60003
U2FsdGVkX184cxCSDaBpypRgWtjoQ158a/qqaM8w1ezeQuqZq8Iqa/s8MrivjopP6l5Znfqk+jjs98bflEdWqDRydgm55Drgj3ubzWKIGH3+w3LRNDYjSXRx0im6Vp4JdtUQ5LXVJN01guTi5pQTvou2Ouxuo1JXQXDOX8q56QVN68rtKzK8V4jL6mt6r+kdV2LbgrASwiO7vO+y22PV9SkLiFjpbYWYapF4BgfongBBaoAkRtf+dBa/wyn/WsIxzZzFXyqiYnVUznVxCR3hz7G2/o4szr/B/ty9+66Liz7S0fxQ4NtzLHf2sYGF4xEhCXifp3h+N0qnPW9ziNH6aMBJDC1kK02btxONTyaLUiTTORpwOyyKTr3oiyc12I+hXwKzNteiy19HN3YCm1eKySxd0aRla/a9nxHk2NdEHg6EKQdi0UzDUyrIh/b9/ZfXSEX5sv1ibPicpJ1y5On4+yxI+kgmnlvjkH3J5vyysamicMsCse1c7YUyqmkVhN8Ia47jp4mjMZXUld76fwnr24vQLQbukxokON1PHE60uwI6+JXEW1v6Iw7Pd1oiiJOSRag9vH/FTP8hR1nxJ+PgmGl0E2TKTU3AO6YGs+Nk7PfHkBkWkRey5YH9MISF719AycZWUM+0mus3z1LnjAX9pZYrXT/HXhStQ9Hj5UtRqQftK/QxbrhCR0h8SMiECf5B8W5mPl4g5CkOCJWb6tXH7Mozl1m4Ir2Vpx6LkJ4W3uYlcSRi9pAsUQ2WPzFypxT8bu3p4+WaUuoTpjPP+/zaYGKoqAqupUvEm8mIPv6wnZEuLMpmTJMJC9LJgCjwthjw0laiMW7G40LTREuHBAXmpWmddC7PY5/aXxRwjzLBc2OjaZ8MqnuoR1kko5D0vZDHLpBxC2RuCwWFJRVoBbDi58v9t2dVKPoUPhgJxEOWEaPjjru3dh8AYkXARlj7NranHeGCI5JTK3pmqO5EoRHVgY1gGBe9P6+ZP4jAueN6PJV8BAb716DBXoxSoUG9FJA9zhf55mfVDoQ9Tmj6mzIxsP63JyWkovSfR4w70jCB0x14TfGG3r9IeiqxwxRNndnS+/RnjNRTxuTha5Bih5sO3vF2lSI1HElY4R5IJuP50ks+WdOI7gq4uZ8bw2Sz6qxpOS/TLX16ayJw25DnaP3jq/6QN1zf5KSBAtTCPSCRzqmbWCnf1mok5kpGsBLEfQvY/yRgsyDt1aYvg2c3FEDwd03Hk2rR2ZaVaOSm2Hwhyxj0rI2dPyO2YqQuJvCrmG/GNJGfKeguHROMLFZ1pZ/qil4C30NMKsKMhgbuhnzvWDVPf1h96Mjvlws7OOHpTPep9PhYt2cZCMIkK/8/zmy/BGfSMzA1EbgXa8fyJom3203uornml169mlCkHU48XPTTLENbVg04iEE6+BiIOVa2BPASpiPkxxyykU04n6uC+EzaOQOuYlFSFzhsaZvGqtnpsz13ACXhO4NR9ZMyPcHam5JfmP7gj/kiogQ09V3D8o4wU7V8OINL2sg1DaiY3S97JGpJ+ELqc6Qd6bUfTx0rUkzFNiFfX+f/XqjjYZi3aF251d6umrkwwDbH7rPZ4rQR9pWxxQZl/3Nq4fqxOZv5dAwpaukawiEwLyT3bfwUgdvXG60tzJGCXhbZZ5eCEHBqxX5i5R98g+sWGArls+5Rw383P/yVwlYIacwLdRSCMTViSWSDllnKCn1644xpTA3qM4Vf/lyv1IOYSxXH/QInJ8gahwl/2x9EZ+iiKVROvffCqDW8uOyid6sigurCiInxZw1HOXdAXQLumuYfKhXFnsnc/rk2KCRs+tdKMiOogYXlLNBLXBjd6xw+3Bq9fwOV2sNM+V3oSHd0tevuhi5zvOZjVyILTbxB3vn84a1jvfb/1u/cmJseZ7z5drG3d+zK6aVEsx9aK/JCw2NAL5R+U0YgSv65CfssnezQUP6VSFWOfBIs12KY+GMw3GYmqBFknqbVuM1Gipt9GKFwJYzHq/9Zj7mSD2wzocMZyTnYetbafjhdQyvGn4vmzKE94v8kPNUoQYE7iKmHpqWmSON9EbgQeyeqH0cECGY6OM+y8tV9oxDa47eE/I6UmoxN1McC3uG4a+TXZV8PztqCAM5NqCBiqHEV/krnahsiELo/BvmnWeGTC1HNWsW8f2CZfass1DXlKnRrCvrJrRYu55gdR9nNWCRypK6ZDn2Yckfyn3DUH7XHlRd1lXGJn9VGSs6Bp7OpP2sRerCysySb9sxwzCoCh4DYR9RcKyUcZHmxpdTVsBsCw6yW2n+8z8QPe+2z/Jw8shmHB02ohG6WaRZg7Fa2kOgSOcCbs4pUPILsdqkCsVKuUCRuOS68wHIDz/8zhGKJr56f11VS78ivk8q0dF2Zc3SPX2mwJJIKpyFwlyzCpb5CCXDgFOXfQ013W0qe+UcY02TFjkVXMNJkW5GKxuvpV7IjwzPaeEALs3857IrB1Ea4BDg+5liEgiTbw95DZN7COQTJ+cOkuh+qINmcWqzPAlQrjShggmB2ZBWWPmXek1sQ124v03fdsEDI+ypjzk0sotijLmBGFSS20atciAegs1Ef3DkOieC8vSxCswwCIFLsFtuQkelVpR9xP+O2tjs+SBwqFz761xfxXet4cEtHQK0D/gwNxgedjspSU6iRUDrnj5BS17focY+P0xc/tSHiYxaXX1Pi6VcVYlXotVHs+1ZYRJ0jMFxrN8e5eOkW4L20NpCHexYBUtc/jO4xyErx9DaqdKfJ9Q4YtYSbi3uCgWZJ/Ah4XrWB60W+vYs0jnnCdUHlk871x4RjQvucdYjCbHjLdVrmm1YzdD6L6EamQsSsCnrnBPNamTladGjFA/dftYfyRnOG/+RrYU9rvj5REmYdelfY7/OpZssdWtKdgjiI4oPDXYbHqmdfUHu5vxQN94jFSpYYNVZIUqzFcCtBObIk0Q93d/afyP46IeKjKmocBRzLu6aWWxkh+1x/uvwerMH/x/Oq8QSqvbUVP3es/du4D9u9HCQudDbzW227e+OEQBYaPhOEriJnbXthon99UWY5b7/9KxrCLe2If2LImHiH5W39w62P1rxKDNGxym6w1NqgHCtth8CFNuwnoZrNi8Jeh5F0Fmu7aCvfhHYadnwEaQSGem3Wjq0b5d/y6zHL8S56XhZZhX3+Cp2+mT/6dgzcX7eFDdo5vnHV4R3L9xFyQ1WcuVAcRanKHb8Dd4qe9CZ1DKBJIk4XSExaFjVTOqUHwy2X5miwfViILiQKam5Tore/CK9UcVBX7P7OzYpKjt5XauUPG2LRu6ItjH4mImVJYG89N2XaA2rWSjM9Wv4gbzHLY++8L5mCQ5/znr00EkfkugpPC6k8WRwB2g+EUKxdlnhfD4f08xNGmntigsyQcrFJDK7x7tEX2YlyT7omgTG6OJA+qunNfJKoHKT2jWAPB6omS448p5kgfWnewXQAQ5TZbqFUAS6ILYVTG59DYeHsmdRNPJOV9rueP1oPRDo3ZZW1PzHih+d5bUgL6KPxPvGdH1Rfd5MmE4Y7LQ/e2Nv09DSUekYCcMBGoGvxmSZP8WtKs+gYu2vfS6wPmCyIhunBDO6oP+J8mLxeAsrgjgPM4xmyDtFmzncaRQInWPucttnKl1b0EzzQvYK0BxNdRY3zcZEOX7WVilVn5JUiGDQko7yCZjFzQJuffH712ssAso7+5Bh6GIHc5Am906CoGpWRRnsqL3/bfes7VnaXS62nR2+WKRKoPAlOq73fRQxQvOYaHfDVE1QsZA66FSIg77pI6c0IQTwqi584Wqt7vgWXJhGg8jRmttMH84qpNYpDFcu3pUDev7Kd6qg8LjWLHQezt3d/XtdElnoIVaHCQOwFkD4YE19ys5PkXCDHQR6+LY3c1LmazDkVmukOcjXmXT1FPh38mznnqnVcgWrpqXkKDLxENe71DWCSVfu2H8yktUvbKJK14Fk4FvS4OSg007fTj6wSF4eUewT8joVnXlzeXZts8Vk6Cs3SygmlUMkWlW7HCNIfsVCLPRwBzEwhqw176C13pyXmlcDGxMYFStedwp2IWERgT7TgsgOI1aOxnCcisq6jlwcSfeIqN+Q5UmkCsOBLUGHSEKpYIw/nK3gL0Y/MQ7/obwXkmbGg58c0iMZo2ge+Q/oWlEWjhWAELfvAcyb0yyWj+TE8a3KwldEfyzhOZURtrzeCZtn2zCXXVIB2vezl9m/1lKiBi0et+/FnCMONWvLiJLfE4TOEvGe5VN2b8mkI/obHzPdF/hoTJB6aZXKgTe8wPzIRMQBKuKNE3Ene42ia5kDpzwV9LUgPbTmLO+ZrqQ4AuuNYkuSY+nP5Wr+cEf3MIRIgsWDvkl6r+r6DByx0QKmSpFmM7TzAfUlUQDUhmDVlMZ4vvigb4hHMqyTWDtXn++yUaaVVPKjj15LCMAzhKnmygpuhAAe3+pSwdelIgp3PFP6epTgNDKMI56Wi82NuhRMzk/rYJZWtcTuWOFpMw5wmdOnJ2boSE542Q7wUyhVT3nn3nY1c/ithau120Tom/WN/tEp0pXVte5/vP2glQh5ark0WYq1yJAXVICTZl0UsP78bWjNjlnsKhEFxPowzqlAyQ9DtH+kRav64qGWumpUCl66HBiJZjlqtqdTOgBW7KqVuGLqrwCkWlfLRZISBMUnrB3NZOUbGRRAD8q+JezB+IN5J6hxZHwfd8yT64ekbfZ4nyDy8izhopqrJ/plWAdZ/M4bzqh0UV8w5I58zUXzvMZKAOg0sAKe/kxQp/oXe8eOlmPJWOHgHVrDprh7F5D9vShKjXJilOnx36akt6MRHxanVkjffg/cenCCqgpdtHlGTEdfofPKvzJoJySUavpPN7LOegHu5AzDqMfdD5AesDrY53hKophHoXPsHQzqhvNohqd0VyL84EnnsLLOJgdRi+dty7H2o0wTTUQRRz9DyqOlG3aP841OGn7FjFYfM/1IYPaAGqC2OL/jaD+dVlAiIbLJkjgu08SXXTfdkxtEQ7OTPOsHrPv1rgSyuODs1Hfr9rqEEP+Jq7oWbl6DDuhe/8/cC0lYAVODDFc/AToPX+ICt6uesuXYHsGfiK5aPEU200HAxzuvj6dkn+7tpj1KjtKkp/POdpSUqJJqwx0k9G4u5WPZjsVElg/qaB/MQqyfpfmrNT5aY1Sj8LLGs77rx2gdsEUfoJowHRbR/Hr8+ZeiWDuEDYIGp2q4IgZp1QpszcO+IMQqF4pC8JGFRsS1PioFLHecxcnRPqAwba0V/nSYUj2eo6zfTFoRxMZ0o6rlHf5x1bSRa06Ju/6U2jHTIEduT1Ruf8w3RhS0F2emAjrpCRSOr/GAavMO0zmQA1Epg/ziM/4Z8SlK8OBWBlSq6zA0qYNXP0xELjOcpmGAhswC9mNaxCejTZ99TghpTV4ANdprUpTJ4xUrzRYgMzryUl1bsal+iEZKlYzvuQ+fyDdekAo/a/2O4llcWCQWtb4qW+Ry1PED8ZtxRER3lp6aDHDQ5YUkMw7IO2GT/v/TkX6Ct4nY8cUN5Zb8HZw+FMeGdD35Xly0EqmXgh+E4H2+nmNAOUo3RahuZ/vzdO7OIxb4VUf5V5BYeLVuhyRtG3SslD2v6FRG25rzcCtnoR5N5orZ0G8QCiyuxheQF2dznVFWWdOmfRes+Vu+ag8MzcPglrmaxc99jXmC83+a2ni1xpL7dY0ue3H+DDok8vvcpZxTF35BFj17FrJBJ4ooWy9HR1y8JevbD1iSTxqI8RdFY/CAIi9OgYWVLYw4AqfXjez2+/muoDUAXvS9T6I1GtBG/E+aybGLK+w528JHy0myHYeDS9TUeGMcm2Yy3MUav4ObIKw1AHzB3jgyY3f+VaG+QQaRDIQqOJ1K9GEhE49hDmwCfujA21pQeyjz/uqv4VmvDPjZGZJEoJmuq1+cYGFTbTzYTxjzNt1WZ97ZJT3EkX7rOO3Ig4u9OQ1cIuDwjJlBj2yAtTAG29KYqg+uuNmWrZnHZo6J5Ipy+qyAx3xKF/XdQumvBbaDfPCxNLHZXg6m4C/IL3NoW4UNgzPdNplA6Ya5AsSZ0CNIKz9TH1entZJ7LhD0NkhBmzk97LxrbjWt5Qm+n55OdocovZqxx5S3FJ5R0PQKbdyaEJD6iy8ZiXyqGZRBQnNVs8FHExzNXFPqkVjyRnhGca+wksTk1oxvrHnK9rOix5mIuUz4QIP9MC4BYwyL8Lx+hZjFI8NE6wdHuiECi0Ak6C8BmfCEDfuvIZmf3H3saDMgmkYs4I+UbwXb7ZjgJI6HDn1dPfvo52kpoWkYU7dhp383tJgzeC1/EzTa1KMalGnm6We2+/+e9+2ebsfiWaVTd9LGyuAz4qqFgxqXnHbLnwSnywsumjI+x6MCKUWKa+jceAJGodcqlNPGHMm6oa3PgQigczgRqbMn8HHP1ISzNKXKaar4tgIRKIiyzql0Um3KHylS3tNnSfYeZBDti+HRq2wIQEd4EGCApfcIjc+nkQaqE1mxMhRHzwNJzVKnqx1z/2VeetO/6pL6uolOZB1iqITvCrm/J1gD40BoXrczy1D5bINxIO1GvRnVRvp6Qq0oW6P0OwMq6MLpFXFWI7IfwpJUJ0o1e2oIDmR28V1l3M6mFaqNri6k9VXpzgnRGYht2pfFyoCrMlAnlp+0xSR3CeAoD689KMbfDJOEo43E8fbiA1HxcBqYr5wd65LHJRuPLcEcNqsSVPgUOeTD74zo6VqyKuKXm39A6YZjlODIbhIwLQHwevXo3JhXM22AxxVGDz5lhc+IxT5g826i6pHDVwNQZ58DlDaEbe47Z/JVRwDJzROfbmzPuIM404s9i+tYa4I1caBRds30eWp31yu79hBFvnIwvE+kcqnem81VroKYcTSjw+MIHx8sG4P/DjOvO9kXa/frVPeaH4b+4BKO/d1j8pxY5O7EbvQYSJTlQ6NlkaeGA/skhRpG0DFyfmaiz8Oac7gJd9olBO5eS0PiKh6MdmDz4gwvVFj4fVEnbeQqPjdskyHOW1/fG3nbfmpKlHxFlLgepcojg7aR4OmxCMcREkxyhLK/94igOLD5wiHgj2UCfnFaw+qDFfH2SLCw6x3gpLDgCTDyua8bZApWPs3KNoAV7CFsIyrJYVc/hmOgJi7zleySr7sJmR4pnQkETZiiYYdzg5plzmFz5WxBWO4MXEXxskrba2VaXnbDsOsdbY0u173AdOhoR0ZAxRrpiKAvK+nJ3mSN3F8U8pGcQWL1FmoO3qsdyLrgqThtrL4DBcoIOapXmroL1j7nzBjXhIuJ/fIZUYTQkwVXpJBKIyvsbsePXcv9CWMboqDpzNqFkirK7Iq7d093IaX4E4DxgJ0E6sXGzZcveGtIT+2ozm5KzumH0YyHarVEwB6wWv689tPzSF1zIqDvrxWr679wUjJTjXKAXcn/b+F0ELPGPUQBCBHFEe6FV3xs6VdEFjDXJd+iEwvpg0enyiI0QfLjgYdHMT+5UrZ8QTF1VJgnbDar/B9djzniXHNYfAuBVrrXNiJQQIXcROp95llyl7Vjp2OK8oEDocsY0HI9QmHCzFceHRxXwiGdhDC6Hl9LKBpBipFeveQw/JKDzHF5ReuDIz/T9OfVKItqh7VbYWONbMkWTjwNgDHrDozFc+E8wOZLFp9OIuJilk7xiLBPkF/r9skFuoO9KeSrrsIeQ/TrgQ0qZnBmMEev6ofoLxbV4Ml1cOGel/ouFM5OfhpzJXHN7/WrAg3mhMiJ25FoS2RO/Gtxtymm5VHqHfiEvvJeFyax6KgLWb/+AikBHvZ9PtSN1KTVZqlgKZLXJWCwVNaFKjLGbHsy+EisNbNeHMk3KSILyDyG4DFUPDvueAAdYGf4yP77lj5cfQL/W0CT5QeYpZt4blA==
Variant 0
DifficultyLevel
548
Question
A triangle is drawn on grid paper.
What is the area of the triangle?
Worked Solution
|
|
Area |
= 21 ×base × height |
|
= 21 × 6 × 5 |
|
= 15 squares |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A triangle is drawn on grid paper.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-J3-CA11_1.svg 220 indent3 vpad
What is the area of the triangle? |
workedSolution |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-J3-CA11.svg 220 indent vpad
| | |
| --------------------- | ------------------------------------------- |
| Area | \= $\dfrac{1}{2}\ \times \text{base}\ \times\ \text{height}$ |
| | \= $\dfrac{1}{2}\ \times\ 6\ \times\ 5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX19b+TKPbGEhmYcrlrtNUlGPu7bSB+xxbLUnMdv+Vy+RBtD6g7qiO8SBRSJf2tg4GXMGHf6pTNS6+enKmWYHgZFib65FslPUV9PBCfvP7TxbqRkmqsdepVep0qMTKjY3PcemvKbVacpfZA4sJMtsR76dz8x5WI+AO0+TGCvnh+/xkNTK2ilTU4udiumE8pljTCfUhPdsmZzDKXDjs8a1j+7DGqrry3DTo+QgHwPbb87uS7AaAjIJ4beTwhseRIGtXJawnwsn4V5Tu5VZzHyePNRWt+I3PlVcyIdOdR1uzli8W0uCWOGPz8hiJpbNJcD8kn936vkAN3eHFNTluPWTDTQ0eUolfd26xa64hjDZIGNN/37QmfIcHe+o/U8dYSXf7uEHPBSsuCXLJq43G09b0w0ZrmouD+ZtCkUPFidyiuiZcQ7m18JBGbYTkzPpqOWxfoZrZvxU2mc7B0JUrOxEKqlMdTA/41tftxD00uke7DToi83/VPuzH4ODIBVpczh5WDJ1cnFoHRlJ5Gk/ahvFbgX70ME2dd1wlQ7FuaFo0veglMvKWrKYGqv6opnd+2ksD9awEdGUnDCnJGhtKGIdfG+nRGd3CeZa5+pWZ3R5+3sHqWQiDU032dOYtQPUGePJ1ISMDUoH9LrJkpeY58jN71LU3MYe2hF70r1EBGz+WLYZvHG9ZfeFKB1ojQzDJulVEefzz6CgPBCBQEnmV42nySCxshXMjDLIDyB90mlyTU7YEkD1jxd/Ynm9twfk5ixRyPh4RaqUqsOBFjqTu1sCzoUGyCJb0eM78bwFkyLACjql6AMAfGwwiQPrLq66O/t4loG27l1B5Sx1k4GKQwdK2OGKZ9EDBk8OrcmfPa39HG7CJX7qwt64fm1kH8j7MtJVRFxnjH6eKVnfT+e0IiolFzQ8m/7oeAGDgjvlcc3aX+F6jdyVnVJPGn2cCPPT9xbq7oqv5LBYciz+nYNT73/IT5+awCDWXsplTLDc88M1JbM/snRBPJ9gmD9Ep/wbFiwjMNAoL8rp+Gta0bTcCuCDhNtmy+uW3u+y4aGbH4VDF7ngqlo0WRtA1ZOyZtYlTw1NMozh4a1mseB8wl7goZ42AOFqT+k+SKEzSezK1D4Ipo7Q1fUU/RWXrl4olSR4QnXUg+LM2UK3a08G5j24O+JqzZw35OyE4UvSw9oAHpshaXftGmdYTUKTHzCIf9dJ9vndv+g2lIfoY7d0RDKRJKYERUUdqmkmoM001m433tv9SQ5Hg8KU/CjfBsr6O9N0o23uiWWTjW2xe7t3zlxTE6vdQWPfxSjGc7HBsFTkQC83JlPBLRmhgWcqsLLUHTV7ia+n8GTIRbPIVzBWgjxjdI/bmJdVpisF9ZuDKuFbqJQAY5t7JGEJ+PPD+Czhoh/9Ni+w3FPL9HXw9ic8ZYfmgn7GcSgg03isnCSjOrg9NuWxRN0aJuUSNLS6x4dYa/ZrcJ3dGpsLvCqqZo9lDI2+YJZlFvb+7tXVkX+iZwTE3fBASzK+IhzkrNjBdjFQzNNN++48LhUBhfcIsgUCMIxUm4N2iJYWhlx+njC50rCZdvahzWFJDO+XaN/viTMPkfuzgC0Gc3KQoudOxrZIQ82nkKzqcboTOFPjXLi3G9LBQu3GWnHbfQredtUP+yHAGIzczGhwcWoR5AQs7tKVi1eB3C0/CPdmjdob7SpS+T6bzHUBWidQlPpoggSlgFamUmi89EzKiQnt9WP8Ycsda7kE+Qb7LTgndaTuq/8obz6r+ngLcsqwWv7YWzWL8blpbmReIeqJZe15MTnKhKsaZe5Vj8ule7kDcgup9jGQytSYVaocaIkqqogwN+VH8aLEUIYbGddY17Mw8iIoaYQbm2xM1fBYhoLSm2s+K48tN3Ll0FwqJQiw4F0q9RaotxW0jNLRN6/CKmchGc/N1cOS/o6BK02sr0opCtLOQV1PIHtHmEoNGJTEdzunr7MPoYXmfTiMx7SGBPGhLgcYVJPDNTdaqxa25JwOBXNyfl7W32FeAF4V3a3ZU5ZyAinmKQc1FLro3dLGpxCoLIO0tFCjgkH/Dy/55HFawCDvyuzXHKIp+c4J/r6lbhLCJnBFt+BSqK9A3lgv9bks/tehbn/KNgyNlDCiFAe4V6F1fulExkUWnjTdfN3sFpbcfZuWxhA8O7+biP+4VdEYekxPi/pJgYlXwQqrI0dthqkm0YkCnGAVCldxk9DohJVyxNgoBcVL4z27+Ph+7M3xnPQcGZKgOcZbA4V/+kKzBo0ms/rwjJ8k4wbAZXru9RGxxjjAsGvr9bYVt1KZO9QEBvjsA6A6RG9dElScC7WWgrNmZqOTEJDs/0uS4bpFAHzUk222BbhjxybulalJEAH29lKS902GuWpnkHzRnCqtUuhR/t1p0iRHeZUUgAaGZJ6S0MQMxDMOnJ5zDnkTohth3qd186xWl8kFAUnMthXnO5F9nAD3QzpWWCpGbReKWQtE+vlac9uTT76bXFrDMrUzeIhGKqHyrppX1EE88kxORbPHy8/8UyMc0P6njWtbV17IbIvI3jc+rkCgtpCZdDfzRT2ty7wnN1+KcvVUHBNtu3El1NLtfsOaQiaUd+AIVkosl3jDoz9wPkuiKG2uyeFdPjaqVLgebVFYzOB0a+2OYlpJOahhtxuTFK5ozDdNJIk9hf8Fh/hfs75EmfGJOT7dSG91xn+XpfxdNstAVmG+zk3F3saSepeMtAQ/z55h8a4/IC3Veqpff0Noelf9U68V/RqQ+RWIn9d3t9R0qs6d/atbUffAoonQfnqA2aiZ0l7aFC6iqVnLCCG6LqluVUYXzU6smM5bbQf0IdbWWE9BU3kNjFuAaFhhHAnPi/mICiZ66qL4+8yFXJgZ3/2Tae1aWtKOnahirghJt66Lj/4/fsjSb46pVjz8XPxfWTSw5UUm1swsCoaZF8qSCaqtC8WHxiHJXKW/86jq0uYbf1lHgy2D1xRJ17kIatavfs9unOuQAmSZwXX5t0UIrA1Jw4SM8tGuIXAHAGLmENcd+6O3xRV3yqz2vu5NsHgXjhLP0mmNIGubzvS8hucbZ5r9MgEr4L0l2yNbUqP+bHgBunyCm0mTnQtzzipgw8iyFSVa4JajeZqU2Hby/sDfFf6iZEmDX95Z3VCPVUNnfOkG/KV1T4UXIQAiZuZexSAGDXF0e5d1y73pa7Fj+itWXM0e97zNgzYrMGr+ItmnYAy39Oy19fdkWnBI2QnDr8ayqveibFOqXvGP5mSNwzA/aXb58cVhpsTTHXTrbAkswNOSPmh0fuhXLbg636HjvsI/xlrseeu9SrZEZCOcfReLSo6+i+eeoG3zQ2q3mbkQgbk8aD3+hm8lYpLBQ6nYGWi+mPhh4ORb5WePqO3ZgMKoaSmXfJZadwebcqdnVBHKYAuGwDtFof6WF0pGoUHRtkC6YeCNLNUONUL+EQLRgi0tAv8V9+T06WwPc3ompYPrgFg8wQMMKJyumeef2DOhtrs7a8f4EmJvHZK5zRYJ6OQCRGKr478qPcoQlPwKATSNj0D5tGhrPeG6BiCs7xieeD/qSammg1oTw24YGEbhcHqKtoJUz/sb2PLSbjg3z4znANFtsw2Udb8aVsHpcnaug9mnwwYcNmswjPKwbO+IQcZm9k3vVlD0wh5GyrqMrEsCKrdNyGiDrXZzkSC6uLRUPuC4DOYDId/VFzKMJWT8ftEzg19Zognxy8YFAPlvwbTvVXD2ZWekh2hj+PhyGa+7dcbcrdds3rtXVl3nbZDWvaJm+ANVgmKdP6nUFNZHte5vdhSUUigHsK/78e1Ue2ib5O2A1RAJNNSPWRzKnrBRyCApU5FudJ+RSXP43GPVqvi6C4be4OMVgQruIEL7r6zpRmG3xuKKR6IiGEUochD++iMt47FOL7KAzCy2q64hFmLXIIv1NTZBRAK9Doqm9vDdaQ3S6j26nqEIXZfDwAuyMLeOtttwiDXkHjRN2J/MmgMCvl9Y4NKBNZwv99NLx7jM1KITrfk2DSn7O3h0CnYk9pxsrsjYqXPD+GxxwyBY4115bCEG5z0/7Q6+/h1xtpAUfrZcrDqy7G2Qzrn1mCEeoE6Faf06B92ezYfq9qbJNXhMhTCe23XI6CSwBYEU91/CRTftBbRdhsMcrfW5ZGzyHd85+d87Fzj0MDdLvCilo5lYfMnA7GHStRWzZjtQbeoZm0khe/jRmlcxQhqVpP8/+bMv/YUdJb3kRE3py295YOpXKuWoojjKwaP7Zf4lO5uJsIUOc2XfB8fKTHRtXreS5+JDnu/LQzAA2fXn20IL6bVjiUNk1GJknrEU/JNShNYaE+pqGti/iXOXIhTAtx2AXO/DwfG7I9uV5PlXe+2lyrsSUAlOPwBZneih1214UsN/liPJjTYdM1zLURo1CZQW8ChG639NHcDEoIxvdEpL8Z19DIxvKFaJqE7DOKcMj5LbGoOZQAYPimcL59bjE4rVIpLaP4YjQR9655EP2tK007mFOD7Hc4Ag17pW7RrWUsViBiSRMETvkI2rJRSt39vXqlhk0LZ3Qnwsy0BmO+fDnSfBphYeB2Nb5jBGYPxtnZuKYpMEfjwRike2swPoqReT79jQPotzip4wRNnf3Fh/usvutkJXFh4mFf7qLAPDzCzLxl0AAHZ+tFgckx6wm2ugEuhzErhm/fs2vcTavEBTBDr9l6OYLQnMfmn3VsMnQAgd1pEpS1Tk8EyhefPU+crf9AUcIO0Shw3Idk7hvs36tp9oii3DULwYzixAPHEvx7BCcqj5xVF9Mx/UyRU1t8dw3OkoXBjGAiGDm8ro8G4aw4eP+yYKKMtQoZCbVRlOntSeuXO4mrCBOkPhkEiZJ0mxMXYp6hP6mXYuxvuuyguO14NhOynCXqNdJyIIdVFJQ7Ce3XC12ZnbGc5Rw9lOYY9/Qd/mVRcYDo610bXP+keXp6lXRNiEmcFwU/jHxlNBLm1r+bBjrCMturkyC65IMuSK/HEGSS2N72hinzYc9nb4EVTRdJcOp/k2+C0hNECZhYat8qY/cjhm+nnDUVX4tUiGBvaEN0iCfcAMa7ZK6Ti5ePXAYaSaGINP/YwZhV0IZ+YCHrmqhzQCKjr1jJqAKQ6T+pDlZtNDvM3XI78qnabCcoV+95BJQHXiZvmIb0/nM9mWOIuxTU1l0VCWlyXbUNLXAD65VCESSBIZ8PFHidw+KAPsR1ph9l8B5m4nB9SSNaylGoTO/wYMryT6QHkQf2A2BHMf0c6mxpFEG7oKOBU9U2KTtzxxti4U+0K6EO+TAu+27nwDju2+Iee7ET2cA/C5gYcGOS9O3x1bmQ0U9ss6jcdImcPSbfzGApn9uB2VtqMzPZd9pCKlMOZcJpxMxMVyyARiaEWrHVb4fQI6YRAh1eajZZljzC91apHN65W9B3CF6Qesf45wZw7dV0DlMX6NSD176EhZVdhlIMTU0J0N9ZQaUWnTFIJTsQ1l73sM5d9pcNh2+T9TCKAn5NDhma92+TX0qq/d6uDtN09d0DjuRoZ8ORpjDvBNpbu1QAqKGpHYhvJhGIfzXlO24gmYS0IiaVHeeaqIv0ME3ILy4RC+Rzz1XgcNC6nbwLGk4DLtij63qkzv2FYZZruicsMda7iHL1+0i22NKldh69NLwirHjaeNj3t5+anRpXJkLzeblozvxvQ9BNPlfw7n9nd4J2KdHbHVIgYotBrKkYL6FN620tpyEy5DlpFkjV/MeqbXn9uQtACorfXM3+FapSlX/2x2i2966ynXTPgI1d+IKKu5cbLxC4cxn1TAi30BCwRghb+E0oD80etw5V0LpcNx+1jZx5ffMnTo7ePH4UQRx9MB9+GXnkQijmxk+8gwSYpYo2Dqb+qY3dn2WqbdWs5ZdbYY7C0SlG9kj8zvlVcIhr4YtvPA58a2oLq6Qg+hviJ8W4EHm7lzYHhxR9jn52gpEaistA4S+0tSTCONz/+esVP9dxZU66AFfPMWY/3BLQ95GEQ1/FVwiAYfImGOhDJVZo7UpAH1qSUh6FngpR3BJNYBULTwrWsAC2ShD+OZ3RdquUkxZ46QeF4rkp38jzjIeWHafNy2vo3o2BU3uFvo9Xxqre0PeorwgQlgYydDeNT4eTt4zTjpXEvpzgXi0Y8pdbKTY5NelHdRGRE5PtnXadi3OjWsv1EOduZgkdB848fp3pHMB2/gbKeyfjherJiZRbyK6VsQwhcUTKb8WcD8JTuzmpGW9J7m5ccoXBHoRbB9XNJ/BrG0xRnk2cyeRQW9pM5tGRkxJBbmurILthVurhyFKsYadlKJZ+UryshOr+6Hv5lkqgXXUXh/8BnvcBXfrN67ykQt4/x9I9EtvZ3dY1oqikRQyypVS38Qfy97j6ziW3yZALTHgIIv7WBet7I92/RQ+pfd+u2l38Im9dwHUnZ0ReLxuOr15Q04pAxPdO8eFM02xpjW/lAASFaqTKHysT4BTAzXIv32j7yHzI3OEF9Ro2oJHgoo0S0+8HHvrTtgSlHOeV55p2sDVX01NgItt3thmSQis+/8/EiP9nQZ+djJKJzKWW+WQYX2VtH6J72JuJZ2JPF07SUzPyXiibpbFmz9blGE86fmhIxOnmYIh72TROUDD4U2jEsKv8kJsfGV5HkOKGMwrfbV37rXmd9unm54zTHAtENf3ju1OG3DJzQly4E2G5/dRcpUXQ/11rWe8NGbSjG5nY/E+p5NiovooO0F4i9plkGhrm6CwtJ/+GxdkQCS1RH3m19vQAyupnBTniFWwehxuJCRe1YBe+/6fM78la6retX3KdjxmkPtRq1e/Rik8/JDdd+u7IzmUKx6dIERugO866SmeZLc4wCbgMOBdvXAmIVpYdk9QqjDtsqAfgvMdS/PdRFf6zoaHlNd5pLvGcXTqHlcSzBIlaEaO+43Q/ayS6uYH+EbNZzsRtCQ+bySYqUxnbQCzDuS824DX5g6/0j2GMPnIiWqthg3nPLfnucLitaSw8uI//hp/M/u8aPikSF4j+YIWBzqWWkAzalJ5DRhnjd2dwQWvh7iVafRryeL566AVGn4UrhTzy6X677laZy2lYEsU6M5TqYNZOKo3R/ZQrY5e/oz98f3LF15AZc6OKT1jjiQwnhmeKPqHK8mriIkKAEXvR4thPh2T9iKPuK46mHYSNWOZaRzrznMv2SBWch0OK3kOoeimahwMstR+f0fFResqvJFOTGFNyZm5RHksrQOdpstqyxBjUY3U2kJAn9Wwzj6bAeuvONBdiMd/vYWP4ZMCsaENH/8flZ5ugZ8kr8YRfluGur7V5jteUqV3WMok1wX2w1PGNBzsTrJXVSepeejA8ES2uV5XU55+m0ydIBjq/I62XpMwZvoSOBJwAh+EmO6c++uklAmervYOU0Mp138EkH7cnc9Huf0arNs1PC2epeseW5o4lzvNmgqFmUWiHYCc70AMZ7Ee/XcMtSufC+InYLE/ZvGL6sJOk4JKWL4K3UfnHfTxrAiYVipWNeWdDcTP01FOsm4EhI8T4hxsI+DrB9U7uNxnKu4SE18YdltsE42ijL9B1U/jaXWYWfN8P+ROv/KsafEeCkM4W0aS8cP/X7QoAVhFIAF91YWhE3+vlGoHEQpENhchPXRGN+HPWAuylWx3SkOV7ptCLw4e/Eo9BiUprVl+zK70Aorr1CWxu+kI1BYqQNd0u/iCGAdpkD7W+l+gm0wg3Y44oInuhK0OiAnkoIf4k3vH+v5OJDadhkR8KasxlO3BGd8A9DeWBtyh5WIrw01IROw6mOpm873H+VJxE9rhwDQGJsAStTljq81LOLcsKpdTzxDZ8+6FuQ0hQz3y4dgE8VZ6Ly9OP6b4D/5w8gnI8cepZeju/3qxTcF/p3EbVStEaKwgHn3ebxO0eLqS3KZ5idD02BL49WPmko8zsmmEzmtptkpxrZnSt/H4EXt8KJA
Variant 1
DifficultyLevel
564
Question
A triangle is drawn on grid paper.
What is the area of the triangle?
Worked Solution
|
|
Area |
= 21 × base × height |
|
= 21 × 4 × 4 |
|
= 8 squares |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A triangle is drawn on grid paper.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2017/09/NAP-J1-CA11_1.png 300 indent3 vpad
What is the area of the triangle?
|
workedSolution |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v1_ws.svg 300 indent vpad
| | |
| --------------------- | -------------------------------------------- |
| Area | = $\dfrac{1}{2}\ \times\ \text{base}\ \times\ \text{height}$ |
| | = $\dfrac{1}{2}\ \times\ 4\ \times\ 4$ |
| | = {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1/KB71zIfp0H5nWz5Q2n5Bhw5X5U8pm9xPh5yWn3ORRL7hr8AXaT1PtmeKtmuZKMpv8rxxzesh5wszGqGrZbkv8vp3HnI23wWAmnXnkcGTphfnVgi0XuZU6CT+iMkfqZtVR5wHsFx9QVI0Epvkv4Lt2X/S13Unhrr/CbevbSn1XDBXHkI+10SOyyP6/CwPAPND4AuRJrj1t2n7FLIWVGY2Auy/O1h9BLbH2i+pNMLi3pa+6sHb09p2C+LpWjf0IkLhAhw45NZZFQzaUvT02HaLS0VJOgsG+ANBKDIhrxMi7SCYclIXqwn5eTuaK6hjoE8uKH36luaVw/s4klc6M0i14uYKLEDntaCxNK6DNwcAaGSrYvs2112gMRRHH1xbLTh2t+txlcw5ARmTEaJ6xPKWoLfUjygdbN0pIpGtnLaOTPEa6xKwSVS2Sl/TuDNqx5BZLOk+07VPyglP2tUdTghmMmLvBZEXjtp5nlN9gLBnSyA9mJHFwe6SlBNnvszpCtPQZl1KU7wcUh3rheM9m80FP8OwVICFF7VLHFxaZdoBxEcM2HCjvxh4XAfBxKU3oV4AMb1C6MEqkuTX7yfnqCMXCGSDuiq0cfN0A+SyES+/Mydhm5o5f8FZoiujiJoWhlwy1wCD7pmmYhzz+R+VY6rovfK2l4oYWISgQayTVxiLUO4YUSEtMfdFfnZnRKudyxyTDXhUFmt9sPI1m2ZjIgPrdyAGnycbn1Ey2XOR8PEwt6MffIj46NMbXEVjgUQS06M8kKuI9pHJxCR8+667OX+bqJ1b2rK4fRQXj5JlkzpTjuECIzu4SK6lbp6ApmOfsGKNfaAzBfJYWe6meHhi/HpVJm5rCjTkjSGTnrwT5FescG3MPbmr2Be05LAW7hfHDPfcxmwHcrsCONvAScxhfrfbMqv0QJHzsLbtjHDbPfAAOWvWNrqUtF9YTi9URoqSuOTD6S/7bnsX94Y6Pwx+oq/Z1KaBu+eNhBaRLRevZSFCy/4j5OLXlYAzuoHIBxNE8myt0vVDxc/NtmFKxkhaHu+IEDiy5SZ2DcbMFPFc8qeytNxZSRDIyRz6Uftrcl2DyBFwSJQUGMc+T73W078XaANj+dlg0hpCEuzGoF8aw7cmGqUeR6+H9xwuIWbUB8d/WxQ4DlvAmDIZODOSUi7lc/Dx0U1DgRQlMW25ttwFXAFHP5/3Ig0W/CyoHsRcdTjBhDEFrYshjEIvB5e1NWhKfyoTzW2XFVkjWSdUfFyolv5hAIWA5kFVM9RINDpBr0C0eByI9xgIPxgXZONaVCNigMWHYX3Y8EFwWb1mZvfTcHT5bPqiPmVt3NylgXDIC9RG6lLFyGbm1/5ePRdkhLraGDCFu59AVClAI3Dplz/MyazZ8+evDTEnGv9awxasIFX2dj/Jkr9B297W1wPZMfsrQZEa9EzqccJ9/uNpFkjae241gntgn0hYp9SKwr8tbC9Gw6ZRUpiFQbFPV6tSNCwB5wIpEhWuq3bIv7czYKNQChy4T+uCtki9PCy8Ww/SU02pAJKKJmW94S1fbcW9uWvGMm/hB4zFX52dGK7uXj0W3w+4RX9XxxT0SoS2f1HuodcCCumxTXF+JV/godkhw7oA/mMQSuaQSMmGLtfBT68pAzYptQq6mxf0hZAWA20C/tEaimgRgBdZa3nz/VJe/jIEkRzP/D2+JpAHxfF83zXN/gLSVC5sPAhb3+6kxS78lnGNv06l8RC2d7NFCc8rLwiTogM7BoNf+oVAYQQViFwcBTm8OHQQJVxk2gW2XdKZ+iHGHR7z3mGdIskO5lT6E2y/S4irdx/vgVYCPx7o0u9C8PiKAVOrcCl02rshDHuvfEVVRzjIZaUJQcLBxUgxU0zRVhhbD+xMZwNmHkXv1vRbpRkE5kGsIEI5v+NRM34FNogLFYAZyAIapmoxjQ635EYhSFokg0qJ3Oq1fexq5Q2YDywzp38U+c+s2M7CbEpMohYn8O1tfQltGOZGju8wIh14JGuPMpG1onShVF8PVnIUl9kzyJhvLvSavNgPdl5zhc2eiSwsdiTk/3oQpC0ivCItU9trLy5z0c4MuPkzKMbURB0Co0XP0hT/x8NmIVl7AIIDfhXJTm6iJIAeljkUy/upyyKN4BqCv+hqYuqr928sSgWvbLN7BPuUPE5SMNAOWkJuu839KMYfq+AklLcPPXJxnBwfYiB13zA5f+Roau2JU3WUrRgPt9MetFPdttsILxLP6mrXbTM+606JoAtCr/+j0I4nDbrJM03h6ITVIVCY/8nWjg+0YlplxOlWsWmRCDYtY7R7rOgAUY5zOuhxJro4ItF6LJoqCyY7ucxhm6Ft0GVmRVjk6/jMLjjYMl94pKX7MlPBvKrXUix/MBHpEpSyI+t7D0UklJNRLRzBqzrUXT4Nz2ElkIHC7JcefjEzA+6J/WeCy9VRW0g0KfMT3mvNlRVOTgMKYGqzZECRu8wfSUYb43hHhq/lyFQjObirjmaJUzmC5j+7Y0T+xgglhbRvNc3g0UkJvWIeO7fIJ2jVNFrwdLhFO/oxxuIAWrDgZcrvwrhzsw4s3Ku0HKdqN+nwBAVnyglExOl1lHpOSbwEB2joEpewF8ENmmZ/WviwtLvJM8zrADpQlwNJbnkO0XFDt4VVM035txW+jBXhN7J97N2ZL4noSCoFAWk09Z+1EyuUtQlvDVMnkTiBFBomTA/vEdAtBtP1jAtpbja9H/mKKsrmGfx6NlNqe0Y/7/Up7V+7SZVdH+/F4qtHST4Icr7TrWIYinuIBc/DDGJ6eUhp2YOyeVhgHtDSZoLjfqHd2vJDLcF46tZcyfcXWE6jRhQx4PQMz1OoPMiAjNS/7PPz0Fx1dPDgiSlDPMTzIrwRuYDfJJuOgLUAwU0XL5tiN/EpGbneBMI8rZgLLIN7N2agGpKCAgZ90Ax2Ni1vz51f70sjQV8FZuhCnEF9d6zxbQhjXsxhBpXvua43F/Sl7+kOqHMYWY5CMpiayGmGfsIz853SAAMzOy5Hyz5P2YipvUC7yQzaRzA4o5lO3S/1wS5eXHPH56eS1K3sEj7sy4V7d7e2fIDP0y0prLah1Ntj30C1qB0jjUj/O5dENEz24OGot6C436j6QG3DbqfyVHqHciaSiEH6QbimnETEvW13TA2SVBejAU/pzSf/kEd+tFsNXqdjVg+mVyU0pjVpLutA28HkHRNfL6cPDuUjQJQqzpZyOPugYW3M/lSqQp0sYoKtzW23Cqicjl9VXFk82re0V1c5ZVwVuIyHG8ziUp+jdlNhPAaYFBJKgf7L+mEdQgIxuqBf2H/7gyn8EO1/l9vXBYJ5RAGaYqDP9/9pmZ12NTK6V9JmBExJHaNbSnRxixr/rsYCaXudyJXRDtDJNwmPwFmuquWitZkpBPAjkVxU+4Vo864zBd+kjG4hudkYE4xMSQKbXd8QRKpocA49O5TchhgC5oN0yF30qN7bs9h0A/z8XTajZdBOLO6Dx9jFceGomZzhYJ56Fws9bwC6jxnIKMDT2kkTnTETHpnhTwR7rdUDh0fpMM2dEsNhElb+JabPdQDcw5IRaKAvcE5APgNLyFYz9h8OqEn9bLTHrzruR4+unlcZDKjo/4IzpesgQUvxF7qbi0HEHgG8wJNiDwo/1wxZJlP5cte9VuN8xBkjS/gj/ZXu/GzXmJHja28M3+I9oW1VlsyxZlxVoDVKb2iJ0h+qMHTOtgHs4LACThIKCLVPvZhnTdqN3ArOf8oqGVNfeRilUySb4gu3IH/ZwesfhLg6NY6i9JSwle3D50tlqgljqoVJqOgTgziaOBzZL7rHmEh6TXEBCCnM/qAOSaSwAUyVDepKXaxuOkvRUQSrKVo7ZbNI5j4/EjwB5g1SCNq8bGl3oqxTirq/SUCturt1hgJZ33qOKKD6b+axw6eQllN7r2lXthwzpI5T+Xzj63VdOBV+27UMdXJ3iDmyK+hKmjsqeiGPyBxdWj+ejXtKYQgx48QRY9JetEUKYpkUYAHD2tMHdJd/0aX4vWf1IzMUPKy2sF39g5eFShAnKTOV8dtxvgGjUwwhVb882145iEVdUbHf7rUR3PnW14t3nJikQ5udETA/KjO4JDOx/VfOdbouPW7KSG/OxdVZiG0yyR7KOk7pTg6RxvHquAddifty7hk+AMXoi9b5ypM1FA7VTV6tGmkD74+PyHC3w5MMqbneUhN5giPzJjYhiARyqfss2Ym5MRKqHPhMBIBrHvCgBFhYIkLHJYKlx0kwrgkbseR7lK7tflKQ9jMMHYeswgWYAnuPgcIG/JdUXIcBDwWCeVGjuAKX/SnsaX2bgWOlWoi/Pk0YVd5pbVdMtXYKdGPD8MjQ7EvurwQoQ8+3ecKauZGVHU8YCNqoe/mQTZFKoh1AFb6uDyzcU9f+Nk3RiTpnaQt4krGsuxfg6wa4ljEZdtnI8d572wsSQf78dzo4wc6NHFDCbKV7eEPQQDOMvP4ydw7QM6/CgIb+xwtbZK/Ma9wZxRkceuPcH1rT0u/1jhkdzwCqY4jGzCngJkGk0UIvCxoeJytClsFFM0Z0SlZH1CF8kvd5Ae7ZkI7Qsn2GR7d9Mf48IMfBbnVB6q46X0Xm/C8ip2umRP2cVI2Sj/Gh/wy7W3JjfPQ/VRpvodDqi5dh+fGbVohK2a+0GcRfHnAi/Ylm2lp1DG2ZLLspnMGYPBAm1EFVYaRq9blqTXLgbyE8dRZM7t3qQNLD4JFdvldkuhuxI1mjuD1O+X83jGvnFhULJKOnsjumlFUGRXecwYGbUNaS4zUYdCxyBnTSY3yQXtSL5CxoVy8TMAlo96ASgJBpcvUT2RzYiWK8JX0nipB4BBjTtz9jPkROkTKs41dfUYZXppytN2ea6lmThHfo4YxirL8dlU7UCE8VC5CDw3LfasFDbwqT0r1SssGwlcz/KLS2+FfAI1eo6Q6WOZkbn2uKpbCwouVjZzRkOJpkB3wgHQWyFV6YSEd+ADeTRGsyQNFUAtbr55DjxPCIhB8t/clXDn34sAzkBgPTMeY5a/GHBTLODTHYWaWxA5QA5h9rGNxze39TdrQWy0rTvAV8yw3m8WJzt6y/uAu4kt0oPKXoqzFvamvCmBOWDT9NMZK/pc9F+/U3iPXNt0EI0px+4Jk0qh8/sCsjut/V36tIx3XKqCsmd9hqgNQie+y0BBUZQ6WlYa01AjjH6qx3G5zd8REvgzjjWspodh6Sm/WBIpJ60uCdssT+bA/PgMM7Ny79Jp7jkwE/UsrA5f9DCY9IOon80c/HdpuWBQW5FqL8hr1FpMkN/4vrTA0NirHjueqgDKCrQYu+AXtQRmFbXzuUwo9Ds2q5Nl2aR/B+5aUiQDuSovgHKoiDPWHiDIeBdfo2J9EPhJ5ZHdh/SXztKd7bapi64wer7juYHMeJLQT670NaBbmsfpNtUnClPfLEb8ANsKpWWMlZwIO0Ol+2TZ5BCLRI2DBTZZVuogkZApTPwaySLn+SPiyvSQWYKtV0jtKOpISQcNTK96bZhiQooAnByUXx21hIrTyN3A27C0HYpmj2oCKngilx9DkXjqe956TbCR1Sb7CyYbVrmSGoqdgFEmXYz31/bDjYornjYTgt76293aN0ETh/fRvxI20WvDjlFdhIIgOr2ELJhFbOWvoS4WDJKzHj8N6I90zU6WjDUOmhDHrM3XrmjPgqK/rOFd3J6HFPu5txeOIzeR6ZpbJcy/dQoZTvikEhTopDcAKFf/0xP1jgeT5wHEElz0U9RK1/J1DGzbdEpdDoWf1EQm+14mEPzRCk9M8f6NbE/C0igfz7TWx0McBMnxxm3uQd6X2mfLf1aXiW6QxvmwoBqXatX4LMtlS8aDq0XzlzJ+p4dmcolpQVmH+eAjqtsMgGUWy5FeO5sfl9LZj0Exp77gkNFyNFAKyZYgymOEAdNofegmDSprP8Lr1tlENvNpbYlAyFL6fLtfFx9yuUJEReI17gVeHsNuch7YOOF9cLjh0rSBiZHjMFCGB1gDVjNAule/WLtCkWtc2uAlHGYFSLd6EGCnqbfgJaIHzail/wZsHLWHYb8hn9887TB+aAdRZcJHaCcCBcbJbSUQR6Ut4XAsn46y8OLCoFVlEp+H2To68SNy1bvkoVNmdPoHxpPpoVQStPVHyMVEDZdfCKG8UYkEskVeJ17HECKJNrCBFVY/PQQRws5eiKj2Sv5wssUxLysOAM81WpaT7cwypq0IYCUrOimbPXUsRE1kPF/SRNlI/7KecpQHqYwIGJTVz2Xndb6FmK6s5h0EAxdDMdNXIvJ+jHq5RNw0zuZ2mcf8GpCWRb+FFepGuUm+dkMaeNlPiAUWz8stamwbw4EIKEtD8fY1ennMZBmOQFGCevjG+lzEaIsBo9S7kZOd8JTutmEJrDUimizEtxFrw0ePJHHyWvOwcKrKbJhyyXiUwe0itJ0WKPClB+5uhjaEIjNT2JPlLgPIG2nVgXPMLnS4HROoSmhB6sl9cmF2o6y7CEIYDq/RRvv9+L+DmAfmi3fVk6xOXFZeHLEMxtVNYLySaaIt/WPO0MHVHhPaRabuyWVS/a8WaR/nX3NCFtXFHXKnW00VJvDjLqyqIF45dVXLh/DIDQNxzOkCkOrjV9OwxwE80IAnCr9zhq+YhwHHmGsPkGVovHTCHdzoYQFGKNM7hhhX8PFSmPoj6dQm4ytyk7KnWHrvff1JFG3fu8m4MfYfkZ+Q/d5WvPvtHVy0L8l3lyZ/gG/7QXpJ2cjjyj+Am9MBb2BPbvceoyQ7SIq4HQzXkySTIkVRk9lSdho6aAgAVz+kKa46DD6Rc0pSMTHRheST02oS9kC+6Wl2HtWvdS7chDILGuUxBo9jQKb5oYqNlcZZ9dJo8mZEdjMcqA4NMarjsVmY+n0/cyYCrayp+kXVG3ViAA877R62J8+o21hjTwszjZJUJ+Un1+WkOirq6VlTbnzuAYz6IKiJAKuQWx5CFw5g5IfsYle+hZWdEkKtOzZUjmSA91pXtqU26PMvAIIbnbkgA6Yw+pAFE2fmUJDqmeX18na5AV1KhhTCyPB4rlHH8mh2KZ5Ki89JHGMMl9g/InR7i7pb/tqKPao6Hdt8f/ijbWFTDnuPGvM0zPeFH6mqShbZtS2YNPwIQkGB85s9M1H7Fh16yq+9A2tJkCfcL+lzIpnJQtdg4oEIwsRe5bT2LixAbQlVhBBwp9dyWurm+8fp4c7izd5azKctH3TfZr/XPCFrNC0iRg6PU+sqWh1xuypyZO5gn3Uj3UbaHOD38GOdyNvpuy6GDmvkQ+E8V0TMi6C4gD4HKLIkUJQJ9lVgO8GwORbY/PEnQ4OgexJ+9ljAaaQMrcvgA2FRo6sYD68JcLJro+oviWnfV2rXmADfeMsi9glj+mAGZEqCyuug5m3sJ6ZFl6U5o4xy7UwDQfiSQDGlS0FTccki5ewJLz3xZUipawaZJgMbQA3RFWI2JsQeKsEIJtdi9hBJzGruc102v3X2XwWYjm9if9PZRqAphvVvC+IefxUzMBspswALaGBVvFWQeT7CUjIWGQEZTr4tjxQsyi2gTDIVabWVr3S/zQGgLTZotKGeU7fn70MOtWk1QgVvIeV6qE8RMte+82gfB8l2RT0sPoUSxhOneBZbcTZn/+aGTC0MjwK3g2SEfxUZSk4p0GL0+t5cONhwH3Xo9pooJIF/2j/N1P/g+danyESB0AJYMaxhN5DOh1lxKsvTS9qp7RYZKRVheio9Ec4OvdVTtQGhX0CinKrVoOdfEwGy62kb7U7i55jHyvt08iUPgMujEwl2CvmCynsN+60Y8XY1rNyMtW0m1pn3KnPZCfizguGLYJCgQGReHk3JmAGpPgfPS/CptKv8q4RoIu/cQ9lDaP+241f0vvNo36dxWYgdYon8fHRUCa10Rohi6p0OI2USm8XpWqClBj+y0p7K/eCwxliHJ5mT4XLzvhisHnw1w==
Variant 2
DifficultyLevel
547
Question
A triangle is drawn on grid paper.
What is the area of the triangle?
Worked Solution
|
|
Area |
= 21 ×base × height |
|
= 21 × 10 × 7 |
|
= 35 squares |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A triangle is drawn on grid paper.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v2.svg 320 indent3 vpad
What is the area of the triangle? |
workedSolution |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v2_ws.svg 320 indent vpad
| | |
| --------------------- | ------------------------------------------- |
| Area | \= $\dfrac{1}{2}\ \times \text{base}\ \times\ \text{height}$ |
| | \= $\dfrac{1}{2}\ \times\ 10\ \times\ 7$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX18XLNCzKCXes2cPILje6sZt7/D187tFNp1gHfVE10ySfmgGtSlGZIAX1x6bVTi4AomG5wiazdHroY6rx7Ba74fMSijrscS/DpsQ/+s0bunYdNm9DaPLlfhFuZj/VXXwcEvkx1ootMGoInasPqA08C3T7dtxiZWin3oHhfRCGF5L2fgZOjgdSHbl6VQWMBeEzuq+Iuuhq9k2AgXkTF5kSsyy8NolSUWJKeWmRc6YrlbNvdXwjfG7PW101p0arvS5ErOtmwnsFKy2ZSoIiffbGvhQ5CeqqiMV5B/nigpKhjLeHCcDv89lt4ZvenrK4QaQvp7FPOCeLOaioDSPmOvXDI1fXkLo7+yyPDiq7mS9xVn8F7ICTkZVLGAQKS2J21QmbiZSXTARLR5J92VeCGFhn9jMXrboNpkIsIBkxz7Iek94DcEsd7iyy/s6M4VyLx9Qew/i5AbC2dj/8O3OckMdhUlyG3Vtp4FQd0Et4AK7r9iQdzV/4SL09ujnL6m2A38qR+YnMf9jfJpCFcQmIDmWjDnccYydUc1MwCQ3ePAlAdq0QI+v+neIkggQeJn2/qP0pvssMd3/5qkSSAJqRffKXXxWSFZSvTWPA5AKpoI4ICH2cMVtgQRwzuNniu75hoGtfHIFuPr3Haaho7L54Oir+uRO68lXqMbnKQ/mRAmaosjeZCruK4fkAEvc2C0hljMXYt5NvawGvFiv2wwlbXvX7lRaWWuMKH+TwhYFzK8Rl45HbZ9pPwkTdAo7Ue7E+yLXkL47aWiIcdAbzfAKN0K218HWlwDoI8acZRj/7lZ3ofccjLKqihdN6WdMi8qNID5qRPchi1i2OO7fa9cxx7tLWHhV8fKc/VnSZTio3D9haMMH4/ABCh95/xWigTvubkVAwPmY/rqnfHOaLs+YfjwzlIOymyou9hkPPhypthfXrdw+g5arv0H+CjFXz1kGWIHJuJz9jxQdX5KeFxJUU1rawbrHwoj9Z4OiJCfolFzDbaQGGuymg0KBlYezDsewB3H98g5vAlEUgAiEYmnsL1xT5M4KqN31sl7JL2MocCkjqhMW0nNPxcV1vFuU1szHYTwMbaQpFfUNJDLCyAhGLEyzNcwkVjDnsTUA6W7gE8/xN/2/ZY+sB/v0zAc00gBATWBWBUsYbRhamhzIkMOP52xXgX7qNUpkwk3RP6JRFz2n3lsnIscEdhp8F/C1HQsdeNUZGuQJzaAFeu8Jy2dF9+QBCYMTl7btyQErG5aK2z+L9ZBl99It1D1Asv8stbAuBaJoG0lsD7bknuldxX3Kc6ZOY4bt0V+s0h0ZpNGgfoPDKmKdZ3g9OsUPxIcs+a/GFQJASWNE0ZjsBet592wWycIYpUZm5nUA2g1wj7o71IW7Mr7Y4Ynr6LlBKXWHT1aoxdUMGPsoWsJbOW+r2J/S72s++ylSqz6pSszVPAX1Ln9pJP8A4glJ8/NfE0VkqiQETlUx8+lx2tVdsXy1uOluwMMydKpoIOJnmtCFrtLoglQUb3Pu7ymuhxkT3YUzH5ql6BsElqx212/1fcDMX7jKeYBIVkbG3ZqU+FN5OyEhZ+9DdGrNSnSUbwDR3kHmq5TM2GLw/bKEpR2fty9b6Bol7WwJP7EIq0+Qg60HNCa1N2pGklQgtoxYIgJ02Ma5MROHarlbevejl2JurCwGsu19NYc4MP8QyOibIajnqeTLP3LIVfBg4/K3iG4gdStx3k+EQPXh69/ZXsjEO//6e+1znHwiBcFodWUPiSE8duuX5CP4+jtEJ81ehXkrGypny0m6dsqvivSPO49zDj5Rs1NM3r8F/jRYeOxcMIDBigm+rcZvq92yX6Ca9a7z5BPk3ZbwtAetL/QfynbcbyvekFcqOQzL/BbVHXQJlAoJ0MnQBQfuOG6PNgfNc5yElX9HshLd8E4MI/YREUS/fYT+KvVgnImCwKPJDnqPeHTg9Jzv7qVofAP/4REQsdzQilSlZU4LqRHIVIZ75W8CiN6IvP0I1VRZKM6FwHlDAw+7/PzLkIBPbXKCycS/5ZUt/gl4MkxU2suoceWT8BNDAgtGutEuD5uh8IyjHiaKyhYjj3atFSTs+vilhcN86yLr7d2FZTpg9tWXcOzRf6dQKVbsa0x4bSmhcamLZhIPxN4tZ69S4gmmdtyyh7IbpDaJUWI6lpp6rAVqldbuaG/ReuA9pcAojVUloKnfoP3XGlCYuLC+GTBJwnuq5MmR66ulEy7PJAJJB9VgKgG/NF8uco+qRpQ2AydD9yYUlsxgihYNbVn5u+ogj22KK/r11/4v+zrUJmxqVItjVvC6CnDyXUNNY7K806lFRuEHLuoFBjyxNnYWcerahDU2uL+cBVVYNfI+qy39p1KHtyVhVugeuNLLzJ3TvduYrsaaqr0NF8um9AyayAJMsDjliwScGwHF3QgDPYS+q+pU/7xxmE+NqnWQHV6mzUxsNbaEovTjo/vWnxB/utKV3UmvRE1ryPCz3nqny64tL5kgJjC4IchkTTITouHGWGn8N9/TegqSaH2LErkCJWuHASaHcbtPyCrH9sDbUmifSpuGeN5UX012M8qfT12lHMq8lRQNAwickQHBY54MDPqBUvHYnRmoKeFhdgzRNV60EWwx6kGtVcZnoZ6jSfojxjECCX8EWQQjRFdk9NTW442y9hTmU3Znd2YnvGR6FhRIQCro1hi615QuvNysN9sXyr91hzzn0JO+mHTkwC2ClaXJaCrcZPTj4oFp+5nHmentepgO+5NdP9k4A+PfhU3hSn2bMiqqY4xNql2bcaYJRjcZdw8b9cFVxcAxW7xnEcVDD2B9j3ynRmc/S45KYOa/iK1yMcCQt9KeXWE681Z6cMDY15jm9DGd6wP9rz0fo34pab0PmWrESOag0e4ayWhhIYCcw8VP2FgIqSBjUTHlDPx3BY4seGU7q+NjioLI/qbmtzetmGnPHZv3MolxOgutXtANATpsvRbmCmxEeXYlUx43roxEWQjdGz9R2+RMM/BpoAuRjSWpoSAGM2lUGEmERIVBVLObx7PPEADwIGAxKbPcgj02p7B8ZKmzBu48Lqf1pfMxqtuvQ+svvkNY0hYbXQbH0BSt6u0iKfYMjFTa9HFHAH4FqdnGbgUYJfIcfcSrxFmRVCYDKl3Q+ulDtShRR1d2CX2/ZpjldqVoaHkns0TorbLnZuTzjoy+2gfamvt7dVHfxzHYpml6vqBC4w4/xSucrr/COrk0UzOPVMBGdHNwwobEVcqDcBOyWeM2y4yNXCLpeCEZ3j76ZJqOMI9wDKua0obVEfZtZZNqnGg524FQDBdZsPdFIXVFdb6VUT23pKrT8JxL7W4KPMejUAK95hKnEQkir2O8RMXYmmd7Y70up0uw6oU9+5MX0Eun/0r3Xb9LRz3nhHRgNwmitCeIUWBwWA2jy5KSC5ivOfw+2XQE6o0Xht6fwJhVvN7T4M8lUyKQ1Z1oU/DE6CA/c8J5ic5UWhccuF7faTWAGuGF8d/K7CJlNYFHPQRvFdiWDCI1HLU/7ROguBPcqeRKzmlGAD/3iIbidga5xMvn0z88yYE7oi4GZLtvwQ7xnA9vDXG7o5wVwQazKg1IGhyvuFxLMRivjqv/H4uitMfXGO/ExMiEhfjlyTnPPLUTvwo3ZPI9fr3N08sKJzhhHtLVEOUB+vhzyiEH1u5qzvQpF+Vd55vPqeHeOLji39OrhhCIxU5xOwtEjq2gWUTyjUAOqLy0jV5xFsYu0ta0n4Rj40NEoXSPk9BGOpKFAV0skTYDxQeMpDxZ7lTQ3Vu9wAFPmk5sfUR3GQ/2ZXC/7+yD4HGXDaf3TEPVb3b+fxeclwJyEgQV44PqWsaUYzDa8OgPNHVUi3v+QXDI1g7ETg+a1oe1ekJRMVzJlOHMFWsEH5zaMbLOaq1QrlUQ2hDGQKlshUi129Q4+UIJM39tf1QZvQkNuYaDLPKqD7eCLbjBCJp4Q1MOYV3xfeK6gxFULvkou5HnxkhtYHYKl63XEer2oluT9VqlbQaaCTUOcZ1VeIOXLnHx4reh2SAmHUS78cearFo/CctR28LlPrgXvd6J+GA6yTGaAlAiyoK/YPsmcv/ZtAeKQLBsBzkm9g2+9VCotbPi/xChTQSPpTfCU0m7WsYJJwX5mZRidIDC9geZqJoC2HaSKqVDVz0zHqTSDkn9290fEqjbrlSIcFobdOeoJlskem15Oqzi6atAFsUzzev7OO7oAU56PY4dJ3Epk6H+0RzYadiPrHSdh342YUv7uIKvUXMAeZvNHlCg0vyZzWs/8t6r2HUJyE+HXFSNvcILgiEBkpIkhCEUlwuDW2YBwGtDQe4Tp4Nj3O7OeE+Yjm5qIC5fSrhuWoBltuIDUFAVA/lh27eF154rVyNL3kyadccLH165ArIHHYXu3bKAQOh3HdR0Xh7g+7frAkM6ZTsYmfvajmuQ99aMGe7RL2Pzrwvn+W9SANGRQzoUwslx8HNcPmAljqkF0PmuYP1x6E7hPDrkX+1ImCEQYw9iVmpbz26RhqFlPZT4VbaJxK7+inS+nIt1MZX6hZaHicF2hImvVHqDrofVs+J7ECs3IALdOzF04qNuDKEaADIlFk9NXCQKBC+LAY22d1RQz0inFZmAl1dqpWhW1YerS15xnqGB8Kp/GlrQ46nEEQ5UaACshdm3xS1A/RUqSG2kkLL7Ki7FDTKRCKewV98UnZ2yb+ahYo9s/DMthKUEwSesgSHuJr4zm7WNms2CXxTbfDz4OwY+tkqa9o39AvKkN3ofEJp/ThTFx0ISl6Vi4jnfe/4OUjGurv6cH19nvcb8KNw/JH3hPgc2nl155giyhzgTTlKVQeTUGyHd7lGEuQ+Megj6bYGAArc4g+PkIroGEq3cRIozVW2Wbj6AgD9T5G7xNfC69MHGPvTAqX2NXNpA0oYeObdts0e2yriDgWQ6bclcCYUwSdBW0cAe37Iaw1qXApHqHEmnEcQ6gY5HHoWATtLG5jVxQyjOpQazna12BJH4E62UP6BhbrUFsHU/zC6GXKl6rN21mEf8nBiCExngh2v+N88RyGR2jiY42Kwu58nVGadOt6P9YjRB5ENVdDL0trGnJZsiPpNbxFHXBnNyb7rgnb+yiwGAT2dQLzf57hyPn83ZRP7+cky6OgkhOSQjBRaMKB9j4PDM+HklNn+J0uTEyBF+VL6pt0E46nO4gty2kwe6Rf9j3onH4bUPbZqw0152iiveIGRh71EXUAKRH56ZaoYXKylAokQT+nsAbmdHldbFjd2OkXoGYtp9ENI++7dFmp4GUiS4DZsOyri+zyoTc7IICIMYKd6vR9tJ/2BiV/mQ/gENWnlYLWOzasj2aCL6KI1XZ5NSTcjcq9vQC1UmKQPvCrvejanfS9ZWtAEP8Y5eA3+tNYmtfhf92/3fB7egCY+iAczG0+IZCvS9Hb5kSXs4n2xJRJeB1oq5U6lDIDC7Vp66+ztCMxL3G5VLkFs1QjZGrUM3JzW0R/Il2v52kEg32NVnAeHEHOUfoUOuM2I3aa5gjtLIcEW/42nLm9tYx9Qgf4nQS5k1e+2ZoYJIjRqjKopqFEWaHRp89/5sRbq9BR0bLy3/p84uV7UnvQ0nHTMgPCLvDAo3sOsYSo9ovGtePDC9j4PA9VoJD30z/eDatwhlHlqYegevcf2EhwP0re/ze+9WXvwZohbYVTt765fY85lw4qEUVXfhz4T2+iT00T0Bp1XHoARlcXV7JpKuhYPPSuh1vJKejomhnxxqRtzPOPwfR5qboyzuFcXFEcX6+Q4zTWGoz+eQ3V/4Gb54SDlxbviEeX0YmFX6pwV/ct4u3vbLHBZHw0VBtxFreYrjX+h7od5dpOme/B6gmQtwIUlGtpABzWBVxVNJKeHigdcDgGe2NajMyrB/DpmbDcxmciCrWs7dirlouE+OodWuMyA5JDY9kh91ogMpj0HpZPMYn4RyRdT3L1qZF+mkoU+ukMf2QcLa/NH+dI91MwEDy48KkPGCPZWb0ll/WTEPGCArD2FBx2ana3xgYFz8cK/EUlgWXkzuos9ZpAT5szW6tBboIgixD7bhrHmVhk4dJx45LqPu95SP8t6S6V7kuM+c9s7pu3WRGHpXiJfMmQgGqF3mmlp+nVSyLJIravQhLrlJjYRwRdzxaFDiM6arZvTjkz9hq5sMotQZaqWmPC6gkJDUfKmr1N3ipIuhBsYY6syvwL1gDUWela6KzUThOwZZsnm/E8Xser6DwWXcQwtsG7Jm1hu5SMizANZXZ40mR1uOOd3Gt3wVlyh1MYSh63J4pH5tQbuzvtS76QIscHNldqUdJahloNetLsYRUo7sYRC2kPeTX8Jt9E4LaZvS1WlrtMXWkz8jcmRjGzy/VD1LqKsw4YNzaOKaHWEz6fl7WLZpecXSlpcd8J9HZ5wS5yrEHP2FS0aoj2qwnwKRGZmaYbWPA0aunaCM8B4D3Z72IzxhgENXl4Ge4MLe9RPkyAwxaZuS6qnRqozDs7kKy865nZJr1/ngHgxg8ynwXEP9taE5mOynAkgAzkjWa4/UyOX8q+Ql3HX+4/4lluL1SXVWlbWDbOzHVGCTsnD7JzOuv2GUXx283JyZRBndNychOPlwg3z/gogD7iG+zggBDYT2R6LqinAZYPEYCWanktJhTMHt/19wwiW/l5p5sWPXAwLlwMJOGPH8k6LlxOzDRkhq5Pp2IfvcvB+xbSEXBzS4UdaSjKYCgc2LXTDnbEXe5mTq9NBtIGbaPcCu5tZpWQsEAk2ekCFH0l8gsR/rF0ais2OWnKBjdhjJFjWB5HkQQkH/VdaPP3lbn4H32ZX7e3OL1jlDfP3jrRf+evKM2fOalN1yjotTa+AgYZeC5JkLhYHFwcy0F1CKqEw8IY5tTWv015uwR9lwaE4ot9gPR3tJD2VfHdw0/fBKQqmZQaCzsi+jIy2oP15Maqf5Qx0c0BJpzMAAA53L8wZU1irQEiTRVpcYUQwLIkiWxWP2GQOTLNzS2nVu8Z655n9C+AoFEMgQV/uyfowxQeARXPpYhn+vc3jo9aHqSCMtl/hpUExXxGXUFAZtsTkoNcJQqNmJAeX59RE+Xq6CaFg14OOcLJ91+KFF3osTDOYuzmjnAhu6vNptYEsoBc3zrL7aag1JZitVGxZF9tsUcmyn1+3qAN4HkLt9NmShZuHjvbCWIMhUXxAy0zWBe2MgrMk4Nk2P1nT06nOqrp4i3Rih+Re1N0MtcLAAXtmYJ561hAT9zRKNXbr7q9hY6J8PD6W8/sYyasUYdoFq1hPYpSrGYS36OTPjbmzOCvjYr/7V0owxL/OHY8dKV/U4vKjJTlmAk7nXUi/YjGtzLvT1gTQ3gUW87gkV43WQgII5krK+Fc5XnKCNtdOn7bQRFl11qXNIQsFHlD2Ql4C10hOK6M0sZjBycIQrIK8eH5Deym0Qjzl1Nt/SkBVLV+u/Rmzgz6V/RkiOs9AIXGTpGPmn98SJsAYv5yFWUw7wuIWqLuNo8ZIz+lQmRYvgU3go9xrU9qAm0a1B72QjxqWlHTwQovFrCWc8FF5WrtYKRKFv1nX4Pj7uLPxNJt0qFFZ49etbfpeCNmOHBRuhTcjdNNN4RgHcX0rqbyNe20JQD54wk7ayMda62+1dWMOSXgB812wA/nztRe5kWrxlUXrxvIRGa/0aT11Sh6Cq2ejhS6mv2Z61/XCwFIOsu2eJ9hJ86k7l1zHFHQOs30i8iCtJVYva0/atr82F8+es+QGxzHq13LrRqUcmcDFZDITKx8AaH+sQxlhS8CRLOK2Rnz50B5puP2R0eDHPon8MMMr7iTax9RouuVr20fIUMLq+SwX/mXy6SLO7I44K4HRIN4C7SLoOp01oPIHt44Se3Geie/vvuGLJQXphnE88HDtyar4byiWoi54QZk+A9e2i4yU=
Variant 3
DifficultyLevel
546
Question
A triangle is drawn on grid paper.
What is the area of the triangle?
Worked Solution
|
|
Area |
= 21 ×base × height |
|
= 21 × 6 × 5 |
|
= 15 squares |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A triangle is drawn on grid paper.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v3.svg 360 indent vpad
What is the area of the triangle? |
workedSolution |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v3_ws.svg 360 indent vpad
| | |
| --------------------- | ------------------------------------------- |
| Area | \= $\dfrac{1}{2}\ \times \text{base}\ \times\ \text{height}$ |
| | \= $\dfrac{1}{2}\ \times\ 6\ \times\ 5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+7aGE0oH0opZ42dBw2i8rgYLAYi+Rl8CRdL2zPGxzegeqDtHLbNCqvhGmNdoKb9+DgSirgT/3iRLoz34/Qbk+IIC43ZuIPGVOfrs8laqyFYnXWMEXOZecw3liYI4JDM7zIRCUd4uveilU5X6BIl60K5W9wXxePkIAfeR+5Jq7uBqIkxCS2GRlBQdWYvy8Mk844IsVceQ3Y2B10rJrAx8WhSKt0XIexjCO6Xde76H6TMMuBcRvXunypLDuglY3zaJtqaPNB0hHRvyKqWKz3QTdhc1awX2hTInhkNzrNeJPXkDGwzLXiLNV0kx+LPJZiCYyXWOT7zJaCLHcIskuWdDU3yUafYhPIJYDPipodqIYJYKgCtbspSmxZ/FzgKoXsLLPAFWHwRKV7qhFX7wtISH4KbU+7XgytzJ7tAf3b7mbir7WbrcD0+J71IzAk9K9RnhqhHLLQTThTQCvxygDtecizohfw9UfhFf5llC/83sj4/ATdD3kICB1hrFKZysajaU64bkb4DoMrI3yHgVHvraj1AuAU9bx9TlU6yxhGSSzrP7KQCdysZHt/UvdebhXf/H1j3J5mWd7roOVB4M0Ibq54Ugs+D19Sj2eFI5rFfsw4nvddPlgbQ4JlW/YG4q+/6JLaybYZR6BOLFuBi0GWu4qJzIakhVrC5dMn3PEGPf+nbVAG64TTfY9nTI/JTEQjSLnHoqX3hZJ1qG1BUv0pK1tOWDlGqJ8ydVUaol/COZYo4ZopUj0hSETZ3Psq5vi0qzyWgUYZS03aIKSsIckEHpOj8X9QHwK7Wv0YRZZZNEABCjByD0t8jN7unjui/aoLiO1I2Gk4tQceU+Pyv5rB3swJAOGma9dWIl9gv6b9M7hz+Td8C+hcl+ekVB2a4i97iFRXiYymbt7qSGPec5AheWDatiDtJywHcQE3mBOAV00i22QnIfWS3G3BFaOusXvOBz4cv/fkhzP5KVWtdFVdVVPjWHxVmGwOvmJbfil28tDHhLYie41pHHhOvYiD22ab7P1pyDv/5n8sxHzUnoZI4Y4HXHPpEzdrlKqevD2BX9YtmHLHr6dgCXYVMwFMpGqbjvGDTt1tXedfWMqQIR19ztdri6r2oFPnop/qxpQX8JuJihCKEHSf1gImTVqp54/AdukDCRbcQlqE3Wg/upDWCkk2T9+C8RuRGtZU0qJEUnXpjg8Y1feKUeLtWq4NDwA9QptJhE8R/PdvfaBSN9fpAHPQhvosqLFI5gbELO8Q+gxJ0E3AubC2DFTbmYJn7qdSGaXW/Rd5J59KUIQgLMbzbfffz3z2lvgiFM4W6UfOatDVe2h9blVQaqBzXlKCkrUXqZs+v3Ms5gMdWpzqWfUnW4yDfAK1A0+sF1mJYxaXyASVmQCYtlPeC4Z4Q+Ky9485gq/CQCwWH89wsCSE/0qKCtHawS+2vwO+cdxHPEePOIPgVdzuXOOICjhZpnDunhMzFhBOx1Nvn8LWTMVOO9HXM3czdOWRzRQnEs3rhVhpyJupSdASqxC/5KTdohE3RjJPAgzmigm8Mq07T8ejg+f0zPRRE4uk8TpJIyWQJjKtwifgT54EQ4e2TiwE8tw4B/xQ1x4bTTrP6KayiEXBGc+MexfwSOjBanXFjFFYnenTgJiMJripq8i0YMwgwGDtpWpEgDEZwbcd0DQtNFOvNNvqZggZCNh9wTVSSotLm01m0PsEQ1CJZAhxrCUBuC4hqLsGCo6C584GSw3TJbtfc1Mo543c6NnFIget/R+jQeRxUWRVmkAbQx8AtbOfWLCc2yxoHbXFrTzV4fhlc3G7197qHNLv6PJ4taj6xxTLM7UML6aQa4P+4QzXQbsKO1ZAnLm7JC8qjvPkzp6VtWWtQ2R+MPmLnYktVmyx+YlzfxMJaMw8l7GYonzLH0+wFiSj5BxWS9YaljVqIj4TN576AK0RtH7eE7M8J94LvgfLS4v7uK5u2R5cbIAiq0o+wP42gWAqKoqxZRnplYI/cKRVP+KCZkCL3BhQxt8d10hx1SEt0SbGdDojk6i/PzcwSyjg/hZ3p3b9h0953Xhhomhs6rZfww8rHARyS1W1GHejCF/5d+1WIsU4iOljfRAUj7X8b+J7UzsLmATelMtqhUipzVX98ubmBiEFmiMh/otBqX4iZ31xSWleQoLmYm6AxLGAZA2cTXHGOD2bgPh5kbfP5b2qRSACZ1bbhPPbBHjyns8846OnpqInXL54FYvwwt01N1QlhukkNpf+qlvYxM0xxTerTj8SuWqeSyqiPB8m1q70EKscCieDRnBuS23hPkKIG5AchJlLukzQDJ5EP0V8OHqjm9URsE59JdMKesqQXZyhvpzxCC38CHvn6ZaGU2DYMXQr8AROOP3mHsEBd2m3orkgn3AF5l/Z7fl1X9mxV0ATn8gBIEQUo5qT+nBSqu+6DryFh5fD+XRTBK1POWOJUbnBRsfNSnD1NPlNTw7cXzURrzPO41YjirQO7YxUbFrZEkniIv+VdkKZUmPaYbEP3b8gQf97Y8kAyvt8J8POl54rCzL0JLYs7TZJMf/Ufvfroe5kUVxDHBB+vJ6mK6LwKhcrpvFaUOIK2jujy2VaCVokYX8GYWdK/0AVhme0XRp9YHwoocTeZzmWd9JFnAqqnLsNBhfx21ywQWobFgp2+ft5L6CEwn0sY6u+N7JYeM7F4PnWFGPMtwaCUilxIjjctYqlIw5lp9uPg2b64HZQrdh1AUWgRA213qHliXSuYesfYuBjyWwc78hokCdpWdrr8YppK/JJuZ88kXtn4K4CXzAvHOBul6AYvibyOimzYF8G8zlDk0gavLjIcf+gjvC4llRR3cPnXmlZNOb8aqA8qfKtpBtFh5GM9+hVQQtl1vxiiBKhbi9tm0QQN11+ZPZts33BcmvPDXz1b20NmoJR24Fcab16Yv0DtrPbGV6Cf8Tf6LnEbz/D9Rixb7gHjNJya2wHnXm3haSZk0CkCyOGaeXNlCbibN+6cWSYaRKb+kW08wCo35XKRE3N6GcT3E/ks84B+zQwnoM/i46g/DYZ/zLgZWtqlsnJBjZjQp9nQRcjlCjlFuPKerAjtXm77LEs/sdSDZgm2DOl/fHr2d+RbXbFrJSdTif1Rif9TMi/gkPY9fayhioSN31qtKDClKi3MzejteqK+Jxe9O5HyIYa11XrRUENZ2gharXrnhpQxtGXDW5Y32hCL8MpX1mK00OLtVGl32kySK+IMGwOsmsUeJpq3p2jUCIfqZ1DLzdu0ufSwXZWlAqK7fA3ID/Pq8rHtcJP7qcX/7LxNicW0/f+R/+vktr0EQ0XGPvCFmT/cGRwIGTGT+JHnm5MvTokxON8gBPOEGIgwxMgeXxlbAXGelqJJ4O7AiSXM9reN8T72B2eMAY2bAMhjLmMb3Fn4h6+1lO9W4CihmWt8BcwT8mZj7QN2jA7/iosUVwL07a7jlBVEN0HtIhUzjcsgcivhdZrPNGvDQOtqeGzotDATPUxe/MbtL5HclOBJJyborYhOhbUrX271XEWpxo6eKGMdvTNFOF1BfhtqUaXvORzULdiY/q6p+z6GceFWqgo9fdSXFpizpVgen8wHSFmchNRAOzbbxo+gpx+sY+9mOHVTC0dv/tI/vHjDXH4JnhMnx0qLMObqR2bqBhueXzR7B4yFFMK7yrxprrWbXhkkcxVGz4r0x/rkAovu5yJNgRGktrQNnj6CzXsjZAJ/6S9KFt1EHwTqnCsPaP8HM5A+/5b2wBkaDkjpaWA9x65HwoWVoRRTZ2Quv2zHFqR9WO7JBvwIYWZbhKJ3T6AyRPOUb41opThK+HaZLnOguEOCm99z+64smPHQaab0PcTxZ863Y/I62Fgzp1Xet+YskF64WhMPS/1kOCPXzbqttz4f7fKK3fro51639Wt/3RB3v4x3WdLzpgF8wwhdCyyPA5atWaZcku6l0BCmRh0DUVDULe8HTqM+0frboqX2h84ydT+r9uA9XVsgLRaxXoICA/PI3ugoTr04NjWUFlxA6ZUKRp6msKLzsg/MOndaYppYc8JyipWTdrvQOmQvz5d9FxxH3d1g5j6qJVF2fxogs1Rl/JHoLClZBc8DVHMtKB44G7Ey7QiHCYPpdSYtZJ1tD2R8EFUScWI6aui1Pl8DZ8l2COzFSkGU20Yton7i60x1HQbqwRJE8U9xh55TUj8HjwV6hv3GoGoy5YRi+6pdmAJcKR0QIDkcxvxj5zpuWNUWiflgWpDonTroDN7m5zziwesbsM1XBiR2guYLpty5usQGjAnfmdxyU/eNQw5Q3zSg9dhXRjFTqk5j0l75FIZYkGmHginveuN9R2QM0QlIYs6jPMMhsVyHhYXFifomXfJl2qYTR0jiQ30XF7LA4LrS7etWgYrBFv3EMuoE9ZbwxJ1F+gIH0B9Djx7djTfYYrvj75s11U6OI5KSb3h+ghQP0FwMhKXJdXu7RqkchK5lM6BI4ICjiku0rUlQl5swumHykpkn0HxOYyPt7CqlkbCafQVO4eqEB3agb3GLcuLrs9u8qUvIwZSkognEO4SITAAqByxKdXYDDB7ETQiBS8Ou7ux62vgS00RLa8qYBLiI2JULO9t4jufSrTTJmxy+evA7u6as3S3D9bgCo8PJnlS4Gd5q73OCs3UTsjSDNvPKekHUaw337pVei8VUUGvrppEMhRHHW32Roqq+URRcpBtkcBkYb50Z1QFbTCZTg2zTkQma0ZJ05I/eKJchHGIJHcU6MXL3HejHHQuGlkH2+/XDjYDOwhbTmsjYc32J4wCZOGaC8SmnYwzExzGs+CEEifWhGPfTYw2N8BWvxOvfLa44SGOoZAS2fJJ90Ae9zI4HppM1W1LAYS+ezV3utE2gSYDLs/lPs5WbLo91zyg6gb23N87LUb/7LXG3jSEdfB6tWSbapHX87S1hYt3XwtJtWGenP46AqGFzPew8Phhx6flRjr+N2gMa9IoY9OfmXe/78q4ZjnzJJGV+yS4Z3HF8JUXuu/lqBVynfvS0vjTi4B+IJmTHcN2+TVZSC5+Guop0N2pxm6rp3kTreSQUN6V+zXo+gqL6TDQDgWheac8CpGLbyrz1Ve74BUm6FuZVpuTMOqgnojBqYgfAoIhz5+pIynXwu9Va347kl3/Db61HDtM7Hv2dTdNDU2Ey65wqw9U1DgZAlZjSgD/xl5Xi+rVykBGGti/GXbunoyH76vPKd6+vRiI+NqwxBx4LzfTM4SoLWeU69e0hMpa+cnQ9gBs+wvDvLK06KfZnCyrmfD/zeXvk7l5iRaFbR3UAxY7JG60XEVw1eH1QxUS6uAoDsEO+QKkxyHsaV9wUkZ28OSCocUtInJG/+ctcHT5FbOpcIx685KdV+ekr27VzAWwjWsiALoxi/ZInOa63KOkLsLwrpalW5kZ7YZvACPnIeO5JTrT+ch7t3azcfViRjZ0R+MTbB+guvYVlvoIJ3hxtBGka5jhck0Bk6I7TLivFs1X20X4f2RQz07NECcLoPTKXJgfhfjcBMK9wn+E9WQsIQDRiNZR6Y3cI8xzD26/eQxHaoHaPXPiI2xMQ51oa9tJyJmJS+/qqbxg1VZlVZqJ6icC52LvFPguXlzDO+OHJ9rNW/Aa5y5/IKi3TxKKO5GIfVPLsJP5VfbsmjxQgBbs6WJhmL4xXRayrikT7RqZFgQbGmKvtuudcj8jm6DCkBRQGG/es7+GnZBDlPRBpAo/8Xx16RWx92hpncVlaA36HEKxCx7rXyA5kSXuIWxPeyns470U+gw7nZQMNJIosaP0itHJHxQOGYrNSeh7ZKokzrlD0XJCenbm/pMEZoDXMGRHQe5my3KeqXaaXHqHAedXSyi2f00An1EAnA60ia6Ohp2inEAY3OQDCjXb8DZChvVHtMVklKds+p+4dzzDJZMlj043+WyN3hd3QuQPZOj+UVCeCZ2rpoqJDBMoa6mOYRh/w6Hh/v+DY7yyid/WgfNY/Qwl4YLYPW7BVUpUbLTx/XS1v0asjhG9cVvq5U2vxJ3+yoNNTyNqXdPrGYqvdJruWwVuAUsPRxKfx+l5vBOkFpOdK5GCgFDYcQFczdk2JCGphSSrgCt2fjnWlEPwD5BZq42aETNdcFev1VVbJcRlRY3bRzBefJFW3BIP5jjMz+wjM0ZLAPOOOkEZpGaLSGTZxfpG85mPaVJT1zngxTnMJRHqSdfh/E8lGrPNiSNZLtas0WGgt3k4jq2jOAMSIwTDQXrIx3Axieda4WVHc7ZSQ8kv6wxBAQrqBv/0SGVeo7onx3kyxTc+UnBP5hpR0WF23cEsbaurolCKdt5ydvj0gqeqOULOATKGx3YPNmUKe1odOpz6EHcqR/pZs665h2IuGiz4tLgKwwAQM+7H4blNaMXg6SrWi87K+rnlScow+3LJC+Fu5ltGiu+ZfsUOZhNo86mkqRJaU81GcofwubImuUpMpSuz49iob0JlTAlnfyB4tOIdVbmQ1zDpRd26YDeN9iXp3m/YlOeaFebdgVsO3oB+td2fzVXnDknUwVvy7ocNf/d7lzTfVH51xc5whbRXIYqmS1jHSxvXPuQWmb6kFmfU9eynfcN7VQ+OemLxJjQ99TnqJbtXS5jHLkZkqcsEpt+q5cSmSgzSF7dHsDCZETUNMxdLg0/GKGkVyYAx84vNpAEHprPzdf0HV452s29ESMvRziNp4FafXLLutyjyKHbozxITNtD3jhuN4FnAMolSd2QQ1v6eMI5Z3EqUw3r3emCHVIt1fwTVB0JnoKD8haqCpOADQ11Ce43Cp0wfD9qTm9jqshktnlWKRrpfPkTLt5V02RmAYg9EGg6i6mA3csm/EaQefvguDyWObCPsiNGuU4G/oRo7+M/Qbo/kSTzTy5w3dTnaA8r1Xrv7UxP6y5aG7VC7xJ/GFm93nFqJk21T6+5HFAhytkauJ5QQk4tGy/G3aN6/HzO27cFBV2ohE8sWPQF4bCzs8l0Q7Sux+hVxY2NYriOqCkI6eRchPVSb61ef7iEUtlIsStoE6EqggN+lhkpz+TfP81lQjaMj9IaN8FO5ab+4eiNTN2FEE5Ng0T6/BIjTzyQGSmfLgCi2odwSS/RMCUtevpmBm/HxjM0pkioJcp+mgg5IXrz/j78sliGdnIGGsH09O6QrLZ3QDdyjRGPB4uyDF4f/AeRTkyGw13aAU9g1JfaImaqM1ZuODLBDtltFNY9KyGbIwdeT0FUjw+OzAAry8hBDWTychjnRDXl/IRACZdLPd7/RZWC82jIQ3nH3KJHC7Xo+y/Fi18Bhn0H8eFO2uFHeBQ41HwL1DQRxE+StObaey7Ob7I1DNOyVC+5wmuoi9tRTYkxZhE4cn+kGyrKMHhkgb+3yN2rQgxpUTyuqUPX4gXsZIqx1UEi1Cv8OtIk81OJsvzZcHS04F4rx2xEt3xbTE0AmecAXiu9amSdwZfe9X4tG6GLMWj6iXP6/JDIGC6AqnnX4RjWOm42EjAjgizcxhjc4jeOuJWd1a+6vvcDM9bYtv1TajRzY0WSPSaPUO16yoslH+OcW3uXayd55KNzAMSgGzCvfSXMlaQNhAdFkJjFhDbZivmO5Km71KZDgqApBMhkPDe+6qWIKB+hIQFCIwA3Y6g5xOU95Q4bSnJsWVR6CM/Fr38C3fujUHJuEOx0VEuEXvivxNyfZZOnDOuUH7n/nAv1/v8MUTFwvdhcz7U84rPX863A4mg1lzB3XpBVSlk9n3VoJx9lydij4oXX5u5AhGXsBTT30u4MUFfglak6htujFBBFLZxwlbJIlFfWUVuU9pahV5XqPGC8qzRYb+jO/PSmIaI1+evcfgYM0wp+0lWEGTkqM9rX0PclJInkBmTKvWQ9bOVrtOOx1gUCelALg0KimdJbL03IwC9zOWMuDRJENCsjSAqNNf7VDC9Tn+l0=
Variant 4
DifficultyLevel
545
Question
A triangle is drawn on grid paper.
What is the area of the triangle?
Worked Solution
|
|
Area |
= 21 ×base × height |
|
= 21 × 3 × 5 |
|
= 7.5 squares |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A triangle is drawn on grid paper.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v4.svg 360 indent3 vpad
What is the area of the triangle? |
workedSolution |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v4_ws.svg 360 indent vpad
| | |
| --------------------- | ------------------------------------------- |
| Area | \= $\dfrac{1}{2}\ \times \text{base}\ \times\ \text{height}$ |
| | \= $\dfrac{1}{2}\ \times\ 3\ \times\ 5$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers
U2FsdGVkX1+07c/bkgQOptWknB5yISfL7tGnTruaVt3eMvg1s+YnI9J/tvfGB7HW1B2c5nXEOT/53Xnh0f7Cvx5Uoeloj1tCjhyf659y1KUXsouTEWbG92+LlJF1K2cXYpVAh+emPdle9Nx9fMUE9K3+C6pbisCs/d/El04B+fMHSWP6pVzf3VKGGDXjYw594/DzgBH1dvQBvw7B1Hvt/krasjhCTPW0pVsKa1TAADRmQu2/51LEvFtGY2YRiu1HirHmSILymzwgcWbw7CNkzOz8IpD6Ep8RjW+3OKBkY9rrBeI3zhRSdZ172VGArOrsZ27JWDK193mM0dyt0ac2Osjxy9938m7tnM8TCK95/lYl29BUVeiIFqjh0oBYoAoytDiiLw/MFqJpiOTG9ZZOgAXQK4ET2mNYlD6QLu2xS9iCLCj3FZdIQl3wOHC5gwyTLnUA3qSgufyBWu4Xu2JoLhLDUnsUOyWaG2OX0L+qg+XmXNxmGnkrKBFGgbGGdQ+59CVR3YKRdZ2iwBpLlmtKy4KRbiYwIo+cMRgct/v0x4Nqurdvwuc7Pjt2nAkA1UAVpqXnQAHYIz816P2qrlCjCBcmPM8CG+o2U+1Nl1wxuw9vTXwZvLEs9C7Mb6I6vpD8t6D8KzL2vdvrTiCOP4Ka9YhruIAwlDZtRtd8QdYt0rhFH/l4cKVYEjW0lCgxdmjbaN+huIrx2piYDHYVNS8AtgFWHb4nmIT4dF7PtMyHlMD3Gvc079d508U7M2maJec7dMWhxS4H5U2HlOYK22nmsuUzKObdBX6cJfUABwxKOh2skezL2eJKyrvX41B3DKFcngdziAS+rVUkD3SZQxgK3CwIz5HD5+05eQiHCFS9LWerC1Dvythz8G/8AMdWJ1YBYDWRzBBSdkt3rKYspGIyA4GwxnuS5R6fJRYClh9AUF4L0obsF+8RnCFgqf2ePnwSxJIEzKZrxx0WmOOhU/PyvMOThxnX+hvqKBVofyPqNnGwL5s7XNLRrxpA/a57fP7Csg9FTdwtHfwUicGaKFMwZfadqBNBTjLHDuHNXG0a7ctfvCk0HHGUqYhpOA6UOvViqFJpEe2amqUqFn29RSZVKFC5n2tfCOca8xw49e8mXosjvEhCbzFhlPekpa5FAnhnRfWz122N3dRXYFGMewvTc1OpDK9+UTppxDYB2wJS5+sDTknalaWyBfmySJ3nur8vjWQotNrEwLJw4ff2heJP/AaMfordw2e/4LRnUvAWpbUMlgBQfulVX7sWW/TOYmgSgnScFT04MqoUPs7PwCNoF2GGquK3FQJXau/xrz7FLfcBE+594p/PB+BOsujwwS+E/cT5fYnOMTKxKHMrEEv1IVvyKhHszMbbnefObSJp64yfidNh7GNrTspmNAbvfXG8kck/EE9ZmzpYcIVi9chhBd68sULyOHvzeSktSi8IScFyWd5yu1Ctx8iIhwSvwC574NCCjEqcPtXktMklSU/j15izyWXbuhPdxCgeD/kp9XEXfdWEhHjXnvMjYehBpcGsWV2IKheMaxGffwpSrYZZjNzxH4IE3UPHBE1vH2VcRikGH4O14AF8kKNnP5Tud2HRtV4UxdT4U/8XFnJyVWNiBU6LrhATyED/XAxTxGcd5FzkQxoRA8cblDPZQe6VPl5Tqbc62GxO82f2SzMdtV9dSSwEeUjJ6Azw7QxoDLOLXU9tz9ts/bRy1oCUbRJBy27fg348X2I7kv/Vwg6A0XgVcbb0rXt01bQEx6SyhCx12mEVw3aahctI9/FTQwqHUb3TzcyUv+zbQT4oGZGXg1cQTxgmvM2IxOabRBLLIy+cAJR21OxSPo382FpY4D6pVlWyAlZB/cvBrsBTOB8ATo0WFL6Cwu104GGmwnbsNThODGA4U2A72M0ZMPT7XgizpSMwbLIFMmgRMDGyDnQbTlFLFUAc+PhtmDJNftgoqGBhJobwpabjt3MOcH5AqOKGtR+jAaJ1b91ux69Fhybl7jv14rYDDJp539U/3fb6VMdkpGp5Mh8Ss2gFSDunjCsFtMtEW2dhG3lHkOEsKYJgOveYZnXkBjiv5feiH4884AKC9TtGyVZc0ZXFPwViiFi+LqjiUIawZz+D1czK4NyBdqoWhgfnTrSKfjIoRg5I0L256z++aR34o7KKzXMAm8DgQaFHXK1RGTdGkI6i09I7BJoeJduusBnkOrP+gp/RfiSwuOOZgwpTwoOaIm4Hv/L0ExXDSMx0f+Q3PIr7nFOhoMbbjOzDJZ4rMdcuMPZ3g/bVn67Whxut3ZtDk0n/x84LzUFDJw+V9Pneog9/NNQEhO7lQywP8wVnGYFpXuqL+GI/b0cK60glG/6LStjt1DlDRdBXD8kTO0WHMCflDBDZL+6OUG3+TSqsTxxfcXoophP6C5/zRnMuUfOK8qRsKB1oLSjzOsmGwBcvOOW/zVUNmraUAwef5WafG+fqDp3TJi+RuRCvqeFhIymlcskcRELOSVbFrCMIofrq5U2LCtuVb/c4XipgZEssF97nuBWbo+O2pPkXQ2Ak4Se2GEQtZlMB8SeTyRe6WIcVZDZQKex7lM0UvLmYxrgkUzyTC1HDQ1DBEY1H8oWunB3ZQHvTsAJy+3/Aiig2ZaEeeqJ3WQP/zlhuboUSQ00dV3GJcfs6drI0J0XfwjeVHjqW6ibZz/F11B5OxNZOAHJ+U/NilSXBfXHJLVG2ut+e/yEsW0VuD8UMIZVtNcnMMQ9ImZFU0Rn+KvywzM5Fxa5smVKee9u49VSeS7seefe0Avd9xymTVnlHQPljpJIuhVKGoUWnTfn5XdluClMEjpdMHEZ8jzVelborGFk3FQkrxkbJcdW4nyaaXHkmkXn4upLHRhr/VeTk+2iM+E4F6XvmEJxxlAt7aMIvCIPjN8d/gPT3ngv0JXi6xjOPegeNm+AIQwb0z+dhdC2HK9L8BYRBFul8RN26sDHJ3Y/0Qn9Z5MMALkS1x6S+FJ4fdQZ6A/u3Kk3tnSLuFTOVJQLDqYWyNelKLUpA8JIo+1EL2Ba32bxaBxXCZ+U/hjY6YDywlFhelhgM3oEC0y3zREYUTH9CnX7ZFCDpMeC13oWe1vPfSbeSQCA5b5+b+peXJdUIYYmGLHaOAzm7U3+Zx64yMrp45eOwqYiFVXrH0qe7VQlrTwiDqoi+BaVPxd/HDM6WJn9XaIHN1Nn0YnTbAnQCSib+UqK8xFvZ+fjelWzEAxrqW8y7/KJ438pyL6plqMN95lDHv1as/jiYkurT+vNtkZSbuqkPZzJrJ1Rmqxp6cLMcl6sNo9UGljJrqch9mXGCRqZ5pnVZut5rCyefwf+kI84ut9JQPDuLT/HSF2ec7ikPTDNDdyF4NfegpfPMHZLl2cpW+tqY+4cFjT0REX+wFX6q71CaL26B4+YPsT2Uo6f3GglQcZDH/GICdssi3HpOGVRpUQM4a4qYh8E/IM3hTfmAV1aFWvNeCWIZUIt2HXKsKyQcSu6T5WlI+eyYwDgpyOVRNtfpMl0B5mincXNPcZEfT3FSAMKhG4nuDPJjI4eLy+s5C7RiIt/cr7+01uMStbs//CCsjXMeqOXuHr0lnWDHZ/YZ9+qxXTYaKInGN3Jal8nOGVHUBUwtulsyt6KzHVQh7UwJGvAVjQrsVkAOCjMFM5TT4RTv0hg/XpL743M8wTiipyklJeyR9j2S3ogCWrN6qeFvCQMIFV6WG7V+MAWMiovJPey6ptSWJ+xBHRGQtQ0f5m9pnLs3baqzo59PcrW+GkRwUXixTE9haTY8VhgOhu7HPM+bP8zGaH1qs5r+2bJzkKbrDqNmoc/PdyeE9qMliCH0fYxNG3gzK3daIZXDHzfQLTNY24N7uyP9FNQ56QC5WBsFDUKxDrPFrLCaAi5fTStBqTvvuyC0bkpUYelyO6tYB8xut6qz9DSfgUts325G5GkNAk2obmmBTa+p9R+GcEkREDNNpfIdul7dA3f5JaPTsYx6UKk0hIiRfxItOwVBWEqFJ+hRoh1oxSUhzsg0/WbQQevF7PUaS2W6Q1JizFKtWoHzX8ELNGvi1d2ZFeg0+rIVDf4JUvujjdOYO4VcI+3irWtqCjKSMnN2GFmtcBwe3ljdhgKacMFD59Sc6MF1RBc+WIwHr0RxgRrlorZXp/BiQpBHMULzhLEku3gSCFjt20UhuRa/nLvY4UH2Vapai7oWgv8GtXocQGUT5ebLwbewqH4h8mLc5ycC1DyhveNNuAlZtBfpSjJDg6f+rC/l9s2dBtNLH8cSIp1vHLEcNu3LWvkQIHwXINY5v0EoaD4tArNgCCG8JhBrJ6fWNwyiaJtyx9V7MFPSRI/Hv960lxXL4p3ISvgpp3eOp7RpGtmD1KfgTlrqvKv7VSQQTbk+2zfHo28PqeAJwoR0QH/Z2Fa2AgSahWIU+c64xnt/ZDgSHMN/odjh3EAMgdR+uGeL3oUcIesEvH6NeQeWS89e/aV8/wIXY2SSca4dTMRcnjf/aNk4TTtQGi1DNAy78+6nKSniNSoircXfpTbcSbViPrSpGAq4XQ34UdkqmxyoP/UnAz75HhUyBZEM/0ax76Pj8uS/b1SgeIeBG2GCR1wHsR8WIx07+7URXU9IzutqOf33DBNnvy954oTxIQqXBmTY3LyJrrkXHiraKP9CAYyeuXmzhZOJcY6R2DxgnKhTMnusrWnQwrH8tVn96D3Pa2kn2yLbZozDvS5gJlpI86yihOeTq797bNr8gCvn3C+2/rRZShYZmDJx3BzA6sBiiX/Ju8tL/Ey8t5pXBeApEMeRO+hTzIBH4dxu/x7uEfgVr1/5kQg+BIXDu4Kv3gghY5mkEiMq23QlpxRQMQqxhEnTWHqewwD0jrGml6tdDnS6/lgkD3VK2b/yJ8K9TD5BcxtucX+hMcM5VRo+uk99sgDeKKk0kPGJ3+4idUnsQvQn7Y/KC2Zi0ha+aL60PDhD7boBiYMk5Wqf6f4T2KM5oS3S1/w6y1mvfU93+UdZ3APfY7+Ry6s4cuiUroUPgax+iFoMyepWrCfxxVUmljmG3rGMPH4BUuFHWizMb5FRYy918NLZu9T9RFbwT1V4IRi1yYFFfS5lsFCBotOXrpZu8pQdibhYF4ijtwz/iklmg6Lh76uIaVzXzxv1S1l98xsNt/oI6Ph8qqgpWYRMsGhCo5wlJ8vRHB6/jYH7KS/mywB8zRJzGP6BnxocaIbvSALAmuOtSF7TcKIZt76+gZzOpRmG4VbisYwOSujojhfpYkNePlpVGG6TynHW4pkLpeww1GLbO+E4mbfGjefojq/sfQMZ14jUOtndbYyo8YOuq+3lRO0jncfdDwVY/aSl7VDNGmdSBizZjKmAuN3/wvuM6q0UzCxY6ppz5SZ3xkCjojC5vTnHaPWM1FCUqBzO4PqcSR/e4FFrInRVTunpRbZNKVbeH8ke+C02B6UTgULlM0bwaLVRVfhBt+KpECLa6tbbD4S98P1IR7vz3wA7C/a1n0CNm4n3zAXNJCNRAP8LYieqrmAy2lRRkIs2LssOpg+wSFhPXrX74SO7f8Rq/z0Lyo0dBBWeMHZlw6Zi7JEQYmMtz2zPrK0KQJMTwfExrIIs8JsKedC1ib0TQgyulnYmYER3k/N/bpa1nNXnZ8AXoINbcaQH9FzI+0Oo8jWwG0yGHJ0uHDdutD36w930jwvmszSLq6Sdy9BaYzmWtmM/680ANOjUOFzA+PEC+z2Cy2Ey6Xp1j9gNfPEqZXP+H6bmm4AdVvoR8tJXzveBATujeUtMZtJan3H9PhdKFTugkrcVdRMgBfApcpdtATFncb8FWMaUj3sRIlEtkbdp/5qWtYBcl6FfA9eF/BaZ7kxPZv6ezMkQddzuJKyg3z8GGsudFbIoQQYhs9FnmszbnJ4wetiXVXndSnXW4qqsNptn42EJ1BejsXpaKtlMsG9CLGYM4J5oHmOTHnucV+5Lxhj3UlDM1dX7sZaCR490soSbU58mtlMXfMMLfIEhehwdh5FfedHrjFhC8fGH1qrFlOMLPdoqsumGttqqnIFCxlXb0+dFnML2BYobgBQ41LzD51YJrJJzhu45Peni66GZ96ktxxMBZaMuOhQbn6N4nXh5j3wZebuZ6hw0Xkhea7PND15cpGgIf7+g+nROeWVIP03xVhWN3fDxxlpeuHJQVwrNJLHQp+67oRUvPrKtp9axZ2gxcUjj3fL/5vEN/0WsaxTx03SyTrb0L4UD4tQq1Ymox7LeYrBVwqhLsU3HRD4hWeH2xBYO2gicmzGPcn01av4lgdfGlb56PsoLJaCxmkT2KLwc87h0q1GMKJ8+BXU2LvNu5+0pFlHHTkE1dMqyxRDE4O5FSQPCwfvSJYaHZyFcXQ3bRVMDTUutu+kSnQcDdiIyY+5INolvTj0ZGq1X1MrVmSUDfLBvzrCOpalLRmqJsSrvvQHz2ICChpyJ9tKfzgAlNiDKGee6TkiVy4XGaiTueWMiD0wdhZVZL42TX20eQeone00DDG6OaqTtCwBsmSMkKt3w/FeDO1RZXArJAFOiV8DDHvK8Mvo6zDtwGbqkjas61SZxT14tbIy0Bvqkh3YXqHNB0VdJrzZMSyBe3m+7NilC6N5wDh9X9SkgoFKV7kFltBMe9v5wJvwj38gEQffsvYaMh2wX1oITSyKLQUc2hbSCfwT7MjSR+ltjzxPa8DPDfqEK4dUTiK63xKee/c1X03xl82HPbdUhfC7gN5BYrvwl1hTH6Jvwdc/U3OtbdHzbaZvr3e/99++ipZSvwyyz7pLvBzkNw+sxVmk0Y4+LF73HhKW/AgmhjWnsBmWlTfXfnmF4QkEsL+1auDwtJt6ZEtp2kgGKaYqjoCuk5YAlY8sxLLrHSIw58kkCiBkYhMn2p5uG9j2FJSJ6COFQ1rU+sSN31HTzEUjisp5N7AMj4WV2pZbRK4qvwKuP+rLIVQCeDjaZPvX5g/eDWUmbkhx1BfBnW0tn12Fnlg2uOOhYdJkkAL+fjO32YuP7AKyRAJ4hA4Jn/nmbf04aivl5cI5DhO5yfqW4jhZCO0aN6vqFFbMg4mPPBGRwSM0e2kIBs6y0jyl2AGr8egHEUFYUpSdHsSKPsKhmrnG8Gj7iRD1xHHnATkWecmzHiaT++wa+hI6Zh/0IQcCXTKrSXQGh3y602mxn8zdjpSOc9xFCOHmP5sDeyyC5kljbCJXYle9lsOKFN10MjMnm+/YVs90t14wFQXiwcjAJe++vUh/ypP8ELAIKkOQDg6Tb8GA3/YonXbT5tEXbrTfA31swRqYhyX2k5tisTSS3APNw2zmn38AR2A4DNwycJeaMV/fHkJWeXv8bjuPRheIAVCXRedAsLuxeTEtCfwicBggMEXVhBR06NZbY7B1XaRHP2e/h8yM6/STU1yPhth6YuASB23OeDwthaxlCGMilWq2sLSmwc75EqGeLfccPMIPVm3KVXk3v5iUoeGqpVC80ziutui1zAyCGY95TkiHudnyom3u+UUZFAc37YoMoOdJA0Ahhj4g5NKrNkzkvBB9Fy1Muu5/jUe8dvmmIMl9I4ziFVYAfDJTLX0RHtsra0YyIESlp0VXzC5C7dDR8Gk+jFLkuMwjb1sdVms1OApqG6xSrwWTnZPkQ4tclJCjHxo9Nw7HjLXtU1ALwaeCg5TdJtUJAyifC1f1BqgTkCyM131q+ojCwl3X9Kl7DrnXcQ/gvigFjrb0u8nXngWlGbHt23qLv6gWG/xizvD0zINhXvJDSrEBOQ+qzMzRcizFigsf445sNDkxoLUGj8tRiYGJJ0uQ9EKjRMLQFYGo11gxbKwOb+Qr8Jvbem4nEwW0/jzZGDbMXRJuEXJOE+MB1umEPCF70dXhOsrEZa1q3HZNPnwiL/tujqP2feTLthUdjOqWWy7kDtA==
Variant 5
DifficultyLevel
544
Question
A triangle is drawn on grid paper.
What is the area of the triangle?
Worked Solution
|
|
Area |
= 21 ×base × height |
|
= 21 × 2 × 4 |
|
= 4 squares |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | A triangle is drawn on grid paper.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v5.svg 350 indent3 vpad
What is the area of the triangle? |
workedSolution |
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_60003_v5_ws.svg 350 indent vpad
| | |
| --------------------- | ------------------------------------------- |
| Area | \= $\dfrac{1}{2}\ \times \text{base}\ \times\ \text{height}$ |
| | \= $\dfrac{1}{2}\ \times\ 2\ \times\ 4$ |
| | \= {{{correctAnswer}}} |
|
correctAnswer | |
Answers