30179
Question
Keenak is making a fruit cake.
The recipe says he needs 1 cup of sultanas for every 4 cups of flour.
If 7 cups of flour are used, how many cups of sultanas are needed?
Worked Solution
|
|
If 4 cups of flour |
⇒ 1 cup sultanas |
1 cup of flour |
⇒41 cup sultanas |
|
|
∴ 7 cups of flour |
= 7 ×41 |
|
= {{{correctAnswer}}} |
U2FsdGVkX19KL0EQ3uhDu3cofJknByPtBHh1u93KbHuwCz++PnQ9Kk822c5dFSmQExLooeOH4mePsX5nx6A/ARJ+mBLD73sN2qQJHcZDH7tg5BVBsCf0aD9Ri2PyOfOLMXm2R2ABCalKqxtdYrzyepTOhzxt0a5KnnDHeZwjndYYwT6Bqn3fPF7iaYiymoIk5MVcXny/AYwn5j2zMYajkpD8jmckrR7kQ1NEcLfqu5Ja+aBVDJm6AYaireBocdzqMqLmCNbL5uTGlWnKogRvtpwyC53H5cHd+Gikr8xp03EkSMESabNTfbkXDZGy2BGr74839mJoR60phBi9/6y9sh+I/NMTl/poZ76QptOQ3CdV8rCxBh/V5cJ6wc9ODCsUjiDPpskJ7ytzk3X0JsatJaLdZ3iRdNiqkWtvOK8EvIe6dnUx1fVsq7OyoU3LPXDuHsKgRfTpYzYzxTMW/i9uIa5AgGDMLv6vDkQLUOeV1HhotRc+sEmJ+rxqHY2uPwFmEhUitSQdq+grzSRYWp2P0/iOMslDTBmA8XM52mkW3GIkpGGWvkmSXlJcflwtfldyQBvWZWdM6sUpMNhbtgW4U8QM69y5rkwiAShbmYoyEZbgcCkFXhIR5A4OWAVV2RQkUtxqHgQwYc0prBq7R0bV9nPrWXpVLRyHXG86G4NXVTF2jlz8jVuy0wgVLT0gLUhXbt3dv1aNagFPWD8QEwf9KVpCUUsI7KghDeEWvwceZb505JkmXQ0KoUasPRoGdSVVQ23geqd48IuYvheBPa9Jm4tdD+VK825CoCgViSB2LHJhK0nOiWQQ/rKeosZaNPV2pkw8jhmSo9TNdX37041hs8FkMY2tLE54OrQayd6zT4gCyZqm+yqS860uyb2jRXn11EF7KjKbBpQTYybgCc/kAU0SWoEtKtZUoLgflPLPsd7qxwELzrrN8pXVjF03p5wNAgemJH4J7UtlO1+958RW6a71Evah7vhmZjm4amTmu/QeB+zomfHDEqoCDk35vTkhJex+ti4kFsycQnA2y4MgOQ7HyuQpwEX5kB6A32ihu3OZ2OyXch/XmVailFwi52F7pTMbdgQpmlFIchY9sETyqLRqm6MpLAzERvv54gX6sHpYYQN1rOc8FwQbZchWlqtU+X/hbh4nOfvUKqxtovDrVa6O6o4sZHXrN7ZZyH1/E1qQB0PsLVsFt2pEaGy5V9q2JFFb5S1GwloG/heCBasJo4OZPBCH8RFr4RyrkOg0Yo2kpdC0yUfNsTIspXpJkUUBKypH1FHwFgoIY+2Ud+zU7bwrmoxcLqQp+VpIPO6JSnTREQWsTUYBupPkuIC1LLq/oYraBbvs0Mj1ALp8iSePA5Kl5aYbz7LSN87/N+o0gqNqTap8sBj4HwKH/ZdW4nPGn6NbRLxFVfh27dc7XjtPCTwOyWmBZq1CV06SHZhy8o4rqyl7SDZfF4+CFBmFMUi+XrBXfRY6rvDl/Prbg2hW7B9wW5SpwcYC6qmHWTjtm8J9iEKr2yVsxNV5wJLq1USb70CKiLawFRMRlJ8oYBrWecljeg+8bMLCXZvWBIXWO+pkVrzxjpsc8Xie0ErVpTSZ7+oxXDzX9okm+abS7Wro8nIhXZyzORMUKEC00ppKnyemhAxtMPBNeloAobZx70Llrm0XoONAgroAFIrTIUZlt8Aq7Vwxvscj7Ieens5UFHGQzWTd+41O/vdI6xFKX6fDFjJGU1VFCTLyOgeYKv1PCHpGWiGXmvSDbGxL2UQll1SAjN7v6SZT7ug0nMhrQ6PGWQBZXtXP9NgMuj7POtwwcYZ23QbaLKLnzbfj/jVw6rbxZWWAsV5tB3BVxv298xx2FBok0y70/JqjictOjVxCi6GloCC/5xPuCTDX10wcTbzSmSJH0UK0u0O1mouZLY2YNYCYZX7fGkR1kBhftevFsGY9WvkfzuYoWm1S76EbwgZjugqNDc+DzcnpY2yGj/PUp04McQ1AdPksGNDdNkr6bFjIS8IVSO6gVx8qpWiN+vQ2ewjyoKZZg0OMOFpEkhPPC70GxoY5meKpSyiS3Ky3KIoSVPPrDpK79TGncuujlT1iMgyrnOVyQXa7dcnHUUNEvwq7x1AJJIlqXMITLgqUi6dgti+J1jQgsWMAnAc7RZbnyWUSLuVfRAMR6aFView6TtcagB1hEXFtQH0URQy5CCRElprjJ8/UiuaxDFjJr2p3r2oIg4RFY+5bMPKiZlMeJ7lmX9Ri8x3OnU3mzRjPmnRDgt8M54L9NYPZxvgDQZGUYBgMPE+AhkZk5uvDJjugwEdMHKfnZ/v09Jtyihk1l3Bf1T7BI9aMKyjH+/UPpfN5rbWMD4E5UXOe2fc7a+TaMO6Hu48g/1+Vbmh74ffsyINs3BcLsVw6PGcyjVvRp8za/+WLLhvqo+f2oBb/lEGNzhVjnFFCl0/vhdB7WfPKDjxWBAVaOJrVZRTEsKtmiR6X8fmdyCTRZvxmz86VTJsnzYzBgmJhCV6+pZFWzli5hC4LwSsEWV9ky+sTx9s79fSkoVyL+j69EmUbkqtlNVogb/DyK5QVUj/hEZFA4lQ4lePM5MywFfd3QUpI16lQj0Rx9OZGaXIped65PBEow4z42pFx2fJUN4WImNnin28to2kAkE5WlP171X1SbloPBZQJD7KJs6/UCNze66tx+fckv1QcmYO+XEgyEHZ/Y3fhcaUi65G8ha2+y1x/8PF7W5N9htMbsVP38OXWV+D/CENa1indaWWY9tDkzuy9eb461NzYGGRrrIVuEj3DV3+Fj7B4g+7nptJIvyfLp/70IDo/DshszCZyCkKNho04LyAt0DHJn+B2W5m5ZTmOM4kMzl/DPqzj91woYkw5rBoYQo1UM/7pE0ytz/jE6ZZ0Kk72RzPcosKyeDjMqUW6+bRmqQ+9H8WDIVMJQ9MpkHkIt8N9FxwF/gl4xhBWCSVT9OZTdTMlVO58/6U/zK7EewipMp6Tle4tgpqqDKevuy1+3Elc6UYmVvKCfNqh7pPGci4GQzMDZPZSrv0hHQJNYp0S8j5dpaIka1v2zHivkdrX2qjOtuobm4+NECSpsGeYHw2GlaQ2I+Ip6E2nFVxiyH+X+c2bBt4WVU1cBi2hH14b7r5QGFTZ4Hk/ZxrLRWQ+Jj8x06eh9cLLCE3Q1UGzPxJf8ls/qXPPI2hBpKFAL2OAt+tzY87jEY4rwwSJ4T9jYJdi4rkYdJT24mXm4EXzXqXAzwahCy2gCsEjQ7/B/uFJCY5mtk4Ek46neB5Td3U6FGFQyN/rcbVA750uZYitHkLJLco39TrZZENYuBOhe3z9VQkermrK6kYS1RapKKww8qppEok2LMV6YN28wK5At15u5YCZasa+WATLxvj6y5iloI3rIzOkhfJ9UTV9E462qWAhtk4DXcJ6mX1dANbI+EV5fDt9Wjd1md0wXFG/cI2ZPODrTWW+WxfmfKrcyQttOvXfzzwoRZ29eQ/8iIXZRaAGRQ4tZoVLlgstz+LbCi0vfwSbRnbhQjORL+xkaHP+y6jOIuaVTa9KyG0qFjy9x8FO86Y9xQdO7CbgBTtiNJk3FFGwJwYLbCcAD/6T+SRSZoSNfRvnqpbREGJTlJuw/7EgIA5QlgID93Bqb55Q4zwIFNsO/c40DJMgNbW/v0YmJKLEWbAIl0FVTxZ7BkD9gpAH/T9gmEIXt9L7AmA0GoN7LWNZzOMx/GUO4GyTkyYIAcH4ZP1loZ26oJgPxMTWN1J0TZT1jJktzfWX/ErqNTefn9YxB4ji8rvFsdApw5UF+Vb6Dbwk8qwQucSvPpeGvclHsJ6T3mYkKnrEVqyr72ObP/WnWxMqZW+LA96ANNq/B0Wad7STrwbNpEYIKJPCThBowgKwQiTeZK0Su52Bty9FcnqPL3HejDsRxtmJY8l+eppJWa4gYTIm26Vpvi6GlQNe8Kdcc7K+EcuGiLPrq8EjgXD4yDKJiS0YxoHzp8xJrA0IVe+mlcDmwWaExxChZQvq3HdKVUuuEqVHpdNAjeKr+Nhr8U2PSCg++rTSGFIMn/tiQBvi1CQh4KQDtHLl84WCwIN3UtdD4CWQ2PCzlDb1OeSIAp/C/q7ziemdnPRO63gRigqdSCgCc9fw/RFOtDoFlmd5GJZSTggp9jh8dYi4Ne+PDjNkB+ITPF1cR7fJUhx7JBf3d5G3pi8kHh25/pTPO0DzNC/5ptM/L5qXk32YhTUq1C5gyrSqQhjZYfsGkzOMoNbUP4FuyLyfg/+ltJCDNphKB0VG40tAHduWRjbXhcovAafXwTE97IvDuLrTtpyQwwvvziQXgA6vsiS5CfD11WbIvr+HixXHUgqjrkUgiJTipABBN6n9wODXxs91LcfkA96tiieM8LJnGuFTqcEaRIKPW+ye07u2jtuRSXhQLu9sSqPuSks/ZUZOkkOvTEOgEevKlp9mZzOZBXE8nHHIRCIPvg7LRRsFzeR9DQMxpkTMTAFfudR0zSUx3Bgax159Jh5+6zj0Kf8JXWC21wntGKKRHe6ZLZ4WL8ij6L9spcWUW0OqBMIBRPh+jj4raRhGzNoOWSW9Qc/fsrl9T9vwkEf6/JKhArG/pfnM7EwBIZmeUREv+owvaIEO8fmSMxgGuiYwNdWOa8jhvpWl/FmvvON1Yu08d0SVsHb5Jj3zGSx0FR19cBsyGlrr4SK1SrOj5FKllIPLEFzOCqUghWsFYed9guDIWBd4w4O5gVjQwa7WK4GV5GGy5/bGSbQuhASmU9bQzu4lXm+J2vNPOhSF7ex0AYLD68kfb5vhhtZ79PLCWEJn/xcy8Ad9BXB9K5vuUAtSolDoT4y64hHhIj2m2fr+ryGDYYW8V77buuLE5x3iaTXuu06r49o9fEQ180or/b5V0I0k5yJW1YiHl14uXmbKdVk5s1fTFC8/GHL0AAD0GjBFbF3eqzSiG6HukjCa3dXD8QnvNdJJ5WFFEX0WpXazmevwdHpiReYAb6rGuvTOkPHd7nvCUU0s8CZax7fjMNn7vtsdM0tfPSkdBa7PLZxI4Mon67Y774K9C5UgWu+/EiFpfibN6HkilGSsPuAkKgYoFet6nkVRZXBnzx2AajNQzhexTuZnB3d7pBEd+AQZv36Ioa+uhy8K2I3HKgUrvji6iGM4nFKtJsi8dVy4CZekjS2t8qDBD8Y4RaNOl5H20kMO2mGZoG4RGy96ap0Tt3aD6bod2qlJGLiOWwobFC0qc9PKCZDquQdKhVtj4yfiXuunT84ZU09kWWAFBP0SrP2e5gcFFkOaetIcgBJvkZy1CSk9UTbHtC4JWMau+24v3bWXNRMkknQWG6jIurfGPR5su2Jvbqbf0XzUitb7hDTNsyzoLOIbOcZFx20DEPwGbGunEPWG8Nmbt3+i7Rrj2J0jbKXOEvgkBTJriNEdmTQkhVdeeBv6TtJ74InJEYEOrvp3EfsXvxofG1MdKfioQMdpj36LHCDWdct9bJNfk2l9K5HFtGPLVzojOrpPiSFeRUbhB/wxq/ON1G9Z6mtHHEA4SNEYD/0OAnREsNEYcoqPoU6n74gAjlopCOouSTfl/ZZ7ZO7PspvomZWiIeNcARE3tAKkpuJ5Hpqjc8ik8sM171UvwFHRKefTCkZy+ByYXsqYfLY/57E1EPIzn1CF5OCBr6H7KKxESXji3CiK0yVI/wEoaE+NnZx7W93HIAfGzsW2JTnokc8e+meNsNHtS/DdDQx4pKcgM43j/A9zwgg1cyc1rVgwpvPcN6M8gt90weNlctCqN7BHWyDDuoDTvjEyxQrPKv1bpE3XFcvJi/opGX4XtL/I9McfvyVqZ+n6+Zqdlp3k7iHy6IkFep40FStLZ/o+GRiAX5lrzlv/h7yA7A2asX4aUmTbw2+vk5qZlY0Tec82vJz8HC9EnoU37BXj3s7k2uvjqRKEiA0SDhQfeErzdxxyVJua66XAs9bEMavyJUfEeE2VdPRh4Zy8jCrvNV2rt/r8Wczo/blmFYefGsO8Prj6RuG+G9aWNzjE3C47Yv0AzfHJo7Lt80LXELC76uLCzwiqH6nxjDtR7KxzdglHqC33noKoOHoVUq4wPuNnaFp+ovb2StPIHUe8NLJ5lMO1MsTiMlM9JBdDe+BYHEOPwzOb747+tqx29cYv3nxkgsAYG83uersY1h09NEIlX7HXOgK705REG/zbuwLFYK+5QHzG00heKdxtkMX9kGRUkevVd2AQqLYUIg16FNTc7j+M7bc1QXp+IKb3jUdBOKyT1l70EpUW+EJmMKiTzVNPIMlqwEGYsDHmQSHE8rw7IJ1CwW5cPH4pn4Bs/0MJxzp71/8paFWCnQoxjTbLGoxqwpHJFnorAOiZb3y2Eu9x92/OwkGBrIBhTk+rf3QzEabOyKhfnZkn/ptEI7yPYMyFwx2Uf68Lzc6rilnzyNavkehmnup3kEDfO+jEBHUD5W4mINpr3dBxe7Rl9q/Eq3Rs9kZGpC5WTDmlHjtw0E0rNQI+m20DF2yAi3MJVnVnRZ16aoJOQgMvyy7igH1uoQK0coLsbQwn4cosMzkYC+fqBfXvXXVTBh9Uux5CjddBj6DO/9n72QH/mfSrfMWisP2RRlJ8IZ2dcz9r+NjJTEzNwxxYda+RJY0pYfA36DnpqSEU90WgcRG2XyQ86Vi46F6GE53jk1fCn/s9XdyYMsLAPiuV4cOJ/dF+6ZhHeYbXRT4dY50ogb1zFrZqGVnbWbRcFEdJfLd26pHpyb881n1x8gaZErdAcfbM/ztg2vyfCZShbbHhVXvTrFLORqjctfD8Fp6QsIkZoiYOjEPUJvsgLANRKvpvA/6oXZarPBmnQDB9JZnTnJor580kXdjrlOmZGg61//W6n1ETKpP8K/ANOBzEsy8crh8uU97UavN3sMYMzKBNtGjnI6m57vdFctF3t/9rOqWRj85lqAcmLWs9Xf3vD4+vSq4W8YMQpIDVLfj5znwBy2AxrMroinfj+4c5fKewyQYXHh3TUO6+7Q25otTzBORCRkWvFtcbHumYYlCbfzxVTtN5aCHmfXcV3IbBss2cuMbRVRGkLebdYhbBTO3QCd/+3+xPz4HGD4nmZsQpkOwmd3mc1TEC52pJNiVEnbQ1qtIg5ZIF+EZngjYBg8sWYKqG/lRG6x7ynV8JLp2YSBG8/Bu6ExHRLHaKa1ysUA3a2sza3oBaEkAsiAsiemqYP6BD7xk+8Z7nRgP9SMsGfWla7LoxuypDzTtgzPAL8aVEGiS9JXDv6GEYOH+Lno9++tZPjaWPaEdKwnvJub1pJABjNQmpBHDtUFJVhAkskIr+J3UyxNgCkIvuMZRvHIGCgrSQrXqbzRTfJFFxO193maWy6F1ACnqovYrygt6FxlflLvnk4idNC5vehH1tZoBWwh0y0kK1ydUCfHhkJbIcOjwsisYq1n+zLHULNFRF4n2+BSC3HxPFIfIvQLRh0+BksrHtI1apgwzkoV0rtM1W2FoCun+ACAZJ9EGYn0dq7IfZflbhUbJV37WkzKYSEOwiMKMD5xGRJOMFYWvo+SgFJhLyCD3x3YwrTo4W9Y63vGxmnoN96zL6u6NLFlUIa/y2iOxfeUJS5MMC2rJZ125Tc2flPqIUbOgYFGR6tg/EYPaXN6E4sqdQn40A0lAW5vXiqLLdxOWbVc+8C2ydyFUypXqzRIayIFe6eYC8mdM+3C+eVtVmpUaTTT9TW1lzgDlod5gyOPgHPOOVpJccahUtxkz6Aix5WoCZnlVZ5Ukn2FToKCRSweW44bW8mjAMVLxK836zzA2jF7H4xeJbaoJDjIQxM+grjqmgI9pPdfxYpEC0QD8nnR5661rfQN/o9f+I/q8ssDWE5fvY4r8eACSavOH0sdr4cBFQTpWnH2pZE1NBVtMvUqCzN867LsOi5hijqo0MyW5P6grGbUnCdi4BWJx1wqYFSnY4KhqX4EgURLPzRBrwkpplbegMtCRSxrzT0a4kwU1Udz2A1I9sugG0A4TfPxZiynp+/j6uZoYuoo6mAq2XnUNvZk9ukX6B7IlW9K9AM8b+bz9AF31RZCXMGHkqGyuSW5XkhhpKUTODgZ/93ivtQnT4Xhh5XtdYMbzfG4Y6SASeVbodlJ0snL00EfHQ16MfPQSkFcV3KDX+Te7a5/s2SsIYjdgVpp2iViTIYVsG03zg6bbs5UlynKb9cFrttdLQ0n0ZKR227KsxIY2WBgkcpHmjdkdybO3tLems9P6IM3kBqUQEOP84W5oDxVmWXam6m/8C9wNe6NtXnPj1/zMq3M902XRR87hNuT6BevJw2jSNxcuFDQMTXYWRrvqHxT/tK0ps97IKsqY8lgsbeG2CP+KwoyeBuUDByGubXQ45kir3Xv66ib8N+u78yuqogBDeuYCCNaUmEZWSCFpLqQHz4jxQiUpwY0wMaQa30Z+nZTt4pRRUhJs9hdBaqIX+i7LZpC/jj3pD5YKXi1mnzpfnSZ+a/q/56+REr72mMtz7F1vnKoVe6lPeA6/t4TP9I0pC9spugg1SP63ktwdTfAu00oSFmQz1YokxG6gmiK+4L6kbPX7JiZDGGqVSd7gMu/10AtrtNmRWFdocGCbAYBl75FV764gB2y8FVSGvJXOMm6JbKnZao8k8ppxvo1XZPpet/NF2/i8v83lTN1ovSH+Z3lBw8rSC+d58+p5e0eYIUhnohsf8fsPO3Mrc/EwL2Ex1OgLLBoh/eY6PVecB32gilN8JSnUnfxkhw3urxTRGH34W9vCmVIvzJzPkMDCtC2L3/Dg7+DoBw8kFdbMjyv9iIX8JvzXq/8Q1D2g0d00F77Tlzy3IYw1gocplvOwx7QPKobMsf9ustKHRhlwP9O+hwOVnXtdtMhWtJoUy8hvVt4yXX5GO3LtrVLalqWLFksSdHZveuMgBZhMnzhQLg0o9bggm5JtJcuK+3Ac0pSY7ynRdMZhW69babDEtP7jWJpv2LfiiQL8HygNXDKUpIh9ZjC042FOx76QOfKibQXkPGikp3pBvoOZBdDICnm2b3nIc98uPD+MqygOkX6bGcP+x26k32tONkc93g0wcAb+gWkuvtcS6gHhkHzmgAVz6itq1dYFSE/4khgQq9pFhHQHYdImuUpiPVkYSCo72JP9lRk1a4Y4Kb2gxTLBNoYRq6Tyw2H3+WyzQ2z3H5vLdcUtFEvch2v42gdEGEy/Nj0DZl9WJLnsXp/7ohOwum6JXt7+a15X1D/cquKAaqyeFk3WNedhPVP6Z6KIppCkT8urJk3BTyI52sn1sOyk/yUtaF2cCua6JkYwj5ABtY4uetih5+D3zGIrD2Smsu9X9UmRDBNEGhtvgx5T2r2iamo0vP6eiIxUEcr/GlOEFHqig7/NhHHh/cdu/gq6iWv9BVUKDcz/xntU8ybwCUQAyT5KvcK/7nyGMUuWlU/V4uxY8dPiiFHdrzkFiOt+SBfeg900UAMspTtt4HtBRBPj7XTLGJAAxgZc5AvMNTx0NuqywA/fJIWUMog5055hut8iORmBnApnjwk9a+msntRQVZ4OzN6mdVa1AllNRKNh28V25O/aFI3NSHb/9SdIzb8fWmAtC4c1eP8roPR/SY44/As05s9G2XB7BiH4KLsZFucKCkUlQoBYDi7yWgH5prv0gGUinkZI+/v08sEOSFE8DW9KBspKYm8D5/QgjBaZS8JofxW1Wa1QoxBlFTaLjc0i+6WTeRTsY9IbZKPwvAkWdCumdh8UcY5btkTljJK9OvIv560BcU3Id7LuDownNDgOlRc/5KmxUwKc4+WAzhfgKMGHN225nUNsSp4HKN0gw9L9+ohXThsqj+n4WibeAZH4xW5iGuP31ViZc89Vwvo8ve8A3JIw+ugzNncZgu8Py6oFe54wRW9drlZCIFwXcNmev+VWP1IxJYSSkz//iozRs6LJz7z0mzWI+3OFoMV/0gr3c2ex03ZYBLmWlbJxDNGUiBrgJbxEwr05564XfhIqyOIDc/cuwkM0NFLmD9kGUKBcaDdorHO0XJz4P5usvjFFKzhnwh8RnyNasAcZuoEgyd7R+2gC83obyYqjORbQke9gWQ87BSInGOXurzUZA13Q0udtB4omBacA2NLm20n02XwRqk9tfs/jVU0Irp1h0qOrhW/cXj0vmAWyhAgy0s+zeYr37ytD+Ns8QRhy80RfGOKrdaTwuv312bEFpj1BpVO3EpkDGN9ly2ITJuBl8EiTOD8hC3hqC9lLxBHtw42bhfcn8Z+aVsjUjiroqhs8bjZo1Ti8mcUp/rUI2Uh2rjGIqVnl+MhQpPeQrwZjkhyNQWUg5vMTLbqAj3svTzQb5y1OarBsCb26eBTavUXUhzcflT48Y8KBFfKwFgM5xK2IwGZ+gB9Rvi+iNqyXZR5QdThsT8gN76TnHO+227sQUy9wiJZOM1erBGt3AtS+BZP2Y5SumYU2c5dAl1Q/LDmfhzd01tikP5uu07IImZpliJq1I7yO7TXKP5H01ar19p+bCd9S4I+3F5kDc3S9w5booOHcBcK+IXZqvB4dXF73KdkN6UoEprysrgPPheXbTMmZKBoUcWMoQ+c2MKFfkGDoMtXs7bUpUA2Iog3umAp8Kh8vv41ilrPjHPdAewCj2R/r+YKdN4/yXLqi+gucVPjxtHHZ+TYYaR5H7J0QAcwx17TJaAUJRVc6AnBWHb+O9IYqJ4ppgM/WXES4Y21NbKmRBJTR+TAzQJ7Knm0ydPeX8X0OESprRjMoyRhQB1l0frtUi4q6xO5hMdtui6c5GWCIKocytlUCNvyHE+b/RfsiOUPodIwxBEUkScOJDjfg+A/qElrMI+y/9tr9pE0sBrv4hPcCK/m+vmgp7b1dxAzVEFO50MtAV2JrqF4EwjmIQ2twvQKtBx3jw6PVTR/0iAtS2QP+/AtrrildCkpB2qM5lsqMtRlh7r3c7Wgq6XRbcNzzkZT0sCq40oDKUWeW8k6tTGJm6IThu0D00PQJ6l2gE/0MkygSK+riVJHsNMO3qtiPKp5rIfg7gHGbhhsvudBhdxh7pZt9GG9x6fCwBdIij4X2qppPMBjQeFMkfJAhEb7w5YfleRiW22oipiBIgufQPQ7auyB6CT9rEPBAFkcwIUdSaNLal3bGTmqgp43Mes+ObM299DRzhzZWS1CFmvuQm4q0iNju31fQcny+FIH+WTw1FCHJQJlsLyJDBjqpnQjxbSOsovv7GiNHpS++TF2OtdwOFPcs2cE2leOn8uM8E2IHklF2+eBSlikWLAqcuGTmy7mExHYIN9U/7rbUC0WAQYwk8/6NrOlpd349wvYfNak/sFsErmbQ2Ow0YSyg9AANT2HGAB60B+GNQTQY9bbnVGes4urqiUhmnFZJ9Dt57MaDha8E7sg/B0+SCoyfZu8uF+Sk2eZ4g/p3EO7p2VHwm1jm5V50o8f9TT6GGEbff+F4iLJLI6pz6axbOQardFggdVyZny2BOB1Ix/0cE1FcIBFi8A8M0Gm8YzXLSuX8YTtgscg2MxwXJyAuUXY3vsbYVfgTivXVZw0k6cjnrvuk8haBST14P3zmPMH9BsPeAQ0FatROJNH9duf4wZ/XRj4oNruO+JxUrMSnYeSdlELA9K3czzfLorcq1xeeQeiTbHT+a4uTkLptyuwKmj5XYai/hKnZO8f+e4JkdI5QMYXWk8Ih+2JA2TMQu193BZEFlhFGOGIi4tY0/H6XXgj0iP985WzK/c+5sSFcEDmkGvgYrtmB3NbxKT5fAfSWiv7KEnp6lERKall1PeAcdmkZ/Fx+VIZ3v7FzV1CtYF1YaIObms58CWRl0mz3ncSNsFNP8bP1l5fUCZQA6IzcLKMFX4H52AeZc6WCZ8KI6X6pcVQIZDMVgHUeDgde34ydWs7SLYW7KP/BFcAXaacG09Yvfjv9JC3tX3ATagwwNut4qDGooDTpKhBm8WHEOU362zv4OwdHfJ+dRnXrxq1Uy1KqMTCM037IkSti/V/RHo9kvHzCD14oA6AWunt7tTT2n8QhnuyauPgeSJuZA3uAd3GQLr04RXLwLKPPGwxUFqEcpzlshDvsEnH8DZtYDr3XSY2kSeCSjzsBBk1YSmw+0feb++jUO0lkb6vCNnALmI5TmGcCYS4Bs2ZMTrQRvooAsdSyRul9RUFpDk0NKx4CUmNNRKfvIoelpgybgwAaTq8oHzrGFnh4IIeUDMcZtDXSfxpV5Gum2SUrqUJJ+qEC6nl71Cja7wnK9ETW6fdbI2Z52wY2Ldko1lWv/jD+3lXOob/LBDBxPuu31FA5gRskabROvz/7eOgN7U6VNqMMezGshuZVnmZ5E3/u5KTBZkyt81ZeL5fA2277A558xCfE3RellUzHBfo+aJYeVIvrfnxOZMFytunehFXUD2WAe6QXMOmadh2yPtbjQg6FMxIjFJM/Z0DNQEui2sWZicpH9UQiyuOO/qqQiyJf6DYAM6luTRtTw/OMQA/9QZD2sHf5Z9/apr+Cr0V9Ba4/IS94FsnPm
Variant 0
DifficultyLevel
601
Question
Keenak is making a fruit cake.
The recipe says he needs 1 cup of sultanas for every 4 cups of flour.
If 7 cups of flour are used, how many cups of sultanas are needed?
Worked Solution
|
|
If 4 cups of flour |
⇒ 1 cup sultanas |
1 cup of flour |
⇒41 cup sultanas |
|
|
∴ 7 cups of flour |
= 7 ×41 |
|
= 143 cups |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers