70041
Question
A small patio required 16 slabs to cover it. The cost of using 12 colored slabs and 4 white ones is $68. If 8 colored slabs and 8 white ones are used instead, the cost becomes $56.
Find the cost of the arrangement below which uses 4 colored slabs and 12 white ones.
Worked Solution
Let C = cost of a coloured slab and let W = cost of a white slab, then
|
|
12C + 4W |
= 68 ... (1) |
8C + 8W |
= 56 ... (2) |
Substitute C = 5 into (2)
|
|
8 × 5 + 8W |
= 56 |
8W |
= 16 |
W |
= 2 |
⇒ C costs $5 and W costs $2
|
|
∴ Cost of new arrangement |
= 4C + 12W |
|
= 4 × 5 + 12 × 2 |
|
= {{{correctAnswer}}} |
U2FsdGVkX1+IVngMgIJ8PTl6TcLpw/96H2GQPZrQONEty5/msBRGWMYGX3oRodKd0QIDNylu4UKWyQnVuiZIA5ydJ4pka8+gNLa02E/s/J+eN9Z7GCHV836yjm0bljX9dlFfvFlSAvkkylFnGqpbBQUb6/9CY+nsQfGGrpxY8i6ahRTOvc2ZanCkqLUVXCPqIKL9pUKtkUEZgltKhnMT0KPkTgDFVZyCfxt9iF2j2pOSKOt5r0Ov9N7k4vx+KDvu1orq/aO7SQOkiPptdYQ9G/OkZRHFysNFOgxzJRnSP++3+M/TP5biyvxEmR/3txmp0XVdrBr/fKM0bqlBzRh81aDmbUPGz41vZyUVonzMdWaJpFhZ3M8N/AzhulCf18AVbnkZItHcoMvBunqgpRkadskwWGITxzw+2jQIz9sHPSjRiboXwE2b3ktAnRSAXcY/yJGdsST1OrDPFDd+v+1n/HC//o9Lh79wnuo3OF7MByq536F5auLW2K7PSLUPLLmVxYzLWrFpolljcDztILDRz24gMZgSDlhWjd3Qy6A43mYqsiEIEEPKk0RoCF8Crfl0J4evkY/RLo9h9PZdPPLTYu1jnBTLEg0kqvi8+8L+3f1YtIfNyP1k0obW/gJSKSJQi8LdqGJVD4UDyePRm5HsZ1na4wBrCkYAsivPGALR9+Ikswxw1ZJiXmObViaIdgQ+01LFO6XY8bKSYGl3hQh+sQROy0hcMlECTYOp8hOtTTOrAEeKzlh/NAWpSPT8VN6uqobn2nzPkfAf2KyHgtjqE4uKmL0EMUhbQzTOAhZVnajQiotKcBzgHHplhj+0UxG4czF2IZucBppgNhQUSGobkfzmhRpy3veiJR+YIWyXstHRxNGf5ojxGlSYt1nPm3UVeE9XBPQyfn6lUYaBAJhcQCsc9gtNPa8Nmt7D7rVyHG5NWRlqcQEBjeH917uG66p8HNECVKFopnzmVuEcfjqQsRpDLCwggsP0YCmxKxyzT51sfp1aBb5c1Q7B1zZhyD157p56iyJHEE3xEYr+yjm+aX3b4glrT09GDRncXtiymTjD/au5uQ1rzC0igECqLUiObS/bp3zJrWtTWfwQ4/xxDEWACVWyRzi2vVfMVXwgdvrTQV2KnI4/D47S5CMb9yOAmnZl8aUz3TS1i1TkyVIr/Cov2aG6PdJiONfWaiuOmZ4pKUmbi99d8vQpeUlvZZPrfm3rRiFcVTj3Sk1zd2OYpDlpnLAy178v6iU0K5byWTYGNBEJWfyBGHmWRRxXR6L+aERcY733iAc1nxCzkFSBWSva3hdw6h9f9pCUagnfPUIciu1buFe9RwvFZ1mBL5yMbJYmkyOEw1GqTXZ1Wtha/LTWHBE2H6QoZjC5Ju2ud6GYiyfXxZZp/qaYVsaXtaKmTm4RpA7S0LjXGkuT8o4exM+690E4fi3MDWnU7xpm9xvxOZwM3E8bzcZvd0kkSTTCSGZ9XnlN0ZAFzfPbgZOqtPq16WjHU8e3bXredMUvxufat8A8OUEGFHv8shykQVpZtyHFm4ZY7QyYQagqu/62jiD89s1ofSUUJfpz8foNrAFkq0+7yPzq2chy+kEoY/TEPY5/XbZHIDRF1h7uRvGPeu4SGQ2zhBgdcsSd2aF0GkyWHMn/TbaXfJkbWrVor7xFbJiiWNO+8AQP1If54SzgYnmFTwxLaKHJlZ779XvogerWcyZS+rmJGYYR0aL9d+aYfpWw2e3xTlP+vM4rFHfWBn7rnTG/kKT4hu4Bm1HQd+9S0EsjrBGHrvcDYPqNSOTKHfoMLpXxZBo33oEX/qqNyiTmqv+pTG5sFDqX5biQnoXqmYcDFntfpqqyBKPR4gRpdMzHizMt2SRgD3lTIUtq43vBlQ3NbB9McskZyOhoceYeegHVH9Vm+dpcszOUCYQ8UbIEebKJn00or+cxzkjACNimE/Xk6DtOWQl3RKN+NCPWSGr0aGtfMLMQcd7O2V2PfaarUQapjl7SAtPY5jS4mQ0ky7Ce1MA3Lmclxv/yLWSGDoZTe9Bzc90xeKHefgZK5cW6ethu3ME9pHnkViT3HpnegEh6ZrdHX2SO+u3YobD4DPIChmDujGlD0d5kthU/FvqHmZvSr0pc0nZgFuKN12vIRredUuOw61pYLp67LS77T4GOo8IosAggm3bV7MWvhZfM8vYckL0PeYAxrRLP2nFaw3yly0OwcNlq9uGVRhJpMBv/TiVVKCWtMdQf9/G3c0NMvUET9FReW407UXOF7bSEz3WkG3NHWJ+wMD+VEDAwqQIrsurEgflIiTWbO+ecfHzZSykreP+sRf0Jj9lJ9criTRGqYT/yQzYigIyDHk/Ux8+LlQ4t3hdt1TQK/zCAPxzWKBLqoc4Q4x2V+aPsewCL3MNRwhScqNMIOapsWeEB7179ulVj+EOFVwu2dpLK6LUfo3wez77jZb50jdtZazIsIum7c1j64QJEzSuQt5VBRHVC1ab8caM2qhqsVCHtV1C9A0lCmznevbv77dsj6PDsmHtaV6/Qn085pq3zB0cLGTWPDcxC82VQb4e8QPs2hWVdrus5fiTQh4Wvq1mQKco4TrHrzH2uTpqafVeLozsI/n4wiKKy5O/CzAmIfnWQ02sfa0KYG6CCrd9i+VYFcEOD0qN7iGBtuLiEjH9Vdne/ZipcUYq5b4UPgI0tdBkL7dekrsWOx7rRWDqUdqWsDRED8uI5NiSNqAJl6/ZCLQl+2LRdUDox+Z5jtJ9xikZxFgxhWiJbcDoCZlQgBhxPk+pHkobMBn3VsGl5g4f3dYkkcaXEjFrmPq6b0xXiv8KJ76IhjvGKoPd0TPyzyUAv5j+7TUW9g/8Th/dOb9NAtsrZnApi9KfPAAzgKoFLIUAq3Ny7q8GrB9Jr8O+lbq5HyMmlx/zRVrr7x1vMJpicZiggtuftjBPf8m5XKIA7wh5oSx5otYfXwvCRiRorXhCeMxBUV07p/cL53no0K7K1uaxgUnL1dKLI49PDnTcLN4zLvhbv6z4qk0I82YmbBES2f63kutTyE2e8xpyOWvKTjKN79rvHDLKWJK9NGKxhLiVEez0BoTQIA/iYfTmOvXGkis9mWI9e6wPRgFuSV7T+eWbaS+wQs3wLir0dP5bbE4sockMuVh5WBuku93d4JYjKNhd9fM4uR4KwUm9KWVWF2JHhuYJmoHTbIKLUjJziylQKaV796fDOcKL8GKr959bgoIGdFTlL1mMXugd+UUBf1WWHZQVw/vAxYsak1ISXNPwUaWRt9j80M9TfdExx82FIItvkHY2OU0w+TPScy4VKL3pICH+ULYXkXFNHGLP1IwfI6M/vKi4JSw1W0BQMTWxofqoOXvaF7u9IlrWiVAkiMUDVBdggpjUkbYyxOX0tAAhJj4WsmYyTSVl3aGLkKUr+XWKVj3N1lwQ/kVWNL8WyFs7kaEwC65o1fHRn3Iy6oYtkZNN56r9733zAJOSoJT6mrENnIFqesW6LgN1lE2yt3W93zW+LLQEzrBRr/X1wn+UjZHGNZKIhyQNWx0dV0bq6A+lw4ssEakQE5T1S2uU1+1rUVlt2H1sMaO5HOR4+2nQ95IherOHdNi1bs6M74IL9Yf2mSpNxmBTW3qaNHVPp0v41CU7kDGPK2bfrwwESFRswOrQWZwXLa8yS6VP2wUfSntSHublwrjaNW3qk+DAZ7QTgtp+vz6nQGYYlZ1lnk6AlQiQPf0ufsAo6NpG234CjZjKEz0OiaAuLc9NL4PcyCB5QM29hOs28Y2QG5UvkBoO7wdQYOQfMHKFNr5cc1YY+xxn8wkmNN0vsM7Bi4Vfl5MZZRW2hBW3+e6sAf36rRnJLGJUvbfGJ10BgWwjn5m/Ovl9NDGgnZom0ynwgvNfHUXnz0l8xhlRmb3zyNjE56+Ms8Qp34FSlzqu2Dht8syFVHQH8mNm6qCtSRXMhdCXTGzW4hcRr2mFftZzbH7TOpEKIJnGdlbK0LIkfu8M5vrGrhSzUAhx1aJ/rqQV4XeWv8OW75q1u+l7MwVx+jn5/ljMHRJa0GzG1eAuoCWtT8LVsDK6I/sFkOxLX3HyNv8IPJZcUPlAAGaff/9BRKyUOLjQPkU5VuRm9Ii+A94RppU9QP9DshsrtN91g/R7fn4fzfY0AseTkfuDMKIvpIlquyvCppnEugYjkLsGFaY/WhMDk9QcW+LGwyrxJoxsBBuID4sx3gZR2PaQs+oSklTxxiVzE2ORuYWwNp07Mho0Faryo8g7MYbtOFcDAAchZBE4qWYtivU2tllvwsdAD4clxBHpbK6J04K/MONRN3lD+jl0QkJ/mZcpfSFC9lqmPI0vpEwHrKwo7iOcPVhlgbQ002pvBoIibi4AHN1xgkjAJr/9uSbKFJpySOwaX3uVqBnYwJqoSPgTHuvaoj+yvTf8stYAyz+3kLCI4ONi7AYFXiBrUBx9cIbW9vwvmzhI0lNpnDBqA5iRriZoCMbXbPDJUeq6EiW1DlQ6uTnziXs1cOBsha5g9fU1r+dsRXSJEL1QV6d+SUYtvlciTzhnLBFBgoJLJH+cz3R2FzHuQ9OchhP4n59xArwW4kZPHQPgJbir+EWjDCHxIi482cjZr8KTk12Ljh3F4JjEq9t7BiWEj7ElFuLMp+dJ5DQK2QTRrSiVZAzXPX+veQkZ6VysDWr+hCY+V/nOfvx9/QIRUx2Hi5HQfTGIDMcdvCl7KkOzsc7ushsxlTa88QjO9HgUGU0XFkSKCzjohXtwK3GO+bpQwfbrPxJObetQZsYqp7SRnDmAi9G9IletnvoBKxLwb10codB4zkHW+ZZXmV7cZAGdiC8VbweUxSZrwSEeaqNiz47OiA4y17ZHPTy6mrgYxngKdWbmrjxDPBhIoWAUvph40FIHTvpE0wxN7qQndT73ncbXB2SM9wOXeep7NGfUT3vsDCnwRhiizyJoPKW5O3nHDeHENuvL5i/gObfdy2piSN9NKxoE9Ep5fYiLhFVnGWRAOi96dGyEQ/YOOHbqoBSEfeW2wbVnGE2T348vRWt2l96BywYdrUOimgOFZ7j3hzrUD+sNVvqB4MmMwKtX3X0snccQcg1c/WK+UbULXdUMagZWcH7duCmwrg1GTweI+zT4XZxN7uNQQIsk600cjOUx8w8g0HWm3xIJWk0AnFzTdHuE2Udm2dldgP5hXAhdNu7P7tKcJz3/dkPMd11tBiLTjUuiLGx8GQ48/yUSAy4D/Nq0kpGxmOPBAMAJQfGBeptgYwHd2jC/5QONkhKFe2YCxuShtjYMRU5H/Sc5utZbBWxdwlFMDxWLs28K9NmwuaiHfxdhL+jSdTeElwMZCPM4uGJzzxdEwU583zsg4+NgUEwSw4n30zb3anbl30RZ2NNyWYIKqAbfYw9It95wyius2yECh961Jjld8uO2Rr2d67+g7G4UGGVfVRKPQ/XLJbzooQs1M8nPmQ01ENxQaK3SiDoxaydreqKOwP6NgxQvr+MB8IukItG30D3EImxKMbRrF8MrmGjT7uLthJqIigfmL891MgY3op1AwWBtVghuL4lu6mhty1B1oDze3Gga5wsOtx6vOszDVD8BfYzCxtDIPjOX30ecnKcH5YhxciINY4ES/7CDOUX/tSJze1WsGSPnWyRHonq5p6QZQ3hCKuGlP1gNq+evhZEPZlRj4tMDZt90pxH2q4AbZyB+9aCPg5/wN4dUSQD3URS5bpbtdFV2f5VISr8sKcnqgAcP4178+loqrCJrnE430PUzlGjaZqyPaG67OqS+/Rg0vMNvW5SUh3kJpyXdtuzY9SApE5Iv7pPlZEtLXNeYliSuQO/SPVXP/Tf7UJC1+dLrhbwfVKPMjlAtjHFrQJbZ2BR2QcyNR6xxpA1mcc8ovJroTmyzgVjEizMz8Zi7GNJB9Kx14VlqYaLNYC9eKsVfN5SRH3RUDoOm5XuHgbW/IoBdafOKELbfriLg4JdxanQtFXgofpXdBJ7gH6RDPHuI/DTOWJMYwHeOua/mC3WaLIAoJEVieKty5iRtOapEeQZd/XfzSiwbFKc7/v51vIJwDsdPO14CSBwouVamMD1crVNB0SGQ9nQ0wQDCKHzBM4JzBa3kTnCOFJ/9KUvsTCcHc/rcU9QkKdNVycUOWbAyPDKkhvqxN1mw+dEGcbzb0M3OJ1IowEPD0vP/zn5U7cWwnOZY8c6l3QUe70rDcp2kw6FL6hmFoDRruXw5ZEIw5cLX3lMo1vdDQhNRTzqrawvrrBRpzNiweCuAjDKXplqHlTLA2mAdwd1/ip9+rVRBTZ7OaDYq8m2k5d8ZGd/lZfCnTXuMExBn6K2MWvbyr9nV0VCmcDr+o1Q77DKJTi5Hofk8043f8n+g+QKuO8UpAYoNuSeF/zJ3KOwcSgQ+zQRgUNtr+G9g8lWz9E6OwIio+U5Un+BsSJ+jhNlTdAnLGlnaylESZFGLRfOnqbgs+LmkSO2CMUtCCsYU/6pkV+1S+byQPRIHeFncv1yFZqO/OtFWIAzjLX/3Lp26HkUrOW+nQd6SKRaHHfGtWWKQM1AcriymOb41kpPVEtCqI+wPBphYr2cgH7FLU84/EqwX6hsh9B7Xvz7M0MWJnLZjOP/xdJa5FsHKGbQhv/+fYhYRoLSS6LDyAsOEin6Ip0u9Nqo4YTNiFwylCNsKWNcGVujvtiNY47epmwdFRCc2o4RJad+qKDyBJFgEG5s3RbktTKODnU9/5GzmLCFg8+lOy5RLRTwkTDtgVrxN5z31i7AXpFdvtOjMCevi5lp92LLXspFN4lkQM/K/bZvBKvEyLfYsyLZXb20TjcTGL4fuKkXZPGBLuvT5pO6Slv0CjlwY49K6z1+MTcLyVtpL2l3tjf+voJQzjdnYY9FLInrDVID3SFowT4uNRUxPGOiFCwfUV9mX4ATCAVW/JIXLLwEcEdbb7dhmrGLU/S6x1Q4OgNcmDGkZ84g4H6Sx609AUdN3CxEL0JBV//tCDlgw7AwfUyejGfM7eo4MSmBFHLbrXLFjnC/BksgPh8Xz3un4bpC+rZbLZyg1LVqSJqRI7Q6agcs4KIFt617A2i2k7qtSp1fhL0aDFEC2FlcEAl5DaOi0MmmQJwxzcFamgSg8cNHqT8xEWstR45IjVt9/fIPOKa/4ALM7R1vQkfslCMazLWlWZ/ByTym8/tTKCknIRsmlAOgcwV/H3aovcqcxNtIvWWRXqZv5qdE9zSM5sAKmnArf94vmgppmq0VL/+Mk5eLOpR0A7FepgcIbtb/WfqnLAHwXFhPiMrRy8gm0IuDdKkxj2KNYrURBBi8NtE3j32RwmKByZlOsc67xx6PZd8Rj/3wfFbiaJj7/Jl7v/gd0808GeUx5WKNWUhaVtKTmEGsPFTfjPfmlWJjGlESi4AYRP1Ww9tdixNXvBItDJSUeN03/l423MyBNL5trMscxKhjBZXt6s2/HKmxQ/+fOQ29u7kAuIrfgiZsCbaHoLFMEIvQ5NfZ6e9YnlOcFyS4W14wpF006Ki7gjUaqxiqKb+ypV3Iual3jfT6KE6FlBSEEYjXEM/L9UsYqvD6qoxMEELMhBxJjC8nIiWhAkyHHp3to1B6XXokkYbwP60IgeqVtGGLRtGLwRbg7IkZm8WyBiPS+/4POE//uWW/fuyy5xU5fWcj/Qjr7YQwJYYeMN9nN9DIkAMwKCVx5/4cbo1dYXARhO
Variant 0
DifficultyLevel
720
Question
A small patio required 16 slabs to cover it. The cost of using 12 colored slabs and 4 white ones is $68. If 8 colored slabs and 8 white ones are used instead, the cost becomes $56.
Find the cost of the arrangement below which uses 4 colored slabs and 12 white ones.
Worked Solution
Let C = cost of a coloured slab and let W = cost of a white slab, then
|
|
12C + 4W |
= 68 ... (1) |
8C + 8W |
= 56 ... (2) |
Substitute C = 5 into (2)
|
|
8 × 5 + 8W |
= 56 |
8W |
= 16 |
W |
= 2 |
⇒ C costs $5 and W costs $2
|
|
∴ Cost of new arrangement |
= 4C + 12W |
|
= 4 × 5 + 12 × 2 |
|
= $44 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers