Algebra, NAP_10095
U2FsdGVkX19+oseYZrc4yG9bJboV+ybRGoaSbnwL2a4yOom8PAk09WcvVFEHVJwiXEcVK/tponma0fWBb7RtfD1y0IV+PNh6V7ugwQlLB2n/y4xRbxrMUPiKv5tMNwEsfEYMzoCEfkQLkBz9cKeYs4ApyfTcgmnHYUWaFnSHFv7ODIfn3I+AtyJjft32nhu6YbZ04NgYZ3NpqO2pG9ZgYaU+VRwloRP0hKHApgkYXUh0SMbJKqxjdwJ1ysFlWXhgd9BKln1hvT0q5K6ERNNgbFoDDVLWMVxMGOyRSK0vLGbaPKW3Rk2I6cLat4QIkGcB14apo5DALvHjeKe0Jo62qc44AcuBZL4ekP9xdsTm+wgv5q9jdKPLrnagCPbLnsrJkOZTU9I9RsJfx5E57w7EOieBssrMOIn8F8ElKgJ2hW/kO/Wn4MgkMVpqzzqmxvTkuZ4E8uzn5yf7hpJX5uArEyVVEIA22tK6pZ8eVJQpKoAWkyZrHwCE5cazw8K7MWpN0R4HL3TP0AMvlrMOTHLh1zCiZYNLqIEmsmw8Ipd48ZKFxavyIZplSsLVbRO6+TFpxCVirMmglbpEuPyZUTDQ13HHKlQnYDDbMvnnm0Pcq1bdjPsRWd4l3XIc7y3L1cD8MXm5MnvyXB9dutVG3DAob8fp1u1RWxXQtP8HVHqb6wrDo5VaKdWXSgDycMsm+T17/zNxP0dvw4HYKaN7FEcljw9AfVm0Yp6208lk2aL37/4Hui80plo8KhmQ7wBkwMuZCVZDtjcvcdFGuPZxsZlEMC00mmLkpkTuHh7UE0ApXuuwAhEeOJ3amPwhcsH/Ss3+W9a8Ma7SaRy5B8rMZLMeBkvQNO/RQ3s2mcZJfOBVMPbHbDE7qzDZLh+pxSG7d060qFJ5SQU/CLLuIExo58hxY9UsC1w3pwY7pdi+ggQ9JS+XAQcy+5GVkAieGp9hKNKStcgeiS7nF7xO/4rnXtqIE3vT+6g+cDAfe03adYf6IZ1vR4Eh93OZLU3mBVCHPqC6ISZKrgOEXpSsuZ4jxy7KzNSEJwJ8eE2b8g4/ZFd3CVr3xu9fB+6SXFTporyfdkYKLmXT6co/Z9YinoyCzDAMBUYgh3npkuqyjL83Cq+x3Xbo6x44JWSPSMTReDCbjQKlJYEVFvBTiK2k3T+rKw9f8dCiKLkfmJGCHatlRKa0OQBt/Vuw1wN6wAin5R/lbhsr0tqdbX5j3T5UhDCtdS7QZVTQS/R2yioBll7iDtGoA9BuiSx5dmh4ZL75kbqwi3f/ZcC4wi3Q3Zqbv8Cx+tsjaM61oItbLD/R0SBUh6tL1nE91RdXT8dZw1FWqVjwlGkG9a+A0bxABqZODA80vRfhvLsyvgw25XvsHNRc1Vaz8RBzdJNEkbt8InapuZ4bCxZe7tASfXRZaQC1VYKshpcfkvr0EPvmfX5nRSiSqAD7LJHGOJUt5cvzuKLrF+tEgFPcIQ4Wmhc/BSoz6yT8bRkFT9KAEqs6CgdNTR5SayeU+1Cl4g+emRVs5QZLgj60EW1DERF76dk75qGYKu5dpqkcw2mCrA2vVmJuoUduxkcS8NpYDQ2dD7ZB5s+UaPSSySF/DDyLNIRnFv+AEaSz6yqYjQiHLzXi2DCUmptIn5UlAXAhLgsNFC+mGZk2JPvG+7Te04CzeV/DRJbD8Q3n+SgUk+Rgsuo4ctTR9EOtjj17Id5a9zzkk4Jmbrptr8JIQTEz0H9lcbQrBobSJLJzMer8wNIUdraShjDc/K3dXWFmAx2GZ8aoajzWpQ5iF1G30wn0SqHqod4kyvoBMLW16iPqNQ==
Variant 0
DifficultyLevel
469
Question
Autumn is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
Two of the points are ( 3 , 2 ) and ( 8 , 4 ).
Which of the following is the third point Autumn must connect?
Worked Solution
By connecting the points ( 3 , 2 ), ( 5 , 4 ) and ( 8 , 4 ) we obtain another parallelogram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Autumn is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v0q-min.svg 450 indent2 vpad
Two of the points are ( 3 , 2 ) and ( 8 , 4 ).
Which of the following is the third point Autumn must connect?
|
workedSolution | By connecting the points ( 3 , 2 ), **{{correctAnswer}}** and ( 8 , 4 ) we obtain another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v0-min.svg 450 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX18GAC62KC6x4E8GpxCBg95ldX/fB1c0szPo6RVFPckxm17+BQ2FQWeO6PpZrBP4T0wdyJfIN7OF/9pj63oXPKhKjx+Q3UAUG+X29bqxq3mdFKort8qk2xua6Tfsf7hBDroKukcui4YJldwm+IeO/bHLSmsZS1QWXRYALQsqEwjm4YcopnmRAAqf8qKDZZWG1gpShOnuX4pp2PYOSjsJE3GugAxO8R02cSBiREaosjtyhIe3WbdfsFxa30qYccwJhjgVR7C1f9isajsw0ebUW007q8+VSwZydcd4hsXy1MPq8ij8m7FRemWVL1Bda118RXhjhqLRLdN+lIIkRoBKmXALIFCEvZ/0ecDiRowqqoBfS9cqJyo0N+peKpmbkjcwcaxQBfp/pDnJ2oq09g2HMtM1Imyh8L8mvaHeCEQcJ8Z0NXn3tbRYElCjOB/hfxPbg71ORIoR6sohaMbhrfz7fxmL/E01aM7igVRFtN1x1umhIQLCtsu669mfLUpPTuPLMj+pgY275wgXhahn2+hhjzD6HVaN2W2NdHwcAf22bcBzMAZAgQdycuBomPAiuRt9MA+CTVdGyAizKpLgax06jeRJe9zJ/flLiugP4e1qo1GnCZRliphEHYEpHxJS3z9zXnf1AXjce9nOQXYAKgKVULMUK8jwe1d6xNn/i/H4ICiw3mbNqwtsh/U04D5I0xU1mdHMFV8eMqJ5X+W/Miqd3l8hDeLCcKXSOGPdbiwLhTCh624MWjNsQbYjQp5U5c00Oasm4Q3zR5pdIiC5dJGo4K5VuLSRysdHB0gv6CW5rAFnE/ulkl9hjvN1AugXnCZaS8ueUWqxeIoa3hJqdYIKIkTy1LZj39K99COlSMmk99+CXQOhlYIfYwfOtrbaavFptiZKMpVk0H3MdjWiSWzWIt2MjBTQiV14GOlI+ChlaUGXBsH8Az4xXeZojOUcuMicQRIOxO9vjZp+4Tw5Z0RAfZvU9YeHRIDXHz7JsZ4iqOeYpQhsHFD3hf7jRdo6p8FzUxfoOYvMah3+ZHS0VuhFskJ1hoG9vKdCvr2CvtNnAr9kRrWD+FzY8IKm/y+RCnopyQQNHFvHqNyNR6O9ZL0h3qYiLrD03RKQmz8T06BZ/IKigbbN/4Lo4dA8x8NSB28+ePy0/3537BtsjdikXxrLSwPKNz/t/Yxaeh/KfM8QwBvPiGVdf4fHtmjPti8SOpHZbF0f5r7Ce/cLnaq9NMJFTCNSX8ANZmd9TdT+PYfE0FQjATCxqqxUjuSRWBWQvcp+L/Ky88AYdiVpR4eMXf7f3UqSABx46PZAlVLF6cTl0JUia7KXuDKjFZq0T06wwReiMYyhf1kvapz2x/FhHjE46jRHTDhDVPxHkWozXUNYkB3glrw1FWdZiM4SnI8F2Xt1TrrVPMV9iHB9qzTYZxYKkHMlNyuE+bTfEDr/Rt0rTwsXfz4zWhI0p5VA5IG3EllH8IhTPBzfI1jMmBLrVL3RpybaTD2DJiMROl1kJ+cn6J5YDRwrwwqkTHPGqsyilU8fuLWAfN1+KeBq9FR+LH5IOldzgC3A9WftBtHOXUWqPlxPhI1Ek7PKFNBG9pHVp3/TSm7b/qY4Nygc0GMGKoEbPYibacwAy1wTWWpmDCdLfrHCuyrJGN2LNX98ZsaGX1R2a+hpiJbmPTBJHDgzXf8rXzrDZLpUzRJCgI+Kzy0GmcGcPRdEiavO55zKbcDstf3EYQUp+swo7Iv5YPL59OmrOKPcjhNWbdwVr+fzA40MmryFzjGP4uGK/6lXnwFCOz0a3YgjYPTCABQVfA==
Variant 1
DifficultyLevel
471
Question
Summer is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
Two of the points are ( 4 , 0 ) and ( 9 , 2 ).
Which of the following is the third point Summer must connect?
Worked Solution
By connecting the points ( 4 , 0 ), ( 7 , 0 ) and ( 9 , 2 ) we obtain another parallelogram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Summer is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v0q-min.svg 450 indent2 vpad
Two of the points are ( 4 , 0 ) and ( 9 , 2 ).
Which of the following is the third point Summer must connect? |
workedSolution | By connecting the points ( 4 , 0 ), **{{correctAnswer}}** and ( 9 , 2 ) we obtain another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v1ws-min.svg 450 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX19Uk3xg4pXn+A4rkHoU9moWlzXpOrwFf5wOcF3Ka9Gglj+DBNM6iIPQvGrDMU9eW9IF0WmrXwfrPqlfJI6ob1e9kaNF2fhyatqVZlWiyJP+QimrKp78hpKxuvWYJ1SSkmVbnXT0/ODEby7/dfKd3C9az7ekGvDKO9LM3c1zPhBDdGMrh452cX2YoQjgnbX1UEXGa4bmb6OMJSpB1X6kYssCA5R9wcs0tXySMGYeBM+HBGd8tEfa01kD7HwQaeSkmMt9B6u1B5JPEUCcdllqettRqX41SyIX0Tlb9VaxtU1sWLh0nIH6Rw3RqaYYjTnPaCr4IB/4ZYrKFBDuHtPKbJPHkoPfLpAvu+8zzQwIrEotFZUs80Wi0I0XW1Xy0U2hiGkOW3YiKis9jwDXgt0Qc4aW0eddQcV+Ppm6bdv4UKaVxAcYA7MRMKTR2GlOZl3cwvbnE/ht7g/BVwHJWZRWEkg4aEHS9D3pszvFkWF/wD3tFg5trid0l2CvMFIphAbeCwsEENi5ZO0ce6/xqmHwz4akOGyjUBy1wOl8Re8lspuSbwq9bPY7Y1MJctMKIvtgvTVSbhCxh4s/2r/Awm3702GRjPXyXqLFgXIWqMnps4j8G/V25RXlWEMKFFkig0P5M86RNynbWrnG4+IK/yZnkKcK4Do9psP/x7V32b+BYYuH29eP93B3H05zf7JpvMMeNUS+mz5/GhIOr/ToXsJiZB9uPEH3/fFJN64VjfOqfbDfAscPRQFWxM2kAI2dNxlCHWwSzivs3AhNREtqTKJM5+R3k4ua3iWkxfya5kReeD70xWNNTggQok0Jc4nhvkGzECmuhNNCK1hP5Uu7S/ZDYU/ZODy2y7vUaUuMIBSeVYswbQsop2+F6jy7XGSIvRO4d3uS0IG5ZBRhTlv5FZ257pLx3ia88sS0MuJX33rziD5nC0Dr2Q5kXxSkFZPc4pkt6cjFrqzfsBImE5ANnnjVWPz+5tqKXUyAO/l0LtNUwrmAwVMgdWHJ22fm1SgcD3AmLRcqxHivZvhH2NlaNQRAH2i1+lu4aCNjDaxs8psV8afUbFxj4TPQD1+8zizdBhsBNPENRQwxMRflW0GmZW2oIZo8L4Bd75VUzhwyGhwFjrPG7KxBUFoNolSJLbm+p3guF34Z7MlSQbHR15fIH8c32rmz3bC/UE82LONN5TYxQAsD+Z6ygZAFMQRoaEEBlQ6FwrEyFYPmU5REvbOz1ju8zzODmbV4EoOW92/YrsX+DDUxacy9/6iVFfC8lAKHdX8RdST1V5ggtz1oPrKpwKiyvm88bToGWuy3JtmetwUrxbTx82xc/RK/F08F3+Nq0fXUcP4XzKv61N08CdPEHqusZqeCDbjx+czMmwtPZnEA9yt61ud9EIT+qIwc8yim6JvEpKVpEe2GnOuEWeUpCQwG3Vg2ecV90364KZUpMm1T9cWJ+ATNcWf+TiEiQD2Rw6lVz4TNmalAg5JoRbdI3ImAfkV82vshqt9TrGltA33Up8Lo36edWvq/MPAtD74CuTkexY+/DkZPDn/P29lmZjtmui53aMp7keyR7ZpM6b62LaSt+tYVS/3ylX33lwTXI18cj4ti8NaU0XJRkBPUUJ1XldmckfnSdcSBi/IxiN4n6wl7Ms1CGfamNkkz97S/mO9CUsbV1vFtVJzOFYYsNK5Lgc+Xo/GPAhEcIUe/8RgJIb+TOYYjwXAdB2RbaQcB0RVqx6JEq0WetG8zWnfTwMbDl+LyJUvxvBTQiUZDAzBvSn+KIW0q3br8N5FR
Variant 2
DifficultyLevel
473
Question
Winter is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
Two of the points are ( 3 , 1 ) and ( 7 , 3 ).
Which of the following is the third point Winter must connect?
Worked Solution
By connecting the points ( 3 , 1 ), ( 6 , 1 ) and ( 7 , 3 ) we obtain another parallelogram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Winter is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v2q.svg 450 indent2 vpad
Two of the points are ( 3 , 1 ) and ( 7 , 3 ).
Which of the following is the third point Winter must connect? |
workedSolution | By connecting the points ( 3 , 1 ), **{{correctAnswer}}** and ( 7 , 3 ) we obtain another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v2ws.svg 450 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX1/sB9yKbCuJ6qv3SmNqxJ2XeXE9+dGU2xh092oUBXyNLIdC/n4hfDCTkFE868u4HakbSPJpVoVjjpsO8Y1s3s71ip/HwcBxwawMYbhvsQZjmfdPPs211/JgN2ynFXWPlFxoV/odKsdc9YE8SLFi56JF5kL4k/S8svRiJGCH1MtnQPEk76GSPN/i3O/6006DQBNxjAuIyOhsyGoKo3Yu30q2m3Z8Se6WdcxSk2G0s6nbOvW5+ueNd1dC3WHmvyHTSfHB07N5I7lsLbUqVw6CPOfMFJuwJYJ94xSczDC+dpQEWY9mNRjUFHItkj4qXHPZmS9XWxCcSn7EQmYPh8EGeiFD3tDErgPGCEiQxTim4W9w9OeXalNf4RO9dGeYeCNlAUzZfi/D/VbrIZNti8NMyH2S0uv5iFyyYjJPbllJobpZrLIFrZiITw82Wfskbg6M1yj+tpXH34U0NHAiBXEZZuETTqSvxF4oCcHAjzsoLXo91/HDYjmXCypW2XYzrxKks1Jh8F3CvBU7iUbewfX94HprHVyn2XzqTuBsl9aoRlCw8OFNnSf7hceNnpZn3oxNGE6J6zvngWurWMhh+5JA+heqWVe9GKUhVvVq3cIuxGjTF1kbQoUshj0HZrwmVujJbim4GDulnU50UlEkRenES5O+3onxDYBPH0aFehnTkWLwDu/7hIqxtl4zczaXriCSoawr0AAauH+RPs+u72ZTUB3BW9b3lehaIB64dvakXF7gvXi7gzN5PY5Y09oBBRbBdvqnIedh3N7zQUHIohpj0K1GgMybAxn9yKJk8cOYMivhJBCic8iK6Xl2C6wEZJ/wcxjMgGniP1LqUqVxdi5JrvGhz1qqEatg5W95Nq48JAMEkINzm2Utn1BiZiBmk7jT0VrwzT+kDAiEbmwPBQyFj5lvyRxsZKl+aU9Xf7GI9nEpDXJkzksydSqu15QJR2KxAdzLe/wk7g9gTYJrONytiqu239OCPOXfrZ5kIYcMOXd8ul+imNdOaNv5QKrNr2Mk04XK9e+RDs+4gcai3yUQP7oTw7YYNQn8BAusCkXKf4k1PJTv5IXHENxQpdhNyO1PbePxjQWVpvXZfHCjVZVwH7w1jP1yjbXlTNf5phXondMFA2mYDuCHP6SWb62SJumYe0IN1iWAcGxhKUzYnXEufQZ/GyraZman9m4kej8qKzd4oXi16QQ5Yrbw3YY/0e65WyF0u29ldFNh8cyA4GuyTl3ygKu9HhCo0197yrIk5XtFwnjvLOMlAFI3zOyvxhTbaK1B/9gVGFs7NXKcLmO5spt/K5FP/A6zlmxF4U3bdLzy1ECOO7EFZCuQkdUrGeL2SihWE2Gm3F7FNycqyBAQSxsm8r+P3xXv21mH7OxQGkLSw/uFAdbxIQs02fXmg4KnuiHqKl91DIiTi+OP6hPA0ZbIzDrP4XI+ZNIx6JNnW48Eu78B5NO3e+6B8VwyGQaFlCifZDTxKyYa0ccxr8i1ph6XPvQcnMnfhQViN7XG3Bemt5sUQFkHaWfZyrLiLF1dWdjdyiYWUGc6X5o3S8vbLDQb+dWF/OByzJrNjc5ZeXHQFFerFN6tdDhwRNoVon3sLY8eWSLEXTLbiE8T2YPQ97TehTPd1sQehZlFAqRRW3Ws8WKhNCQor4XfBZcLX+DQsgeqvqtDeeSH0Q6VdElDy2G3KR+4Dx2qaFWGMUAee3ontNtj4gZjaYvk+o8pXa9MGidIK1WJwAGbRE3nnpdrgFbKTfbUD5nJxX5jZ9gHfopkXNhN8Vgi+jhqlv2DLtJqpN53BuSURJRRqg==
Variant 3
DifficultyLevel
475
Question
April is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
Two of the points are ( 2 , 3 ) and ( 6 , 5 ).
Which of the following is the third point April must connect?
Worked Solution
By connecting the points ( 2 , 3 ), ( 4 , 5 ) and ( 6 , 5 ) we obtain another parallelogram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | April is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v2q.svg 450 indent2 vpad
Two of the points are ( 2 , 3 ) and ( 6 , 5 ).
Which of the following is the third point April must connect? |
workedSolution | By connecting the points ( 2 , 3 ), **{{correctAnswer}}** and ( 6 , 5 ) we obtain another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v3ws-min.svg 450 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX1+tSDPnGbLJf/bKlpv11cK9RrvbOuLMqyPzTiYE8Ww9kKJG4hHC7xBCAokGvg4mqNCqmIm4hgBP+bGmViekA+kDwLfDiNw+yYTHVAUkvFDGTLlbAqzQni7qxHIcpeELIlKKU/fmTVIzTuaLEzKvkdoCITzz8zSUCdrTe4SkXvVWvoZJdWfKLCvg9NdBL+hPWYr4beEABA2O3BWinZ4J5asHlhBOllVsLFvW6BezRrJOvh2aB8YbYfN2KcxVEZi8VDp22PdkR9MKoUpodd9uoXrukqy6Q+dVCIODD3vvbusFTBpylHxrSK9nixrzUFn50MG2z8CYBWpEo0erJWa9Q9lAO7EwMx50Gc3mp8tZkYvGF2rE3F1QtUk90nZNEKo64knD89tGxpcqMnhqXufUY5HwE/rUVuyV7rkEkYdS+ZZaI0cfmX4lsHjoOeIKfW0JrGCENfMbY556bi0rpo1Kr8U3VgDpU8/HW/wUrCYneleQTvNIvpo+ZSgwERw3tCWInLmlY+Joy+b7R02NhPWCWDx/i+TXiJBr+VeaOO1grSnNbY5liZcBlTOn5Xo+xzPYM2ZvTX9N5hLVGpegCSZfCz0qpyK2VZpbzEvwv4NoefSe1Uk3DF/D09OYwpyWrDp35XNSfUot2WAMmJmJiG2/osF8j8BlvKa6x1i2kxPDU5IaAr+98udiHQV6+K8xTGRjBOJvjXeiIF8DaUi8ZHFp1nUrf7XJpZZd98zFitlulRQDX5E35XnyWTCH12DXkBlmZkSvVZmlSlBuq7l7YNiiAqqjJaMCUJbFt72/SLY/6SQ1wFfN/U9o/zzR6Hxwr2SmG3J6brKxujvZxdJCH7vBuxXAvNQSp3/eIVAmNcbQNAWNML8Rz2zyw9Ru9/gaFhFPs40dpyPvIUlCqxfy0HWilypHVGSVVnPJ4xMOsrVcMIZhUe51otVFsIjK50/jUJSInGxu544ILKmLu/4osk2h1CnKlLjXInVKPB/yfeMjGznnaSmfObwGknvHOIV1lH2oZ3nNOlAicPfCxhB4Kg76VqwrX1A6UUKiwxAzyxNG2BxWWNYlDGsOwCcssP7sGHX6MFPvs0xQDZQTXF7EH4L07c2TXWWcwMvQVi+SnTcgF0k3zdr7ACUB30PVpP7M1NECmS/TWVXSrV1PN7s3hYEyxEqOdp3rU0d/nRMKBO2FcdRR5t2OLKIquopNNCWSXJEvS9ljMCBv1j4mey5i/JR3Q19Zctv8UxIFxWusK+ZaiB5MVpmHB7BfaP1uputPEiT6cBgEVmt8yIwKSWYd6lJiENeQ/hX3wiQNdfaE2r+vPtcE++v9rEC/2rh/vqv45Ww2PqbyattSLVRoAl9e1Avkjjzmo64yLjeYuYJuwRUDMwiyKm2c6FpO+iw5PYUIdDeIribxoyy9y1Q9j2ZSF7RQXEueKJazZHcgM58Bl5L+F+B0YACiLiDaNErTIazHOXlnO0Aaisoi4iIf3t1ClkjyHn2Z7C3Oz/wBoeBIyHWPxv9QS0HQ0a70JLOd38/DDRz7GXt7y2QPJCb3aeJD9zdZI7DzPXXFh8m5iz6fWBCIQAfu37zMNe09Wi1CgiaOLAiFEbbBSEekdv3ZyML1dOiTkH/0WiGGyk00dS5schor8Njdm830+5a+orbpFp1lRXwbkvUKLckn/ubfjPQcfUCIPc+aiq2JyIrC7CeCbcirRehUpX1KbG7Lxt2Z4ojC27e2DyjIgtKet+BRK+GAAgksNiKTyQoW7JBGMPGrevMmen9Xx5HGTqpMz0zVJuiVBnbUm32l3UjQ00ts163Nu5FgCHn7mnvCcj0MUxqLxaxleYS+blmF1jCHyYDEQ9illwIMW0xGWYOouHT2hHWpOWK5eLilHmelgO/+yzB1Qp5185I7mrgkuGHMwPmX1OcciCyNQCYHnEEcPHleyBE5ioxHWEYBXo6PrRl4bF20JS/TCelSI0pEGt032lwT02om0hYNSjYV9z+50mQW29lWssaCIynmEIH6Gx2UOiTocEcZ8HXCHIvkJdNFkggKboQ8DW27NioRMGbQTUXUeL3s1sId40MPQC7evReQ34ilp+7e/VXlv2l/vX4MevyaCZrYvzNa0+bz1YTSRboQIIiPhwxnoS41vMJhee/yi81MkK/h6Tb5hGALXCj+OApbgwJD4Fo9koVznmQlOJ4xkeF5tWFvfZneNkztOPrrGSOwGEiU2EfELJGHlzRUrcSkofty4bAO24zuOddN2NpJ45NaPjbZ8oTCT23EttvPun6m5UQTou1LxfyXoqXMuuByz5CMhG9ryih73Em83YxcuOTnQMj9QZUx1m3AqsMQdISMEaX4j1yN3nCxSodHpWYlpC6AwEk8HeSlOw78AKWVm2YOJ0wULd6tqiDQvPZBB/9InQ7f47cCAwvFunSQvhNJYjyY8uuuFzAOy/0JtlzpkCOoxo0Rj3SgzXaQfBjJOh/x+lgSzq1T2hQOobZm9cNu6U2wfWm9PIpe7g8TRyY2d3LHBhshQ3JFjtN1gCdpfT/BQor4LefKpQ0+Ucyhf3ulwEDbLBxI0gdZkrb9UMk75n4Z8CpczXSRv+tns2K+A5N5RhtXK3dfa4ezPQ67YkGQOIYlRGIZMB0VZGj3vv1wsIL4u++N85sfC5dS+An4ggfpivmKIIIITSGgoPQWzMBnwl/g8npkPPGZxNbo9IhRUR87GuZ99s43SISYzW01re5hos4upRhTd45S8MxnLekXVoW/WU0oPbuedzuC05elakO5ygwLfTRYxEDl4/XYK61QXUy3FG6Q9V9kL9liZmjRQr9Wm30XUK5aGDahfhRNOod9drU4c+a1jLsdLe4ixR/uwiRt91Q5KxiD2A3ti6+1jVkR8z7sWnM+2a3O3MPtnzFT4bWLEYYucSOdRYnv1xKEoJ4mYbhG2NtHvBB7AJ0et6XuKV0wKaoQ5a7Jl+oSor/aLHegYzW2QqwAE4BPt5/NY2Jh+n1JZ1MlDCs+mbN8gICb6UrYsUCIu16a3AszSjKe+lSMLRpOmNo2/Ty12IFGSgqHiqg9YRDHbNmtcqgooWQdPJHMSb9xATZW6Mrsq/3l64dYDxsvHiG6N/nT8ugAwAph/QsEwhTY5VFd3+NzehZdLmfWSCXXlTLkUZI/qRL7uJoht/zVs7JRAFd0jZpJfdxOUMW1u1aGDalA+8Kvfu6BBHvbeukfgZzbjniTBWKBR5WXOa1Q4WO/ngYWOQ6tbOtCZgvZxA3KNlElIJOkADT/uBQalcRNZrlPDCUkIZEd3Jt6ExqJv3TIvKHSVF6it1saFEiqTUPZFJkH1ibI9yA0oYARRgaVnzGHNw0DqsdPJxvfCR2BTt1C6qURpz5Je9GrMxL7ziQ6AZwdxMW2Ob2cLeQPx+ReQnfKorIiwUe4eyWZqeohLMLXf5ISJYhOYVpL4fSiPPTdrLitGseGZZKXsxRrzWXR2IX8zVRnV0oh+rqI2EGkPXIFRtIqzfJZHlYcK83RU4c7WO++Dlc/J5NkSlVW5VKcDiJQT/nrVXMliLJdMvLHMzkdZnbCHj8LXLndk/xYBwyNCEZsrRH7yv7ARMoMLuTlljEQrqzQKhqHMiBRZO6yDlGCst93kEDj5LWNAZF8BFIIRCOeDlVWVFcawxGlClp+16w/FJZwWUVqjTFFsir6SmRhz/3+UuV8oD9vILFZn2JYHXRl87uhMDx+LouAilU+vncMAbCSsqjRCzIj0Fxkp2BkKPa60REEfHC/KpsJq7HSmTV0pRuB7hSblts7IbJrUiSTAlc3OyHX/yd5U8gIpi5LnMZ2K5nxJ4NCyvCHz6v87a9KAMHEuwM4DlAPUNpcol88BRzfA/+faysfpUbewALFiLqYXPMP8XHv8IuWnSJNx65rslgCnI4s6sWcpgoa+j5u6UB4oKC5B4DAJ7miCKx6EmwusmlRGuf2CDILPeABum8pk/NthwbcPbUDi/QxnMsGntGOArg44EzpEVAs7B8ZXx67HhLdFHyRYA9MSH6yV19FvYh5q4hz1DWO1ce67HkAiQT9zZQZBNJxGqWxg4Nb6hHcQQ7HoYnA96PLpUmUWrYqbBvlTu0B32Wiag1rs47eZQrK7SwhYAYTWyLVSRDVzEQADmQUwyzZQ7EYbL+bBJ7A/mNoaQZWSFpwL3wFBy1aCowDvBLPS6LR0SBNYzkSXBysg+eOUJg2S0IMXKr8njgnFGgg96Bc8RO1FXdWex2e9oSrvKasGk+DLNoNuhhUQGfpif6gx+dGmc/y76Na5EaCtXepVWuJHbIhgYapvlewmhFAMZeBavw6b2X3EIM3JUml+/8OEVh23J7WUM1bPx/a3OZP4lIRLq6GeyTvK1E4AyJU23dzo8mLYTlZo7ocV78kbejWsOcBbDo5ssCOFisdbBvminFPyOEgkR+30uRV9Ahh/WNLHIGItceI94h9zYy5T0+gcl1BKwylWKbUSkJIBekdvGXeHmVnKOcLr3e9Ty8lJi+ATjUiVlnlMuW3ixtcGv630SOhvpRzZoN7jRUD3Sz4Yo8jmMMpl+f039zDlbK4ZPPxFidrE8oDPN7bD0kuKMZk2t1Ab7cecNLx6QrUZ0QRcC8SCcqwuFwcjBnoH/KxQUhajLdA9lBd8QpDnqdHQkPGtlP8TedBkuHwHpqfCrUNjbSpfUXhRdDw1lRnS3WpUd6puHvziatlgwm9iJb4SjQL/F0Bx0s3waq9tHKYC3fnfAD9v3LTX187dl1neHcAclX3eDaMak0CbpSGMbyfO8MgZ3sCy8pvIPVmEizl8nYgu34G4YUKxs2JvrU8MNq1qblJSRPVsxkfYQhE17Nu6TqQ5Yzr/hHq/Hi3kUHeuEI1LPqgxgZ9aE3YHT39In7dbr+nkI4eONFPPY4MRhhYu7U=
Variant 4
DifficultyLevel
477
Question
Didier is drawing rectangles on a number plane without crossing the sides of any other rectangles .
He has 3 more points to join to form another rectangle.
Two of the points are ( − 2 , 1 ) and ( 1 , 2 ).
Which of the following is the third point Didier must connect?
Worked Solution
By connecting the points ( − 2 , 1 ), ( 0 , 3 ) and ( 1 , 2 ) we obtain another rectangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Didier is drawing rectangles on a number plane without crossing the sides of any other rectangles .
He has 3 more points to join to form another rectangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v4-5q-min.svg 420 indent2 vpad
Two of the points are ( $-$ 2 , 1 ) and ( 1 , 2 ).
Which of the following is the third point Didier must connect? |
workedSolution | By connecting the points ( $-$ 2 , 1 ), **{{correctAnswer}}** and ( 1 , 2 ) we obtain another rectangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v4ws-min.svg 420 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX19cT38XFU8/hvNw4jcZp8TIzryDsjEv3fXnS8geKBccJ6f8rzOMK3OOYI1pbgN8z+MhEAX8Jb0Pra2B0m5nSfP+V08ABWMFBwBuWEU7KtSqhdhyIioZwM/GH30qq/lvhCWLhAN6QfqJ07bQBK/ybBJL6RAJ9T+eav5Gvm0b+yiuQYSG05LSRXMDpYuschiuCpmfsul49BxvYTJHylmjTIvL93xwIW4uV9QDycU82X98hzLHWDCxpO6hCVomv50ZdJDIxc2VSarOqDImpV9B0RTShM9ID2ubgddUf11dXR5pFIpwzRInYOiGEnv1jU9NM8b9o1+p+EZFcfLDrm5qPc00bQhJmGqwqHf8f6vPKpEDpYUTKdg09aOSSKWqZ00Yd/rwjl8GoMNsSsEfT7xxrBC1Sh/3F50EMn7bMHD7ZOjmAdheSvUniUs8n+PBXZ2xXaeEH48sIOKtfMQQPKF6qz8dKvKBBvWq8h6dG3gQZur6s0Zgr7A1Pw8Ya278JriGm0VMAkN2oIsbJtncjhmGg+qNYddwY7ohtE7QvlRrg3kRAi0ILx+G2+fhiuk1MnJnPWv8azsUXrPHJ29PHBOpQLiH1THNBhSe2uOR0USbDKp6P2cFzoI7N1i+0fCyIJZE39tkrvljoYjHLNf9d61IGZ+YghEDua4QWMFXmq5ZByfjOvy/JJVUXvPYPKKfzXIXVBKv2YhMjocYKGkHiCXaxnpB7VexIHjeYULYJMm1LEgynyBTxPITt5sjg5+fGaeuXpC2lK1ev3KpgbxCxXMxu60IZUeunE3LzH95nwSQk7/24yY8ae5nmDTy2UduPmE4rApPxj1+zfw6qBvqFfpsizSQYPXpwtW5ZFcH3xhI+owwU9QwdGRa3T90EnK+7gGw2h2dA1s2RHmy3H7zFTXNiVhOmZqm+p6LqV6WZAzHJMhdCTM108kSx678YQVyfxH45cpQU25Gez2yiYdnCbdUa/BKmRWhMCOOoYkjYglKWILwmxRtGdhuyQnCHntRrfwZ+/oQW5OLRu78fBipSXN1nu4LQRPtrmlyIxy4/8FaS/lDuvpd8VvRoTyxvCVQX9TXlcr2j+36qAL84KlAElke0e4IJ+UMUR6srBTXvEku9FyhHmqsdOtOHQOpsALulvt5gMRu6JwEERl+uPgyQrtLO7vd5metaiI4eGnYukXeO3ycgUgU5BJE31I6EAQOAdOJvg8DI7HPTQYV7rfKPZxXsumGHIzujeU8U23uGWWz+S3UdmKL90d5jB4XPjY73YsV0YkqqyYEEglZgmzul2Y+8CUyNL/t8C1OtJPGjfDgYGq0ZAXRQBZ+cuWTxF3ii/urfQ0+qMsdscohjMCzg4AcpysBya6S5bflXCh0T2GUH8l5shgIsvpyjtLMJGQZGQ8gnBHDaKsDNmZmH5l1bJAuSWNkI5rcAWL6Oje6pXkuiIb22YngRGf6hOqCBxEw32PCgG/tjVb8rbxtee3cSynHMH9vS+69wVbBCZtatAAKL1rYEaPfJCVxseOn+ESE+07mIsnp63yRDhy/uUuXpxbp5fDpPFHOT6vE3Jp6SoC9rbPGMxIbrieORdENuCwXe2hoge7apOubWAY1STwDPUMgisl7Pg6BlOcENnDFeIPnpUgXrrrq1pVjHMwRxeoUzuuRWBhfxb+YMKifw7gguY1fXmDuzQNWBxAQypHLGaKe0QmPFfBcXzmgIH6rsZU5jOxigiLpFw2mMSLFljdahqKvpyuDFvklWCu/YKHRtsrCWuX+FOtuIaD8FnjITNRFl96wokme8WUb7WYWDOLo+Dph2BrMLOjMPB/dA88FYwsip3dVyDT6Ma6qd04XOJuNf5/zyIioHYG5gvkOznaonGK07pN4LVoDEeMqnkIw8fP9KcIkpEyCa3HnwXAn37IO1e3H8+lUXM4/4ji5+fLv9008NAU90/LCHSI+0MY9ZwgJMRagicPPwfM8XIpqQO4ZcwPZadpkY2VledtHNWwIMQHMiAXVPtY4illfCDopxSWO0K1BF9kqCTrenfjA5hdSAovSPUik3OMM2Wl7Wg4eKNZTWKTEF4ScfGV7vMy6e7miAFnb83SJExPfSbzKa7H4/HGDLvlcSFU6Yxr6cwc4WEXyi15fS9jkzhnSso3oBU8YFvFPoxcKK2XS6B9+xOEmXLYDMzmbWamwm5bKQ4f8qjmWOoAOohg6S5NitOUIvQYmOWgPUq6laz8GNd1uWi1l6/IxCjjLRRL8ecqsRXK3G9gpLiVjpZw5dUdanaz3i0Q7dCRCRpzc3PPy5rpdY+adxKUNPYct8g0Dfa6Nve6cIbRRX8lAtJFqOTz/I0Sop5SNvoT4/JYC4cMzTUQC46xcy80F5XVwOx0DYxmR1oxeljrXokmqIENQt04pWcnCt8zP7fx/u5U2ToQz7CyLgRVJrrDKX6JetKTGEYhiei44N292pPHKZolsQWVlRSHRrMQeprXtdrkKtlKPUhskfx58pS7F1BVYbyejCDKmyntu+A+sM6h31gjbPWwMtM2C/NudS+jxzaDMIWY5PPoWacq6BV5l31nf78psCyKjh1Hdk+E4x0FBRoxkg0Er9qBiqKgaICWR84uv1eQRkI+MhfBKdezqFQNFHrAaM3eEC8+rCQU/y3+XezusUKHJ4Sm6riHuNW7tLlNa93FzikR9mi2uhYcO5SZrEElWDhmvEKMwVbwjR2wTbwDmAercN25Pe7fx3L3A90lPV0WZJMj4VU0YC3oSCTLz5WzLHZO6YDy0HkNX0Tik0K6EVYsAq/iQXh3LULsEt9akSK91PlgkF3RCLLENMzchIicQ3ZuoS8FRg6Yfq6AyyCx1QccbMLSukpGkyteuZP5EmfLGomh8w4kymehudkK9IPDemTIsvzt3JrOL5XCfhTUWrgCDVgsmFj5h5op5boYknyLOFK9gm630k6bo9t2KwqpDrHBEE/5qFQf4i/OOnv4r9dUrsYv7hmF7hoA950bMgX/5aAg5eiPNm6dZM2MsUGST/FXEY1M5zoF0rYDkj+Qnt/kfoaeM6yClT2mDYbNZqGuq9ch6CBokEJS+ShsPY16g+754m3aoA1SABhwSAcl4e1Gfhre4oSkTRVEFgMX84OJODiygU15FkSnbKKRK4DvJkzZGwYW9k27lK2xjPC8a/DNLcQfRux/gTZ2Gkit2MBfof9bNMMuLeFdrVOQIe2lWre/z9GtkM3y5KmTIqesPwB1iDw0KfZzLAawRW5ORivVvZJpR0w8oOXzXxDhbnIK75wv98GXnX5l1nzkCJPiz2E4h8kEK1eW/i+HLF1Ge3miiOM8hmZIWYXIOZjYmNFVcGZO4eNbwfRT2WFhbXm8BWIH79ss+J2yiuZ7HGtK46dAS39bSk8aX9c65QTpWXUR7j9LJ5vzA0sjQo3IJwQN2XHHTSTefG4Z4jHIITpwRuAmyBtg3xcPur9ECou9lwiw1q3yNuNPyr/kHXGfQzZWX8RFjeeUwT/YrJKifgeXER85YTTOKS1N/QpqxF5o8g9MYmwLpe2WwgSNU8AohHlgCmVHTFywJXa5kDVdY/AqYf1qhg0mvTfhM/BkbCTiwZfQAETS6Rs6mkBsxej1MusAyKu9e1M1kuJ8MklJjzz8kQrY/fFfBy0cIq8GInuO98wE7/TZg5d5b5JT32+x5OyikY8txy9cFb5Kc/ANBaQOsWJd0rQMfYtSglji48qH6rLH2GVgBDQDaeMFsDKuEA25d1hf/kLr184k67p2pp519fQR0/4/jLsHAmTHp6z9AXMkCJK59Mmxcviw6K3LqpvgfvXTqsHOlnqm/mn5GfMto9xWKB2NM1djw8k/clemz4LgbfjOG8EUIFKUedFmgdTGUQaNGJ+CS9jsyQL5yc8K1w6A6XNjpaAxUmIPrIciLMUu/n5yXo0ibpMWFxh7afezxGb64PdeSzJ7Pi4/mbHz/PTGjzsxmuqfN7c2/cKVmvT8o/G2x/GyantH8TFLvT1iGoQboq7B+9ow5UHsgltYH8a2Avax6vMS8WaRIf35dWrwYrzH3E5xF8/5wkD2lW/1oVi9K7UwyQDouzcwRqt793wegCtIffFX+JPZ1adLf9Pwo+hEYBQ7ZcPQscGvYFodBT9eMF/rbstd8flqzYCRmuoFbYwbjlawZrVmOsXbS1AE7fmhG78620H5TyZ0V9uS+Mstvxp4mSg53od88NdcvbE0LjfCqRlvy0N2Ywedx/Fv/6IhuNgp5aQgFz3/lC1xKJOgyO72e6u1tLxAo0ME6Nl3/dfqWPbLLHuF34lXFYbgs2I9QxudVluuzAgm5m54Lb7j5L2ebiHJyPvysjzkkCsUowMPuiL9c+eKXaXr60nwQi1Y6o1ToIQ2BibQoeOQtxIu+51B2AtoP7x1cQEreT+TtED7lJHTfMhlIZaHKlDNW8G5o7fAxKk8tF32yD2v8CmXQAa1QKf2jCAPZKYJsBiiCwovemedHPAViLuOanJ65jX1LgzIX9kfrQhG91ilhh0qrPmuTAScqYPJeq/jUKSWfzauDmvCl3F1Rl54v/7MDjsOklmPOX++jvvdOVWCdgJ4TKl8PqfiL50aE27JNfaJ6h3iA/yWw8BJU8/2C+CKzFwk2a9ckRIOeBe6MUX4ulMHIlQyYAdXCX75oOfSaelADNqxnrSptIbCVieTLYK2/QaTWKtvEW0tsGLSp9a3X6HtUrTdA17XxkSh641Hexyb0cLt+rgWHW3Q1F51Ohq/OLkxIN/bHc1zVgh23UJb+pRrBW4QPc9i47F1Z3Va0qlNnVt2ldeZUTw0Xp6kzT/Ibv6xXY2BgWqYehzzjLZAd09V+O5OKCxKCew6EJiW+TAhrJlwIHxH38Jn0UwimhtAPwJ0LcnF0KT4r2P44rqaUtwHRak6fwVi0mQkKGo8dicF1Zu0/6oUCPwE5fqT/bTLnk2ZThSjqXFuQW87PiiIFgjysRGf3164CYCfjAiXd0na3aCveKHX/XUpUCHESguwLOrUC8lNVVrlIgYXFSSUww8k1VWc5/pve7JcoEPGRAkn5OYunMBoYdtG4wvEUB+Ir+mZolJwy901bA7pqKku2AtgIjQXBY2zef5CUJl7Dni1m/LR5obGMzQ2mAPbC1j9xlIl8EZ3hSFlQxxM+ObdxmpdzfUaoxP9vhT0s6zgkQBZBd52eydz6kgEPz7PdnQi2XmwXFUbXZbyypG7lMy4yR0R21CP6YeU4v2TzATc39ez4T8eHNiik2LxV6XLWGI67zBIEUn2I5pW7ItzSg8TVzyBL3nVzARMP5MzsxtD302H728xKUw9IRtFEm3nwcY94pFyYL/WPof+b7EQdjZaUzSQbOdGEvZvXB1U/duJ8Ppx/NskvY3XXAEjyJA2PqiDbR/naJgvetoXjXC0lKTkekPacgGgit/GMexiMHrdqQulfIn2qGjKkc2vaKgxTdI0M/G4NSXThLIYMwXtqNw6pELniw139rvcd6ffddPWtCONmV9D9UnuY0W7SvSMbnOUigcvSF3xNaff1S6vdyHhHxVa+8P9RYVWFuPhES/ma5vOdgN33f9NOzdxGgbUHAxI2pJ1pzpuctSjc03thhe6bp+3cRc/ni/qdNP+KNp7DuILYaurg2WO2Mwf6NJacqm3awW++UpTekCPywUcc1jgHfKNpkBY/NDt33dZJ/PqJs3Ngdjc3D8Jhe7/6fqyR04T4KQgvw/mVy7sB/72I4FXd0bKWIkrr+yLIAKTUdVXK+5plC40LenMkaQX4J/AJYoeLUDCRd0G3YEiXdtp+ocalfL26B7X9UKGUR8tsIY+IXUrn5KxGPAp64kPnrvBflmzWuaUtGmBbIi91xNVzIRlFLAMjsEPwiip8b1txb4itOT1Pnkr5XnZFlBwbdAN/V/T3l9XcuSyLLdE2QUOM0qzBuSTdc1sBKQ1tQ1w+szY9OLShCnP5+xVgl7nrNbJe7eFfc3MJuuiM197iB8Vf9DS4P1fLXZK0A2qaoT461ZZUdMh7hwBEhxmOgLuGjQ51mcUlqA9bnwp+BtCr7+kEh58fP/Gk6ywBc8gtca3rYsYsrvF1SR025TKUCkPOy9j9WH4gSlKEL7p8WQ6e3dSFg2gxGwTsn1ZuKP2RrxC/gmrd8brTJIgRCbwregzdVOeCZS4ZlankGtWqX6myNsolTVHrXrhgi0MjKYMkG+NCyAibXVjuvd9ybNnYmo6ypCehnQLuktM0bK9St0/UJpAE9mrcEDhG87XB+7NEKgtn4/UV6D1TnQHrNPA9omZSoj+ATpXxwnpKktwWfiVXW4bTv0ErnsFfbV+K5jbbFmMy2Qrd/A7f6AgS005Mf4+KJmE3M9VsUuBo8Q2m0snXu5JVIeFpbLX0fccnNapHSwDjETMVdaT9qDnZa5Ew5Xecv1SCebQFN9a0Jcol1LVbhxeaNj5ElZ8zBSK9coyka9cTLcefJbPn+34zLbTFng/SmoGZeglyPXNNiLOvb9+ytuGMF63iCY6jPhbIa63qXp7fyQFBubM2iCe2/jLrtaUViVEP8Hf9uZHlxAcvfvlbwPf92WRJ06NIYmCM2OCMSpTC0m2NOBxMeWw1jZjuSyhazRLt8Ib2tv8HI9Nf1voPjttCPf2YdFqmxSitohcB/sGOlcbvl7tr3dUBVQZpVbmTDE6rHGLsBPePPfAqZs8eAwDOmHatAJS9M8i46vce38CM7q1fmcjGzkA5oI/NxyMv4Ieb7fuhyXWrM7la0ARbXt+CpWg2KOr4WYXPPO6g+G9JXc5uqZ9yagERZdqKay82SZL7Qvp1PC+gDJ0SIsLHAedMqrz3DKCoEeQuv5fJU8OJTzuy2kiiELV3LlkJ3fJrG5mEJ9igApUWVhqr9ZPeyNkF2w8SLj08l+DbHfxHb3AwV7N7ll6Uy5daxCLgIRTSy2wCuvGt124Sr+6EKhC9ZDSQypsi7ezxzY2AyOukHEeUrKG3qGRCM7I5sk2+45wK0OQvlPqsDl66B3Cj0tVzfsLIIQWuih9VcZXdbQj3TUfkMH1x/wnQoSKTGIwBvPtWnTC9Yvsclyt1Kl5M6JWJ0YMoW06B34VVfny4ybTNk1AnqJPdT6tRfdGl5jjmtVs3xjc3ne4FpK6DpO+AK/O0v/woYzJh6v1k3k+k0wSTcGrw+1lL+0Llq+wDdRSSEJSF5lVrfPqkr4jecJ8HeSg7mbnhdJKYphJjUHDuz78/ayzlzc5FLMwRNo8jZIEUyFOhz02zh1+QAHRu32k6K0sV3cvs7OcE/8m6z0NcsbLuYP6sH/JtB6dXplspwuQmGfnSCrfGsZTFuB8KRtjDJXKLn+GkJUpgbOc+UDz7RdU8bgCpNjNJXfn9/aS6P6k0Hh2dPzDo/pI0Ou52HCjAfSBdCG+XTbSPv9Xw1R0q1pQYvQ1Rlo9iLlu5Jbz078dB0ugWRqr9hGak4N5vHk0riusZI37uPYIxXHPVkl6wq5znc2aLuDiiBQ8TNeIrS6LK1PS7BHsc5ONGBURGAoq7UapCsZravOZe2qWWw6S0V5Wi72as0XHdHUFs5lCGz00LvFL85V+UvQ4DbzAahLE3NwDqOhvdqkffCMR8DKkh0d93rwnZTShSpWOGixzE/Aybofy8o1GCcJ0KmkCX64F8VY95GHC7u7BSjtpFW4VufnaGw3fJ1Vb9F6xYkKddmTgiTbxnZCEXVyZeZ3YtaleFDM1teH4wka7PUyEJAClo7CckgcanZLUv6a/n0x2v7ssP2Zj5Ou/SyHwYoJgFk8UtOalVmslNWdyrv2fQrUm3bK+Ik89b2pCGgUpdF6gy54G9IViwo+kZzaA1d73aPEl/e70blg4Epk3gLeqYxPrYxlbntb/3x+pFb4vrzRyDqH/VCtGPUvDAlfqPVy3LPz3YE1RXF3smvYrM7X7ZMrR9Xf9W+0244Cz3UPghSrnmVgt5opELyOWd6ZaqjMpR3L0DYKq3fZiTE6IQURV/4YXtazKxmq6yzyPsdua+s636XHb2tzP5mwbBnV49PrYZ3XWZcVWD/47xT9S/TEyrt56emlygBJxnDtYtcgMdDhlnHH1oqEhH891aBavGTIZZeUgHduNUUEXvKvdsaYs8pTFwYs01VeZuuPov3uM6wihpkiEToyjdrX6xOopmYxX4LewunLqbf8G3rNGu86L+4ZNJl+h4lcir/ep9a3clZmVmDcY3cCWPPZNgHlZ72V+By9Xntf9/y6kffU7KWFrTZ+QZyeadH6IAxUu/9cZI7rm2qqVf9BqPoibFRiZUmigXFo7/FURGEFjNlhZ8VjaXeVP7z0RWCSfoLjcwlV11MAFlLAiLWbbw+zSdIjznfpPpg5r19phY6VgsHqpS0p9IKe65on7D+ar4jja1i2OX9coQaMz+tEVXpIajYi3oWUAczvxiM+v0sMpBn1QM5NYT9yyl7RETurj3eWKV+pGXFP0rM17QLIdvEKfh3Glky7o2l8s6RiKn1sJh7a9RUfEqrlWsKN6pxEZwx5BPH3taVELpzLb+VbXH2ZMw0W8KhQioD+rV+uIySfW4/+MV87O18Jilj2S7NK1h/WtFd814ow+29byDe+qL/1KckTJulSc14QAbvlRpsXrTRy6VsM44l+52tqnAJBKiubSjnx1437JlbnQzU1CHQ9xMxge7zJYT134oG1g2GDRO+dqfJ1jnExZYhNt3fwqtr7o2yABrDaq8dZtT4zTjXstIuTYYu99ntPwENApW1ah6U5zHfe7Ata8MO0zFJDQdblKSy2TVZjD2pDtGhOoTGlXWE4QNtQpYaLMrhF2uPaggp89GgiX/g1MIq0Ou3Tpve/AOB0BcM3rDhAxwyDtxQYQzzpoN0wAmhmytkaq3JhGl/qjF4LFjCxesclFri0uXxBPcFV1qSEb64q/Dh0GgS40iTtxpSAsXsDJgYFPFwEz1wQZkuyhqHe3XRI4oHCQefJu429WaEFsPLydJOPe+pZny6MgYU4GtOG3hTrqlZOCOW2ZvVaKptPRjHOqHmitaS65T/y+A/YDri/BDFzjFzfm3JTHuDDbfuUvnyDH3K06mRZQqndsfJjtUYCJEsC7MPV7CSmThqRyokkO/VwDv42y6tKR6e0iU4b5O9DYTabeo5vsic5Ka/4OiltH3riNnFjcDG7kwIr+VQyl20WMaxGKwXMRIIQSwil3z/PPcMTougf0NXeudoaRdb+AK1jqbQzgs9mCCLj4HFXNN0WfbCoOPJVnbAZFb1RGkyD94GXvkJOLewnjdUn4=
Variant 5
DifficultyLevel
479
Question
Marley is drawing rectangles on a number plane without crossing the sides of any other rectangles .
She has 3 more points to join to form another rectangle.
Two of the points are ( − 3 , − 2 ) and ( 2 , − 3 ).
Which of the following is the third point Marley must connect?
Worked Solution
By connecting the points ( − 3 , − 2 ), ( 0 , − 5 ) and ( 2 , − 3 ) we obtain another rectangle.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Marley is drawing rectangles on a number plane without crossing the sides of any other rectangles .
She has 3 more points to join to form another rectangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v4-5q-min.svg 420 indent2 vpad
Two of the points are ( $-$ 3 , $-$ 2 ) and ( 2 , $-$ 3 ).
Which of the following is the third point Marley must connect? |
workedSolution | By connecting the points ( $-$ 3 , $-$ 2 ), **{{correctAnswer}}** and ( 2 , $-$ 3 ) we obtain another rectangle.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v5ws-min.svg 420 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX19bGAmIlEVsbgHBoG2vOEu1bOXjbQJZSxBwqV/7NrUfn9G3hTDBm5apJCYf5dl65eKAIu29GQqQp26Fpve7RBGvgcOf7rgAMTGFI++jwbwESRGVMjeYTevIdgt1fpU+pddU8oRX7Wg6krAN+x2GDpCQk39VqyrjcqtDPlTL1FwjK3JioYiaXYLKa/TZLPR66W2juaPBYHhEcyf+NUqjUEe+ihPL5Qu73XR064Cn9W5OJqFiO2gh1aNdl2WuT04APeiF4354K8xu013wLY4FqFgpUggBJ01fph8PCex3/8U8gV5Anf2XsM9RdSuOb17ONWfp+kk77MINIQP3Y0saSwmZjiLRPp/oUPsAlgNqi8oA06Kh9ip0GjUs8bC8tGK9TCn0CZnxVB27YfXOsIfHKKRxnclhRSRUS0o4Ax0Y280yLUNO8CSVTctQQVqz+MI14bIELLI2VVoEZEnd9pS+RQv4ET2E7JD+fBwLDm7+tG5AJr2b+9gOLvcv7doPEtQTsizJRo+v/nRNQNZ3qxcN/E4Uzbz59PyvzTQ4L+XcruT6cZiOGPG40I+hduRXvP4YjR1u+BMUKNX3jVpF/zNrYo02+pP9kdbHwXhio81K3185t/5kCiQR9Gu8RiVn0gT8oqpa73Oy4ZqY+L9+ydWbEFrFRxtu5YS7+uqR278LzdXbQpaemRGScsc5INifvEeedhzcH8k7xiGvHGT7NYEo/YStbcETZz6XU0nKFBlFlUY6G5lEyAgty9oFP4CgFDQRydExMOsmoBF1ZZ9i93geK3RNfoKMaKTvTugRMW/t23hNkMRnOc6XiVEcOA6s8h0D9MVKL/dA8/4yGABf6XsRfuYt/hEn36+iQHyTYm/ee0TLtwtgeVmI6PoBYO9Xcbv4Ys7BpMtIfzeuRa9Zlnxd/7Zyc8q69jXoQGOCrE79YDVJI7IcD1fefVW21dEMcfpyP9qvObxaJr/cvbplW5FDHPkiJPVwwZ6wO85Ut818uYbtVAogFcDHace7uPXW87lLudp0J3fB0szEpEPr5cdQwoA1D8bjS6RaCHudf4dpYHHlkIS1pIBHxljxweP5Jtaa7K2xRC39qEf4h7hsHuLPkYo3yHsiS9AI6pHGZvUuqHi6sgyTyBePY1NoV4t6wSkCt5xN9W9r5WDHtbkxYzH+ngwYZ1GVLag0aZwfQOcA5TgGMFQunF37VI9+WNceNjBLrx6WGWfqFkqO62WDrysPFy0oqogvgi0NNRGtYi8IWnUNqR5PgFhfRsdbXKwLr6qJugg0NWiqfwz2N7iw2udy6h9208lfSU4Amd5dkYuq4rm5uwxsNkUMV4nXD4IxObnUWbsRXdEHj4lw840C/fWXdLNgW8bYSAIaRcuTz5QNQcum5kEUJEqtWnXjbiYO6V4LmAIWJlA8YsG55CPeMUvZGw+ssGy9rSAYPG1SIUoHAES6Lr8eaxsmMn1iMFdv3GF0gCrKkMJ3hvHox5DN8YF77yRzzTSeAiYzBApFGbE76MX++erGjdXaSiqn/NNfYALQc3PGlbry3Oiw3z1ZAvM20MCO9yRNqCCLJXFBmX4xv77lR+AwIRUyznBvQAegw2uIKFPmzWCSt+ENj5YhAjw/QkZM2KvMq6An219g/jAyC/7xvbj+JoHbvnvevZGsgKAudwQvGLEbS27xCpnTFhznNlX178qXUk8GmZe+qH6aVLQp5HYMtF/Gv5KPsOmY+Ihv99OcceAFZtIMzNsHGBHZ0U8Qspg2lv8w3J3a+Nh/oAzjPKUqJGgeVzASi2rusbSOdMK+M82UCVmQ50JGqB9aYTO8yKC6M7nfug0Zgkp6R7PnRHpsfZK9BuK3mFb6tpKmA0fOWdu//LRo3zCQ+nob9jKpKh7CTKhhCCK2uVGKzexq4gnLl4T0mEmguQtOzzpp9Y0z3lHDh7Abmvv3x9XK5iJlBk7WeNlhKyNZ8zbPHB3c/aYMBcRNEaPAEjESe6dvwobwc17sycXIrSC50n5xxMOhdFgV9XfhJLeP5FbvpCXVdlDeavdcZQk7nQtHEWIxrxgfrjYcHmmh+6zRMUGvMLoZdypUKGd533xOUTA+/0PyMTg9Z616L0ftf0zEswWW84swWnL/gX/aigfGvHUBGp+uIdu14zWrQK5gTXmlsqy5o1bI17z2AJ2r19EU+8gr3gElf4nOYiIKzoL/+FCwO6tAj5D5Kq72aEMr/OkaH1Vdfm15Sub0YuO8gj0rUOLoGWP5pGuurAKJ1euq6qeZg9hG71HN+vD4SGPdOT9lctza4xKYp9JsIzR9lqr1PcXGrv41FPQLRx5Lh9nVhSY2965xqt35uLSfDdFGcPmf2KQgxlYxPo9q7QqS9L0TTg1A9HN09ezks3GwOWpXX45GnhtrVlUJc5pwSd8lseUwBksAcGK2USgMcjsqiwthpYvnfkG6qOz8/SFKmIxql8i2Qo7EctIOo4hYNcQ48cHeChOQb4dLb5DkBbZ6XUNnIkFxiTNN7YD0HmsNiTeGWSjzL4l8dHY1euU71/Kfr9ZuVNW6lrkYfKHSo+8vOzQzN86YJTJf1CpI9LbOFQ7a+CYDJ4yI8wrypwVE6cQ+u3L/0LcIeeS95iSTywPNOZKH+NS/VwQqhv+xzzyQicUVRaxi9Tr4YWhGGd2BQViKa/sY2j5BsYu5HeZZUEPNq3ywsBdWEO51NhSa9izu3yaEkySDW8Yj32JGav6G6a1Hgqzowu+LWqwLgh12imZbwuNTQeoQRFZ608R+APzZ23aP7LhM8AxC53osn/yZPZqedcSnPKgOYQO0JRmF/DnMAh3KEpWDCcj0XgaOjFwJK1nCUXD7USdloHhgIOd+SJlWElUuGUe7IyOOWRBcH3KVeKr6oTzsZCZqGL0rxWW34m7673G0naVK5l2sJiRHcU8YAFd2mSc7ADZbHhq0S6VESIHs4BTG0hf9MJ5s/nmY+1NxJiYPG+anknNhXmRzZDcrfOR8PLn48H4bGOUap8GqUvYcDyikKEmHj/VG2ZnWwf6FSVLFO+XEa57kY0lEuwe/h8HjWWuksi5v9XLy5gLFvrIZEeK91hzTdbOhdlo6jALkl5BDc8K3U37yyTiHvzACktxBGOc7LKvsowFqYACcpGRBhMg9jroliij8513/D807J0CIIhoEa6Yu4zLO9sxHDxYuKqJO9//OSaCb9jB9DSbaNbR2npdYWcs6DkfMZrkoeaK7gUI6Djh2FxLGrpTAm8XZf6PT9xQhmvDdFJqWQYzo8L6Xt5hQCdKBEJSXmwhRYNxldYDnIfP++nYL+fEA+udvKWjCS6AVTyqlkBlqyjDFuHrOeIToyhBHJbwhewUhM19kSwzX1OJGxOuljvDc4gnBGKPXvzCzxB+0xHLvQAcCkWvlIDLFQKuNzGBbYANtmGefoRhgiv3GT7aSFdc/5kkcydFukWZfH4z8xUVN+MrwdnGqVoTqxkpBPtg5iVZb+xJ/7lWgHhaWpWXDI5+hCuG9T1XOBZPzY+mlulZZQ3fm9KiEYeC6R14IhTLEHtOplq4YFXhLx8v72TllHrnwbv+6QCEu5H7adgFJY+VljrXGGg0MFP5zDUPbYPjnNzEIj8TNFrvHbRy51NyEOjRTtIz+sNZJ9IOqm3eKBYgVC8l5JMawkMOIqHxT0goXDinQYf1vfOzTx6mDpzhNgXSnMOffXF28mX9v+lUgLhOs9rgwtjq1KKDngjwWT6CRQxgV0BK4AEJqJZ6xdxjdB+pQ3+LpGY3Ugj+WnRRwbmkUTvtAz+1GCtx12Y37A2fDavPl3vaaIaRgRJRfIW/BtSrVnIsChQ8rafVmytDvSlmUAwtraFitRcBJx08wZS8UMDS3LwVTHQjYePW5InKerN8r9hul4s6qCVbkKRzeKAO0Da7WSGXpqaplwBY6qyPRIhEwsdiio4RJd0+Pz2lHFwkpuVh9Ym3aNFWX9BEkzI8/8K83Qy0xLNM/tVNrdupDkb9Wb276SiHP+Rgje8+9XArZF730jO0B5NAW0FxHWwWgIkWgPPdiV5LqF5bGdjWP7L5YK4ThaAP7K0FZoe5z+5zJW8AIN5+jmgGG18qtd1PUWk1RDlOfj2o7lqOCuhFvdfKIdH4nChxUxbTKVtvI0+PNY5HLw2iEG1rm7Lz87iRdbTgeDO8SPiy7IAw8rHkGCtXlpwH1wvhvhjDLM3peq3r7mdhhZPUm5twAkqReFUaDjcqRZKV4kKtEpx1blU5i/VAFNmFYEHvedImGT7dzFALWVRuZ6cjA+8ViW9ySQb5B/0LPKQobT7Wjm3XzyzKGx/9+kTi2/3Ff9HUIM4JeVW5PR8ucS+NeVHM4aWfREYFvV15HuYfif/3XFNQKukExsmkBDx9xB7PmpVtIpZUklTNQJTugnUHuEwLAS10P6+tE2zgFnf/hCxuOkqCDGSjxLrblcwoWLfiPg8DIGZlde7AOCgeBCJetyG0WHFjOeCtB8/ONhAD0CIKHm3hzgVeQg6zK2epwMHBCM0eIaTLrVYayiBEWm0nFv3UCNH+DHSt41j+Smd1+cNapf8Jgfbq/u/87gSTYhqmnLQn53tX/Gmh28mvYka4H8KdZDFbQuTA2XewOLa9XgyYlexH3dbOiMVWTtVzGejNcTiy6xHuS/6Yd2L6Qj+jq+qutyDUlWHpajkkft0P/EFpAwn83QIRWZoLSR2LlLP3a8oPFsgtGJ580Z/FLBNe22L+oersqE+N14wmKWlkqwNza90WNARnuKbVOPFHpoD9JPaApTrJWrJ56v7oIL5t4Sjx0GKuNZknBKsf0bENJy/5IF5UPJRfDKdqU1va5Antj1QuNwNXI1JYMDOtIPEfd+TrDAG46vai1J0qUmHEw1KBHqLxX8LKudoLtWWifVoBcH0WpSbqO9rPJeWuLZmBfYN2LIGRUTDAxdFIaunfU+++mmSq9m0Sn2Mm1p4Q032HLsrVOkhmwwK+LXG6t0AGZ1qF8J4xtc9f4lhGyM3qCw5vYV+boMdr9QnrYInfYbUNlOvD21b1loQHxKauhsNsrF5GFxyHoAkGMXdMWQODczSo6Yoq9fQDfC/QUJDo9Lzag+cl3jXymCOGFWo5G55+b4VjBgSIX31Ak986J2Plh6WFpivHzjYcN4hl3XJ1KlApAhkT7XkmgVAdsvaZie+dqutsVJu4BOH69/9YSw4j2NCgO87e4b1recGMs4CiEyZQXPv+ZSBUjlPgjEgvcZZycWZ3kvVT9n2ZxFGAVNqLM5xU50JIg9QpA6LQo/J3MnIe9ZbPVEY6yxv+SPkujOw5/ZzSX233Xz38pz4K/rhy8RggBm2CowujUYvcmepC0SLKwGfkJIVkHg3p3X6WL+IqZS20kpqKpd4qHWM1Kcm95ioUgywSHJ8kvXbNOzFw3DXcyRqlk9gfXlcY5n/TFgy0vAI8iDm7FRCD55xHFCUWCGaMqxet1CInbExET6hNCrq9LCZIfOqoo+WdoG0tkSJI6p5foHbLCeBa6TMXUvyyR+03AK4c8bKK9SIaJGqL2yTIOZWm8doachEmOD1OTb5w5ryJBVpSmhVJIRnwqcAjR9ACWVHxX6Y7/VuFjM6kjp6aoqOCCONtX009urdMdoRK6unsMs0kAvwxTa3qXT9kP2NLTPTEi+KrwUeHGiSFB4ihQBoaaZuXAAG2+kfNqnECtFBiGKYoBC1GTOg5eSa0mOP3Jct9uS0G6zLPQ0Xqv+pPU38c3cOtIhFaQe87EXtr5pF64li44iMSIPaEg+5GjB/cAOsm0TUiDxr+jFjOEbZmK5vK/pqsYBg+dQHj1Sd4hO/wRPaDYhOj7cUYvAJ0ugoyxWNlUpXZCeO43BA43pPdorePFVdqmktOfnkyeDqLN+XEUPh/4MUSQ7ZPFhd2ecSyy76YrS59vdVtES5DE2c24uDXX7Fd/7CV3FjP7nydyxRdLBoTNiRE1nwVDxjjhqP5VNEkeZegIjTmnXxYvGj2LJ+GzZLLY+DDNmT6rWscz0SkuQCFG4hG/pQbuZMiGs0q6w2/oNOo3k6qmHMyYYTwpNPRDv38eU4VnQKegZ4aNL19JGcPCfFF+ilrni/ker7jw186gDGc9mpHHERKgc/4J3iY9nMWsbCxBPYUAq2CrLCNYqNUhRwH+9iaF8RNCLY9f1nc+0iX/8Dxv8e3bP2zPi8wEfJ7BBR+qa6/58irzjL7CiKqIlRHQ6rqfCF2oHVQSY/1KM8+2gCb9miZm/rmKcf8yXgf0cIDZUvfygKVtuEfXBpF8MOl5iKgWiYqlYiUJ2HzRZBgoTuYgXOEm5dHQhzbtsQWSpZfZnZowMO78GHgMJu5bnRIlOZSuTj0nz2Iy7vuNs2iMF53bzzH+EFGjUn6CfPUBCpNixYzUDOW3Nw8LHCF+zwhKAAJXCIu61N1XLC5ubD2pSo89uFKl9p7h81KiHY2ie1FnJkeTvq6fYKrC7MpPZfqPg0hcB6pHAuSSO56JzvAljlpk0Olj80P3Ghpn0r6nmKzbEH5Qz2tkNjTy8hx0dIDBP4F4DF4AGsZlFNYjWKpW+S6vziyjx8ZwnsCvefj6rCUrL+9o8NMg/HZeqcZA/rZM1aYjy/HqhrMSRz57FZnvM6+tk7cIJpUqVivYBMDRyvc9E+f2jXQVUgOJmjXnLEbMi+s0MZ/jPhVVyrEQ7zZLH6GCJewMbsSACH2jP40/+xo3XefzWRWECLLB5bSFCpxRI9RDWCNcklQt1euW3VeTFrLPd3fTS4ZY2YcUwNF99HGf033nrte99mfj8h9dzkbZ3+GLCwZrxa1ZA+Bh0lqHiHeZiLIsl6G4s86pYWoiMHirv2cyV/7Z+ei8roLtgKy4jnRDx2VX3aIhSFnVg1nAvlO6sOhfrZMymu0Fjvcc7kOVHx0nEog981F2nYC63i2yxpRtLTqb2HUHLPjobVQW8L4PiN9UhkUaaxPzxuztdzkwxGaJtOSRmjK/wsV75v2w5Bxr+JUdXEnYmjQE8fnkGk7PJqpbCVfLkJ+RJpklLEgTUaotlnS0iFTops4ZDLKocXVhdfzMW6TD5bUevq3vZFO+SAouuVUFUkgavS5jnHrNDWpTl0C90qt8CAMWZWPNol8Ra+mJGA3rOCB2dJ6cPbFKeJtOvvtU3lHFCGw/vYIDTW+hbWs+NIOGB06pIOrbZXeHEskDF0XO8exLxHDlJKCxcIj2H49uk32NqLH/tW/g96zc1JmV4JllAYnodGR3WK/BLfv7/2MNPuAOtUnFZymXJPqVJ4B486ZYfBWdCJmM2X8cw1Nw/qqxWEaN/BkcYKuHnxWo2aZN+JUU0wHcF1K6nS8vA1QlJ2fS/zjn2CTJeLLIA95SRRrzk1zLzbkvAhNbsoW0rleZf/0EfWgS23k647FfQRN1+Cya4CkkkrrRb19RZ1lWKd5UJAbluFmNE3hJQzExzIQAxefw7EzxZFushwkftSb2k6+JgT19mBZotZJY4yxcfehq1c/ZeYawNv6CRlvL8++oYyFz7nNoJexJehX2x1hnYu5e5XyBLdykQNeModUiX87SWOKdl4kAtAYL+hZRN8DZZ/UocxcMo1Gn4Xz5RUm9W4IDd6RqDgMQHoxSrHX88Yd02A2S3pn+vtQdEulxagm8dbVHqQ1p1fFOP0salWcosgxEe0S3uXrqbw9pWN9mmZb1yUHuwyqmEPyHJ1Bjkxrwbj56lABAh9UEBG6u6zTmDxKeBmSgS80YH+SkNNASdRhGiioNxVR3sK3eg1m8m1P1jmc0uxwMA+CV/0vK4cx8AWJV2H2wh/VminqyOIlYP4QHrgSVzMQyY70zyUV11d9w8ItytD+DoVxo3yy2L+8ytTeDRV+qBd6G5SN01d1gxoo0Ujv1caxPEdnpgBHjZr+N0QjCL/kzA4ps+qpowFgamfWiWxdswCXKDUfN3EhXLJaNLjuXzqzWqrYcI05TuhHvQH8XsaKmtf7a/dn6oc446zwP8v6QKhtv4BZQ0CFjljswQD4IokzcosxdHrpnjInYa6MoXCY3O1kxkQePCv0BLOWyP6IY/XwQD8JVMfiIpzSH3BqT/yVYCD8ygGYMOdwYGjuw2qgSBS89zpoyv93gYVJx+ibweDC5aBljRTLFSiQ1Sekg2IBpOOMnyRwY/6hPlyvT4wObzB3goh808Tv0gXYpzCFL5qDOlMWJnVtIKk8lH/GGzD1wkRBNt/UKH6JTnS8pc6REfXDxM31iVzAFhYGG/P085dtpIFZHHzbg4XzFVESg2KV3Jnj1YMMLSbJbZfPyDk7mCCvxR7CgL1iWoKRBlFvMKvImPG/AKl8H45bgZw1eodpT0tm6pkOOcK/I1Ux8Dcse0se/B0sRMUMFPsqlNfhvLcjSYzlWpZ7z57mRwTbpvgl5OmWfngvCzP/ZSFwGBOFRM23HO9NLikXnKJLbUB9PmP+jqVxjEf3OwNUQDZ580WCPRvameYQHtZlgCqZskaJLGbQZdPrs39NU7D2S6mWmuya/tJ9y/VL1hOyuaYVLmbnalBWMbH+Hf5NWk7v+7qxv26yxKiErdWyPnnXon5nPcDmJ9XlZAU7rFmODbKJLWUxpSG/m3P2nIgtyj1fbj7RHQhykQbVym+n/LjcKYGXAHM7cWGALa+qDejzK2FSFwA7D90bB9gvxO1GMnBIpN7KZvFp7Q5/iXV2w+o2jwzKI6OUSKPcHGmdq8TKDff42yQ33FNETlQaNmxRM1TSBV0hGKddk4PsLUHl6UN+xn1zyONXWBgG3RzE8S24f2dpbAk2iqvhXawSH3sipBZ5G1ia4UIQZJHD3PgPdQvAqm3p6g6sHZFRPp+m2m6SRUhVGNeDP/SwszRx1UPnENbd/SPR7zHERCsrACneuoRP6zvpCUbLBjJYbw8WiITc0cqoPzTJB4mt2uk2KAZRs79ytzYtK9swt0WpQ4EgnzCsFpXgRGouOEjvkIjd4C22MT3lCiQid6vy58GmxqT5QETXrDTl9YHbKlNoSVBRHgFAL1ZrPNkzneQCr0iKNFStihT0QDH3rU025lAobco9MzaeImqHN/JvSfg5Sa9HhsdyM1fQRwTm/m3SKDE6zfmgMud7OlkLVM3nJq2zGY+GpfVbVwC2sK4YrZgmR2VBkq6aRcv5DwUhgevUUZP4X82yF9IL3nrwnYmmUTJiHc6gS2obnriEpwqsqgF9wj+P4zgiug0uMlxgilT8wq1jTzaY7lL5DnxvUJB6krOzG635o31qMss7nXt1P+sqf5NjJtefD5MwLyohaOFMeAMjnKNyrdovGEYOuTNpWj6Z0ve99svU4zolSbu4m+h3uWueazD9gR5eM7X2BNB7Ukw1wkIyLVysY+xO4MHWmFIA9rG55oOXdn8eN3j6Ms2nqBWhslqL7Fi71gFYh1QD7/99LeDZBum7VIhKLgLjLCFyBuwv/HthQfSeUtoNreCUEWhoGSIvmdO4bTJMcHX7THLOmy1v8RbD7g4EFzSPOAvm5/wCAuNi4D0178XguV+9J4YJHYvSQxj/8J52S8ByNOntbhal9mEnR84mv1XY9OfCj4/Edw5vI4VJgQW9lh6hMaXCOxtJcG2YZhogSa2Q98GUnPsQd0hwFplp1BeDhpNLSzcO/GYXNHgkGsp4CLNHRa7eUU7DroD28qK+J0VF3aPKr5/kv9gi11878TW2NoVGhFpH9i3HMbnbTT+vjSaCcFbG6h3u2R9dVnkk2GBywRdIdESevkChCC74cnKFb7Epklmk8H8YxiieuovTLQrFnxOtK2uGWkwq0BcfTq1Q0i8Xg10HNe5djyct7U7To7we0ABtinNogMMt+tXk26ly4ZfGw2LAQ33v9ySb/5nSupHrjkLFfz9p42SwX99XGcGhdGM+SQS4hyaRmGxgEDHzf8t988ewBcKwT3WSQpjuQkE5rTzT8C/WaAwQB0K44bq/3WDEPJwt+zpVO8IpY4lQHL8AH6Gg1oGOx0MfX7DO0Qumcjgz/vElpjNC04KZviLIC7hgFeu75uTkrwbiU4hMZv0zHI3QQTIs6ADBPmXvnR/NCN0QiPGyKVqMUGQOu8YJ+zLwRcEIFBbjYN/6I0c+pSDhwaXlBMIFQxMheBP/VRIJUTiUPMN0o99MGgqYFrtIb+uy1LdWFAhuiw4lS2OwSqgZY8XPswYCRRyuU/H0o/gMnNyJM4CtnctywHJ2vHqZU6HvZfijF6Gcc40PeD/ve9VtChfTrsy6QMNAYQJCFRXpt6xOfoRMX4qMEzXNsc0oKUdboo19h94AiQQjFVnK8Ko+2WdJjhlJHA9kNpCa5zr819C1uC4mipbVYLsMVlDodLaLtfxMEdg2PWH2+mnZtz5KwEpxxlIQ5Sfi/+Wi/DBiTR0VihZ0lyd1lkOj4m2B61fGFPz0jY98Za2heLfqZVHdA65GPzRMvDZ+Wau3UpOMcp657SpzfSQ9GHS66d8tmo7L9MNe4C1bKrPoYL8+GNRIaIk6iLpyDHyYsj/IjYnOvywUy6Nk7zq3a2IgkKyVs0HVdOU9hf3VHow==
Variant 6
DifficultyLevel
481
Question
Bellamy is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
He has 3 more points to join to form another parallelogram.
Two of the points are ( − 4 , − 1 ) and ( 2 , 0 ).
Which of the following is the third point Bellamy must connect?
Worked Solution
By connecting the points ( − 4 , − 1 ), ( − 1 , − 2 ) and ( 2 , 0 ) we obtain another parallelogram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bellamy is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
He has 3 more points to join to form another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v6q-min.svg 420 indent2 vpad
Two of the points are ( $-$ 4 , $-$ 1 ) and ( 2 , 0 ).
Which of the following is the third point Bellamy must connect? |
workedSolution | By connecting the points ( $-$ 4 , $-$ 1 ), **{{correctAnswer}}** and ( 2 , 0 ) we obtain another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v6ws-min.svg 420 indent vpad |
correctAnswer | |
Answers
U2FsdGVkX1/5HYZO1bwHeMa9GhxBT1Bk9GJta6yf/r/0dZc1tCxiJoW8tcRSZEgZSc8ZCblcnd4wJRBHkdD30fmCmRsNl9v/nY0o5sQlZ/1N9PqfbKcyns0PusVOPt/BKMp3WvxqMJ15zxSEFFM7wJ5oyZGGnsiCFIdfLK4eJeQbFJuPLYtk744mf87UrR7YLvFS726LFyOz8Ktuy7wcoiMj5RdGZvyLPTovXn0WemMASN9+MKw9u14D0h6fAKRQ1qAAPi/G16qsJs11+cNnGwFx46D83WGFmUzPk9HmXm3n+046YKKML/3ebUDlauYaqoqwlmHKJY+ym7L4HiXuLeoiasHAJVcdsC4pXb9RB47pKeQgLdqdFuOx4kSWf5BnuhTcbo7qFC2Bipyvie8/EK8o+USTdKlcEuCqxs2pxchGBAnT2tyoFTd1nuuydWz8ImC+/j7YIa7KTq/ilm8Q1jRYcD2soX2gIiddU8wLQM5t34Y/Nyz1O4hRheY/sdCZ8hhiGZ1MYpiR1sxaWvxsnZQE8lTQUA4ciUXh1cE9rCu8WxISrRZ2f4Hh7rkbHy9isDfygD9ZMJSe9btnXiXk6FetG4NpKUWTqs57oxT5vIEVG6b3q6Vf07BBPFcJn3UZ0J3zKR9olZ77u26qc62lzOQpG0rhsTrLmiFLEjzhUbctLgK5vs7IROfWgd1IWysawTmJpTJFLeYaCmSFgi8EgK3G1UTpq30ryXk+Ohaq7l21b5PT+q2Y+LZneBF3IjiN/Q5isRvCUaRQDEcByTxz8zM7GnZk46G6DydXTE7dFs6M7BzL9l+9I1RxlSBIETbNjfyTIUI8tdzlZ1OvbeI2etLIQbHAg/TMCanhHvUKR9H49Rc3BDxz5SGOxrC+g44iSx/+c9h8s8WSByL2MqolOPB0sEeKH8xSoOJ62cEV367m7/x/+6pxOWQut5QrO3uW0UKfDql5mDPt+Je+69B5YQ3FKJG+Y4AwpWPESv0zkZS5eLRR2YZF+kZLIBFTfu6NBxiJzuz5vo7ZfSKz4+KR9MWRPyTnDOz6fPdzb+jA37AZ/z24sqNVD3pLeTR2m+/N73HB1qbWgiYW5O4uWpWG98uTXLZe+nSaBGSNwLLSvOhRo1rc5mDo4K1uag6TXZxof4a448rIbt/AcP0cTWXigk+d4rHWXlBMz/1qBkBX34/1iFipXObPxeejoM3K2LTAGAxB7AnwaaJIm3LGjl7+lr4+ax01w7cBNGFEfqCVchPX1YQaavrFmgeFKBJJDC4xR7AdGxvW3IEPkynD9ef8Nn+OVUU9H9237GdbxyRV87+2KdBTqg+pVxhKUHUXhN9fNn0UD7meSiJAh/O96uXyZvcEw9Rn8spHESS155fFBPC+qjiQ5YkYCi2i+ml8J+qe2CYXgxWDPOYJmtRs2LSXVSfcTDWlN+MUt8yxLszhYybvVYUtV3vHpbUkL+h4VCRjx2kdjMGK6IFKNQBOnBcnB/m12yHD7ZQZ820UCT5vQy1JOOCxeowe6coJVtsp9FaShx6hsqMS2KZBEcpGErDb3HMD1y2swzkSfTiK3l57+BEiQfXeOLSCQpZ7OWOmuUocmNEzEKTlRYIQCKWukSWlJjgTHKESwLuo8JUpBnOAYrRPJXhBKl7M2awypM5t815S6cx5KwcJ79CdDTJGQyFaCFpxgS53keV+McZBh75qtg5MlldP/YA60ofIveEMWTT3Xqw+l/VG70I3C8Qvr4/PhdyJiVmAD17TTfUuNPwUcKacoM5e8ryL9Qom0NDofngc6uEWP8ghzPi8PTiYFtSSICtTvAXRj+HKwaOIt0/rLP4GF7en35+lGTd3bNCzx6rVL1sNVb3IrOCIdcnwdQser/x9zFrfDOMZt7/47lyYaMxuChURUqnFv3E5YH+xb35TfLAWVCM63vaROxnATXBByhYwIkluvn+iJI86FNCwibxF1R5bIk6rcSiOoRNDavHxqYbp1QS3jJxbw9eRPHGl+pbl2BhLpBvzwNUigHilj69PAHSthLflqdn7iG61wGYRVnWtUdQv3XrB7drzh1J1aYEE+LBZO3yCH8/kXaVWEr+EMrxynndsZRA2oZ8PvIbwcFgHkLN9/RyW+aUbLM06gOoZc5aUeaBbpcRmx4zi7dkLaSNf/sYAvJIZCRpqgucbj6Enp9BcBFNrDFpsOkLYIC1WYANZ8l5ruht59eSGIt7JsBCbFZVUMDwaa23ZYrQJqhZiyPae6+pQAzgYB2KuZceGWvvLs4brIH+O9mOYryDGUGzb6vN4qcIvmjfOlRRNvEZU7A69cge1sb9gT8deV6kMuPa77PiW/7N8N7zx826Fyy92OAj/0LcOBRtT13wz5XgvvZ73Bs5jGR9L/+OnPIfz57C2Zxn6vBibwfSLEdBdy+rs7drnvizbojDo8AiC4tXARqnPBovn9PYej+gLFqUy9Fu9o2fD03Iew3MRKedkPe8+uH4yQa5FfbLnV+Z3YV1jnnx/6Jn2IiBDHLPBKdAOXHcOYCj636HU6Z1wgl9MhosnAPHUfI9q4FLYPqeog8UoVw+qQVR7yEk2KhO0G6DXX+jYKNhrwIFobPcA9CxkrnXIDJY76wd4ppAosp/HjK155MlQIMJ3zGgz2HEfB3QLakLXGIUzT6lLLjpvPyU4PdrNQwTIGsahTEUYUjjtNb5bs//aCdh41tQ1RnO9jWu9Sj8IrjquPAGjSsgba5j5LhcsbE5I0B3d9L9LVmPWpv3w/uwWbUE31slTOcClfSRVk/vgjgk6N+R6FL94+yT17xWqtu6dSoAQjXqUtKL7CUkm3MeFgIfJyYWs1yK+25YW6+QEjdQ+RnENW3pqon/3oojoxYRNnDI7Jr5Mm492nf1ylZpe5P7iZK+HbtQ8j1DNtxgIpxJC8tsu3n4fQC5CZ9ynKZnilr44Eij2yB2WGFzVrqNYx3QGNImyK7BA64KDhf2dK3hqNTPxMU3tBWliYvHiw/5xODR8i2UcItoMFjcvhqwss1JkUit8ZMzjb0tQSL+rX9iUJwnVjWUrf4LP4FQKIt2kpfflsiY58fnqk0L2itkIWX+X6Lv3UBep0ksF5H38Elb36KlUxBCdRkmtQJsL/DTT6carGVSCtLQZKruUQ40mbWdaw2l4BC4QbcOcx6Oi38M/sTUu4+yNwJyKadfUSPvlv6OMtGVjgzqZpCDuHhu0oZbQZdyQe5Qdnx5Kbr0y1dq75tEtsARw3tEhNAmkusAmukjQOrznprws86Gi8r+A9e74m0Als+Xkw2Y789MyiG4UA74oYiwlliquDxB1q4qJEQ3liixwkcWjFewfMKRf9KOQtVhPrUsqNJFIapv0V7PVUZ+StfMdK0SG9UDYupwpmOAAY2GDiTKCSIfnhra6vV3GfJq0Yqk21FvtJrxv6lXkEZI4hAKUiIYhLNHJOQqCEOsTiQgLIbsNhsKHCc709NlmcwEQQQCTEHmfFsODH7sACK1E+yDzdYot5jY1LxlNKwGpJbZRZEKUjEmt2nKZqLJeArcJVszcy4S3+rppgU4fJlFA6L0STR9bOiusupp0WsuE1eveJqUgUGhaYhuWwHrucJ8epnouB50THAqJfyLY21JqkebDmwEf4T5FdOVmkdg83zroyR6m627RN5U97tljVXOFEhDJaywiNUX7oMXfh2m6w7Om2eWQwceZN+AsThXgtgr1KKkNtuoEpsht+and0PmFeHeMK6BHIYy/tLDimNa7qsk4YMdS7sfUsBsuxVS02EqjZahuZhseBqdR26H4xQUrEkRdIXJoSn4JUL+ZRcPXLb4g56ZDujaAmxUD8S0wKjXDDnrjlPW0vbXYP7OoP81TpNLVKjsok36Thv7yTWffYHFuIiuyODV+dhAK4YsnyrCFuVp37rgOgvHthY6vIb+qeAbA4gkyfNQ5xyvyKKO6gBQ/orVcCo8vGiEw9tnNQr8y517YeZ02ePglaaa1hYkl8LHmRpaVyCfjMzsgNZso5LuLR3Kk7qi/4hb2rSGSxOGMf+IVe0MsyQEoQDjrBtAu6opo17olvIal7hQG3ittcI/VGu0yYvXrfR2H1ziGF7sl82KQTb74V2Kd7joL/VoVitCBdbJK9I2Qh7dsUTVgljbBExiY9QxGf6OQU83aBN9+HcUK+iyqNiSfK+06FQ4EiM6xWBUDPTtsej10js6fuKG8C/KANLTjnMPNy0TyZNC8RiSpNEtHCJmohLIDh5K1F5VeEPUBoxwy1SGeuVXBcHTdWzSt0wQHO21F8Y2lJE4SjfBSeTDON28kpwqFZrnsfJwPrImctaruqv2AM02vnNCrxz7lgzeEsFYd2R+eOh3myKVsTpFmZNwSv7htwt60p/LIGCUo7JOsmuj0ivZuQVl5eoUZxN/mfAL8Zbf1ReN2h+naGDvUkiz2gXx9cjhzjiRX/yj+dOddvo/Duq8mcuINxKUSQLIWCxQAiAHtXppGhC0/XRhMIiWO3f9fogQiH/W7fXygqFIKokQn2vEFpUcMF4jt1WfHvEfgGmVWhZ7Y7QmylmcUG7evoslKoOOzBssUClPh97CZfcF/VZe7/C0/PLrGww/EFwI3ZG4JvZgBBJE78lXld6Q49j6DsniybtAM0hrZJbhv11niiMmBgLFT3mtoCRpPk2N7wB9nU5k+gLx2uagFbwJ96/+FgTpwxBO60heS8CSPhWzKL6sdLzLis2Dg8FXME4TV3HA+RTtA+x137xo2Mx9ZI8EWL52WNiR9XgsNxcVfqxK/qSUmjoCst1L7RL6wvNvxyo0T8P94kY8+du8TLPgV2K7Ec/pEZz4x6443OiFQFrmrdlVBAuSNH8KX0YHHV8haoSgJWwwgBolymcoMlfVjCu448nYnl7Kb2OuADd/AGRRsilpVR2s2NSA5pAWsSsK4GQHR9v6jsGSnJY2HYXyfaQezShKAI3KANfKbZJt7tfFNAvBk4dNSm6kbNpkutFD9F9AwMM3+9gZkzJpmTLcoxReq9kHNN91zrGN7hm7Dq/5u7Q0xzzQ5+SwOBTb/AhxWrzdcKLQddOiYrqkAPJhtjmfeUCSm2/suA58UxGBetJK3ALQmkS8L8NJs+j5o9oZAyDi+QtOWNfFla8seDSWSc5uTPxFmwBQaSyhvrVA2Ckxh6RRs8XQKTyqh8XhwyAhXfLGxgDD86o2LqSDUAQCgTozayNP1Y5eb4I8aa5JSjZHGXqnCq+g4lVoiQRPXL9TuziQuX+0u1KeUf9DAZORj2gQ5RA261n6nfcNMGC3sGVyozl8TpHFq7q6DGwC2YBx2vCnD2gIIxxyiF0ubULqzx0fNIRSYIiv8y8bCOCDNsoFs/bdehefAgKiWtZoxpkjtQtWNN7hGys/Y/Rlqdw5ll4XeYp6SxDrsCwlGlVtt0UUvojyBCOSODbMp1Kp/26iPtGkw58tcJFhp/whPnyYp3q8bHANDBo68d0FXvs3eXZpeSoFpJ5fqPAXbJ/Hx7lzUeAqIDbYyNL5S9AykHRk7bEtU+3cgWYXmoqEU7IMgnwYaUV0X5qkT/S0V8buA7hOoUf02UsXiuvf4tINTex/Lmpu0Z3awzPGoEJJqjd33L/IFjuHe1R/tfHHTzXKBenpFjgBTRAfjMtMSZvtRMd1UjzK+0WhUcWzSIW80JG2UwAYgRAkRoTmcXX5a0JIxBGXQJSyRzcnIHTC/x74CaunPO3FFtDFMK13rWHs3Wxy9hqf7ZiiLqRvO2XvKCMcp15jGtKQHlvC9pC6c6GP1p51Ywh0luqX0ZJUf9Atrxa0f7pPghlBaNBgbjszM55V9r1D4vY4mjPab6ChE2mp+fy1k8D1YXrIBjjEjJ/SzRdPthlILuqZcVGfHHXqDnYKX6/tkte1WGZn04ttyrvd7QMFQnCrB7MUToTQ1aqt3Va3KUuksK7Ct3rQDbzTVcpeNrI2IJJqn27TW6b1zkI7MjwccO4gcflQpojiWqNOrA7g0Sr2MKDbwQ+n/+rvQfMPaEg8Nr+Kir/VsRUFGq0aGLqwAnO0M6rZVxD22I/X8yU+2V9D8BAmbFOtjiHtzzEl5XA1uZrZSfwQ1uqBVl2YRMGj/yQPP7QUT8dbtGGywFPCkhfHAysUaR7vwNcdsqKksHrp3ZHnyXY5sWojVCmkp9YMDZKMWXfMz0usOFU70SnjC8+opIGX8JaYoaFWsZdB80X47C5GdpOKBTO5/FT47qNLBahKD+VsF7whuUMaUOns9TWOcwO/DaubdCNbzxXjmvNNh6iwSXgoSBgRGQp7enr+iP949UQSLZyRSUsbl3+G0FdTzi/CCCkymPjy5UTEs0TAuZ8LZ3Ge2fJSFPerlk/ljm48Od3eE8kgquQSzLZZwsu/W9LD0HTgWmBAzh+pMUTQ4SS9NEQfmRUdQMMj46XT4TFYnh5ZkFbQ5C2WbJ/F1V/41meJsnsRSDeKGs3fy3TATb6oqJwYZ87sbPzoa/VCT3FhRtSnEHhSbmRhlLDVt17CvMVzxX/PR4iRadjsNnapJ9ntPo34RB1MVHFgeRjFMbgbDtoSBcq6HyBfzrESCXHvGwCb7ysVr1Mtv6X5DUg0t0L1MQNE6Xv8XjKINa0uDrc/JykFffXICOwb1sGBeeydkzKFOmYJP1uPTl85zIbx24vzRRhtIA5SnIpQUsh8uA3kO7IPEJYOBlzJeqXnnByrkm/GzpO+ojwWnqIq5MjDfs46HVUSRgf340EEdDmSOO/pPMbqbFJrNxFcC9f1j2UscSWP91AmQLG7TSnw5wwrmWTJmc5YGXQmTfzTiJG1vsR/3ytmqGfVVAjIsm0332DA7bORr2MgxWBsYWBiRXewgYW2t1BKcwwnkI5CFrLrdfND56zjcIV7XqmEc9XDEC30ox79SlgU2mMilcPCbNA1WJHliT511GuSN1ryzSHSNth8aJfxSmNk/Gy6Ediusg4wX07yEhqT743JqjmkTi/vwV+zTVrlFD+tmqdp+g/DSFFUA1vfs6tPkt5PhXHweeZQwaLXiAI8K9eGHH+lxEqFXcU3BqwTv3zURXneqnV8ptfGIUn2zGhkghlfmhgQFsnpKvcKo+mBL2+cHsmKe2knlIzs8P9BEUEKZLBf/xpcr1TEltQvrwnDtgsWWevJGdu6e0cXTaTz7O9y8UYK9qDBCtMztuKAkqYL5rvmeE/AFBZkVzHE5nb+r1Epxhm0p982QaMm9PhYqzyUAx1qlibU5+Szl24+bnaGg7zzo1cUPq6kHfK0WfcsyVTkvO6Det19dOrbtLcxVKEkvxHmMt/2l+oqWTmQO7Ez1O7+4nx+/nBWZ8QQH6lpkdftbw37xUPN6Mw/tCBN6IuHNPxhKv2d1CPNwrCO6+MeOAls0F4a+KeLLCKnOSqxfEYklzu3RRuibq0pqx6xxEQsHksesbuiycjsuilIXuPTERl+0nI6QEGGwQQd5EGQ6KwWnHcJMn0I8dGC/ZR8fq+hweoSb4Mc7zEi7Idodkgg1NSzdcE7IgQLmKNl6qHMt6a8QLuytr2ISfeZd/ST5iS98JssoNmp0IKTAxyL3nmdLQFPClX2tyw0lPshswEGZ4Kq60TY4EkMSmq31nJCejekYXFQStgH7sZcRerzSji4CUCtFQoyLLim6pg9ivV/AGCpVooN+NJIXzhZwdN3EobkxNe0+7BP3TylgoZGiZ4+9WsA6nnMqob8RGOWncbAPTjUkD3ZQRjYS9gGq7TBvg1FlBvOca2WQD92q8QCTrOtFCbDkj6fdQq/JfUMmvaSp4MAM3FuEAYRhd0KnRnvh5zrc8OMKhtQNPPyZEipS/AtfWjyC2OGPMKw7qdGP8JQLOBCgstSnjuzIVd3Gg5VhSMrKxwmeb5TKJ04WRQuFBKI1gdk35bmJM0e+PG8dn62tVGkB2klSBbov6FjUDY2DLdnUTPq33bymcaA6u/pqDKsPnLL80/r6I8e69WNb8pt7OcJ3OD1pmG2p5BjBe+j3/qKl27EyuU2Hkyn0zrwi+TeY1k8cnXZjfaOPiQfdknBHQOO6cHlTmgiMrT4/aoJ+I0Gi7JhXJ9MTRA6nyS0kcyIl/m0nImJaUuJ4hfMQxQLYuGkDzZqN3LK1Gyo9ke3/MHe4CBOHl30qxQ+2/Sp0En54Ev+rl+eq0YzjZQBF5l/ELV14mOvcJP1BcWmJHdl0Nao6mlodANs75zpFtKQEH7Mla1bKAnd9G0cmGBhr4qXKDaFH2rF6tENfmquagW7mZ1Incpeva8i56RP39UdK9gzLqU4gRgQgYHp2nGnmQVRRxS6tMNGmF9g0VnjCoRJEKYavVhZOlyL4MrSMP8Pjln7gGXSoj8nlPz+aFN8UWFC6j4vua6WvCrAcSWkXDV/Ayu7J2u0Yq2ZsLypKFlRomepl4Rqvp0RDPHWyOEbD/hgdYWOzfsJjizYBseX6wEp8G9L8Gb9pUpNWxf8NmgQfnXjgt5+rzeVjOKKZ/MJoArStnnAJIt47hCip2PaR+qnK8LiI44JuD11Qa24sT+CYBLaVSvLkbSIG5ITZM3peAPpzqOE2pL9v751b+ZDdLM6A+hJqgu8YnNS3853JmcSR7HvWW+9O4w3rwgzVT4pNclGlg7nmZiV/i+1zk3mbo1DBYlf47yHKnghE8ojUg8W/CP24YBa6WbpslscsfDetKj+6hdKXpncr6hlbCZYfdvAmyyYYSE8Kbes6Bq9lkdidYooSnOpwmYiXdratJf7zdpVresgCU1hj95gjNS+BVKr0k0HMNVMkHHn5/DrrFPf6EOTNBcqwjT7PSpoNay08PSgc/FCmoGra7c9aawLIVqRTKdCKDj9IIStUr79Ryx1c/X9Yh+dhgt8J1BcQ1IcLL7X6jDvqumTkoUqoYgfuXc66S8ZZ0nYLqNjqbIRiKFr0ExHBGGNAcohYdGrxLP1iG2hZ6uk4AYycWEp05EJrLRAcqihhVdSxrI7JptZh/hZkwc/71Tp8dTziBQ2rNaWRAABCIIypjKja80sEmk+w3oc4cr/NeDwPRad1f2+ut5HwpVqu89Q4VIFCoHeUg8B5FpA7ywq/8PRLPpDm/ueNUUAFo+foJUCQ74PKdQ5yHOAeu/9H1d6XYgEyf1dLFK2qnHDWAiWTsRU8FL3brwR7KxrYi8pfXrHFrj5Lj6hNsyEwPhICWIeQ0uMcYKOL3jkVmyUp5oBCR52Owqvju+U7SEYOrTkijZsgkLD579RZIB8f/AEC3KQjksD/gBz3/OB9G6N2tt2BKph1REgPkHboFjKPKp93YNmYY6UvtYqyB9iFzCMw
Variant 7
DifficultyLevel
485
Question
Bridgette is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
Two of the points are ( − 4 , − 1 ) and ( − 1 , 4 ).
Which of the following is the third point Bridgette must connect?
Worked Solution
By connecting the points ( − 4 , − 1 ), ( − 4 , 2 ) and ( − 1 , 4 ) we obtain another parallelogram.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Bridgette is drawing parallelograms on a number plane without crossing the sides of any other parallelograms.
She has 3 more points to join to form another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v7ws-min.svg 420 indent2 vpad
Two of the points are ( $-$ 4 , $-$ 1 ) and ( $-$ 1 , 4 ).
Which of the following is the third point Bridgette must connect? |
workedSolution | By connecting the points ( $-$ 4 , $-$ 1 ), **{{correctAnswer}}** and ( $-$ 1 , 4 ) we obtain another parallelogram.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2023/08/Algebra-NAP_10095v6ws-min.svg 420 indent vpad |
correctAnswer | |
Answers