Number, NAPX-p116787v02
U2FsdGVkX18s3Vzc3Dk8z8NfMa5vHUTMFdqW452XoEzNscX9ms9itu8SHxbZOAZKH4o7Fu/c7SJn2D7EXio6pcffcm7qmKmpnadJo3XNIYSBsGFRLlCuQvYIX9OTwKigIBkh+EMb25rM3FRyQ74N7AWj3EUg/qYRvuQwblUrcFDDhz2293CeSK6PjgaA39UUytv07BgfbHBOO0NcAH2OvFI/aSEVyjtNhXgCgMk19h8Ov0Ej+h368yx90Yl+binJP6mTGgSDu4g8plJ+tegKz1K6M4fuphxeLLkxeATwKKFgy57uNLucUQhDoyYMwcJQt1cnEeoakgLfrubzN7N4r+cbIGH7xusGmsychiOdtKofhVp95Zg7sSS0XA53sIQJaYY9SYuDrfO/+fo2BpPER/PySVw34AsFmLXf5G+lv7CtczX60CN8cqTHsxoPwab4tEFLwIhcluKOUsDGvhBlzyIsf/xTviO+UrZ3YFTtpua6t+TtlhoRFhZ+mF70wtz8apKRMWeYnWU4Bd5qjMgU7ryreq7uEO3RjidGS9TErfiNQkqehGafpyeRYwTo0dDdKuAx2zOxilNu8ibEuGZPRZss6ZyPr8E/gNI4/+XnJUqiqHJhKziNqHXdtVTY1HYSaBlefP0fQJpTfh+/FxiCtMcrF/nHBzvI/Nv8gpCznTF9XD4IGNnT2tWGOubHJyb8H0i/imbmS84ziUXDTo8ghuvshuUMoNwFx9iSo/Y3h31GbJBESWV2y9UDZmWobo9gCWUcLOOPxthGeagjid/ce95oOam/SBG1+opFOydiDsUcdhtN9vmFQaMxUh7maR2puuoThCE+RpGC2w1s0Ojb4vkPBt0fKmzRNaoIXctZuOHlPd/HjAXrSMb5Jxu/ZQzmoQ5ULctJzzW46XW8B+8lxN6orbUzWg/qtP0qT/CZ83W2dQIonmwVM96/B+exhPkWNgouHnveP6qByh/HKAQV4hR5WYueLvDGGWxTm6wQmXfBrwcRHOmbpk1Td1FmNr8juskU5QVJi4IqI3XILju7+YqePA8uAtcfZwAi+z3klen0ayXN3oWCdnWnscshudgtMYbl8ZQyquQovoAHmKTjagvNSsRITl0ljHrVoUiqNszxHHCpSjkikzp27pAtteGfOXBe8aUa+UsCKNECJfgGimtRpcXnQXB50l+wb+bVM/Hn006l6mOYq/ellFBF1DF9uRgH9fMILbvRPhRg1xg9VEE0exZEQ1BNape+rNU1pTYfWcP70oATZnt9nz+RnqnG5V97/Pk0cjhUgeq+rlrH9LrfQvOzmDVmQRPOG/tdCG5U8JvWoSugIVS1XIuYLcytX2ULNRWpSd199pslVJzMQfPdw+G2BPOyR4ui5nGsmSH3YRVxshe/WyNdGS40ju6lUt0+ZZYxKAFk6KY2h5GWK/GkNQIlTLqaFEkni1C94gQY+A5XVWuMS1pLUzm8t1+nNVnffLnOXrCTjaHjb128icTUvF+qKsUgz5gOGbvzPcco6JCZjAV+KudsH+jjiCAS25MxTrSUJs0QQTvtYpmhKmrrvb/VU6qwqy+eatqdDIRi0IQXZGxb8PsMlNRip3yexaLlPmilhTGiPZb1uSzgF4wgoLCehyjcxeRCpSmtYz7tVNuEbTuv/kUFeyKopM2xhlmlTjRugP5CxJrQQ3ihKfUmE9PVsc6KLPGhj4evqSOwyj64sjzgbgO7ScwbarCxp8rhcQytLzOzhun6K82TXpQAXxghEFHDIAzrgD0w8M5NX7KZRycAUqjSxxVtTqluNVuKtkl0mENUnXSdjVK5BKBG62MrHsSDDCCGLK4pNnOovlhaxWyW1SB1Hqhk6fUa0n3JXuIaVknppMIIR8rwSfkG1wSgvQUKkTySHj3jksTGd8pMfEhOthyViPGOXMrF/160ozpstENCZJrw+WrZXeuANiRP8NLZ0jPn2vKAHsIcCrfEpG2O8RjNAy6f2nQ+8pImIeQCbzAGcU7d0L4WL67fK9x/+EDc5cjUYLPbsCnxxFX6yQ9q80+1QdQuIysB045IvqeYhzS26iNcTRQSKFLU9QEVBx90F+Sdvk8/MdOYN/hYRgk+E9pILZZtpRXpPTPiw6iYbWkdcNndy6f39BI/UDAfDUXfff5xUiXG8AZycBdkrkjsjUH9FDWKl4u0aUWdDDE+wX90BY1U0dXXSqn4YdVr+2C6pdCE9n9ElD51JxelrQ0zUCaPtM0xTX9qiNKUzZMDeRXQB/ZPI/YXO1qPBbpD/vWIdp21aZrGxxwBBak06mKXkxM4AYNWM7SHFTYaRPCKoc0U6maxDL5nTqd7FqK0DRkpi0Cfkv+5FqScI4cOkx6+f9ic6qLzXm1izGUJb1G79mHyN1e3sKYjKgT9qdsSBaCrfUPVU0g8SSYaHMmvUHU/q1yQ/hJOSAGDZFJHwGLsV7hwmG2doAIyiTAswQYOym9Lu2OhwWqlUyQA+eEdcL3NS+JPbPPWGqfgZydPgi9ajubwgnWUVrFUR8Y1JA15aOCek3WT/y5sUdAn4QViwJD8w8uM88pjelEag5YS38VrOjQ3w2FKWzwq5eOGAgn5DUQ0dX/1VTCUXbn1/2PRNHkxeF0h3ZJMNs9E7bXkRZxeWMo4g4U5Y/iL0QI1vRWu1NlvwJGx/mHDS0VeGA2ivXyeHnQ4Pm1Ve6DwepPlEhF42xxiIGSVyZzpnTzKsSMag+muYoG6BEQ2EoJ5sgz5dtx4tkmNha89BePAslZHBVJvaf0b7H+zKcnoGxGnXpBK/h0Epluwtq0uJx8P5/vzMmiC6bgrmYsnIlDjvxT7yzDanNgqpwZCFx4aT1v6dOHtJ15TzUlsO5eaPf0KTwG8UOrdoyniUsVR/0jZ3ZtfTYWWKgmj/mW/3sG6Mez1RPiP9S5Pew47lqOCGkzbDi8iUhfu2Xo7spJs3MP2Ef4yzGnxd8H3/i5/dgEBL1A9m4a0ckd15Z5Vrp5iwl+7JK5Lxlnfi0igJuQ2tBd0e74yP9QHwa7fgPRNxW/a9Ak25YK5qozU0yml0FapNomuoPxWawVhP4cu1DPnogY5udC6Dlsh9W23oB0VqnkpjHSgCPCmiujWIyH4ah9rCbrJXyUjgrYIjximU14apUdwpBV7v4LUUfmHMzDLS6m4PELcV89U9ZIedhXjDFgYfwTar3/EVOIimUBLtRyuDJbF4+BOpbaRniasnt5au6lxxQ9ClDn7R/qSBAZ6ApXZ67RhPGEXANOqgWk3sLJXP5IGZK8NKGqvd0fnYaZnHzJAsXj0mUkIo8tRY5iaxMGX5KjkoeRBrdIuFAYJKGllrFPjtP+fFIr5mQLQJYr50iSi9+4sr/XbqlnfUJAXg/JB5mE2SoMBuorza6kPm6/iP+aADwT4TPXvSRzJh9dtOiZZrKPNrzcsQ6d9nwThhKLivC9V7fBdvLnxMxBVVnqbMxfbsBxOhxkoMj5X1PbMqHNkvqtfsJmKYvd2oJaTpgmIWjcYsYVJ63HuJRgS1y3EuhQ5nHJN8xSvX7wvYaOlLpyMERDY7/hmP71KXA1iFfmjJuMxydAax4JdmMZIIasSXlJhO01QzwHA8rEZzVUil7X5wMQ0RaOTDd/e84qjrb9GXW5MBTy3hT17/MN++ERZ2SIStZ7ZyuuLa8oZJ5nTfTmCNh5xvaBBMOIsK0+w9d0iT8Ub5XbmVoknyGjDuBClyaXvO1sdg6S+TkhLTnB/l7d4TON9wbwEkFXj0GPAW+OSlKDWeaTqmWk8XEZQxp7i1JFddkn5BWa5aTCaiLzRORaCSeHoiP6opM2zJwM2+6NPmou4YlOFcymuy9XIvObyeXQs02C9iyLeMH3s5ok/GPVc7+rwZRHEnhLG+lqR4QF9qdEO0xQVPbuj64+Tp/Yk0MV8Z85XGKwfBZacTZRJKCSP+xp9Q91BNK6jRQGpkHTOkBUOV73+xfPjvS4ROwGSQuS6fdGbZHCFq4B02bR8h8dtE3lpMtJkDq1g5vGmNYWJO+sQWMp87UsfXLkg4XukHhoyYEV6PMw5RB9TXWyVlJyF6nJDqf0HX7aoRVcgeJ1c7D1O9BF8lZH0spaYbUpnOW4WrMuYWeVFcuMyIX5OWb25gn5GtwGdMcLUgvj9uSnQeVLf1pyju7o5x0GUQ12PuNMIHqrWLGK00FHxylGFrJyvl1nbUJRYvc9BscSFCoMZMHaQLs0jjIOlX2wdV1Fcnl0hNz4bRjxog3l3z4ESYZ/C6ZU/4W5QDuDvPg+GJBxhF95u4fWMA55oFjw+DFSunLe9fv3Wtvn+PQFUVTzQWhJhOiXHID8aQJMlNhNpteWg1Z3caNygd/9U8LFHzFtsfywbRH4IVJeQka3ArHjf0DKkM1TRLPS9jILeCaUo6WNSVbIt3v+BtqFDiZob/PSqnFFqfXXCpZ7phuRr4pEx9iHw5iaiXD+cb7giaPs/I1Gr2A83lbpv0hBK0jmJGTjGrup7Rf9IEQhDQMtxcO3osRfrJNUmLqcV82uAgqt9v8wrpF2ebIgKDHFkUfZGYqdSm2/ibGaBXp3MOnM4BBwBIg+nlvza6HGmwBqrFkYb+Q+jPNALE5qOSVUXx3Yie/N9SQPcYLfnBTVMhBpz0nqH0mTOFrBTIulPwT8fTOmP4Uny8uyZAyMTbKwqDKjvPwFjLmlEVhylBZ3gzyCj1SpnEc1WnDnigR2aWLJyGWKb03zFrpRWyUTCdRqKe/mJQmHgehfRR064rtWSp+0PKDpgxbzDAFySzGOIhAB6c20pFABFW9g1cHZrV4UYurlXKlPe96+0n0yvZeLOm8nqzyVuVdrXF1gSIYCKKwXUF2F2NtYjFyJuwH45+MgQ54c7+g/yB4iMez6w/bqmx7cn6W1JN3ESElS8TnTWkpWx26X++7tv3xniKM6IZt0V9gfLiIgxbC7hQkd9AcTQJSpiFJ10gTdw74wDL8eVQMYkODTFNQz7WujeT3gPCtkb94flwppyhLFZoGokWHTA3L6MS6820yVJq8NUiBNvTWv4U1Y8CwdFFYAGyjxDLTTnUcCxLyGzljWOsv+yRKnJavO/d8za4JfC43QB9Dr4jZwmYZQTcJ0BgZhjJV6zVtvPaYSha3Opi3kAdhAvJdCc+DyWo5eTW4ucU7ipA6CIHyxHMfweyQ195/wia3TNkdidHXipoLfq0cWwirm/pmdviicHX62QtykdF7S8dBoTqgJa/hs+wXT+mabECifOBP0mepqj3/ps3p4oFlSE3/vXFqKBsdRNCkQCQyO8iR2eW2cT5RZcGAYa9QY26t6vT1uj5y8KaPUVoWHwLugOCX6f4G1wEyCzmUN4OzOSshd1ETJsLDKS3si/ALB6osBvo4e3hhGDikU8dkpaYuhaxHVGvQHKRdViAXgC4qakRG5E+bdwnJnHL5307UgUXmTAtdGBpNh8GKGvTfqG1vjp0oj6nTk3VjbzvSUPGmn9Mj+/PWhHgp/UayubLg7v5n059MVRqtHbBahSF1vZ6lc5GC7XN2hi8UnHuV6CHM72KAM60kYV9sDEP/kCmCJfKqnUG8sjPfuZq8RQaJEKQo34f3EDhE6t26j9ZV7yJb9H93D0eUlQT85NF+iv2EvFjkSXUdBsCdR9AJuj4GX8RZr5/618yDXZF7A2azzXFk3CBWeu7ORRh0JFTQ0adFMnE4pG85kpz/+cXF07uKJ75riBKU+5GnB74rsphVRvqornmXIGOOXHdwXe8ecZM9jg0cO9EwuRiZOfXUoNa4yE/Pk81wb4vwQCnEyJbKNxuh+r7FH/S6NNPyyFNNqRrIamEeixQSV/FJNRMWmzzIHGh8txKkzUvBRk3kY9UpIVvtWG1KwuCuTs6OPsGgvThh4u7k7wmoBx29kYlhC+hVaqo3eXi2/shc+Btq/RR9mYZkjrH5YKUNGSJ8yx9Hc0Ar++tCNG2gbjfcJkGLldjv6smDAFpSDLw2qy5kiggI08XG6raJSbPEkFS/hNqfu/nMlT8NmlT2Sgh1e9iCpiiSAw6zHGtrAUkpM7htFuSz/TaNJgrR+QCWS6O5sWs0wZt/S+3BeTj3G3IAJ7KqzULMW2zkTgY9zYyFzP/C/p0BNJhtowabfjO0r380lRb0MvXrWEY8hgPdPUHg7rk7D1AB6MfE2u4XCLkfGktttNoRIesiSlQXO1ht5dLsGPSdlpHzq+c0Skwkuub6cORYDfsjvMlE/rTTqrWiJ/Gq+NaT595P8v07xCt6I2z4WTIkZ/FnpnmhX/jyxUvxyORK1RWlL+eMJQAJsGd4QZCOPsYCAgGcPXYPBNSGh4wg5v6qey+lwbsORqm0wGP9bFnPJAnCLxE25vGaQxiWhvJrf9cE6M8hLcwgCd72goToJGFEMm6fLyfovAiZ4LI61TMAKv2q736us6JhujV4zW9wDBtBJaL03/IiFOknIxfAfyvTHLXdKH6aE6Sj5T2oZRnqFPPnmNcxZrsXP7q6aM7/sLcQGuyMehVzE+uIEYudXPBtI4PdN//zMW5Bscnifx5j2rOUpa785Gdqd+w3H3woqxKcglkScdFsCpV7KTrNiBdJ7AyNpdFZgl8rz7N+0SCWTZxSXat3pEiRmScZIoEqpJBr6QyNrkNA4rq2pSpalsbkWOtEfrYfg4ClqBgy2jBEfB4A0wa3HTP38LL/m+ehG6pGGqWSMoq4+Qvv5qO1k1QoaUsOSm2Wj4LAzw7IDzUeCb3Eq+X4mF7NkosPxlT5V/Q2QHdZMSKaEW+88F2d0ry4m1JE2ROQ/p88No7eWE5MZZJOvu5VaS0Rfbz6mVvYBssSkyU7Ec4V9+znvF/4AnScFdANNqOPHwAw8YYRdim2vXiTw8Xiqf6smX2aGeOGu95YTu+isGmBIm8cL+Gh2clhWqi5EFVNeLKFV/1CFklrvQTTWM0QwooKT+cjwzbHmX985F8WZjLMoBEFRIHleTgRL5yaKBLEPYepVmb41PQ4nm4u/S580dEoLVf/DgoEiqw4/iuwY+WEAoIMd1sucfcSm2lCidDpJ7qgtbVtO1gttlKaODKC5d05/DUPfAoU+c6cyAH+jWZ3JtrAFimolBLx8wOB30K7vFYqBrme4BE68KQ/DulIJ4OgKUPdXIJh8Nh5VKrMtQV74CsBZ2wDkWhSCwrsxkp2IyrPfYtCxTdrWLqZsoR6CuiQdHEjPvBO3bNyA5zlCQNFiRxy8htH6iHTT//A3G+6CGmYpjHsdg9Ykmhu6P4pikkrRw7QDgHVBf+sy4ZgWZPLB7orLrN73QezakSz8DJNdE3cjkrlesFLHujtLIyWkzOz+Wk00+nMMC20oonlcOIHSI09sGbyv34KrTphalhFToU1edRrPatV6Z41u9VDoWg8GWQ3wP2yhxstaMBtsUr1yqX7N7dSnVSZulSBd8k93QF5lsWtDNR+6eQM2TTPh8puKc8ihdzdukLDudP9zN0aE+oZAd0h67mO/F/QEG17OUr1X07tVLnhlT0ODoGdYDV77ECwDLGNRF13DaGuZFWuMgXUoaO1f8IhqHKIHpdRIUVwyFytJ27NlLu99AeuhG9Vl9hMgoxHlgGJnBTYoY0AN2qbL+RkuLGJCes4gklr9Qg6wXlkgoDwXwV/HNef1dyVOG4viFkA4rNbUB93PuP16iYxmpqM+0gTNKMP4wYRv7HK2tXB1quBhB18Ud3s6WyMTQ5ywcfQ6tf4HhpaIHBT5mDYoJ6Xb2XcJ8Jsnx5s3aeHS7iSqeEPIikSxsAOBdpdIPZc2sdLx4DYlrxnRccW1APt2HQscxjEZ3av38w1FGmoIEI4n3CVjpQBysQ+Zebsw5EH02F0JLynRKTte98Fr7PL7Ek9siIowUkJmDrIsM/xc1qvaDRUtzc0dmSFrOrI8aKIdsUuKQmGYyMBIqqS+5BpmaDw6owz6h+fOx1P4F6T5a+msQH9l496v6GSre9o8wJZYszKmPB2KvYMeQ/8fGW7jb8qjMWiMOKgQFz0V9Zy0iYkt/tUVnXuTWB86+t2XpSx+49UbAyPCc/SqhUZVtGw2YP7FdUVfsktLkx+ax8OVorvzotO1f5Vc/4zLtC7Y3qXQcvNwUFTtZ05Y/+VWQa1fC3S/BI51ogGyUP3ZIoNBbu928mckLvn8Z7s+pijmsAzTQV+hq2TZJ/k+qSGUIpDKMHd9hOMkezB5y9kVgtY6+z2kbe7JNttpS0lmoIn3vSEaZDIiqe4ShgRuxR7xXFdfQZ6Yf5mjG5xI0OLRjUS2RgC5pbAyAQpDLKd4FCLBGnKLSIESZ8gdS46JfFQOR0JvAwc3odipUvE/B3Ks3xmMka86+/LZEgjaAqvSpiMuqbmOcap1Ml3wu3qJ6B+WXkqFwa/0ZRGiZ4s8XYaa80LBvMLgx0xd8iUpao7FoiMiftu6pIDUXCMt5u/fF8Mj/ON4iuy8IgGEITrLcHvy5iODtb9sVhC5OYg7+GQjOoUTl5EKbJhNGnpa6If8m3ZoqJ/nuXO4aqScnLMPixDRaM2Sqr2clnvBuGOvpPBv2c2Jwa+m+psHacnS2mQWjk2TmoIlA7k37gBpn5e7KZ72IMgigkabhh4hgF9Pwj70aTUWWaMQ7zv2+WVp+VlrKd9I7jpg39sVRcg0n59KdEFuVGrQc8BDqOv3dm3qYwgxuJc2hswOlHW3bmgj/XtUTDd0VYxutY8g63mbbzbaKKEcgAUG/JdKownUf54ZBf8PvGqkd2k8m2IqE3OO+bqZcJSb8mScMO2zsExl1ma5hdd3rTPhZTgzPf9evvk2dRhVN6mPbY4+X795At+awSfrkPzGZvkWNkb2Kf5RMUn8eXbgSQP3kH3EGdwpiRlA0iqVlPzCrf9PifEUPEKw5Ec51iz3bYQ+cKPm8C4C1/SNsTMrweF16hJcMD1qOdK3R0PR3DDPV53gVA1gJDGxku7mSIfY5cBIovceG/kNQ9h/QILslDq+lToaPhzqcCjFWHDStPZX8ffetpHRsxiwZjzMc8PF80cllhKxFBHvybzMeGfRDCGiEdlfmPNm/AiGHY8KVa3EClUGSJ/st/fc1BveRLtN4tD+XB9ANVvWudtJBpP1IohSUzfOBEZY3CgmGSY3lD5WeZCbOosQ1BAIOvFuI5XA3XPOpeyDDQt+c4WkSY+D79fpBCTBML26qc/gyOeyyi6rJMRKKlHLEn+yKCkeYEcX3GGdJ55rEnP1BoENQ/QZ6rmvyUEz81qz5QoiPxUzfduFJ5/3CV4rYQZ4+Nj5L636vEzb1s28kb8C7P1Y=
Variant 0
DifficultyLevel
378
Question
Which arrow points to the number that is halfway between 10 and 26?
Worked Solution
Halfway between 10 and 26
|
= 210+26 |
= 236 |
= 18 |
⇒C points to halfway.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/NAPX5-TLA-3-v2.svg 360 indent vpad
Which arrow points to the number that is halfway between 10 and 26? |
workedSolution | sm_nogap Halfway between 10 and 26
>>||
|-|
|= $\dfrac{10 + 26}{2}$|
|= $\dfrac{36}{2}$|
|= 18|
$\rArr C$ points to halfway. |
correctAnswer | |
Answers
U2FsdGVkX1+Am+zeBWr/N08rSzPVZXU+2n8Lg5/kVEP6qER2vhJQOXUsCXidCIOzXzPEkCs9F1v9AtPY0UUoR2utBUPyxBzE8m5zC1D/f7gvLOFb1XCsZSgEfLIOBxFwIK6zHTuJzDx/xopKqdYT6sQXDZayFYKoy+vQJpZJ4DtBh+Pb+2mdddKAj8lIgibQ/F1UBgVsfPr1axHsF/rO28MtKxW/ScdrbvSA9Z3sLwckGIeTW+Wc7Wpot5aZZ/416lQiSnkoEgF6Psb6LKy+13T1CS05GFXYMpDxYQfIxAXEqcYKapbHeEii97pZOH+vuinfSav0gF2tyRZMwB50+WF33Dqov6iF0pLrchOQqup8yllB1mXpCp2uj/OHOQdpCrH2hOWDTv6J1pz4p1llSJZ4wm6e7/EbhqI2nuvygr7y+R2zWNtkQT/0VfFCrGO7urANQqgOamYGf5KMWjVkt2CyEyab8HkmuPHuPPgIn0rNLWFa2WnWDaJ1rljJtYqs9FXwZk6EPw6ZMs4m4VLyO87l3nuG0xopU1DMBIzkJ4ct2pAgh59ck3Xmrc6d1NrlczOAORMDsDoBp/us92w19gFAtJ9jnGwKcVE28nsDv2N/aX7BiiqlV6S+pcEtPKinRDrfhoTBMSa0DEhb6Y8FijeQwNeKT5iBztA/WUvMfif/ABUaEjoNJIUFS2DUdGC0wms/7M9ki8+f8XbFTDqbiX80WwVWMD0nsz1RRl9TyBfJBVAjyonfXZ7hpeSAnEGHh/Aj45DrP4zHbJ3Wc4Y8uvNMZMdzn9tEFRUYd3SwVqt/sWPLhsx9V+aE4Q6p6hJdClsiuyFDxDs20CUFPJcFXsKZxdG8KSGAdem3iCm/9lqyVbSdwr7mK8fGgMBGttg45eCaqN89dyI2O1RAsIztE4V4d4A7j09dGQWrlLcgBgBMN8EubY8RtmBtVPM63D1kZ4Zl1pE/DKYAjT49d0kr7pIkLG0T3YYQQ4lmH4MU7vBhNUf8TW9jV0kxv2O98G6VPl790nQYQi8PsVPpC8siVc37sFaJ/br8WbY0uRbMRlQSwI2iuaPrOPzBopTL9p9CJ6uET1fYdHkyUTObulUmfGmrUgCKvpWy1AeT7N+Fgmq9n1N+XJ+Z9p1eIEhYdwfF3o9zf3UHSu39DQ6+hY0eN0zU+7xUAfe1mkArM6bVRXLmEtLoHL6cjrjuojgF+7daf56b8lnZwg6LZ8zscWg2WrYpq4NhjT7GAvGL4ynKDpZrTKjsuAaOxX4xPB1JGCyu6k1dQyCbwzCzXjtNWDQugOcsDb/nOCwY/wKgwo5n835i90nERCwU1Y0WeLcWebSfjbiPpEg+uIszFX/9bXQO026xsMm8kdsH96UHBagqvlYaRtGbr03Qi0Ppje+okos+YZCb+NFP4wfY+EOIUirJ3CKNN41dJnMYslxy+WpiNXwVV9ILZbyEbqkayBwZneZweTXqNdhOY7tc136YK3iZWtTlvIjHfiiKLSFElC9teiRJhvByUcgwbPlcSo+LMoS2/eVsYjGkO0W9+gnHUAhTm0nQZ3522zV6Kn+lbb/bdkmcDesGvGdFvjuc2hpiriB9JvRTjVJYlJeS5Bax7D/ZIq+7wouNGD3lpgBikvF+uu9tTCsHmzQgs5u/SSlqMl3HFfr0C3lbwqs6YGdqYfZqZsM3TosYh9uHu7nkW7UmfU+qbKVJUftakNNDVzfTMPfeH3X41UtHN4pxSVU2lfIbXqmYXb+D5oImMP87jPAgv0Y5BrPXZjIOvPVQepR5NRQwE1YuIzuVKnr01AuLdeL5jb1Gsqu8tP0ElqE+bm/oF8nfiQLkKaKnumqR7BqGqw27/Kob2mAeXb88fFlGxaNXKh2uwdlkInq5CWb34OtUXz1+g6SZeuVY+fmmk59bnp1OJt+2l6lb+Cfv+LRzRfMTgIFyLO2xYq4EEwGVlI+0tlmGolIs+Ws8K8L32Fuwc5fl+9vfl6rBdfWUXZHz31j28LfEF5mb9aBD0IzNo/eJjg2ILCImfJvA3UJPCpWZKkGyMF0UqphNBCrI98mvCEAZMEFTCypgkwLJo0ILsWvPvqvBJXQU4MEJt5QwjIBhuSekWz+KJgzIkbVLhJsqseNqO0E+qgr7djvh+0iyTd5y+LWyje3EAvjfvGyPn4x8b7kuedlze+E41AKf+A/WysAJD32+gRa2z/KnwVrav/tdf6b+Qh3ndOb1Mtz318OmtiIzp8SzbjHzlxEUSPfY6KH4Zq9sKYaCmJWhM/3XIDXCbAe6NeRbjLXjLdfyMz/VOFkPnhTUwtmaJIu7O0DUmEGpRlmK7qL503RmSWUQxaMobgdV13KnEQbyXc51K2I7LKLCK2fTiksEQyCWGrja0tsR8Y4ElJgVt4XcH3/n1VzyZ3jlY1Up5RIdGxLdMlGUMc+ollUxO4J76D+i8NW6QgoF+D+QSo4i3W96kyWYQ+gKIhuO7Lyp/X8XRePycbhTeJrJEsz8twkkjPahncHud7XE9W1UYJzQk6zI7vYVK+6LXfIJ4Pt9fEkb+wNiQccelmBZPNIEdA3D3uREMm2MIJDpODlUjuRubfwerfquOc2kZC3rHiyoghq3rGmnxtMemX2L10y0HiGgpipmgzguEO3n9O5kBWLZBt8TN+yZORfYZPCYiA7HucnLOyydmYWVfQRbTTC7Ju7mAjRtXuwtE6w2YJwxWWGapH0WCeQJy3ShRlySZDTEi0iZq4r7vauEHqpAGo2nXFmHsTqq4WDEqYbRvp4rA1Sk5ZbVpoo5S9aJLKqd01PasGzktkuZDqpNmR7/AxHbWViPzwziVq+89QAtFLAT/KqNVJkouSq+wGjFR1sHGXIGTc768RuStbUrP8LzfprWA3oRT9SZ5JO4zlnd1IJqNILi8gINCDUbSORiAAVnzxRV405HLzo48Eu32MuoUer0K7xNRdoAFxyFgPjxUfiABP8sunZsaXFdJWVsgYtRfQxKJKlqanzGl9ooxaXjt16hlU0FpN4I1LRdEdlJSKDRyWKMmZbZendv/jqiSuTAq6nZhZ61cIYmP2+l7vJYJ45Si4Pb0Jah/1TKpFEfXnjLToi5H6/QcBTdQLQbxxFly0vXNCUR3e25C8H9p9vk4Hzo75urDBRrs+GCYD7P1InvCHOuOKqfNbE2SiLVr1Hg6vPI2ftwOXeNtuk+tvIz87DKSVajPy6SupEehd9L+GZN8ygaUNhuUpGfUSjnUJGsh2p0CKobfAZZoUaAzo/Wakc35MP5m9Bc9gYafeiaV5eu4Xd/7nsMr1IORvNavtPyjb2gGdkHztkrCIqCqhK3MkVOx7sUNzmxvBul1uxGhniQp5cEoJyyodhpcYTuCkvQRZCBRofe2QqP81aNFGM4/OQJ6XikMwWa1NYcdWda8hj+CM91cKMnohR5AriHWYALLc1GoGHQrTqBMJ9o4ABXzbkGf4BoaxbzlxWdpDHQg+K76VH9Qa+Sdipqi1eVoc0lLDR5YQpXqa0pqlN2ntMBfr821XO06R1MU+pITMYwd94xKdoxb+U85tLA++ltmiLrN/6w3yV3YnaI/HoBVqi0v6jaPzntTRz02SK4JIZ14NlvPiFceg36ajhkmdxZDt//pY4hKKdw+YuU3Qz/18c+Cojz2atQTcg7e9YOpJJStTOBnu+0JI7jJcqtxsEOETMRFSzRZIeDtWTw4Y4A/Efa8l6M9/WZcCDDrtFqfDb1sfnYpSGy8Se6m++U3rQl9yLX/4K8oGvdjEkaZDaSwgzinmFIPyUiZugcI5NGlirRIVbi0BNEZAlOsAuQ7Uykoks3nMIWrMWzAok28InrktlD3andjQ7RledMjeUY4NZ73g4hAYdTLM2aJ9ncRzIfw0HHtxdlapqyc6XQvdYLZ1TCGcVdkmV1PBTzDjGnT3ZP1aioXj2IfFcr3ka3+zHtR2A0TMIxlsQwSF6JBhRAr7vwv58aTJ8jlfKEEhjOQZMBD83lNdF1hMCIhQgjY5nlsrPfgL3mnsgOf95njpJvWxz/HWS9/ZOQfizuBbiTCUDxRJjyBdfCCWgO/7cILWtJplLMHCIN5HJ3pwTKHuuB8uv/3by3xH1ojRqqyoNRwwwwSkvb9fDVssjQ9waqkudoQcn1jSc8/Bcmt85iBJuk4X4XTpMO5KO7RRlk7UMHjJs9Erlx4iUnNsDmMqGwvisQZsOiGI4BVoIAu2hmShIkA2gH3XxE+RHihbrZWJD+ULctApNDqQThjv+DYX9sp52JJ+GhxR8WgKp+ALIT0KwiZ3ZfmLZgsIRrlU9FiVIFcSNNvxj3jBwKWSwgdJukbtazjX4LvZHA+unFmv5t0XkOhQbRopMzPqVrluRSv5PIkNwDF5QghRWwQJft9LGA3H3Qh95NHPf4AC6aG47l8gQQRMDETE1TxLj/RNw8pGK+9yk3eocOS1QatBV1ULsA71FmJCr3Bnc0hyRtJl4olOHXFxIWYmLlfpIzAi4iKtI2Pbz00mUy7Ou4/7eCwjVH1qkRZpG/T4+Y7MBMeDiN0gK4tMk/NMNl7V4pjye9ACHMop+g0mkNS5OuUpTwhr+FUPOldlPUSSFnEZFvgykwgDE2e6cleCZtytBG1XLFiFOGravFsjtiBz4/t3grdrZK4NnuWL1Q2UsFLsCTk1pvSWBZMigNwQWQxVWY9PETvHww4+fVwCWc+9GbrdJBlqSqldtdRuns5C3Lz19jORsOgB6yyyS99mjX0az1yzADFBqn98CKCWQ33FEXhRICXcI8KiUsUlv1gg/6/4bSnrmnIOBhBrV8bXntZuRsvBlJmq9QQ+8acvIxv6CROZcnybSuoRRIL2dR0EMFur+dBY3uaLlfNJzfEJtrZlzlVtsiCinUhogy614ubGAPr7gWK0K17FG6h4pTpzaKPwCFDmK7CVFF83v13f/vo/+E3Xr0LCAEOyl59Sqhm0wACIMRBHG79P4f/QcCP8/DLa+qbANfpRpjH2Z4/E5Xq7nZSTC/QDa1Vk2KYPcCjdPVDZ3i9Ru5qAwCuDZ8CuK6QiJ4w/qEMkLxr6NMVmD0gYlBo2t2KIwn+V5/uq9UDnzdKY+/j4b6//yro1XKAgj2eeyeZ/a5EscKre3c12/FrN9ela2sFOy/2llWxRww/47JJraZ/tpC6vPgRAmZBVdF1c6aH+L/cHi78dmCY0OFjg+MutTHlB3U1wsnM5LLsW8r98FTfBG0lhkBjNt/ul2kvyCAL2iKM2r3vVVPUBmviT8YaHFKf+ddmkUtNZmIcjrT46BjM6/jURqZ8uqCDaIbq2J2l9pz0GQc5H1tgdq9vvPVe1igDpls3/wsEFbY8NENpbS275/8RMeV621WwyTNaCjPzJZZCm/tHiDBS46C148FoEwXcl7A4mSfLiScGhwISRp/eF49Kubuzc2htwf5IedpIjhERFPcNvYh2TK3ARB/V34Vaui7gvONNJbMTNr71jVbPdprFmM8MB94egMRM148kbe7pkSwcq4SFaVXUjqxrMonBwsWdZoi8Q0XUqilsdwXtnXnTEsuE86sixKT0Of+q9DTHPFPIXWRRSRJTHcd6qgIpPZj8fk7Y6TIiqDVHN21PwJpn8ve07VUyAGv/tfiYSGQl5UJWcnYDVhFMjOr4yJghei5KojHwZNbhnn4qqDQxFts44vK2lvAcHALnSLtuzPeuyars2D71kWySc4ylfa6P9tCTj7CfgQp2qv9qSBpxQ9XcCXpC5fcLT40roWwPD9Pv1ygYhTMn4SMd8bze3xCZRk2T4ru5ZraQwWvX51gaUsJowyn12PS/TFoL7DZjqQwHiJweqfZWC+GG7e7IA8oC2nB6dqVHvuPfPu4m+TYXpKgZaVKU1VeBzCzo3UtEOVfxzRlH9VNAk1dV+B3quZxAzB4b3flZV93Bs4lEujZA1qAS0KDT0mpK3ilmY/BPAMkgtslBsVajcr6pSvapbaLIKI/MgJ3qXco40CV4xnv15ebT6OtvNefLVRaCwZc/yYVoy6G0buVxU5md4sdeMI3fclPJyeqI7RjlGG/jQvCIWL1Sx7wJGk0v/jGeiOuxJLKpLsgc1rpTfK90GIrLn9DPTlsUR0FNlE5zOlDYlclB6RHUr2e150pLgqs/NTOpIfZuKu3woUIry4zyxU9eBWIb/bLDoLsrH3QLXcDnL7TUdmNVlNrIMqiqrFL7BBAQFscoclnBeFH5c0Uv0TpTLpc9vaIOCjbkuu9tJTepI19Ppo96nK/XMnw0OZUnh4uiqyT1eQnd6YluG+sJvVYXi2zAmYWP/gV3ErzmupCY0M2xG7we6zxSGOmN4tAL0cFfA1e6azurfx4l5zmQwrKhSqQOlpwOdc9GwDYAuokZ6cekYctiXriMpTKKeKj+MuvP4wKXMKHYI9Xt0f1TsmPUV7g0bR6hfWk05nPnH4wlimIhXyzETCbIo0FmMFOp8xnarutWs4a+PPSOlyUFkzt4jF3rzGAwqAekf/OVAZzebV0vfF5jG5nCRof4h04VW6V+K4EtaGoFexnevZcsxVe8CqYmxmgJUmVxy+QZFq12XqTf5lpNNiOtmyoMibvb6oieeUVqcGdPTJPH0QapSRRbmkmwYWAJxuPrFTphk4yIxbf26L5RfMoXZhCGxiE0UwyNDfYXDK/ohMU/78nKfDlOcjqshJd6mSrfXKRAYLpSkD1O1RgqnTuRf9MB68WhvAPFt5LInJoHNCMKxYf6bNomEnnqveWkqMP4t4bVQaQOaL3hXUv62ToBVOfxTWM7aWqeVoVDRFJUk0z6fVrA3YCs1I6eE4/J6E/vm+ZC0iyyo4VeB8FyFK8uzXK+Aq5Lw1Zse2dhrzlr4286i7d3HGlGMoKKh/8EmcLzuEegGdvss7xre63bqQqUlZV5mHCJkQs0I44IBxLALTlis1uU9u91KwOJrjByNrSo9QaeDBix2qKngDafUS+2xiItM1Gp+pPZZhX5d61hIGclbjk3LElAYBzYp1GOK4J6yOT7ZpOArVqzkKd/nGgxSIRkSEtYRX+vWzC/WHNW8ldeF9GRk0c5SgLnYWYlA8KiNs5QI0O7x3dttMNfRZU5zFpyp7pcVCvy0ityCWCEkKs5oQCokIhvkJYQEOyaRC30iiPntO58NwUwoToXSKrc9u9sUi+QZVQQNtKnvJREKCrTxYItYIIn5PP7M+gECfQisUL28PXsTFx0SEM5nIG03tRoHx9hd5Q25tTJvxsWAL5PdNnydYSn2mKDtfUkixKygfiZWCupj8h7C2pOejiRc1YXVcwomqHI+I7GR83HNvvmLAo6MhA4L8kMhg3y8WTOzQuVwgZVOmyEgufM3lQhQ2KyT3RM1fN7NqyRrOrLAd4E9hzKUDprC2pfD3jg5QMLibwJz02zAFAa7OmsDdQHJ7rmvhQl1Jfiymn/cBqMGyt9E5kEkhQLZ1G1k4N4WGwpAEBhj+8LAJMLRPWoeloTkYQJR+CnsD+EV4Pywkv2CGDTpqXcAmadnXF+q2xvj/GQH1dnHpLWURN+CzL/LtS+ve3s89Fd7viwfW1zTgw96ma05XgiGSGUbJbU7pfUC/3w3XiLRgs0XzO/WGKJ5mPKGiJ/bj9vzv0fXO87U4B/tdJtvFrSJsZLHuGr4ZFSzlMFmXFYXfLJMf2YxYN9Q4zRrkUABXBQeZB0us6ow8hi2fjObGqEN0O2zey0AE+KFrqV4nUyvrauh7uWNR3T6O1IIMnplAJmlCDs16oeCegfrEWkDe6HRjn0uJqR9jW9S8mF9PBkMLHyy+CmJVKl13wDea67mg/frEXCxyO1wnPewL60w6r66VgQY/9lEIMqYCMDuyeH4ImF8OB7iPWjJoTiPPYB39eCNirBIL8ThNuQ8sGEXz8NDjcGIqvRnmnP125YHrQ0Fbht5KWEw5cTIXWBPNolVAYap6qQI1CwplUW4BKxnLPYtcSXCnXBptldEzLRMkIPZj85+5HBUrbtpuQ0Cp+u3kfY1ghrdO+Dnoa7pKRbCdVC00Azsz5sPkwsPV6QiIi1SdkZFJOxKzNSsJ8B+Sts4ybQRhSD2orZs3F0wyHf9KVdxumPYxFOZDjjrSIqvHUC9SyUzKo72KybzshEF6nXfDaDpofjgstWJemtdki1Vle6KvHCpEMOYanEI/rAAKfu2FnGYDpQaEkLcw8vqr/TaYJ8m7jcj5aDtg42l6av50pyaulzki+7PdhZYIAO2CinC7SvGDiVmDuITKZJpdmuqqWQ7PPqflowBXBla8R/GJIPGH4SVEkv6awkjU8Y6uE+svh49RoxCSd57/sMdtuWVBz8GM2PBeoxr3RRWFn3yvOTWEDUZj9hmW4Wm5tCzevyNzfr/ECooLGzTC+e6A3U5U9UuTV2z47V1QXmHmhikauqp80HchihD2kCuCrYOg4IiYIRIUfcL6Hl/qDLovSAkuv95jrmLtWatvsCByPnzVk0zq+5DasWzrTaSGbvTTJej7AS07VbMNf32z3Wl+GeL8oDdCrDBnE3hjIHlx3F7jt4lJKtvtLIKESAmHzZVkyK3YO92ZUerGDjaRuRxbmZ7DWdaE7OUv/Y7vAn5B9gq4hGFPE5XMKvKbUsepyCwj6FNBc9noMuOvMOytNjhNGNGI9V1Zlq6YOVQvcDO7bSui2x73dU+o8f1SenaU2SDZkJtZc5c1s3bQI7S9rA+VR9mr8tftJYwuKBLzK7SatnQz5/oaPWpeSXR9DwEB9NpyNMrM1TZoaChyRl1KEPMmSUYTKix7gzx0fxQUaQNEZvIiXzrFPFh0pCYLrK+gYXvjww2YZDT3En8SJnvYlrFE5e3yz0J17PBuXE8GmapdtA5GVz4NFSxkhE8rkaIB3P6umnHOOSM53hF9r54TM8zwfQlbIkC0WWCMBKzJHqEfiGzpCxyRTp0jw5pf2lPwCfLvm2i8mPYZdfvGTKagHrhzEgJdSx4Fvol1XqSvltT/wUHDwUi0/yIpPkXDSKnzq+0cNW7OMa2I/Umj2h5e3U/5ulPamcDCXSxVRRV0jLTXnotrlPyGrej/JLFUDYXEDoY2RS5hRz1H2pPJ73+x0dQcXCx0rptSOOXkUhFlT+nT/WB2GinJxfJBhQqMffOHz495xcBPl8xkkJXc3mpejxugUstmCy8AXRJtxy5FxpAkoYD9g7PK31ggp1nsLdgt8jbFuIcqqOM8RjjgocK0K8SqNx3E4fdAwhJ7QepofHB3l/EaAVhLtPzOdnUGdM4NqMyjTL4tYCmRMEJIGU8YGMOw=
Variant 1
DifficultyLevel
378
Question
Which arrow points to the number that is halfway between 18 and 30?
Worked Solution
Halfway between 18 and 30
|
= 218+30 |
= 248 |
= 24 |
⇒B points to halfway.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/03/NAPX5-TLA-3-v1.svg 330 indent vpad
Which arrow points to the number that is halfway between 18 and 30? |
workedSolution | sm_nogap Halfway between 18 and 30
>>||
|-|
|= $\dfrac{18 + 30}{2}$|
|= $\dfrac{48}{2}$|
|= 24|
$\rArr B$ points to halfway. |
correctAnswer | |
Answers
U2FsdGVkX18pmbUUCVaBH4fZv5SOpsDCbnww2ds7E3tLgvsbKwQlS2o3nq3kLJiQR6+EhgTMscRPLqoVg7Z2ThI3HZrQkD0XWA+y038ZNO/lI6hDfhzv1dbQzTlYttT8RhaER3cyltJCUVwqWPlow4FsjbBAAtqzCGXnA8OCCPOOQ4/wwxKO6/Ffvqbt68+TceBIX8dV2J213Ufg3ncHPZpCuo6p1tY6TVqC1IadNvIQ126rjZvfidlDqoK/9eyxhx1uy1rh0I7+VvP9cTDyRusLcv11iSDo3dmJ9qnIjUtARE+bW3Gb1lPkmswVqz+bhdskvyREh650a5YAlrOsGDuDXsCOQV1Ckb0u47aOZFvGBmepcLk/JAbvgc+WwGRhLSIbrouTOdY3t8bwv8Vw0+ohGjOZbpO7Ark3wOIfYa/jNjk7ufJoWnoVC/ELLcxzxwCt9MsVrp34jnhPYPwWCFPx86U4OfQv4jMXqCZWD2oT1JBRxIzY/CFuj2flhhlJXqQIMrDwvtrxl2GXdy5qma6vARj5WMOKUUYrOn1xLcq410jjS/fIuz6USx6vz6gSlrjZysoaRrLR5/ou+vjTFffM2nzidHQqkIIZKo1RkzRvXGpE1fSQc/YUifNJJAmDcR5MQcAjvLWF6BZBNunq3r+WpcYa25I6y7ksOCmcfuttOpSl9oCHFQiMt7jqrtbUQTDnbSwpsXzDaCTpFF0QRKRLM2vsyOqW4FOY07VQN5pAg6btBZvo866dJzC/ERP35PpSyv+QxDdyIElANTlG0VAxizFuNe3gxJjKoZUJK7tPN1zP+8XUmkgOXkeX1q9i0SabfIJoKu/Qmamsxkfh32mzT5AlG1+2uuHDSPcQpzmK42o0ze9THBPL2Aw4DlhhbsmhtovonSFQtEejs/v1t91qgK9BGjToQaE67FUa2r+iOzNkReaGx/+MBJGZHJ6SmEFBpOszoxCfcAfVw5B4RYhmhP9ATjpJEqRr4BXCsmKOKucoUH8popgymCEfRwU4T+tK2TA9tXbMA24zMwNpyKBvyt8iN4fWLlXxciTqJtT5dhKF3fjFP0CaSdndiYbHI00AC1IR0uez7dib4e4a7N//kQsXUD4q0Kq2yNYQV+MC/RKftVpz6JitcNKlO54XsKFJbstux0C8zcL7NSY9dc56jRX8bZvXLRE7OA/mQRQYKWPQswbH4B2jnDxPyUVzr/YIYX2BJNGBRaNYcvirrsnWBoaijtILiODjgp6c3nqkC/oSofgnPPE4/QE9hZ+yE5MHxZKcTBjEEYN33X6C0Rp5pN1wF+GRUJppE2qrC/99Ujm2DkzTtwODRX6zE1abwgTgEiyWGqH5d2QrEzXx1GQ196VpBJy1lZrjnXwRgsK2BA1q6b+2PLoAzZAExnUHl9IWqeKrDnXtmsxlk7fy1HWmk84bR2XwuCgWD/qr3prWSOkvMf8Wk5n0N4hdAFezWb6NspoAPJdu+dSfzhUJ4shE4Vi5UfN7dB0lEP6MsiLz/Z80+BsIE/xL7hGtD1G0xI18m2QhthKIqp/wb6kR5nZnOHcV8pvIfB/S8WJ/5Zo51wOBjx/MJNaA5L63XBhZw2kfdueoBK541kLXVQk/l40D8D7Sfu4DP/lZol8hZnUs+XSOGr37gX2Z3MusAob1cE1xBNnEUqtpr58tkm6Cs6In+GgdYW52Z0TGPMB2DU2AqDxwY2vwrSaZhZP1opfBYn6P7CeNmS3q219clb9bBmMFdj2sm9TeWfRPmRMGH9Y5gmdpVjqZhZeef0WUzeuerLiNX9A8GKMGiBZkmtvvhov04pQVyrnymzV2/i0G9zZ25ZJVEWIxn8I4QNmULMSDjz3Sty12Nk4HJkM2UBmxGhyvqfQflBSOIur9820uk9JfCsz4pO1lYVcIqg6iIx8DtDjOT88a7Ftad9sUtbXEV9CXkSs29fmahuksZ+ElkZN3rWB9v3WRNdnc29rL/KnJ7zIF1aD3CVClB2wvbk2i+mw2LrfUNesXOmll0AT0lTeTEk/CKQr2OJmwC9zAStt/1xUdQZF+wrTrY41bNnp+PzVXIBRgfV12ketO49AdMEp4LdfBb2yCKV1aGYbF7QntTDl3Lq/gy8Dx6PaLPFWDGDX5pEqKgHJVXj2+vgOazAXmhMkvxBlZelp1vrWKARRClicIYM+LYibPrMYKGPGSG37ZGbmb1OD4cT07ZhO1fltEOstvnkbs+DlxwpYscwqkmO7AazhHiQZSQiFMUrhdrunX+VaQ6jk5jEhOak9t6Ipbx4dp7fhs/DdHbDuCw/XEPl/DShLOzWsrkIYfJalJVifWBU+ImTM+3+Id+oCFrkqKrtyfLCB5m9Ye+KbElJLhpUlJTdPeDImX/jx+8JFOMPHxhJB0C4JW/bOJoLWCGRnm5u3R2YCHFGA3WrUJw8hhde/gV5O1mTkRsV2LHpeDTbf7ao+NJzqDM/XnBFEbaA8oz+iE4OgGMqRc7YWf7B9Zxa85sx6j+2HykaQVoSTMTlJEcN0w3u/T/d8wrhdIK8EX7XS+QPVRWjl0F4NJu4RApV3GapLvKd8gHe037gGcGA9+aUgob9aBE6VsKkcsKADvl+EYvjRrL/WX72CFavpNoONjCnVY5l/Tnif2JZLyyTV8nHR95qC47jN3qapTohXOt85Oda/2HFH9lYAa3Cb6Ez3wBZNZjLb+ejhPCtbmSvY8jJwQqqXPEXTlLqFkZ/OOI9pSq8fIcwiu55PyN5AoCwt7iKLGG869NAcNNLPfcidefhj87LKJJ+estQ2BalUG79tkl1hkIBtcpBN8TB7PbjUZd/KiyhJnoUlrlGl8Isn4LH4YxGQFzawVPywfIwC8gLU0Z+EFST8dfWAMAxf3CyD8o1c+96L048V/Z/BHrB/rx8v1ueJ76SaT4o8a1EZteNzerPoUJqbIOdnGhzp94agArMKrg+kVyR8NjuAhXUQ1nqGgrQS6OG30vXnDMtggp7cC8RCmwbehEKksWuIjbEAhLguN0NyW1YmrpY5Lk927i0w8juw/f/6wwU/46rH/XtUNNKdeLnRaeZyvW7xfC1AYEvbi4NWnuWdZdqlHJX/GEB+29cgiQBRUUti8OhQtvmqVK9JI0XLxuu4KI/5J5j/MmYcrwiV79V2mqVtQk0XtIKmYmkWctbDHbfqxLvsz00HJAYH/tkVUbcmhNcnl+TNe+MriexKXoyqI7q8A95Eu+/bx9vkpCsfBD8+VCO0i1/eCcalWvzWaH4RFrJDdC7HM8jL2ZKQ9GJR4HOZRrdTL+emgHmHS4QRSt6/8aqC1ZgAAHqwaGd4BfZXdQvFqQK4i0NCmu1W6eMqJ9rL0QY7d7Z7CUcC6uOoR5SMfXbc7B9K2NY5iU3Lfvf2mHa9l406G8Risnb1lNdRiy8i/7Z4qOuTD8RauhXRiRYVufBVJddJw1XoPjg4pIaOHNbTbWUnUV/wARyP9R+YbQGKRSdvyG/J+eBXsrYsU9C2pBGJ9GOM0Hj+sJzNGGPWmY/YN+hWyYDdXX6p5jVBDpGvwFMsn1NDPy2wCkdT/sYnF5MKXV9zb5Taiu2Kz+7YGqkE6LNSt7Tt3g3sOzp1s8m1xXdEkzrp5zOT3XaZX8230YIDQ63kcpBUsesA1BW99T2El9Muaomo2bgzsYXFW3g9AoQmrjLDaKq6FvJ6MBY2UbloxN1gavoCO7ybD2hCOz+8CcwDomxLHAYFMRCPHBdd3s1myfebLkRo9FnFIqw9GvQ83QI+F++vqzwiHzM0QyZx2ybJg4OFfcXS9vx3m+8RyByqieE0vh74rdpoCixPT/RkwlYIwhStYL4+ziw8I0LRjxroQQAgutCAqj0jjzHk/Wz7Pdy7mVpubJzHWR87e/7+8vS6TSRiMPWvg0vNvCAJTxzSWcXObGiACMKHKalHBufQpPlam3Sf0Gz+zHP98LikgjzA0MgfbenrVGlon7714Iw9JMEH8/GPbAIiE8IZSassadAdLlRV5mHixn934bNy6C/wDF45ph2yki6FrZ+8/tAWfpuPhs49lCTVyTQAg9NK0drhZGFdToP3wElOq9L1msWY98LLU41ExLmmAY8HPMOwkoUqqPB7cyzMT+pps5U3UUH7pFh2MZMIAf6DM8BbjzivuGMrufzrvfAPBO+RVJEsSJUyasLYewKfMpa3WH1SURhSGIGTyKWbMyQe4iY0lJA3fevsUNNooULBbVPerbvy0EES2Hpl5uOhSu1IG6WXhmpACqu/9x1wL0+5xYYiiV0vHP9pfD9oVTQDa1j4lRHOiDlAKWxLFNZO+J78y/f1RRpWUl1C3fEpb+7brO+xyfcg7h603W0YNgow8GhHkHIkb6oVCFtRewJIMUVyTo/CtHA1wfp9z8nV7T3vYKcJVVXo8NrpFtIH+dKlugyGnwrwNkFGBNIFD9CCAloZUWYqfNzMRVaogTOvGC0TBR8Hl0DGnBQbIXVTSfPjKsGoUGEt/P/hPa9eliohxoNjyFNWerDUydU7YTlbV09NZnD+fCaqbOelzDDbkUmqFWLAAzxYo5A8nTOtGFiJUbKm43t8ZaWfg5A4/iRmAqtIKk5LsytKWVGOSl6rx5DWtrvs/VhAPQVmFskS+SYyc5vAEs5b2rvQimXegQmYCwaOogvmaIe7c7vWenH6NQGt1IqsKiSoV01E7zn6FD35h1AO95Inla+qt5ESGFemK0dAQRwckVHBVNXt6MDxCBIPFzQSjEb8FQeBwVRVQTtuXH3bknApdTgSV7jnL6aDV1IHXrxIL3jBDcrRAQPQ1GmGfBD4q01+5/nzzDxlF/sZHTjjSv+BECXei3JbtiPANZjQfNdWZSRjJZzmGJEj0Aivh8ttwUiSeqTF2yO7q9zCJxJU9Uza4FKqxfM3BATeXrV+Uvo0EOh8lYmnTYRw5fvuBKb1IEvYqvBkmoOu4rVid4OgOyIsQcGiYxtGS4FT8YCY9aUfjdEbG6Bs+Ttc0PeNWBrX7ZmAMrRZFUIMu0ZZV0K1G/lR7po2UjdSosoVUkdbMX4IwXrXm/FVu+jwLddY4rTkhuk7+gcsd8nToVMV535QK9iugPINPxCZcfIsZgDefy/iZYRvx37t4VD3vZ2mFvjZcxW6k3tT2lq/xMbBoe/Lq3vc+uq9hsf2fCe9+JWfdMh7qJURcIan7YO0qWhXV/QZC1cx7/VkAV408YPKZgsECGg3DEB1SHK7ti4+wLhxjGD8bULaHJxZC4Lg7jlW6mF+wMpAKdJLFpBNtvFVscW6LK1Bhm+WZ6HfNS0aG7vx27oxUF/bzBq09bDSAGKBXX8tZB4FcvMk/aI3Vo6aTAFs9XRV3DJjlQlqf3jlb0b5QSUJR64DTv7G4hT8/tELIuR2QGg1Xqg/10Gl3gfQVuXo27QXG01hGx2GOXklqgBikldcB2ZS8I65KGZ9k78iKywIYjRLZmFsgczUCgrrLgPlW0gsJBzKCW0PYbHcrRqvUMOJIkQyXnLHCaLQd4cUeVXKYJCMO81QEBsAzz+8Sx0COg8spRp4OOkQRLVA1e/drJ6y6JrOheshiyDVv6936ypspYDKH0NAN384/sR0b2DCmWht8hVLlCBqeK67oVZJ+NithTqme6T4fNEakOubjQCuerDIttn+hMLkjY6wKrO8R/t+Tmy/7BKC5NI6oCPT796/IW8P2ad7Q3RXpc+u+MzuRzRhfFXAmHrTHHHtflzmLRNmJIVvxHuzE1oLRwI6OcCyO47342B43MRuB8osFK03GAs2aviIDaE+M9Xr/DF4CUAxlW/1QhkHwr2h6q9kTJCM7VRSeshUPLjAsgkA3Jgrmh+T0jFWXIIAMnGfQJBctCLAqt4wybxR23gyGixuC9OMWiP6XidX2Ij1YwmETcxMtnbTTyFNDgqA4Rn3lsLZrsiM9YxEz7WUR5uQlxUc0IvBgJzEWC4LbSXgDUoNuV0Ao50cVGi0a/0bdX0eQ44jAlOTI2jvW8fDg+emVj0jS+0Vx6QPJ9aW87/FSWV/z0h4Dpdc6sPgKtTtIO8fKRga1ViYg0Ghkxa6up7J1z9wCc07vvJc0KmPPXLH57T6QLK8scZNeXcfru6Z3q9Mnx/Z0lWtv6YxVrIzr49i4x/k7zPqk/XmxAyqx5DXqN1/ZBK5XvVTdQRpUO7A0TMkKFIxMx1uEOV2YrbTZAcPVxCCH7hTe6L2dnrGgrTvim26qLoJP/t/hAMfY4lP89U/+U4vyFYZZt40+Cg6swoNMpn46ncjyq+KYpr6eg3Z2LjHhy7uHYzr857+9s6UnwZ0JxC3w8exE9HTPKtw70mIZ6ZIhYnQ+XJrJxtHo9p/B46UGVK8WNnyDla4TmQDkxn3yXzxazlAcD3nZlSf7S9V+D3uuSVV6nD/f3EQ+MNC2YEOH5e/rl0gVOmBeTa/13uquTNE26eueDMv6o69RzmdwrC7jeom5h96Qx5+bQURN2NJBAP3I2khM/GEeOx5i9qW4qP70newhSO2IjBa86NYlGXLj6nciUoAphgtVvFRXnr4uBfCwj25bfJ4mOUKWw9pjsdMTYqPG0Dbih9K/qIpsg7c4IRMFSHSQMdlDzQ8ovT5cFLf0IlQW+vxzOrGNlKSsnPkd2actCdUenYNKcwxONE6jf6YRcMCh4uLYJ2dhpD85YU6d6+RUW3O+UONcuYqQPRxSUZYoMH+XKtzJutyeuM701LczpMQq4iGhwJ9eqV7ZRzkJjg9mJS3Uy8lomg7MYHvKmYtsm8l8Mrl/PjgydKQW1hXqCEcxVZ6U7qabfaFI7QDPwg+OuBjFgUUCVQ7+r9pfhkILrqpIT2ialTO/H5xnQw7OaQBNXkuB1C0W4mpc13wFiX7WWAV4Dz2MxD3JcmEwzqu9MgdibhaNHILbG2/vRVe30SMj08eo8ctHxrFJlKqzouMQk0qBoKWJqX3B49ZARkTgtYA1CQbdfndOzrq4V1kUUAkPPM2QGhF+BdMq6rCksoU1uMRu1Maydg/Dl8EZZw0BeOVXVwx34UpJij8G3zvIJZCz+R/OfIOGiV3jmruzyF0jcnHC7cySWQvOJdbzHHTLYrBkDRsu7pRd/G0ngr/lIEHQcX3xA8t9nLwtlsTvFyFcEF2ILFrXScMlolCivkhZCvTlqHfPbgV5A0a93yDk43gtDK73rNty06k1mwmen6C0Sxla6LT6vE9OJPjxW7i1rB1/QCaN6Kj4Dt1yvLaMcrCG9IwtYIuPH1yVyS2I00HMtODfvaIbk2YyRpQim9z9uF8MlCdoVU+9eGrM0H83icbp7obs+UmGoVd5IINPylmUeIabjf8LD4ew8E3lvs7usArN4lCOTqX/c/DLVQvM1XKiW2xEunZAuJr3go4LPZeNrd+drkgTc+mtduuJe3vpEB02y4hRvoF/m44+BZslNXpC521PP5/gQkP9bkX/eMZmMg6KwzmpTdd939wfV9ScWLHUHUnfrfvYfDEyM7lxUCiYcODKPWXecgzRZ6EniFv12wPkOfjzYOVTWYHoJAp00T5i2MGp7mTZG1hZd7R0mGHzHKQmtGXCoM8C7QLXDq/ylPO+R8g0D4g0N2UsARLJ628xy6AQqXlXVy5LQLj1IPs9tTkG9NMKrX6ifWaIO/DuZtZb/sP9+kO/uN5nk3iXbr1VNTgtGDn23OrDQbi+0PJIVF8vFPeOKnlSvwj0H/0Cm5y8wkfpKHI1DZ7Vvrv4Sm2x3Q6l8lZ+B/o2LrgaRdP7PTpKawDvuxS6XEoymbiO5w1EHMYPDbBK8k1JlJC/QezgNbfO0TsMkFCKBbDfFFncvgOb4YE6+sgyoUKPAQeAxBLE0mhZTmhokszOTCqNUdcKxR9iuzDUX55uMyyiJ35IEDLOalcEuq9qjfb4izPd6I5I4qSHz/6cBOAIJqU/LFgUJ2nwz150srZEqCc2r1OTIjNsUXDa25Ja/nRvjcGAVT4aa5fq6Ezc34mJt4Dryg6yTpLFAeG7jczidmc0WeMipAcz0NxiLPg9MfjK5sClqzC4ocHniHsQl4kUUFCn0P4RVhTCqfCNq5EpS9USJhfty2JzrdWKUe3KSkxUCwPcV2/dXWt1QK81FK6iCQX+qY+PpRiCIMfwyWEcuLG5kNGGtz3xDf8wDZcW/+SNVB1+mEirQNk8VfVbfiT4yjFEjjWs3Jkl/s5EGnYQxElyoQBndlP1j1Ix5mXJX+Vo9Qlfe8IRR3AkXEEgHWsJj6dMQ6f2s3wHU79NE8vhGBzupqpyk7xUc2aLREPuQTsGnekmlAlNjfWNHhQHjbiYmoAFMyiFXK97TM5xUfQR2Ay7muTW+I2m+Il1c7/iRjAVG6FHsH0n71e1JM3s5qIj5z1Gm8goMw4ArU+REI12kKbJegteB+dS+oAnb6mDFPRPQJueYs039TIV/8yPxvDJoDPttXinAqeUy5uRWHXO+B96tH5dDq9GQswqdEvI/3p+E+x4ip24kJKMpocuPfjYsknid0aam7uYea+xh73pr3kXj1k5htWirHaVYPCLImfaZLHbPyR6j7xxVZnwjGvFk1QJ9BLsz45sCcVgcsHzsCFQmqY6lPV8eKRFheEJUVvdcTviUzLoBSQaypUg6mKBqYX793EeDnLiYwsvFQWP5JipAaxFkESPIV9yeWT/tkA2B+kY4Il4Oscnlto00e2KOBmsViadYxV7heIjtPhM3QDB6zaXqaML+JGmcbsB+Ndl1i8YNjaY3JP+pwmQfPRszbKl2fRQpD4yGE2lwrueort7Ig05cAmxn2rA0oVtWI6GNg+5S7mOHn6ySI8WrcjgzfHZlM9k3QMh18RFD0U03BqzBMk13bXP5Bme1xFqaG5OCcMFLGZLfh3zwDuwH7NrdfZwfaa2xP1TfHDS/TzXrPyzKB1rJQlEDL5Z5AaTOq/U2gWmL7TmkZGFgkDN7+hbOouVS1565ay4MIS5ELxRiTSeF6g/33vF993WZ/hI/xDZ0NdvdZTMWA4GP43Ti11aiSbYMtoTtnWXIZEpkbT593JZY3/jtmQR2O4epV+1yNO7Fw6V3K+H0W+1rCMKSeW/LUGNVI5okvpS8HEMPEdjKuvOi3UXrU7dIyZtxB+SFPbN/UDZoYX/oKzsuol4lm7O15RTUX+0BWnjHmt1RobOZhjEzdwR+Xet+DwVQCLUn3IDr+p158x6VPxqnlSbDDryScHWYlzY76iFdYrAvHewTIYHFEMU47Gu7eeaWaNMchqF6O5MhPKpxCfyg7/5XB1TczmdF4TlSsSz5zc780efoodP40UKmJ45FrrJWaacMGGGYL6ZpC2nrijae0uppoISwG07ZCiWnR3l6x69cdT2Ld8nmpreoayp4WObo3SEQr/kdqP36Yzf3KSzGqTfm0X5tDcvzSaILLQwogUWiUQvyxQcHBNMxHjmCCzKnBf8R7zsDhsxwtOXbJwPdtkn+bQkvwW8X09WGCcdeCae3knMeaHZ6si1KsUVgSlKpL+ufWATxEXhXNDGAFisaVKDXfeOYI42eCEh2AMV0wFq4WCtwoaisVfczCiPushUPz7bQsM59Di5Oe65D6MpU2DkD2o6QWt6VFJdfucnd9gdmw4C8oXC9JtvD5ztf/IzRp+DBU1kqE2f2hh7zYmjizwdUFJHpy6/Rf/awxbvsSl7SlRlzJLGQL+hrmGiOWqVQfK6P7oQ
Variant 2
DifficultyLevel
378
Question
Which arrow points to the number that is halfway between 15 and 45?
Worked Solution
Solution 1
Halfway between 15 and 45
|
= 215+45 |
= 260 |
= 30 |
Solution 2
(This point can be found by the three interval jumps needed from both 15 and 45 to get to 30)
⇒B points to halfway.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-H2-03-v2.svg 460 indent vpad
Which arrow points to the number that is halfway between 15 and 45? |
workedSolution | Solution 1
sm_nogap Halfway between 15 and 45
>>||
|-|
|= $\dfrac{15 + 45}{2}$|
|= $\dfrac{60}{2}$|
|= 30|
Solution 2
(This point can be found by the three interval jumps needed from both 15 and 45 to get to 30)
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/10/NAPX-H2-03-v2-Answer.svg 450 indent vpad
$\rArr B$ points to halfway. |
correctAnswer | |
Answers