Geometry, NAPX-F4-NC13
Question
Which of the following triangle types is impossible to draw?
Worked Solution
An equilateral triangle has all angles = 60°.
∴ {{{correctAnswer}}} is impossible
U2FsdGVkX1+uhFfbbS19LFVo/qI3ZhtP9/vVANutUbH16v8Dxdp8iDwW1ZHf088UJuPC1fRkqBT0tWyEeUOc4sxM9JvxuhnAJ70w8+VgYS6uAyckcijaijrPZltGi8m5/hI0ena072KCaDCmbafVVxiaw5R30KkvYM7ncJx7SGPxp9QJocNPLBWG5mELyyQ3TMakC1jHl720iMNMYromxZJQx51and3hnOwQNSQVwMbNvfs9jZhqMuYYpClv3dMEDZGw4wFxu/6KdVjd5o7tTPo3zM/Jiup+giY0Ly0QvKt84I9O3OlcZ1iR+EsPkAuvZ6QjkqQWPWdNk5w6xHCdzhWnowSgSLBEZtLw3eo+Ks3czFmoJMgvKd34Ax80nz+OYCnpRN6KsKLhLCL7ucw1fLf7IL85sdX0DWqWAhyWDv5sj8EMlmr6y61+OgM2oN9l1d3Y5lbKqj5xzLaC85x0xnqD3R3kwD/32iNHkIqDwpAQipPGXaTncN+VmdEVWZkLwQlXhb3CXSwJxHYBfE0VK4nn3AHrx3RtG/lZBVVQrNKKPlxsQjIn0Jj/19L0dp4D75znbuCi7y54xkxtalUtMj+fHCcKHZXsVwDLFkVx1Hpk0bdgVVTqFY7ByCUjaqWx2UvWiBD6ah2A1uAjmnP9ZglKnCmI/y+MpcVpt7XPl8lpHU8CfW1GRdeNVNH/NWTI3beBxKSspGCusjb1VpjX0kb6VQTkFeZjqbCQ5tggdw54BcR9zeu4RnKmHWD5Nyn0zqG5XgKvYbxF15iUcmWODpx3wRgJtET94/9xXZntguk8cFVsbZ+vinbQ7GN/0MIhCFTL0gU2wIY8JQfM/atT+AgvsOtMp8rTC6zl64A3JMD4pUdaEfZ29XFDxIwjaKfT1Bs6cX00XbjUg+yausvleVGukbATm7Gkxo+4iupk2MAGuutrtIzlSEanoqZbVsT/Q/JE7c9tp/1q6P308m6ZDu3N2IEfZ8OjO9IXv6y+fE9wThsc4ora2H/td7VuR342hA5MYwOYa2PZ3adHlyP73loMr6qbzluBG/9ViJ4X/n42jHsnE78DMgXyQybCs5qZL+uvwgj7LcxOzh13hJeVgWMjV9WL8cwrdtgxukSXWe861T9vgU00eghdFN7pFCsA9lQmn6U58P0fPA7tQurkEtpXiNKqTX3DHhknr79i1Y48Q1HGW6lOyEDO9UUo6jv8wu0dzqyOz/q36L/tU4sVxWIitpKZPtlOEm1/7zG9nURhZK3F+VDES1YxkyyOj5h0C8INzrKWPi08cprfXPGjLJAM4wns5UU1vCISlUXQpgGFEQjocIT4T2WQGTE2cAZmsTnFCMWmQzqvm9C9rWDN2BcieZV145ZN9NrRJG9B54Xd398WttYinrRebEQq5wnzgvZuRbIvfwmPm1jMO4e/CORaoolNbZnWtbrzPPdFKa/1fK5tq/eMCy9w8LTqN/vzgmo6tUB3Odm1bUGGf7fR+q+QKnXmCbOKmlAhRffy/ozPgyL6NjFfP0avAZvzBAt324sUg8mSWsOV0n50Fha/hcnMHYQ+6dfEzqAqy9EFtP9RQsuERT4I7IL/8RZ3zmoP2doP+GEABh0xbYRuD6ZkNYoIU6HPSXl24z4rH23XzS6VrOZhofAdJUiW5mPaa9XySbXy/dfm0WpU26e0aOUOf2t/lvCDgm4SFUqfqDvAK6KqLLNiAulB0jgdRyugC0PKncDYOAonX26KLN7nLfimwJBP6OOMOScITeFV+y7afNegj2tHL6MqQvF79puy2tMFm1qiMW7dFkCa0J2EkrFjCV30g7hYjEqPO8XX0H3iNSFmubagnA2421xzv72h/PjEC73UF3rNOV+iVnS1NnGy7uj+PpuB5dMFhFZ61qWLESWTy1VcbcZOJdrB+XGNoFGJ8oay/Rzt3wJcnrCkxXs5kNktdkhHD6nW0sdz8ah6mTuhnl+kGRbib+KukdnsmI9FwgsLSmDVrZfSY4/OYAyrjs7Arjac0CnnqjRP1jJwkLDiEUxkCiKsRQzrFsS0TGfDceN+g2GZk85o8TY7Aug8wxzb80XwrmY+lSEq1fn4W3LxRefA4njZdkX4HbU24vOtEhw4VwnRptbN23JxU487kUP1SoFiWCKQ/8jXfoGTdMnMGJKc1m5xvGITuU/Q7Q3Kk+No0qYl836U1hx939HBfQrxNnZPMLo45brhuilrF4vD6wxNNo/i81CDORKSMktSmZFqc0bfKAO1CMR8jDmg7AOb8/lhwuN4vgriJ1SglRYJjAcjlKKxakrUSeypAJx6icAkBP596N8cEW8187Qh55WYOqCxOilGBbficYju9psReIYUBVsz4jFB5BqobkIbNs+TTsQrDtiy7DVcZRC30kzc3BpWA8R3Lv1uDUfnfYZ/SmmquKKrC30bV0cDzl8nDFlamBJM+UrAx8prBzvvUxEJ+oRCRDzMRvvk587gK1NZLn0aVC+XvvjR4whZFW/o
Variant 0
DifficultyLevel
609
Question
Which of the following triangle types is impossible to draw?
Worked Solution
An equilateral triangle has all angles = 60°.
∴ a right-angled, equilateral triangle is impossible
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | a right-angled, equilateral triangle |
Answers
Is Correct? | Answer |
x | a right-angled, scalene triangle |
✓ | a right-angled, equilateral triangle |
x | an obtuse-angled, isosceles triangle |
x | an acute-angled, scalene triangle |