Statistics and Probability, NAPX-I3-CA18
U2FsdGVkX1+oqMSyPor8RyTlZ34ZT0jjxjijU0yHozv3unoYLnSjRhebfl//1z3iwYKZqxY5F4yMfaVbQtTHUJxSIaJ9sWR0OccEIkZc4aqKyd1K7I1Ne7LhYhuRttTch6I2n9sBFxRmqydD0u7udH4JwwuWp40D7Nvz6DPm8p0J2j/XH5IAmcLWHrT9QeuhflpT4jZogBWrYMhbPPnuQ4IGTGMcKG/t3winEJrh6c6awSAKoaGG06gBYgcQJ8mAY6fOFcqnlBkKS0flrCggFTi6tzWgmmHBg2zeBLnJRwGC9JcK0Gh/dXzrNwlc9ZRKUpLG9JFDjddBL43Cda3bmCsjFToZIJ12bzPgJTjf5hYWpE3WPrYp8xttkValwqchdLM/TG6+BF/XV4a7qz1v2IgEXiL3J8NfufibSPBLhiG9fXByk5KsawQG6px8OVNaBLFqdOB5tJsWyJXOqT2Tvp54T69MiioL+nzRB+xR8PcmbXYwMf2gDyCyWC0E0vof06UArB3HDswVrzXQ7Hj9bQ+hKb7ZOwP4YXDbuOFeRIlL0/lavqt8HjeVg73ITE7rvLpy4TNlcN+CA/6QlWFsx8zCeDozkvUEZL8jf7P9047JJwmpPbu5ij1dMK8pKW/nrbUtWjzb4upq8XdxnA/5hOjeRNNz9XWBm4plGmKLVjm/xtm7Mct7EmDxeP9Ad6hL4X8AAocdosH8OTDGH2/4AJk8aRCj13DXVe3hV1vOWQVgIIVuAD2nC13RM8ztTvhJeW+e3a2zZEyOpe19vaJG+bVHOMxgKBAIqj+oBBv2pauf1QJNpTFath61f81NJobXsgmcU/x2Lz8c2uYyt+vfYWrV913mGlFRF5RpjyE3mgHODa2bGB3E9Bpke8/SsuO9QDohI52pSDpSzWMTfv0sP22aUMu2umDNLO3kLc8/6q+nw/Anyd8piQp/eghhSKnKgmmlObBaiaL6tY0TSxN0zNKlfr0HpsNXuErVqNsn3TASdUNUiUZ1tcb76oY6KTsOEO3xxLhK2pHpCG1dM94k/kS9ZaC2XjV77zCLzh0FDa0e68GcmDCXfckfAmXT/SD8TUEf8Z38FcU/pYbNLDA1XQPt+O00AonDqbfuuyLC6dWMWQCkAakV6FZf/NE+fREcYlpkqTlcaZNjpzMDLQud3JRtiUtB/eAEfcQz0ov2WJADZRmLz2nXSGjIOFp95Bkaz1ymDEO+njrws6BiNyXTR5eOUlbvESKHJEG/nCLQVckIM2YJvmKtrDOO0RYWkZNVtP9DG6FrAP0DT3XKEa7+OW9+CzrnzHl7EvRBKBEj2mKmENpzm1AyW078K6Y5FSBnsKno/5s3xWB1cAMMaWAlcEzZI7Yy0hQYWvYOp+vKd5DCOG5L7KZvJuj7foJ4+/KD47MxPToUKzyKaMC+8quUhXGQesul6DMuyB4V84hohY5xqRBy1ktkWlgeOtf1cM3PBJ5NCaUVRedg04ZUR8RwbiBKu8+dQaLAmmC0naRLsyD0Wp4OndXBrnC+ncRxCBLUonz0aTOex27PHN9lIq6Nx2wqYppIAbSaZbb6EFOroi5IwPoWYqp6nJCJMrynj+d1LwJkbsfsHpcP89N/3Ac2jkX8RY0DaIC3Dpui2RX77SIFlsp86AadGdLVZFcJGbaSj+JIwEN2uZp/IzOK+bwNiwhMuuleP5F2ym+xF27CJj/VzNhN/VuUajYjFFCvLN8jn8Ftc7BpC2VH8xHDEVguYcPaI7651VdLxYZe2xT/SDXfvZfXyj1XWe76CfEWY/vBzDGunInj4sSpTBRaRb5rI5JPt/X3/l8bPr2cUrvARnZxLXK4i/Z4U6uyQiejEAYuOkShxG/X17LXUk7VajGLyhlTpM+LViRvZPmpKPXOWPn/w3+WLU6Et0kh/rcnkdrN/dT2gds8TJUd0BVuuPVrKKA8hb12T5ImJKXvYwUGft2ha30IIEL34HdGbGdc+3lxVAocYuRKOnqYcjxSSwRbaO5YeZOivV0042KQWE6lX5nYFLq+9jMPpsLGIoyxHP8rM/J480cZWvGf+vzWcOMSExrFRdTVI0SJ/uk7afq4lVjXPYCOSkThhnARfJd0Q7x/k9d9RnNb01BXQJaZQ3HRLbXzJM2XCygKpPAQ3xs1YtJTxW58ZNDyoc1+/kMHPQ3LSafsmjyTBmijh/RwWlkVBshEn1og6MfyGh0G1pJRHiobZKObYae8+ElA7t8SHS104oNF0bIARgecAn0+dZqgHR6dVQxlaAM6W1B+h2Xyc6T4ljroLuSEeRryokF6iai7FqoNEeuKowfRRzJjJVIZ3b5VDfb2z6UA7LhoAiazi4s/yufH/nSojXqojRq3uZen5OU94XHnhCveXcTO9j3v+MX0/L+ZRvUMQJNAPNJBQjjnTwBUsc7mK579XJ1A78cIkNp9tLkxC5cAeLHZ/Exuf1wTtf1LvDoRnAwV4+pujtk9r6pChkral0/wrNGJZbVCjWmiw6zEIDK2dLNkzA6DKGJ9INVXSb1x74XGvQR8WuFcX2O+5Qn2dJy35u0mApVgFCd4mugRBMna/pmLF2Burgiar9WW8O5YhTaBAJABQiiaeY3hkoqVLiNX2ogRKlNZNlInNd+245jRwhEubAoGazgzI/b24XlitplLSHX+9VeaV7+P+pfxhjX6IDC6ZFHVV0hjcZPGXFBe4ijSPFWLw9sALXGP1OnogYz/waa96Ni08nGGJGGq826qi3Y8N3Ydh3EyO6uHf+0mhjWQZtXmQE23roQx3fm4oDzzO5LRKQQ2jb0SjPoXFlZ8tBjlMIC2lNHGQVT/ytjpYNB9QvTkupB8gmVm9iUu87CpSWqirOYAIR2ypvPi7KjsjgkIBCHvzqhcG+JsWtOqSmvyCyEeEYbxrPypwdhmUax9EFw/VG3CrtVkdCTbgClvesAba2lZJLaWJqBrtFFlrRYuY0xkimNst2nAWOD775OZEboytPjDhA7hhSN/aGDlZNE6nUNK7d6B0UQpzJSW7JKkgCT9ElYXipQAAQuieHqVNMlXiLMmSI0ddvQ0c+3Ig/Grbmg16FHRukKucznHlDyv22HVkfSaK9WlXRFCPfEo/9TOEk9sGBURGQ3E+jZEvGAww2Zn8z/LO5cUqwcVbLAvsabdgS7ZXhvZsKOZujn16n/AdHumEvEqYKpMn8puLESKr74gw8dSUFJ4YzpcJt8zAgokv5mpeCCJ4ua5YyJi+ZXS4qxtKnyvt0gyvhn+i/h0VXPrWiniz2H3EmTeFqbnknH7KUQKQxqtGrHmDlDqXOmPQTfv4zzf3EHgZ0BaZUM9Aej89ARVB/QX4pkqbg/y9fvAS1pLaHw8efd7mVXaYp2aSsCf6cRFJj3sG646TsSvDD5rsMO/TH69fuG8GQZLzEp9A0QRlyUnt9+YZe0KcuSCgnMk6O6IF6vaReD0IJ6n4tB+bT2jpa5PeT3t9T87gjanZn+rWdFghaOuR0aEDs2KgF8INqf6ujtDopxBNvAswePmaVXL8qJYNJdDbgyxAc/xUBJ75BrPuAHglEIF09K2NI9zvgSzTuNs0N4tJxOgrS4JETphCwR+x/mQyrtCFgKDzIEzs56J/gz6YXbFXw2XmHKsoNDzc7JS+EFDpu30evyS5dokxus4Cbt/WEwCRFfNiQU9nyAB0aQyt9PbxlJkqRhxezEGE15WWHsnIBIP1ZDjBwpoirqwyDbibojA6DFdOEbqsuvKNJeRhNViYvvF3CK3WZTeH7fs5egfXeBjlylRzyACLssxjc0wrmVDn5DNrQJKPZa7fRA/EkWCdLQYvfDlPxW2p8JjWY591oGbEP8A5IL+4nKcv+980RwxEgdiOGR+ri649z+nIQ0eMLWFCvd1dx3KP0Fmb0B7F6HtrldPhjpJzfkPrtlZj3J89fiuM0XAwoQOhQ3PstXVicZ/rMwe8by8beaJ8yF1PgX5mIgN+exwK00suwwKc+9ZUIDDqnXeWt77GBNH3tExXoByXBrH6sYwp62fm6SaP1MRKzd4n1ZdcqATIm6ekk/nU8guiXfanRDcQqac2Sc7pXN0YTK1tUKxB+42p4qMRNOYYPsCmse77pG9TAXrSlKMTAp+tEj7W2c0aeAlL/5x2yfhVKoUf+Va9J5sMptMSoa7l626ZqkPYoAwD7IfW4Y3IauzE+sdXPpWtDLYmbZWOq2T+mGZPpje/ztTD5/z9ZAYBynYKCZHj5dKu7sGZIJAaHNsnloGu1OfAOugMKeAN9FBRtagH3o8xUpQ3EY56rNz9dt54/dC44jSiI/AVCMs3Y5n02RZqSbRCNu3vyTGKuN+tYhQj2QRWiJjMwg7/66P1XCqK+tKGQf1M/ZcZRoPYXAAB8CDW0HdqfbCHnLOw62AOU8HDm6W4iuD5BLX1jzAjLziFteyITD77hHMqKn9b9N+5w08kY1PuFjTdWFDK34VDjOIEMBGHU+UuUhYVWPrfB9w8prIfIytUrWAEZl4MrXOKYKpq6jhV7fPE8NEBKEKtKBx5Pw0BLZjJX9Ri1ZW2oOhq7N6C5t+kJjLPqTWDqTijKHQJj3e1TwRVAe+3/XZEMvOnbYW2aJuxQh2ziwbr2i2TB3+m8S8nDQx8rzEq3AcVU+rUWFfyFAs858xq7QW9Xy77im54cOm3eNB2O7Xy4iCcZmWWTHJdSZCN+wbdrCB/5JIDNCgcVznXIHlb3cmF6I7eGnVXJE5QPPsnLS68Syv1Pb3dJjnFS0QlAyc3OAhz34ODYnW8GVAZnHqg6w3/0yTxnySKL+Wpz4PTGHZmF2OX+uBsGdpPbDTYp7cu140vjiIh/gVIESAnFCYmhPZwGZNASoj4ajvIFuyEo6kF+ju9wm8dIbkMzTzKdIGaY43ijp11CJsp5kgl0bDIEJhTyz65avEmSNswgCGPp1y2Cak1A1xnmGcezJgHUov3PLKzT/PU2WVJnTxOwK5AV+XQSJSnfOhVV277IAXbF1/x8OpAvpLtFH+R88/8l8J7A/Ll3BAND/weLkq+ETNmJi3aG1dfpllwJCXRjz+rI//zkVXuvxaoznHXO7YoZ9WbtKIFBA77CGrtJG1UP6o10u3Bo6Z/yrSzEQ+pmFJQcnKT2ZSmUSljvRwX2+bO8wZhHWq1QejfW5zg3thYwKozrxJGgkQbBgx2qEKPu5elylTmThwrTtZikDJsTFfhyfn8Gf/5WMwq4Q93jUgIukQGNwmBt7c582KOaxcd+W5lmB4+fE0clBhHAdmxCpKM1I8i4CeXpZWivq1NkGS+//peWGUX9MGj5slZEWXp6gEBMYOXvPPVVyUCMNbMX6b05FBALEUqN/WsDyIgvFi717DijFvtUVlG8X1MngkugJTQF+4QVjUnF65oWp5OvhTXoqmbga+0enYDyFx8sTCt96HJSqodJH2481gXQ6ULBYzYtIEoNZiFi5tSZf0AtrsdLdOZoXFDZh5/4WbWeeXI+KC2gMPd50jmsTt4gYYqoUwD08rxXqKZUhXRNs0toQ0bmdk7WOL9oE5dk3c4KebIAT+RH6OW9QavtGNRBnRYXomFMBdEgwOm4eTkytWRBC2mbIrYbHs56/s7XsjMSo7AuEPOWPXKdQVdJqN/EZdRH2C26GAY8ykpXl6gGNF8LSkgJryk2t3789WW8lyWKWuIGZ3WOB/wUzoLwva6TfaBkQMMbNf+/G1iB+WJpC27OVOGInT+ET+b1CWFjFZKsa8KOtPmkEnaaCJpeIHLlv2JImvXJdYTF2R53Kb0X1jgVBT/k2bunrHsRwbnNe3lpbV/R1JuiqH6PBDBNBb/R4wQzpNUHaZsiGMBQexIbMVS70+UmjQ6NXoRLXYWxFYj9/d84XXyBU3sZfPdd1/Iv4f87hgKgUOFWvSO8GA6/lgcUM9j7P+SqdEIqPzwv/tClH4DnTnLoFvaIPxkT9qs3QsCIu5D+kjMcASNW6T7pYPzxCJvRrP8lvroJnfDc3OVVZgGAawQO2uqyjHYRmLeSjR+H1htKkv9MP2m0wJP1UBrUMzV1+574K8596U0qljySkSST8sGQC0bnK0lHgsfKHr7AKg2+yZ3qXldo8eZMZcHRSRYIDoQTbpzitZNh3xMPLditLjwrWAmtQ3WAgsqVw5yxqdTXTbHzoWz8t83qfSBiLVuBnl69bLqa5IpMI/f3fmARWBGg5WMlR2QaIYfcuycTB166JQ1K+JDgjTpro5XtDDwT7/TjkSoVibKvmjC1qmf9VPXPysywE1gh8nBqCg0yeE0rfxPML/OALknDT/q68xHA+/6I0ehZNGpuBS9n5hWpS3Hz3hXGSzz6myAsHekcsdI9/nSoA0lFQCieQnhKOC/KfwRo56pKcj6sRySn/JH2acbX2IddQHiK4qKEEs+HB0pLqlFFOTYpyroxjLAHRXCX83yG1aYx3egUyuyLfrLuZNQ05PNRmW0D6nOe3In5YI8X9qL+WsKKJxAMIKADoAGWQszlFUmFmTa4NYwbBmmVq6d9d8Pxq24bRT1Ify/zrt+nGzRYGg1L6MCYT8yfSwYNY4d0pKB04SKU07KePJVC6JXDUxxhbbnvAqyJE8GRo88AxuD/5dyALgVQcKp2IzlXV3WX7gm1qc4lgIoSvlFxti3UC7ues/Ebd6beKAinsFUtyocpjooTZFzaj6ocy7GOgf/Tx7m+8UO5lDF2vzJOVjR4DFxabPnBukUVd3rv5j/beClHJJ1X2xcTv8QCPgpLSLpNohLi7aHfnOqhynJdf2XIZJuODw+n2bjsbnRxzvZyq8yav7lybVpfFPHOq6vVidnjYVf3lGkzy8zhJmyD/5mD7LFypx0WMbXcKUOTuPsA2PazUVm5K/KSuWJPQgRZ5Ea81TdjbdjcQhvVw9diuhpAxggs15NLRVusUsYnYsWSx9xTXfAKuoEHKMhnEoE87ipiqyp0J3UB+z9oQwl239hswVEqpKcgmyoBT6wGUi7UUckEMbzQIhoVVIKrlXI1Tawkch46ZAQFqFXr+ItPf3tGO8bvhphzRC/XfJh+IF1TO1xhqKjAolo3KXKUmW1Bm7jcskF4mX2tnAoRapU7UgpeyoFqc96Pnkk1f6/dUfSPQ/4izYVlg3JuEX1IGC097j4Zq2pPZR5KqJvyUlqaEciCMf0JrwNqidEAcoByBarv0O4bsagiuQcK7sfqD2Cn4KMbUY5KURQovGfZV2uyaR8yXqAAjpvGjTorPxhf/HaDHZyJn9xHBDWcuj2CHH+95qh2+kSG/gNCD97ShUBgCKIxrI5plOKFt49vKPcOeBPIWpj/TIUzD8/mhRah3y1NQm/Pux2HxBkogmdBhMuaZyPjR7rg95JSPcOWbMoneiVY4fFHguq+ZJx+RuA8Fis08XXDvFPS1Z93JXWHcXWnsjq3mrq10GF82QuO+qyyRAvCdh2uVFCee3F1Hq8K+2uWf6A9G2v2XWAzIKshpt6Fb4bF0tkBzCDGjewoAEMko3kDmgHw9+xDKaq5oCrF9NUjD1lM4ldvFE6YzWJGwnGsYqbLm7Eb2cgXyoRXOC3d1ciWeF4AXt5Ir/VzYgo38KWT8NFOl/o/SigNBJUSgj5MYPbm5EbY2wAmMCDQ2zBFB7X8mVgU8uSgE4bTj9YRT+PVoPcSo2+p1iA5Al/5KYjmmL8ewkSV1iDhvC4vlz55fe0BRwikh/Vt7cAjya87pH8JGZL2SlKfLIo0s/+5PDuAfHszU6JbrLusHPaTb+VbsD3ji9VjiryMFkqTPE1gzcvL6OjaGca6ZyGE9BReYFt+lBNeeo3SIduHxHJMBI6UXH718okaB2yMvnyZJye2f342eqDP87/cUI85MdJG+Dvg/5Yo+bVznVWHMuCoQLLL8IpmX7YML6RrP5/d0TFTz3GdmPk08IuxQkoyDouGwzYtj7mXjCOtFBHcN+yuN9dWNgBSeAOeATXfzv9MgAYvXbzeUGShk0FKfxXAu+43scufR31Kqi5TAhk3cvfT6mh/rgr1Y5hbktsQWCis/Qa+88oDdck7ON1X9/8qAR+c0raMAx7cozxS8+o3mRdYGomTybNZfeTj91AYkMQbZqn5nI5jXOH0pDfwxdWuwrrrWPR56jMen7+LzFW2O+34s66lhkXT4uaaOvdNcnldllRKmQ+0vjZHLQbabt2m3KuP77Y+vWSuwyTZPi56b+V0HjpxJaTSq9A65Lr5Uel6TBeNxNBLESRdyegclj/hdTulSIvpu0zE/AU0lXAImkFv1Evm10CmqrJBCDXTSs9anpeOCt37coGNOb/hmwW4V+dQnKLXNhK992O8o+trYcq1eHRBCCCU5YH1BaW2SRSC6fi73u0s/wmYNapbbZ8Gs8DQFe45MdZEmrRcfC4wIXjgTDdYdx15DWtrwoUfXI9g+eJANTOmS3pyxf4BKQ4MVkGzBhLVpPVu759m3GO3/s+NqymiRypWZU26WHBuT55BbfETK7DXoMWHqM0EYYm80WZJZUe7v8W27GsWCpxIQlmepoMTGwdM2xAXU6S5GMtuQ2+/souTA4FB0wGPG3F+NiuQYQYKR+K9sP/IE1xr3L8Ydu68RFy/CHA5+Q5BaWtuSMl0k/yBIW5q+ePZJTRr1aQPORDVAmQdiOeZ5dE+klM5dJF5jaN07iEMJXlnfKxiurUvA7GBk7CF1qyLjTf7JxHlrgPjnsx3hWWZ0XXtQQ307lqKNOjiBwtTukiGQmBDTAGgwzolQAaU4I2b3uAYti3NC3Hm8Y2owN0UcVAFtw/B1AUW25bwDrnjC8YNwO32GaoA5WadvKfu/eYn7q3xx7Tj594QJqBOX3NsjTsHfrji3KtFsLZDIe52s70wvhMgySdfw2HwU2ECeRZfrFOtjEe64IW0y6pFC4hSAXF9U+9A0cloG4eh/qBH+lgoE4fDTVF6uUYj2gw3pBkN/m19D5ofL7dzJ8kqurZ74FalFrBMGshYXfT7iXtG9C0+ZtblCvXhU8BXdnYg/4iJTpYeIU57XbVmh4iP3ToDdrjEyIWCvnqP2yL6BfvkRuHiKF907aKEc3a8rVFHtnBrpO9J9rPmuItJee3lxd7VII/NBOLzg8OaBCHIwBVpwSJuTne88ilk158sb58Cg4b3JkdevrSkug0ldz1InjMZUIOaBFAYiry7ZDaoGiokirDD7ZGa2G7XGYPN+DUKj9KpoH4vIacDUR3VtaONFcpe6UjRYDYvML3xsv9yaGVOqsXrh60IMIss3J6IesdBNT+Rt+DQi2QW2xv6HM6Z1kmeXp7HwP60Iz5/qdOOTQG3rzQJjx4xMTLEbnBcC7DLHmrAnpROBmpwIaxAWhTCU+KUMMeFY3YL2z0cuoyg5DTFo38bguZpjAlthA80hmjr3sRNF0gp5siFmuQK11byCX3oSZkcfAXKh/iP/seAZWVIFpmYUMZG1GvJQogZIFToy4pPPZV9SWKROh1spCyL46RFXdkCOkpEasotHKeUZW74LQQR2VGgCb2VUIIteoTuAIhicVx8cC0uwQ77Rk7Vaq2aBtHxIYnS92qhAkugLIxRD4ksTo+v8JfcIBM3VrNsD5HRic+q/3tryAR3jSkfdbQXQg2uWvKIXBzNrQfWx0GkDt1XCk3wHVvhuFfq4OmmTe9SAZJuoilV1GGWQsawCNMJcT+6/zbb4TpntXRL4DmJYVFSn+KIiCAs7QeeL5V7gs1ec0tiwLjBHULxqvU2vvHBnH6XNq81B8Be5z/DyAy+FfTY9Z9vKpBYIiJYAuAKbvHswrZ7xNYHADk0uHLNk0BJWJ0l0ydVGb+TYF89U7g0WNpDhMZEzumvp3qE2MocomzqGbXDyXpxUBQbzPwqC0TJeWQhweaZQ6/q0+mm0PYkzt37dmWVumWi8iPVvozZcdbFsCr0YcYwqu1nWdux6qQy2fScdP9Zju7gt35z2yoqqQTQSFiV/4Su47m8caetpnfL2PstyikLN4zstHaaUvOzW6TlflwCcsKfM9/BT1G4YbIlxFaMDYb3d5ECpMfSDxTwQgRCIJEkS2nGEaO/FIZOnANhPnHoGsXqsK1EvEP1z/2FwouMieM/YyYlRJvsM7bRPQze45dBIu1lkXd8kqmB9AZkEoXwSKjVj2jexCDXizlNmPTsGxnEDAlWoaAvMLCZHvxWPKcGMyL0QgQEyxU897+Qem7rP4nlPIE1OudC+Wi6J6g0Pcxq/tOVFXbPOR2ENuE/D5GI6TRB1OX2k3pZTmev/7tBJkmJ6IJVtR1mswIOnR1MArqRo/Shw5RaHJiyLeVCpre4yx3IR84sjFwNzB8sz+zC/f/Y6Yz/TgZVvFJYBcfAjjmFSHBPI2ambifA==
Variant 0
DifficultyLevel
598
Question
Petal did a survey of her class, asking everyone what their favourite season is.
This table below shows the results.
Season |
Number of Classmates |
Summer |
17 |
Autumn |
8 |
Winter |
2 |
Spring |
10 |
What is the probability that a randomly selected classmate's favourite season is Spring?
Round your answer to the nearest hundredth.
Worked Solution
|
|
|
= total classmatesnumber who chose Spring |
|
|
|
= 17+8+2+1010 |
|
|
|
= 3710 |
|
= 0.270... |
|
= 0.27 (nearest hundredth) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Petal did a survey of her class, asking everyone what their favourite season is.
This table below shows the results.
>>| Season | Number of Classmates|
|:-:|:-:|
| Summer | 17|
| Autumn | 8|
|Winter|2|
|Spring| 10|
What is the probability that a randomly selected classmate's favourite season is Spring?
Round your answer to the nearest hundredth. |
workedSolution | sm_nogap $P$(Spring is favourite)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number who chose Spring}}{\text{total classmates}}$ |
|||
| | \= $\dfrac{10}{17 + 8 + 2 + 10}$ |
|||
| | \= $\dfrac{10}{37}$ |
| | \= 0.270... |
| | \= {{{correctAnswer}}} (nearest hundredth)|
|
correctAnswer | |
Answers
U2FsdGVkX19kBVozRKnJnAMGF5j/lbzZEFS0XvtJa3b8uFhrV2J0I9nQ9PLlj+WqlwEmjnjcM4MeBmqu2AZhX6OC/Nm9Yi5eAsiI0MYdKuRhgGG+V10+vGcjiHxBvg+HAXPqdDMJ8eWxPuK5lbqtrJtI6ukVQMOccSwe+mcZwBJeRPfkfaFCl2U5AxiyhcbXhITuZjLQ0F41alzOzI6Rd0FXw6Gokb/S1DFqcu1EymxRz0RMyTcp3OeOGv07vRVaA2zrqpump1GpGW5/HByR3hGngfyBNCUGN7om4hKAVY+iU/MCkhXjD28F5D6mD61t0Ke3BlryRw3c3YXkuiODLyBF9yLiuyJ8giuLpz5COEKFSd1XmCnPFf9vaKXwE1Iu1OMcyQWpMuGb1nlbWUhgLZgXrn4nEGhj9++cp7k45upPgWfqd+t1B3xgswD4RUEC4U2Suuumv6Eo+D9tTEYuwGIVcNvQKj2ghDqoWKSKMYJE3K8MzazMZS1nUXdySlS3uKsTd6e7tf9pTVPqXUWJKu/vlI/nYZIs4rS7s80pp0kOVeVtChD3zgCI5uf8YGHborG9gQDLCgm+4VqESGkkCVcGTZI6139FZq7Fz7ibwTm4GA8YRzQBZvExKHyOkB+PfgOuBEBy+WcMB4iu5R1XzGkaAoQZcdkJgf6ifN/kmoBjg02W4v8QT9Aauy/K3jf4PBL9W7G9WOuvp3FQNQPiPQ1VN3EGuUEpuh0K2hGE1NLrKay5RkQMwVs3ENbAs9sKG6LXl9UbeNURJC6tgtzoVzDIdmEkNWyBuJ2hTSJ7DPc9L3Q777F9sRCFJ27s1ZQfZgc4vwzHr697EB/mlM8Bky5/ijPxi5Li4fjgeb9B2PcGekYlLs19by/vIu93R95qzul3SbPQeH9Uef9k01Hu8oZudPU1sht6pVI8FubguMHIRwCwXU6U68MZqSU/kv034lEavDDJUgjEBG/SJmX4dIC0S/Yoc1M7fgCdmnj9xBD0JZkGzaA2x1PwXHY0g0vyvrIJEu8F7VYFA3gIEei8vIRzz4Thuo/Hp+91ehqvqGy8sO/kHJ/zT5I2PoR5XeRs+10iT04P4XQ2G5nJ4Fb7RVv+8qsELB1P/gdnPXgZBKn+AOfpDXvf/lGE8FeEbS4eVBcczu3iQskxwYYnZn08GtjhGducsX3G8sBbgFBfQkM7mYUXP5tGPFzcGqYxFCvRh31tDuTA82PLKk00hZ3U2DOC/275j3fergLMqraMKrBBdVpN+jAGiqasn/eYLcW6wezM0ILfiKgDmiUAbZyzjiYRI2l34CN1ocG0+gCxpSPZa/22ICdxqBJxhsD6TWPQX42NAuoaEQCflTA2RTetEL9kTPsQ4KcFdRV5q/iyFd17I30ciY4BZcW2z32pWLhc9Ckztvx+1+oPAMKoNhop1DKdGyEqIXqK8e1b0V3299Wm5vDMB1K9bXW6wIcS+MwgdqWFktIkoftNZ6uKz/bUELj4LEHQp2zvD2hma5t63jD0KMDUVSGNgncmxqAxhgYidQGOwg6lNpQ4Sz7whbxbl6QIWUpRSE9FZbF6MO6/DwWCxvCIohesI6Mpi5wbYiHqC8/09m3qYRaT+Y/ST70dw+L2jRBroSe+lN0euxKRKO1g6s3we2DiP4wLagzOky0Y9RcF3ZFRgqPF/z6Nvk5tKhj2hvxvlmvt/Z+dlXrlTclPKj+yJM+gDm8xNmVDpJOfQFcPRImnBSSWFOZ2wNqdAr840mxkzKVwrTpxqxGzxfKvnMEvSopGaOgTWIGwSFSHP9qO6LRGQ6X53/NLgfdXSTLury7L7+TDnwDLfZy4Qh1knjljjDXzKaSiO6wpWSHJgUWPKPlXl40QQNFeo+U5vn7YIxEGHuvK7TJxki2YMhosc3klbtX142y9x1+nzQFWo3EUVCAtJ7gsyWXsjoSi4pvyAV8MgsewG/sD9aeoSRteYJfuvxcVjsqf2LJr8VkJJrckUvlCDe9fgpjqpWYACVfX2nf4C+900XgLaFBZpNBZsvo5uJ/nW6yJyMjT6DNrHqRGCU8CvnEb9kjHVbB39b2wLaSLapv6p9WmP6J+/qlnPPZoXJfFazbPgaXc0toA+vtn8rYjShbs1Z4sktKXc7HxmMqrBxjLhv3gIzp4CiMwTNKTHGpm8a+xuqAwHpjIxOU/mAA9XVHNoH0Yz8m51V7G09pZ1IKvEvefZjITxmH5Qt2K08GSh2gbLqm6vUnX2ODo2NqnPUtGOSKALrQNW9F4CivN+9XSsMiFq4E6P5F3BOBrg1d2sTueKpkjWIz7Qaag2sX9mHbTy5BMLatw23bUSj9s6buOkcsl/lcRjosJo36tdBNbGLPm4JASRd/HBOSRm6bg6pc2rlBeQf/pWQWSo6h6UQrIateFvwdlrk9pycXQy9VuPFG7a6fVO3EA2CFfpEZppm4/pAkmlbzgNG+pIcM2/FLw+N9IXoA+xufqVlE0Na+LRSO9ON2RIR/tSDEzXgf72P3TOFbDOCYa2oUERuOFt618sxSFc/rQziLbaWhbBmqwwJqZcXERjbl6rJQQJwxIWgvPspeUeVeP8wYHmAfNk2Z2QYKPLCe80ceLFPLcqFSmEWeQgf2BWF8g6oz+1pMV5RkvIkdGw181oVcOMMtTJYgwT6PaEPw2AdEjTRySCvK4UiSqDcl6lHv0Is6CANjiWO0LvHA9z/XOAKrbIdsXfgZhIBnNo4zkgJJHUaTfH8iKRpyEjH24t25a8i0C1QOa94TF7S0B4CLPWBmSPfI+ETmUh/iT2AJJcQVxMvj/SfxzE+ajRwdHrSMkXMNHJLdwBkkmEqEjHMbOiQ6jw01TSMvXgM4ZErqN1OSXdKjWMtmSb+tG4m+Ab2R5hUcF82aD34v0+nuwDRHCGlwAl+6Ph/P3Tk06Mre1vtWG10H3xVD3gy0pYgT5P8wx6h5RAMCXApLyPR1kR5fcRbF+oXwqkX6VdroeqhECIe00D9Re9fSNQQm8RV4Bg7azn/0Ed9wYuwmGW6aHwcTL8kwbOob0VoURr6PyHb16Ky7EyeYmo6UZz4znbA6F243waPi725zpfWfCUXhlHoldQK1YrAswTqRmlF9oej/GHAwRDFyaL5aOhCFoGjC3uvA6o2dEtrL3vfKyXn9r+g6J7ctptC2utH838NMgrtBgrDyOKtVg5TGcrFBV4bczDebYqbLuZqbAAgMAZ/Lo1vMZVM7b9N0MqMEDdc6LALnDOUnOeHhVeICED/Mq5meibSNsjdcLidY2PK5AR34qsFnU0NrAafsaas4wBxA8L7jcUEnmT3HtHOHqsZXYH52hDgdR40yzU5dhbOImXEoYam8R3Az7grE1JUp5VtA2b96CWj6Ikw6JugzBkroH2W72xq04z/RnjhWw8KEmTqfh0tw6vQJygotJ60lVzrTfhPNvCNkaatgceKxeZC1gXtbJ9+XNpa1VUTRNwTNdsts/vLP7ileok3VqkRlAwM25IoiQY7cweInreXD8lYWPI3iqx4v9ldhSkweX62bFHgCnCNqMeW/1tgBPWsy4A4QJ1APaJVqrUhFmkNrNj1PvjtOQZyF+bOyRFgPl1UTaoCHiLBXjY+Z2e5xPSH0PMhbn0FcGVT2J3EGnj9D/m56hcjJ3NLvfh+QSY4hAE1PL5FVHdrmo3fbck9xmsRN/ye47tFgoRXFHxmvd0Rer7Gv2JT6xQ7TZqoEPHvMmDRr4CExGMqwrHwQlFX7DUuIp6cdKfH48Lenql28exO8QK/IdSd0LC5J2+BFNIjNk5J0HVqSIAzyyA88vhZ9dIV/uAIL1MQ9/jAG41wQE4fPArBFyu5CQ+DuzzhAjokPg49gCuXatZtSrcy3mFmciPfIbRuVNVC9wcRSQbLe/3AkLyjKMsu2aiSjootKPXgXBzTFGjce5l5VsHfoZCSXHQiRF5qjeHXCG9gpoWBkE5iLE6M9SMyRnZSVyM62vPA07uintAfVeg1o6qnU+A+WQyhXGgupIQ7YZwiwL5wWb3kTH0lw798Knap/id5WJIHPQRZ2YJN+zs9BuROwgQT4bXXQNy3xPggvs3MSDwYKqp0yHWwq3WVbHLt0W5c4xhrtWh7u7YDXz4mx9I7osoQdIfJJMkq2cYCHxw5rRfo5rpBSfd7X6n/m8c1r5D7MF6KBEpOqLn72q6XG00s0yvNnl5OhQFc1hJEqRWWNj4gGNi0W1EYRD2vEqZo43nhl0MK7c+UKiKi4ekefjj2SBq2HbbjGPy2Rwjb9H6dfnWHsrv7F0eonaL1yjyKb9Dj+Qx4KAPJaB/GcekIBYAq+uoefBguua5J9nCAr3QfauxeAj+pFYRoCnHb8VtNN1axqF/A8ZcmgiwZ3l6jIrvPLE6TQlL0MqnpZp1wra3DpLZgFIWiuVm7c4Kmrb3ki3Pi9tw3OoeArRaDQu/LdJPAWduXTnxR1wpM+efWZjIO3SPcY9gJCuEFEa1kJ2PH9dd9DDtxDWeUtAJz7n6p/Dt78PEaIJ2sKJNgdkDxcQ+Kz60W2nf2V5+xFjac5KsD9rnvNxDELrZhhIoCmHuDfxN3OvpCXds0QqwE3zfSkQDOqPiepZddqLuubkbOYIXLcZXGf/0vj9iDstx0lnKH4xStnupcrmbd52QWfDvvrI20qRRB1PoK+IKzYAj9GYVghCKupZnkT/dQcj1g9OFDtVFShCvhyPES9oMiTz4hwqI2KTXJ8As+9uVXyaM9wxf+6Na8ndhQl1+SjFe64NkAPm2ogid+45V5uBORAWD+xqlRc4Ior0naPwY5hCpEijlCsqpg6E3Z0EvXI/NKRGnmnabyjln39IGWSLpDeBlY4ZzxAwmFE5MdNyqAphHGffZkbqe7zgaYzwCgMaCuZMa2R4sE9v4B55Bw47Fx2/Ay2GjkQnC4jsSP4iwpGQKEWedPZGVju2scdcpycv4vJUcSUTYp1WzqWmetMdYyi7CcGM45uyCSWAza4M0y/92dx3migXSHbDkLgQwoupvzkILGGaS1Oh2g85ZUvq6SxaQ4/RvOVDA2Hy2UxeU89pa9uqnnGm+IHzW4CK4NbV84wcxBv5vYsQ5oDIa/aO6EmWn3XTzx4aCF4mOdG1R52aWM1ENNlrmHJ985QnMCxDEQp2XNCy2iY+lFGFNScwsCPzfhdZoBmNxOAMupoLebSRuA/VtrV4tsdiZThrthd5dB221NjzmAUc3ylyrGo0vBbUzh3IOhcH6k/yciN14vYNmBg25UWHle7YQ3jYdL13wACcY3nVbYsEFBl0YtTSLOD4u3o0tV+k6XUJFT6rGT/ltG0HzEUoDW337GiiEPvb9v/UuKqvOO58WEl9jsh1suxZF7y0FR9BbC1fbANQKLbWd9N0uOXPjexXMPjCNNQ+PNn2UUfWnjzq7maU2EB/ZgZP3wKhMMP/tGukzqw/F3ZcumIIQuzaW+a9eCd2Fjq0f+F8i1hQEBRIpZZU7SBcQcH57f97uWXxG5hzrzZlV8+XB4R8BBV8lpivapN7UqGsjdos9KCw1gFv2BhKUPaLdHWTqSrNysvRCCWFEIgrJP91V/a2VrKYEZCE+3kzJbf3rOAzH1+NBT332u/Zmfnl28q6d9enE3ze5DBNnkLHgHOIEKvT+7u8EP4HrC6aPO6ZnUX7d1gQF8Tj2fY3F57g87edtwmIXKIXiSPKGVF04Ivw6dZSnEDl9antTUDCXQfNoBcQ4dHxyMQcj3cJFqbD4V7uAFHaStoyQXwZGzAPWnDzDaKfTXrY32+9syc3izACic1UvGKFEt6kyRx7N0T7fF/FPbsSncW7bI5de+Zeh2hgh5oomMgu4X0R+2+f6tEGpm+bR2eretbsqZiOGyEmGeJPTcXe9kW1gyiMA03fu/dn+/ogDPj7RnRXNVlWbn0iKTejBol27eR9b65LVEVyhnbfmaotqTamFS/YoSSZnZFQLnh18yzIMbGj8G6T8yDYyeDci4X+EsC7OnfAqHXes+6FLnvQBFtRRy19niwzWIcLggx0jlBRfCaxyOkl0TPV12C+ddLrJmWz2z5cRftDYMg7+asVhaTLlKn0CXXKW7p6oWosFR4rQJicaU7a6Ew5cd7TkdIeAokkPZHc0Jln19cqKOXFBDPp1+friY6F86bAHYnkJ1j9gIhxMrXq+IJnmFl1t+rjc8k8hJMFfnz+ZBUjHAHK/COe92WNZExNBqCACkvSyfBIwVT8/31kTYwimCJZza9HUSzHuHNCJAwbMmDkxpmi8ihn4T+1RAU7czPt+rlm5qVlLHwj9Qbboko237pCjeN0cOupLZwaiXXvjbsUNDigCGRcm6uy+14oiQpBpsf0sptPQobg8khmbpiEnebHdAT5o8vBXs6LZc6F16HUn3cgmFJQpVTkIOPbTEMABBFYej/hl8D6drWCfVK8FIElJeiVmsr6WJbji5Udq1XGCd/1mq9kSaIbs0luRrGRSQ6UExaFv7iQ4EmZCnjHRixesnrIx65GX/1lFsJuMqJRDCEmDCMzFtZDgsl4qyDJUggyCE+7PeWVEFXjV3y9Nv/XN962PJbI3In3zQXfzTrpb4xBE5UGmfdBvAxcVR+dLcAPi7hDX4TU/wOLdmuLDkrNmzlmK/JpMCSWmozKg2aZuAqGu35vqTZJ2/UKl4rIVF0Hir/Xasf9uOLp3svzQJJOMp9DJIFk0etuh3oDjDY/Axk/WYPQ+KxJghPgK4S7dVSpTAuMXXb5Nok9pMZPOFwLzCNlJl2eElSLiGsucKpTNMkowHSHls5l+uar3d6St+H6adQJb3fmIvNUyOfVQp4/ZMn56wBSvaejQ4eMpso0foiGINhzCv8iJvr8DVSJmaxRYow22kP03Ysva6CCP1qdJHE8Ye5mE8SSv7x7IqdrIsg0AgGaF10LthEnAcxSLf9er5pVXy36CKmui1svKbQFZfhefWcM/BQ2LUDmMpZ/AtYbUDWiDwA0n+oiFrui/rbn0Ehma9vKt/laH7W52QD4hP8JTnuoZ481USIl4eVx3O7wpkB43KMqCJe6eixZh221AXJtr6fWcNJbzLdEzCJFLsm7hP0C70x2303mB+Z6Iz6i7c+kmauqxEL039WMI9PQySO20CfAwOSLaHXLJv0dNHRTEX0vyh8twm+nmtvMOwNJORmFv/kzQ5kgnwT7bv5x5ti3NEUKJAUTPS2EuZOnmvclKZudbryC7cFGGwd7qIv3pTdfmsAUwPrxs/0XTh30AeM68nD5agA4irH8tsDM8afSnn8ektUosUGBs2p8dXlyDTBsltMkJQFhSliln31g6osVcSoTNg2os2naKjJOQnMAlpjfrHLQExbzSoRz1IzdcSybl7/OxmUU3whKjsiFNsfAU/2In4GtfwReHk6npmyiXSG3/an3r7Mzu2/S7sZhcZ0s2+D6rY5UabKAD9kSvVPioIlagkUIqjPCzZMwf5DNl33W+JEAochOJlwymKh9rjYAbEjEEzer/HaGmDwI5IQO162Q9knBLmHWPzrRf0nix7FTb1YNxswo77xysrf4bEqstpvC+YHZU1kymJ7gGnz7Z05Ba9vdiPcvmNBaVFaVm4BV4upEjsbZ4nt/SgZcFWdxvpzGi5Mav0Cjk2HF86g4VsVXw5PfvpDhZgMMYBE9/TX8+KQ6N60cEjVCpHjzkswo29DIvolxdkvC8z+pZ3jv8I/OhfpAGRVVIYTDrpmZHrQpLyIGmr0nw4EJ1LubTOHMtwWPwDczeJhAvBqJ10iznENL2zZV3PkekcJdDndslX8TOveQS2E7yfxCleLzlARpHtNA/gzRZsbgNzWW8Jm8NWmTmr5VwS77shDhcnDY4uqCEPxG1zHqmlo+T2H1sDuN4WnlSsrWLZUVhr/V2suRJ6Oi9uTb6gfSHTjiDAXKi75Z8k8GiuUfIzALtR2jSsG0ncjZlW7n5xbN/15xr4I/XjXb3LITQAKizFA1pZcMyTfXrYLOBICb+vpRxzrMGw+5pw3Gsr/YHl8JzGun+2KpSJmCW3XrE4P/HuRijXkm0Qby90a0rfiCDldnbDjFqkDzHznqX12mnMpuLDvsyKou5Fn5Wqq9NpdOIZs0zo2XENpEQ2qRKqmi7Z5TspP48k+TIuV0AfWkaufvrLk4XNE2y+aPgaHxtN26Xyjih51TV+mBPNT+4m3tbH9DH9cVS5AEhZbSHKRyOQBiDIs9avNU3YgNkIcAySYw4tz/wYm6jHBw2EPKpt3SCvQHAf3VVej5VIC4MLlxhzjIqDOdCQ3psHmj3tcpWC3mOL/MTwzyM6bbKnI6PmXg4o7zfVrBIe8xQ1hCo6OZUBNO9uw3fI7u+b5LxOG83XviHGrXcLZAWf87VcEefLoK5sPu5oiIVxLvZqq3J9Yxmd5w7lx0Yc4zp2EeXL4d8hwSO9qw7pYuLCDL9h24thm9UH/BJcwX5TUIM2qKymvxyIH+1SEcC2zcs5y1x/W3wqa78y6xqxwcS5EshBXN52XRsBMWfZX6Itig8BGy+GeSRKJ6gu5dA2LRB2wD9IrTrpuvq2PKB4gpjaG0Pn37woIm8xIW1PGFsUcuWc6l2io/yHc8SqbzqV0/yEi0ApY8T6FqBtxoAU/YoAc99zyYoI8wcYqYOsX8w8WaAh9wO/w7O6f6G9gUeUArIJpT0wrllustO8nNcXkTUef3d1iYQHrfr2LZztx/Wp/4tax7sCRVUIQP1ZFICNuLCZNiKZW69GwFW3AL6tcRuAxgyGJuBW6RWLd0UolMVTgxzrwQ1Cay2VTVrGnP0I4HmBNoP09XeF0n46svWeLSNgQDc0o63vxj3kAvgT0QPaX6niB+2gBMcJBDpxcuYGttw6QR1YDevlxHrNXv+STeJ8ct4iZCwSCGptcNxOA4z4GlCNfG5qS2UgC0fqm6b3Xz8aDnAymNP/iue1pC/mz2aZGLmGPM9RqR43ZYujqRs/ZvuRW47vci4w38AVUsbw4LsUyJF78F+8zuWuh8SSE78dRKZ3daT3WX9qImCQq8avf8z3HasdJBD51oMKEA+C5VkhgMxMbJ77DUuI+Yvh83+Ye4XSeP4L2SaUJIgnfuG8LJ5gvsoe7w9MGaREVR9QR6tVXyCBn05oFtRB6Bf5Fi3CMIE2f912fAmeprBeH3Vfapa1BY5aFNeFhFhjjedWj1OWhyazGV+pJzD5oZ57piWl2V4m07AirlsNDpfukmqFsgCknrksrJhckfksGb+ttalj7tKL/VFBF10zIlbtaIeSDVkyMjaGXqmiTkZUHPT7i0vfxBKQrmEjfFwb+f53+y2FmfaQRUqxH5ryIS37rupt8eoeHS8BVW3e5EHByzfLXpTNB+1FkO+rHMmxAVDMTBBnWUUhqtlq7/cbqFS009BJompFdN5HaflvNf5HzBWfUhkxjPJw2eWzuaMV3iU43jIK5OMoPYwpzo+/i1zlY/IJtDb6g+Nnljs9dRIZdS43VnnFLOhKcWoGwNMm1yxDDwSFJkDf1EVxw03hybew0OiNB8lh0RPeSKLKhkndNDEwakD1BOgL39+S3MeTibPrPu6mSdykJPTEcO3mWpZdfVcBfHqOKC8mbf+fOJwFXkq8xkX84Ji0Yy4DK1lALFGfDQr8woQ6bTk/ZToraWMsneC5zTxWyk+0F5M6Ao/AtBPPWOKtXxEwYn9OXFxneQh7q0HkMAmHwdWdAi+OboIqzhzsxSfQHVUf2G5r3KmLkuE9QaWXJkO303v7g7y4hQZeiRpedeXguf77dhlFsQfBXgMrk3VN1qVPYGsXw5a1hiiLxP5+mQjp7quWTNkcsWIMAnYd3ktGXvNOm71YzuOYoAeMUgsRHIfSAvfE+ybqtXWvG5J0o22eHWqBUJdDFI1ntkyszXjuQ82P71db5heCSfKiG3Rr9VSfNkU9YuviF6l3WzPbaWkednsOiw+gSQ8TbR2kH9SfuNxm44UqrQneDEwDatOD+D3GU9g7L5SGxcPDclIyPiUlvj/9/Aat+VfE81GM7WTa1j3s7DR1rOuQboLSCYEbgb7KIHJn1NBLd7O3BZSxA9cqeeGlDgH3RTYuQX2aWPHwrIeI9V7S9zA+xomUss9vvVX6h/jUGT6cfgS4r2Y7N2G68nPGtP07OiXeCGSiWB3DKZaU0/teh1Aw8JoAKSbmhRGOXkZqEnVlNxnlF/ePgYSPnYojadj+1WpQq2DcL3oqPYji4GSM2SyKHxiB3rmVT5d3t96EmKK3Qh0V0B4nGnqoCxF3E/GYKTmpAkOb816OsKcUw0+EEL/LvkEV7OdQ6GFPlDYir/sw+PAI6fNo37/aGpFaO5gU3uT4zO
Variant 1
DifficultyLevel
597
Question
Jenny did a survey of her kindergarten class, asking everyone who their favourite Wiggle was.
This table below shows the results.
Wiggle |
Number of Students |
Red |
5 |
Blue |
6 |
Yellow |
9 |
Purple |
3 |
What is the probability that a randomly selected classmate's favourite Wiggle is Yellow Wiggle?
Round your answer to the nearest hundredth.
Worked Solution
P(Yellow Wiggle favourite)
|
|
|
= total classmatesnumber who chose Yellow Wiggle |
|
|
|
= 5+6+9+39 |
|
|
|
= 239 |
|
= 0.391... |
|
= 0.39 (nearest hundredth) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Jenny did a survey of her kindergarten class, asking everyone who their favourite Wiggle was.
This table below shows the results.
>>| Wiggle | Number of Students|
|:-:|:-:|
| Red | 5|
| Blue | 6|
|Yellow|9|
|Purple| 3|
What is the probability that a randomly selected classmate's favourite Wiggle is Yellow Wiggle?
Round your answer to the nearest hundredth. |
workedSolution | sm_nogap $P$(Yellow Wiggle favourite)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number who chose Yellow Wiggle}}{\text{total classmates}}$ |
|||
| | \= $\dfrac{9}{5 + 6 + 9 + 3}$ |
|||
| | \= $\dfrac{9}{23}$ |
| | \= 0.391... |
| | \= {{{correctAnswer}}} (nearest hundredth) |
|
correctAnswer | |
Answers
U2FsdGVkX18l7RutH+3PYxYt4jd5y5Gchb73wMYA+RHGsBTAmR3hUQJEnNu5kBC4ev4NRu/Kf7m1al6vcSRKvJUVMHiQoHh94d/tzXUQNHMzC+LXkqDK5IEYn8WvrCmdI5fkvP5647vI20MGCuHexzp3OtuMMhzoienVCpZckWgtufemONj6wMNJjewfHU8X1M8rMzXBdoycWZCdRdCCHSCxzUPxbO+c/aPCwICc4NXRAW9Wr0RJiWpc41Ytbg4GlPXndVpx5uxcNOO+6C+FqlWVru2i3Zr/7jowOPgr+4FOT7K++twUGU9ghwoG/Ps15iSYN0nJq/Kw0bGZs2dxTchdIWoDRt6bwf1+5BhLp+NfEvbSM8YQ+QjCZwOmj/FrD8zW7p3kIs+PiJClE3RmXnKH30AaTgIJmRTw6QEGIzYeAhDh9A33uiisUOhJGbVAezWVfsQ0EI3/4h4oQzo2VxElT8FyXJp7PKIiPPovK8HbKUHxq58fUUEJnhqRZj5sC7/MZOFTp129KCds+t33Nyyc+LV2OOeN4mQ4T2drgRJZ+xDI8h/EJbcIrtP6177Vpz1NTTjPvMt3DazWpXmntayJu7ZYBVZev2lyiubN/tzPx1YAPwi356r6jEQhGtMZj3jc1bYi6QXvQyNFKNbMeZX66cpMkCaJpri7PxNt7YpI6fvLgg1IUxLTS8m+/9BvAw0WD/Kgcg7958+djSs98M6SNJA1+0edmrUwVqzKGrVwFmzmwtY4ddxM+pqaHhxTKKlUnpROsjWY1UZb+ec9/h8JFk0veACNQ2jeNqTcPJYg+WsOtPT8wTUCcuWW+tBoUDPHd2AlVNKr6sCr4r2zCIIpBKexOCh/bw7QcM84g2nciriCdcVYiFRHaeCdMq4MoBhAscAEC6jaAF5oRwIcZ4qJptX9bb0DMpCK/39Ow6a9RgjkrRG45cX07yg2r4IX7A91Oac8K8nffJNBvFrdtCSV3JonYGLtUq8n3oYsXgcJ6WKRDI94FMGGWVsL91IALvtgekKXadNWRtg1PhvSpXm05z1sLc2gr7PH9rhhn2rne/SdaE8MeAF/NR8wnPkqWthQJYypQL6XTRgP3l81SMP2VnXfQqtyfVygzft3r7SUcGCw8Qe2xGvH86aGEjtcdTRIk9KLk0tPIkqf5rZzgKNVsNycM/beA3Hh90lcOuuSiE0g5SAqUqd2jIzxtJTYTgi8RbHgmZe39Af+EjQNhmY0lZDuIWGHb9SyYyP5BEs6xPw/FmAUwkNqAzxf8ypyrMSPykGGjY1N3hKgNH71PnBQ+jp3UqigUSyFAIQifS0IfJymvkm2SAkTU08ZEkqdZOGw7hYCoLZTdeVomjjt5mkx19Z4ES8QH1HNm0R9JvCIL9KRe25O+kOYpJoDnicdbp/IPtJyBMotZkOzwv1WluhBIcJ5csGiXqbP9wy+SaFM7GHi3WzeEdwVvMNYgUun9aJrnJWHkx8iG+h1FEC1jio9IsIVeZCc1Pc6lNmrJd20CYknR1PllkUsPm1gPQUpZZ8Ur1N9w6r6hfbj14J1M9q5xQv6K4j3EpcPbPa4xBn9h0LKNVTNmxpzW+/tou5Nj6PUjluBvf586LlGOSBQ4M2Gb2qqR9IdCQXBHLdutLaAsfLJmdtQqJTWkloj9Kzj/nfCx2m+xv+7uZMaIJJVq0OdMneiiLZCYKbl8FMck3dkE2x4eQ752jXFfT/zf7DQG8n01j732g2TXGIZCVC6J/gI4X3v8gyEbKdFc0ge3oPZIZjYbe0L5jyGXlIi8+5ZdXGGLdjskhCqAHv2OqnsdQJ9neBxxdtrJNUivs1Xu8VGaJQy6WR1bAEmtEBHPUOf0tZzb7WIUmRqs8iEEF2pelayRiHVKznK7k/RYRCeC09DtZie7+vRZvF7vJWaGkSHlu5dPB7xCZvINrKfgxEbEJjw6ATvOA/VG+GdjPt/X35IdO8HhTLHMK5EKzanv82QrfrUlU/xcKOmmjD9QxkW2AsrmsyAdKF5LXwjrvvkVnSJvFMrMuSNtCmH7DfEOhleDHng+bP58TNtKxO6zfrnHECZBiPmFcA3iAtRlWCgSC/LPs1ou2q7gwizb7vYNl1kCAzZq4N+KeizoVQ4pWdjrCglTklPGWccGBsloJCmZ/I7OxSX4SXBJjB2K3G7EYXpN0634gyBcA3WO2UoDG2EF8sDTzBZTbf84eu9olXtr24XB8l9ivSqeQxeSz8RYv6zb/8gEuDyPABVAS6NOIT6ofGoLvnIO8IoAbcYiHf5HY6rUZLDKxFy4F8nqXPpuO8HPOfWoEkmfhoHOxgvTDLosEEn++b10je+BGfuK1/ftBqheoyvcEwVdm1llzvAv1dSxCuAsbJH88z4aCxzqF2LMPktcC5S8HMy9ETIWtd31762FISx6C1oUrKWPEA7MhUmoSj3CrVLe+p15S2wUVDCQKwd9Nu49SDiEgAYIZ/WKhZup9ln++JGr1ZEJYSPaxhjpkqaSyMYF8I2oPrEeLkUeTvtg55Ct2frp14m/jA/Q0of0Xntbc+4eWJpRrUwa0yA3Y7BMhRU0xV2vUbssXLlDt70baj6eiNpBybBVkw9FlknYAHWbnldCeDnllk4vYCOqx5DI2A0l966kmWZ3mdT+6C8x+uEowmQJCIsiCMu1OvSp/+qUC54aCynN3lmxy9EB0za2GFPOCXiyQWKankOV3UmFn9Em8awaD1XYrVJ3F0zQTNdT7zb3VHdruOBur7cuFPZOVtHBsxzgjctqMDQQOe0SenqOfBehsAtHhEYfk1Ip4THWRKoKZxfs4Mm7NfQRAyLaGJ6qC0FIAxRVMdzskvsj9qgmNpbeXEMiZ5Ko458sIKfOgP8u+CAoRwh3Wi6uqWTKIA8EP8UysRQ7wQuvyrB10/DoL60ie6wtYEbXUi77EOExJ1cIO+YeuzMT/AZMktXuGfbdNuT4lAFNep58BIulqxxh5fEAdlud9Xjw/CJIqFUA7/bZCJQsZLvaeMzrdJ9hYzrSS0WDe4ElOnJLwdUJU+ZKWyChYJ59Zm+8FGwlCthGkhJjZdk+gNkMdEo6b4cfFs5Nwmf6H8ShMkrY6sluDdkFWOs0Wtqo5i02nEznFtHK+tfkJ47jLcsywZIFVGoqjwS1F+bRZnGGj13CDZX8QldxqupHXECNaxufrZZIY9/2ktMhDBA+KPX1/ncd8uSL/bBwChewVlaeR47cu1RiIyjHFjaW24KwFrZPXGRO7J+UKvbsylHnwKCfex2N5TCweDA8W9hE7dKp0IHgleHPYYKnamxjyGFOS0jWr84kq3+QG7Y2ooFP8CW17qrRDIKdI2ZRlTQyrVDVTzyv8KTgEUvdZt1hp4vlljOg7Sv9y+BDh1kEYVgA7fLJtIFL+12PZOG7G5O7zjuF9nrspuCqbJCtqfJ6S55tm0y2C8zWl7HiyFoSqdP+o+yvhO1FKN1oN7cisBNvKls8agbuqc7+oZ6/fJ6P48hGj1ArAzsY/D+8LD5sRHqbzbTim1OS+/CyYpyxAN/fjceWraLy1BLsABfMCeVg23rplIPC78a1jAJ0QtYo4GDQIhrB3tytNzj6fPjxXoHlwSxKXCFEsBidKMsZs50ABa7lnxWMzepnBNEBupt8TdJIstbFD/OHf8WPpWiUFke+O0nOzDi0ead2ton7Mhd4TheNwftYp2P1+gx0M9BYmjlAYgV6Aoc+tiMBOrT0VjPn/h9rTedxKQtwDXMBrGlhn2o737NmFe9PNVuQDr0136AqdzV/MMK4Z+B5U1mW6ZsatspXhIG+tWGO0SIBmYIJh97bkLoU+9MKwmwVxlE6HSysGTLNgVZdws0u4H21N6WIgkAmcSLnWgBfZocyNg8WgjF9fzzEKPi98u3q3nEHRHyAoA+Uf3Bbtfq0RjlwJQaPye1jjTF1BZz3ZjpJXi/Da61PfZhj3NeBOql8ztAoqkYDbGcnZPDAb9AMN/5cSFDJCfJMv1KHqoM7Zu9kQTGSgu/QzMbs0nDfILxWkcPGEeKesP68zm0IUKoiQX8eC6PEoUUWqi476iB5n4aFQ+XyfkHd7WHf7XCNUMksJFaWp11KiCCcY7gZCw6H3WGmlcI+Xl6oEB/UuSFV+WA4E8EsIXsvb2lsHqaFphwfnVTfB0YKqUYahGxdB4rSkUavsgRIRZDCOTLC2A+Xwd/pHwIYCZV5trwykOuDwOKuRi/OApolZl9Z21OqvwYv3p0SQzmau7RuBJ8L81ISrC7Eo21mqxtzqin4znPYwGKf10i6YaeNzjETWWU4W2nvU7FLIK7g1AafKqITzxSEOXVtWcFQAlOCUPVo6JiJ+wHzLD5m6rpRWT6i27TBwg2w+IHqrBvEbOgYopm9r2evbplKp9s7jx4pSKrOTMbxPf3C7yuFNTzWF5aJ2tlq6XWFiJjp8WIkr6bIg1goue3NTqNQLY18O5um8U43F5R8Qr+CKskCD75hCD9mquUZ5lNSNeh4XHxfivMBFoP9yuxDTfqIkuYiPbwyKUyH9zrpJMC9y159uQf20YaMF8O3mKpaQIG+eOdSuodPlZmKu8DbUgcej3cR/y8bd9AoKNnnV1N3f0tF4SSPQ4Y/ghnSAQGRiMMlDupYZdGR9N/544vzPF6bzj1M//tqOhVzVpDwEsxD0KYGsQN3OAeZMHmCKaMmENM41obLVKI5Bi5Hj8SiAk29yjCvYvrUhz4uz+xtbqTqBi6Sw1S16KzsWgHC4Ev1ugWs8/ultzn+2MLi38gLYXsMfqVKeHwnYKph/U0XeYv3lAaQwozAzkgshv1ffv5W6MhKRJPFLt88UklZrCmB+7gdRxOrEojE18SIX1S2rLofPUSSxGpy/tR3dmK7OtP3A3LXHNKONA1QzFfAQcuWTCv/a9WCmLrzUrBTHyAyH5zhROMbLM/scf2+K7NBtflN4zB9TXAxVXeXdIyaNDvi/3Z1aWHS0pN0FMK3+w3fia5ulUMsKVYwhbZV9EA0DTaVR9JBBwaAJqD9mQ9JBfHdvgd3Z1DGdBZdYz8RViDTM4LMDQrBiVbCDO8BjeKTwsTTkzQOJMWxTe2ZNOv5ksu9yAHE2hYIorTAy+kse7858Y3FGMkvLxp9J5WJmVtoEkq7MmHnrAemTXM8k9+oZ1wPgwvSaFwFvLkQvfw4cAFZ0Sk6+t4LahnBiALT7r6PElnK+pKJ+R7Jtog8Yh0Oo8NtevpjFMe18hazH47U43YnwKcyr2dfzThu8+4B2vLH9wRnf7MDOdtS44/VPc4GAAk2mmqKX1dV9oRblsYXHYybW4TGWc5H+24B3fB2el/E/U1ZHUTTZei6fG68D7tTWgM8B87GWOl/3BDfw4iQ3iNhTvQE7HVOUegqdNWXWY8EWKy3zIZHfhxfYuZ9TG23d9sb6cqFDWjVEIIS7rufB1YwoF6YeTcKzebCYKrUmzwQagZZ9ePdVfQpRiCwXslTIJf0oZNM1eZXuYZY1qKbQ1KHT8YLJX6kjINdf8YrTmr62O9Nns69vWK+kafQZTwawX18rxAU3LbuynKJ733Y4wySMxeNXYg/ot1X2J+x7Fah3taYwCFsVQWfxhOBZ5jLyPFW171WxzwlwSkNxZCcIX7sG/cPnYTOtufY6G+xEqPUXhWXQzCZLbVrK3DSzL106M5VCzdmoXaz4WA5fjQqSMEdgDHerT4E9PvwqV//2C0q0M5sefL9a3yUaVV5OYBwcF5JqXHc5uj39vGDLcIPwXGwbRIroBMFlV3o8EcX8I8LTvziX34ioy2CJemXeOz17EPmN2I/skiWLVNi3gXcFVrx4p5iH9oFePSEjITVkgT0Y5LNZ9KMkagqZzoLE7qcehaxM5SAqs7RP0wOXFvvnFbb1yM9goPgO22jWczLzu+vU8BLGErXspf/OLs16h9MGbFHLujJPAA2CrWlgUxoLuTTdMuiZpMeYL05nafuO7WxmjycW5KyxexiEi+zVcKLnL668LkIPs1m/BvgmvlPyv4Bzdljgd0NUXQlYeh8sMHMpA/PwA9W7i4kXs5tvP3lRCiBWEY/1aG0xUYv+cwGJvp5tmJZhaDQ9KWwG3fhvfwTXfbBkfZeAlpWdibKgAIbxolqFHOx6QKroW7CWudBqoYSCj/rN9V0DtXV4w9BglAOxkuBxsD2hYjbYpRjyiOjpVIoGBo6dxwIQCLjq/MmnsfrM24gfAttVvvyFji/Vnj8bIOCL95AKdAQLY/E+M5jc9/bwnY9enpFY1ul+tdgvAmN2ADp76UV9P/iUAzEZ8QLDGuoSjbtSUOdKR3+GuCaxLotYRWwywkgsnfB6NDxeqk88uJGv+a3DOotaN4dE5+zKV4Vk/HCspZ5RasF27W53QGlYuL1xEjk2xkI+QpkHSW9ph0IC/aA+Wpr6qBFJ1KeoZsa5WRESPTYdKM3zlXXIClRAEKcS8XeVg+rAxhVMnncq5Cn7/JbnqL4As6OyxU519snUQvUHl4qfhWsYCoABTCanx3tRBOkyLVUYDp7e7pI1YuXyN30Cz/K0HKST8i/7TawzHFxLvC/Rc+T+QrmGkqVN41ovx6L73k387APqxMATqmNNd41c1fKcIOSntGdGMuUSS5uaU05v5BiZymPgiL7tg0EpYhREoqjZnI95Tlhdy7L31HUbwDrYdqLdSkJddY9dz8awrMKn22jTEFHEnWCLF+nJffgBbUl6UzzYCYFN4ui6dnYZCcwC8c4STmFVlFRcUSTppHMcUavbekmw4b6UblpuMVBCaNFUr8/up92Iw6jH+kaW0P4dpfVg1l/tTDqRc1+8D/OI7W7NkQKYnbdMSZQzq9UPwVT9nxXHPat2aDtn7Gfnk5zxY1vbvMp4LkiPJHwmIz3P1ThwFKPAhg6TRMVoxzBBfZajrEzzh91PYsjRGXiI7Lx9DINld23frajWj/wT9udcMOh8ceXP4ZYxnAyGU7/j1+5yCU9siC7rDEZlCvK0B1WxBwIWol9ZYpIPXx3YK7ow4f5llOWC2jlpFTvy8yDvhPTNtrSz9nniLJMv0JcCd0ox5wf9WFj26heiWYSJW2+MIAjXnWbFr67RefDOTGcHEZJX3TVOTBoIP3m6XqzgDhY4M9uls/7iLVWq9R/Nbsq75F31gSrKGnHQ8A6ZJ3DVLCnSTQ5KUQsBcVi1ZNJqyVTwk1ma59g804u5/9zP0ZB9nlxCeIbu63E1D/2BQjaj1qBU4T5qscPflCOyB93ar9seT4mevHI2Rs5tS6aOnDhc77ag7aGYmjgC3l7/SVJ+6iST75PmkU2US7eao+my7zc2h7/x3N8d1z6vSd7E0E2X6uHrO0jBvVLBER/2x4uFSmaKZGWKnWm2IimVl9CatrUunE1ZDG3YTXZExCrxWJfAb9SM2r/XYN1eX6LKpAMAYUeExPZ+gzNoMqLa3DFFvWhZ6XBwvwvSMtK8sEaFX/CBf8HFkX5hzfPhK2epm5XsWZSwoIzeIGtYutsmQPGMNpQPfjoy/YauSO3ewoGwOkR3ernRKUpHrPCcGsCd4rP8cOReNZZQKNTSl95q6YHrSOuG2dlxwYiVif5jV/JKLstkj8fdFiS92O8mwQ3rg/p5nQ5zf4kzJMGpEJZKXYxovX5rB1KmTo/IkQudPVrskcZsa8AX+9GU82dvNVn4wk9zK4DWWWwmYxXFMZ2QkcMppyA0l5yx6cnamGDo8BJ5ezFiJJUrGFruFIzozfsfZWV9wxSKBR0XktZx4Qmbl3a4rBXuozqJ/3jWGC878f4o3nCsQ7zTzNM2OH2wSeVHgzEMXeTzANFmpvHNYHw2yGfT5epf8YnpKTVxySPGrfQKBcgN3A+FV3anmNFfWDlyocGEAdtfTIKXNVlgjQirtEcWim1WeWIg2R/m4c5SPqdZ4xYDABkkoAzhgWTp4hSUChzCCFCAe28q5/1P2LOWTtVW/4WrT1+llLRrWrNviN4LAw/ihf1Uy8QA1VlxkEaaPh9H5l2pCdMTkVKQ96pMkH6uSGVUQkiw+CxyB743m8kqaOrkufhMjUz/T0MvUrYmcXLILp1qb9p9EBSZG+QiD8VvV92PFIW3E0WWQHXY+CuQorNB2JMobwetB4KKfWkrq7usa9pFlQa/MfAHtQ3hUF+WlpZ/mQ8fhblLccYVqhwoT6diBMjUkU9aHIWjqpQfeggwPB8DKphbKkFyFA7VgroOyL+DKSWm0pnb3GRin8kRsurxoPjcJR6kW+yHdsmcZerKosBu4o7VwkzFc8wyWtwl5cpIeY0l4NIBro0Wq6K5qDK0hXbbQCB21WF4SlUhkD32dzRfFs4VznNIttjSGoRpf4mSvQKIVZmcGgjZrtfvO0Brxs0Fy8oMnWfRZkG115uq+zgYK2ThfzDC2M34/j/tXlI3EbN2Z+lT+Nd71uSHl+808qpJ5SxHHKOVc7pQ+bJMZPh6rGWq4UWGb0tcvFcVZOYNQV6emYGZWuKDaH9ZB2tPZeGnVHcjYWUJkI4aT+aT5ke2yZ9VPHH5CMry74nSJOiSSJO36DZXX4x1fnbRB7oZxpqC2tmssJoWUGaZpjxE47tj13Gvuv0P+cwBqDxeLrUSuJddcaCSqwi8bmr/+OSins+9mgXpC9Lb1jyqirZLjlmjAo7IJtQHqFV5zsRrZ3AxSZphTwdycsDRBFmmALmms3kmHQUdeqTARo/BBmp9HZVHR9I82CZMwauqQqUcuoNX7WvHEMCJR+GCvkqRAEkXYJbPiWdIElQlXp6aD3tYbp+Eq+UfTnxWNdmer7MSdDjZ9p3u9/m4QET02J4nq2MU61BcYC1DTkOmTr6MCUFOw/1mGs0MWUjWB/fSjCwagJ+41KRfa4/ajy8JsADBuRZNt+HscaAkyc741iL7+6E8Bp/1OIyYBD2i2PjMCm7dlmVcDgBUw0TXQQOqvyl54Ozl6XsC3feY3fkVf64txt0ot3zI+ij5Mr9OKwkU/iMqKnGKcvNiCx+Qd95LWiH7p+N/+8P+/39Dvr7gIyTQLma+7hRLDuNN911b82PLnmoe58n+5KSlwUHWrwSLLTXcyJPFXd01oNKtnPCmVG9f2WWpM59wh5F1nIognWkxnZpLKPjX/nVHz3M9ZDJVmCXMU1b35v7yxqMqHz+0+e9AuDvf7HhftwYcs0mNGHIYlIwwimTCC3YmZWrr+qLSUW6NTl4BIhWJKnQR0XhWFHd+6phssjFnxXEecSh29XzIDt1lnbTwf6Qjjt0I36S00pW8gpfA5XvIftBklL7t7JdL6s4Wg2hnZR5fN/jKzgFC+S4Yg7Fwfyt35OeIQ3W0q68DmI7ZpB7idUovCbNKI06yF4cWDU1LIii856A53SVM+TF8uXuLTY8tlZK2/pYjSwjhAuBwB3PvP8UvVhvKXmpw5DiCHmBK40MNfeKEKrWsA3Zv+veNRJ6Z7cD8jJA1oOwQCQJ8NWdPEt3GG+3DbaoJIyMXAIENZgteQ70H0VbOPAd7+51xV9fgJmMcS3rnnnrE9v97tdTNmxwKfgi11joAf0pF4M46cbXWuh+RL4lH33tLrEv6jYJkdBDqXOtGjxWBrr+DSi7T3McywlcBvJAQvKcSG5fK8wn3QhxCHdcE1vDusdxVQ+bdVv0oReHV8s7bjlgLh4tL7785V2IM9slSjmBijkWrIHbXWa3fFyZsW/H7LZeZwqfeX+KESTylptdtrdlTTENbtpSrv8BuLyyBv0CuwPv4F/Fb0DEMGcgo7w6qwlUwvNAw1eGLAvQGJZMLneKPku+AmP9awq11feA4ar+K8fFtlDzpcL1Lwgl+rCyNhs2WrCYwkvCNh4vHyFVnNLpiZL/+cXvlgbxDzEaeqWI6CQ3rJ3waONya1wT+kg94UAiQK8S8rs9grD0h+y3itubr6LG86eTnZJruBg4Ltq16oOB9onZR1hua4QdFguNF7PHgexE2nOxMNUZcA/H8xdy9fzToEsefXcsoIf8ot1oSRm3nUsb4dX4DsNdhmVkpa10NptTK6lPbwOuUypZhy5ON/Dn4bHkvTRkPwSmpDbMweh9PN4p+yo4UXDSyXRcdPwK5NNmmYEdlgX9hKyhYYNhuLNryun6PVzU1RJa+nmnaJGeMitjQFhTB0jAwYFtiPeLHKkuAVeHKvsg5OepvlEv50vwfbuMEWrbRwAURFfLOn52fFXgl/5L+8RHYqEUmmt1cu8TmTxOZjwGHwzE6r5fu3BkCwj4C+o1/sog7CpIlyXWLh6BR46MVhjPLT2wTyVnE5xp7vk4LLKTZ/Y7OU3Q8p9PTIohN+762M4NoQwCfv8ZA3j+iTRHnREN+Zk+6kyQNcXpS+NMa4KyUsNkbLkUipMwuanWvtE5dQIX/O+DSK+5FF0BS8iptaCxqV5jiBKBpFyNqbf
Variant 2
DifficultyLevel
595
Question
Haggs did a survey of his kindergarten class, asking everyone who their favourite Teletubby was.
This table below shows the results.
Teletubby |
Number of Students |
Dipsy |
3 |
Laa-Laa |
5 |
Tinky-Winky |
11 |
Po |
2 |
What is the probability that a randomly selected classmate's favourite Teletubby is Tinky-Winky?
Round your answer to the nearest hundredth.
Worked Solution
P(Tinky-Winky favourite)
|
|
|
= total classmatesnumber who chose Tinky-Winky |
|
|
|
= 3+5+11+211 |
|
|
|
= 2111 |
|
= 0.523... |
|
= 0.52 (nearest hundredth) |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Haggs did a survey of his kindergarten class, asking everyone who their favourite Teletubby was.
This table below shows the results.
>>| **Teletubby** | **Number of Students**|
|:-:|:-:|
| Dipsy | 3|
| Laa-Laa |5|
|Tinky-Winky| 11|
|Po| 2 |
What is the probability that a randomly selected classmate's favourite Teletubby is Tinky-Winky?
Round your answer to the nearest hundredth. |
workedSolution | sm_nogap $P$(Tinky-Winky favourite)
>| | |
| ------------- | ---------- |
| | \= $\dfrac{\text{number who chose Tinky-Winky}}{\text{total classmates}}$ |
|||
| | \= $\dfrac{11}{3 + 5 + 11 + 2}$ |
|||
| | \= $\dfrac{11}{21}$ |
| | \= 0.523... |
| | \= {{{correctAnswer}}} (nearest hundredth) |
|
correctAnswer | |
Answers