Algebra, NAPX-p168204v02
Question
12.5 × ? = 2.5
Find the value of ? in order to make this number sentence correct.
Worked Solution
Check each option:
12.5×1.35=16.875 x
12.5×0.40=5 x
12.5×5.0=62.5 x
12.5×0.20=2.5 ✓
∴ ? = 0.2
U2FsdGVkX1/pSss1oJIBJ1FImRtZSMkICT/mdgKherH9ePqr8UokxRAUkMor0F497fzXcbzlSAeT1A3Tm76T9VZWOng7dsBZSGgv4q+XhlYAA8fKaIRl1g+wVXs7F8Z25YN2+8hAiAKxQB28FAvHmaxUg+dt41sV4XibDUtqa75Ugrbp2rNEIc1KBkJLEH2jZ0PAWC4qtAXK/AWjhl+1f1R03OiSjXvfAhG+mHdzXLYrcK4jJuvGs82HAQjuOeNiJGQEXGjM0Ihc98gRZARy8INk3NxcdlQWX1yUB41hfh2coo7wF45S8/WakCiSFXYCGr4EJFsEwvMbmYCIRudqYzKFMbFPk0QOpUlDr6POBAJtMyD612kagMvkyi5NTr20X6Q+E3xE4TLHXh08pyoncZjo3l0dWFcpR8dd13Gd2kW9LtEuXFXCJuA75ui5WE2rG6gYWzpXgBa2dJB5etKRx359HJxJDifwCvuxBKbrO2Z7ok9OEPxb10/qHDeHcRT6lxScKTdFqHild1yQJIrQOXLlbIm876iWQ6OopQTt5/Ysb+hu1njbDjMMt1DlSccZYT4ekxIOBpKvLosViki4pjnFUnePHrwY1KAFLFEJbJSXO3yvAaecxj0oZYOjbedSUWYYAuq2giPHzihlaEd7/V+CFWZn7IvucJ3B95p+YdW800ciqzX8xdCrhRUWHT/YNWxuWxI3OSsf0nQHFennJO7qMOQ73I+eeU87iPzQwWbPWSzJBDoGHYgScBLItLphu4qUSuNrhEc2wnQqfn2zarhKb8BuJ891kYGOpCA5qNET7DJZRWW4lyDds5l5G92Li5m/lZ1x+IV5GJYP9miQEv/imn3Xa7U/91WMPiGV5qH7bvS+gOCcv4A596Whp/zEkw3dttSaBvytckTWZqa0TweaR2joylZ4SFaQo4dMhNJv3WF3Z6RLupAjjJdlVdrv7qdt83Z9EDjfb51TgwCPhI7wqK92w1K1MLaaY853Ho92Mj2q9wvmUh2SzZmcbQkxwjCSjG6/OYZ52561qgJTTiZmm9wh8gUQJ2CCeM0umhrJYm96wtehZURYh5M85yWExmZ8D6QLvm5Gh75IQySjtykGFrsOkYrvOYzH/VuM9YWYpgJB3t6GBLseWkBItV6+AouHnBUR2c8yjr279PuC5Qk+rqJBMoxivSBnzEjTl0647LNNXHZqr/hJ9u2xWBbrv4KcRbCkiaSbju/hhelW+ZAawt683FP7z1NSznl3hcDv+AbRHorYvj7kJEx8sxWkbn1iw03HQTK/aYWHyYVKqJrX9X8anAO6fV1GsX3y8M+FNvJBYhAprCpQOoJNDSbq8rlG5VsXfxt1KpDlSvlPesqcCHNQtyQj6JSHq+jNeM1K+Nx9LtZKTWvNSp0SHTerKkglosXqMdfN7p3x3B160BN8teSQYWJQphAMiBwY4Suh2ixfcGk6JxvC5OnAEqf9lLYQahk3ylfGLZ5OMKb+7HjJfRIo8Q/i7oz/mbY81NZzgGtHpBHOUdtV4Gzdqz0bjjI0X4sblgFoXRbF5v5RZboCh4tjem0zqsexLE0MerjTQru8s3u1HoocWG5YNsZOSDW1ViCoV6CHYq1I9/zcLcpA3mfIW6V7GXQYyOBLB3la1srEhyT93J4yGfUZlz7FqRyQFenOjOBD6RwLTZrykcB6QBiFYTLU9IN+1ACQ8vsS+auJgZGHdgiByeBjSypgczdoP0rVxhON9PAu17aSdKKMnhahFYK/BMvimVm7GInOC5Or9UEc2oq/eegphG3zJAAcE7pGiEtZGisauWrVAgoT5jGwclJ6ZWLWMtn7Z3Gn6Rpdw7amv29b9BHQ18n7z/sS0REOtMQ9QZLRT9okpeJ68G1hsUjnhLcOnNMDWNIDLuOwzA8OFFiYcfMe+wnLRcfnD9x5CfALu/+iKu0sWzKtHBJDEiSWAX026nf82vc1y85t1HRJmsx2u7U2cS3/99Vf1p/eQ3bvdu9DdImffLB+A/BSbwZsAkiU6tq4yDYLJd8AYxOHaUDMEo+v9WIMjwpJQXHYy1lK8u/awnzXfWOMzSZ/PcOLSULrzTD3vhv0t2fAHoAazM1+lfEONPV3gtsOGy/wKAlTRdYeCOCIN3c4VuGeKjVNHwgD+D9Rc/9FoaCzhlMEJqtCs5WOWTCQ2Zaslh7kO85GnFurZ1qLh4Xl1ealjREbfSBr7HvAmEZ5K1oi3FjeIC15/OtiVeYSAttdnzTrz7Ecwje4ZXc5tfhzFg/tanhoDzF0nGw/Oy0O2Ks3COtk0dWoxtaLrh4AjhISyww2dN7JkQtC6y/ojW41Q9Vt4DfH2HluLads2Ppy0CvnRarHNpDYBMa+LkhOGYFvpBnVbMXtYRghdMVr0bdDs1cBAaIgiqQVBpmxOQgkG0fxraPK16XsXpZMZ+23FQTCYh73q6RJ/huypjTpBjxRcmee5u/lGBkd6jQ6koEhRS5AeoMQ9DYsWFSKqzdMLIdYd5b19EnUcHaKnbqYYw15zVgAAqter8+QsZ9PjEEv/KxgqdVXeF7kooIa7/hXZUC5wpqg57ullkC/wUnCVj4ZZyQ21b3Q+vgRRxtYmHjiBMXuI7gQzkFOplGEn1Vl+3couvO+ohmnqVMqoijWJo/0g5os01k4uJl/X30vDqc/Lvg/Mx/C1k/uhXas7IWeRBh27ZkVH+BnKnQHvaXiDK955i96IkMvb+dkkKlq5upy73pBUKww5hga4Z2ZSTRHze6o8CttGflnV64hDq16TdMAezE6u+E3EAN6ytAqwOeQq8TPAHfWUI8Z4hqdHy7vpT5lKze4wCs6tTxfchHTv0eKWw4pTUhDimHi7jxVNl0fo9zTH9xBLXunuxznfhLLPEZC7uL+9ZXiGT+hy8zVGOZVu7NLN+7Qb5cBkHJs97Jd2tqPB+g0S4dhQGlDHt+tIPpfuAK0r4Tahcngh+JmMm10HUh10IOSiMJPQAwaE5Do0IFNjG68NAGxVu9D8eSR/xS0i96VX3BltEDAgY3rIrDBx7xKSq7sem736vrPJvKgLKGAFzkkvRx3vfN4z8zq0AN8FYo3DnvPyGw2OTkS4KxaRB87kh9y5PAzTdAgqMl5OI9cvk3xRGZlUUKwoE4MX1VGjjovHgzshIL1gfGbXaNLmBSgtOV2EH4sVtQzuME8bPNID5ZfdYIcNjxpJ1uEB4vA08XCBWN5yK055KmlS3tnYMcqPyGD1XZzXK2/ZqxM+lVebHrU/VQOY/AlFxbPywq79AigDg/6cE+tpF7V2hLwfTQjB3Y938Wryy9anoFxKUI4udjluwU0q79OFLgQrc/CeW/zceFvJIUIY2HnzOJuJLPgZkg5VvPso5YTjqT81zE4T6OvPqh9xkN4P5mTEijYZwXnL4EshxfdUnummDE1q1YZetR81a20+teb0ED8ZSsKZw83gzAsueCErIaaJuxSuqOzNCBTQPCzzIig01Qo7Om/fWFCkwwCnXNAlnbfPZP5Hafzf9QqELDpGSkyXw57OxceI5TBh+1we6wH4o7rLObcKL3OUXqwAmP5ndm1BrF5DWnfbemsM9rCof1KivTCDI2cfRu+fm71JtHVoRykEnBO7qnXqy8EtqjQcZE0xjtPnuISsENluaWFvByGm67VpAno/uxq/FggpKX/SFgQ9tW+56x6oetPM+pAEYrH+YnEy9myuDkopi8BMUcD8PATScU4FxZAKs1whpyShRWCmeQHscCWFjZClLfF/45LlwVeYmB1E4s3GQZ1rpvuSTc29x5bJuJ8EXM6PiVB7TA2UhD645GldqrHldb+L0h4O2MxJnpGFU95TeOadSNdX1SOaNcFn2G71YTdH48haN2297REIPYpyhRv+XW7KdLI3KFAVh+lTYtYwiDEUcW0mIIiKueQPeZn1ftGo4Bwup9g25Uis17gMtTyc7GNj7OQbDLQjFrHnPnXb3CdXAClAvQrrsnyw1whnEmMoFCQ7ErSOTLNw/BlFy+/+biZwmqvV4yk/hwyP0eKBe0aEwiKf2RMidIItNmivlikr3I3sYEEHh7r+Pztae7x7bO+CThpeP+0Fb5sAqi6re0drFa+iopaa3u1v5dhWGraypb3A4FKUpaiauSlwRMCKfAanVqEiJTngbQGC5kvI4HsA2PJIvCJcKckAuNMMn27K/yfMzV0JaGxVOPHcqci7ULne831DX+CCpJdUPN9B5UFMr0O8pSqvkmdM+owESzfA2Ju3ZzblPeEX7RnugogEJW1quxfClHZXR8Vc+yaQzC1ulhgCuM7sH/JmeXsJFhkDty/E+WbzyxNVlfjE8Ovhlq/tdolQnHmNRYMDS1UazluXJJzLjsuuHODjOS9ZnWJSo6h1AiHjBGL8Q0dgP5E2vWa/eh/liBGzq5Rh+ofeS1rLnIAeX9yxJHFnT3JvvkLb2LgaBuOjCfKnvyq3iIlEcebIhDLh/5BgWSHI5mgxhzxNMYWuUMtjH8X2+IA7/tCre/61tJDioT/OTxsdriXIvtZ9YRnutWy9cieNEFYrokGGGoOkecgSaaa8ryL5VWRb8Vf2TYuaxCEZAHOBzbAjDsjYbYCv/52+w8s0XJXcvGXLPWvIYN7Q+na9aXC6KTBgBlitLHwFELTZccVYNlMLqK/VYyOPllUFgnTYsyXxFTmppuWW/5flu0A7PHd/5G6M89Cs2UFoPnZ5g8cZRNtQz86Uaebkw/XSrw8V718DHJxUmcS4kY1zO2Z9raScQfyFAkS4wQGyZUxtQImjtAsGuFqwpCbPESboB4p5EYF8vtVySdhCVDbQLeLqW4SYR6Wj6uKB99rVTEs8fDRlJ2XdAj/Gr+dD8cnK/bdPk1WNYsQQROrEXO7uIn8MRWK+qPmzsb5qzplZklNVLATIagBtPFKuI/y0G+KXzsf1gj/YAGg2nPD/IMq+//8W0iYvcCcIr0nb4DWZI5dNzuE6mvb+7OBNxVvGaPwGa5TXj3TcjpYPKkco/84oSHP67n56iqroLFVo+tVmQiSzTKUYR4vmAadMi4HOA2SbbgYgv7II9nqJNeMPEH7YL/MGBEnuoJwsJ8hkYFNuWC6hoOURttFLSqJidZTeQU2JPxE5Qbc1GLnb5GsHh0s1t2zmVF6n11/I20iqoO8fDRkOW80bf6D+M4XksU+vS3YD4KN76CvPG6J6XL1luNzP3ZXYavcwUoN5olPjHSStO7PtmDRUL+FWPs8WLb4N0DIFZ7O0lckylhUL7fFTzwlGHtwMTiPkAALB3LYxJRDV1cxflEgol1jFmAEpH7LvhttNzMjXDEvbS88PS5qE4QRkhPrSCz8QHw9hnSmsd5/X3I1aoC/EUWMAljsI8JYiyQ8USByPJw/Nr+rsr1jGJkVsT80/KrA2FA3sLhLZZNMDDP5EWBs/wOckwaFYWD3FB1T6MuT9jc6d6abRaR+VJuFzuNNwCiQ80jlzjytoIca2m3jXUrf7wSb+LW+6eYapvsx9NMs9nsv/iFVzPgi0cezJX8hhyTp67i62nr4j3Zda61R3rJ8syW/MdE6PxFJGwUWB0atqkkLl2MeZW+QqRagAoLrD2gCoe4+fAg2bnB7U9lKuzCN2ZCtKdSM5ebkCsPMSiMBNanBxKuxnb2hbeXEX2Ybk6ms/lFi/K2DuVNhGGO1E5dHMN3OGu8C/5vz6qkoDB5PD+fu/ew3/h+562IG2VdOKBBljC9nlNHERiok0WvZ8Mcz4mxAFO0FKOs016KEmju56fllOoGYWFfvgKJ02OjCidEkq08tWDShCYdWFLzAj4CJi18Ql5QtqIpgEomibhhh27X39kBR+1471BFpLWlYl0egFYOZ2juQg78P91G6KOXYNl/gse24Y1NIUrSdS5cBl/YodkBHXXT0prrzZWRtCb0MWYxa8h/5bObpBNSYNf8qGQKIDMjAa+8K7nEM0EfDs3+pNuJHlWT5fR0EeRTT+KDI04H79AhK5MYYcpIwtprl4J3Qen6oGsQuYdTQvyYmX+fsRFWwU/AsbQS8QYbNDxS37LqUHU/2oVyaUkLnt2474WmZO+wVKRDPnWytj5Hp8kegZQywzkYBl1cAjlFbsWnCKdTli+SqYHUAT3LPNEi+kEx+xFladZdgWCgU0aKtAMLoYf6vHwvEeIA8Rc/ML37jbVeVcAfWteydi7bvC4xwRFlspK35GfXigwJpp41b3vwSvcdJgd8gxB0iEGwzE/E4Svj3bwNx7gO6DqRuRHeC5srY2zyhr8u8GK1a5wnTRROpGJQKcXFwY6TxWA7kAoUhRwujIEdFb0HNhNkXsYFbnFLFTvpvegB3HhprDIn/EnVvS0fYDKXTFwqM7fhb0DJyi7W2+xr4CMOrTtbS2Grl6jIQyXIZOX2n0h7CK2qMTfFIvvt7xpkNDjCLl+O7NmuqHZbu8D3lVQMirUbD4pjlOgA2M+1LGeWX42rlyGFgrSAxnzC3mfRhCT3Q5im1e6tEK21UuHlA0GkR+0t6cBevwbTMjC/i0jKRJ8ELRGXcFBK7YoEJnpGyPOWuldgffowU+dJseLLYkS9/70Z/iq1soWNHDPmg911ypvguPC0jKon9oeJqQmX8spgFjN3wF9ShpODLgv/svrfPYF6RE7iQ/8Ge3i8k+2rZN4BjCKyhaks9O811X2eufuDfu0/RU0Ul7aSLoB+HqFa2OGkwppa+qLpqW7iqkNBsRAANNDOJVGXBP3M6mYXk9rkV1FnkfuS67lnAzIGMRZjtF0yDWVMSldV/y8bNwfzhyfWdZZiv7mhhe6lGI0esSLhd9+o82fhJBozrxAQ7DSsL369JhA2+FoHe1ZMJuDxIxuTkS4B9/4yZTPgUpHyNfsP5RRV8uj6SdYVJi5ENt6xhLqP6GHdF9W+PQ0L3SiHCQ9BmsZP/yyVX7JMgGbDcdPOLQzJ8xmfnBmTEVP7GXDdr1MH7Mus699raH9SRtK4ui3Rvbuv+pb5lZ2DSxBBUyeb4WHL8NudVzhBqKFGkDOZo3yhiAc3dkYYldIy2h49U33k3SoMcFsVuzUNqTrfzzhuAZXbuwr3q/JlsBkBwKDkDrshWNlrbCzXqGP5oi1tN2CKIL3ZF2tGiA1l9Kc9LYFAjHe8fYVU2jxQas/zzQpE0LkSdjTT5Gyoggfs4A64YhMrTviFF1PIB7i9wplR8eremN7VhT9vLl9ssGsmwob0YgtPjxNUlJsEwYvIdOhdvxJYdoyyRlktYJ2qaquUdWeAeTookVWnUJW1Hg6riCuh7ybdp54KCrKcS8abkfM83DQgT/C7LYrA5lYByhSviwVWkI3CrFl4S6xpJVJtJbsUDD8xU6kmI981fE5aDWQ5JFzrUmMSYULmHt+In+TOR9ahLVo1i2tg6H02FYDfYVbPpLXYXimiLvMRPuo+tlFzlo4OiwywRKAX9isLeACO03cGSl7Yh9zsYtEwHNP7Uu7rfZkDMrd6U4iMT7mWKV46oVQngFY2KZc0Gz6VlCjVe3vUeewJFuWLe9YaafcC5NzZZsuqf4gw0/gfsX/U7jhPc2QwfOPV/YpvSxnoosEd6ad+BXjDfHa5PCVDaGrcRvO0uD9tLVrLa6chSBRK7pa/URLJNe+GPrfLit/yxJPbknzpM38InaloCZ6v5FokxAON/9AdMRKigdzsDFWKlA0Or93x5p533tSIDq9hUF57CTDDCw9Jo4BgecN2JULgtWanlMWaPIp7hQh/LBvuU/BpXM6A9oYJgty4bJEVHZUXCB1P1bP1EbHrHBF2nu43Gr1AWm8dC/BDziCeM//RkM46Xg/cDXeA7VmN6K5yPl0DTVU/oCF6tLUSuC5XPmFwk/y5Bo7pQfGiCJzdnFR57k6XA/Z8okmqcmMdmMCa1Km+Tgoobal34A5N1VSEEVUdAOyEHiIfB/920DWTTzefTpUHzwtrHgux9+Lzi6EBXwZZ9AT+XDK4IBwJldlN5LBzdX7y35R6oLhJo72bt85klsz7fIFneX4yu4Lc+t3ocVaWylCSQaG/x5bsfvO9IahcvE43q6JpAQj4hsWEwchBnQUQ0oWtJAzG+Dyipc1Z+12Fg1cn4qRrMLGVlyxOWfxGl53s98qRgFtJjI2FS9L7Xx2il2rwJUuIdTKLOAyICdtcV9Y0n1qMWPYbURnOwlJ+aZOjuaJuQro9Bq76mHBoMjdhjTSH551JaqJH9brTZn1czIDgRzOei0A1XtuL9l81w2sHf7lrXiOS+n/vOWq9ka0KKLdPcpqGh9kg/fxZXTmZ+Xh7Gj15TfFFvz23T4sj7qVeBunaSB+BxzL+rW/sO2+nrEGrNKvvh6AI//8a298RdV+mOb8KxnAHiUUIYCeuxcK3VDdLPwTmMmKVYjKUGcdSIdZ7qMlNm1FA0L1ZnzeHHa7Q8wywh9cEpBQrYXdLcuhhCGmn9tn42MaeVQv5/34OkH2LBVrFNf6I8hAKUbx/mYLDmkMB3lztkFAIjYtx9w5kvZ6JSlJjXMTMlgCI9WPtMdVJhMcRBFBC4jdxKf47x1Gk1Mwi7+gHxP/Bk8xlyXxyqj9ycqd+eSt1/EoQADzcmH9Slg4K748mUZtgxviRHaEPLBQOq2o03nRNezn6v7+gwFr2MR5tcxg6hfaBBGm3EIY9RjD/s4ImH3q86fB5H1XLGiwiM61G+BOXb7vkNmt/KQaigaEf+bBHhAkpgovuBliC6pJCiUp1LJ9utzcBLAjkxJKOBOVXQ4Cn6VRP3GRngsJXGhVriLxJa1FZbe2GXVoOEgrxYid4ccirFQh3kx5myDh3MkL+0CTpMmftnAsLchpyBOzPsMJvB1gBeGNXJ+8/Y2DphvYL0blZ9+Dvvdx9dWynIrh/VxQ4z3xvzcKEmc/dmIgi5YJuZ4KxSJPsrjki2QfcinDo3uqEJ90f2v1JrQp/A7NszMmhHQB+2znl1y6kcm2bSw1H2TiK8c3FNqd53bHZzuUScQiYepRziWgdI6UncohYXyiUuVYdxyzyX3cljnWQINgefUaXeJd4ZWyODxWpy43IlWEJkuEfHvqv/SZmNlQlnveE7EMJxWWqMWURJ0pi9QqSv/gEWL1BmShOfg0NFV4Xk+GmPlXH6KygDoZEtdmEHqKP+xlpi+Jjec9cIz4hVVVoFlNGu2eesfSaCs5DJwuSCVW0QcOjKoht/hdtshAVCFbzc/dvt6xuDuUfBQnBV2wwwSRlu2OjsoFYiOoF1w4e8dDUNo8lk/LZIJkmHSsamlCpq5mc9ZonaDiXAfYPMfnjfZBsPBl7vSVPPrRKLMEl15eRORczCFnyGmch2ZVNCU3E27yvRs78q3ubytnz8GJcA/t5dS9iV+UZn9bIVKzg7Fw29oezcmgDFxjm4Vzm4rjYJ3Phlw+jbm/mmJdm7Ui+4lho0FDIYfDjvEdGl1oPQcgzRbCRabtjG30cOlwG4qcZkkkZ76cpDKsVTTMxkT+Cxa6ULUDSyT3xaxnwNuxEH/x2Ik93yekhUfj2yMclDEu33cc3fslbjNNaVDPK627oDqBzLYBNtYBqjzjcSSH6Nzlrhijadp52WHL8DbK1f7wKME5u8Ra36OdVAv5CuvGsprKa2qT5KNsFEFOtKkRR8Q64IAXuAjTzxzxcZNhl5mcpKI1guLVJ8YEJFq5q6hNDNIeAmCNWdaGJq+TkkCgpVEiyCk4BwKVLPcmVi2+ZL+HrEY8M1HugyIkzlofP88AXE09Esdgnbg8VtqctpodJ+LXWVZEIwDqcwxzx115gamGqtsMQlQVMjgZpvZqoaXMxb8dNACA/7OYLzXi+2jnrpfbKGHzPxF8FjM1hkVaxOzDNmhkJxmJ5RVsXOLg63HhCTaP+rlxext3I+U/ZZLBiYb7A3K2RO0FAIc1jQc+H40RuxBGiOw0UztdRYeohq97BHnNn9P6FNUX0U+9d1MwtWyRJydBW27OLtzanOoXq3FZ6LmnmJh7HQwEktzrEybkVqIjO99Yn4vEmIiLdcjJoIgzaGUrkIUOg4aW/+TLoO42IMHCE3gxAzoBga85krTI5FoRW9Y99d3VA5EIPjTRdVeKlKcSx27QY57RTkj/VdGZg33tYljF4CGOLNPaCyp9wXgi8/9vl0xrvN3+kQh6j8LOfKtBOrteY7syu6G9rMdenmh1nFd7/06kmLqb2yWgJfPklrPNUMTenLGge7xZ+ixB7uDAgCu1DCzi0a3106RubG5+M8UijoRbUx6Fhr7ZZfbOCbkUEA7sBXuLbkunKsADi5XJoGePOlXYX4KRmBL7sbaDUMS8FPVL0+iDHYrUoC2SSQ9WwI2n+jLLqrYumWMbTWJi33VNzOK7H9txCKhjTeNQcQS6Owuzfj0HQOEesZnTAcowosdvoU6V67ZRVWmU7en2ZWI0Nngu2h4FRmy23l9LWXKMzToI4phopvsdPFQMidpz2YAeFRk0fNLq+KHJjBnEXN9kXymeEYjMOlwDZT0sjBvcAGAfNeCSKSji9c38HznB63fNQcxaO8iCN1clHJnnUNNkuk/88Fdx/czDhJxp4y+vRyjWqNZfbZqdGpvy2STeqzL+3F97tXiUnPRHcXsVdm5pGgzvO00jc9yCDFSzZewQ==
Variant 0
DifficultyLevel
470
Question
12.5 × ? = 2.5
Find the value of ? in order to make this number sentence correct.
Worked Solution
Check each option:
12.5×1.35=16.875 x
12.5×0.40=5 x
12.5×5.0=62.5 x
12.5×0.20=2.5 ✓
∴ ? = 0.2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers