c9jEaTENBgzFNchn8C6XY/kDLjgHSAMNqvUoYRbuH6xocI/i3t4Axm77UyJzzcfp9EFRPjvMgCTIXkTNkbWvFLY1rk4YxLuulGeC3btSW/qbFnEoyPvFbA0cb9CltM34r2tHDPg/KCzVCzbldPsC6+TKb+k2Nc3sy1TpU05BcPH8jZD7bz7KCjsP5bIKA3nrr0q9LmFHVrOu6cPWoQQK5NpjqVAA07rDOQQU45JRr8pzQ0tucdwEHDlkydkjrGNydT6nDqvDZwSO2nTma8VapN+LcNB5/KUlOZ1mv7ZDLNgDYetevvS8kp60KEVdRGHKG52eFhnT6VJVaFrqKjMe1g57N9ZWg3hwk+qhhR7Kt6/Y7DSKSwtDWIXwhqiETvn7MgTMAM9F63HK98xtUGMHtm/sTvctielV+l+2VjIrGklX27nu+Ob5qiE38Soyj4f5yUcrh/f3IarZ9B9JXQFZgp4BNLP9HyzmmmzXnHuAtcFpe5jw96QglNlUQjHBEFIDHvoTqLMr3DusXPDhXr8WnEpSb31Whh9wbHCBXD05lzUurcmHO+3+H8smYCeoYkATEVQ1g7bRzNUnXx/uWLvxfs9dmsVqMW5kbqcrcd2vrMk9r1UYi0dRU16g3+U0G6WBNyj2Uiim9XTwXJPYA4ql90ORJVMHkemqhFHcS+Jo7Ew7N5jWjBlFU5Q8ZjWWtIW7GUAdxCM/nDiZxXnI8jL1LsSc6WXeT1SxnrOvI1AI6VOq5qjwcmlPSCJlBeN7pCdiFcMtm75W60PCeNHxiLeJKC17XjRutnIw2ARgLWMh3G7m6gHzsa9Q1FKH+oBwdIrBV25AHYFg3bA5iDLwEGwX3HiGqVUsaxyLOD8krIun8xEy5D5dEcqFIIOyXsTqnXpBsr+pNv9TsIQsV3Fqmq0JKYali9oaDtoKYtoqBMAsKzDanfN8ktcBCtTzJZ6MMCaImOBBMIDGPOtaLFMuMupQeamWAp8KM2wI1jJVlvCwww2iopGllhHFdO37/SwPrK+/2revLD9ezih9dZjx7IeSZU6P6HWstkOlTLP+zuUSP5Qy5bIO0ajZWcGD1qFj36T48A9wEyo0JXc2i+hBK600i7tmrHqdGML9ZBfgRs0VR4MKogEJ0/Dn3H2gtT7/6pWAJ7g7FpJxOSuwoTv1q35/F7y3jXNWOq4TO2Wwu/RS0r7kE+SpCAJP2KCJ8KQhvePqdvxMfxUukbL0igIr3lSBK3/dz++o24vE2rqW5/+SrOW7eMmQPi73VBHAHgMVZfKPBgFIvMv7obrm60FcJ4hvjE6B/7o1fGHnQZ7A1sZ/1dVLyvLR5Z6QRHvnrAR7FxOMaj33CGG+Lh0Mv19UB/aOaLDtzAz3258USjxXdKJL9HtBuUZMx2gV0uOCkcySguHknN0QeDfvWiUh+UllGNwgY9JuUXOrQLNyp/d4kngpbIPEcDvrj9O/P3l2U+Y6PJFLRVyqofhKDuQGxCfOTvaD73el1ejUwfeCXXANvIJMernrQHGl5W+0h5sjhzuzKDiGvsq7lHdVdgfZRea0ScfbUhF2QLwoPuiUzSUFEPCvLEdn0pan7CwOsXi+UB8tI38o2gjibiaFksB0het5/Nmxq64LAlZD8iVFCdAqjuIVXGGneQxNLQeXUaDCVaPxfuWymRZ4nTlcmu8FDpcqlkDJmvPCSyqPQP+IveynjlPbhTqGqVqAhxvwmVaubcimtxuTczi5t5ZldFYlcLdAC6asXsyXfGvjfQx/AWzqVPxHE6i7OcFz4fKFv99+cgXXXexFhzZQIvuDrg9pLDmCvsB3b0s1wmbdPE8EMC2RjMij8yMHSN21rJiMWyE0pIzO6cemyydyhNgFpUUcybUWrhpG2UgE/seCtWKCddoP8N20UamyQq5+fnobb+pUaJ493aalusu6X0zzLAT1hu7ZnVqrXUQ/1UZwaEgrb4EB9B37ySPP08hLLo4ftgJQQYJqGct5bTA2ruNobfj7VVbXmCsiwuZ6de1Ux0oVNQjWcXgxoREg/O5SantqjtqBPcROKP3k7vcsR3IlmyVU8x/5JduiOtKjLg2IyXOqErYKNhjPBx0QUbuXjFCwVsm4yrDGa7x2L1URcYbmO/GnCkmst5X3goob/RHsf0fnPfgFJrNfPVqm1FdrswoqwCrL+L7iw1rI/JKg+OJiUP4qvk/YFJfIPTbGCXNiNim73FAbENO++lTiTuvyPonzMY0B3ClrKs=
Variant 3
DifficultyLevel
729
Question
302=352+x1
Find the value of x?
Worked Solution
|
|
x1 |
= 302−352 |
|
= 105070 − 105060 |
|
= 105010 |
|
= 1051 |
∴ x |
= 105 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $\dfrac{2}{30} = \dfrac{2}{35} + \dfrac{1}{\large x}$
Find the value of $\large x$? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{1}{\large x}$ | \= $\dfrac{2}{30} - \dfrac{2}{35}$ |
| | \= $\dfrac{70}{1050}\ -\ \dfrac{60}{1050}$ |
| | \= $\dfrac{10}{1050}$ |
| | \= $\dfrac{1}{105}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 105 | |
U2FsdGVkX196N0AjT6LJBPGuUAbtiF4vgYCnqDmkJEtZk0sxtuP8J32fMUdYfRhz7yXjTAxWpdzP1NLtjZyyS3LNV0bLJxBUvGL+DOLH/+VEUh/kw1LskwOeX3rIcER2jxPlcNBMorEN8Zr0ytzuKD6tP9DRw0crp45eB4mqD7/fsT0gxqP07omD/fQr9w2TVH1dqvwuXfQWNfCFn3LRlGRpXYVSPH0TkY2faSb/Io6VYA+La/o7IFkW5/P/wBAfyjaKA8RImOGtNvWvrYteQgis+zaQM54ZouhaqA3V4fV6jGT9qR1mgcoPXMH6dLFGAfDDveRwcS6o8Pc7vB8RuQAOt8AoP/lgji369keQgKuiXaruGeug4G5XY6xM/r/OcDDCZSPTJh1VvWB6J93yjof1AwZvjdaSHQK/249ragDcIL22c4vIG6Gv2gzievoIZ1OEe8WCdJkg8YhoBSd4g3/NpPqkXaxdoXcB1mSE1A0vKyezw2yZC272JLzj8oKmcWkvoXcnPzWf+gmIUCTb5CxNYDu1jCtrVhX4yqfXtvtMmvlDGMqS62tkyea8ycKPOT6DUsVZ/BFviBYNigvTSe4/pMP7KKRbpsGCcqeN0oNW4CFmBf1eV8D+M1AekzeMnXJcyAjPKDUK5pdoY/txdZY9SZ237w9W6ihRdVdwuIqTg7dYt6zNxuyMIOfxvpZoo/y5avJcd806+6yey3ij59XDZPpacKoRUT+PeHBGfI+Y+K6t/7jCilRTb3YSsFKfz9npruvuenI7wmF9AtaTPruUDO4k1bAPLjPh2wmljj50Wb1jEI00LiPpnRcKAi/hBFp8ujjc1eHJGVE1lfPo+2WgV38PGFEW9lpJkynR3E1Rh9kWfPj+krdATdZ+QE8l/yFQt5xrjiG0nAEAzBR4ehI48J4rZCiiljcK8nS3pbT78l0zrsta+a2oBLh9wDY/hxt0LLTQcJsq+9qWbI6sXR/0N6/1HDpa2Ho0VDCsQAaLAXFf0vTYu1gjno4FYpy5PHqBeismuXWn5ExvGq2C8uqKazv6V/bmH+R21Z9e64AALfJ+2eUG9wV0KHMo+4ohIUJAeiLWtGmhMWAvOXmmYLdLHg7MTt7jFmLkAB+gAQxaureiDjGCEcbRS8nQ/dc8VyfiNenRuA/WR/g3ILBnNUVdJ306tneb+9h4+9KzvRAURWP6C7gA1WYjp0feUQ6D/RRVIgCziqdmlFsD8vFk40/C9Gb0hWmbph7344yLvWkIMFaEM1oE45Z3azdzuYwfJiG83/iqL94ZEG6ABAtgf5M7RbeyWsZoDISLDqMvWdqtQDSn+k5qeV4+0jg2oUGSYgQKNJnTpSQGUzDe2LQZbT6tTgwxFTPapVkmouUXBp4UAr3VI3RrJ4L6TTX176k+OkoYIgIthDGSz9HmdSWSHeaZ9ArXEtMY6m7fOufJK2BYXWAsbBc++cnO2WyySPf5cao9+N5K/ORv+i6rP9+VKtKyq1ahMVbcMieKFfn1/H4+/L3gVgeW7juNOptUXqLFlzntYqVojJfRD9rys5gRt55B1qJu4r/FgkkAXLxnoKiKzPKqRlvMBclllHfMKd90HrJLx8EOf+Bs24fu9Riyn1uElLAcKO9YiI9RGO8/HLQbCmypgZJH2XUNgoUgkepgjMzFk+P2GagbG11VicluD257z5Lf/S1g8FG6asoH9GcFw0K6z2xo+6HJvEzdthovrd1LCKueVOJf7NNc/M++kh+T57l8SnKbC+cLs9s9QLuTzbkZAKKOILDygtVkqRfg7tXITJP+oBBlfQ7jIwePGx4U9eqv1aCgqzvni9z9FjBezMLYXY1hTuBLVUApeSdOkBpxw1CnAYTR0PcahVPZnz4OVA7vufFHdYfbgNiDXepyQmjXFFnBbpGDVnRTCT6+IF6pwyfLt5Ga9G+MicFASzV07AJawsOXj1uLXWpB70LXaPUcoQvC5tE0wD4hyHmNR4crlhDSqB6Ye61NyHZhbwteBT/LcqMH3XitfQPay0nAUjpi0UWRpW4NjH1jMP7V5vBDebfXVAIEdxf7bTzZW6aOYol5Pdkdako0PhcamDe5ksZberEjwq/KjDVodRpDN4NsRW32PYoFveaPkx6wRoXGkdSBZKipnpILQdmm5ak29xFNYddAS240gnvRY3ytT5rFJKS5bqcEOKyLvLQ68Y1XiAvahHsMq4IASgENU1XMHH34m/4tTXSQMeaNsgPqUK5hZx3r47TDO9Z5wgIj2IcLZGEadES686jIOZ4EkaaOGu0Wy+XmZ762agWoNf6hwP9b9pP3uRgQaBRwmCWnbyfTqK6aa6HaTETF9chQ8iJ5E7XIsvBagM+2JnqpwJXAsTy3buuJMvipAL9mgL5PjTAarcfAQ5xUyxz6qxANB1brlu6h7NK4iQDmhMRcyBLF4yx0BLytM7TzYSuMhGBf7JMot96cU1RqqLvQ8Can1WI+/ki+Kl+QFrLrvDvLd1PqpwUjTNod0RPQy7EPajTvP5/u1ay6Kjo2EBP0XIB2x2Va2jzksScSDytUNqDesKQzkqWO5o//vGZTVZm/Yp3BNLfzfGdsv7V6DDzGG+ve2t8acKRq4wDLisTg1lbGIEORZ0H2u1A9KYl6SPxwhxYqTBa9pI+1Z+/lSVDy4MReJ3wI/pBnAL2navJGd6yJ7R6GqE8IJBeAp9BfXz418CJ2P/oerdw5eEUsxjHfqpYr1M1VZfB9UtMCOg7QLEzVLMiI5PulQpszh8GHkwTOwjS8MN8tDM63A2jgXcFi0E3rZsT66dziKxVbPNpKbsR1a3Nvfj+td5J/G5AGOfUwQmdogQvAIglLf5CIIrc6ExeXa4sDVpi7ZhlgZS27keIH/zkWZx6M6zPu74sUSICqZ2T8FSJpxfqvBH46lUSJg8RPvsHzqxKxyYYcsRlvCOhiTThbs6DSLsjxGGZFgrP5LbJuU+VQBL1IVahlh03L6L7iYsIlSOcpBmvLNY/xBO0sWRA5c3iW4Gr3h5s7Wv1y0N+qAL4ZK2CIZ5NjVZ7LK+9uAL0VkGY6Aql3NCnpk7dH8pnQEn4O22qiPLElih5UVb2GfD3PqsCOuLd/728TvPCGfYMsz8O4cT2HNxV+ayYukUAamIATSmJJ1iJwvAjX6dDayQgGbP6IGx+gDt5qOA8guKpTxmW7tyQARuTF7Bsg+l88Wl3TjgIB77ykdDLgP3MahyCQ9zmvd6d8ZhEtnF91Z0/iB9GUq2pTIbktc/xpt+YJPLIhx2URE/uyZF+cl/+K83GpGk58tf99UoJcdeJm/tCMOXJG+t6c5vsGgTQbzTDDYzYtJz0HYLOJQX5OKQUClOYXC45pIcWyrDu6QEg0PUAWMsv6Dixyzd0vpnfTvx5ZjYnMkqjCT2bulkMQArtu3vUeLvgpxxGLOLCxMZMQN6Yd4gACuzcBZmCu9hZ/hFfSRrtniQLfWSQad6c8e7noMLeJssqDd/pGFFw9SwXrfqASxbLpKJQFFOfH7/3SneSySz3yY2WahBZFO64wrHqf1kJN/+FZ6u64bekBpoGG2dKHb6F/1JeUDRfitYT8VE/ou5o9jIX4eLHYYMS5FqUiGEWfgYt6Z1ZBiIusCK3APbxaMp4i0118LhlkLfbNdLkarZ3lAIkSxj2YA/a7TLczkFbxicRulH5pst5xYTr7XAGeX8M/C+gw2SwUFNY5JOxnbG7Z2pTT7Zb6n75JNSFtAwrV6AkM9UZh6p6Jmbv9WEwieUwPdb/FQaikxPGckfsN9JQVIv8tuD4vvavU8ANztYI3oiCryhQVfQTpf8/Zrw8PeplwQBk2Ej7MfjrsnqBRChg10m42PpNgE6zJzi2HNCnwM/p70qR4FIHGVFzpLc4Oy+lGDEf8TdAd9wxFHx64/P08yFpIiYEABer75emFPIhIMVrAwciTvNBJC6ywqAprXgHWWRFsMNfy52vjM930weInSf2QFHFzRcy9lUk4UX4YzF9NebTbfxae3sMQKN1aHQLf+EmDTUUFBBwSueDpSk23KUtEsgAgPfNKAI2Xj+QOZNMb21FiT2CgeTmSV+5xdZDREYHMCMdjbl2qy0CO9Z8jzY6WGlxXuPn6NVipr8sGJdr/f/bRdPInFT9SFn418iSpK7na9xLc+wHnPzLlauAGhkRBX1EqbU5zuTUShNZisACbDvFc6R4P40VcK5a/t4Pw8gRnrnUBebm+PZZR2j2oQi+wQDPuEthKOtbrKPe/3zy+9JcHG+bTCOBdEfxnA0bvt/0b8g833Ec5pn3scWnWI+ekbTWkmzI9kXoy3MZvnMoENPPcraN2EWbbe5bA5gQ3CvQLS6cYxO7ygzm23W9sW6YTsT8CJ55mvLNHFIw9hm8vIq51vVtR7Gs54ZXyWrD8EkrTF5T0GQMhVGP88iR6HL3V1fTeppzPReYG5AfsxrsQinsfA0aNb5q3YB0jx9ZAYpFDTGv1cKd/OGTmYwqjafnzk1dLiI9tZCYwlYkJchwJYbeIW2vMDQEa4OgqLRhQlzEYK4Z9k8ZQ9Bf6RwvfIbt7ZdqKCkjsTmlF+AMyVXj1rli7LddKzmX1s+mSJ2Iel9IVD40x+7EB36ix5BXr8ZnkykL4TNvOHCvycCIXosLpIATDuRCntBPu886FQSuLcYPSF6/Ni4gShq9bY/94R1TVJmB6N+G8APRtO2DYIn0RRS8iFYWuIp8wlks0aWpsXwQT5+6otGl/kBx2mQfVRgWQwa7CZzCkqLWnUoP+5cGkdYHuz60Hf1VfZI2Dk+HUTHNoHoaFl94H4rfD12jQuqjCMRTQBfCzPbetbq+aWg3b9RseGU12WtV9tPSfNsr+vN35wuwtT+2PN5hSPznbjUG85N7c/NANWwo1kj1izWjWEdXsmJLLwkcRSAM3juHY2zdIS+wgZkixRVlJwq52F7eypT6STpkR7l2woKBX9V3Gzeaf1xe9PRniuh6THqaEo+8d+J/b+FRLCg5XK1ecR09Y/PdHgKAEXjI0rBqba3aVCZvmqF5xRGSUs+bHL7Not2vn1JMvieYtAiX17V9Zvky3bwePTnn1SltXEMU4s7IuR8ofZ3z36wDjR+CdXLz5soaGmNRi1Lotopx7BQ2zA47ITkBQ5hQDX85mGBj5E2ynh+KSmMh1KICEZBJdiMBM+mFTP/+SWA3zvTBSim7fbupUGEGqmpi83Z4r14uGaY/LaSWFiE7CR4CTurpBut0DUqSpKbs5/WmY6Ti2jLagtAAGU3uwl3EdWPLbaai/ZRSXVmuMFb6yIkcuV9Ng385Cp4/v3OkXzU/TtyJGwfx1H1zj1mp9SNx7fary9ey0NBu49mhHL8F9aEfa132HhgLLIQTeQ8RM7RDVlyE65MKnm1KxjyiYU9w+XQ1d/jKuZgkopxoSCFJVqe/W99XdRZMVeALml26T8TvfmqQZvWYkgHOjOMm3FtKBwrUKbAPKMjUIQsEWLVFG80575EVRqBIvsvElViGN+44dYOGdvn8BH/bFDI+xfNveHtKUDjFtPSb0E0k833CyTNI1ORWRj7JR1mbGxP6qVpJbTiKv3k9IPewvb1hlST39vHXuZICsxRR9cf6cCBylZYWsv3dv1L62efm0bxZ1or/CSdShQx/DBjLWmGDY1PRS1WwhPv0BMiC0flYA7+59ixIYEZ/cgrqZuA1wJltDfGFt6XkKGZfaMGn3I23CaMvDl6o2lO2mKDFDds7vGhvkE4pc4kDtlYZzJO8N/aPQtT1TPODH5Sg4Jmou+9wPG3d7Es1PhAmUGuWa5BFbV0mVYm7ZZHgH3uJPZ0oGqRprGwyj3Lzd6HFGhrSg97VTxj65IEcLGFc/+11f8tlsSfFIndIulm7jBVw9qMBx+pSy/ZVtPHQu4i1L7T+cPxmFBHiCLj9DWIK3goTOwDbIFCpDsMWD86BiVH/FtF/2n0pQe59et9uC1lACEEo+raS/8GPKAZb0apsdxiv6HfEXEDuKjHB5JGWvvl3yJU3n3Lit6fk702iFgNRlNLrQ/3zLj1tXAs9ypzMzxnudYDhbAomNeKfdz4AFr63GtN5LnmrvoLfCB+UJ6fQL3qOgvR1aqVrE0MdxzqfzcavM8ouyh95fbhZum/JE0TqcYlrphiZ0Bclxrx52039qrREA9faRLCf1vyV1vWKtojxz6+ocWMqTUoLjW8M7ZSHl8yYU/PzQz/cJFiNLwxVdEPX4051pps21iRUpuTdt+IIzdmakM8MzxBDJ3JPOZWEqy0N4ktHX3ZcTY2le589wE0dqlujNHTTiBC4whJumtA2SLUxeczp8K7R4D1ubV03KiEp8pXcZq0S4muLLjHRJeMv8GDP93XYp9gUGckPUa1O+IVraT+jdzXYUBB4sKq9S+2P251OtNEyvjAC6eF5UlHXYbC0xB3UlbeLmzfrhTDZ9QS+m4CcFk6pcTFp392I2p/kFAsO/hN2DJUbZEv7b2ev/8czmiEUuN9658klULWAJyTVdad4PYQitUQWgNW3fkZdVAElRceCUqZaPKznzFUbi3/AEBMNTCMw5J0WOkcOArtp61eGGmPezHmDvJTcOIl6RCVHFmNCoZu9GEvfLJJnJxLXIKE+sZAB2zJ3L2C9YzXiYfjlO13h8IqTtNXwcqLm6v0BprMAkFNBX8P7SNsd0EEhDVv02smvjW007WFur1l1EfYNtp9T1UdQ1PKEK7A+pWHI4bZEoAXX5rpl/eqLzRsmfC0VtTzKokqKAsR+jUGWBJsROlKlp57f/q7hnhrNCoyXRRDboFGtQGb8K1HFtmGLTP3Yg9CmTWSt3n2CUun0RYJe0Z6MwBwvJ6m5ZkDIrWyyVKqnpkWJvp2t/r8PSSSLwITwYqN7+C9au76I2lWiymk9t5Fk4Z6OsBvvkFi4SJWahxiCyClUt5yFAuMZK2foSJXzx8K1r/JXMNhWrfw4Lm9syVJWyNFovLHNzjFcE3KqHSk87xv7Ej9lHI1fyqsvbppsxyHfFd5IFFwpe4Pdo9iomk/GmBQdaY+nf1MvZCsVSAK0/llusoY/ePtnlj7WDQ/7zIJ4vmUKwwH1G3bPMKzYxuaTCIwutNJPjJpHSmx9C4xgirbs8uqTp8WrA3QGgUzziu2Kx3rhci6C2u7mp0R062gI81IOWUftz1Z416aIbLmYbaMykvLLu0U6Mxt4oXtEa8fPBzuf744FBun5haQ4uesZjHN5RSWZJGuFqoEdBcZ+Lk3UhNtSGn3RpanxRZSdBMVxh8bYTcUD3Eg2bIdZT+M/uFPtcQluL+79avn7P6FbIjd3HxJuCfuC8OWTPwPShvKmoSa/Qczlbb5IudOog+WBrV4pVBFMtg/tuVT31jMMzHkzZtZYSWjRb7uSk+tg/B1JM8Bq4zbPpzdjh5oiUiP/Iu9rzQpJdqhJKMlDHo2Zbg6hq7NspzmDarOJJa4jnZ3X9ikNngfG3kh3GjEm0V3s1JWNz5gaGPJ0zjJSu+UFCdhm8aACsPpUdgaPxrf2YhghAgN3jChPFE8DMeh7rgypdTSypS9qlwiYQ7bu3xuIgRNebiCwjy4VPlfxng2X4OFZleq6l3nLiWmzLmLgxdkqSkJunJYz2XiBsDfo107a6sQubdWYdpz0hmSbDIBm/sJMADmMbFLe5yvOcaZidy6BEzeKm+d0aFzqSXx0sgYd8YiyoDciolc3b+NivM9+5U88Eaid26H9eOh2Vfa1OJH3z1ExCrdNHbTfcttQZygAh69E6U7VQl2iph/Trdm+spqx3s04HpZJTBewdL+RRh/QkE+/D84yBudeeMlE7soRtbo67I130ygjNOKemXNI+o4GHrBwY+nUX2hyhCaAE7bCD/u7879zAK/6tzwLCHxjXtIWTkvqJLdzem+0vmNC93sf9f9dCqlovToyDUHh3j8pi71hAhSiIY3QghITjZeAaAqebfWXg22pB93IhHFDis6y7RTps1ohhbUuAlNbwLtkDMCJjSBtbqtWQCZaiZSgI3qFMTzjU5h7fj7kjTmyQzeV+bVr67MTsL9dDSKwg/AjNMu+cQ2j3bZ7sVFtj1GzkpL8ti36hJ+nxTb8a1A9FYX9il8FJku5yxtFUSXbpmjUxNJROFMlIDO7lXQekSrdmGOfC7CIcybNKONbqpLgpTOWro7Z8Vi37evLDZXhdIGKg0caj59gAnt6nd+fR+E7eabJwk7E729ypyAHMiP/yDkA9v3bu2DKj1Bu4CnVx0e1wz0uyYVn7IygV+he83gvEMAsMxD5tu/jn2ZHIjBz7qnq7lh7mWkTn86VNN4sO4g+UeBNkurKJGpoinD/I5m/CtZNz7StuwMzn/I6MY3G416bj3TMWspNRip0rFNE9GHM+heuHVuvEOGLs+P4SSLsiDwWOXffoKTdY5paYlVVAeIV4RHqUjzxQc2BxV3Mh41Lka+e3yMLUDV7YRH8uE2WEZMevQ20Qiyh3T8hbKYIFPTckGoVUSg8hG0KpyDi9mDlEcd8fBLN4Si/g5sDE8PVWMnolxtk6OhKEd/TyZY2gXP+lsdGnlvRTJsJiv+R7qnU8KjviDLw4UbdSYZO+uNaOH8DS3Ux15MITZQ+QJIgEUEyfqwWbygi8NAQXFYg0O8yWEMyO9cq7q4NpCywYzNE2tOeRpPpyASga963grNoq+LdTFo152lG39V56+oJgnXnpTmgA6DvrCai13zuvFpE6mYYwrImaN7VhFIqB/JJDmyUsm1iAB7vys7LsV2v3uzYb9wDU7ZZfkf23uoWNgHGIwgqh+byVOpXNwox+pbBtt+ha3ThpYVxnhP4BSgv7ruBk04s4trf5IPgum7M1ekd701oC1O0a7YrRDSMcRpyayQhYh/7hM2fMoGSyh6JxysAoNCfVte33t5DRwt+yDed8LjM9HtyD0udnQ8FTkua2AXdUtjPJD3qd+cV92nxdcU/FFgIqwwVG8xEMAfvnTI01lC1vajZJYxuxSFON3BHjqO0Wt3KvgDSgobfNrTGcH8WcJP6AbQEs40DcXKvi8RorT65EpMjjsIiSNMs8F8vCF26ob0N/0i9vaB24R66mLC52qB+d/+4kIds+QF5HuqVUZ1zP27KJp5EOaNOtJBXKXWIptAnpE4tabD/TLLyJYe74lkwiFnjJ9KB6E8MVTXUrzZwrN1NxRpsPVCrto9nqJcOyn5AYHkLsijL5j4WY1S3XRMTi+LA32NMUHzOvQ8AwAXXiUsLFMuwoQH0rvT2ofbRZxbxVqzLgc2C2hji/Jx7uKqmekmn1pxpJX1oS2O97GQP41AkHz5PAkz7kGYpHtkr1UEL7bUK3K8iSrfD8rhHDQG6LPixMEfA2kiKwSvbO9EjHMsH1Dwxvtdv63NsMVwZkgyNb1Bj3uxBGqhTBWRrSjUj2m7GL5WDbAAwMfBgRzMWhAdLmxato3/B71v9kSnZ+gO6XTFxo07m7/4uNKJjiz7C72njDmsiSjLpdCSmAXs1B7ojebH9C6+AuQZfMSTERCpGY8mjgsuNDsbdAJxyglUtG8LSb9QmYHKXFrIlH6SP56eM5V0CBo/dE7mgPODVj2BzSz1Ba72fRv1BcQPHQJLBM2cEWOR/QTb3BcLWBwSDUhJHK3sRTgKWGk3blvWWpOd/ezY6/lMHr+OI590caFWWTLLzjNcsXSDbv02F2kqxWTfT0tjM8nLHZIUm4SvEUY/Ob+bcJ3AufSUdThCbmDYSwFxYg89kZ+xqvjawctPtPeKaEwBfR8vLKgRF84tigb8+mNMSjrQMASU4TUTpwgMVWV0NYYRdFaBxkAL6z0kE6woYU1DUBRHW04qxLsMBNEmDa5r3UGvmpLnHWM8OVrhKLIqbguP2LqFWiF3gwAhCKcA9jl892kbobDX4Z3gDIrtDRqAx+4MEXI+XlbvGIltyjAIfyxc0ChBoPxUmPEbcdxWU/X63Y/HE0BdVXd2em+fp9cAIs8eIQtCXc3gV6ez7HKW/yqxZRr2OmoPJYwDDxptjDiZVo6i2N0vMqXdjhCKEtlQID0uspBSHq3Kam0Mp0lNwpAbX/fpqHTixmVSeL79FqFj1B315soFKekI5qvKnfw3mlq+laL0sjMJFPzQ5yO59n2cECZzkB+ix6xbFmISWXn8yJ/XYxkA+Vo8WmPoWTYR3rNUFoGnEw7ZJdrELVHMyXADoXiftRfKO6l3SoriVLx4WQT6x/OHmfow+SiXjxB3RHNnwmk7f+TyMgGhzy5AyLum2jHTyqTBDYM+oC0kJ1edC8Z1nB0BWyXxCABkLw9rbDOoV8h4uaj8If6evXOExM8s6rSMVZeRuCIYmtF5giAQ7NBq3t30ZDOyWQpJqGtHbZtI8yvxTVWQ65Si/Anfku/mt8rqFpBfMX4MSOexhoAV+mn2lYNCP6zo9OoK/AyclIOD64phPBBzNoFmyWk9Hh/0zlGHJB+IEBvh9opi4Xw8EBZX3l3NDumKRCdRy0LkwiV0cI6onbTlfP0imYXL6B6IDuokAENR+wHDYBQhmzTCestSYcWQfhqgqa9Y1VdGo6P9YS2JIHF2hwphzKBdseiQB5iQf6J181dHGnxAGTpVRaNA6UwjwEAxc60rV2z4wBck74yghsrfQaio6S4c8pXU1Tei9nFptM/3DZLn8feGTu2AEpCPuHO9sMubN9VJNVDR3XcIkGRhbhlEgaH0oPeBk8y5IR+NZsgyMe7jWmv9JmnufsCG+I/ovcTdTLC/mWInjqrIlZpZe5cNCnsv8zqzo3wDPt81kFNiFHaiXr+xihr5hIZ9pS0C5cXqCNQz5Al9NpMBnsUBF5LGH4qQMeKmKjllzoq04a3oS9W+WuxoL6g/0Vd0N5h+zMbDD4F8gUQWDsl+X1/AxHHOqleIP3BWF5AVElhy7C0WGdoXNTQbVw6Mmwl+unWoMmb/clUDq+XoGfKYFzfxmbikil0eri5ay6zkeOUCor4vxB+B1Z+N3ihhUI9//nNADGeUn9YjlTvy7Xx+UAHEDY/9roZ0dtOgfBIagynNjre+aicFJ3/yBjKuladLXu9M0Zsy9MJ+DNx6jMRc2sfk4JFm4JbM6nznztPiCV9VR2TSHAJbXxyagwUpQcfgS0pda2MgiEuiMpBCQAaeqExMP7v6vwbghBFqbearU7Q66Mm38n+TcRYD7redN+ZGG6uBOu3FlP7VojxKeDZr+BdpX6mVW0KlyVczgj/l6u03rM72VQvw7OppiLHJMv45HVureUfSPr23LJz0x65QFes+Nxt6MyeX85nBtP62eBcDIgs/pfwRjedI2vM4WTCRfZD5bqJyrfNnZVrI+Vn9CFAQRpyLKlxAWsNBGpL3PyjAYN1Tikg3yN75a5BDgSH0nV6TEan0PLE55ghMmmiWTKOPIsKCuysMdTPAv5gtqu+rdXaOlnpK7/wbBfKAb/QAz31C3yT/PIUmF5yARDkLsH+qsYJrDDxdDLXRQKdfIjP3XBikhJRE7Xr5aNs0rC3dJ89V/SfhT3ciSO3Ph778F1prkkmo1oOgQg7sxAjmKdoB0LYLPEmo1Gvs2Gk8Dbudy5nP9RvmbZ99d1OyTKWEcK08pHakf3jRiQUNYBKUiVajrqRLbvQM+8p+UXIx64ajRMoIa3Eh60R9CxwfayS8GTiehUoOfaCnOGZGz1LMaUskaWogFbAjn5J0AWjgsOOwThXV5s/l2sAlcOoQth0UZz2JBtEmlSgByg0mdz9GerjYXq5kyWc09sFr8NJ2trEbsWzk1QF/HKaecmv6ooRvSgb5Jk2VutQ/IQFg2JvSAauGxjGbxNPjv1l7AohTqqmxtnVtKpr3R6e11uMJa4bOsDXq+gnbWMX5Or1Z15kPAmpsBHLTmWN8tOqpRl9YpkpJu5F+abxshM84pieQ1/E8+LXP4gQnIfUF4b9ZDXQ2TYIZcEYDlsjx0LesjXaDUQEkfPqJ06cydTLZd+7z4I1ecHixoQmYKTiRXNn+ljzasJNEML0dT1M8QWIRSFLf/vI8KY3EjIkXSP2RipBXkcaPCcCniBpNUCrLsIiSIfeXX/9RWbsn2p0KbRRkVGf6JUnLJ5nBoVPR0ErBTgSa4HA+a3B3OVve5M+QrHika81rJUuAs6KldvQC2Dy/4kc7zClzQIvsE3WMb0bOKo44HaccpY1c3oJFe3J/z3aSmHj4FtNSlRnUSQNtscg/12d9w+RGcY1tgHZTmAjOKXPdWIwRkjQDFb+Js8Qws5WVGrcsM0UrbsK3V+aBZ82BYIq4rmecArWy68fLjdkgZsb7/PzhkO9rrjt8jcXCRkZG6Z3kkzM3K5cPFM+auTNjDo9Z3aq+KheXsNimapOJ35bl1jCkTcB9q+gv+ScF8nOwSqP31tNoSq3nmisPzycdvumiKP38JjDD9ooAkEk6Ph1DF/bXg5RdpKZUBQjadvK5ARflxwBYBuWmdLaWXvJpNoWGcJzZNgruH4qLpBsDYd3SOGavo8Y6TLwpfbNfCKlxbl0GjRI8/p3e7SY8cZNlIy9umquChsz5buVBWcYf1Kb/NotnPl0BGk9EIC863uitH+Tj1Q5QOszBuh7G2mu2NezCx0eChhO65GbDKdFS6rwttj4G6YSf0LxxHZOtzCOtsvUKAjpp/7SxOuLKq3C5OGvGXSQefr/KbhvwkqoKZgl1yaSVsiaUqPMn6HzpblxewSK8bf6Oy0b4lHRGE0yCscQZX2CZQsJF/u3IWgWbXeFGbmM63HKDMnFrC/3iO1f10QVMIoga26F+UEmBYyEzPh/RWe1fFPIv6gQqwntX8rVi31Ul5tCH6tKLSECQa0ZYJlgpViO6BvS6NOqiMymQ1q65m2wezRxa9kmH7kunMxO+ot2zHDJcvb0rQfXLdvHPbze8Hh77JFNGWbn0nj4mOvRjAnprpiM50Wsvhr94sE3fq+ULms/joe9HnKOEdZRTu6X7nCccW59KrgfmQJRXYKlInyHtRlVi8OxyKxXBYmtLas0h0gsgABkXBC6ZaLJ5RLB5fYzr29iRCgeMWIWTVbYIgTylJcMgvVLQWba+JRlURePr8qtUHGR5gAK2hLkGKEHsYBlxqP1YXXnIlUzaTFEY7qPw337F8s+ZeXRv/3T0zIdV4Ord6+XdjNYRs8qOnAbljJWEJE7+balGAuyjRMl8mX44wYeh1EutOp174y2tJfP9gbeztQx0LYs+shqmgk+JxC+0B+IFvTkqmuNC86zHIAYTqahR+WMk+7JDSi+4UH9+5v217ST+QV/s0OcuexorxiDw3ENAVWLoI6F8nu7WUhbSKVHMUC0zOhAHGM1px32xXbpGZfHr+Y4DCouvmof7bN0ek3cHudZ5EeK3nK4zDCWZ14RxulfvzX1Q/4hyl2zI2jxVrU8OaLX9Y9t+aWyGZ9teJjWpPq0Yap80cUQNV/cmmm9NSElk9xb8ogYT03bG5mIJaqJpCZaMuPPXob/yTLjF/fXhOQYsc0aHATjKgghkc0O7He31ssBIExLy93i/MYYMCyk8M5vqJnAA/2OErSCvifpvMd+eoALdW979T+jbUi2sSiirXcbNN/FOBShFMFwzHfevzcaxNvi57zP/viPgIHUMoIVQy+CzJn5oO8B2WxoAM43Qh6oC11Vorrgntq++5t0LnX0ZY0LINLUAxz84nmYwAXozRtpz866ykR7/xcVZOrwU3MeO7jv2FugT/BKbfuLFx2G3fM0HLfa4yMs3/Vk2JlOhR4Aw3+trAhTuHpvYQby1mJH7SXwkvcAbtNStJ9zlw4ZIVg8//8UvD4EcHTWH6zYgcPou5muDiGgPecUOWi7pQHHfGmRDixR8PwxPaFd61aVbdxY7zbSgNoICq9RTQneYz839QlUCmUH7mJ+esynz77qU55l2Q0i3QsmVBIYzwf/nx8cT+MCCA58IJecZvx6gmcUEtAFeo7BFBR6PxxaFmZNZSh8ICjfrJ5kFK2rDukEmLJvICem/CQ/kxvgQ+vXgEn9ka09ZyzLYteTmVG/pG3rwHupaQWFvbT8a/W1hqGTlB+d54m07GBvi9D7DrrvcOODMcpBuicex2QX64D08yBq1A7ywFI/bKUqj2hwFL4wkBPFilYi7QqvTtiTxM/g+Kemg/XHiIRHk4xtdKsHPj1pGndlzU6+ztGMebqKwIoWPaQxYnakoJsdfgnmUvo/6NjaI3kcxATSLA5VBaHifzisOPSS9GZdjDosEdSYF6yKkN8YSNtMdPebBRxf3rt3rPOos+V7yRTV7f1rvCODK3sY/nW3r9fVvEJpOkMjx5plWnqQGEW92vcbTel3MDkBGoLM9fIOmVIbhuJIn1pS8rcXk1lhaHJwxho9oXzsfEG46ciJXuaLHDgBr0BwhuxVID5vfXu8eMkXMR5fwKjB2WJ5aMdP1V9fQEDkI3M93lxCz+kgybqOL7xLr6blC04ZL+vhZrcLmb6eKlLCqAhoLuKdnr3Rh/WFD0KRvP3yRQApg7koso1RX2c1y687R4NT9XWROEfo3MBWeDNXlKL2wOLg6oBHFj4RHfoWZRCIrojX7JhoXns0YGr0pSm/d5391CLxiO3IAESD5muCLBNs/KRRijt+ubU+B/I6dTP5U5rtKc5bRBz83WJRK9w4smXBmIfeGShZf0Iz+q7n01N2q8HLNVlhEmbYCDCHmHMhD3gKqUUgf0yJ/YERAE219a2X9giraHLOWTtZostCjTtcRcnXFGPkZfOrG2y3JY03DNi+RKOl1zlGlnf44WUXY4fqVWMcdQqrmXCHV/YQ3je1mC+DPZzVfVvt3rg0jjc54pGG/2knl+Y9j3XQnhEwG2JYrsn3uJzhWWmMIxEU+2y58tq80rn0O4OSAfHP0ifNP/nGbhZtqK2O/hqfUy0xs77KbdfHYGMlo5fbVlbLNsc/0QZ7QZIQm2vmK1jKk0iuyCQIvjIuj7Zvl0H66Gq8s9vndNe+F6H1D00UvBxmW8W0xuaTzz7EGtJiMkHn5thuJfz5GEUC6z2DTXMV6IDd75oxJV7FhZZtP1PeoeK26yXAHwA+RkpnP9RYkwFAhKA54WEEQKZkTivWqDW7fiq3afFk7MLqQ0LyhQRIAeBqUK5FW1flABYzRBsLdH+qgxkjza1OGtmNUmxcHUaMPSMhTRlSIvWcAm4oG3HoHB/OQiwAGlMAEQeXRTOKyuxuwbVyde1xGeQqCwh65/BdQYgUe3HQX4Uc6rUuutJF/BqUBMhQq04tN28e2+isnDPo01S9AqrkjiAhhPD4Ep8n0xhLgDPTJe4PhWw88cAA2iqTv85HX5s2cLAEJK6KW9ivx8HHOQzZXUXVqm5HWEZi5m9KAi7wRFgfW2zfc+vsD6LJs34q3CLkiiP/PMHEUSswrPo5GqcJdk+NoOoYWEmGgiFN6SH0QPVE8Y2fKA3ih8Yhyd4CyC7fRr5+5fJqrS8ZRBcd0J3kv2DB8rN8VMBzMw9Iw7NP2HjB4oCR3PVMvCQE9FM+TeVCdJlc7XFfhGmnhcYJ9SP3IjtAgXQMmLkS3sg+To2dnPoADBQLEB1dTruBJ/cLkOKk/o0kRJAv4M39eowXma5Au1j7sNCl7pD9UhT3PaBscHMtisN4H4ffHy0OUPTqHUsIUBoTd7wagD1dRCa7gjiPcOq+yFyv9XFoqgD/VJW3MpwlnZ7ar3e6arSw94U7GAN7UJrwtM9dbJOVGjT4fufJdf7U4pH3sysmsiPWH0iHv4pAaR4KGB//00P/3z58+BEoKCoDUWLbKlhiQorpk9bi18nGILz2IM/FaIms/o/tn/rgMV0b3cWvX7xQdCANm7pJ61TnxjWgFEOspVz7dEYR9QxoaNQ6sbWl7GbwrzY90f/njLIRio4QkXKTYMjzyVyJ6624FTTy+oEgYED4VbjJEfN51hQe+UJnCViJgsEn5ktZ0tDr+acMGC55eAumcnZZioHAPiP9z69ZCB+05ZSc2IVFp3I5Ll0EE0YwUHwvfSE7wjMHkEMSfZvIMhGf5kayXEBntQvMEB5F15cqBeuU0MP0iLuhglRnOf0Lfv4ZQrA4cEZAjZkvBJzFRUITRC9a01xy2ZHSSNcQWCJY6GWZU+dHr/6rwIL39WSO8GtgVNoW9mMO6Hh7Fq/c1QMZqnIkEDzv+Bi8R8FHzq0OzW2a86n9N8WT53N6TGXSCQuBX+upAJlmNUmmfZl3cZSNZL8E4gyusobcrUAz0BSv9DzdKMnQRPQ/xPyMjsZCL6khIO47RhbxAYor1w+CSTdDEXTKWpe9hm79zu69ItW7E5yi1nv8KpouTEMdvjQd0YLyp7FRGo8CoaqRbQviELC4bfFbBZuCCnz+iZsYFSVfM6Oz5mHN4l/XuBzdKO+gnnQhTZKjE3BwZIFDjFJuCLZBNjb0U065YdKo8p6OKcH3vKuJNUs+EJW46kpygO5tKoiU9HDOKDrns/udLkDreB8O7RyJiNqPD3dcaS6Ti5m/ZMXaV/MdSVnKD+003fchqnVgTcCkgTQHACJaOCbHGwgce5uG0/rSYR8Ihxs7S2sMt4hiGld8u70tYlOAmn/dIPe6WdExo+Ct0GrMGCRR0tYK+hSPQhAI8tKA9EozPs5H4TOxRlAj91ykaApxYArirh8d4sDiRjmjYdmkkfYOSkSfuEOZI+fFbL0PrhnOX6kLbrTGHnCL6q2re3cGCdKgufQeg5Eosx+sgflJMTCtgWhnDbqCAYkENrFWL+apxUedj22b3T/1+kxWgqoTFj4tpcqARZsvhZYzaEYevoBAWHg7gumNBcdkiQMhRB93lXh3hGIROrdQlolu6rAVhtlCG/itVP+hwGlpCWRrHlCMvmUlJsopeS4FE5hg/Tn3hXe+hCV7GR4qOCyeOdSbh8wtidAfNKTHo5GuvqMdSVjB/gdVHPWH6X0OOj0CF40bjfbPrZTAY0JHuTWOa909PXKbBM6Gz93I0AH1QMufVXA7Jp4g3YiSCpkRECpDarU2an++tjUQbNCesjbgPtjNH/cfeUTeSbyQG7BfoPXAuMV3z6/CI9zmHEKyZCCeQCq6xAMLrBlYz1serDvTIpp64sjzncFgfQZdVJf3sXbnJVbF5ZXzvyKhfoXf3SJYXcf2fWTPdORSbqhUUzP6swCtLwgKB4JAj8qyGE4cwKlV/VuuCIGDq22j35VQj/Tvn8PNIMggzJEbEvHot+dKblt5l1x5k0ufFoY0I8zWjZMqoVbXaF0ZDorFnfosBeo714ZvVFjm4nRx7V3hrL3H2Lmpdfio2VPUiW1Piobw7T++Jx2IW6G+zFPstXISEzDGFExDYH8w7wGRwW7tLnC5+4p51i4Koqd+dBZk2H/xThVvPTBj7oJGpGZN36pyTjRSJt231O+d1H6jhBlTJl1nvX8c27WXraJbLwdE1w05BD48wuYULGF/Z74mqCfFhttjggwoheyaG8gqOVpXXoOKk1kdW6RrIOsGgJGhSVTiOUaHqVbosLvKBMWpNk331HBzUWOB0/5ZQhcQeJ1Q3NEmx4bUpbfrWxWU04/zym48CaLv+z0FI5FU6oJASrRyxw9C54JH/smW4mGhl9tx86sZUeKvJdiabANDZllXh1yFjMNCdCscP4/37aMH3Eq3MYg0lfDnIR64XwzSVcy7VPTH9eskrlcTH5eiNAA1KNs3OehcPFjbQToCZrm+GOC+N1q3RldW7UXgim4/S9q/KU9RSuifiYV2iKV4BzsDud368RC2Hw8Av+6h63QOfSgsSqT6jQMOFuxGB5nQ88ywPk436pxEXXq1wr+dm2IToFqcySjh7CQSvfMy1Ee68cgTZf7U/be7FuNgzYuP3jfyBOkxa9wszpPlddEzoal0YvN0FJ58/ltubnke8oGnXpsSFyQA05qUvo+6mHhcBB1LwkG4U2nW98YH8zj7yEVQcGJQTYkw+k+JKwu4yLs+Z8vYjZW1ctvXHWIawIupCb6htRkQhaQ2Z6So5/Kq7lMiMxqHdRWyaOMjLtEnOFHwuKBZ7nPs36mJwMOhsdoVlpFhwYgMGpfkSuFXrLt+D5NiytLm6jgwgoAbCA4IYtmObUnd1qFm3y1wGgEHDlKf6dq/Z4kSfCm0dg7xVJs6owBZ/5u2Uns7eLr5ur7vr2+iEQo5tuedy1cLZ5ZOkwdb/qLi5CsixKvJZ5W5kha6X23HTsxP1CRHE3/8h0DaOIhyoaznk+FhiCb9+aLi1ATPeyPcVuOUl8TIzj+904tB8MyNXCq6KTDhe3hAC/6/gYGDIQ/GKUEtzDSnV63UMlztQ5SXP1PwEexIrBRbwWL6WiL8fVKdU3N2KXBLMdX8c9uhl03JEggtlFFgTo75SQyJdMGBDVmZK7APwiyLiiXN9z7xd6DmPfQP6ErdE201AkLhU7maTa6tFNO/JOFq0zx6ajcQ6UbrhTWwaq+q8Wm/OHQ63553LK2xfKrVaAk1E+xeJX1pKQFiGTdFrtGNepZ6O+oFxX40lSvHuUCNeWkazPXp1Iploeu50NeYt0Mly0S2Oq8Wl8jxep7LtndLHHWm2/pWXHbfLIGkZAtdremQItnnJcbpO6EPBVJfyGA5wRVFyK/9v25TQFlh4N/baDfNViYWDQ4zZ3PE+OQ2grnrtrXDFvnpJr1T+CrTJVoa1nwZyx1nm5LkYP/LoUs4kzaJEgylpJph+3K9HZw1LMDKfSorc0HrbGV8g/oyUWmIN+qItnlHRur8et5sGXF/EnifYrIs0cWep5Q9mQLTbPtW6esb25QUr5yeeDojYMbWtj8ZK+ZcWJa+bpOfSmjGkimLrnD5wLEpNT1W1r146iRwW3hL+y7zykJrmFL+TKxQHhIDcyY5divbhIDK3G3fwd9viENJ/OxYBJm7SVnH6zXcJRgFcVibz1o5QyHyihyFH8Gf2dWljIJt6e3z77PKEllrn2zhD06rVoc0QmIX9vv8WwVe+U7+KEgeI3omtLm3P/b9M2zla+uh1N82JXz83CQoCaUU2+bxoQtVXluS6HgorkENyMXW1H6E0SjsgDmo+Dsx0IQZimt3rhNk4+0kdNPZ51TPn3bK/zZq7jupb+L9Oop5F8xR5rguVTfsqIlp9DWMUTKq9xjmZQhSMH/jXGPifgvo2Bs/4VXWBb/LuyckfnQGNeKLLRtMziRRuvAzW+DOdIRlrd8a3xlabB7LN/tON0vLnQpxWCadwfXkbXptG4NyEmfnRe3PHz4L4GeO1i/NlmayEbWuIlp2XIuzSL9TvlNYgagNv6P+wHEP/G0N28kUBk5Nh1C6J0zmE7/LpKsnxXV5WxDqD/mPRcg7xzMl/fmhkf3pUXD9jT8exSaRcnRKD1ymlf/qFXjgppPR237C2p+2COgX/Y803Ek1PJBtXmamViyREVdWjAjTYUdNZ6bbGobC7kCKsuVkzC04kfcSCmJupyr+AheHfKYAhY1rJ/m4q3+ZiM+pOLYk+FTPIfertbGzGMAN1lOxmeY6w8U6Obgzg+bvEDqTUsMlWt061VGkK7vh6cSMh09HqWeMNVn1b68/fbQ8sC6ERZrPrzUMVPXvxx3QKVvW4DmVUj44bsPdY5TpO3W5EcsYJpbl3gg2ZsgxsJg6nZr3g906pHO+/Ygx5wcMLdKGsfrApJOwoBRkaYfnB6FYMEE3wylXnUpXzFlxaHkUvLpsi2ywxVTtl54M63GcWoBvmd6u0fWpFur1o0A7nk1su1/d01LboYOITcNPu+Ia2eyR6zhOXvo5qLW8zDoV+4zjxsuWpgIYf02yPhgCkiIPe80pjKJs1v89gSU4XHMtmbsT+81Su82JgTkTkayQK41Q6cfhQVdOx/xwFvlV2s/mF9a/BDF32svv4EQPJCAddd+IDxV5gfcCz3gQr/tx2udn4vmEvw89X1QPgbj6r+SpaNJSE6FNvjqdIQuomObwejbgGjPxdo5okakgdYUmi+WwxAplQ804Lwuqc+Acviv+FYi1sMxsukIsfNXTv6N+CfluRMF5crzZmwLAAAmyLPLuyd3UluAnWGZDBJ52MrhKiSn566+wqJvqHnqC1oA9bG/Lm0QbsFR3Kae/WNTfeLZCsM4Nj+CcVwGcjpUEoTiRdPrdDeg58tDmHhZXXsz/bRWNvKYW86MO6hbgIv3k9h03IqKLUTIw9CfB/OkBJwGXhJD/LPKbGKTe+4jREt7wgmLGqzEoydhIV6au6V7iNdwtDun9T0+qnhsp/wZjkPFj3aG3OJgdtdM3qBUs7dklJHyE3INDpbWJWngGpTboEIFCrZZwuN27r8R9ppBIj3bnuzcHu2JtoLpHuc3EYj7czHzp5ZTyqZ+PYFBPzlamFedSjO6VjuicuCtxXLoQMBERuzy/FURCuPZSaKHLb8IzXcbQnkGpuRJeULJEryhpUYKVVkqHLZ3zptEIpkuydnofnQh7tvgb9TXPMx/MBKyBxL2n4QOjLqvs/poTn2CdSEjLJWNpknLyAbKBx13adqUGQS1lTJNmd/SsyPErD5I4zPjjjwfvPWDL1X/dlDGmNPMCpIJzT5kBMal+mGmyTFrWkj//hxf0kDwqKW8efnST9Vgj4F0j8T2eYnjAgd2QbgXU6cj4ur2opxJWdpjebPvrgjcc4i17jhSN3DMIPmVJql5I7I1ulJdkY1V34/6IGHv+iL4Fcc2SlDez4zTfLyyLyN51HeKYSPOw6BFkXUO/M8qxnjfcAwXT3FnIerlxAdHFzP8PoloVJLvZSU00uDIz6W9mCIAuTkjfxJqoB/3U2l0EqVQC1sWRAuOtqIVtIBOGcAV2un/Ugx4tdjJ6GUhxKHmyi9wkBYixFUjL8rBllCzEOHwE8eSgeEJF9zdkffYR9jtqinecTT8hKuM604WNfYS0w6Sbq1HsBfXCIYdPuNLlldhyxAGpuZ2bvDcfA6+rgyCG/XnwbrdIB4EP7MJcLFa0pMBJ0DFB8WvwyEvxR1+snW257Ok4r5P9yx0sszQf7qKaCERBnR8bONS2R4VC5IxRml1PvxCcXswhO817TZP8/UhMnOTg6BOrAkrLMaPpf7oV1zzlMm5oHlVHGn50S21D52Ndl9q/SUCx38HNmweZma0cXNeFoWPWI1RaugAlQeKL3Xp8rXs4+nRsiuGpUpB9ZAcH/Veq8yRQ7PPt+A1RcMn7eDqtFrIObIa2gSLpyStN5xCBbv0halcKTduH0xBkJ8kn1wi2c/hGkhJSPt3OO18RRDs5WfjLNmR013aeP0qv1Pkx/8oGYrtqMHUtpkSJckGvFvf+tquSz3gx1FIkQ0h0/3NAyZr/KcjklI0q7sQaeFl0/xosNECUOvZig2bVzExi+W9g3Dl81dZ2wh1x3zAD2L7yOxI02uCxME/RhtkS5raENiNm3cjcvvtt5GT1g/LUOPg/rf8z2nNELs4Zw7jOciKgvKbSG1fi2QBIOsXi5G8NIGiU2c4IMD+jG8bXv/CRxs3QlLWvGskO/O6wBbeX+da15Gajuinia9dTSYh6sJpYgw7HCOnx+1K8Wgd/8OOkOX+P0bbrOHT1BSA2f5GftGeOWbMl3q5Q4sgAhaj6Pi+tghkDV1LSubE226F5F6rnhP/7V0s4G6+y0A01uT6R0Tc7x/Nfx9o6a1/wu4auKdKJACILB/mZRPhUZsc6caIy8PAIrGHCDbYavsscl1jw1+4FlLwc9z+iy5ebpzeL6QZ0MkhUb8a3thPpExkyEXBLAMc0qqSJCPFcMcWbb0WZ+FKa9Ifd6Mf4HzLtzUz22ARoYL5xTjVheVYbrrmBywnmf2WpTNY4dUSY63CMN3P/0jNaNOfwg4F5TxTc5pjdo1KRKaRvCa3OdB0DEiqD6+aoTkaSC6oc4nxQfGEFsGwjlewsJAzLgyUs1GDGHsU+2nw7n2Acz/vE3pndOPOvygRtDQcnnZiH/IXoP/XcXWUOGbpCOdUBEmDKjjImHDd8Zk7muaBpPAGH4xvVpd/2sjmROJq44zDPTmgRimZentIlG9qpXBbzBEuz/dAPJhiQlaC7XIXgH7vksgvDRiH5Ue38FBSJb0ngL+SI96sOb5E9OEeVuysXeQTonrWoUIMUsk=
Variant 4
DifficultyLevel
729
Question
402=452+x1
Find the value of x?
Worked Solution
|
|
x1 |
= 402−452 |
|
= 180090 − 180080 |
|
= 180010 |
|
= 1801 |
∴ x |
= 180 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $\dfrac{2}{40} = \dfrac{2}{45} + \dfrac{1}{\large x}$
Find the value of $\large x$? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{1}{\large x}$ | \= $\dfrac{2}{40} - \dfrac{2}{45}$ |
| | \= $\dfrac{90}{1800}\ -\ \dfrac{80}{1800}$ |
| | \= $\dfrac{10}{1800}$ |
| | \= $\dfrac{1}{180}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 180 | |
U2FsdGVkX19UjePYmIhiMmZfuOc+3v4qo0+eWFSV5a2R1ZFED0En+HwM5wzXfSG0u2WAMDJ+CYq6/JqbCqwqHmIqKsOgUVN18Ih8ep2qDzvooRHZ4MzfIv/bFc7EAOT8npEQFHy72fMgxwMyLLO35ldPN2Ir+YgC48G3sFZCTNzH5sGRDwOiEPSgKxhDRuQhZ4CtcjDCE6DLBpPkCEritEImzq5KGlc9tHDgMOqz7wtIeTAtrZjGwzkchSd6XEH4f90VF4Wyrb8X3XrkQDAgXY7yQ+tu4dewP4rVsJYWCSnWt58deZ8nvuUjlZpVbswY+dyOps0spnKEK0ieOg044HsY6Goh5pW7V2QL28pJhFYKWBv7eyanXU14W3heymGDI6Db2I3kJ7+kparY2cLlNoOCrd7Jyne117uVxm+wujEUBq71dzUB8AmE8n/jZBCgdUTthc1uxttPHaUcIHJXtCwvSwWz9yqoEJITTRv6xieJrXBwVAY7CMeRcS2il48QWzj4vLozlwycIYWM5lymFStOYg30PIlmVCG7RelqC3p+7inCJN4c04nXih0MOPmjUdMFLJOFVRRPczz+Kv+2we304V0dPbPLkbYt3mVtPij8nMqEJVW6R/UpsPGLx6opCI9lw2buA7uT6GAC4D1iGFBT8R1YAhU/vKjyvDK104FI5hUvJmpTZ8QWl29NStGLq6heNZsteGUuck+1cYiWBDfdzkXAKNvogqBJEk7DHEXT5zM8KDzm6b1lq6Zd59cPYHsut+5+kuqZsDR5xO1eh0uRXwVclrnQGoBP11ThWwbLtUKiW5C9XsH9pHcm1i3d6L3A1eFI/YIn3+yJc38JPcYf7lwI+XvgnP3UgTXlr+i4TIg26t7gNf7PcXyRHk9l94VmEP6P8MBxcFbQN5wKuPP7qYamhKFgqQsJyhEXEj4RW2saPZ2rqbw3XmxUWqvX1M+aZXHRYaSKMi1Z96wqbBeY0vZvEvzh4Nwooad6JQcbB26iJFw+JIq/T/J6vYYx6eqpzEXh1YIy5rRlkIObfTDgiCzs2A2CLoSrLntCTy6pppB4VlI4cExkkImBHhvh6sbd80TnJ+LbeydijNJVIr97mPQFVggsnhIc16hXiAYoxKLdfq12GhVsqCx9fJhL1PK13IHoYUmUw//Gt5cy4TaogkDZy9T69f2YgTqoy7x7D7/iKiAMqPgto0n2v5qgpnYNlgsEoRQJ7jNTBeyfA+/wU5/TqnbX1zpJlP9sUnrRbHAQelihfbAVWgkjbO9pta/4zX6owkQP3yp24Qdl923IsxtZBcek4Vtsumgf8YnYf4WRJ3FwNrdIx8gFIdh054TCNcY7boN4JqULpmIc+QTVQoqkDpDx06XPX5N8fHXOqff9YDreL6e9ZcVXxjhK+hRPagKTm53IIESk286TF9roExxoguByxm1ejcvMTj0awa3S1ummkIginShtJ68B7B+nOhqLUNTt/CTFkQ5pILMZSCgfSXJysMvCnBWmX684V61qe1sxJjEw5+21HINvocGGbsF0qFQOfNOSCsnC7DRw24R1fTpz24S2rdjToRS/j1rQXINvP9zqhMqtj8A9xQtpqHlioDl60H4pogm1bgZtuX66vHjgK7lrys43u8Pm1k/Zy9emSMA5fJoeHnePghFQJlIaaitEJBh/iystvZy5UUrJrdk9nCjm/p/v4Q1BzOqcbq2yvUUflfi7U/qPGlZmRH3rfA2oq2Sol8BSMnaXKAjHTKerRh06YKr620WP0l5uwjTogkth2UTHYpl4Jk2B8IdIN1JdxG3UN4ujJwWfZCiefCdQotL98taHBX72lGgTBKT3j2lEK2gcxLAzoA4Hsog83iXu0oWMTGkU+iC9anf45GCdjapj0fkVSvZ+FDbhWPw4xryyJEISycyBvperK7waupEu8r5kNg3KG4BSLcGGvc2XysuT1xFtI359obxTo0GFFLCZC1B08a/uDf8ePhZGMMQVfomSQGpIyat79wblf/fvWn1pArF0I3bwD4AN5JscBmASgXsLqgi1QWL2dYv9kHh5fcNsMUQiJgoGM4zwwChJVZlY4QjynJap4YyWUwG20V4NFSrFUqAmw3qFD4mo3NztMuDlIiLCyJXyTKM1C9xHAY+BoRMHPSivMRD6MIanMwqFhup0rEgzRjxbTw/XxtcgGeB0cmgohiGtNY9od0YqUBnZoWrJvTp4am/JoTtbhE13xKHphOAc+GUd/sDR9RuAX83xAGfyB9GqUqR/RrEs5O3B0nAOWi7ux7qcdnHQqx+Jwwz2vbyIM3FgHlniJI8+hltWn9xWYY1c846/NVMaLTJyI0mKyHVEtmVa/6CMUuJJ7+EYG3u/Fwa4ABOJ4f9ZGsibPSvZrnnLdodRUYH0OF6X9L4OWFFoLvgp4vQvaP53AM+IB9OxCbufJaNWXqeXuniDyWS14oGRU7xS7x6mfDItVmcL/RZtC3xw/7bG5ETKtQMjJ56e8GDtYxz4zi4/Zs/1VJtyVXp8zxjmqqTlM8ESqKd05Wl4R+py8wHn+86xIafXwdJ6eESpMpggleaABQ/h/JiMFFBkZgBto9tg4DMlLQbAyXbgBO8czZp503INPJ/a9P+ILAjEO16+CBEae1JpDPt/elaFB0qTA/vz4j9eZ/xLMwNac3OybZLnx73hqwQjdhSSD8p8fEay2IOfBnN3VPhMRTHgXPWGygog+MN+SrkON9YJiU4KQcKTbV4JEmkb3Cx3chny6VWNpOrVrSKHOBanzBJC9JqhvpPiD2qkck58ywlScXPd340raQvCnL0FVEN27jWnCDb+t1p6whagWH/7TRKnr2VWrVl6zMOX0/eJadJvruc/yfNL8tlv7kMp5m9+e/y2tKYWHC1+ziHg10Tzs/15JzBi6CkqvJVcHzyVBqGviMo+T1mnsBfZW/BeLtEw6OgQW5TkABbS3kWNkg4bPYrJ/sDHY7N64XCerNUDxtbtPzwkxzIAcsKA+R82YZ48CTCevEJGi4J1320do4lcSekGVHAM4755bfttwFT4w+HzCe0TFNB1rGWX11KlOm4hg+R/qUPowuKKHXn1UMhn07h6a+8FK6HDZV2KeVDKi0VQP0/2rXxpwTJrqnTbhir6Q5ZwQbg9rGahdcDHU+kjCQQrakjNi3yEVrdyb7csPujf/G8RYuAwPi1cCujek6ErWOgodka06T/YtN+ETBTmpgI+YCf4jUzaNWLbOK1n+pEDXnr17V0Q1lAhdjHCsQ7P9SH9UEfqBIFN44QpPnsfzQQ0g4KnjIicqzNdkipfhZ3c6fo/OU07i4q020pAGkHQ3g7xgTRRnVm6aMQU0JbwE2jS9C3E+VkXidn8zvEmye2vqt7/Gw0q9XNq6ZdqtclIDRO9C7M6IMdb3UPw26zT2dCAXVZ56I9YQIKrVFoGTTfSvLV/E9HSSASRbq99pYYNQBpmVglASol6TRqjPdNY1zoKjkrzdZZo9KLs0stoeD97LWaW/yD6hu0QYq83P55947zEqSXG2c36yXB+Js+QyhF3rB9rZrFn4KAqhQ3k/kRPvZz+odi5UX+G8LCwFuopSiI36CBNJ9eSO1ZEGASa2Z1E+jloYMPghTi+mcboCaRD7WeuotNOZJ1waMG7Rl6rHgYfKlpolfpzIx2JXoba737LLIQCHYLOKQunWaBEhtrr2gm7HZojqW1HsFFl3TsWAF6AZmDu33qGKF9cgHPI4bZGi/VL/2/GxQqACxAt5tZlrY+8hXuE8Hm1mdmmDbee0vaFiUXAiAacQHMJ5q36CldL0HLJxslE4HTipC/inwUKH8II+BmVlQqGE672tLjgbg0spIaTcs5XZOOb4gJKetPMO/esLFBkfH2Do2URpMcb39HniXrVYneJNVmNK7z27NpcufomyvN6FC3w5N4sj5RcsDJLz4Fwzi4mMiXjCDFNHdw14LEIh//XNxrRLZFkIuHtn9iS6F3i/YP33IEsiCUSXT/nebvF+Y51ox+6+QJxfn8eXLTK2uqhTl/2jZx0cUiYt/HcZvPDhjwRUWK+oW+oKRYssfCLbBRgBHfyZxz5R/+wV8iYmuD8uPVunfLGYnxN+gHmAex17majEONdpYokL4TxcRJ+fk5yPI46GkZYuH4x5Lr4P/2GkHdaC9g6CtMaFLn1j9RFEGfQuFNMnHoSV3X1/at4ktZB5dpDdt2WIcCkVBdFPCZsRS7QPdqzf3/s1TETHSrpbyNKjkvPGcHTetSKpkBVr/u+KYYazTPyI1X2EqmGJtVQ+2QBvp85lBti1EFLYZJwEcSK0uxbz7GL6bzJfAwxVolsI9Bcfj0mWB9hs9hiLKl6gMsvJ2hsgApvdhQYbWOSR8ppnQKMi2Aq9ADQ3c1FB+qIpQJxCzUGQg/zW7gHfPVZotg0ZAmfWoLRiux8iYevkgbya8wNHiR3Z+8H6I3B9pwa7lq7+ztyXl9rKTK74qTIP38ctkVMBrzuLwE4S5mpDE6LSWIw7a53YTemi7J/fNgYB+X/aANDWukJ1YbnxqT4pYUMFnuAZyIiug/tzfwoOETe9MtP1cP5iLm+oRI1OYoUc5WbbfbY9tGcpOmXL4tUNYPd5rgaYQIid5WLI+38o2fRn3d3mK4iuboS+a1wOks9OH3MkfjWNft5sCoaPsVVVbaws9v3c0IoFUY38Wh3XOwbdBSg4c3zIehX490KBh0OAuN17IuLTxuzoIXIxYnZRnR9aIOOG708a5zkXIvEhZVMkq5oP4kv5ccWllh9lyruCKeK2+IorZspwU68dswn7RcxuTvsjpmEDkzpRanY9rQH7jqAqA+o9at3rkIMMwsx55otgheJZElB+gpfcatdF+7mvLnC6AF/GZchsrr+ElNw/j+14aLzXenncebudxy5WwoYL+ham1hmNWUVjIrEPZBzPjF8+/o85o7LJdwadTyk1LHdb3F7HFHjwPVaxBhnhvRD9qNBG4Dy3c4m6S48chvZW5/8HzPWvpuL6eztsQc3iN1wyTX5J/CHWuFJNg83/rFHKjqKG78BP/kyUZDuj+fsGCzFxJOUMDKO/2MnVCfx+WBR0OeGpKDVgKCkwwH9R8dTr5yjxz6CEMXbWP0O72L4jrBJbKeuPZaYY3auK8TGz63E1KGGYK9W4r1olz96VvI1CLnK+wNOkZzJZBU8rH37b/wkg67LBzBJsHzkYYwmlV3+8zVKSFarY/Y523AH6VdSjzh3sIkRPHNESeOFGywtpgmiaN8Yc3Vy/S2fWp7eJ83oMapG0rDfo7BRG1DJSTH8rAo7nTFHYZdleujulx36xzeKsl69Qmd/KxINc/CEHCe3M+a7Wr8KEE+Qv1AX24SxHDXARfp18MFTdlZLzE2cIlpGLz684MkKFyi6rZYk+MCa4cWskah73sIu9lhDFyxxm5/vdeqmVQncppILUc6NPQdBn24Jn/BmhoOtFo0HTWsPUoPV8KLgNmuObrObwzpANCUv9wKWM5N71qPUbxbnryiW3iIohcYgpNIRXC0Gkosw1Orp7dZ7wYLF1KosB9bU1GVwWSLaSKjqIXOYHuXFW9UhIN93Vu71nkGtqHBtHULkRFUqfM63ZYHNhSffAn8B2x49kzk8/CaQQz91UxhpO9yd9+axwaOAvQ4pl0zuJNf5c1DXImTXyVnOJR0VVoF4p7/0Y1Ayt9ssMMpZBYsLmE/LtGX185iOZwz1LlvGZSpSxw4SZOR9pHVQmtRBfLLl77my1pm+rQo/GWtq4NitcdxYiig0wLFQT+ESQITX937IFFPllkApFwMU/zmDcSMuEIUTT1WQWINVheGF/euK84mNtBVTAcc8Rn7JPZWGOHMfRORTSXB5A6Vm9qgyFLJd8QXSQAN202+5S1jRD2fxWNfccmJYSgDl5IW+R0IVTPeVdUMke+UfhOH11UblbGkE0K2jiWTOEHxKt42gvqjrSF7q2jT8Bxyb5zWbdBNnuvEZOYw+uWuJ2v7pK1UJkb/SuxTIBSTuZ1581FeU2oQuOSeSZzQbnoP1PG43f/aN+vfcexbz2Wh9Shlp+Cn+iUMS6cCIRr5ozORCSrDr8m3TLFAyqqNYamjTiLd3+pjj+dxI6IEiTzvrWvQIDOSE+OsUpX9TDK6iTuSqdiDYmamZBug5cP70W9cGyRrPKLssjG1dzbGA6fenufBlf+5UVw27sNHf7vP+9yxbDOQuT0NbEfaP2+A8JFRVpnHoDgBc5Yof32eB7wHUBkErdm/gH7HO8Vwa/DUMfWGIKKjaA5NhWHn6mWFOt94Ga7P+d1pox62/by4icJ5cPCTEzJ3JVs4VBeI7UuT0aCJF6Sl1XNTnP4WjjLzRzItDibi24M7KjY+AJ8SKfnZZ26f1lZQmXDxkw7Y3QOpy+lcb7MXEdgu6qezFZt72VO98NhiiBY2UiFmOnMWQ/pxhAiiEcQS0GuKPBHGPISblNrdBKCaIwoqGOdDDF5aMolfr94WcQ1jXFkDpEgvvfj0yCZPeQpqMeNG5Z3+MzHuDWr+IMzrtp279QNiXS9qUGGxkTgNplmuSjWPlObA9r6EjbWxoYeIbbhEs31Gd1gOTgsQ4Wut/SAwFX4fiK9ksRPGoQURH9geO8bMg0h5gJ+FEHZasavlwWYK+GyAJpnKoyXhfS1BlgXhvQJsWsZN11g8+e3N97IiXkjpGEZvfM/iNMpEwm730Sx1oEwpoC0TxyKNj5VwLssggugXYy3l19ZJz9B09A8SqhUJYEI1xj1wsglf9sos3/pM+WF02zZqvPYjZPhylTzh/qL8SNKOYsyVclNxOz1s8QkQxgLjt23d0k+bQXmDei+aOdvwENYLLSOes8rK93VTxobE4zJ1QDhKQTpulqAQ/R1taYIBtswa/PEg4YtTczKJ1TLX1KFphTDddWhgTq4f22v0mXv3bD/OEIXH4Waj97XWbDUmoVVQZYI6k6OcoUmsIr0Tl7RRPe+YY+zV2D+cj+yLvAKPgIthjRe5SWjD/zNXms8mxwRZBa2JvqtAjMhBLOIse6nIiPb6rK8L+sWtXBL5TVwsSa/awFaH9RnhQGJsqSBX97eibxOs5hCfEuTLZBDl6yzKdz2WHAsqH2W3ZMKbYkfdsYQkciyWAeg4FE40DXMv/UwiMyVvbDzG0dY6G+YRfyvUl8YRuzMhWf8HvgEPsVKW2VdYUStobkQJXDbRWbX87lrzOwXHk9YpGnTm9TKCPju8fna0lHksSiep3250svNouGiN9NEz3BcIfkZY7wEdgdTMhp1yTj5nD8Fe0FfcBQjpqcUq0dOIhcqKvktwAeFrFoNwVQgTCb5sqHdixcSKJ6lJ/aFz/ikI8uVUeYOqORi5N+3SKTQKAAMN4JkxZGZfnPoBLgjRt+nGiD9ErAfkbtSHclq/9hdNLsg0ERDtG25xx0cH4K0bJRvUGrwMJ2fQcMublKeu4a2NxWKXXsPBzDooFLAOWz4pUkk4FOE3J7gdHKRi7GsApu44VvW3BZMpopp6VmqWzYhMwYa0BdRzLPD29X9hsyHtZwW89rKxAb6YjMdcmn+e5kjFNcghcD9QPWVGjN1EYU+9lBEPFx9S8EiO/QOLMuIffaNJcvf1uzPfV6/JE1fSaZn1GGjqG2y3yRLWbMCO3UEpHgX9C/QGoErl5d/RS5oHUQQZpGJslKNYUgHdOj/T/Zu5dJ3QbtKpjviI/NAOEpiPSRivYD5wuGccQjKyi/+ewygdqaJf9Fqz/ZfUqJaC/hGXkBIXudFapH6FHTaXAdleT+IQXEfuz+6F932jQKsjSGVGbKu1OUVfpLcpJGMyJDJ9vzHyUcvSzhe7RX1X7ViDgCcsS0Ya6X+ctxDxnqQW250s6OWSZt9rp1J7/iHPLtR62AWekt3+e9yg2giiMn4tHM9iJexErUCnzCKxs1ak1EPKPLfpa19Ry480Oce55yoLaNAkq40Y01c5DwxCTrNWN9npPv7T8IwfD83/TwYQdz7XdvWxOddv50FAFqomWAZ7PvMbsmFSu9L3RLPxNNdfmgywpCpxVYRGVi6TXqp32zVEP1BAo33ieYWlrpuMDdG6Kjt0HthdTuiXfkgvKyAlkyB/52atu4sRUdCVSMU4P1HjKaPAS7Mq/ha3B0zK37hohRdbRJG/5moLqNVqiukwR1Wk9iF8N5c2DrIkIRcZ27Q2J9CCmGlaKfEMa3vIqXhrCs5QMGcP7x/44Os7KnFLBP278rIvS3G7Z2zIl9WC1DDOfGDtCKdC+1pvDoYI9hMIz0vQWf9eEu3xjo0PfEtqMXS60YyFnnCyTzXoyWLVURI7OaZicNttKBol1Sn+8qMocPKrqZ9o0+zU6/VEAqKw0JYno1tEpa0jzUT4M+PbDqm/nEO6agIpG/VieKD1MuFm4fmepiV2a6Hij21T/QIZM/kLmfGooqA77iD/Ujvw8w3KdE+C3kzPnWochj2hhF3A6HMYPutCnNxkmhEtJUoDDtOzn+o4ZnxLYm8ude8gqoiJPrwj+8JqCaD/+m37U97HKwLTX0dU0U6hUPkslaSLHYuwt954VKSQVj/r1+Q6v1eaLeH+ftOl6P+fA7Z8qhcKdRDOOPTKE07QJ8adc7tCFNxOe3f4hG09BsPrJ3i6V5OwqpjNgHtiJocep4TdjCR05QFYpUtZtN5cX+vqETJxAQT25Y8Fcf9J+JXTkc2f+yqDfu+ZD7/ou7+eTeZAJlj+P8x3e0lFw9PtIO2uDiXnA0XR2fvYuLxkYz3dOd6QGZ/cfKQ1dEoXTdHQRXzHg4i7PsW7Ipksd9u+abTWj1fIJDsAQQv8erCXDQVvUmg8z0ztfCwGcb6rQpwFdnGlxhAs9imqc1RFBGVRrLyZMafvtCWJxy6QH4XroHSuR6aEwopiGEuSRA6urZBpu/CpgKPNr9UhzvomWvZ3rOf6Bu/rqGoe+COJl9SchRfb6nVUO3E38yoQtn1gefjUffKGBes3+ugEnm41wrmrSmJQkTpEZ2nZxWl06sDtadjPaf7PK6jPYHngMKct7sMAeRtsRBd5gVmrXCpZwRSnrBkX5wWAGS0lh1iTBxIhSOieX1vDWWsyDUAyrgkY/WcwTrZfd++HXUvXMqCCIK+/6k3wyecLEMwn6icNhi4cXjZ3t68IeCukbHlZ0TAqdd7fNzd39AmSa9cP69WLKkXCAmBu2l/8OCwtAkzsyaUVxHiycdHxNCpwDW5c47JxAnQg9cUNyYCnK3tFRU/1JE68UBcP5HkEsUWsO1uOmdGIitJzN/FbjUMBiW/LaIPJIMeQ8WieOFkzctOhKZikfSvOGh1krOqcYIo/N2X4A7xJSRvXtAv1B6p/bEhNRZu9cugkILmlxzwunrMRey7yEh1Puoq7xVs8kbScWVIWeW2aRGkTJGKvIXztE1QkLfVsOo1KuK8kiDYSNu/Q0SjO2ovijhbhB7PL/wUUIDwXTLn5Cq+eS1bg5urFwHRlq2n4CHxaxUQSCKAcjBkfcaCYsgBX7wEoP6Xq7WfMmV2vCT7wJzgt2NBmwJWqhEtBRxtL5stzHAJ9K6expatRuchHs5Ae0RwKdVF2x2KQ29R6Byg6Y/nsWS2I+8w0yffVZHQLX/cw/Le7TCN0eaFEz6h9mt2M0Hbk8SdWDZMzCTI4DTtT4/3jx78LrC8Zs2EFoPZU7Bu/ld+p37xVIwUHGcMDvi1NkP45UsefdzMMmHRi/eSuhphmM8yjOT/hYsmsupBUcHQARpGYJXuCN/jyeJkN9gpUElHiepexdSWNBg3dRM3mivpWOM0aiYN/VqJDEVbUwMSLEPXXetwAPHpiNWvt1uiBo243nA/e6XIvv2WWau2BxQZm4eH92tALrErINKcUhfI9x2Y30TeXiodBWQkJ4wz861vWXhoHM5bjFIPNbVQwj/l8I/2xc7Gv24BnKQ+MEjUgeF2ZOy8CQmFLz5kN3jpk/8GJKOtI5c366wTZDOQSMexbYqkpDPVOFBLr1btQImoMEuB/xghEjV92E0FRR77483KkgfbfkOX8G8rycjbET/6fNijxdDuwBK/OqZp/E/Bcq3JjDkm0jKa0f0AqsOqXLMeIhmNIQ7zoCC/Ow3tLcXzdI3/NWPxUdzchC2f3HDqECij231Wtb41X6D2L2EGd6ZZkqjIQprY8320iY5dcV1kvvQEzx+sQTTS8FrLVh8sdtLPBRLcLmNJpUzRlZEMbmCPz7rY7MWoeHID6k+fGwcGQOoEOaXXh1RqlPCG9DdwecgnZT7LDxEMqPRSFwldJB+Py8mbrfYmnkXRcN6hf18Cstf4NilqIKusShpZI6rR3hl9FkgAZpSpZwdPfTq/Vg7L1SiF6pXEZ1mlqLHDNr53wi4S8K9oEPJvBbMbV8cOTCGOfnHqpKSTinqEMV6ah0rU+y4L0l2bNHGthbUJCbkbqiAuMte83sovISjnKKPmurwz0aHnEju4kOmJLMy/JKVuHxyEVJ9WxC75Sqr9qknNcULBefNnS4CqtbX/YLC+AcXJH6aQucBs3p0SWauP3CpmZgVIg9hFlzuTsLd+isBGqt+5hf9tY92JPUiWjQ4kXEkmpPnwKVZFP3f4iyXFC5sTHbtynolKg/3LPSNDiZ7MDroCdqGn5dTvVy7xVodTzcMqsFJ0IC5cNFHGnDLzLJ6OWXnmbhJTPR0Oc4uMf3Z6XLGmgyWn/4pxVnFBaZbVek5UI3OkV2/iIXreoHCekaFvP4mQodTHafnSNX7CE6ApWACH+R/IXT3LUk3AHg53Sm13G23OHjf8GBu93acmmn/sgYSmtGJ4cMwxRyF5h/90IBub+4NC0g9qQs/cZ6DqeikitZrJMWshy2iNl7bVJt5kXKmMbrF+0RI26nS8ilIfMxUDyYIPlqbVX3hqiKLErjjnag0ctoM/17ALuxfXDCr1U4J5/q+1Y48nHhlSfDVkhcI8eDPhJDmJi4ZL1iJtBXoGNWAD8H58GvdFzV5LJe6tIw5zPtGAnTiyTgEizpMTm7nweSXMHhPACPnp3ozY6+3bUV9IX0aebCUzl4tNQFf03kf240kcZolQtB+FcZeE7D6ToKYiKsR6VApLb2YtZUj0pWCsdsDr1KpU3Hjk6vXYwt7a2UuRYP1hHHp0TnB690hgF2fdHI6wW5uQEpbWQwLdohnj7WLjmNz2C3A03CduGQeLpim+e3kw748gSlIA756SIteHj5mD/etjx/gxPF34WlwMGxICTwYGMP7zSGap0UCuDVAKQKLW9cev1YkJP9fW/wtz1ASMSo1AMTvdIwjKjNXphU2R3u/3FGWilfOqKzs+LAhI1oBXzTz2BkyLbE3U7ppj/XkAMS84jzIfMxEJ8mYXgqWrBdShsIlUFCGnPPISglo9MMrTLQ1tG3ZmPiwSBfmScw7Q8emQw4Vi+zp2g+txyIa+0ZmzuQ+vmpXmW1KFmk2LNFWBY+lZX8L49fg9ukCLygCncAlknIv9Z141oCrHqi2BkrgcS0yzAFboUs8DIf6l/e+jgomNHIrGS7knEQDmqZTMTnawVUmB9/6TABPq58hK7G6bVYRynEmxqZgBpdf4vVQv5ZNYPZS08MHsmPRe14vqeYAQr7vfhKfLf9xUAyFzNav+78BBEm3qWPENSMYjxEebG8c2SDWQJt3ZFNv6Hue0nLaCBXD2PYAjmqOaFMoYPTLqc5KaQD9Rzl8g3ca4twOzAOBP1kQYwuhxgqXSvU+kvHaitZRiV2VvypEsqU9Q1iHHQRxfoEY3CkeQDUDQDPL135kGGJuPUB7CyBcHBHLdn2+p0ibCwpSEyH/Uzs5bf8fXVK9svk5dxB1iJHyHGX7FNHj/R2fXfZHKxI9nrEkhkR1beJEpbgCsmCXc46ZkGZ6SuNrsq8xrvn0f72gSH0/8hGbJcqkNJU2UEdY88lJBbZSLG0NMLicjtTpUX/WXLgmD9966AG4DBCDdNalLY2E1lm6Heul9n5fbMOW3EtcK8jED3r8PoIjK8QvCc5NkZCJC/5r3sN3wI3yBKlqdSsBujqxCmZiT9CsR7SZYgqh8RDadTrKuE6FPsgkqWPGJxEp0oRFdLP6Kf6wjed7YoQQomEh8jqbQKoWt3haRz27U61QraBjytRTcrCZpvj2fka8farW3WCTpIQ89xXp7z7J8FiiCU/MdVKikX0EzDMGaXyAj4tzgvHDIHlJDzIny4HlNgd2kA2ZVVKq8o3PXADNx/8YgyJno647F0UfRo66ji/LFN27baeWbJZGWhws3E/6hnleMgmwD62xoAMqiYuTIxc+FwP8W10iBkVl/OQ3/nKYgwd83WXXbGCOxAqzt1hmuVUItJq06xNJjc3U6qhHafECVcEAQgRsi+kiprh4SM+Rs0Jz1ohrJbwQDsUrmU2jaC09kPCw1ImNqeY/W+fLcXGlC5SrpmEuypsUmeFbo9yCyHBExgm5nBySEWIa0Rw2582oVhJ39adPdvy0mOyua71eDtcamwgAHKgweZ1SvY2SiARHjI0L7m6/kQdc4wo6Kbjk+gMFSY1OtfxzGNZyK6OhoaUHXu5TtrR9wP0kTTDxm5ZD7oORDsNav5k9x3WHvXLtc9c0qmbiOI2odxsr9Y96hAi9CoTbdXSltontb79QO2YEPgXI/2yf+vOh4xovBMoDD1cah/9Qo4uanE+11+I8u8Gb+ZeQqqUATVqBikYk3e9l+56Ol0DUl3xqbHo/fS/XBGyibFKAvPNZAoKjgh6kT/AaMQg0oSb+2tgaEDU9YKx2ZRja4hHo3wc5L7qh9Ff1PfkII/pUdJmTshRjhQg6QFGJr1QN0NxQ8vF/+MxodME1YnGkwv7UMteJ2wK/aFzNIiFSSm5zjdl9veBrRx+kngai1nJDX/HPDbC03n+kbNqO548Yrt2i4fdlvAJitW5z+H6OXlNdFjGGgnykBrj2ltJ5McEdbE1uwVKIYHh2RRBC9edqpo1uHhnSc5lzL5SKX52HIZ/xfpsVkAB0R1hhaXqkh1or8n5YaHEeT4S0sWNroSW58lRStEASBcFoHgv6S/ZMihEZEHoDQXJ9aVYfX1JRHCtq0TLf7uahyuF7gCSn5/NX2jQqARXvpS/fmCzRsVgd9k1rkf73JtvVGXRK+pnpAfnsHko3QQmh/N1N8LlB6hb4xKmQAKnCFczEUnKjMwRFt1hItACZAQePkO/prKoEODUdwb8hW3+ssK1sOpUx2TFn/ZhWq5UL4NM++n5kXLWoWFT5KXB7ZyVQNLU+4fLoesMs40sKnZNlsaQ98XDLjHPncR+Qllq9yWqEgI2KJwZaNQkPyMev0ptYzSNVX05CLLP4EKIKSJbV7Wz1g0AyekFlCfp8kFqvKq4/a3IXsXD/O1IczmRuI5vOhqTTkuHtasRy0bwVuAp3szpRJjFOLJ4ok59Mv0/OBuB+f3FYz05Dh5Kt4VQpq+CzRlVwcKDDgKjbcYBz+Ad1n3W19BaIHnOv8wFHYrtg0or+e19y6rLZcoxqyTqdEVBoovp58ZSfan3CbBy5xnL4N0G9vslNBa+gbqWnk+kWWK8nKabLn7NG7ZGjJixfxaEZFqnfRV3/onZ49aTamtC3Uik0UbXRTwAucZTK1HGcDwdoonuJCMJLDtwucoo3tdNLgsmatMiWdOqMDCQ2YYIPahum5fvK1OQLnsthLiUXIVXNuqlH2kQQC1eG8O8ojPl5FApyza3bo1lGc8aMIUngYuYslV1p3WQGjQ9eLY+ZW/5cp37G6P3UeO8WL0QFbafAa/FWR+e7vkF2tsOn5UhIBLc6CItv7a9oe11MslUYCtvW9APyj1M/2QDNJafVSgUpp218CyNn8gz74nurWoYOdYelc730nhwtC5cnDStK2XF2mtVeuMctyWNid7iFApd3sftuOVgQrZ9sHbIU1ZLcjboJ7Vjqeh+v7D2CUjA9vorQUaxrR/26B6Yv7iB4H68UVXINNhW8BfA2VZ6clCvC6AxyWwmIPH/hHfZ879J7FnChNWzV/OT+O4XGs68XqdYC1e1rocyFJRj3jpOx6XenUxB2ybc7HSR46VUrKHq2LfdErfR0OJ9HF9hrGxykRufbLCHUS3OMrBO46Rs6OXzecWB4T/v027pDfMRmTZfmXJI0ZB56XjfQh79YsbZO425BM626Iv4P5EFLBVZ5cptOC4/pOfsHtUDnINyNNGqxQ5v00dn96gR1KqZ95M885PaZliUgQlD20Y0A3DgMUd7/RL0MpU1yFoRqMoiV6K/sziYQt9dpHzCiFGCrFwpJrWD5hcJ2iDaSoxmyOoweflkPEVoI+WawSZxceA2eeb8yXHxFSVa2+dd1tPsKfo1ewyZdcT+nvcShJ5h7iXekH7S0k+uJPEG35BpLCaDDZV0kkQBnWSjX4d0ZTo6E8U7fuOlCqvw4jlXqJdFbEYJyfOtoPLptppKS22xu0W6RNdGqgBc7ZZX8HGFcDszffzp7IXHbFn8dFZ8lAm2wjJyFNAayFsx7+itX62gCZ024jy8oG1C5O48PlHOAGk21iIRzuPLIs5b3EsjQNROuqx/FeNxkiDbukEB9gqcaUp87Z+8cVzHKr1ENhT012bQwBUFvYIhMUXiAFDLQk1b1RpQUClDgsYiLZ+rGAbaKpyU8jw3qumg0lGDScHnuvb9vnk7Tru1l4OvNlKZxLSWkri+aymT7u7E/YjpfQ7QVcUkMiWNNYVkFsqfPXYcxuV4HWyptLy38b9Glg5sECsA1OHbff5R+uyhjQ/sG7u6+E6T6FwQDz2Q0zqB2e2ko02lW+DLvQcSUu20OQyYxJzJMnS5hxRrcJ+iDu30zxa9HQbMHn3TAFza1ssngm6b1F1khNHICcW7tAkTM6mFWOLe1NlLr+AAnEISuFYyxpDhEhJcEFmmIAZk02rZVKfyq4zpp1gytD5jT9TaSz91lvCb7MuSpyrnTtE1QW/bl/Zk0NLUanqfd5ykBUWrv19ML26dIHY1iEG5JSbv/J+LO28ntbUodJkwaYV2BaROKQW/DnUr2r65/iy3i39FMK+8cnDXyrevfukFf4zQfYMUQskkqVoXQna7CNVcC3Mypw2Ql+ZcrEM178+wbWCgnLwEGPcuHK4OB73wq/1nMoxHpdXBup4oe21ySameCY0NUjsPYasDaQ51vqE4RC8TibOKPNmChGg8ZteK40/kdIb0mEiR3eQjlD/0z84x+BN7vgGVe0d6wrDhFbDaLvoJTsX5uP1NlAOwb1O9VnY9NWvtrMTFjwE8X90hmRBJxIrfZ4b0+XSjvvKpy90cpZhOb+3TuRo/w2Ag7a6LcYj5ZA6BvI2OPPm4I77QLBDswBFtD4+jozA7KozIe4kr5a+dqEI+rm6YF5Hbm4fgqeBfkx6pNcCP74xSVp/loOx1tg9ybmusozOd+Ch6Wz27qW0hIIJSmsoqYPrgxUGYDah9RV3VHKYK1N4hriCmZ6rlMBBBrXCZ7c/kgpBNJKIVS2Y+GzwTAi1ncIO2ngAc7xoKuQB/thpV4UUvRjPm2nGi27f+c+CwhsZwmOpXLt50eSEUPfSbR1x5lXUdIFcpUeHFpz+vw4QH+eXCNE144mdl0tDmwkgK7mpRiaAEVzL6lAKtUsQ/vCI7fyNVS/NC0kINrINjJtIrzoVb8ROdu/dFxxRNfntwg3vHneGKbokD6ENjvjfsKMtpykfHsVh+RJjPimug4vPq1b3PJ5aUVyi222h/1XdEwglmpKFIu+x7Uiuh3G1fIVN474w7igP14ycI4MA1+PViGjxMRXQxG9k7FxgdapMG2NHGocza1iYDj4Qvbt9XVCtu+v2xO26sjpCQwJ3mYmjiDlFQ19qvAIDg3WGhNzgFBgRsMwfcic/k6v1Vvb/tyr15Mgn2WXuoHzR73sJ8HUlmb5N32+i3qWNw3z1bGlCPfoKNfHtmKMxZB/BEWsULC7BcSvDyKlLofR+Qekou90C1ySG2TN3LUV3aGEnTFfoUuZy1bMChXbEekzO+I7v2AMPl3Co7Pg+hTeNZoM1msEZzaGOwX6qU2/ZIXG2Cafo70+Ptb5ZHwlJ8pQjKd/5qkOXP8nQBjDn81wq9Y+6bLx4Jtq94h29EP5VBiBcQd9aSpSpl8gMZBawqTLXnodLIivc5iO6wgDZ9IygT3SsyUtpZSV0mT5ye1d9Ik/3voNkU84dTWO4T58DRthMc35y41pVKe0zc/gOCtlkockY+Hj7QRuZ1ThzQtm2sv9TAPCome5Dxpdbkfqfq0TvBZFhyY6RocRO11reB310sBq5aGtxAohwEwtvSpbeTccy2WpwPDaF61c+e8NuSjRLN+p+l8Foih4UydEvwc8OuezQpNNMNfXjjZMh4viXv6kTuLKJJ7dbmrsvWheJ6gDCiYy1JNWhX4/vA6sZz9+iRXLzjN3+6KDYstcD+pylOdwhIjWzUCkx/IfUjoH5Ue9HreVQeKaBx0M+K1w4IkD7Up+koPalB3APfXZrXWXvMvxKcOvZZObqRtqMexbCDBxdS+wXxri6fSo373Frc9HFjFLq2ysI9iDNre0GAm83dkKnsrEmvhY7knWw8KYfCOg2Xe7glGebv03b7RWIrWH9N33bRRIg2GfwmcTlwg1E9ljhE5Jnal5KPFrQeu5Sa/TMgNDI09aI+TQMdCdFLINyrWodcuDFPYJIYGu9v4O1X6GVSc2HwOIACepo+pOAj53otfjqHrn1C/BdejaY8+zs6RbV7RXvMaNw/Jlo6QyoB/kI5gMaBJhgg8YHleiORT8Wr9FuiB0sq2a/Z/HZgPqZqREmbj7/3Y6W+oGIxLnTuf/w7v5s0/KvPk2jU2Yhadr8i32zCpPHwETsAtmyzRnv5T0w5eMfWwR2T8F6DMK6GnVl9ghecMkV6U24KwcilaakToWKpDd/IaqFwGopVLt66dGIa0+w0NeNBfOgCg61qusvlX9k+UkdIv/rPRgD3H0KW7uqx1OXwIrC9YVhLUJb7B5hWtDsevHXrR7InNaIbt7x+06HQ51olv3YJpOLcI40i2LULYQrrbcsfWHhEK7rjnnRlsu6BUge+rrbtln59VIZkdwoNoKMsIAqvx2g0SvOkArtw6utwDGRLCrzF8ZRh53ncvp2Ojd06+jtNCiJBbFvR3wwionvMOM5f6WY5bhHm6W+o1pv67DGut6Wx5Tw2th6rj5NylwARexdyQVpEfSOKydu/e0ikXqKXfJyaMchcvZe1xmkeOY764+e/C366BSWZVpvpDYxchmKnvWbPNwfdhQCPzRhLN+PTHIEs0+GFOdKQ6L9Z1oj7ZyNL8RwJb69EScCxiB3imSD1RQND68rZJTGYeLuNFnFssyyKtdTGUZvdCC7hzDHKqq9kqguhePbRyvUld4svUxkrcoHVm6z5ic/HFMTvg1pkwT7cl87WfCPUd9zwTm9QLUAiYpWxwH0MvFodCdl4RPEofPE/iYCZ3TiV/64yGAmd02eL3lC4Q7xp05WJ9H/Luh2DHRm5YlczySp1RcoXj8DFt4thLwe754pt2jfT/ioVUJmXfIjavGvBzqL9J3kw0y9bvRXzaUiywiFoHwzKPzVZQsR6whqd4fW4lTzW+lWnZaPcsCkfZNYhz/eEoGxrOEdCjjzF6YVtWpf7nKDRwTtib2ZmF/oOlRs7jVxA+YSeAZILLddHTgVqkUiMKPLzqWYVej2tXSg5+KsOebAWGAZYYpdQID0VNpUqVUk+nOHDo+1wtHq1lAnjAHobv2rVj9CdaQoNO2PHu7SiOpalluQXvL6p8pI6IM7wzeJzHuCya6XrpPHDqQ+rO+Z3DFWk9UZ4HGXuV3FWcykbAPsaiK0jkQwvxIFUSK/ybmxm6x4Kn2WvKzosFsRyl5+forzl2RFf3T9fkgf+KC2jxXafQAW+31/pLlNStOM8EfjTjkq7YDmmCM2ze2f86OjVRt3qqIsqY7pF15N8rp4jiqukXaxIHBRykVAECilXPfKhSynAFWAVqxZsqrvr4plQV7KlKS6/v5DhOfH7ytUjXJaKxmV5fd7bSnqR1o3YY41cRHn7XB2djKG1eanm3L5OSkOiUYfi6PVmyl9z1gZlW/hK0oE5rI8Taw5t2oRSr3uS0I/HtFmOcDNqTAJsJlfOMbmcfHHIQyG8DZ9cFfI6/m1Oy/29IsuAPHHcXom/NgU4JJrTwq9rV1DhGLCRbEbhsvm8q/WATkP2wUgGUBlN16CXK8PzT5tLpvXNu4gqgFXMMqIXYed/g9QMd3G2+5SOyFTuibraC1tfUr4ipma46AaERWgts7400AOFMQVsLhOkxjuXOi3qOP5+YXlj8XQq8NcQ6mbhQsofwLY1nAjSXYxXQW5cOTMS3NG93Tlf0vpmtMgq7q6yNwQB1Hm3AbU9TG9K0ietH3naU1pDYHUBLfnzx4N6CQmLUYwwUuB5WCrXPUn+pGUByDcpkVMkc+xQMhEP/mb8zGE49S6wQax4TICDCZykUK/ddJXF2KYUYXtr1OdkXnSp3GJqlshJnoDDR3/0IEPFUpSuhk+TOM1HU1/x8NtCHL3b0/35LPcWH63z/M9MOcL6UiIwqCIF6LS83A7PREyZUq83N0vtpTPMrEbzRgr6OoUQXR9K8fxRnbHsNBrgwkeQ63GIIcOe3SPdvvJeCBaCGQhAxvxeWVl8iYCi/Jjl6Q8efEI7Okk2NpW5P6DuUFqLGhoJE1SVXpnmUNtlbMO0HEyd+9kxM5USGoOWYnzxfy8tWKtOJR+0O7z1DjC4dYb8nJ3GbZV1wY8z6n0bwUMMnIHLVjaOFm0acG6BIVJOfUnZvTipVYQ7WLA1qmwfaqAUrRxviGPwEDnEo28kEfefE/B64DXz6WBZ1ddnYSbJq1aFcu0tS4SzCmIB9Sav/Y6QO428HZq/eoQeEsW1DouoiUxHXQy9eZdDx0fmY28BGFPyYxgPvxId20d4l1h9XQDfbgAlD8dBB4uA2TsIcrfvSmF2WKlKFEbuFmRtAhuMgamn0sihNku7Ksv/5GaXMGMmQMpt6JC2d/2vaCMnn/en9bEWn0EteLoOgzzXEiWAEC93QvsYwRwYESTr0f+OSvPDw5ja0a/3s3QIljn7nXorAFHAWp/KFWmwgVWd7SYXWDSsY1HRXXU+IRBgfQGHKnnLtDiFBAEaccK5v3qtC0kNvHQOFZMvmBLLLWM1Q5X/VAYJo07EgRF28PehorrMxDHoet0VHA8zPXont+F3fF2jB3rqIl+eFJ/LZ6m8BAV8NoisbpY4aeg3y8489rGwPKXRl5epMN9FhNiR2DpNWsEZ9t4HE5g4VoL1/4VLuSLQiZAbuSvRheVSfuC5Ecvlyh7ZBBFeNFLkNk71fjZmGws/3g3Tf32jyksuSjDpG60DzQIlQ+LwoK5p6TrbscOOpaGpu3pAuWjBrTPxCLuaSOVLosmjulLY9t+PbqtHVeCux5+4laJpuGCJEhq6J/eTG78FsfJ/nzVOhTKAqDLSA5T3FCmLcNQGFxrziL8xxdyZeA8TIGomqIDAT/SevZsxcMftvejOj7w7x4f19RyJszHbgjruZFp97E/nccLLhF8xB5zGYvVdewPp/lsrg+OPE5RXquePiUAVI+88rdI9isVDVJIdkDWXPqlBpWx3P+w8uMuNu2i3Fe0lyi5nFGl0IRYWV49hfG9B7Uvqv3VmWMmVdZL8q/irCLkd4mIfBwAMeHT1cHxBH7JGg0o8RDZu+f2lZUfyBCnJSOLqj0DKg3AOKgbOEe5VIRBVXPA0zguQgRRCzP+fhyfKkPEVNDNNSfmIOWoY1NjhipB0cuxYiT8HyLuoDi1PvmSHbZz30ScqPyr1e5vuLMZUVLMhNwRdmAAi1lDETgFe4ESWvyk4LFPcYsOqJRfNK2dU8GF7BKQjRe1RIjU4dvuKNKILWfrOKMyJSYFaMSo4x2x/6N9yY2/L/Ihe7SJCuMavfSy4teuRIO0oCh+WtIa+Mu5oQFpYH1VfYhSeD4/Cl3ISlmH12w0jV4NlPnJch1XolPA8QzmdxJcOTcTAx1jWV5XmunAbc/ZsjHlvTwJadik7mynsCXr4xHUShIHYUIvY7tDJVJyMqdES2NfpyEty8MsJu7VCLfKgG6zurGmHKE2tfc4qv/v22NnjRVvuDgIjuvVjvLs5rurpk4JIArDcDjCm8sbkvjsjx5QZvzloc79yd32wUVvBB2MB0xGjPXEDBmq2pO5XoqtfRCxDLxMO/fs5qQ5zlEKNBovPQ1tmcg4Ts7ZSTkL6faGULtcOg1stvbhg+yl89xoLO/Zlc63f0u6s+AfqcGrK1OQX+t3aYUrAai9h8AElE4n92q2uOY72csZOEAHsHUFhONqtMP6TzOjY8Rd5BZBXriC2NPCXxuSC0DzFNnQIaM5zZmS6Lf4r9JXR/+7faOSXfQ7Fj7cnegzzZr0Ri8SCzZhOmuzAYN2Y/G32AGjMx6sOgzJ4SCL2ovh6yJd628XYl+ae1JNNChsROGShSJu4NHqxfOZV4KTH1CVtlRzCQCVow9aft4pc5yMAEe5yeM4oryE5yFUhjP1EqFWIdmOtx1Imrlh5ufget18IiARmBh29/dgaCc0LUmdVIFAQiuO6+wAEK3QdM5+ZeoBGP2KvFkPIze7DwierWdqopEwn7dXKVxztFaUB5g96eFv5yXdnKhurvCiiK4LCVIjJRGL3Hn8iXoZoQfpAThtS1WY0ddgc9QIGw5wqNz7SGj7phRjjWhn3/s8XLiThmM+VPsxl3Kmt3Ch85WCpNFzVaVCxFtAbTCMrMHwOXHXeQSBi99vRjZkvWSWax66wR7C77siYtrnMgr/w5BD9JN4kSId13kFKFx3WjQLPY70TwWkvdcb/u4hw3n4/xa2YioIHALp6Kyhl9KmouwuYK5s0RPs+EdIS3FDx8P7y0kH7pPnoS58+AQ8ODqZOZzllJs8rtPhezOWxDmu48J0zkOg3slBW9R6d5fN/w9pbScOmMPNn1pzx6BZloqRcLdm5n8yImMnWnQO0GDaFYJtbN8KJh3UBh8M6wc+K7q0otgvtmtIV44TK6/aZ6qNlxZet87qZP/u+vUdIn5lwWfm0WNCPkzMkVg8HQtiOt7xzwVIH6+yLyqo2ubFrirtx5X25aKMmmykL2RKXzLfOd6cfvVkEbegjcdfe86hZxCj1FHQ18mqjTChGo8KsOWFErqIKqzVA4UNXnIOn49z60xooGpHYkFW54M2qNJzb4kLYXorOpfOlqGwe6/X/8sNlE1CSw4CmAGlhRY12oVCCCabhHLx2llfiYkvRfUTRs+r7gQOrgUZxqLRMqdg/vERVzi9orpqTDZNSVV/SJSx3R5QH5t5IGjVqXotd8TUWFlpPGbTgA/LhjP3QesUmLd+IOBQ6UAy0GLa+bkUs1BkA4L+ABNQt901i49H70T+UHx3V4m5CLEjz/GS9KfQv0k18PIzGXhiLhzabNUeWnTS/NNxHacIaOjL1Udms19vr9KNMQdMsBNB5FDI6GcodFOVp9sRLu4Ifsc+Z7Y6VBmQDHYJeSq7wROyTcH+CHFNWvTAGzWRSOGuvE7HGunPp3PReER2lYa7YMuE9jemPsOl0Mz5w8U+1C7OmX7G+obcNxOWmgpJ+i1dFY6jkMNjatPHnEIBvd0xySpvlm8oHRlpVCe6OBCJCFesud1uXKgxp1YsirB1zE3E1tidwIIObJ6gS2VZefpeg7MYtdtaRBQEQZPbTWX63JbwMhEckbITthyrZzNb1d/jU70++srU53hqW+Z9LnsL4OFxObqblmhaxIsL7UBgGnOy4rZKpn+lDY+7UjoLTapx+yTYkmD1j54JIh5ppFNbRp2MA7HZg8EHnR8GjduhT7NDJVMZDtyufJAcb6a20iXFSAdBIXlut4XWlyuyrma3n0KkNTS4+sfFaOF1AtcDgnHWe0ktUxQg3azuf8zsEhk33r+hsaksGMYJHARqGOcwi/f5Olq5skk1Z5MdEbLKAWg00FSB7RmCSDMPW0gDK1J8oGfZ2WD1k5rWYt87zDkEs5ijLDEKj+lUbo2bZVC/fLegwUfZpgHT4sw8XVwDUz1lLNj+/hcme+S6cuBx7cSEittrIiuiJmG75tiQjPhtElzD8+e1qSAowfQOHZV7aKtUy1zGK3BwfUkTG86SukBjq36ig
Variant 5
DifficultyLevel
732
Question
602=652+x1
Find the value of x?
Worked Solution
|
|
x1 |
= 602−652 |
|
= 3900130 − 3900120 |
|
= 390010 |
|
= 3901 |
∴ x |
= 390 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | $\dfrac{2}{60} = \dfrac{2}{65} + \dfrac{1}{\large x}$
Find the value of $\large x$? |
workedSolution |
| | |
| -------------: | ---------- |
| $\dfrac{1}{\large x}$ | \= $\dfrac{2}{60} - \dfrac{2}{65}$ |
| | \= $\dfrac{130}{3900}\ -\ \dfrac{120}{3900}$ |
| | \= $\dfrac{10}{3900}$ |
| | \= $\dfrac{1}{390}$ |
| $\therefore \ \large x$ | \= {{{correctAnswer0}}} |
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 390 | |