Number, NAPX-F4-CA09
Question
Which arrows show the approximate locations of 5 and π on the number line?
Worked Solution
5 = 2.236…
π = 3.141…
Since each dash is 0.25 spacing
⇒ {{{correctAnswer}}}
U2FsdGVkX1/Xjkehz1+nKESsiT+WnmiMw5lh7PfcRxH5sqrcLy6dR5otV1EfVmoPZwTdRT1zJXHzJhwehqjiYrofZsHrU+J4jC8bWXm4N8JEXn30PFSvYCl8OY6dBr+AbJ3zdlljLU3K8S8sRcP0xHNDjjk+oO/DcDDuBJU7QGD9STc/mJcRKhVei8kdBAK84wLkXTNyjS2wcoHhkWlAD4D1fd7B5jMCrjqgA16XuwGgsJlGiRiWJK/BscC0a+eVvZfaGDv+RJS4mvjhCWHutDi04WzQmRvsuchf5wnkltt/1aQobBmVYzew3M++MOtPHi5fmSGZhhtPaM3p5v5deNzlVF4U3TDdLu4lBMgGMP/yzIayXpauI7mhqElcX/LxrThigqp5l8nJLMYuI1JFACXet2mE2XKzks9MVgYnIk/xdiNyw6ytQlTg0VoZ7aFEIeOHf6T0xTVVu06AMkXln/7TGJavH29BCrBp0oE+2S5P2HuH9w0kkAs4zRcaIKUWZ8AUQB8fZiq2fTvzy1W3jKfcNVHPBYA2HTjlTMDL4TT8CaOXJxKDdOxO1BPNpW0xV2uCUfwvuPQXVM/Pq8RihEgn4QHhkNz6Jj+3/x047bGDjPvRUdi2OTcNgqPXQdbTIRxR+4gmMf9Dg1QpPsBEygCM/ioOqg4MRiUcXNr04F3M0mVjqqgI2MR8O3yxLJRTMGXmZ/Z3TMfYWQzNovKRTY1dJt6dkSBO0YgZ+MndToFroTaBaZXZZMqc7fh4z0T83Drjydg1QpTeyeiRO6hdsT3qRNFgvxgfhtgdGhSzVF23YJMybwdINj7tT+zUJDy2LRnIIqjivuKuChIGaoNSUkz6zJiwWAWfWHCWmHSCy0B69uPZgr9sa/ve+go4w5jnwM6i5MRfG0deAteaT1/D1Pi5iQtMYXsBGP+l4DCQYswh7kAoUeZwKxSi3kn5jQED6CC61mkY2nMpVsYoYoEtQRKJWOBpohOjLeXFip4mIREtGNgkRzn7wrqbnMMcnL2vOP3YeYbjlvQV5J0kifbFLJawFldevZjNMQUVB86ohObwPWsQEou5m4k4IFqKQkU5bXfQQqUA0MPX1DQNAcFRTMuPoNzCzGG3lOyFEqKRrU7s0EHLWlZv61Geja1j6lCdZ5BbufvXzvesMp22czTt/If3SXLrL/2y08zQCXOqpQQgyTasqEsWkpxZzCNXWU8lqks7h6kts6yPma2l0g94CcA8sbXjKccYwic5FFYGYCeF54Kt/PwE8Ids8ySJ9sTzSEsxCi1lShJ8TdpmkhXbPE5xSYNhaXhm+7aSahnGlhfbR/+nkfUym8iX6ynjDXFFAKS4bqc30/EJnXY5mwwr9LzjBsw2FjllLKZtwI4DNlne/8QSqujnlQIdOhE3tXBpwnLneeENvzcjo6sbwsp6Hqu/deCd+8hl4JukrInVeM2aFqE9062jybmTS42rcW/xxovFiXNWxXnxV7/mrFgpDEumAXoBsmzUc3kN5CqbYN0JIBTYs6v5H4Z7YfmFnIBlA/PPmM8IMHWZk361YxgGWcRzVb/JzXrnLifsJxwr4QPXPsfArCDTtIETMt5cZko5MmitM1Onh0UcFRi3+d0F60J5U1MZ+p5PSqFlRlWDhhXuOmp5fBN4YHGyl4dXkaqdmRlBVDAx6x2BKhqFgRY+N5h6dM8OSjSfOyL1rDSXSLw63tOM/sBvsU+9ZxXTqDh2l5Dpi1j/kXbm4FC95eNSNyqihQfaEuuVg9aqtB75vaKSNs4GiM27HP/sNdFOz7h4nxDp0uG6+58f8N2V5IvYg9PnIV2Lc49OIYfJbO5Sb9AgvBbbDb++D1CnZ22aFtv4dfimbgDlUOcmtOUc4v6COns0j5xOqjfyIY2+5QNbH1LuYxx7gr6eyMUT/Ng2F3QtWCw48i8pWtqRDn3IHjCg0F//9GNXvt2cs0wGycD4bBCKPC12WY9vB2+GrDHC9R7C59TW8H9HdQGL9SyYv99lZX7kOEw+9SQpOcnsxb9mF67xIjtN/ZOVU0XP0U5NsYyAMO+6KdUogQiXiluxI6SJWYwxe77OCor6pbKF+4Z1R/Gb37m4ONz7cI8Lo1tWIirL8Wt7AVwFZz1nqm4yQR1Dy0vcOsYr6L5URHs0dJ7Y+Wl1E7iDyGQXT8YFX6AiXlNvRFDrg8sJ1FgRSXYLP6bVveXp/3dStsp/TazZZeUez5UwOIuAutN35nwhkOBZlwR8As9CcsURHLTzZKtSHVIX5M+ldHCWLaE7hv9Y/PtA6eC6n/2E1XyHsVtGfMASb7nW91Eg9Zqis9FbuNyCSB4jGh5nJ6+kI+IETQsJZa/VYW1sjeO/+b8I46HU3xtDyhuVuLvjT/yVdEPqIYnp/PtsEHmqFSW/4WSyoIDLX0+ZYWb5xjL0wgDbtmplZYWJyg5PgKKSwNFvVJMoRUkd0j5WlUmryZvpL0BHbpJB5LjgTwC/DG/iy7jowhFloXHChSD2iXd96t6bz6QIGDRcCJ5ndLKrHcyGWMDJecRyPLe26uCy339K0yYfeq3RJqccEnZ3SIJn9BGxk0lCskrXDB792Xhbsrh5SlBKZVuM1sI6UVwlh3vANIUvSb3ZCFLRCYB/XUT95ihb350cS/nfsixzXdDpN7fibWyZ9Q9Ow8/qpiXIOnHmwheC1yGm2IYymZIe3PlFd8SN9mRyNz4QN0Vz+JxgQOqZkAr+sLBhHTVin0BtmI9e7Q0wc+akmEMUkcWKl88N7voOD7a0m71a/WVtdmipJGmxkObGZ0E4PBV+2bZnGAn3bqhY47b7L9C0eCiiQ+yhdnN5w5D2bLm6nlUiSCWTgfKHoBwBP8IgGuFkYUVBUYECjb15V93V67XO55srcqbfvq6lIfpIOptenRP48rgOHQ8rqetFtw1+VHe2xcZUW5Y3VQb0pkrCBbseLXJI6QhNVi/wWxl4dCgq6xcKyOS5wWQ/r9dfIn1nWpqJMzW6IZR5kkSa7nizNrhBzbNfLDmdLg5z3ZcFzhm7V54aUzUFHt47zsN58Yocq0yrtwtwBUgudvNs9JeuoMUNzE4txhAM9sJ2EsZm+7gFSS3Svks37cHKzYmrJgwDzaLbwXsFqZ+iZA5mf7IXQ4MbU3Z208ALkzBswlaJzz0Uy27wu6eBgTWhHWBUNV6PeXdJOiEgS9T5/UAXT9jnPE8M4hIf5AoPUrbooTbnAWo/zGDrzy/prRTivbWNcF1tDAFuCyh+/vWek2JISL5EPqtghNWNvBxBcLgAkQsmK9GyhkG6zabj6/rsl7fPvVGLA1jEloxlr4bmYgtFa6g3tL/emKE8/t0Yvf/DIp/5Dljbvi5BHZuDevDRzxKlZ/Tw9Nd1HQkBjkT4UhgU6eGyIGIWs3uJ2VfhJxHi+/k/P9jZfbLDPqLjcffPiPiwcEh8Yi9fg6MWdCurf6/Snjg91tUh6E4OV453kDgQKqdYzG6DOT6tmQ0ZWZ8vJFb+b+qwCM3LIcOSKE9O1e/E6vKz1dNs8pLomxHy3Mm9rpV+ne/kX5PhSE3itRJcRBu5mIJmh7YsZTiXiFuutInvxxe/K3/zGOGPMgzQIDAdwZk/6HmWjN8UNdKz2nVxzonEu43hBnJ9RqK596pNSWkSEKkYus3DaKypuY4KWj2AZuwmx68Jh3k9dU9NAWxEVqZVaSgziejFpgSKB6/g2fu7hcTDODu/uHRGwW/3rFe0fWxYXQZti7yE1BFj5DM6VWZQbgK8Ht+Iqj5K++OTu/wCnBAcj8SRIvkimAawJMHAUVjtXYolEX2hBEGd+CMMI8hQP/9vBtJFwGPXhhp2C/h9j1TO+kn8asf5Ce/JCf8ij7QiMSyN3XEc6oS8z7Lf0LkwoktfJz0GP8HIHezyqYoNwWD+/Wj8GlFKTdfxnppxAskUAzBAHOEfMqQ5hUoN5QltEtwnUXqTx/EOUPCUKRAbA/zKUzy4VLzSWset4v7XCSsT1O+4cov+cobbgJElAV7KSvBNhbGs5XdRSKvSQkMbAYJDYZZrEg7y/sLsOumbAub6/w2jmJwISZAazpCwHnKQyEueBhq6E/9V4Umc3gLMF1qqOW5DwOm42uDcee/W52MBBCcyhK6VHy3awd749zX554cu+ww5xNqWHupkyYebjy90hrSv2/75MVUUKTTpRem7ne+r9/MW9ZHWzHGMxgvoNCwVPKZwxnz/lg7ROxgu/3vctUxXihZovtTKNyhuioSqDk2BsXTm3gOSBSzZfc9P3+VgGVnANvAdScDiQWdt32O+fOpa8JNLXAhLz3E8A9uWpyQgDwD+FdhUzNO0x65zwqaEUFMDm0Y7vXyLyHhJZY7dPCtnKAp9NG6rw3HUPrFK6uAYUoiwZyk+GyP/C7M4YixekmMpAgI1zdf4GdaUiTvDNHXYXqtFqX/U97wZT1V3NzvgxP07nR2VA26rV/WLcoBDZ7CtmDcS64bld9ovqMLClVsfbpykuYGTT/vuhF5MGuq7lamVVS7FKPO2sfL5ZkWcDx+/gwVcfNnc+ctmVNoToTZUNnP7EVQaVTrQ8G0o21XPSYLiF9R25UVE9id+iSRk1anf1YAcRB/bWQy6x/tnH0NT1u/EgVX8/C3l7lyn5fQ2nk98rz4J8/gil7Hr4/CuvLkaPvKB23U+2rWwdTLtHL2DobdyzLSK7HkqHW/4wb5r/ixFb59rkC+GpA18Knqvg7ZnTRRJd8/Q6KepeYVHnYpsBWe9JnDOKruxTyBWXJa19RAoKOAsy5f1kZmkx86dfgH8jaqONJ0BOSVXWc0sbtQ/dvxqFuKdQcJCT3umNOx9gUqX5iqbXOrMNbwWrqFSCAaJ7hKIElQQKb47Xw/cp5kDYcCeigcsk2ZU68SCm4XAL2e8nO39F2imNPaMkb/pHmaD2LN5DfzU56dXMyMmUQW1hSJqhmENaJD0M3TA8OAMCHMzVK9noaabE1l/Bl58FBW0aE9FKlS2+cEqZEwXoj72KstnZHdsJpdjXsNznNFwh2Gw9YSC917puAcmofFOJjp9iS6q9p+VrbzAUGoLI5OPejIlQxaAndGJ/k5dP/kS7MY2FLHDI4vQnVl7LHOtJptTTXGp95faJ6youzcMnrSYs3SUOWPY6E+Xa6VKUGUCqfOrNnH+gP4ecgC2tYaXaJmfo6fYl/ssQbrgAcykQ6uNLSyIsC1HsItTJaP4QVS7DCuvWHBXQpxXPG7N793YnaOzGbZXltRfyFG8Y/Sc9VmtT+YzUkM4l9eNtZuqHbBehSEDw1KPjurO13WqhBiKvdrF9/VhL0gRW7nUgs6vFsZ7G3QulsMJS7/t6NHza+CIzDMaxNy9nKsccPIF3wHmG4LO1SNHVIZcf3VGUtwZDOSLA+2bthSk9pqYVpZLo4MIAY4iAwnRGdmeURQVR+bN28i25bI4bbN20scyDfzMIWwajttWjvChZ6nJTBdQrkj5cYEn+G9WRnYVCm8wGiVfnWtva7/DdeFleML4bPxyB+vrsEJVWiPay84YRdfvq0uyBjYoBcfpMQKsvLAdo9qvc8XJT5AALYP/AL+ksWIissxU5YPnsYWmQfmX+u2P/wr59EBpGF6BNMBziF0d6jpp2Gq/2355XW0hR+jx1Sbfa889iNK2XXScO+6kU+kBGswPtqaVzDUu0bYM8kPe3Sd6LY9QNhvPOODSJNoiinSUgAXLgMgfYBjDnD/HjxkRxR3jrmEHTRrXVvSNb4H38vx9N79fSOzWvi3I3olDtMLEks0jTNiwUJLxfdvc50eTI8bSiGjcwPR4UyL1XjLFQVod6UeTWoPPCoMPfWEs9qHiUTvaVJn0TugMa4i+n0nNnic4PbRjRgwHlg+Jr8Mj3EFCO/JMKmQKg0R1DernPAd6BIXmGmPqMPdk3Uzsf3z89dXy2S53SQbFHtpylxQ7NNr25KF3t/2k4af3P/k5WsKwif2wpkN5qfFTGL2PUfaKsCm+bdWmjHVB2Oyk36WmFFUNo3QnJanbSSOIJ0vePrVoVGs6EpOO+gL/jor8PKB3YNj1JnF2MCodqPNUXWFpIdLBsBXJAVkLQzBNSkVVTF/oQBB1Ai7O73tTHh9DEnt2Tzgzd4VOnCOm8wAVLs/YT7e7h7QkkPJZ4nOxIbMkceuXICOJhosv0rqK6iq04pCd8b4jOhpTVHDxsRp0wzbfrp9L04OaQsOyl42oZkdtHQ7cp7MpxbzSa3boDlTE7U73KtFD9P57+CxCujxD9ZaF7jL9cIKHZk41yfxFFEtA5R9OjSICfB9VNAqSvUcKQRVdRpFRzh+cySK1KsCprMtOvC2w2n/KaXdYdY98M0zXWG6w4Hbnw9PwAen83Mkz4SfOrOf5vtv7UkBwOeWtNt3JSBIevEFaP257GRQJszVw56O3342Dh4LCipYEg8hyyLewMRsE3FCm9RWO5NMptPtkno7dc0ZJQrGPz9qBIE+WDSCkShKLcZ4FRYVHVCD3lhlIwN4X+zQ4mxMOjjRN6CtRM1pNGAoHtGO1f/iXXLRiP2qIMkHX+sh5K0ibTXOHwqjjT3crmNfBc+osO+R3DupYCsGktCwcU596oAxSSjB4qs5PXZS2y5RYJ6H2Vl+bgG+/qPshjzfLkeY++w/ph25iZb2eW1s00GBsKPof2Mkcp+ONECdumm1IYB9+qd+qOVknS2qO/JAI7gV3vBi00ksIsNV5TnkB0f1Endn3tVEHyOJKBw12UWlKidueB/sVczire6rkQOOUW6yieQhQHzYJtvRG1kzhAej2E3C6h57EtrXeF1cGbfQTjoYHviIfPkQCJ79EB/FhEg5yJWCfMO5peag29tSxRSVkHK/Fxa0Lne4DkHuLVhuXdTrGQ0tvNYsgw9sW2JFmSBcCTGXZsFgMfBi4fF/c7xMy2v7rCCt/Hc1xM5zuE4IFRKwyQDb00iX0MJ+wXBHaeVhbzHCMGqtUCEZYRfag+bCfl0TBH0HD4jtBsGsyGrp2FRJVcV4TqEun+S/GZro3faUma0TpbxmyBESLwMyGW9gXuzNXI6hv7y8FVP0Rq2HSDiUZLIKISXBQiMo7iVp1sIkgTSa5+neRD58AjuwandApKBoEKA64rhWtmPs3rMtTD/GlGOQ7rdPmIqzLW3RkWqwGrd8woG/CWkkf0sh/IxNEH3nm45yj8yWNWOMJWoMkFkSevoJR92JnBqpBv2KIT1IYiGmh9ooBij29VOOKnJPYlyxtxhrUWPTMNgj1X+ct4n2BAEZGLQak0PPrhK77D5uFgJkd2R4EnkigJMoL9dnWSJX4uPnIbzz2KAhJi7JCP7qbngce0aSbgjMKUAuMvY+hx/3PFxxWL3RLPca8BYkekrwPN2GZI2SdLbvxH8/mW9P4DL6123iJKAbUDEG4MhqwYYWaPppcPtFWBCFjPfWFGOBP+4nGZ3NmTxiXQRe/KyD65A2tXhVm+Lzwe3QLePGoSsAwVt6emI74HL3J05yctJ0ku9kqvZUngjdeP/PJ+U1n1xrvLNXdB6ZbRVMJDD00aahiRcRxlE7hsjwFeBdVqbYM5isb8beiGPMWJSGYHwMqJxm/9gR6TjPy9e8jltZZu7Rn6azNbsjPTqN4odPGCoCY1EdQzjChyS75Rwe1qdzDsNaBaABJ6p2GcIjiKInrwhzC+aURwZ+smxEu1rlzpUAqnMAQhkDEgDMHXwl0MbhGghWOZJKV1GyH5ZbS9YlyNYggWGScW2DWEVm4dM4hhG9n45a7iI951jQ6aXnaYl8AUa6NpI5DtL+Bcw/JsO73cpfK+MCDwf4LT1E4NU8XTJTxVgGW/lNgcDoRkQR/bhxikOhxF1jeO+PEhTOAorYGcytXVP/oqKvyN9QbWLSrC/KuFq4hu2f3AwKXxUAk7cOvW2yEI8BLwe3cQrw/kg3hkuxMZZxp4n4VmW90O/L/Ry8YynPAZNx9Pyh8/jsUqpxxvwSEEolsH8OmP3opl3o48OTBKPW9DyPS2ohvHz46eY8d5RPD/Qnbo/fbiuya5U1q9oG0yGDq9NxXKDkqYk/jrV4YaMI6WJyQRVbysfMiCdVj6zmptDqSBVgxyslYNP5AVQ2IX5gD3j4BroSkAa3r05AN5i8fvAn8Na5wmdPA1t+0txxjlRoXXXQcjeXfaxF2httFggRh0w+nNHmAoEJ/wJZPIO5SmwemJFbwId4905SKfHW/OcO3JHYKtxpQ+sbDHEzTrCWZu3PN7+tYV2P2WOXvaHIV2u7axfCqlzB+e8wWYPqZTiV04E3cUPtSQKJT9CmHzTCvhCc1u3K6+PXUyfhUw8/4vmWBefsVj4Ys3atbeknCbfT5VXW7sbJg5Q5rLFbhE5+t8RMUpJCcyTtyLUcN4qIef39H5O5t4rSqQcE0dOK0/JuFzp3bQNlGT5Vs2/YiG+zB5FXp+aD29dmI1IFSCcd+MXyo0xjvtHiixobnEMFa44UaiH3dIaGccl2OlvfuwkKNmRUvSV11ofA+iRZ7VCrYQ/jYH5mdoN7IHgRLQnNCnpiP1yUx4g6xh1LNd1ExJfJxraRy7vzAC0Md6+3hRWGiSv3f6E4Gv6TaFH4LVf/ck+GwTmU8+0j5Tw+5eAIhthsZE4IU6BwAo13+ZlrxhlCakYM5nMcys8zDNBj9JLzjyJxGmO6gURJS6eNccgCg2aX+BNTPjyjo7iZUSh4+fmhhMPZrIeW8qtdH6D9TTNa5m5CKS17P7yDRo/BMDR/8HojBIg5zbBjY2+JwqCG6aDWpVqwY0h/AJ5df6p/FxxsLzLM3+hFF0ley3tU5g9KZAUOdO0AuXHfQ/xGSMe8lc6BCSBhvIud11vRx3sEMVu6Etrnmu3a0sAESbxb9N2BVR6X9Z84qHx9a5u6muazucfhd+4E/u8y18/PlOkjoB2EjOTfXQiYWyL8N71VM6LBnW8FzgIVaZ75ZLDhxgyK0lw8mjawAgIMUAcPbqVvI/hfkp5OhgvCji814GEyk838SK0ZeyQhOyDC+7KQEBhY8Uqt4jJd6pJGK/mWBjULm/gQbdTaEzsRP8nI+/iEk8mlDZ0RjUUKwLlsmQsyeoPa5fVexU6GFiBU8xvqKL8fVCjUPX+n+Kr6KqtM6aPLc6kb7jRecjkJMguD6UM+dv6iUYqhsir4HGnXQrdk0REbr3Nue4vtSXaJp2wHFOlSMiqn/U3+kNEePIkK7P67EG6CplGeQhMft3MR1wakHoh6DQtCPJJuVHXplPVH1YoczsFxyrKFkzAv2bkLxq6M3BUU/f1a8Gg1Y+Nxwon6iGEIOS7qyapFr8Vj/KLfhiXDoEuc9QYAvC5HVeypOlMYNHJn0nE4CDLMRPTB1hOluEqY6tIMHSA8iXIcCl9AMvVwHbiI0oMsNRyy2Tu0fulaFG78B6TI9FRtoMyZbkBanZC5aCwKu7tEeYHbpM9LPZTQ9hkVSmLlkz3KGgMV+kzatrt2nfFnTubih8su+n2dEI70yuY5KlrXqYPreDX/+rr3216YEsBiF8KE8OsE6UYdpbh5wVKyKZXJSBgZyaN14lfAQL3g4gYp5KiLI1EKr+btTiIT5Gq8LUSLIffW0Y5kfkbCnAgK5znmdgcpoxXTurXqy86OImC0Q3L/0OCSW8eHYzR+YDaOvTtEizJlzu42EAFPc33MhPT56mteh2yHs8IWJ8f8b7hqzI8y7M+ZqV4b1Sq7vmhwILxHtHzCk3Bij2gYKq8eC97SZjrviyz60SwdzaTImff5hDBba4v0ItuUI1e3rqEBBFnhat7jjpuUKhzRQIE9ZWxVr3yNEI5A84zzHpnfmrf6vjpHNkh1NlyfgSaFbDCCkynGCohc/v7mJ2ArCN/oEdFhwopR/LD93Rp+E2B0wgf+LNhiow2flyMQHf7JhG2v1LcYiXYYKRj3yuyDqxYAs0ukvJkTvEOlHIHW+vsmKXhSkoPHsmgkWDtAmzC4P3/s8nMTMQZRQFxI8TiJdsKBoFncBf3faug+CboFP9Rs2rAvgnUP3FraIwivbvW800gyjWKk9L1KXXaH7bTUe+CPy/Z34FR3YXqTmuCO+YfL/lD4Ui5ftKucMEWlnFR0c0Hm98BzwKwyA2OnJg4d97cGovQxxP2bLV6qynqJhOoHiDe5s54TWOzcnqm4yrLY/bZlDAV4dg8DyQO7uO4K1bGTpiuQOlh17Z6OLJTfaw8ayUUo7Y3nktsWveusXkNC8BEmMLonWR8GNzMTP8stpXSE+JoB30C+TfSZF1E1sR/Y9w1h39tg5f0N/16ozxtn1fZFNOoiBzHMxIqCkJrdLhga6Q7Szswviz3CHFRR92eaRw+KonKqHoW8af0RjiMsgp/dyoaSRr/NM5+cDzWlD2nXEt6d45FPCvFLW20F/edUFz1jIpJ/MQfiVbAfKWsLcuAnghw1B3rMByHMtTWnkGeuhBs/oPsvr8GFbpus21aMUXoHoX9hwjTPGMGEdWP0lrAHX8X3+z5/S8uLGBTyb+7cvL+mpbYpAxs4ezmz08g18/cxqTi4AjpPCAgHtP3cuenbQqYZSQkRYn61dLT2NW302QT0kMWr5MpL2r2ws4Xuoc6TyFEwDMWGPv+/ctT3HvzNQcnhJl6VQEKrizd13SY2Z7gmEq3VJEraF/O+HSlnszmzUw8kB/FfXgXW/cQ6xotBlalo16YOkCzQWYM00ZCbAF/ncF+FVWzwgtDYMLzksyjyAkAa+bS+BWxMmVUB/WgImuRm7d1o6to3KnAjEFi1GokvvLxdp+vUWHFz3USD5oqZeTjeNQ9xflOfRH/DpxndD0h3lK1KeskmUtgi1ecu7Ny6HTZG563skXDMXVnhjQkoLnZiUpJcc7wkqdLbRRrdjBkYvFAprIwmRD6ghq/i/FvZm8uhWXRZe6u3Lj4AijXvc1c0VooHO8sJ2W/81b+xOWTcVvDdNq4VmfzOTwZ47BmoobqVSGN65QEQQumlbeyg9BNwzf4rBpMsCW2qKQEOpQbLaDEQw4H6y+J5zW5OdutsWQ9KlW7N0fByHipvTeCrlTpxOTwYrrv7SqMyyI44R8Hh07ADwPU25SrEDHRzMd/jFl0aD0kftCtmI99y89NZvLFEJARi8uKTngJMQfyQ+e3hZfeVZJHYnsjATCvoYcfT2P1M1JIe8Ll+M6AimimEqF49ODWb5c5g9sj8vHvlaup7YC+TADsC1Eb48wnm2nps1RoJvic4Q91iVlxJzeIS8iTIrvUb6RG1wEMmw2EcuBh2IEw1vVdzvslMtOLOVzWXYDe+19xqenCR72ppBKxEmzQEH/XnOKGxoBl+GNwrDhj0NMcJG5xza8Q9BCOrfmYrCxbHiGQ9qQAx8+mUlOYPz2wRU54qI1anq+cZqFc38eRkXm2G1/zVs+4wxiEyo38q6scF+sa0nuEnGmDiaFGRbUAPbF0q2R6+2JgfCjBtu6hTZm7kfOft87cq6eK3CyiK0SHKiNysHPmyj2ZfMBobwudE54XbO01SbYp4M81oSCrJiKDVDsoQvaKPce1WFHWMr5cE8w//vcLwZLoSlM/1KAqL3E1srGkCkviFacjGyoSPR1howJY3tfqdc0FlKVkb1Oh0Met+Rjo7Q/IOfD4r4tsxdScvXgQitndrCTDyeuURs1LF/bP+rcs0XEDgEaFvqSU3pLD6ufnL217GvVysBP/M3ga1QBkH52XRKw7CvjvySFoXbdXkj+7WFzRx1FJKSOcqnUfUvADUyZQJoQbuIREj41xdqFL4aUJyRZDkEZNhoKBSZt9Y/sMpmJPRnr/XSZdW1yFa7bYJVhKuToR9zGEn+iGL1K1FH9/jZ0NUN+dEVWs+dzMp1O/Up29FvsYYez4FAnKAWwmjpWjVfISik19rjKMYSs94er9iG+LDgO5cX4f9+GE1g1OdHGVhfZqbuzWhbHLLW/EI9aLMv5muGuDgLIpEOczG2q4aIEsyEsdtbmguUZRi410DTnkETNE7rIq2j31bNdjq/adJx5pyPS/bU4ATpE8VkmhDY/QLYdkPGZOB/HfxmK3k+jZS1u/UyESKHhNH9tjmaC+Djkm/622dlBjn14Jl2oaUpfBwkpqQEz2mrewcV3IYL2nL4yYdDDcRCwW0US5XHe7qxwufJg7l72lObd2OlyiQMn0pzhsQg1LIMBJHcwhGBq8FYEOUA2NeC9lOYJViGVxpryCU/tJVcIBBqCvH54xzLWqrqEGj9I51T9tTMzTlzALpwzcongOrAfxS4a/2QXNvZGYR9jwArw8Y1tc0oxkcplIj87i2jsAcn276wMD47ttQVIAEvv2f5ZZdjDdE/wIXzupvFkqlGX3fNAbgs3wac8XGT3lV1v7tq5O+wgf9ARQ/0x02JPSjSk2NhLwzPqeiXDb4rSV64fhbmxPwQU8PEBYo/TeSMHRVVibpHgO7Zbp/0SU+KMt5Ntlk3K6+c2MUcTBx1BrdixAObwVUSIg+9hOlX5z/yUrhkQM0T+iqdz4HyKZoFp02cZtARuzc25So2LYxSRk8cP5vXIihwL5mqAXg0aBQiNJNhiSLJf6Ll7JlU0XCv7MybOGPoSHhYAUoJM/f+N442raws+gc492hNFx2CcufPAECYdYsq+wneSLoQylJLBT38o1F/Z00Lm/zzmdxfdod4WTsr4TapJ1udYtB6y3szF09Ly9IRkq/bVY1JBMxphC9b4V8gdNjgceYGIp6RXyhwBbJGj+rtEvNGDI6TKsJC9XGeH+Cles6nP324oBmB53IjbZxkgY3xG3bOP5PgwjA9sksnNs6CJyDcQ4M7M8cM39jZeLXb7csZt18G3jDztbcJuJfinzJRtxgu0durEzF0bLTju88g3IcsRiaXGG29VQ5OfsVJnYtTHJowLBikkLRvJCe1nhF6ujbiK5w+lWQgG8SeVw83lFUBpHaQ0xvd72F9RhuPPmWJLyODiL1ctPrNtfsH3GmPjoEV5+g9xmY8WOsvA3fxqcxYtCLybairLo36Qbkts91UV7Sbrki84dVGXorjpTRh/y1ncaYndqps562pW4lkfIdrCT50lNeI15hfIca3dCK5FXBSs2nB9DsBmQLO+OOtGWDHxY57wh8nQoLj3vEznTaT3+Z7le4y0hBtdONxD4g81ZzHgflv8bfjK4NmuVOmYCtGmVpI/6BV7uKxmW4Vto3pIhZOxAvVAqIOTQd1/3uXMlDifVllF+7Bz5H1p4daMgSR1isZgI/EHaYWbUy50XFMq9u8oqTjS69NqzAs6oBEtqOsFt0U7J701S/FTgOAWfHCOsdVWKGS3g9Mm2VoqN3Y0jULyRjQTaKq6UIADOiavC3naLCKx8h/EG4d492jayXJlycUQhSHR67mZ4wdTcgwzJmkY9dRhh5Z6BBZS/VvdnBJFpCEBJS8VUwZuVyVHZc/4RATChvjPafJeCisNhnEuZbuUfLk6aEKsvImWUP8/Cyb/7tb1b/q9R6V77I7P9UslUlHnGEQI7rRVE0bsGBmzJMXvQz4jZpBwJJZqJzpRZXSiHOcpgbBNXjryQsnzbJcPyowaiSYVwqna0l6vAb8+VqAwWLw7svxWnzM+caFeAJuGZhxXghy2nlhNwVEG2RMmoG/GyNOAn+XwUtoZVCwBbIWz/y9fHaPysyZYnWQB1UzdU+jYHQP9fXzF2p2Z4SVdICtf+/E3NhtA//YIM+jbuo7eFQDkWxG21mmoQpFxgQo620p+EwHcZZkMQoYhkgT9EQYbcreUSst2GmWWZvmP0xurtQDA67AiQlrBtitt3GXzfQ3+IaYNwL1rUHu/XBBAREt2/Zpl4lX1Yk9L8aIBFO4d7pWs5ICJ1MLDX0clZoHeukTYIyJeTKCQfALSWE/pm/hCB+nqvcfkN+V3JCLSTLtTiJDf5DAn0mf2UUTAmX06tIYMHcFEsRQtkQRvPu08z2mMG5uEedQ9sz/QPDC0sVSehOlxVrD9HbykCXt59M0GuAiFTA1+8aLWXSMZb0wx+HDWPtnVzkK14lhDHi78Sk3JlZZ6T76wxWyJ/ifY4xf9oIlHEFigsf4sg4E3PQafEDzfzqMm/5OIiR8Ls3357DKCoEBMr8Aa3gF20As0L+OIrfn5NtoH9g4gqxN4BzzKO7JqSS/nRO3+EEBV3rAO5cnMtUQzLKILsNnprqOldZGenLZnab2B+50sPhZrvhT3H2V7CEwRJpH06ns25okpo9AaiXP9ea9s9cPmyeTcCoNjiBq15wPg9UXdagspEfLwLfMgl8Ht9z3O5lr2G8ob8ZWXbEkbmO/ZjZPP2pIeqX/4/kkRkYyjZZ+1PSvOscZlVnS59ze5jYmpdvhpF4j4c7wXAgixI6tTSQczBMiu5lCuzwC0V31F+XF3B5MCp0nNSQX2BQVDzqG/OE3y+cnYWqHLfZJbjugeQEnS0E4McqSlTrejMkyO5gdCaDP1jar1onzgY9SZoZSThWMMqXxV5sBq0SIhlmb89XgL4Ra3DWx0zYPBsjn3T9DNOKIZBz4QD0eEqanq6rkAnxcUeIZchJmzs6p0f/NRSNNXrc1godvFzb1cxccx6EnV+sS3dx8pqLXa+DCpXRNwSNt0tO/x5lrtQPljy7iPJ+etcbR2XtdIgOcBMu7ifY=
Variant 0
DifficultyLevel
556
Question
Which arrows show the approximate locations of 5 and π on the number line?
Worked Solution
5 = 2.236…
π = 3.141…
Since each dash is 0.25 spacing
⇒ P and R
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
correctAnswer | |
Answers