Statistics and Probability, NAPX-G4-CA11
U2FsdGVkX18E11EXP6FQzkXG76JubbnVfiHhxyPPw4XTuTbVJk5sYpNXpGZvNwNNDpSL/6awxGhFU5m1Y/5qR/MON8EL5c1vqSXWozm2CMLoKYrohaONZRG6qGG8DoKhvRhOERy1zaBZCcl3DM6zlcGhHWSmr/GTfnHZip2Y8OKPdPq0tXdCg/zJfiTGkz2975cOjoZ0mqtvsuGxF70CNRbe9A9q/EabMU80o4gVOB48HnFoKgka9MpW97FuXM6FLlZnjFFZJO1gyfNLWNfi+XmIRTlZ0RNXrk2GHAsxAFsogiwQm75uzFr/C4/tLuatGqc/a2jfTDojDYxbSn7UxCD3/CVHT82Gt+nLE1e6t68PElKuMND++DcITPla6wL6WJ4B0ZJjCRJut2CqA+1Hv3NFp9GEw3ZZWRl2D7NNKER36FdJM6Y/hnGKrrcBRctJVa+BArux6HJVKee5N6imcVrEWpSoSHoJIk9g46uVto2D/H9bhutjTKtKw6JuJO3dtV48ptZZXHq4P8VzLdI1GSw1zcvtrRRM/RVqlAY/pByKGb6E+DBSBHmWzItyWgkZC24IRGUOeB0mRB1CINTNr9s8YP2wFlvCrWZAyiJBSNacUsb8X8PYpq9QD1QxtjNTqb0v4R54EUZ9zFKo6F6tnPm4/rVJKa+1uEiVKBYsJsY3ts13ON+8rCtVRFeszI5sJCudJMLQKw4hSziWv2VwiHPzlhRX/YvV3BvTEo5RXAGclexFpj879lY8Gc9y4LKSTs4SU1c8Qvp8tmCGcWJEKQ4BCoT8O330/iLKrF7LxpwKIAVkDseXFt6aheVgGBe1DEN7kH4xAxWTi7sALBf15UgLZWVUEmEiUYw0taWi+8WDdLJZhgK6ecOiggA8DzuaeVheL7WfGFMgLv0DwdUlCxYnkgSEh+aHUiDIqzcxLA9WAbCHkkEgZuGMkgBWA5dLUO3rjdmxJ7tPS/GbYp1mX3V/W2vqm5m3ZK57A+ugc/Lj8rzontlnPm87phH9rUYzFGALOaV+iMIohNArDj+kI90Y+Arm20DbdA5IuV2yXWXwDKGd0oFvz89Wre8ja7xjJqU/04ocQuwpZH3xMRaCiNRomtfCi+mnNbxxp68S5TYvJxhiMoJwOO5uE4fHiWo1f3LM10crgz8nxMi4uasvozMMuE5Ny7xCp9Ov8wLQla9BCmoCVy3TdY7K8ggJS8b20ZdparqfeJPKENgsxJr6FLtPe7Bp9f1eJfkm5fU1tATGGIGLbzqU0Ly1cFYATJvKbWFRnAYDNhYyxV2r25czBuxfFLiu14XAyT901pZwYNWxmIgDYZ4hPrr3EEx+xBnza8zeYEdTNWYxGLM0H7oqbojARkIeIp6w9vthHMnnhMEaqxb4MdAXytt/8jdspVCZ8ViyVkJ+2MgU2qUUDH3fTdzdTyGihv1UCXxG4L7J9wrj3WOE1V+eBfyt02vkFjSBNjxr+NnBe73b+LIE1tqeTgTTVajmNZofXHpjYOpLSDYF8QBk3m+vKQzvXRYZe7mU/uV/ZmZNyDiIKtFa5b42rEXPOpXZYNORhN3CiUjpNDgC5Qg/0NJj+MYZeTncGyymPRgvGvoI0Kx4/x3R7N7TmuDCg0XAXpKLG7CIvlbGbZ300nzM89HfxPU5szpvoiZJXkvJzKNOsi69PggZLu4kXFaN9g9LFsHm48GLED49qL322UjXNnhVlgRpqyXS0pPPo4Pe4hsxAz+qe1hsdVxQMhgkKpAgokBmuoc0vYs4W9DzlQE+54ge/+Yoge5AIUeA9KDtOHPkB1WUJcxLgAJBXJPObBy2QzC7GpWj5AqVX36NN8nMXdGMQ+nldpUQmn92tatRVtdJplhBFYEeNRoz7WO7oxX+f+1f82BAiAtdlrKehGboaHWl0ZiLqr0dfGHFGBE0tW/OVwh6TP9w+cFNVy6DjWuXLhOtbzLzmVTgfmOVDizkQ6CRcgxpofE1e5ZYF5O9h8Q89f1w818wxG/eEwtjesQ+0gZffEbArXJD4yUPGe2rA7SF54mdyo4NOu1RKU/gqTesEwIJFKR6KStKsVXcXI+eow1aL/Jt7IBXKjwQec8m9GM0gWOWHLlImv2NSoJvhflsPmqTce1+1Z0yLoivRZv4DFWa3R83j1eFSDtiTRXLr+oBWIsr2+dWpwF4cM62Sy2XDVWRQI+jFDhdTuj0OvVeldDcFHDlmBts+f0BgFh3NsT+6y9PcNUHxlcH7y6owU+qJAzFJhDbPjudTuKhYHFZNszBA1i+kZ8jsu5wbb4MrnNPvyIu7w4PYw0UuiD8Su2kupG9iXkv2sVZBtexPb8PnymI2PkKhKe/0grXo7XcRvJx591Me68h+8Z2gDnpt4uTV0fi/Vk/CoGiCJvBg6R0ky1mSNc+Kfg+vvVrdOAdHWtP1j9u/2sxd4v645ndBYIu1NpDhvSqkBUohwecGOppKFD0GXFN5tsrGxHy0bPfwHDFRIDBdketEHllsxK8Th7T8H89hUc6uyGjLqthpIJnKRdW6vgD9jRGZWuqBiNkTk9WHSAC0OdHYPOLX48aZPIhQ4c3/w0pAHkuOIOp6oJGMpO8qdBB2MxS5Fo1KiZr05YRHizxMc5lz+s1x+pWeWz08ca62Oaw4owowTtCzBOv3lqwTaO5yOwFiyBHDk1sbR+fjj0/nFuU9TAeL4fPh0xDq71RD3cJiu6p9qbxJqksZ4FFHCE/6FFes2Zu9UwmoBheawNY4FindHIQK2rXFXcxhdveIkdJFXXtzNlNnt25oqulluq+VyqArHkB8VH9/6TaAdhycdBRc+1lyoVKCzF4a77MBGJgNz2liTkjyeg1aI3kgYIWdY8eR6zHp6qQXxfLn4Tpb3hz8wiAx4x//S6dFH1zIXPHi9o5OcM6qqoUazEUDajEEUJKWxaiB/ToKkgfhbik54UxVOAGbZ/x43whKd98YJGrSaZw0xoYH2K1/dwz41GtIgotAT/ooZ6pERz3jjwYTACd/HREfSzckE73bWXveMgLpUwZnsCwpS0jrsNFwaW/yoTwyqyLSbdW/OHSAZc29rD5IY4T3uDTPR4w3Wmvd1aGR0s0mR8OuyK9KTIQJGpnfZSbMYAb785N7SLPlgFoV9BWy9a5sfbrs5eT3lncOXU+WQuyBql1CepEi2/VW3DbgKdlIG6uo2lBJZ4qgWNwFf3TMBa5q4dMxbFfNxq0OYLxhbg4aj6SGFQrKCeGJ6uri7WQMN9gQMy4dVkCSs1XExqgbhItB9zIvkVqJ522d33krS7i3coOLYYaqFh7Nz0XDtxoju/kYOFE2iRM+8d0KNk3bxdJ7ai7vmDkFPwB3k78hRzv5w7ws/M3veNfj2bHC3mraWrvPDmysL3Xxvpv333ZQwtT56dFvfmMu/vQPkOp3sMAj9AIjDZgTJdwxIDt4mwt3YKLtp8EysNGf6wms27bDF8KSgPPbZuhvC7mEW+OhN2XigmQTItzr6TDK+eF4ISPX6S05+T1VvEXOae8GaRTMeHzN2e5vJmMXAswB0YxNo/9C9EhB3qw2nUG0GA0zFCc6VaRgAD7nTOxUYDlyEA0by6DvktVHqh4Vri1zW7/AQcU2t2G80caLKBOYN30vOlyzjE6KSSiDK2vAszCBy5pgpItv5V5oTDKlYSDe7pm0zXy9fzK6FtQeph5ebzgRuKFql4aE+HyOh1/vqukA0mtcPIFMTYjZE6kCgHsanS7sOAcr+WrC5WW2I4aXmhgm7NtHU22bo2ad1fiquSx91+F7U3XQbXVbn9a4SfWWQOsv7TgeHR0jCKneFJfSHfDsZN/20TJpbNKAoGaWR3Arbncz+OyK179aJeIAOx6hUN9SUXF+I+iN8Yezy0MpDNnh2CLQ1hG8/wuRwYYH4lCiXq9N9WgCubquFvFo+lpwxrsFRsKTXHXwsOOi/FD/cuMl3401ogjI7AzVOw1XDVhIKXhEKfBfV7lYO80qG4qvuUkWjPWsmGKfzkv205c1dvWMSdG1D1ZI3YrqW1iJQIaUTqylc9+pPYCMToCIV89suCqJ1LKOKHb3g98OyXrtMaZc5F0nWJJaacFJu1F0AGZ6YolTC6lw8qqo0kWejbjHzeyWn7U7pcdgyfoyuwmd7m94eifsrZXfKIMynLO3lzh6iNJ7hGWZ8vV5istAtBY7BW+jQDOWZiFFZOI0SiHSbsZ52HeWTgBA4mly34ESaDNnYEMO9hCq1T+5oZj8VbKN+lcyzC9/F0C0Bwgn34rk6shk97V2icqfLPOXcWWRxwFk9FXo158OeL519giw25T18tMqEN3OvRgY3cNOErdNQt+0dIRty5Gsmq9y/72t8tHx005XLT1le20YQHjAmqHaKkluGMCMurg7DPejHEOgY1X5eblmMZKs7laR/hEOVF7PaEbpGAgudy7yQP74YTG5rrk4wP0eRN632mgS9Y4eyS6vWA0wknvANMSlnuxNaakvm+iucjBvLbB7W2IvTK+lVIXy9thM2bxy8oO2MQcBZgr1CdZAs1Y0iNOp5bq9IMuIMu0UcVsH4KkV1Z9JX0fT+P8r9Tkj8mKEskfe5qSUMeLVT1MC6lCxonCTdyXxpZ78NcLz+qiwvMguSIHfFIzMy53FTFa+bbHc7mTATFryIEIqI75avO1t5rH8iFBc4O1rdIFfz41oGxwRTzOOhah6nYDvN2YMvjQklep0zEukSFSdtuYk0WqBhG7Vgw/n9vd8nd3UaHv94Wgo+3FkhiwPZY0IZ+RTLWbCsaPWsQYtGrM459fnBdkh/2JkXemKjT07iMnLvCt/yFrZl5vVnewn3ywqSvkd8Fqd6v88PpN6e7BPjYpeGitE+7ZJKDP/IZXZvBuSoomlbDAEvecNatpIp4Yr+xN4RcwKgUokto9SBn7oJ6hD6FR1kqVSL7Qn1mQJFsqlywKnpx9U7Kfzq1cqKfOD5SCE/13jZLBQWKiBoggnO3NK6aALnJdoz4AvHzdg4MG86UDpviJMHHKtBBB7cJTEoHqfXspt7+ehTCXqQ2XWzOHGBznYaVnL/1XSMFDseLeQi6euv1RKm5D8H695QwpuWSeCBFZs1dD95kk9YyJi+KEPsbmaNQyqC8ryifUIVtnF4pu0Q07zFUwGSdMeoxFIDEZ3MdyuoQv0hrXAT/rP6kYj6JnmDVIvd3W2wwQMyLD2KRgfjUgApetA1zjU9BCBUtE45YhkHnZpWZfoZy7f0SxnizxmiGnrgcQeyxTA3EhkadDIaotqiwouJSXZEGw64HikgBfvgTXizHLTddlnOdU2sokT41MJ62yeK2Hk9zC+oUaoUZ/FLI3AB7/oZ75t4HXKTBRN3/mbZKprk8VCHE8MdonB8kqI/PTxMS9DW9IY52DTCkjj6F0y8PeNrglios/Q6MZ0su47EKFidSZJMmxsz3isibO/vG5775oMegCVaZYtTcBvZ/NV5yxQ4oz/5B5MLKnTWiBhDb7joWKy8GbRGwfoEnkIAryZQyemiWUQMSj/Na4md0+TyhvIDPOj08BAzuyYOkb1/ZqKKEn5jfiqtGUcZ4z4d8BOwNZdCQ9BvFPJv107BpNMv2AUJdHyBoXNxAtXLBbaJKBRdMlq82moZnNsVk4b3sbLI7YNZalDfgzYGjvFjHIL8UpPZG9d4YfZm6WWrn6ljWqIRymETWpuqUYGw4aItZ+udOaJnBjSD4ePYFQHOC0Lm9OOB5echaoRlNeZz38Yqo4bYYE0yjD0wf1nv9qMaMgGHV/jOZUPdLjpITXe5MFBMfnH7Ba9pwPfwgCnMh0GI/Vi9tzBwz/v2CujLFMQmxnY40mmkjfqUBUfyoISkaHTityAiaFSYdZi2eTRLOkasjd74y/hC+DrW7ltvgFysRB2CP//37SV+TfYZoGrOsAtnYKjM7HzuG6gaoqDrpVOsVEu4HGU3gkLdxbsszqRFcY2xZBHtlXQVHi3O6ODPZSFbVavdqdNBl8TxhL8IGq87hAWPneGVN7KjRhD1eOsPgFpi1qJamrm3e45TpfrYMi05zVriyKU1qvdsXXbwNBTwPVaq+3fQMO7s29aqyfn/2fx97BG2lGXER9SmIC5TR2JHWDJf8m1DT2LvGX6tV0J7xcI55O/yggE9DPLZyvEywULc/5Ns+9AYFopScARSI93Mok94VNqdzhON2wc1nrjUADAbHIyaIhvzJ35HLm4o/E7YCDMtESkgYEqrDm/zP7RkCa9cjVgPlZlloWDXTgZOuDfOxoBH3Q9EjB2vONoPLEaaWw79LIQQZr1bxn+Wv4JBtkX2AJjpAfWqrtelnbxBcI217NOLw22YejEshr2i6yKKBlk07d9oQlhyacZWrNVPd+U3fXFZZxKr5qAJk6IDW8g8tWxOPSSU+SoBQUW/UrRWFWSOeeG+4z9iGlnh2bVC1ljZUFGtKSMDk1t5Tyq87TmyZBfPR96UYB44gf9B9PvZuhMkWPh0Kq1I5gVcBFarmTh4K/HqBPTL7IOzFToUbec7128/83sxGMwkJo04uyovKgU2BMM/bK+R1JZmdsrcCtTZQcdz6ssu1k6rXROqdRg+9e6JJVu2gCQiDEhaHTT28VFGH1Uv8yG4mDvMYSt2B7eEPTOJAS4X/rLq3l6/U6PZeulNxBzJAK5c7SMsCttXI5F4FOobeu5h7trX/RUzv6ngFJdTLODMPbk6p0LZtKLK6PAeh42pAB+6HVsO4PUyZV4ztzepoaE+bP17EYeFj7BMfLy3+ejxtEye2yNblM4tfpI+q9CTj3ZoQAkOAchkxjQxOa34TjwviHmjWjbcBoWkyrAck3K/DQHjOdjWbmIaWb2kjyyuq11+Lzb8Vs14VU5HIhywZsLXHY4ECYS7/tpk0L1zPYKJEcaaGdExq+8vUTB4ZicCPLq2Xhok5pA9w+ULHMVBuTI9HVCnH+Vw9DU0u6rkjoghOUCJlPW1l8lPcH3YHPg67EmIGDhGVr+zebIGZpSKLgO8Z8xRlzUJ0hzpSSWxjgLc1ZcfOBJslXg5rLnk0ytcIU8hIZA+THHRtis132SYn+0c36PlydAkGLMpsJw/WcMC9Gf004u4g2B9CN9u3uIQ8YDhlCeApu0+ByrOYCDFOzccdeu2gwyqH6wDstl0T//1JQFXaULqoBfZcF1O1IoaOZNxlZlDlsxyz/sk+UYQIZ/tYMGiLFlc6XbN/ZvRyN0DOLktGxQ3SOezba8aFcqb0VY1btbHRInlQWFmn51WJA9o24lrsYYnVoKfvQ2HKfS4i8sIuDpBRQ/j30AQbNO0QZ535MhjlmEv4FkvljpopEMnSbroawIONi3zzs6idYDivt+c6Xsr3beDCB6HwZ/Mr76zEW//pcAZAOFPzCQiHBOZ0xisPn+IizfbcXRIhxT+pGvQ4tu9ZnaAaA8gFm7bxmW3rLNrqDyY3qRpMc2kr27pQzUFhqPOfcrkomsMJH1PwdSfxy+LVheoxVDWEU1D86aeqlg2Go1GmD88KCcfgta643LTShhvfRSOW09D+yw5Fh+pyNfbmjUZTU/hRy8kfnnwbhjZ+uA5daV8X8qySRJzma4b5NTyAiDpaUvVJwa1DL0FI8ouS9iXbojRI73lekVAp8o5XauP4q7RaKaobWJGXh57HoiyCKj4Qg1v6yCWm+SWpLtStoRtWlrts+kKV1Utr11M21V4IK9odPXD6E3Oue4MESHh3J/QRTtQhA4KQhj3A7nm6nFK4XZfZzDJNkR86Kt5ZGEBbNzFjqVj89Mh70BdoyVDTJiHLmWRHUXKHzjMRFCen8jl3otLIHOal2iIIhdH3QIvjGyf5S1VrVn+fjqPheyc9pOylRT/gsqjk3pfqZx10lx/NwKVMc36AbD2fIAwP9n3JwotF5HCDpXVnz8vie81DUab+r7lKzxVY3zXtPZ3l4GPfXRGGA3GDNrxeQKeQAcwaz9hyHk3W133NKM4/ebAEBPYNBcFhk/onAzZJp9NGBRLQuAUj3vy0gXhVsHKezOyGJ7aNChbNXyvUrsfYzk0PMuX/l2qQil1tWkqOguQNzF3cOMWjMwnacWX+5ZWpNz164t1zmG2g7HFrv3TqfDRNIolw3n2oYEWZQHUN9x1ca3FXK8CwNuvVcZiAGhs1FXLLxl7rwmd95bkvJbRQgVd483HeGcoRWsgilbimOtuSirQ+SL5S1JA3DGQcJoCc/VSXXkR4Gv+hKXQUqX2/yZXLEay26DnHY2ImyewYF4PnfY1XLQu9abbEScggiCfXhWhxjcIzRNcWB+NSjpoLM5QZn2dnRyyTnEiKdfUOlZlVWq3rydaMBAb6J0LOz71LCOV4XfJ3E3dzEmrMuRWJRv0ixpxNxWHS6XV8r2ucwaZgW+VFBrB0kj/9LkUmXJX/y5wF/HMgQMeQJuoBVC83IcuUREFP/Oo2TwbjdFlwjXziJ2O2DA2Yrg5gpFWaTDSEB9Xr02ojZms4Cg/Qeva4wVY+uui+cMS9zDban/BUTeVBy0RxQq3Ypqh9M3S+gEuymMGpJYOe5KXqiVdaSEa6LapTyRYKkn3RWwD1xxKyq9Uoi9GKxlQjeq3lnVXBnXzphw0sD4suMJX5ne5ypznyqcfmA98U2Uvba0YTy1CoATDbs+1qj9Ix0nyxnGRv7BEddkjyqA1ScsIp8Yj35rOw/a2mgeePaNZbCkQRV8QuQmejrhksHna/SvfnVhDXYVVRQklp1Qf0LDpzDbxQsNy6kSXwqLndn6tgJgfgdXBRKqjZ/WVzeBRlf9W28w6Rf8O4LQLX3P+YAl3sTykuWwpehpwIoAx4tDBSTr+8JJtY1YzNd5Bw94aeKlBEA8VyEZBiOpRyo0zWDobZ/yMM06lENfFSQ478a4Tuwhu38WmTEtuiXfddG63xIooMfudn14/qa4QnTsLsVlUJTA9ePfoHx4QW3V3tsLp2iKJ0NJ7rtEvqIj2EmGRW+yaKaQWuc7WTLr5UJD3LWMI/tGEM3Inwkr1ZbLQAN1y1QtXmBuIPyi+ROlsT7eQFrGbUWptmqSHmC0rUhB2rjbudwZuCwy8ei8mA7y+zm+Ai4nqQPCFPUuA2eZD9akEG9ZM9fCvstEwN88j/YbonJUSPoX+W6AcuN1m3kMst+eJ96koePEztcv/Eo2pvgc2mE1wg+OjvJxP00HuJ4w2U8A9raoR4xQ8uRIwz5Pmr3LQ9Pzvg/zfuzJSopieKiYljZxoB7gD0qKwcvToLMZIYYIcQ9pptx16WgL3rClHjdYdqCk3LjOOpN1lS0ps9ojuUhUxCnaKc3hm3WYyZE0r/LavTs5UgeRkcLd2A6uLvHMs4fjq6nbrr13rm/Pm4WhH02NQRH9BniYo3/sEMZU2N+ExNiadyCikwV+n4NdHZAxccRLTAXwf4ECWjfNqXNoCaI8+5qsV//tE1N15bok+4j5sXJ+I7ok05j7DdGLbm9W3wyrSsqwN3byLWKI2bqQZ4wQRyV4gQwSrcS5AN3p8cSvdT8
Variant 0
DifficultyLevel
552
Question
Dennis is a fast bowler. In a cricket game, the chance of him getting a wicket on a given ball is unlikely.
Which probability best describes Dennis' chance of getting a wicket from one particular ball?
Worked Solution
Unlikely means the probability is
close to zero.
∴ 171 is the best probability.
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Dennis is a fast bowler. In a cricket game, the chance of him getting a wicket on a given ball is unlikely.
Which probability best describes Dennis' chance of getting a wicket from one particular ball? |
solution | Unlikely means the probability is
close to zero.
$\therefore$ {{{correctAnswer}}} is the best probability. |
correctAnswer | |
Answers
U2FsdGVkX1/+NJRa3+FMhOqwBbMCj1WJ66acfUwgSXfmwgpX2DaMnm3Un3GSFRP26lYmpJUZzQpED3pHZbWOWRgJNZn++ZEnTxCk6dO/W7WAvwRAIIvzZD2Dq739OzeH2Dh+y6g2OH3hhfgLB+ayAZhtKpAwwOCue2uloHo2HmfSrGVCcfk95P1DaLLLaJvIrhLu407DID5DEjr/Kn1A3lOovL+81YNpRM0VourcsREEnq+6i4eq7CD5GGR+uLiDXoKLDR9kd7pIj8/HeQ7U4rHi9kbJmMZX+mqIMUpF7j9eipypi7N54OZYZ2rhc3mRfvY+OifMa/pmHz02rKtGHKojEYb68FiGe6dl3mGogYTEsvlZgDX9hSFsDZm4cU0a1+JTURxNtKXEbrQElGolpCROxeYmNwSm8rUBo5lPhBR4DpDb5+Rg/7xJ9xcy6LC9Ub4jQTESxXek1lgCh2DxM4JUFptZfR7EFSVSISI7RjmHOvAUexwCRl7kv3fTK2PNQJd359g0zilj0GvFmnhCurLqOinzHp5agd9qwFB5FnrFxqD1Cor+Pa+R/VDcD88+4X6nRkoYLQeleAU2SoDYFo3cUeXn+IHWZYD6Q6mi/RdsmOLIIgxWM4Weg/ha226NfmvtW1VJGfKDNFK2ltbxuivW1Qln7Fvd6VZoIF8b4dCqHbMg0wCGKCi3BSIPLkGrZqmJTTR2nXgFyiK3ReXwY9INuW59a/A4NXiXAUijrkbsX0o7kIjnacmrUWmrlXMumuaP7RHV8hZnBUkjyTeCcr/2Zt8ERMOh85LDVC0hfWtz/AdqVa/qoHxVt/1nle3iJ5YdX+M1wAiDYe4aECgqO70tLRzcxx5cFCstNtmgQXgRVc7cLF3UOlJGDLrI/a+W47fRR0xzRZMR98KPfWB3AlWlCuBggrA9eVRhQZn8yOCeNVbQik+DUqMWRsDNMnDUX2bNJ/m4ZGebAI6FWl13qtQwhlqbRgjc+IkVIA/J6Sh9br0lCpbcRei15KnAowXguGX6uvooIzHYzCurJpLR+1EmHeeRKfXoLwrSrXiGTdQh687/xlFJy4wpruLcV3lQc6H+WMBXPFmWBIQBvITMonkv2+Bf26iscy/sGJhvaKt3c30VLt0LWoUy/JK7qytU3R71YaTJLZOkSaFr8ja0O1BaiY7KhRTQttwG08ugj6g=
Variant 1
DifficultyLevel
552
Question
Isaac holds an apple in his outstretched hand and releases it.
Which number below represents the probability that it will travel towards the ground?
Worked Solution
A certain event has a probability of 1.0
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Isaac holds an apple in his outstretched hand and releases it.
Which number below represents the probability that it will travel towards the ground? |
solution | A certain event has a probability of {{{correctAnswer}}} |
correctAnswer | |
Answers