Geometry, NAPX-J4-CA15 SA
U2FsdGVkX1844L/vNHKXx9bOxtpxzunEG/i70T3zWpRGcO7K/VDNoMWbSj/WyuNgc96P+A7DpIW7ekmCJP+hq2+8z6UpEnK8Gx/MiA+3/WSF7OjW805MZOLIC7Uv/LkhfRWx7NcrpFB5V8oxeo5SruLVkzMofI97UBMv2Se0ZJypQW6Ni9XUTOtCiM8KwD4DVNjrBB7ANrXY9HX6/CHTUQ6GY5kyly5xOFFq6Rr7F2+DtklzgQ11DDRyzoDeyoVkuoQjGrzFqwuA4lOD3gDFTwvlAnN2RFI8iXtdUj0h+ywthLwpSZGS8wal6YBYbI5sOiIdIm3TMBx4d4YX3DD2ar/tSZwv5FvJ0OZvGF9EXUWqiFcqa9GwrQJgbUa7JACbXz24oWEtz1HOIY1tsAQIxgyYbHIIgp0cFKKkPGgBnd4fn/OS0G9Z0ONluH9cejlHh86lgctB6nHMXYlXgGdertRUXsMIKGs7iq8fUL13Qr41Bx/psIhREsptLyav/vujK7edJp2bULg/ObmN8abdfs0janYjyn99esLML7/fLIs6946nTeX5rAmfUUSRbNAxxxvQp+mBWJlgZcILva0UR5+qNKJRcQu5R7LwhhtQg6T57bN6gIRBrBildnJMLj3Er1Qc4jF5BNHbCUXPM6Wt3oZ94ZalsflyvDeDjjdJUbsPUejsJOYP00AznZuLzcHGC/J+NwWTMRr6aI3jpIb/vIJ1hiG75YcHkq5vw9vS+tukzTx/UGsKkU/Gx1bBXPrOMcgg3cujNMFKR/Rg8Tvd0L+zGksPXfMauqAzxtnMvjbtRt3piQVT6w/OW3G5SgSB8W5iZJb1r5RYCjfE5iDs/9m+Q9O48D9PfKDJcQVRxQYRQ0OaCcZU/3sfW6oHZRDJHbDZAj1kprApOpZznttvh5NbZKrKWgFEp9A0HlehYrLUA5cjWFe0m9UIryW5pax91j23zpaVqv/uPukd6vSCnyz3brUIq61lt6xrQIHWO/2HTqYHdLES4DNy0G/utiLDECopwa41aSeRGLZ8i3tz54oiW0eT7nIoR3sRvE8CMe11HZEt1/cQqMm1rrwmDts7f1CgBXRIykCUKYuhtwYiaLzsFO7YUMlfElOSvwteG+toh7V02eeJspyUlWXnlNyBebU05+ig+F+LhSAYJXSEMZLKEAV0BWDmk9RnkggKC4d0n6xJiVjOPgP4qlPhK0d29jYThMIO4iUkF20gr6aGqgj/Ia0ev0cWXWr2NSfQXd/RjL8i9T0PFs9IhbwNwx6VXeJmbhzo56YAkcqPWmOdAJaspJbHtHQ0KwaQ7gVxY8p75wCniYi+kB4vOFdBkfezGKmfql2PQoekGNbZYRx+jdm1Eo1VS4yI5NaQU4jOItfy+FLqO2RYJEu4Mp2dKQlfGVfe29In8R0V11fmGkpPs3D9E6EOxA0WcosVVlVfGUuz+o9RmxUOLGo7irZvX7vUYWs2S1mfiajHA2nFjHq7gbVJOyCOjCq4WauM99pnHcOdP5yB398eW0jWQNLkoLiNdFM/9/UOeLNI2OVdsevPXSkertIgpHexB0vyINOd5UOKKLwYMLLW+wKjL7bdBE6bAFCT4dCf1VsMpSPBw632JEXPZUlQWQ0db3Qts1CIWDSPAPLKNDczkXyfwG/tnBIqpQZn5RexeAJJEQ6fdKHoHNzHXebMgGznVBYBFxkmpMkUn31myzS3vPl/Ve6BQ6JcOotRSkHAqB6qNvSQbfjDfB9IWxVcXIogB/Ts3OSHPJTaDxgaCN3VjKoGJcIrgXbOZrhc3AU97qnOHFEtMK+M/dNOx66EtO/eTIUES7yksjAWDtpDMFjxBmtvR9t8nhqSX9yyjKooBTqF0qdBo5xoHdbLPUOXR0sSU4XQdY0S92oGcRHXd2+mfNS3S0Ajzi+lkbS2TX8QSutOpFRIw+jYd6E7BoywT7xyrrN3N8eZ7yDy0PHv4ek19803uGxWDtfvh/pU6u+hfQ0lQgkQOixrBU0OJIOqQ+dd8Z6y6h5fWdm/TRUrVe92KhbILG306D4NaRqxP3AqmBXmER5lGGrBoPh0HsigT0v7mdDgGxw8MnN859C/2eWMpUbew9fef8hriO6gs5eQgFrYMZPn3S5HN2hawfspeqFd27DbVqYgAjU898do2PIvZNtqHPG6cr+pTxJXjvpMUOoW732Awl6VEKEreoBhWaUE94fQpFTYx1Z/Zg+uAKhHsCwh1GMha/RmEwM2WzObNcZ8W96rNu94LHgsTSPbudlyMjEisi7xdKhiWIWOFIxrWO9Yeb2KWfi+WVEVL/8YJHNZGYDCcbW0WHuTO1xMatioqiuCsXSmAs02r+tjEBt/Yj0NnCKwLXO7/wc1TljJWrLLex/8kVsDeeZNdYUgyC+eNh1hsdffOdT8XyFu5HyyVOLeMzvxi/Q/NwHeZ6HXSiuH7WNovOwlKla4sMssuTlCJU758JeJJkOhiBKNmXZAsjjqPgEI++0lRD+Vw5Fzhr7j53Zs6R/P7+ES8XwKhXC9jCVGS8GMgYrQ0EQ1Kgad/E7CbAivvlB9Ak/r0VOJQV+Ueqk8CtYTNdXAt54Uv+EI9XjK8qs7p9jFOftglTjnaQxlZjBCtfx/5+bDbbL9yL0o3vFZvbQMYWZHXCQFLGSh6wAT8pH/4wxltL2dY6PaQfiCNiNXMG6xH1j9jpWFwVJS/iaDeUAbXk6fd308g8x/Mmib5dqEIBint2aUJY2nvqKT/vR5Iwa5ASxRbhOwsllpkCj+6osufYnwV7z/eAmbaTirYf/JwyDH348QFrt1bAGj3ddeN2zjy9h7GKfr2h1/lFF7Zivb8+cWhhZNvEBqlY84VKuuvBl472gYbKqE1U/6u2vXaV0RCm+BGReJOLYqInloSNdwr5JwsnizcRMRA09gmDxbYK8m0YGVz0BXA94fj1U8qk/XnrpofQ1ejlNJv1S4YbU6Ouks4s8S6oCEmmGHzVzOHSZphh6K6EcdEOqNU/ay8qR4OChTzoGUPb2BtJhVxq5RlIowt7syHIxNydG2Bm0MIBJsrnAfIriWRO3UCR2vTzE5RktaPQ4d8JOoL3QyuXzc6oIQza0JAG/KZdBELw4zAvnIEc9xXj63s84ipIh1NM1C+lsR+7Dgx1WsBRAsbCgeveWqKSOezRSyb6Ib5A3IRl8GAywEMAlgljlL8aR4fjVlYIC9+Uxt7Bi6MrtNHDlPE9eNZYs2Vl4+wzZbpd3sxzTKgNl+hc7pVHZhkzon0Bv9RyhEKCyc7mgWnXyss4tWViA3FEcwOFzRXv8Y4vJJEAWMsR+WYBRvPzX4dR4utSxpnYQ4OL3ZJvs+si5J2mwmev0BZSJtd0k0Rre7mGhP2rUBQFgHfdRf4XqNR1UA7qVUQP/6xif/XKkdYIiX1hS7DLirKwtRm7G9VEafgWlv51wqIx5ExRhPtAqT1RYb+ZQsSBqg1qXUCf66NGT8ikWTeDmKcLA93q5t2x30CDM8Yx6XEulhlf4XCr/Vk8YGhYclIvkPalFMHfPgju6bAilpAB51vKBP0PV2fKVycnAfiyagfiPPauPO5EEcyMrLOZYN8BvRh2EcM4+RAN0bvdWq6bBhyxV66eY93NpMYOkD/9mJuptoLbrBvAeqnWOyk74aTOSF+/XXH6nscBk/wnHEIr7Tm+8ci5fIiGLCCyRjumV5NbM4fd4H/P+rBs55tzym7mRQWFwS2vStCzVerOIel8CVaLlNOH2dG4nhLGJ9mtyQ5E/6Odrnj8xPhlRn/WZ2QJucmN9XyS7WGkFlzsEeOWIhlxpexQIMHP8/7wDZE8Ck8+I6Isk+NLuHCpbHLQ5PBeTTALFKDg+NXp9UFFi4QstrVMshQSO8GkzDn2fiH3ylGQmA0L5sX4sSrNT4Z9KvZyiAaldh0YoTXX/MWsZq4viV/lxOTv4xKt96Ii7NTY/b9e0TPAF0qNs7bso66qsrdTJi9L+2OOQAiiTbYmu9yIfdE5ayEzOj/LrqdaJ6RRsvnmfwGTxQnX/O6+fWtWGat3AUan/giCLx7LkSTAsy314GS6StWu8alHpkSPUD1Hx5JSq/sNG4NkZOLPe7+BzUFTTEDdpd0xQHmef1ZvZPKVkVRZltYBv/XFrEeM14T3Wo5/P9hzkq7yVh+rAyD82G6lxDdbVpH8KZvr+FKZu/fP1HlKI333xtPY4Dn/D0hXMycyXcJBB5QfTUS8J6rDxx0o+H4PeAPLns772D/TFn84qr3ywj0Qo7LGQ3obO8M3dK9p8rESUPtW0IJoEC2G1KJYhqwDsNRm50xkFOd7j7WL4Af3MlSs+GDs6oCHiKjl43NJ+1rvMk67KBhcyiBoS3cgRDEiKFye4+nH0DjjFQat13j6GyVIovgFS3x4X3nIqmyHVbA4hQUO8ZTjoB33uaeNFTINIFL/etfDvfwHS9BeDZVcdinza3AyZObysl9264MaKkKhZz7K1kXxMXAiyVvz8QadBF6VkxGWY6IiUknei2hexVyEFnTkCV7MwLmrZ199LE3tsuVsuWGWDEJ2tyJVx2A+MSDxEByWw4baxWuIhZxN3SJ9YOZT9nta+JU01R+4cEeZsDq4chIKTy1aKhYfjK8yCyf9C6FMW+0oF3xlc2UkQEmErUFbKG1F8OoFy9nhNMUdg5P9XKvZ6PboNL338uzZvEr2WjVHiJzFtKCmlPvn0jlMUUC6jbOFg2AFhKyz4KFlHwCX5S0ZzjiTgImDZljyG3VXZ85POFY/pxQys3XhmrX3tSlmrocqEPV2oh2BC1SzgfJ9jTOLYpb/7hWGo5pxr/vOFM8FlSsMZ1ON1VJaP3flZtfP6Og8+WauzeBu9xYZ5bjihXo4dX9EKV0V8YVg/J5S5pcjwSoiZjY4x8sPOJekG3FlwdOR5W8u6Ih8hCTCry8JeC3WXKAMt3oiOcjbTbBCI1AzVW2QozzNTTG5wzgly0mmq1VsinZ/Uc3c944HuqF+klBR9++KLydIL2nqOECC6hL0PkIJptNIF77ktTXQtAEdH4vmdBtwKcZesxH2LNmr/UtbhaYeR7ZAjtMuX7x3bYV1kDNboQBscR0cJBZRj6T/oTe+yPcIz/8fDNNRoYGcUgTRMQC56RryXVnjd6wZvaycTBpAL2hBPBjBGCNuN3/zVPTYfC/I/4yLwivG084nbwEig3ZMXaNa0TP9F2VR3nHNsvYXO8BmK9s1SftmXoNP6RpbeSbVdNZ2zFCiihKTJLraUQCr5Y8ArfujEoDLuos9WrbA38xydlU/3qrmJi2+dgXyntQ88Vwlk/jt7bv421kir0G2Hqq0koZkeqlYMMBWdjuXrY6jx5CNH9RSwW833f5z9lLd1/aCSYjjbG0W+4W903lQ712NgFIWDnlMze4XvYO3s/IoZOOnOnXZ8V9UvLR7ZOQx7Lsw83ON7q6kmRSI2dTC7KEjXtII3RyJI0P3pXh7E4ufe4z2VZmWahlfM+Gmezv59HFMEqH9UHdM0Pf1ByWH6ooqChjXYkelX206vhkgacHr8vBxI+Pm2XNAoandX4JrnZjne7B+3cFBgEehnMMm8ersUlIHgmwjuGCpCw1ega4k7AKoR6RqxDMYfE37f2P+enJBm5XqsdkTX4Lk9dObfvYLDLGqTsJ+6ilL2hM5RRQWJm4FxznmLa7w2F0u6g98LqAYU5zSRrhRxZYSfxuvIA/aH3gMXxcFCmS+hZlCspThAesdh2d/+vKN20Y5mUMqunTucTOI3KL0W37MPzRm0eXH7pmpyWzQ4mH8fIOr/vVM5VU0BJjN0+bSeohewD7EVOlQj+rQS24c6++A8JEXn65R1/BkM1NJa87Vg3xpiURtYl5klYYhpIH8rVDTkBaCc/We5/eZknkxEhN15dbRpn02LLZwhSR/Wyv54gOIbrizJ+dTRoxK6hWMvAbvkQJCV/2fcG0vGvdlAheaWbLzTgoIn7iw8+tmaTs7t1aB9Fnt/PXuTjY/REYNXnjF2krtVQR0kPD/o/+sgfmtSzZHXzHLGafMneod11NCmHcV4gNBJY38sgpVSG/Um1yHCjCxrmXa9F0PwAaJJmuDVIvTnJ+A2+3q3Qqebzg2OXgqMAn07aaX/eayWk29/7877wGpofsB4NY+1NhLLQnz5qGKjVmeXkWXeuN4dfnl/uxgy8hCDPRfk/61pov3sG8dg9ipJM9YGpxlnxeNxo4LUQENq7kzdiU++boiUfNsiwizb/XH4TAhMjNUNwV6s2/mRo6ReZ4+3GAATcb8MV0RWQPUhPmL7iLrX0yho68tHxC5ZkZcNWU+iCyD2HJ/rVPTpmWhdvi5Xr4MHoljqJ+rTx9HcIfy1Fd9W+kWLTWfaaVA6yjp676yDXmQI+FLgtd9wMPR4TkHt3Mfkld6DGhXgGEU96Fsrg+9pNIALny+FzaIU3DfQ/y2q1LkysLu4MlRVeIyEv/HxPDdIgmhDbQpA8XDa2zVKubFBqIMCnN3QLX9ZK+KvIczCoQP+WCtVG8hZNYLd153quAsD7BVmHmHqwBm0obOv7ca/L427hgQi8gi8fRQR90z1EiVKRszMWsjlQNUDDSbqmEx5W50FQNS2hsvuwUPwzMdSIqydKena+UQXgrLOKSUfvOnHb6QDc09ka0ZoqVoZgCELui6wxuzjnAfmH+mXoQ/7XQIQ8oaTxdmboBtTBdE00r97WiNfYh3mkrt4zHhUp1ictaKGfx5+2zSpR5KbcB8Xf6gDVLeY0cnIMDSL64mGsQ/u4YPA80zk6f40Tob/2t4f3hoP35V2ZvvJDyM1xxDnAXYo/xeGaoJHlST6VixHLYn90AjkBMT9LWg4PXIIHhIwifo9EmsyWFCarF3AnENoCF+XocNCx3ZZ3aCr0O4Yh2u8FfJ3Cf9VQs6xyzk17Js8WiMZBwTMPg4zm9VzlBuHBpnZzNpFkScNmTW3PwlBXAwpa9vIH6hXkLq6nQqYC3Mt/LgVACKhCH5WbO3fO90NTGoRNQJ11TnYp/SZaKUPRq1kG4ND9MWU+2Y6JoIZzHsFDlw6915NLnkQfBcn0ywqeaLnNadN+Q3tM5X6OccIskrWHruQdv3F4b+wfOd5qyxfDrbAVDtseEbxmEUzwPUTZ8Isq1jA6sQHOuf4epgK8U6t5V5xqiveF+es19BESpotXIozy947jVbAavy7a5bc7jtwhG/PywcZ61pm2ERtYzvIv2vdJV2BImfYw7yS7gIiblSjZeu/HS8Pvzf4MrMrl9kF6wgHircg63FJ3kJsi8jp+uMm4uX0gWxE0By5hKMlS0Mvq+dfpQhwWRZJxRXSUlBZu5bjHsiHRMztH31YpeQ0dgKZ0h+LJLB3t6/WiY+Fq2eCl8ulsfb1NMgPt1MmLCUkMEeFNn2Bo9aX6EBMw6rQ6pS5zwR40glTN57/42vAfzebVIn/Q2jBR5THS/VYbRefjTAO75QUaJzNPry/wnN68BnplBLJS6jsTVoi9l31fcADeKqQPb8nPEpKNPJbxvn+eHKD7vkR859k+cnpwzUONKtqmSkvoAz7caA5Z9bClYctr5Ado6nssXaa6XpK6kdFrepkl7zo7CkvlZu3K4+Z9lXgIPkLnR1TdZjMBRq0E3Bry3ZeXtjgtZnqDIu5rVsKmmsFvrR+wkHVGSCbEUpfHZxh9g4kk0VkciST6+AV1ZUB7qldBJIdI8RuckWzH2cNbrXhakiYTGcqfdqvQzo7F6YzRl5jbuwKVa/vD1D71Kiq+299PmN0mKAH40RVsr8vCWhn+b1r4low0ud7lBu4AoM6B+TbBA2hWwoFrch5xW+9gKNhsyToEaic7DfwIaLevTME2ofYTZlUALyr8CUlGfTWqJvzoI9vzExukG+l6Cp5OlDOcPKKRWLZr1BXSoKv4WHyzMa0JHi83PFB2Uv2cnxwD+RHXbdDcgCobjEvDLdeY6kWShCJU5qT597WBgBuoyz/tqtEHIJpG0zezITAj21bD9t7dnLxbuDBNmwKnR3ioKXvfe0OJv4BIsyHAa9hrLSjfsp4AW2fESI5qQ6eI1jk5mv5aKEYI4Sc5jFOx2Oh87Lgzy7Z2yPVbJilt21Ujqwgvk/7vUoIamh9Q9WblBgaCt/9Yesu38WF1oa9Reb7dNL56u92c0/gcNJXD2QWIVFlnnWk1jNXf/H6C6khnat7DpR/SuxToSjwkpEtrKun88dne4sdvEgcxeqaDyw6o1hQu1OWYtSjwJ9rp2IB99SFnBh2YdK3ScIYjBw/k2XK6BoQ99XW3vq4qSC5BT90yfP91wWsCVCuu4YZPoHjmHF87N9/ZaqQJIvrG8K0vwkBtlyAcMzTb0Mvel5OHpF6oCbdA6fLmmhHvCjfH4JvPDmRXpgsofifRpUSvU+1QgcZ7uQXvTylL0QN1X5O0M1US7tza+8vjIVhsyZYR3KICfMnUfyrOMNMbKx4uf9Fg+a5pCTppFezvBZLgwjjkgv933o5/zl6/+62KfQY0PAf5LKIexefHRr8zG4PejPK97swXZ7qFZOQVcumcLGAXraemNvlCYFKMXJXxWKBBkqyd1no4io7BO+yhOmtfXud9Qi2dnUnKzsaYzKvrWKeMKMfJrCJu1nXHjezgKns8YY0Ubc8BuvZCMlSVDivwP3s/He8X8EZ1/WzaLtgwnZFRahH+dIv6sGgM4ftPg7myKmxrnlq63LGYFmio6b5W/+YSwbXYe+M45FAFH3+SItTgBjJ6Lj1oitfClLBbDkFwC4h+WezTXCW4Uy02FAx/bhiF0mq1hCmVJmCM2XpYwt5MTv6P1lzaDCSS/58191+wLx/FRBkS9OBnS5ZSqwzwBEOtLUzb6xuSSs6WgBVllNWJVUj4LPabLQp1DXoL5yQWESJGIyOXYbd2AoiwMh0JtDICmTkK4WJj9P4mt0rPuC2toGN22IG76ZuUiEBV38RZyKSQZ7tr3QV9CDWKhEZnc1kd8pRm1/tlE+Q6ktfYuOl3uUfEagyXbiPxyljS8+/ALSP+uXqLdddzoA4/cxIYRriuhfhMg/Vz4s+m8OGap4N9vFuLdo1tI4svK7wQtTGFFm36aCSlXwp17lfNlbBAhZggBerLiNrHfguR45EtXvkQvricrOrJej860YQoK7uXiIIasGAXv7nJHk5u+o9vTrenElkye3ExL6fhQScn6O1SP2CCa4cQeJ8Q1lln4I+bkH4Ga4qcdy3OlWOu33QUJi3SSnyUiPKJB3gpGUKNVwwi0iHQkL+9uMLWIaLnsYnqacTnV26YWNovuvChuyw6e32AIxsO9m5eE2UwSTCOmiJOdlQsncmfur8owkdAphlM33NqZ4as9xGV+4C3iF3lUeCm7FN3B9zXd7t1+DIEwX/wn7EDUtpwXWcAnE75tXKWRTLiqNBAnV/FpHDcp8HfRhx23huEpffXMvem1s4K6vstzpMC5Xwx0UbxU3wPkaIIVs3DdY8QhYGOu38IdmMG2I7bmQNVVcpZpsMbjsmrtwDw3bDUUd1E4ac8bWZtJxE75L6iGlQM2EfOJVvmUk7KanbhkqZnJs29fEopz9VCsS6rj87mc1DnVH5v9oqT9jNzhOLMVPrm3t5+p63WAAjG5IxWXLkmFF618XFkEfSOqdoqGQxabg9fKm8bBg==
Variant 0
DifficultyLevel
612
Question
What is the size of the angle marked x° in the diagram below?
Worked Solution
Since 360° in a quadrilateral.
|
|
x° |
= 360−(103+88+62) |
|
= 360−253 |
|
= 107° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the size of the angle marked $\large x$$\degree$ in the diagram below?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/04/NAPX-J4-CA15.svg 200 indent3 vpad
|
workedSolution | sm_nogap Since 360$\degree$ in a quadrilateral.
|||
|-|-|
|$\large x$$\degree$|= $360 - (103 + 88 + 62)$|
||= $360 - 253$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 107 | |
U2FsdGVkX1/4pFZByPEinhOut3fF4m44rwKENaiFaa50EBjd4W5uy1A4EiX604raG1dIn1+phMeFv4W3q4q1ZTl0l8HJTw7PKP7bSeYN70YZG+lO0HTe9JrB5PnLMjA0iKs7kIugNBWXUc8YzLNyODBA49CynGvbRbJvd7LYwsJso5lAdG6Zj5AG+vYGKaX2jasUrLuo7Y4LEdt7K3Ns4ec9bCo9V2g35gsTCQ45v56JQTLBAz9Nd1oxeNtGKZspPvLbkUOI9k6Y2rSYE0TZJPdhE8/aqm9PrpbJHeN6orTm0DauXLcnwGCLM/N+wrqjshfsABF3d6JqSdTYV+C2EC7vgGg3KG3P9nXLn5ncU4Cf/qZ23NBPKelu/DmyruALQSNVDQMgr0KmsLXRrJF2oEonAkuOvX/M1BfdESaW9qdzDq2wDX3zZSldBckwVX/1P1bJUU58fsL9QaO3uWWpcYcYt/FlAOZkmcUcBtmcLswn0Sc/zlykAwc3bHipgbI7gPECfrX52WtQunr7nuwHSUqO5StSUCf5BD0iuDrF47Ya53N+IfjeE+Jlf7f/xNMVyd7ViNuvuYoOO2LnxFqYf3ZW9hZ35r2SKXoum3xBI0mlRGV46XPWl4NAuC/FhIxUmN1+h8kbPunlgy591WsqZ81IMFyq2cY3LgZTnlM7vWM8RUa4lp+8QthtOJZIRsJiC7i/C796AbxLdxiA+xT8qsA0JMazDHRMvZbdnQ6DZaY/THvYdjVzbIQklgr16YU6XaqRQa+n8vmjg1AMFMlPFYLSWGxfxxUC7rzcuajqq1fdnJEryakTS7RLzW04SdENfhpy8+8gEA3TcZZ3W632+9XMXPB/71uPbs3AzNsbjmKHqcU6ywZBensN0ep7QGmFbOefr6RyS4XZqnyZvN8HKZot2r+68wg/Q3/p3GCqir1QcxNV9rS2XNfZo/imgGqxugqmjg9d8A3rjz9A2S7pvpriVI+ulw8X5JHl1EOLo/912YLpNR1K/ed2cspjL778gGXHMbprPRyyqR6hZHdbfTyyGQ/LzxnYb7OQs3GK6fWcTH+SWZLT2ZLkIDSb6syocfB5hy0+J6W5usnFbZHN13/t15yaM4Si25wvS8sJgTv7Wc9jMO9CBMHoVRc1Oj0ssEWiCd4RCwHRVA3G8X5xbYQCzT40aXMqy88E7UBCn8PVe18tDpnJuJIm123tUWJxHWjcv3YVQfD+b2QnilOClyl9oD6ggw2T+jY5bnZo2xbxfUu5lJA6nlIEbe2NqXJrIxFVnNF0usyURRS8UPnStDToneaIPcW/Ghok5IvC9oJjLNXntdZwzvGA3g/VJKSS4z4CvUW7qJvlyHMVjRF3Q2BpER7NWTydr9tblnjwWv+xsFT4Hbk9KWODfN0rbDbXWe8w1V0tdF4jFaU06uPOoc9UpyxLB92Xy6awMS77jZ+e54hlWCsrx8hZwt14UqN+ludBplSAka82Hzxy6u1lV4W9D0oRse7nvy0UXg/w8KSsQ3m7wU8YHuVbRuDcTqGiuEXaIjEecJ2kmWWvXxarfyXjrI5si4EfdAfueg8Pj6VlNlDDmYT9n4U0/uGI+Td3JsB1DeGC0K8DgvWYEGaewWwftzbwmwx3O9BeOyZ1lM4cFXp/ZQeyJcZ4wirRmOkfFco+MqfPOwH8Zz4LYvrnM+9TRR/7UQqK+OPT7cMxjz+EbwAfIXbP2evYCEbbOa7+5Xvn7SJ0YCK6L96bmpq2lfdOdV9LeyBVU5bAo3nhiXAQ8GTm1w8hgcXB0gCtpn/uSPY9RaDIMfqDWAV80WmJ9kHfa6CssB3WY8FgLsFOscaATFbh0nu85GaBaNLEATs87icGJi9uyGQD+Q3yk7kEMEl+0jNAIEgmX8sCtPX+gvPeMfsR2rRSz2r4x/PtfHMoGtihD+VNYQ/zzYrs09lTPFza45n6s2CwewGC/Sp0AVKHI5df2o5eNbBdfu5OOQYpno3DAzx49XPB1EHum9CbNr4Dv12+PMhkw70ttTgk4TVFoT4cSvwtN5rYwWKjvmASWvCTuCc7A8QK/rqh1mGblwTDm/pdZytu6WuOWunz54B9CntQ+L5NrmozKSmZQsGQzKNQsLbNxzbaFWVrnuxsbkoEfP11UI8YMC0+8T+EsaHSO0Itry01GiKjmGTe1DhxxEAEjGfN8qfirEKqDJO+RB+z3xQWTAuZlg47D0sZdHMYebyqfzNypXJ+YhtnujIgom+KJLfoRMn+RqPUZUUDuj5m+QltN2WnwfojZ+6Cgn6LwcE2Qw/acbYmDgfrC8reL1PkMKLhvX4G1nG07xKvYsYJSKJ97NT1hByj+J3DUvfC+rwq6YcrEe/xQn6EWeI0KxPkf95qTBzr0uoAstq5UDLTevy+21KHjT/FmWU90K/O4pLB8b2/3n3ci6p92a+rj7gwYi7SVQhDIB44QhghVnJMjShLnX/kNgj64V5mYAj9966qulLLvq+qzirqa4DNk2qOOtcMhDL0CRBvTTXQAsHHLN2XQceto0UYuiZS7Sj+Nx2jI2zTJzRCUqPLH6nm5x2g3dH6yHMvrLPc98NWCstO/lWvWwT94SFA1GAitNj6VW7RUGFlY7lGbZEyq9yGaPhq8QCmzuMvbaJlmA2b37w1syq5vfX1WrDDD9CRWyejxHfs7gkwqegKMtHUoNiddeLCC8I3IrFNmgf26iO5kdNThfL2oPe60P2QeAdzapu37LN9gbkOKYY7HFG97/85sN7wvHadAk2aehB9IE+l+L4XmAuvKY8xOevVlWCKi6Rk4ihC42A6MQj0SxPgjY7lR+BuiSFk0EH8S8G0kZ1UgkaElkGsJsoa+6kaFybvx4kV1nAesONitNMux0DT+a2Eehl2geyfQTCjyuPzbvO7QF4tUhuHGa8CHh6cUKVWXUmI/63X076GIdY7K+PmZlxMTk+t5yXsaWkOb+QFLp/VlNhy5tUjuUMBXNJqiPeDQmIvjvBVBoZiYYwrAf2VPxKtkJ2M6Iqx3Dsc1awLccdr73w5chGuCL7t9j1jTeUu94VWmwa3WdJ6HPrud8Q4pErtEdhS1iXmqTCfsm9aoTZHQ9o0VhN15DT9S33Sn/3CgsnqY3QoRuMgz+1CMmmLXv9uP83AtXpgozS2h/mlXMKeUh65QPla7yLVzZpb2BxEzoDIwuhXXAqpIj4rft+BTF7LKSVWQZHo2Jy5S/Oqp+Hnu4itfTPgg7lYvzNijBVhxry8BlP1dyjM01KN8+rjQFe7PWDG8sGvX3FOig6C1P8nZPBHnUOza/I+0U6Bp4P+ZLud1WookE4VtG5agrGrTJxnxm9f9ZNdjfgyBnOiDRXNAtzIHV6KtQqxCIl2KqthpVmHwsvahT/yJmrjTyQnpphzhN1Scgxz/yuBvztiWrU5DLuHTmZhYofXIaRgrWd5vokf1I+cIQ9XIX2ya+RnpmXJPJoj/TuZd0ex7K3j3QelRXxkrS34YiAHtP8JM8C1/WIg/PyxVJHpPuIxxyA4m2Lod8dDmDx58Sb6SpGZYPigAOBjSaF5byd45jqFobhwPDw3xT5KXCj+Tl4BX4SZeSUD8uE4T2erMmlGaQtRixwhvb5pNRi5MljAD2VdOsj4MY/fBC+9/2sW/GKvqXR8QND8TAaQw8BT96oZHgAIo11tMRnJKuPyBUqRoapKijtmn+uEOyqeEtxwk3ko3BJENqZhS/bdq1faA1A3I0qep3IMcVq6YGuEuYMgFwL+1yLAAsE23BBgiexQAXkBW7kgSnZHQglScNsAtfeTKKSqvaUG7EWuXGV1xT3G4Z3ppbXBKoR90vcPrVfaSqFhPSbTmy8WY+kd4e+y1PcbH9hK5ai3qU/24HrY6xUVEAGur5wixuf3q0MbkC605nB+H4YgU/4ESOVzvW4cn8SI9jZJ8HUDZcYrN4L60UPxllqfPu3OvtEZZw0ddp0ohC0Eo8IuODIQd5IqweHWNvBnywmuzSUU8NgsokRtphuTpZJ4SNt28rzDds2fGq8hkU5h+3XqeGglc6GENVrKZNmRwaYc3NOeIdzhRLF6FCTEgzWELKgkXy1qVVRTr2AQsNo/jyxZGnoe2/Z+WlZ/XQzmh4TVpgAyEqYYZkD5Sv+89Ajtlr3aUncDUdwaKoxXL7w72typhKrL6XEPOv3Z1U4WSSpbMhHw7DTIe8IXfjBgQBGmdaDvTsqNdNbca3W9cnTIbV6RPBfocaecgT/+TGkAlc1H9hi9dreHcRpS9VnJ0+pIp7bcBF86oakOzmiU5obJryeBQXug4rug4buNlXali9uXmo14VlTg0uClyT4KOnXG1MtDsMMOBbxjBj5e1KtNN/45c1RwOxDgKSiWZTXuFrgB97r+ZHTNMY8d8Q+mvo2nuBOLI9LICpFuKo73N5IXivwtH9TIPviy1k5MDkSy3p2WlWtRbQkKETIhp0lyuh5UJbniBvGHDHMVCQBGoEUbFb1cJjdP7KK+COF5FkO7MPRWvwlgfuXW9Diq6CJEsmx76lbe9NMZBNjKsaEQS+AHHJdwdzSnKm6QCp8ONE61FO75Nxl/KFSYUSoeKt6Xw91rlcR74Fqxcan763MLgpJE0wklKk5zIvRILjrOCmHeRfaP+Io+9dg0cwp81ZfcqHFyCBU+7FtIb6By3hSjaIP/byNgW4HsW+lHHga/17XgVKr45biIgGTJa1iMMhZTNRMsO2YcZB1gmQdpdzTZWkAhV5Uo+UocTiQ5PuF9oywLTlITdGrWxpAvKysjCqLxNKsUtWPieHA8q5LZ85aIxhqAreBKTTATet+FoczKVNvs/yOyvRxWcthzyIzMpRYT1Fcn3QyJJq9WgWkVo9FUYsoGlJTcdlAT/T0/7pupydEaBBQDgWI4OzikKNFJCj50gVaZ4iwFW5mi+Nu8JSMqKIN+jGF9/HtY0hWlDjLXFCTGV7GIlVYGNHSEWUAsdaI05NJEyHmLthbvnVRwJwhYjngaCuc7DJk/axLOkbB/r0u+X4O2jzt0TIlDNplYAlq8gTy4Uqa0k9YBS43mcbH1Itu8ZnO6s/86YyhMyjSoKmzWdbEUB1/Ffvt/4sHaZ59/sxBF6Udv6RzBGe+Ba3LqYMjzw+v0im1S58EhpgjdvyGJAg6FfP2/LpvEQ5x5YxDi7AWxpufdKa70pZJVjEY6NkId2i1aCuUbfPjG3RWw7NNm4TuBMR/Pawlamj/pa9opQc1o3NVVGzjfzjhz2Ce9zyGADHELB0C7lvHxppYge79jN3kP33KUXWNoxwFA3KDjLNO4tUQkCf+eQNxft4o2hd6EG6+g4BRX56jMVCLXhHE8gPlfr+FVf6AVCH/cA6k7S+9LmZze3Qens495M1MZ+57YkxQ5UR6PQ91qIpCGzPlHSLOJno2m2f1y4i8jwg+bG/aXfFpWvS9D+hbuQvqzATgGOgHQSYpywlVETgYnyg7M8VmRfHHRFvnhXUYS3fPPqGbLr/lZ/f5NusCyqt9zIlCRahJFy/eDOI6rMgOfm7llwA6kNno4SGmQRajhyNB5MnSxaBxNzLPZmehwHKW6AM0+yHrYfwbZmYAknCnpxonJQVAJ6cYAQnaaZK3v8jUcfyDQ5en4DV9x4fLdcJm7Ovad5LSKzDK+ximDNdFUOK3lIj4alifP0rmM5Tr7B4wqTd9vzm+k+VKJ5UnVdq1Vskfh8mNViXQWS/ZcrnbbnCARqONxXH44gyp8CUbjNXBi1gk0rnOT5k6QiQp6HbeZkbTTb3UpOiLrskaoOSuEi5hKzT4MMKqIHTJ43cjKSP4JvxEwSGv9T9PuBkeABuZ/xXwEKgjOXdgWT8NBLGosswnsXvQHK7ll9KuUj3HhhZP6XATL0oZT3pm2xsBEjksEMrElErimtb0JjDHG/tpEiobKnDI7fnkGzZbSkErCTgJ3lU6iRH897kWMR01SXdIAYBz/mhIUHT7hwXxWOV8F7kvY23Hm7eFs5xKKmWBqQbYsDxQEYVgmCMzTd4rqe3KzYcYFe6+xGlDqIQAk3V7OLxi9zL/u9wRMHUoQ46pnBwFql1ko0TEDHGGzbvZZNnacJVPl1aTkyld+MH6oW0iJn2tQ0QoF+Z8+2zjczM2Y5mvMIL0WxVXIoCsHoUv+cmNfNIj9aLvBFC1rVCYZGv59NNhtqLKh9YVF05P++MdT4K+20oLn0zN9VRKDKxybHvNvNv9q5LoOmFcBpOb5doKbOly9pV7hBFdK6mkmuPp8xLy4xmRJQL5JQmqmvBvICbATRI/SGGCUvdWWS+tbHGHraD8k6YsoInQr7/c+nq1wlOMkCLDO5dlrM7AB5/So26/0EuA1HedBcThZEVcS9gquNrB5LG9Q/n7tRqhscjh2+ITuGhhaDk0z1u28ZlqdrAGV42EQi1/Lb9FlMK8dR+OhIOES4c2KLdtucU0Z5mY0Be9jzQMV8ZJFtzjkifOFoEm3bikU18eQtBpNdxBTt3ool3iE+TTxYQ3D9DF97DxtpT99hYP4jbg8NdvUY9Z+nub6K0XuCIwZV7gwVF7n6np+o4q5d50haW0oYmZxvPf+L9gcPcht6b6v6lt/MGx6vKnRSzZ8x8FRnOTRF8TQ1gkzT6t9frRpBIK3zbwi8DANir61FtN0JqBxhPpYiuMlANzg59hBv94XFkRpOEn28dfTBd9V02qO5a8y2P7btE/OT9S6gs0S/eJM8s4fiEh1zhTmZJb67+lTCa6jeD2R7QY6ZotuSBtWPxxmhljEIrEv23jXmjqlUry57OA2937vZpo908iPfRqKDeh0GZ5K2C1w4qKxsoo2/za5PQwkK2DUsRllCXEsU7gE+MgK0FFz5ZyEzLeCq+pEF6zNdX3YErc2MpXPP8Wg/gO9K06yYVVQSeK/JvIJcT6aUEC3Ncr/1soHmp+sz2qrKON5AXNTV8+6dpkkqG2ATFwIFU7Vtb8Fiyt7nY92JWXJH8MppjE9PPzewj+FtedVLzy/5QeROouRLEDKxNX6dtuciMNTJ1kG9W1HWw4uUWpz+ja3CDe74ZT1LFgp7KPxoeEh/1CIE6AiLWT5IjFUzUFIOAJ/YU9aPO5CU4zA34WMnT0B1Znhv60LUw4TzU3vLUiD4C+w2hZKCSVa8IRPnfdj4jxSIxDt5Pk65kVv2j71DBC1Er4sF0CgSbkgkaGIWVKJBtJo4OZgab+UeYU6qix9ip2SlzUWpRtklFVGv/t+iGTlf3T/tJRs4aZcR3+tes4UOWOdvemtJ/ufJHCrsP2DEx/Ah0ou550SwTS7vceiBNlOPMx+TYRzp2G3pYdv9e1E8krm/bhxTrimZykNysAwjis6iXGYC355T5dINOQ0z8q3g285iHqHFAvo0FLq54iGY3R3Rnl3+EGejW9FQbVFckcVxq61cdSn5hQs1mY1rBevNKmH0joiHeoT3xR92LWfEuUoFZrga1N3MQcRHmIoIqKAqLpJH0LJALmkiGM0bTbvXKXNey9buD537JkRX+7YRdAuEs9xH+fFgDMkmyvdY4YYfnOttKSYY3j1vTbxLFlX/X/zXLwr7cf/GNynh7tgduVlXRfoV0j4CuIxBS7xj8qiKfVzml1DjYe/Uh8UW5pi79JXccjVeDe9k0es+8vE1biBgz+5WqxYpe63a9AMIzTuNhaZc+wLQc+b4YDB6RaBJbd9lREVQe56FhEPNdWOJTD/niT7xXinjOUVUB4ye3uiW4IEd/YAWQ3Mp79Ymjqx0nSgjfefur6ybz7GDieT97qrLNs8Bsg8BEGR9FbL93bFVt/yd4Iz4sjiTXjCHcfkiEEsJ+MrzvGmSidFvEabKy/hBAq+Ak9ZmitEQ6sX+dfIT6YI9bpbu17GVPnwVBFt5UN201oaM2doY0IsTIh+nW8EIc0i8u82S40BeeLGnyeQUUViWcROQPDAbVFuQ5k7r2gzPznM8y8eFyrv28Ez1T3LLtr2tyoMMeO36Q2D8iMHZGXP3JOj6y/kTQ5mRpSYLFER022AzxcT5pYax29VbTs0V51yotJFQ2dpqzvCDbq8s2ANH+yQZY1wlmAlWFWO4vJG3XIrDA3VT3PltgIPNj63WjfTaVG9v4afI/duicQjOPoufJmplenEo1ActGQZO2AyxyYAt4dkw5MNVxopNpM8wkE8A5nWO7qpVxBaD9yj/rkcew1t36VeQ3OuQY2wDOPPICldT0vF+59e/YLosi0JZ2nNlCTava4WIZsSSeKXewbmm3FfB9VjzhWCegHptjC3uhb845xjXyGJNjKO543fh6vE6jE7zCjJlWEXrMvwfQddqYzzo+4JwEa6lyg/qSHOukpZri4TycAEK1RhMZCm2pMjGIlQLgIl1WpZGZtVD+FiEV55HKMbuoWRnkqkTUwamHUFY97jNPF2+OCGydrQPB35mIJvEdaEdkYKbgwO57aWAFT/a7VLiNioA3qggxwyiAIHOtlqtIEd2kX1vHAy3fneS9+cmHRIjYEJ8e/RwUQ+lIKZhS70D88pjG91YNsPLPDWrtgs4/mEJdTBh8dF+2To//Dj4hkoqNH41fVRxYTdG8FUcClIGcEPlXOCdQYVjIP0xRi+wvlcPJSyLobRpxFNhFYhM+wj1XGoXXIrdwHlpu+psjWBsDVxl8GJJC37P7CmPEANcBF1expOLN3QstdYYNAvMgvChnCyrstMBKeLBz1K5uoMvC/RaVxhwYxrHX2OBQwzPff85Zc/Yg8js5j2n76uTvDcfL4p2Z06v+7ITZpjfrACaSc5x8HpCJmbxBTpBpIBQtcZkVwcBN2Bu87c1fdP/f3GXFxkL55HWmvg2F4qsUKLuSXGtZgCFrx1um8t0gVQ6UhU5mHRAGRrVkIkuHwRzXGMxJdvyT4r7Fetxx4oAV09JJNbXQqDWe14RHaDAAJqRYyrG/B6IH3CtFWcMA/CucRol8XzU20l9v9V5yaIrUQ/Pvf972UpwvYEVtuofXu378YMw7yR8d2nfA8WDzRxxvijkuJLHW8CnQNyb46oTL/sOopuffcOIfs/VzKJujRnyBBD9hKNyxq5Na1RAtB+cbOYf9C941E4PpqZOzArnKx8hqi2Xi1jhLz0O7n5AVsX9i6y0+oygWOEiow75PQIt8LuLqPM/yYq05Dip3h7bW08i0AqeMCl5OZiJofgD0SzhEdXZcYqH18QfkGhO0U3fV4b4BgFuK9HygBbJIBrB0AMp7n7JB8JHxLEieOMJ3JAMR8ZuZFqmnPnEIG6NXMKMYEHxdLDCVOC7ngm4qH58U+pgjYQ4HiSpF+F9WzMMvaqAAXl+woPXJR0rhNqI8sNUjaBkF+TJd/3ouibbhyr3dMAG2Q6JG8s+C9nv2vNTsypXz8UhIw2lsx74aYmWAfxLxR1fmGbdhpn7EXhnwL+MAo0cctWTABPbAlHuRODI8rFv14INPUgKQPyuX6XjNvCcj6CkeJR4hARpvht5LdN1VAbRZgesoXXXItGRF+V2lsw25IYT7HW0aJfvmlRVIxkeKG17WBn5V0blG7VQ9te85yeJ1R5k2ip4251KEcrFVmOSj4sHYWL4WXO9t7MeQYP7atUnRZbQ0h6DFdFlMP3jwzxOJRanvbh1IAV5tOptFuDwZCeNZOV3JETB98wzXm9bmRcl+PZYEApZ0lgvpGS/fAXAqJw8Kw=
Variant 1
DifficultyLevel
610
Question
What is the size of the angle marked x° in the diagram below?
Worked Solution
Since 360° in a quadrilateral.
|
|
x° |
= 360−(124+77+82) |
|
= 360−283 |
|
= 77° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the size of the angle marked $\large x$$\degree$ in the diagram below?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-J4-CA15-SA_v1.svg 200 indent2 vpad |
workedSolution | sm_nogap Since 360$\degree$ in a quadrilateral.
|||
|-|-|
|$\large x$$\degree$|= $360 - (124 + 77 + 82)$|
||= $360 - 283$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 77 | |
U2FsdGVkX19GEDIABx1IuZYJr9iIiSWq1bTwx7qBjozQJ4nsOZC+f79ysGs3NNINjNM4MMBEBSyjprGeWklGJ0XE5GFLQOd+4M87yFCFoTizzAxXrZ0jDRbM4HGVLBRBXe45RK91RB2UCSWLbhmenz5UlzsAidIwjrD7dKxXCqP4YBwnUqs9lPCtjtApzY7HMmT+YwKwNQ5TiV+9jj6shiddnmixN7uf6rOFxL62x9RHQPAGqg5XcRJneIHlCv4gysVKSsQlYMXwOg+5ZqSmUzqxWG/0ouTxlF5C+sDw9GG9z4bYwR+d7Jxj+y3E6UXTh+kOBVOvwyXUg2J2yEw8JQXmHN+KCbJ5pSHEe4Gt1mqF5Fzh2dT0UqAZjaxmylZ3gETj8FtJY8RW1CuOoVEPIukT2jC5MEKvqc3dS7ZYLjBSVHHe7PJWbdHQpBEPQn7a8GcPAG5yFX7KbzmEI5JZcPVv1+Zr7R3oaTgadOg7o96M+aVPkRCVC7jTRTlNBvvKct5+GTl0PybZoqjagWTOiPbGPDpzJROdBZDytFeDzBSfYuTwdQhl5CW+cFkIy7ob81GmGAYqu5uropPBUtny5FUoayX0uKHZl4sj3VCikwomJvy0umJGRI1zy1VW/yS+oGqdeuZQr1N6SExaTVGP+MPYcUG5H8mGnC7oU/B9KnRM4QCfkd2VAYqYZR298NCl3eZo8qHUSewJ/i3+PCgyCUs7T/KxF8LvB+EFgPaXPGgXj79TnBrYokb2R3SRxjY4uFLmXQLIQ51E8ew7nfUmIDzpo/gnR2fNykxGg9svw0R6ep0CcXJaHZTzfVfFKzba1zHL7x8znSxN+4p2BXIDwCXFIRBNm+nOKs59pmbzty1mQ3IWxW1QniRU5zTIYECPU2lp+VPnir9kp6erHsQ29BMzQT6zJg4CCB5A7kf/MWyKmfOC+jJR4la6Ibq3NixVtknXKsk/QfXZiispSzLtt3V0FCR0VJTHeCyV5aWNHLh/iDawFCBeoam6EgA7a1l/g2BAwJfuFwVz45rdn2mv1+NMGMlTOe7L92jr8WFntzTSuTNKREJ+GpOpy8SK+SocNWYHXRwTc98x4yAK2erzPXI+07DogzgMfbXKgU6lv1gxsHDwXpHz1H0rosIeg1PiDYuoHnIWnkj6gS/JDiRuz01ou8Q6o92VDPX34niWtKlJXY6+3R+jPxXx7Ezp+eSVKQQ9AUpr3/vQ/CeRY8WPXIQRYVoGenvbyUFEyCDy4o1LtfKd3P5mqdfY09FbnrhPtHWp8q05UQNDldIDt2ghbIzPQb9yycjM3r8hapfyLJhY5V+qMWiE2alK/ffSANDMJSKkKYYRYwl9nZ0UKSaKGWybiZGD3JzQa1q5+LHz9E7w1pGWw4UVWMS4xItQ2B53ZNDk42ea4yfiYGqFwygnQXMWMUIrlE4O6fQOYNlpNDSYHFzNFcx7/o67ZJtWMAO/pF93Zh0ZwO4Xi+Zu+hmpQbUHXc680jVWkTHqjyYn3gt5QDy1v6U6kwyBllLSiGqyb9jclNgtdyn4IPlHz6lhkVoVUBxz9SRN1ds019GbdXY0kABa1mU4YITWFvA62ct/xVdCWzr1Ax3XUhncVYKwMFlha1AQ08highpf421qFck7DP6TQPIDDm5tHr62non0RyRO80if2YzPGbXx8RLG6dT4tJ7lm7pY4pB/MpCP3oAkQZ0lZFGwkcYg8FfMlfYhb5tzXPrmcvHIFWf29+9ifQOTj1Q72YbJt9WveK8ChB4GZxStSxzG6SVvTrW0Lrtl46U2KyjOlUqFVlC4xHDMu+g3EPoTFAcVy7nNctM99sw7WMfCwIdx0MWnubNpfVwo/b6FXxMfbNKuNQPl/15bOhTj3ns9pT9G9oJhnCHwYwsqoi7J3QTlMtZh8zo04uyaI60ZLIVKeWeB3e+oE7M1x4lPOie7bHj1PGvqqk2rmAbUx8PpVqlb3MIVRo6YrWQaL4gig9ap9MkdwNbGC57+r3TWFGzyRycsBBM7ABRlyqYTCaUjT8qDL2RHCN14XHaXj5ncQ2PBt5248htrbkid0Wwvla10CEaFXmjQ0I31KkbYQtJI5b0esIg1ZyhNC9yVhYxZvBSTPoOc/2Htvca3IJ5Z6+ne38AxJVkovrfa6Dawd+6s8qO4/l36GgioKqAsxA5w4DEd2ND14NWi0pkawSwZ+NsoyH2zYNR2JIexjWiTx7waai6HdpRDa4blPCc4YKXQwNQ8g4KApO5jZPv4C7vTnsrlXt6kGlJP+m5w8mRGirvLOI9lBNZecjckKwHALlsUW7Ck4g8dPa78W2XSUs52/RFjOp9DeR0WKrdCRDTgIsWROQp8C2NYZq9ym90C0udInxQiHbHNkHdtXsM942LK8L9llsaHgL26EO4N6HnMk2c3VLEVrGHk3KBk0u0AHkJQ1h1wTfToothgHDs0Rf2epQVX+JqmPUjF4qSNMOI2GZI/Q1DKXZy9MdDnsGlfyQr8eRFTA2tGK3Jq5eVgfmgE8bnMO7E58qD4u9KkCFL8IXpDEDDpy4euDd//tBWgTqIrHKEKO5rfbEya+he1QLfECFd6v7ho6QZgIeXENLUZszUYhNDJDD/L6QFnpRH35aPoTV55pkeDy+S93R3W2MG36fsYpab02tRpSeEQ60cApSWIfSH0g7108GI1BnlHv3epXGSL1wjvvWwq5UWv/xtKhzRLSxJAg1e86V8FedGf7fidS+qcqfyH/SO/v5vGX/7v8JAC4VbmLfKJwY86K1wwBMv+lTDwNt4aZ+YY2Km1gfvis/85lATdvD0GGA4+E1tR5ZtbriNCQE41g7kwspq0/VVvwK0Vzw7UlygIHOJwnN2fLTNiauIbUdKfvN4PIp970AwLF9Z30jp6kitlLXgdIe7iroCOoUAM2xiDHd9hleCsSWD0xx2dh028RnR+HGHhhESULEOfE4gx2K8WwQM04zQvaldfRaP96V1SQKphpCoNuyFLpMJDP99cSR5hkR3ntb2ARpvlswIJieOpoB6klXCPvIwTQPnHA/+fceneOw2fPhQsoVDN9ysYY+/BCMrQXxpUi+ljsZ76LQQ/8C1ZHlGnTMtstJ4f9mrjKNAJZ/2eg6VoxXVf12rAUUiIzkf8ASVp3Hg55lecGi6OkS0znlsrfKgl/GRpJCJBZBNgBUfhWVtW5cipuym3HjPLGXldO4AcYtNl8HekY32nyhYYsOBpP3Dqo9ZeriKLP57DdCoWZs3BQhlxY3sOR7ap8BDDm5nAdKFliH+XVnajDAwtf3Nmm+tWJ+rWUgJhlyST5eE8kZRzULtkgbkaUdAe9r3Arcg3SCpi60wxNEUeoNT7T3KPLiSuTH3nlqcm2wwjEFSifHybB5huvcCzkQI6ifqOYFeo+UWv+/Fnk7es9GfBw1sGRzd8SJfhGVqk5OaRsi7ehMjBaaeqXbsFkJUl2HiBagzhWCWzbN6aKg5H3u+KC3mK1dH4aJL7OUAKGAj5IxDEZmRF4gr0PT6ensfS3vGAclv4ZPsvQP1OE3OG4CGLDZIRqBFJuq3PRrk+sBTPQLwVwRyRltiljVKFgVEB3DqnSTP6zy1Ym3bT/e6dK0La6F9OPe8CaOa2dmK6w9LGO4p+QNSMW2i9Qiw0GDEKM7NTUvzUeoEPPZmiDenucl+KNOdZ3JMU5VsM8oTsAKp7tGJX8ukReA3czqFaPOVPV6Ykcq226qnwKBfsj+rHiOyVuKwLJRlyPHCXQkodcpK6wuzuAAIdeYO1lSDljaCF4bi4QC+VrFkVylm5GJowXmzCn/QA/REzNHqdfsatzIhvK1zP4k2nUVVNsGR6aNPyOmBmpoyAcvXLe8Og9Kfq4cnlrtWHvOpipPMz6naBHM+9RwPF4nnIyFLZ73XlexI4Y5XENYitC84KVfMlGKt9QJfbeLWJB/0iyXqQ7lzmicQxaCoNOVFrCiNbN+ilqyBSpeCzxg/yL3YxyEDe5qkK2bsQqEKgkEnNxMoEWFz1dR8dr+FBqaT5cX70uPYiRYdI+R7b4zxpSe39SL1bVjqBHe+qHZLundwvK9JnbvTRF2RP4G5f58M93mxaddFxkdrGFZTIqYHnJPYgoW5pZrYTe6rxyNNfkOcS3XmME1/NABHeFuxS0ul+sfRg9uRpZu9/+Wpj7REzNaN5o81K9PVRWR8cSxWkRMK9l6B7WJodbXnxQwWWoPYvR/GufC4VTNkQlcF0P61ALIY4Iw2vzJHI1a5ws94k2bMR9r+Gyt8WXskcqryMPuMFPhSf4ruPW+NkIu1mdaHR5/0pLzmL7gCzSLHkIOR+/rfKmdIByshI6uOD1UBWljPGIQmg6njoThENCUSkBgoNl1ob0PwfNQ8G5zVIILIfrcnQAM+fETJ37I98gpUuwgbveqps6Dxu3xp+QxgaPmi/4A4MJlLUUV4tXSZ5jWptNYp5GwJ74xr+i5O7/yA4/weqfsop8dQ0PmezVQEBfJhlOk+3onBa5pUw174sMYsE/icgtSilSWWRfvWxRbDauPZhdSY/l03dgAOP5vNQuBwPbp4pNYZZKv6O58/DCMigge6X0sy4uD+6CyZ1CC2IGJFpS298fgYnTZZYNcW6OjcnC6PW5A6+BhuoK3poMQgSdp0SB16ZO2WX2lylTxJUq0cmxLkkxWBwTDjyeHomxcvq0NsNuxQqPs1OtrqJ4p/D4LjKmPS4fV3R2GnhT/OSpGYkSlPvYWlp8I2NvfOqOD4czlIRrk+OPH+qqVaTJnkWkS8/aIw0t5WkBUwjt1tX3MmAdP2skeAe4dSK8Cf+maPL9ZviLlHDIvbq1Y9R2WS+ZUi1M54/f2oxaGoy6uAwXCaBKO69F/VQJcwqx8JLPhkxO6gjI983spV+V0Mn5IFe7VRX2adPx1OtvSvaAlzMSt297h6kFBve2rcaK2sBLTA7RX2+Q62QtZVqjVFAopTE45vQtFyAff8lvTvnj6XjD7H4gIRbvZ5g4Q/mWaivh8bEOrO+r3PBL4io1mBxuQCbvXUI19PMrnpUe3vWjZHKfiJRePtkschgHUKpf4qDAhX9/yZb/dp9TbOha8pzaADfJB+5Mq29n66aP6xUaGzVjZoVNo89+jep7thPjIchyqFxqNA1oZSSoXdOE9bmlFWLRI+5ywDU4G2Y4nnRg3VBygwByB83I3+3OtgSNFAjuw5DfID9p8v7f1Ek3+vyxQuFpyZONldCBb8mjOojQXuA9796Ia7ofHG1+n9ATPplz8srOhXYZc4KTPkOffJvj5rURkurboD4DydOg48kekrLp57rc6UiTBDkWNCBElUNvDliWKwV+pnbFY3hOlGQTisFAZhd74xNdXQR3jIZ/IaaltGIy5Hrati3Fk6sRGd9Uye5pHzemk5pObfT2krBgrMAy8Tg0Y5uIJPp+Ho30llaB3MgTv3ID17zBxEBQd/jYVjRLlLWxu+5w7FoseCCBMZ9fr0NPqfh38myusCFT5bCUWY+t4zjrpNaNaYuSn3PerLvT1/y4wW0Fad03Jgf2B2JH6WDIQsTEzbE73zKSenF4CxY0Qq5W1931b2GplWms5QcqTJX3TrIMSnsMkLNisP57yeUCGJv0dVPiYHRjCkWb+UdPz/Lme3qzqJfOpWNDgY4Ts0ihhH1R/aT96gMG2h/e9Na/PJ6ghO5rOMHc1SOu+3rdfkb6ZP1oFjmagCHzKyD2X93tOoRL1qi4CGmSzbsgg3zKoKwJLYnXxaT3ZGEFixyIM33pCkl65tmWKQY8u+DZVg4dNHbcpEkWlZa4eWVA8agVMyX3sI8AGLkLPpkK4rMNKxlr6aHV/7Sh5KHOp+l5D/XBq2I+KS5oFU3kT/CMQ8dMblbBbn1W3KGFHrykUo3h2IRgd3gfSxTlyMowrsOrShcaKLkIrLOfl2ZbwqDTPl/HYiIoFj+5p5h1SyXjp+LeciCpAJ4PVGwvH3SZ3LUAjnh+wop+fp/fXsX98bgIPkHCGv67Kgu5LQxGX2B8yMo8FFI/0oN1WWcKqkkC/QFCY3LIejgrPpmgU7zf1U290elFR21AgRgCNhTd1Zl+10isA+8vtF1S0Apafwz66sxg2PyhFtvVxbCIAg9yDLYCrkwpYO4cAEUDTXEROwO9gOa3wpCTZ5s3mG5tgREwu0CtFHFiPir1vDq5MU2ws5d83jLJxFp97mX85iQZxSv4EHH3tf4D7yMaZblk0gun3Gcfp5WBQ0CplAhiag1AgaK14RER6slk/Erk1ysWWaBZOX64Frf7nn8RtvX0/KQAmQNKx+tQMix60czY+VlQENkCmi/VGb/i9ilTe2I7zDyhTPi7+UFVpebbRzSMpuE7odi7T4pSIOtCDjvBPP2yADbWIGeRV9pPIh+lCjgCs0McxrPxFRGipzIx5XdB44l60EHP/4spLengXyU0sux0ZffnsVuD0gl0mjiLQBVT/EdFee24+H7aL5lgZYkzIp/EWHO9ZISuE7wh2sz0UoFfzqLUK/ZV8e64hejh9Dc8llyzybR1i9KM4PqCTDWj0tOYtlQVd9/1X9zoOnyU75EYnDd73U2F8UOQO3S72a/S0NQPrC6/AchCzibQ9BYWcBcZ6RDBpLDa07h276+iNnCp17pSldf+5yh7a/fKvB4f3ebH5tLWeTDch3QvLLixACfijI/NGIxc5jq9x+B1qTFRNuVcxBt2fXWi3sGYsPZS90tEU+aXub3abL5/QwplYjKYS7sm1QFjc30yyPOTlFb/pLxxJdx+Nh3THkAl5x0rDE34YSt/spd9XU2Qdc3VNOEl7kBL7hMzH/MccXe7onW1QhelkDFmdGWl843pF1I20sbduXrRktFgLmy3vzW+w+0ZDdW2kFrfhO3VthAZp7NpjMc6yP4lognntuiFij+Ve7KocrGRDlcpk85zaRw0da0QDslpLFA/51lri2DvEoVOX7HCQrtbmYO8wL3jea3wwRXJZDjInnrhxxRbWG1L81pgYWpb5YeeJ+lcP+C7WFCVyhjaCX11BG8h1J0xdfWkGYK9bLPLYBPc+eudZCRNqrllbFkE8O/Aq9lHARkjy8Tge1cPmmHjkWOYLV1Zt5CNEjPkiDUnLKWa79zIfrMdyyJYUjViTtngkjBlPPU+q5aSssYiHF6a2gsbFN+UBcIPH3gnjgO6mhWAAkFliyI6t1gqz4PzyZ3J6Hrz2YKbtRlkRuCfcUOfnZoZwgp0rc+KQKqYDLqZX009Yas4EQV3xbFEzzVdU0BapsrGwMr8jwQd6GHrKSfdChN2vBYpCe0UP2BhAMeNyhqonnX5RVeyUFyEGuII6uvztMX+Yr2NhSL2Iwo901OZgS/QWHhxkZm0Huo6LWqijI+u1Q2FXGwlc8T1OyXjwXiTqsioubTs99cALpsyGcXl3RtNf9cICiO9gbTt/As7AiZDPY4lD5m+4WfLWHM8Y0ZDicC5HmgDJqD/hyqqtukUKiFF6Iv5x1amDbiwDtHYkdqexLk88hQZk6QRRv2PjJhFhrQdzy2OxxpmD3adVKOwXd+y19pYwEpn8guO7mKhEOFHkVQMgN9f8U+Lud9sLpW5UEewDvLzUXNFHcxh1SrPvrcPA3tib0dfMWfJie15OibtfrbbCsHQ12Q+Z6kBTXeQN/x3chlGd9yfkquX9ry4+yrX9TmmT+/T70K78nIr9v3FzO/ENg6fUvmifwYw09jeLOTSODJxrSyOgZGcIQlfTZVg/DLfnuXQYDdVWM3ce+seTLtNdLZd586PzuryfqaX1sTCv+3EgVWJ6JbaSf9ekMMH8qLW60kCUxGmjk8HrSCXVnTHBHpfdSlk1CSBxLdoj+U4u8H5RBwEugdjDvI1kYwHWcwnVALEiggemm4pcQ2/6bIGnPGH4zNbbfEViw41paQqjVYNitxeCQzzxWAiLmaEzIfdvEjrA9hXfhm8Lj0C8yp/v0vHgUX6F4BFbve3Ya3WYytcH4HFGiQ5n6OWX+64klfjXswA1b/t/+eYrjuEnn+NynRMxbl8W/ARiPfoyOmUyIZ8bOZ1XOyuJt6IsujZ+AeOtHz6VYSGWYDhkaWoES0QFQoRH3mIlb4FPRep2vqhagPMBy5uxdjYU70ZeMDncdGpEIWtv/Sh2KBMn/yzNno9icvEOdidT+dRGB+cpOUfTCBzGgDS2lw3+Tq0Azm1pfalhkdzeDS8FngDKZlvIKmYhL1k3/USwKvxD4VuUr61zgbl9ufwbLv4Ivx+E3HMfZ9obWpUqCaUddiok1+hjHHbJGH/i3UebCeflVHwED28wVKcthRBwIOmU0+hQSVxBgM5jfJyZmrLUZcucO0OUiM6Y8BDt0YluFmc4QXuggkORp7tfvovua+a1Uu0fE6v46UcbRX8tFnNrWpRFspvI9xvNrmkuZc/l0G5Ulr9UZJHfFwTtShHul7Q/2hg8eaTGPFxnLHc+OVrndLG3GftDdSNnLlK5/gVQ9zzHmjCw0UPsmowP2bm1f7MiOJL0QavWwMROOY/NiAWIBUB0ctQDlzh+/IGKG3lSjqlPRCxoxGnqWEmdKTkxP106mUYhBFujYm+0CWA9XaE0ZBKKdUuQe1WJqL5yfmNGmiweThG7G/PsHN/yZUPSBZZdvN0UMOrO085RZkh+jgb768LfqR4N96kj9lxG4DATCXJ1QWU53oUEqX6K2l9TpQqOHUB4brvUCfSHihw1jvL2C8X9+t15g8yYK7yJxNp5kX4J44ltZ7G2gVI7el/rqAjMABgVTK7Q9swbbjQ/+DIShN0BuL9Zu6AuPWL+3rf4dpHZK616GU8jtubjfkCAINhQt7vRdddIjuDB8tC4hlFgaVh3SmdcrjbU8h1GCoPeNbKe2A+gn+UUpmtjQyHOorI5NA5d6mLFILWtRYZkqWnNLru4OsF/yqMT1WnCxfjIru0HuNb68TtQ0sC5nf+RdZA7VaG2yrKELu2hr8GN3JB/Dfqg54cLQ4ibzfqlXpQTRcG17c906iYv0P+X3LI7Q9ConoXLLprak8gTDiUlHH0dBbLgo40QE1ImvrSkQMQLWsBvQkB152NDUROqZy24ENd2o3Evx2OsMaAimC/YhnO8x1GV/yYXy3DUxEq3vuGYKyFHgKTx7QUy7giFdlEDHln6fiZHqDgpkK7f6wHAKAJyGRm5WXYnZAXa0SlCKMbqW2wjaWcfVrZ2jRUcOwQ4dcy4TOKCYU6GIW6XrVEkXB15sJ4CI0Ag8BePVRTcGD0rBuO/YKDE1ponM3WKZ6dDCjs8DTD58nBK3+o4WqB8am97F3JSQtcc9+wNYbK8TTAPWnoBusffooZRlSjKNpMHRk9l8+dfBNkNyrDzYMVfcWFhE6Sk0w45K2LI6GUEeQvRYG2BvmL1BBuO+BehHFOouyITdKfQujKXp5LsnxA5x+aOGpDeINdTh2XYTkvW07q2AsmmlD7cznSWOwvpw6DjZngN4BNGKM7LU7OgjysINm1DroZkhAejyYNhHCCEMWJeSomlNhM2ysF8TARhuayr5YDXn2kubwjjTK7bP2SGqenarB229dK0tpRmZZ+hkkCE2KO71Ky7ZQPGJ8nRn0Hp4CmK73IIH921FY96ZWzxQZugYoU2z0u7tdjai8
Variant 2
DifficultyLevel
609
Question
What is the size of the angle marked x° in the diagram below?
Worked Solution
Since 360° in a quadrilateral.
|
|
x° |
= 360−(68+97+79) |
|
= 360−244 |
|
= 116° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the size of the angle marked $\large x$$\degree$ in the diagram below?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-J4-CA15-SA_v2.svg 200 indent3 vpad
|
workedSolution | sm_nogap Since 360$\degree$ in a quadrilateral.
|||
|-|-|
|$\large x$$\degree$|= $360 - (68 + 97 + 79)$|
||= $360 - 244$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 116 | |
U2FsdGVkX19vG870NCzx/12mgcfLEaVkpgCWQ03Q9n2ChLkkeFN67+Gg4LzFXlmgyeMAeAgfLZu6sl6KkpOWIYgDbLFx/OjSHIpwdIrVXL+Cx78B6VcQtQujaPpPgyFQZzN50gWV+SRb5P//jyhNf9FXR8AckBsLb+I0ijwDATFrTnDCOJT3s6B5zBZWoc2NM19X0ujfZnw7+lXJ2DUIUsAYziQfQSW3ZJaPnpzmZy84ojXUjQ043/b6Y6Thv4tgFm91bVka6nZFxUhKUxFHW+XG7D5rrk3eYEy+WOQ2Aunp6XSiyk5kjQuALJkGsENEkmHqfRrFJNhwUNgZwpGjFdEWGyhpPTWQMUkmOZM757Kcyu64NGg5ms0GQEN1NKLb6p7WU9qlQZA59wVl1sZQRaD5E+KDjONDlp4QL9AV8JMPrBO/eKBqoeoYUbvtBdFYnAP81zcUda4nxK7ACSPL1nlhrKJQYmMgUnGNxjszxm5CbWSZOb5Mcv1njVIjsAzpenHl0sCZKqKICp30V3bUUG5+ge3kbVAtMMI7OtY1oRfsfQS3EF2hDJgy3ua0EhO1mky/Ua+Zm1Bk/rxbKA9pyW1w1dsxb/Fm+bWMCMPF6t3zrmfqwGAf0ToXHg7ATxRKjZ/zpWi0XKRIeGCL8fUg+aNPqdO8Teb6g4WQJ5rNK5J26cF8jrpsBbDWS+/npbPriQB2X12/5cQuWT0/1jBMTRiOceSrtAwvpy7n2MzUrW/71ZmZTohmGs2KVQUFtihz3iIyrnED3CJ4hRvKHKI/Og+6iTIeTbfXHgd4f9zI4GxjqcrwmfZrWJovZKwbv2GFuqPzhoAP/HM3crn4QKNEU+xfNNQ0T4ZKAx4KAVDaqZAdFqj+eSBzxe73PJJ4p7JJ3O8+Vi2G9UfALGj6ZX8iB16bnvltj5OQoBkXplvzxBwaBLl9PrvpgZ8L9vkRQcgtBuPEaq5vkeym7EHwYafCwtaQNCyRg01ddOOSPBlS/QDbnvAULt92bSrwqVAOd2OuSfoXqneFZVBhJoObLp9t0YHmWmmA4gjSYp9n1XGtSWkBFK8o0T8tHnXYSVJuQU4z4lJBzyYrdYWpH5KQfTddYeDrWhSP7vVhHc2fzZouJOh05U92G6R8G9Brla7/0K0UmEDH6VJ8HAtK51F9IMPJa6JsmBHmB0cjKkRvs9WT32dqza0oSDGh7zYx1otyqAMS7K8uOdQgcwVYBuOK+Z995ecV10XgXyHk5GBCfir/rU/pFRpYN1YmPV8ob7vxq3erTKxZVYwSN9tLLDsi54XakEb9G5WNt1pFRO8fUkSqSRIb6ASd9iRwST+mBh1+t+Zu7xIn0N9d2p9P/8RD7WX51GOey3RkTMlnK90IexdtwXG8R9JMAxeef/HmIkCNLesoe5bpHIRlGky62LM/CLNzr81uk6ix1MX+1wVQs+8xjLvvggGhxbl/b2CRsV0zMwcELURMhq3zN2CznjlwaXJYkRy5HjqOb1p5iOrhcCwIeiMdFmRYF4DL/fQSBoIYX/ILR1gDDXkQ4rUTnkxqEr0nX5RGRQliRS0CKADztC9vIWWiOQKqBx9EiuvGSRUliMxUC5/J+zxICNC7ss9dJlWX9Z6nfWw9/DK/BQu+6ClQkM8PNrAefF8vFNEIVT5Af4Y3jkNdxW03kOSuMrIPMH+7Bb14oEWJyzuwYHTqyts3nks5Rx2xcGbc1Uq/xA29LRQVfs+uStOWQC7eoceO/vj0EaoZJ+nhuOM7UDvQprWBK9aZp9VBoTBFAMjuUXPv9Ic0TG+gtJ3cJKsnG6wQAvA1zSautkAQZEJ0kxCoJ0qy63vTbIFGC8KlZv6PJIzuo8Es+yUhR2ttcPihAU28HjKyl8zOVhnMeGoq9n19YCcZC5frAKds0E3iNwCk5HVd33JF9GldgLyUGmnpyDrwTo0NbBnhDm8BSM4SEIF6LfSVA3E1H4eWJrFporQGv8bUUAq8LugLEE23iAq1Xw9xfWfYiVTMoaynZ12RQCDEh2zKEJ+ZShi3fc+QJiCFe9saCky5sSEO2jOVcoGaTdajEPuFEvfASMfnnc5WoH/jxY/VRrrf5FHTnV4eaBKYXAejjGygFdNWJHXiFg2NXbDKsANHT4wrcxnojyBTBrL6s/IOi48v7voJHhk7VjxnNvBttPelZ7cPjK2U/l0fETOzp0pp3kV+WazYsMjb70ZebznhUb0Rahu3Ek2SwX6IN6Nv7s1PM6pHtrdG3ZX2iABbej39tFdcpHsSRoFPy+i7XbNxVOOZJN47t5GPrl+nyKs2Oz2GnqJ5YHTXWjptIAxAaD6AmOq3dlFaFw9DOkyUy2jBA4nYcpkCI5v2erMaEZfnRSl1zyT2wzpZKkxiz2ayHoMTsIkn+s6W3mSsA2LeZVAcUEL49iaUfUoSb3JlNB2tFTOt9DM6njAkJthG6rZtu3ydWyOxbAH+lpQheczks8NjSIT52dQAMEetxhu3AMMFO0DqzTbTdAr5AiR+aeJ6yVLj15ttuVIkmKKxEnWt2XJr7zpSS8pd6BJIvo19y2rRgJZfKmdJiJR9cjQff9jj3CZhpadWHK7GRxvnNq8LJ4SFitG+jMDqlieeMdbCqa/ISxI1wTzcMOz/aCQOu4p1SL4w7eBcaagHw0OikNQvu9QJ4QivD1Jc3vtnWxMzz2H0bBP/lYAenlvLHnzka+OzCQnX6CCsha0TQ5XPPa/QeaI1wluBzaTI1xvARftbnEjhpNX/nTpARXRUWiDfd1Op4z+ShF1gY5runAWSPSzFpLc+hXK4KbLhK/qBjqQ42p6OW6+4EeQrpfujDOjsdlOJVBLVKpvFV6Qc1cfyXIekWN8fYj9cDWFuq79P2xUKq0xiSEh054Y1AHClmWJhSsinn5vu7DwmKWOXtvy7BN0NQ8SYjJ4+fy0dvPofBm/in2vTiPmfTQ31Pxc3zh56Q2IVYUkULbpU8LJfKPKwXnkBC7QQpsdZ1Gx0gYycScsY9jKgGMs9eGFf26RiZj/2fbI7+mc5SaVYID7Cx0NwO/FZQUb6D+OhaqPDwg5W34D1cNTJnrl7Jifawa1nVHVkgnGqREU3Is/TC/h9xrH+sWOFhWNXNRlvbh25uJxmfqv/NoyIBtvuDlqHSO/CE8DpOW3qRCNdz1+jP7I/1Pjwknuy43p9M9yw604vFj+wmjiKDif94K9E6ak51y1QC0oYYSN+Wdk0UY3V7Zqslr6/tJ8tMEDvg0AG4HZxsitXlIHV7/Y/JaEl/nbW5eZqxPRQFpyc++5RKzCzF2yUAY1Nipth+vlsiLJvevWJboZRLJ9W4oMUmhU/usRozQ2239HQ3224xRFwFcvYgT/O7WL2mLNWUMsAY907MePxpkOc5psirLtT0Fo9zl7Tqezs+7AtZVY6pR/8rnDFtKrmJU+RQOZVMZY0Luoexpq4WT+L33da9HQKUsRSZrXXyRLHh91xuE4tnspYaZ6Ur3hGNec0wnyX2Ib74NDeedaqdgHhocjC11XHRVsG4O+EXud449xcm44TXfv+4/fi7NeVV3q+uYIKyvHzNcVqBAF10iV/YeVAZwOmHEDhlpjIARa/OzauCaclIA1AAqsIEo0YCaTgbd1h2Yw8g6yPBBRag647lfzMzA7zkybu+OMqNp64FRYyA/cMjGrCgkGKHO8srYUKRiijjaQ4QuRrcatQR6L8959f9go5C+JrprNy57c+YZ5zCOzmdKdF5Jfr89IR1NxwQhuYE1kwu6b6PXna49eIh0Ci016Fjyx5x+xKmcnO5cTb2NFNS3llagd70zh1DF48nwhCqatSdSb4Y3+PDwcpQLyDCq7iuczBKkNKDLxBLgw0jqgePhA8VvI/ekZEmKWVK+L97301NYwCk1Jc36t9SzIiDxDAMexIN4Cp0EONzg3+Bd9+eNUUYsYcREr0vjrUixL+nrzN3+jumFIVOKaufQiu0njHRKDY5ofm0lbdR6XjYby7wB1L+KRG0upnSlK5xJ/WIramX7m7i9+cJOFhfyLEuHu3go1lr8jxby2gMW6b694t0MubSmX2DKavgTEiEFOxghmGnZGabZqoX64yDhOKxOMJLxkaKNHYs+5KYcw5zweP7C6ouUTOvkY/HKJe3gzHqsEiMspOjAv9iy6ABXt9Dj81H0ij0y9QtoaxXOZVEFzwwrif2qgBVkf47xeawS4gnOrMEIH8GiSo9X/DbGsY58iOI5UBkgiuyJGpYQPGz5aTeJabFidrCdsAGKiKhF675AoO/GdAqBV05pL6KuyieTL9Oe8wtRTV/AHwJKXVcOrCDsDG62AfN2bvX+DtQfnwMRq8et141SMTXc48KVpzun13s0BAAlwIJtGx3HqGkRKGquQLd6rqEf7hVC36Q75I4V+vyPCTRwbEGyWcph8zDIkcDJnqNwWJDykXk5HCwg9GbYFDY7o3CKBVPvz1J9Pk/99TK7fUQyxmbkKFgk1Q4TS9dWqu0eu50KDjoBsdIIqq59k6HgI3GDoRFCQI/DB19Zgo3ihGAQpqNmbQQpEvxsOpFobrBhpTbU5MeNkLAwuO22oLndIW1wFvABUBoM9k13RlsFBd3x5mx0MkJ1HD8YAxUkvejzv/Nf4YRCfdJx8IibT/RFsxJhrJMcldAJ8OeqVnSOMqFVQlNFwlfXwY92Q+iK+SBWOXS2A28AZEZhDBjYPzd3v9SY0RDo+sIMXaD7oJrZBdHh08XxxVtCg9TCkASEIOiUL0stjElUTTtvSTHq7majZmYhVNI1UFKoYBwp4Vm8R2ThIYWBHZX72b1/NP4+RaUqWOE5vB1Crl6mBvorRErLQXdMdads/wboX++wJGTBLBewNfxrwuJws9JeSSgxPcR1lLEnnSpGO0sL1/pXgGDT/Dbg3cKOwkcVwsFIqPtWcRj8vsD3Lx81yXLZgxnI+IrXLNIIwW0KkRH9QaSvHfitFw8jKZM9YJbTk0AQeWuzwQ6iBFb5XHQVVKvXYpITf6a6M7BNtmnpev06mra5g/ncNmufaYdkQ57a5jmKxnHfdnimeREx0jXPAq30/Wlt75ez2kCAi9mvY5IYGw1ySn+Bag9Ju6DKq7WgrLEfFbEGepH2/WUNM1xEjlQordCheJS8fi4677pNXU36cCux61uAVDBd3f70JAjg3az9S/505clvB6qzjD6S1rvoelmpEiY0I/yS7etkWEqZ0eqtw5xLKOmY8sqcM2IYg0/j+sZKZFPNVKEeU3+di5MpV4qnsIPVWzH8U7++69k26g/sdFv4eUyfhFEejEyxwoih346kqVi7LZoKUO7bpp7xKKMbHu9BAUJfpk6hVqDVLo8m5CjawGeSn5mwUyZ9+WE5+kYN5ZOHNNeoQdbES4LXsoKqCvcUV0/JnGvmBo6oXkLSYkeYehq1zh9cWxpvTBtNNhCb9TBe8A37ktV0IeIe4kglfMalNXb+aIlmoH/RWpnvZTtTRR41Xd5z8cqlPSao3t9t8SL4pTml/G5iMn2mapRKiP9+SANhHIYVKUmCkY6zJzVbyTymeEla0L/+Ug0adk23gfQyX/LO08WksiQg5dRKZ2scpB3/N7Hnt6tGAEuqMovPkNlBOhfwlsrF7VwaMaoksFKN9xW15hqQpTg6TD5yBPfnas2YXIqhidC8Ynqztdnpb7h3JUFpaTbEnZUSpB8bel06kC+sokxLpe9VY3ylBQB+DLb/7DlRdfntdmg+lwams9f2QWyUIILIbDZU/o7GM/IyP0M1q9kg1oVN0tdEPaWNau2EyiTMfNSUzHdQ4b2BcVQCulzWS5oABtK5jpu6aUNj2j48gbym/ulSYejefUUYfzpSmRfY8b+p/R+JeQxwbzzC8WIIycJXP1RfiEXWSUcUjfUw6mkOTHnMZdxX/lq2IzfsyuidqHAQF9ozTkGfsMEzWtOrUcs/XfCYskqGPlcfqDcrEgUChf3yX6SCMIioYiCHotIDFXm4MJWEP50uWnBMchFP0Dhrh1F3LV1ftH6ZchVOSguEgMiI4Xltxy3/djRATcAuUFC+Ovf2DEFxXkWj2w5fTU+odS5Z34vbsA5WBz4fKXszEEb03Lni27EcVkY1/LeNZod19HQybCQ9VSxt0ZchhtwIW4AO8nrvbD2ZLY6x9J/m0o+EFBQ5j3gJlnZ1CVbXGAEP8ZL5JzXAEvdkqhUW1at2UYyT8BiUWQqZbINus19y7V3Auh5gRqfOX17DHnizUJqijVZe/ain/Xl+BdoOuAera4bZbHP4w6sPdVfL4FZqzkVRn+/9szQTWxD03bSarSHHcgadzUI0AmkAjdgMj9OZ+X/VMQ/8pBt0gNdQDVDVUAYZy1TgHcGmns1yvr0IWdfIzW3W1aYamAId1xXy7olt0lEIRiYxzfjPL+aU1mdccasUK68VMFMTy0wIsoTZqyDAuOGa9TPng6hfcX67ZdMJ/qYWC9MYAMKbppoZJxfcNNTG56H38XP6gqVe/9g0WExBq2zrKBL/lk2TfRMRts0V2PQdOzK4nSlCw/svBtJc3auqnZZp4uR1fJmNA0EVrds/VOShTUJJCNLEGwfZh1BGkBdoiSjmFOf2Rlv/sF2ppxXIQH5a0bLPqXR4xe8VI57Dd3do8jmLA1F9Yx+nU3Lp7CiIkRzCuLf3hwzFne0Zau2HuDia2lX/Xu6CDIxVFA+g3Ipo16O+7eNy2YGky/tDa0I8LsRoyvuxRQbxRmH6lUD6M2rx7WF8U3j5qrGLqRNDkJ1X0Ob80Q5bz6+qyAbJjqj7XboYpUIQMIARR3eRs1+BmuhNEopQap/7qB3hvleVout7RPHXhmD2qSiW6D7ha2FxuthMshaY2OjoFxpYOXyW3mxBJjktDiYxysqcVSqNxyHdqC5eI359q2g12aOdVt72QO1nfXpEH4tjH7FIgcuTCzFB8iwN/m6SlpGyJ5/OCDhUgfv0toyP8tQAOwL2E0DwNlRqnF1+lIFKetd+cEY8SpFBV6mGnL5l81UYIzyzU8SnBvDivwVcmRGSH9pXiRTr1OWSpaiQslV8zKozqujygkE7hD/9x5kj1FDfQMbxcYk2Z6hoP30ZSwFGNI5fmvijVpnWaGSjoS/nopqddy7jSBO491vL+3cRwDN662hKxXJBIighmPRqkUUSeYV1q+T1Z27zgjzlvCRzoqxRn+cOU4gS3mqCwF+3CmzoMwbyITlG0INf4HGRN1DJHx16yWU6bwSFO8F2u+HVE2M9SaU+RGh8a58DC03AL64YdeiCkyAkVp1w/Ce033UBcf+5h6/BCB5cDr3o0WMmMWaWdXb4ap7c98PZuyNYizD3JRKXH3zHxBpC/fBVkYfg+coRvaKu2BMlhrWRkdB5g4fKg6lEd8py07IJBpqUM6mIhD8vo7RjdUYZ+dVgmRKSOkfxpVYlKL1W7dKpFRqUsi0WbzgdU2S2R11oOYVi8BKWnFWXg7nph+ISlOhPnTZ1cv35OEDtYWwgXXpCUawu19YrjzoUVfkTWEVzw6aNhbyoj/bDdN781eL1UcaYkpcVKYAPqTmO2IPPV1y1ixCom2FblBNgFgSNxqaJcBYVd2gppSC/RRyYVZW2aC3k+mBPc99lPq9OM/aTwEPkZ0BKxBTGoZ3X///JAKx0JQJJMWb88Wqejj3UTWz9FZvYQQyM3fbS0s1qupmdm0oXNV8JG9BctQTPjSN41nmC1giDeLFHG2bZs8d20UhVzChL/alMdP0+wqOaY5Ry3xrp9RT243Px/gILEc23RWPH84npacD0o/EsTZ3PhDYMpKBMpuMkaaN/646I4hPFDGb00jZkcw84oK2kkHahxCENf8vVE7G1srlL3P8fYkE87E0yV2a/x05tMawz8KTc3nHdZ7o4FgbqMirZeduWQ6UsxfPq4259RxFneOUtlG/Fi2Jn5ZiV56YyNSs9SB9H4B5XjJdtirw0R/dW1msaKD540KyB7CjfqZ9sDwqI/8FiieADQdNGeT3nU58Gcz/CYLT9x/a1tdUtYaQItsF0CQVjLWdOHaEK3MfCM/27MxcVubfdTAhVHHifpAyi38qXCPoe3ld6Fy4wDvMBPYplSr6CyioFNSOshfWJMLdRU+lXqWs95WuC7IpnfbC+e6SS6TZ5mNaZxQxTA1dq2l5DqVFhdvUtbzLdum2e1dA7DbzGdmX+CorThurwc96KtKsAVAquKZC1aUhO+M0SS/rLfSIg5Cyy8nGf8qfYX7TjllyVnYZqzq0nKNizeSPSJIBnTPKn5TIxQataRC81KfMPAWAa8vSJsdTKZB76fugBCLfRorv0tUeJRRMySrWVqpOSgVQXxttOC/g+TPHphMlshTfPrxnuEkRVI60R8+mzJM3J81EmofsBm3k+r9OnQhf53BIndUtQH0irNF/0ptL4P9i4pI66srzna6NSGzUmN2bzM24A/06pVHO/odhotByInYz6QrZWDncy7v9+lUVvM3vOik3DfwIQ+UitHySA1tM5pYCHRvQaQ6E0UzBk1Y9RPaeD0hj2wMdFhMqFpiWWjmdxE4Cz9/xbOqr2DpBET96T1h6ClgRQBnWZxOTBK/devUcvMxorRvNqvGw9XxiDyU4a2bQBnzNNJTlNKk+eZ+OQd0ZM30vyj3TpQc1HZ727hEZByvnk5zAZhkNLNAUaII6tC3ujZPx6be5cw0ZUQm7Gg1ucj4RcS+kt4BReVs76BmJClXlgRzekfUpG/Ah2hYsI1NiyPq6L6gHURrjYK+isQwkJ/mVg5ng29NTRYI91ZvW5akgwIdjSU7kAc2a3btthA1HJIBdn2jbpPwgYRY8/1/ByV3FfH0yQfrw4+JnShCOmokKf8YDjt0L2AC+pFLMMbPzlHf+eMCzhy+Ek/mgcXOovNuWjhezHWoNa7SZvpGwjpsRWXY3DusblWUH1D+ECPx9t0BXyntk+1TlYTmLjrbidElzXznDcG9JsVZUVpVXqNf3nWbvjTyP9yfUkUzstzGTQYkjwHctlohys3O1DGi8lPJ6d+SQO+8IG/ZeK+hvZH7ACda+EhDlpQ7/HpCh00FiyEgQCXDhQXl73FHC4zCkfL+Iu8l0OZB/muayMtS55XLp2I/9k4olmb26olEQmLepCgexLMMecgfEE8UgLDoKIsloQmTg83v1O57gFMEOlWACEe/ve3I1p3hl6PyKJ3dX2t/jGWoJmB+6+hA7Zwrxe3p5cL447AW658oRmduOVpE6YhlNQTfL8PIbv2iS71DtneDO0BO436tOBOLS0s1nRbIIk01prcBWul3MeI+Mz85t81C731MOXeOJusGa5XdH8uJwKQsn2kp3325IvsOqjOrzcG/+973gkpnfG9GylcUWKKpw/TLGhOT6mnbsc8VGEr+jSVGAFzbxvL9KoJMA5UFtU6wkSrNbgENMd0Iavps28+vOZhliSIoR7WIR48/U2O0T9Mypl1PiX16FYxBfU2t2aKpeI5ECfqB2cdtRioR9aGJPAd+ycwIZGJBs4taaZPCOj1kMBLb1tM32YrLpWrjuPU7ou1LfozcA8A4I/pyM5c9v1ujMptXpP51JFyDcSt0sMq1ZsFFsKovHSfqhpTVrqwZ9UbwnSCfPgbz04otE5D+hXRCAFr5CltaQ2TGZV2qB8o+MowI/BVjxw9vzbst0AEyqGBz8h93FZ4=
Variant 3
DifficultyLevel
608
Question
What is the size of the angle marked x° in the diagram below?
Worked Solution
Since 360° in a quadrilateral.
|
|
x° |
= 360−(28+100+30) |
|
= 360−158 |
|
= 202° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the size of the angle marked $\large x$$\degree$ in the diagram below?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-J4-CA15-SA_v3.svg 250 indent2 vpad
|
workedSolution | sm_nogap Since 360$\degree$ in a quadrilateral.
|||
|-|-|
|$\large x$$\degree$|= $360 - (28 + 100 + 30)$|
||= $360 - 158$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 202 | |
U2FsdGVkX1/FZCz498fXETnK+/68FkgOOWb5uGvca1dZ+wCoqAroTxKHuSRpDBSPgKgVYMOb/IG2825EGliNTa5I4PdUkDsKc2g6cQ+Yzo2Y+kYEK3hVZbYYZ5arsS0bcOMEtanGQYNvaGLXOfvWKpNiMeQOm5hdT6ul21xmSsmNPKYczdnU3rOAqrUz4ZbQXWJjcLVLIYl7kaGQok+oHs+3BP2TzSZlNylPyIE3bF5vWDCcooTittQLLGzxFVdp9TdBW90es78f7mI9CAIUwMWmd9/5D5+3q38ABpVofCpzWtqr4WiXNrdABm8MrMjCXvUdWymuPPXlE5wUEe5p3HLXTTj0bVOJPaIXaYzMLACysocSMtGE24Pvi6yq2s1GRRe+bTQTN+Fe07hQH8R56ducshcRm0NTllde2+8T5rH2WlTaFcvusn5HItdqkiVFqkxsuadNm0BYESyNbj04fRV9QUMITnDyrJlGwtIvrT6V9IhjKYnC2t+H+VAy3g11zeQ1kZ86bFOPJmJ8rYsrF2Dyl+gMeuEFUgd3g8zXqKUIb8FobLKyqc8rfQLU/SyNJWR0XdH6Ltl0gDeOTivh/DCeKIqiiGrh86YFgGGMWlw1q/jDL9vXcC4xZPML66ou2ovx9LngNwHPcsGA8nAPMK6beN/q+/XYYvDSd0cxdIfP3yhLLLfUAYrUL6LQU/ZlvzFxjJYIfYnDrDZfxv5wSJDXIAfkcTlXpnJqUg0P2E2Ha2SYDb4MC4K5eopnRslgUDVfCjdavVNS0P9PuVXYU0woPdIr7IqaNpjthbpRXCTzKBTq5Y4HfuVt4vABz7hhc1Fd2M5HfPwLIHXt9N4EcSvjto6DDuhpX5e0khnUPojybmjpGjYxetymji6eESD277doa16vUfYbby8clrUpuAzNP8EtRmoHRBJA9m5weBXGNO/hZ8gtq8fHC78Wfw6rjq6n2ciWXdLRZgCWZrWUBKcHcxHVO08QnROtROWAfC5Do3GHhS64rRfCbFQUHXy79AllKmgdmwT8PU7MP/XuF+oHJfb6em2bKHh2lxAyY4uBLV+EWNO4SmY6eXOWE6duLn20H2Mv0HW7XgE9zpo6VM/sDLYyNCGqMAEt3aHyIRTWJB66W4vwW7Xvqb/pqXqDeYw1CCbj38nPRCuJX11htKGVodccDgE2MwaonS4jMh3hcli0xtcFzJeqqqgVPSMElMY/56oN/lPgETkt34iViQV9NIiP59g73A/j8W/vp13aAJkn3mJGubCnDjAfmH1yHJQ0p88MztZtHKrwNrdIjSRn0OelExiSev5ddGqQSyL8/zxKIPsd5kDOW0yXk4Qz5zQ1litzbg0q8o9R4yvgiHEhay3WnUDIDn5wHiUee0Jqd8cEhyVu6LX3fAjLOapS9DSO3NjEF0sj4QP7zboc+lE2Im0nsX5zU/eb7qIZlU+r8X/4ft839s16pM1779SV+lUiY09dnnwiaEeMzeoOxRyE962ZBU5oF9p0zKTAi+JZGrX89ADXFVVisC1zRckYBLhNW69ksJU0djPvnih4XJQoRX9AsrNKl5lpf7GxstaoF6y/eCd6GKa9PHbPOmtXuzBKto065O60Gl+xiGmDk7ReMVWJCmAFJVq0Ht4uISNHutRwakXE/N6C/rHiAeLK4axpB2xyX1h3Usoql37gKuoPNF2GyFp/MadOP5G2YMqc/WVGZ9YqwB4sh1qaZJeA+PxaDmuSF4Gv2/3mPgKa1o5HpP+oMrEHsmLlfkBh6GTMX1j/pozPY+4/OWL4QI0Pqrb+n1apF16KK99rO4OFWQHi9maysFoJlNz0pGo5G7lVOq4wLhZwDkWU0VvbtoUDG9knm8yTchtmpED78jdWK+bIv7/YhIuQuaODXoifjOfswT7Zz4wC/iSoaSuq0CB8aEw0foD773co+aJ/SnpbNTSirHUlNzDI5jvKzVBMfAjFGcrWGGsADMxGnL0qkK/6DcMdXfewQYjQy/ZLnr7nKPJxtVtHvauDceggsOa+HUuYYowrabjJYzQ6Kxh/b3p7TuczWY1TMHpLZqZcE42R731gY54UOM/9F5yzFBQaqQQrDptsmox8n2XmYSpZoDFFtLOpJtD8ycy4VJcjTzeTCMfEOYuuo4ROn9gakZRd3xh3UDgJ1ybslpuOSNUqkwfXVr8J4TXbSV9A4mkJkMKwJC/Snoo99oUFv/RnA12ZqEblsRJfo7g48TtyaNCZgbnFvhCQDP/44q20Hegu8NiaAmjyXjmqeiQUeSlO6+3CiTbpS7WGEl38U1Acb0KuCP+HxMyAmSVMSuggDqgMftX/OfOXJK9a8xUMjvTohpXXM60MI5A98rOqOv4vBI0oFEQvXsef9jXl5xQm8+3+D7cZItH52JDwJAX2b47Gw8R/C2Y4yhwtzOUmbxGuEB4UOXJmsFIKkwg0AQAsxv2/+NmGAZEabQy5HVPqCc4T+3k4MMQOZDKHy/7jkquOSAQpWh88m9ERfbVgcXdAUVJmRGl7gq1j26jKCyXDNKsdiBm0P3MUsEn0mJtKKIMEpbOjtGsnOGj4zVoewNbeqJLuA43qdHBAmK0itp8KTp4QaigHYv97wFFXW2fABZMQxuX+rtkk3nxqWTVtvIUf0186yv9eFZ38WrH8RxikIv7GFM1M6w7OxzroBszHU4AOZ8AAYYj7ALTYc4QiU5ZQP9Qu3HpYpdYdrdEDiA3i+SHkutUNTVJbokdcRyS3n7y2yOHo0vHEWCb93Ts709sEj81lAXSsGfveZTY/HqxHHPcHUigiXe4fJdBub1xe8pB0fRjvqu+JciNcozQsHwb9WnVGJ6lYNXj298g9xMS3EVcEUGScSPEF8hU4yAvvz67VugFTWZW/i5SLe8fQN1n2hu+CReelGVQKumRNnQUSrd1i4/1hiM5XhgTHmAHxNxdLp77wMuzmGm4b4Kt+MIc2S/Cn7ZKYshNjc8o1rK3sFK8VuNDvSXiCcKyOIHKaRv1V8vgnCwwXabOcnIYKEv1Jhzo++YmrnwcsOus0e3V3Iq40RpSQfQzewMAgESdvRoR+7fGI6Jn8dN+/ZHqkZYYZbkJAimNtlskir7z3Rp59YfWnm54f07hTvULsMFboWDzcT8S0vNG2JtSESwk/eIPpM0trEt/63fPBsLpYVWDh21Ruvp+uvnRY6TJjgNOVAF8nMHF7z1nZb1NHd4MxewI4/HK45GwbMLyTxx7L/0qY8wVQzb7pNf3fYvoqL2BEG0Sap3TlrfS3AbCbLoMuG70oyqPL61xzWIdN/CPoinfUBt0ZrGgngNknDgv08dQxC0wLBVabvGwtYcCx9c3DUYUId3dnzj0+r03AGwD4KmRcjnStZZ2IJBFYOv1R2Acj8TjmstSvDHpLbPRaD/tM2copazDX1IrK+hab62oMvAmJBw1PJB8bHzD+kKQaKxwKbyTVtIvOKIFVJwDFBM+q0ZOHGaA47LWyxhfLPZqPwMKTV1/Lrz+//fTi6LDGvFm6AfsLy/iKXKBYimlsmFqeAzuIv4WkZzoWeV/SfiWSb6wZ+2F7dsIWzUOJCPXrhxan2vavGXBxZcHGOWI+Mf1krDcG76VSF+lBRMP1Geq3cI+aFgZ1wfTDExx2Z6qsP1YEskRnrkv7EhwYIaGfZoiGpgtyBfIB4r8pLMQWiJCIwYSLS9A9GTb1XKbNbW3O+VI+nJzAcnFYlTMe5c2oPmL8jPGe97ILlgoCy6nelGxfZ1gnicVQQH+Vk4m0vPQocQmhc/khcGbrsSEq08G1ReGvzO90Jf0VbEpdMdNpZZexjX5qKZY5pdH9DGKasFVssdVISohbZegM+TrD2/871It4iiIbeJemhxmY1QrKdcDDXNYfEP4UX0ff1UVsu+7f70fjNmdJ/sYByEHJkU7aE3UjjXgSUKMg7BkP7kcJrRmZx9It78Ah1Ms5G62SEV2Yz3h43N6kXodWAkjBtSGVNxanLtH5dIeH4LCOIwZg68wHL6tdWPdHNHoTP0rq7+k1qNIjFx42Pu+kqWeGbnT7uCEpSSKwb151nteTn2tlQRnNN2Gj2DYlLpL3wwxJSxNPLciqi9llddFrSEucVAmAZ9Gamy9jL8DnATxwDIR42hD8IBqEGw7PM0FbgUh4I3eviA7h5L5oidBy0tLhRa/OSJ4rlMH6WBtqBaavpxbtp6L/GjvL8iP6MyVGJaQWCOzh/tSj0UQcOzRem0n5Hy44mlnKwzqsEa1xGtgbqCljhm7iCS5ZLmzV+Fjhb3feq7wQOSuQSVOEc0R2kc1v0vxj0z6iIGykA+f2munUWJwotwg4yya/tptPu8I9Te82O626QJH2C2xRDgi+Fk0L4ekPI6o+ktjvl0fXrr48tJ4R7IjHzEfmjpVa8qewWVjvaDzesu6cnp4N5V46PhlAKOFKT4lPDFowZQqYmS1KV8DV6sit9/w8VZp7ZLYj+RhmE75UJA08P/1B6XY1z+nXjY6x+yJdn1LXlSNR9MbCkW995fNjLEMZ5Ahcfko5E+bLdupW17qtsmhZifOjah9me+21UKH743GvgXbcWznEGCy8kjZLHjzvWPMn1KzlD38cEd9vBjpQEnfxxhTPXRwHFzFDbIVaZDs4agkZsl4TvFC0jDNaTxhLuj6nW6lFZEvxEEzYECRzqnPlFUUf59byvtqPzBzgNHLlvL6aAkMDlc7Ctr5I2Y2XLKk0+q31zAvaP6wVE2fjVjrGcK/4uChw7+z0IJzO+fCWACFfm+W+acwFKZ5gzTUf5CQUm4qRSU5/lWh+5Kdy7miRkxS/y6wVQVX6Z7nYMXwQq0CdEsss4dSka4ixDlwZEjv3Yix7+YhqXt6Z5bQ8C71JY1Wc6C71889+y+ydd3iv53M32W1dQj+uNHv1dM2gaJCvOETwa7DmuVZD9nHl0zI2kM+ADguCC/YwREQx7Pl0NDBEZMyET3rvTpqSAvVzuxqD3En4w/l2AsbnWEOVRrszuyBfUpSOmk2YJZfqxqLhuGzM4yZNzryUywoh7ZYHVuzrOS+1Xu2NoKUmc+ZSfUuuofouLbcED8sMaAOeUQGt6X1iOv/Di3kS6V68tcfkpzraUC5uDD7Rb42UhX5dz8IrC5CeTptqDSS9D9lR0Oh7LIMA2WGzBS7UUu6iTmWtY53ate9SSp5Yzs1TZJ6w90Si5Jjr950zSfgJkixtoKxK1FBJfmB+hrdAVvtkb6MGiu3CjdkNfdBZrCZW/VjutkWh1MTMQd5Tl6G14j46bL4BDCXv2fuOH7l3VehgzlzL45zgohPJa+IqbKP+FCVahx6rvwJk/T2zNlLgT7ZmzrKhcNRnkK7GL1iGBMUsOE779ae/rYtLp23gj4faNOaeFFjFIaNS/Xd8S2MXXY37bvvW1COpf1et8JdoDFr61BdgB7/dIri3g1is6wiBQvZevocICBIv+6NkNCyTBdHyQtj2SnE0esqszt3ilBPxAnqmvbuIdql0cXG9cSb6sM0eEB9J0mdBn+a3koe52lXTJQIJBoYu3jic3LpC5/VUXNJcjaFsXs492yV6sm9TKK97gAfPBEVqIDrW37A3DOllZRhSRBGLy27XwnP1f+JZNjKePIHzV5TJ3BXdfsQbvsLDjKbWSM9xFrKw6/rXekGhqcnnwsGXMXTUWy25tBqIwGM3DEdNADavS2Z0GVvIjiwOmOFcUA5KRKnR7GcN0oUdl96q3aYL0Dn1LMLrbW7kCBTkdUUB1TQumx123zdB1fube21u4WrNNfV+zV2PS/dlpct5hxSsdt7pXwiaV707vp3T41fGxmoWLmnj8e16gobufW4MGSkQ5e9whDMZIO/H88e9TmmZUi4PH20QfYzcDQ+Q/Y1JXwpj3hd5j6/D7vn967/Vrz1BOtGZNUnG0rB+vX6/KY27cdFjAW77m+Mf/UV5Wwa9uJzPT8bl9azBOufd6D8fWa7q3H7bfF5lh0e2vQ1RIPdHU6QAY80eOl1mricWOlgoxgkUxa9npNVAhxyJ6tX9z6AXH3PhgM5gTvpw7R3LcXuwLm2EvFuLB24BibOP6/3goqjxUEvxhGuoYi09Hg0Omv4LRzZWMweJTYqwLyTM3LWJlBJ2Lz3KE2v/mGHY+LtWWpaoljcqCazKavTLDFZY7Z6fwsqZfUjUUFuyNWGsPNQs4NT+B8ILrvdzc+eqXKw1JGq3g1Qlzkp8cuLPsNW4CKjbB09bj/FnFXj6V3Pu+dWL2gzHKbb/X1lgz0gTMpUel28yefCvVwi4tKrXfPBDibQZk0Zf++5bc1ZB8kZjFuJEnvDBX6bcit5myJtjEgub4J/hXIM5Nv5vbcCu2sjbaxpj+cmFMqXeOhFLrlbp4954L4e91PE1+S7ZA6wna60BW6qextYCcyx17LMWIvn52i18UU/9+EAlPXCOYiJsCxGkpaRgVEkGNWteSLpCcW2d5dJiy2IJhe/GG80gktGbH05z0znSmDU+OnphF2PjiPO4SW0/iQ4AeHHfeNE4SOEETbs75EooyFQBnjARaSVrsoMKZTOU3hcGPE2D/h+dznPa8VNp1HIIf+e40Pa3Ks8mbbma4YSobZkoUYSf1UlADgjWpjP22RVCJ6oVO2OYK5zjhfJxJWeQuU9GBW8XNtUMYZfkS39yzypSjR3N5rJIljlBmmtpaIHZhDG00ADGBbreK3wOnuOumSZHppsmNlfnLn1PO9ftaU1GssozMISEKWwTRf6GLjYTRM2H4KQfJlBZPN1clD/igQ6+k7P79kZ2qaFta4kTagIj1m5auR52wNN0ekI77+l0lNlUS/5DvOLct7jfDieSo14gbb4DYIBVLoivVQ7XIq6XHEqg//mCH3x65pWpL9LMWBEPw96TyDz9bxOpqBYI8gr2xxlrbq7LGEFaOW4YFRkt7hWixbJDSvPwxeP37LcRQkcKONJ6VR7HVTXEjYVy1WyxDqBgRPdXoXl4wbaqOfdxwbr1JyuGkwTSVJ+iKgqORZsl1pIrojrvWH58EWnilGEWrVAvw2c0QYozx4O5zIdWhtE1zp6MPq5rAPReACN55dkXplubG9HwQjRlWVLLPG4g7oXODcQWq5y1bxBVpEug9HTpRBFgKwS0us3wn+ntmosTjgWFOmKeaLtYIQZeuqqbCAY9EFrR8QISq2LJTVaXX5/cMk+YJEMC8TEDHvAxWSlflFmEAvrATY04avzZxVgsEmgtxwNZ/GQQ5T0NrHbS7+tNtoXMNZPPQf04U31meX/LxybznG2GxGxFOKLK46A58KykBSALVmJsuX6onY0pE9UXaiH5QXWN8ib0wBK9KAv/AzeJnnWgkrBz9m7H8vWCKn9bYNakf+2FiRDieqSZuRqOLulkdGFNoOj6pzD7XvWSLTAO4FZLr+llsAmco+0RzXkwygAbTZitGXISb4sQ+qn5Cj99KgW8qhYfSx1HQNWl42Mmrv64TbC6B4PK2g+SETPgEJV8wD4vmve5VHiS34mx78OF5oFBS/NUNdttgRqFor+axgvIgHvnulkJLqp2Eeh36+WQsSyWVGEB0dDrnELb7+n8SypUIT4BlwAjB1jo3nKQsM/9g290CNv8S4Q0rr8+BJkr696uQvd6yGaL1H8vjyvX+uQ21uQEYQxGoheVBIZE/83gPGDvUrZeHDc8cHWf0do2YuO6/L/5vdnTgGkgKxE4tasMTBmgP9mWubzXhDdYgwCSIyafLjctsm4jFXinCQ6v2a50AETZuuEioAQvYa6vZBWcOsaDPU2u30E5XoIWPAZi1ZDo1k4kL4G0zrMZgj9zbyznKW/OEurT+YD6MUYVqPlnKHq1uk4cUCmB4SxTZHMGI+M6c8KTgEmFkvsIAipkyRuF3hy98csjzJtOwKV0Ozfv46Ge1+jdyWAsFD/HikMYQ1dNEA2stYr05gFIVvzjoXnq2chMlpM6Lmv4JDL1xWWeNLZIWZIBedyg7po9N+Hu5nc12xTgywmIEFa7cerINqRnsywd2lVstLHnuEBvfwUUmjtFURwNVmGDZoFmUqEo++MYiWuv8z19TeFrTwa6S8BXLugUUx7GoFEkm7rev/+juR5syB6nMLMZYeDY+qjyjzBnX6soVrfU/7hG/eCxk6jUlT6HlUAVj+7/BWO6FaYAKbmI5/PRqiHlhGOBkATjSwLyMlEwPdhMj2/y3DUDXVY6Y88kadaJBTp1zDPviNozrKDc+wxLCGN/YAQouprH9suuBJNQm76xIa9GF6caJZJk5dpZoimncHvTvo1DaGir2Uf29Au7c3mtqmI0qzMtU8Q6n+7rY8QY6DyEh8KXEQj8OiYefv1NIajAe4QT8qaUkzUiEnDEC3doi6v7e7d6nZkULjd8IE/LrQwKFqcChFpBqo2v/c8BpWF9mJokiFAq5EjJj0weuBEVjKms19kBaJw5w+Hypcx87bOw05YTMnaClHFpeX/sFKmQEhXgVxdySCWVUgxsu30QnicZejasgtD79K5Nqy2TJpeIAVT78xkI0AmG08y4m/W1lvilbYpMNezKVOk0WGYXcWCFTD9GyqV3aBHqVx3WkoK+sr2TIoV0/2NlJ2yPe+fBsHmNuGuaWpDcbLKpMK8+msVutGMiE9NmVzQiJ9XAWs+IDoSK7ulpXbg6Vbr/y+bGStBxByRKo5+5E1zDLeJ1zzjfyaVfYTBmQywU5Fg0dIGFEca7q9wt0SoVwolZbR3n2l4QTCHLpvidfUOsPdmSLMvDhTcjLeP5HcNF7PCfifDfmf9wZs52meusChCqwldAUWh7ogU8mSIuvkU5oXfY+50VQOXtvFOjbzwWBk4Hya2OBMleM3Fuv5uJzKk7+SIU5Q3f2WAmlWKcroC6fvU+8Rwp/+WlXrjB2ZOOAlSrIuICjogA+ePOYa5H2p30W33+O9kLP/wfcGFAfYuAtHi9G+waWjteARjepPrHDv6D0MzAWWmY0fJg27qnMIm1LL941hP3LdaLcD6nPwCLzitp89CMhh4i6cHeZOMygpvUoAL/kje5BbA2kJkYQzHF0YOctGIqyDQuCL+M9EejVuyrYd0AFWBZVTSS6lwLgvfbpXnSwKnD2QSGZ7I/b/RGKia/9xUaEH2X1KEECEdtxDPf6sWJ3sWbTvaIWT/2CEWMn4DRuiIdpTNlEQg8LKu8SxOYiG5A0fCIUDQWIgwkynX3houYflTacBZsJlsjid2iiktlBvwd+ZIISnlRML1lVlP4lbCik9C6J9oKNA0ED/bAAQFhXWPxa3OtplUUAi9DF+6wQk+FhCqr/GA0cyr9/CrZLfsC/GEIO97JUGbswqJ+2QW0Wga+8WgYO/woDSHlHON+b8PcCK0fkq0vRq/K4mfy6X2+N5uFOuZdtCOAgKxxaxucplZLiw3RXt2S1xtaMaexYl/PikWpgRzfp/Zib7oH/SDwPKBrMB5V3RKTiBVQ3wABblYhnfyxnDs+11ZbT7Da8pMkb5pFvb9MpfVWWBmCSPqODe2ul03U0NqQCuF1LGWLGABUU6wCKhAVEYqKQ783N+4Kuhz0/h1x8BvdZ0GLZx/KWFKpFLQ4sS9DKTIRueNHBkDjEjOFzfAATeZSZeq4M9/GUht0P1j4eejsp0QnuxA0bjqThnbSigl4TQcOOFKOY2mpCcP92tN3+LJXOp7x99KCLvXdexw=
Variant 4
DifficultyLevel
607
Question
What is the size of the angle marked x° in the diagram below?
Worked Solution
Since 360° in a quadrilateral.
|
|
x° |
= 360−(46+95+112) |
|
= 360−253 |
|
= 107° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the size of the angle marked $\large x$$\degree$ in the diagram below?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-J4-CA15-SA_v4.svg 140 indent3 vpad
|
workedSolution | sm_nogap Since 360$\degree$ in a quadrilateral.
|||
|-|-|
|$\large x$$\degree$|= $360 - (46 + 95 + 112)$|
||= $360 - 253$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 107 | |
U2FsdGVkX1+cDKdw/7kbbnKW/IAFOMjb/5RnBGNTNm646S9voLmtq65XqaLVJZa468n3i0HbSm6gwwfVQK/Gb8t3EJAnLjprq5gUgNylRLmPl19KRt03Cr9OV6LwiyNEPxCFlOPaxVKOyqhCNyzHwybjOXt4EJzFugx7RmpqEf0iLpuyFSZFu9Xps+9zQReHsuK5n5zbyLqaRZGkwHOZtzy4dRTSdNF27bU3llBRaJFzXUTZHjC7Trmm88PViF+B5NlKOudYXBn6d15MV9vCG7YPEm7DoQtGPXAQTkZDaqvSNlVYh2rViZr0A+7L3TLjv/FqlVAn/TNNfpZI5bdlUf8dYHKr5SHlY92Z9cezpQGoErfnRGDVr2J2eRr3OkiLQnhVq3k85Cp6YYXSUTFdwxJ6OuorHJVPSvwRQQxkm0MPxdBJKXYrD2XiPZiAVbqi1/0cBYEhVMq72AwE4FXnGvz4jZiy5QPxFo+CHGu+GEWddtdUaqP/c8pe+MfvOq2S/rpbIrgrYWfwBhYPyu6tzppU/rhB/V74XFfUfR9Na8g4scAZ3QElOp7vBq3k0+ulLyN/ZRI54Zt41CR1fk2/WOX3IrLJDF0FMtLsn/C9gh/O5GtlLbaI1+zw9bD0Qvad/9XGdHrMbzVIElDL/LIvwkxFAOJbfYUuEKUFJTEqyzgMRy6vKdnP1m2RpdFLi67QEnn3otCjLsfajnUvvdJi9784ihK+LvOATCmRNKz+vRn1o35o5tlS77ApYaz7DuT/75xK9Om5xWwFZd/Z51k1l4SnWGqB/434RNjgwHOhEzqbeFPZBhno9R/SYjKbVB9IHDlAHUNXKpHWxMJhoTyqlCiZMce342y65zbSBerxewAoRvKgRZ29NGI8I1wXbnPk8s76al/XvpRQpuw/zBuL1TxfUMr5YoqqHC9+/TR7+imUAue6fis9e8ziFD0ifd6HjZO5m2udgb0E/a/APwpVybUUBuEm2O9EoWzEPmN5S9Zwe0cSSpnCBXO/hA/twdQswdZiF9g7wMqSjepwqzEIPF1uMJ8Y96GadVSWF8Os/12Iv2+wQ8Eg4rcdz6tYNAoink5vuFMxSv0UHPqzRbuFvwicu1WQsRn1y99LBLGQCs72h5P5CNZmPnGC+06IaSKppNlCj4GQpYazoVx7AahTCsbR+rJr0xL3IWra9++7mkiV8c1aXehdciRe+kO/gbwTFXL8vmhttqnuMRNx3WtjgimDZDHqvme+AJ7O/YythPAjzBycv/GiLXKNkkJr41HBqKxP4E6EnH5HbyPh5wUkQdngqSa1U6qZxgGPSYDmI6XbPDiVmGQtaI0KwlxrI/BsxISkL3bl8juBi0k+fXulStWC5pfFR4xWAMZEtl5uQ44zIyDyHbdXRJfBQtyOLObvlesyvoxv+DKkSWUiSrcr3gBIGKWhZ041ZKv0G3TRels1ujtN5YngtO4b0H3nFl6PulChVwHcc/jNgAbyGQqJobF4ut0irApu3Nig9jezntQhl43ibS2I5ATMCv0yvkcjt8MTa81lJ04f3cj61O8oOSH5EYVfaPbUT8YseCpDE97pZM+N9a6pcc+F1Gki/hb8yc3N0enWqzJO/UC3nWOHDQehpJNzdWy8YZHim3bshS+Y1DLUpatNON5BjOWF6uvGqbVNYJP6JUS3fXHlgMJYUd45NG9uDg6Mrzj14j4pCtIDqX6UeCTC6aU8rZE5qtePi4MRMWbTqbsLmBLKeUYaaxOJgM8q/zmLB091N4tgxxwJYOZBVX42m4ul5gBPNTrVu+zoMxQvFcAGe0kUDM8BACeeu0uuAHr8L+bdZ1tb6gRTtRjfb6PiyO1gvNXqrtUA4XEimz5G1/bodZIfE7Q2LDPUD0bS6YJdg1U8QQyfK4wahX2TVgmSMSuBY04u5vXIsgfOKU/9Jj3j3FXVUPn4HJGTABJOWsoQ75WbQj1Smmih1MK20NOhGWvXBzqtyqWYWOj5dJayDa2raJTtF0CVPStPM9Jlvm3ZfsthzVQF1D5LKPuPpOZArH2FpbxjlaU2zTEFaYMqoAebs0DqmQ1bk17U4XeQVHsuisMURb9L3kVT5VOqzbFMcQpV3OAkab40/19VSA+CEsa1a1lQvHXupK1FXbZ8+b7EL97QjEGfsEcsbbPA+Qh0EnRryfb7+zwt+qACVQHK3p5BWnnPfnLgCFs3yRKLwIu5K+EpyxH4Gmz7veku0hOKqOcs9P483FFiaBJtCwjiqNkle/rLlIP+8v1LkPtNNE94oUKVrPC7YlLO9odDzXl2QydziCQIN+5FUZt2TxEGreVX+YHaj9WxS1Wo0tiyweeqLedrabQ8ibzL7ztj3uOF2jT4vWPVp2rZ4HzdgcJOyVxhHWgvvoY+v+kFJirPCaPw6kcZWor+zbE75CeChnsI3I98JbNLmorETGr+Wls9qGs4nJqrv88lOmgijsqGTRrKHZrvO7ejJiTwvEp6wFFd32GDkA5SbaWbJvxn5Rc+KT4oq12r7iXpLqefNZDjZhVrQzMWldZpnqZfeg09XEJZ9w8LGSLYNE+gRdtEEEYmNcHuqnw6PN/1L4jz5Ncl+7aR2Z2okoUIJ1Vj6hKtZHU0xBeBloTQSdv/eaJR7Aa99iICnjzPi8VhfcFZQ2nZBS6DYwS/UUFOYxRoUybDfjSUJRwc4kcWOqRYp0rDssATxmlQdB3VRNTyal8UD+DgREVQILhfo/Y1TRaqUtUdtaF2susRMEOClj/Am0Ku21maxY9emj4UGIAuCa3iRexMfiTaQoQ9qpEEmj0gOewJBb99AM6CBtNUM+AnzjWns9UTaamomUPMzKHDeF1pGu0RTiaGZpPf/HtCfZrZbWF74kY3YDrI+CJ9maNWv4Ryhg/DsIMe8mAo2XLV60ttPmcfuwPEdmmBYdNsGtWiaaBy/i8O3yt3NfhxUslhJuh+l0r58gR3epIjewWoa6YnBTzkK0quppSramYgeBQHSKi8IT4447h0Gi02KQ5vZ/iaCp/8j+swEPB+Jmgtg3o13rBrPjoz3o5oTAD1/OLv6rkbuk07omJWGACbxyAoERStCCGIdz98c2tmaJBxDGnX1Aa2/4rbMp/b55ChSkM4tblIUQe83Fy0lP8xxJXd0NRjtxhDc2eTNNBJHsF7k2dG7v7FmlsRbn0iVaQW83qeCHRsO5zcvz0o6LaHeCaeEsaI6XtOHWEM9aPZbLWENZ/emFLzSzU/B6AoswkXMwridlk8m+AdwKHBGhRuo3MkCiSfY4JX432whjzYMPu1ZdfuZJO4ENA5w8ZYZOaJtWZ5rcG5rDnPbEyHDNBbPyf+ZfJMsvFpkeZcM3uz96zWCkZND5Z6y9ChlsTfYdb9JmNEAHF0pg9Mbn1atZN4D+xyVKD/k30GMJrhA3D/vDVSsUOrMyjpTBfQkD3IeI2nQRJPW22QDU9cE3PusK2b5OcTHqIRIQ9YFXSI40siMTWWmcTfrzDMvAt/CkVemsZqpzIzLjPPTAzW6zSj6G+ZW0TaXa97FkU5DZCKoAaDqe55gmUSfoAYEA0LbyD0Z7G/MFKbhnhHYo3sIeZ9hxNDE3sndzwt575A/scXdFdBsKhJAFIX+Ia/V78c1OBSBY2XChJ8/Ax2liuzdOr5mFHQI61Cb3bGpHSW+Hxpkg4Ee5PzjNh9OowZypjUi8R+pKjFpp2AgMTryQmzJTFIamnZ9lZeV0NK8RN27c+1JYVhhLvSbUW1nq+qACaa5OmBBSM5R7WwhoaeN937tWLoWSddx4oweqW+nPO3o3n0p+6FB1nh16Vp1jrZiKEbLhCHxO668HbTYU26M9UosU9DHVCiHKNmZWBWB8Y6LziQSR5BdZJwlB4nAxL8szzWMGcyKpFW6Hfo0tH/+9o1bJlGKXCebbi/AbUMyJpmw8wQffc3ADyxhtH/jylnBNJaTip+QeATDwrXB1Lr6EWvu+nuIJfW0e+AbmffgbHTR+ETnlxoKI62UAr6/ym8MhfgRKt3wQhWLk8aSsmhBG4Qb7bRFoFIy2HTdJw85clt5B9QqI+V3U/Cwt7Y0ABaL+PIHkYo0GmMDXM2WS9EPWFb64agfHWhwrW/i4aNQcfu31hiy8nQv1HFMU/rOdHafSh7dPpYITM8x09buunqnubL0T4uyny4KZSW+3iaIddGwPG0VxyL6yrfLL/bLJ9eycl9Ix9PjPr03WOXUWBIfQLC0i+Qu6Pf5+LWEV1jVQvvhBsIvqO8jWh4ZyAiXaYBM1JbL5NeS4y4ms5RYu2b4D5BCHELCOqXrX8Y1fIxEzuJbVMQ/yYvuCevjBhfqiyF+G+Ha0t/XiHNY1uga/yVWS68DuscxpTbdSgmi/wLlwgyq285ZTI6OKiArAEVPSMGoVJONc2usOvc94RggRchfwra4QeAe0sXL7x+o53Pta4QWM42GaS+PDDqCdadYpTQ9VPupHCShyYRPD0D14Tv9Cm8qH1p6TmvgLErDQ8buIz2Jy1YH6QWvRLrQRkam0yztZJ3Z88X++Wf+uFiPOnoRQLH7uaCnSLo0CxFEaj6CZnWURpyvgRmIlRta8trtSuLqMIFtR0NvMPKzbJQ0Rz9qLlIcnWa0MQdvw5zH8LqC/Ke4cOhg9kaUcKgDWK3mq6qtw+VKZTg42PezRLFTp+9TUw6s/+lWoSX/MGC0/SH14Dophsjk689NFhG1JpPFf/LJCNf9bF/hlwsqYzcLqOAPdehYcbRaZc921WxQhpMD3YVV22gQBxRFFRj4gYAUeilFArHh77Ebiv8DGalU7qoXPTEYh4U6sNUqsCAeYoH/z5CIrqUgc2mk3QoNIAcF8USxkb0jORXDhJu4pvda4e40FIi5aA8FAi1/5vR6zeiXSOI2VmIqC4BddkR5JZsFW48QRZA2DSp/W9GiJYNyexNAeRxG0Mzc9BamohcNMKD5swRusvOHr5wzndvpb03NzTDiz5vQpRHByJ5OvT9k9lUmj0dSUw/TfoOdiJQfPqywueUjQykeIARAQgdYX/gFq5SdC0jzq0IeCjZz3541dVPXT/cqYDbSgOSlHJzJg+qnpwhMLSMOOrj/y8tL69hArNOQUS5ZsJ+M4h+GcGY3gLXCcxCOeyFgYhZu2OOMsFrihDsI34pZBYnRnrig2bpdep9tngVhy+492Mzo2Po6M+pjBl0ovZVo9d270eWd4nk2/B/a50SH+syfidIZkBW5yBiUFYPs4U/dadO9nNwNYcshwTPtvvPCIb4wvNfIeVPFQpmERncJDteGplDkdjvJfZyL4pOWZodvSfPDI6J4UWjqLvP3DbRq1rdFxAJ+tagZM6+QdbeoL9XGL/YeFl57dknfJHqrQX/f2/l3i/j4YVH3Jtv+R+pC3sPPkELpc5aMtbMbf+WUbfQnNO4l3g+MDMy0gxAf6jT0aHNe0PWd3lNne/yHiAgRH2gUdTF92myxEb0sDO0BiPM8s4MagwSvpkTUymgRyCCjcKbLdvjVIL/B9T0juQJCbBRjeB0e/2LuFZ0qyS5s4y3U+KClALWtgNUQUy2wfchJKiS677Drnlg3f13Jni1pooyTpFF0091RSLTWuoIX5jFga+SUa8NNqIBCyfzUPmVTaoTOO03QCSzXiSlBzdawpHMa7Dm+5db8L25VUTVD5tw7T/k5ZhSL5m8XreOZLC33D+4nEpyUrmPTPrLugrv+XHrSjcVZ/kxx/sFRaAzlBtHp4lRAob6o3v+T1DWVS7Yu5aNuVs/6frWYOOT8p29cY/fkw4SbYR8jcUExkCQl2BrW1R8ifOn/dAyXjHwtvUilvFxsKs+JXYW1c9Km+Wkd2MaFbtqnuwQAlVW9T/OyU1D0dwB08L7JZ+7x+mM4zukKglWUnh7UkUx9dzBQr2ZceRkAbvKYhJU4m9BajAmLLd+MQOq03sYUrb+kbGh6qZ6W0hNL/5sIPZ0fRZ2WxFl5CumROYp9YrA0hQasCPiVtQMAII+I27zjUKAWt/Mj45Ot9Z7IotxZ+7d5GzUAfEYJySMJjqjjjCefUJrb/rwNjtLdyshrheZ854fzpB6vzK6ez+RErX9oMaKmw5SqZgZIOc5KKZJ9lLSFjlZ+7RtBSh5Yj4xJmujdYhz8ELYgk+164mj1I7y4hl6QaM0uGlGmA/t2mDbtvxnPgKQCKdajhY+8W72YaIhCzDU8QYArkJg+DgUG84G2MhwM5UIuxYudNZmIAs0P+zu/Ivw6En4zyYFrM10Q9KRF9QA4x5ILJHt6r870zxAy+HKv1RcEc2AskxVRXS46Wq7rVf6Qv0hfNeShd9wPhCOJiUBmw9TbD6P50QPB3jg8ioVI8oP+PKzFBKqYKq+vlBBJKvob0v5FbS/31OPhthIZGa3fAJxVvI27V34Kb+sUuOBW6unpzBKR2M185UAMALjcUDoAzXQX/+XHuFyD5OpVTcQget+vIVB8l7Q8KlMPHbllMsV9RjOV7gvVQ7vwuGOywLf0eyLdBXSljx0qAydy8WqBL4fg+ayHRk4dsxcSh1JfeubjrqA2/ACkNjYQwj75nZp9lVbLz8+1TjOQk/wS+YSEOzcUWn2q3r7UbMaYS2IPebsaEEPmkzyV18+6lyHcdp+j+P6Kx80mkleq8tg9btIa+LO5V1fvKMUEPgE8zib0n3UzYoAtBpzUfQ8ZFQbGeFFfroHRcXL1/yZDVMqWSHxhiiCMXoY2tiS40sZ5XAGz7Jc1hUPVEwdCOJ9yjH/hMY0h9+/paP0/Wzm6W3k73sh3Mlxpw5fnDiLteiFpoCm5WgqUpDs9BrcHda70T+YOZ/A69dsiEYK/JcfirbW9Y0BpqQ9MiP909aI5t2fBdkbwMmTdBvWndNc89fkX8sS306+psISNr98kaBDov5oYug+k6rSRLwolept/BxQ7DH6mtuKxa5OxIKCug7wNrWaxk+FSuWKPg8aFabtWDvlktfBdmyhwlYjcQygyErpepKXIFuTCi81kVue/K08Ga40HCFi/W58C+j8lIEPwluZsZrJtiPcN2K/ywkmDnQc3vzrGB4nK/wiw1N/WhbnMEYEX6GYawEurtsXT2wG8+Vg4jO2l3z3NARHoXxZU3nngtPMGUoB/GucWsDGAc6R2i7hsz0tx7sqlzRbBYFHsRwZdAQa6jJ7TfN67sjUcTvsgaRnTRPOdbDO6MxSdSTOGHa1VOWCa09NjZArKEwVo0CrTTDfOIb0LDsQzW01LLRU55WZLiZ4pIS1nD5RfTas8vkpxUaVWTyGyMqZrWawqLTGKcBRpgVuVXDggD6Dm/T6z6NMEzmynfNfCs1cFZzCN2KeB2ORW4j8yLyFX7iMyyYYvMTucLBOrU1pnnymMAJRPnBuoD0lIMgtIM/nb4gSWhu+TE9X8hQLGejCdFYuh6o41L2YZOt5DoXzBr1oPmeZL+rvRlPvP79OHRx48nEKiIPkwxmMytywaR0+9DH1Bd976XfB7Uj2w+uFp7Soht8hun6zXd4ILPW9eHGA2/C0SUvdfMZtHBJhb5HHODrx4S3knPVlSpHNuUeTdKDnV9PcfAiJy31YHeeka9FzCMYdPElQmkZmZ8Icm2YTMNEvwVcfyOOH/oF2y7OOgw1tRKgjrFsTveV7dujheIF+MMymWG6AvxPkyQHv81KBzFbfzvkQLSG3KhGgUeR8qfrH8FL37BkbII8EK8yOKPVz2kL+xwPETykz3jkZSPRSi1VGxvat2N0i5RrR/j3Y3GPAW2FyQJMHFEkzqPRiOLU7IpYLkNGARe9HE29p5oNESDHNO7rQf8Taxe23umWbmME9JVBaQvf2e7BMLaNp23JOA/a93GITOw8atcgd6X28Vm0GAA8MS98VOnk7j8csYtPK2SNNsXZ89RCVkcLmCe4IVYOLSzHsU6idBaF2EpCVDQ/z9ITXcvkt0GMVDGERUMwSPFV5MrJqaT+NLdm4zN+TnGTqGlD/nyMXt8j3B6+QfusAVXmlAS8H00FiMt8vSpGGYwx2+X7RE6+2e0B7OIoTc3D2/DO0mNAdcBHPJwtrotYOCEbND1/VzQz8AhJpWRaNY/8KE3ZN85i0rqaWg1rN838D5x6BFCs9jxqe7FG77hlIYroqoHz3DfhwO/N9FdGRnRN31jgwvsxh67rCLPnJM34DRnltGh6VP2P6MQi6NqgXZ1oyfesX2dRS8UqoeAjDKgNFEP4k6V5SSGhJCSlxFXh6Ej5ZtpGwvWfy+C5vdlDUCSqi4MeQRP0JNdFOJVUnCiq/WFLh+mfySB0830vC/fogDcpK2W0U6hl0YXuHsoVk976H0AJEM36v2sVii/vi7zy1rpxRGnpzXtxdCneUe4gSvIFiHK2TLVVC240XQpbwT4PursVrZ8rWVbKbXi3A4hYiriEGkMF6QgP8A33FSbhZKxYPqNxk+DaKCsLq7Dof9XAMPILQDcR+qu2Gk/Ye8EU2b64NglEy2xMIFc/T/ZoOIUCQ1A4LxeMDH1OhDx7Mc3F0xEXdpWPZhJcVgnhIW0zTBlWwKXU0vw6bjAhGPF/tIRZr2/RpepHEwnSEE/WyC0TWETdbHB/6N5GUTOZHXndIIVq5UK6rkRsS78ruc6Sas/mx6ilNxvQkx3Tw6/PqV8L/N3aSX8a1Y8kull0Y+5qjXfiEHS6UoqXHmVc3Fm6g7/TZMwfQ29ZcwmW4GSvv9Lmeamoyn/G8KmB2Amhn+u8EYkShWPmbxCCrgiWjrcwwzoNHK8pzblT9JcL2xhwTIH1mQjgRm6NsxpSinxBF27PO5r9waejNMBZtO0kQTRJDyGqD5YY5PdHkEDA/C0TC+SRvkbQy4npLWcij4lEBBbCo9N6CGKLCbzcy4wC9zkBUD7fUhpfal4dN2rweYMXwMwZ2uSnuWyssGRUSFO8zbcjBnQ7w8Qzx1mK78lrBZ/6uGTL1yJiNyDFdn4KXbtOpA+0CWdu+y7q6NiIIaOvmSCfRr5mVjZmJuiH41mpk4SGW6XpT0VgCgELzp/x5uGFM4DXWk7pYWIaORui6XvuRQEpQf4/y1O+ALQ+KYQ54xDabmJGkWsNNaMAd7yTcL/gz+eFWekIyfwdtM+zimRVGwE7dzc27Wg3sjB++d2ILq9VirbyQM7wWU6FI8F1L7N6CBaX7GuOTqgG4rdKIhGQDDEtTJQoJidbQp68jspcEPvzvn3nkLqiaKdymyHrlyGaGD9ZTF8P/i/amEkKIZeH4xHapUdiLjDuBlnhlUUC1t3vPTF09TcKdHwPOWaSFniACpwkhtlgR3huvcdSP8iVVaoDbVGneFYKLW6KD5/CQO3BeQq4eLO3hZPxx+WUNIFjGQ9qHQQwHth/p0Ojz4W7OD5bz7g1CKrD3fU4LIixbvw6uV1cloTIaSmPmWTipBTNqKwIk8gRd8thTFctJA3LHDFDTmN2+zvwzDzxKWWAZiH6czKTF/9UBvI5/NxmqVgWBoOS/991r4bQkUrrteTKCS6p4JIwd4jWiLSGZ4UAHAHXjUexFcssnZ9z5TkpEniRdiCIAolfGL1dO45VPIvfu5UeIDK7SRnQp3aOgGWg/0CAGSRCcBBtFI9gVkJ15Qj8by1AnpyItT5aaVwL2c3dpmdsMdbMOfGbXc2zn7XhNsXul
Variant 5
DifficultyLevel
606
Question
What is the size of the angle marked x° in the diagram below?
Worked Solution
Since 360° in a quadrilateral.
|
|
x° |
= 360−(55+47+18) |
|
= 360−120 |
|
= 240° |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | What is the size of the angle marked $\large x$$\degree$ in the diagram below?
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/12/Geom_NAPX-J4-CA15-SA_v5.svg 200 indent2 vpad
|
workedSolution | sm_nogap Since 360$\degree$ in a quadrilateral.
|||
|-|-|
|$\large x$$\degree$|= $360 - (55 + 47 + 18)$|
||= $360 - 120$|
||= {{{correctAnswer0}}}{{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 240 | |