NET MIG stacking NAPX7 1
U2FsdGVkX19GwYOLqH6jqUIpoYOgGhtfLgr9TlEsyEk1FRYATPMS0BBgo15i+1XJWRE+0xJ7pVLkbJdTKnAogZL7brIigBXeiKuUGuqWJbxmC1dQkJeHz0oMP2CIhl7ifKD2F4pCYVGoy++M1XIaiV8IBQRZFtJTeH45EMkEjljVA1uA1iNCTLgxfoftz6rrOcWPUmQbDJEOt53GQZa5SRLvdnc20GAFZn69fiSIOZzt4uC57umimON3BCr13mxQTpt1MWyvea4xJkdPo86WMdMI1A9C5pCAR5N7tL6hFVtR9aUznxkkQ9iCYty9fBc/kbUioOBVkAQnfco7TetsGmlgdGEX2krrmZ8eYUlY+0x9I9MU3Huo5F/f5RANA/P2I3AqUXEH6hHLztpyoctP0t2ucjBwa4sKzuMZfMrKFMNVeP704hU9sQfu6/lCvhKA3utjgToas2ltqGAuWWFYQ1wnxseh6iAmIjJHRj8oRXKPujGqh//cKCsJcnYAIWqP1gV/Ki76wFcgg/eZRStZGiqd2L0fHedUKD9t9ywLSGcMWCLWsBluCCXXa1FoX+S1RG/BKo4rj+4iMQtpfKCwbi0ONGF/H9GTdn/I01hmDgoF+OBA0Cnec8rTH2jkr+Rj8smhtRdqkGw8WiwHtEXTJeT8ePAOG105rd17Oh8rYHu58o1/NfeS7u9GJB/bf+oDt7dFJE49lqwY8Qdt1/6bnhU5p+Gek3BGe8iMF79iSxkhlukAOrkP+U7ZJ/oT94oJPWlFds1bMoDN5cbS7lb071M3y/WG0M2ZUxld0lnySYVNGB9+jP+V9C/bN761Xt5FAznw4lK3Gc1YJX6VXvdDpXTez+h+pkfMpUIVPTCAlbF0Wmrr+CPsE9MV8SAdGO3nBrg+s6+l3DtL7XB01g79Wj7zMRPr29846p7AV8n2Krkb2QV6MGKqHoZYcJTgEv0hMWyH19zsEz0Lgc6IIDQrcZTd6coNiEAUYt4sSUgBeNsCuMrRWGfhtVT+l1YwvdfWaCoGmnJ3alyiXT4ALJkd/eAMdm5idSsEQf4HCEwcbC9y1ZIrI2E0AfU0SRVtiH2sxIlnz87LtYqeFP/OEf7R3kCQzCMh2nsJz/M9nCPcXSi6qoDCiCVt9FNTRv2tY/uGOYiHiILMikfhlDPxeujFifDO6i8eI4JfpIta+NGkfqFTOX6t7BnfoF8BlHhQmAZ4AksgiiSh9AJlUiR4vogfcCqAthpScT+osPHxRqrVjo+JqkcSFSALqz2O2lt0HxCC3EO8z+s5wvYwf2NHKnez+PYsZsPfyp5ylS2W+MV4yMXUYoeTCQxUgkS4mXD1Y9tTBj2MZGDHU7Br3DC0AfvE0a85fXT1SnQys7jJJVGCBM7Ph9HL6K4+VmVB1ezXi09Me9CcwjrJdkE2b2SKSv07N3hDnD62ExA8SRjPeRy8Z6SoUpTcaI7GXLKeHQTuJimxs6FrKUJiEj3xZEXWaJyGzjC0Sc1U4PyPO6rsdYoJ3n7oVja3U+6+sN8bX5OMMqyoBu+y0F1xnmenCcO7hX0epn136G6qrK+0Q/wk2Ai4/L0VKY4avvBTXJ827V7g7w77NYJ6WfJdE0zQjygRDcZrxQCTTfucjyoxjEOfte27eZyyis5j32wDltffq0bR90xfmPkxn4YFr+dRRA+AnCX6l4/1HYDmF+MGIlf4HvJDndbP+3MaKt2f9zWwf/7v3U/RrUTLThB+18fUHo+Qg7U3jqnFCpV43wINU+7MJVMb2POVm4Nw6v3NXjqxR6IBACRc0v7gWmH4mJcUwAawHKTHmXe0RJ1qwPv08PI9XVQHt2PVgay8YYgajWJn6EeyzshsW1i4xBeyMBZuI7s0V9m50OdV2g5xuTNo5Z4ZzhO9hYhYYaQZg8U2xjpeaV7fnCtRUaQiYNUzwPiCPJ6vvvLC/yl+W2SohERXVTwApz+W+RQ5F07MJQ5WDIhnYeXkdC8O421a3dllPgAO4Uw4BxhBq929nZJyMvajOWDnqtcP1VWwg3VMDoS8cjyW6mS/oZaFXVqwliTSPEiCQX7POKQMNIuoBay7YuzHWwLcQnoq3vINE7OKZ1d2Y12mt6a+NKWpfsITbGWlSu4JssVh+Dw1T6AuzIVy74Bu5JOZ69D1o9T7oPJ8Nbh7A5g/ztK/jubTtlAVuH37RoChL1TuDj9QQb0vd2T+bX/5zJN2rUSDzgocKCJVvrxfRMpLWQLjpE5rzJySkIWI7edRaX+hFzByD6w3Qok6/e++EfHsAiHygZR0FcfjjJ91NrMni1sIPmZ0wJL3AWsbS9BitmeN+CnktNmA4HaZfQiaDHSWkLvC/aKrZBv+nZS531YPZuuV6IXWJEIRjUgfG/Eyh9lLlNsuaL7LNo/4wuUQzHQdaZj9JqUIddVSf0RRVd3/GN/pLYl3dg0y2dwjrvk3ZkwdDDkJ7g62E+xnIhae83I/u7Jep3EsbviaK16kVJOVSqcYWv8aBqy7teJNyftiFUjskxXTzOP8Wo2fmkTuClKCFQul5J+Pd8vlScQvbDV62vlTEK5ItsjPr/8ONrMmcXJSnqLFjpZBTNaNO6GAX64ruFaD2Nr8cDvJaiYEwVS4HGzurBWSQuZmuAYW+j7LzdTUR/eUPTmqoM+ZZdbGgy0/IJHhPZIcByGRji0dTpmMj4GdPXJRuoCLJ8TH2I0DzjXTvYC4fMK6QA4Pjq2pbrDdNdvLLo4yVz6YrYxREICafOBhH2NMG6/GKtmpGIfeLxRpiyl86kUSIDhNzBCC4d9xL5p2jpaxYG90mJFabYGX4R1JM+onRIXj1rs9wsvDUEGkW0WKUFgiCZXSoK7A/xqsAvYYRXr8aBrrbE4nlYINSglZepayN+A/uJDF/ikNMbdJkKGSeyMxG+RdVQFy9zrM7f4qoVnawArDLBqfhFoUn7A3G7nELaWGsPTg7XPyj+ZzgRiFaJufMW6SYPQtcu2RSpfTrb/HUqpzt3CkQpStfr6QEfAzGrIPk2UD0RB7TVQvSt9V+SOidiEIfLcPPNPDnKpyoprQtKMflStKGR0C2XNQBEYmrb6idAeRwP4zp9kZLy+HRKIbeixxvKBsfhg7QsZshryHt24YEaXpPMMvCj/MAEi0o1xE2HXPXkKdaA+d7n5pUBVCVYA+nwRdj1ty1cYLCKLUDR1nbqGHF6oPtF6Mwfy+OcFgRtgABu8ek/imW4hqpn4/UllYB1KyztOTMuvKkqEeG4Raq37B2BJW4FCH/dkB1+7NRDp+8YYNRi9EpycAjI0DCGfMaulYncfvOmqz8LqsemPiwHT65e7ODCpS8kMa9yl1oeYb41FWpCrAXHkehGdsZ8gjg1x7ZjbzuhhOiAA=
Variant 0
DifficultyLevel
494
Question
Jeeves buys 3 water bottles for $1.10 each.
He pays for these water bottles with a $5 note.
How much change should Jeeves receive?
Worked Solution
|
|
Change |
= $5 − (3 × $1.10) |
|
= $5 − $3.30 |
|
= $1.70 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Jeeves buys 3 water bottles for \$1.10 each.
He pays for these water bottles with a \$5 note.
How much change should Jeeves receive?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Change | = \$5 $-$ (3 $\times$ \$1.10) |
| | = \$5 $-$ \$3.30 |
| | = $1.70 |
|
correctAnswer | |
Answers
U2FsdGVkX1/StkI8byrAZb05pFfsJ5Bo9zBq+D5JbK6fRjuSOcmVPEQSo7ROYPNFy5i5fS6XjyPKF6P3QEd7Zy2lPFBRc+KzOexOW6Y38uOB/4seAnwUHpyPjo+YugvlIB9n/nSaEQRNFOzI8LU4qRbaO//3lxx68Lu56DaAkRz9MYKGgJRN5AjimWJDn7Vo67MhHMCaF24r4D6t5nQvnffMt8BfMU1Oawcw0I5LlfW26Jl8DorTSfCXKhRkulzyKIX2PViQAPba1wVkzmQ6TUQhG3hJhNr88enhzAgRqDdqDCSCUvnW3qSfQGuA5/HHvZDuihSOjCzyZmAUFKQ3fOWLan8X9Js6E3SdqPqxx+5hfBMY3nAzYZJ2/cTTgDOuzW/bfygY3MF/UIrnxkLcy3E0Xnsq0bQG77mhFqkpV3zYJYls4EWm56HXmuHSN8B7T4UHInvLrDgT0vA2Wjm6LuGlmnvkgSg5lXKkVcfKu4ISHZ1p3ob7ZJSed6O6T1BBHjd0+z+ifXkz+T5iEcOu1Kth73iYfb5ZTSwnd8+b+hMzNMZQaBGQkMpnHDRPSAgT/1qtX6uiUzbl1lxfW9B0GkrGvYs1EKSXbdZLq0tG2W8wmPWDx7OrOncafrPQDUcUehfRtL8GaBLs8KOM52VknycjKwh1DELsEtUQN5H81eRwhZE8yq3MwARUIAujTEsIXNNRKiVRPlRAuSdFwzDLNYHxFBX/1gQSeXw27xPEwjjIeRCn0UcT4W2jld+0qHLvzhhmwcNcfc/bDJeNUuTqCzBkgO7hqVjGRt66u5GJgFZrSQG/1FDXfb0jZos9mjie5QZF99ogmQX/r6z9PEYlcH2P9Pj5z8L6/adVLaYhUmHuYnPfXLSYeGWjzbYEdQTIF/enUC9I6WOhM+owR5olAJ22WvcnxDX/iKfwPxvdj22WK/UyUzu9gDO+cGVo0C/kAinOO0lnR2Y2J9h5GsLS59rI1Xp5xswanoGmMcOdIMZokKJ4eVdz5trpsAaTeRuQwOORd8qz+jgsf+Gmq8VyteDfDcqxV2kt6oQT109D4HtSifsu+1OX1v1GRisW0zng/ClIVfUpkmU2ndC6vCQXTZDAMZ6S4OPmQk3d+xnIbyROlJOfs5yTnYFNM1UHR6mMuJM/iWBKjtnHRDWoLiJLeqwzD5Pc9UBTXCmC+Nklt2YdGFWs8+3KZDDFxTLhYahkWuFvxsRtOiBewC8DyQ1xRyvonyHPjr9WMDxs9HHEedI4azyW1NzHw8gNhpWer2R9vVSMgznFMg8AnvG05oBYrvynruCAJNNY5WDZRY6faqz7F5G5h2A3e9JV935FqiZ/7OlPlIAADRVsDPS/FjnSCdZimdX+pskg+ndgyWeCEvE9423clLSjgv5jd0/+YRsTKPgaVqPiF6OzxDlc3W+VwE90EPvCVmIrHujlbABWmd8sGvr7la+cJdgGIYxwD/FfKmDPZXt/9NdUu/+7Av/8OfC/Xcvjs0OaXd6qiDutmzux/+BVgbbYcmx0iXlfkMl3+O9GoUelnELBZRC5VE6mpY11xiegLG9dHZm3vbM+qkfvVvbnI9a5tgxBDUAHwJtpoYBbkB+wVCubpUMe0sMcVqkwfeFsrx6fdDjkZQj1j8xd/QTTLlvk82p60gPtFFyocxtkLyFfaKFko40kMADKh/Y8iqOSOpPCr4CqIIPp3VD6U5BEmpwmJAJSXXepxooAnI2G1scv9ZwKe1B2W2p1ej/RCDkzz8FnEvcg9Wy5JoSKn8iZ46udBbhbtm7h7eO3qMN0w2G9pCKOHC1bq5rwoZRpQn33jCLsdvi8AEuuC93dKg2zafVyQhbBCSxkQyYcL72rUzdPpfXPmcxPLfOgPRuK8vVWIziKp93oYNiGkdTPlfZw6mCMFJ01ble6lxkdGSP7HGc+BAxZ/aPpPpvyuDj71B/uA0K+TU2WjiI086WJDDm5oaTCJUZ/pyWj1vCQF4iRDMZFozn6tjiQMrA86/IpGsUGarTzjja7CZD0/BOv7VI3r3BAw4WQisxKv/ioLmio2CvsE6VmfkJ78A/OlXADmkdmrUCH9ti4L5EuW0Uvrrj2wEvFfHnba6al0CMFYK2QVa5+oCUNkhfAQeQ9OwjN22V5qHDlIx9+9+wsyG8SbLfeCBtasVIyXrBg3N0LdrOXvDoV1pqLJkGyVDjcBG+M3BaQyH8aWGqiknUMEwEgLo5L+MZE2nyayS7b2SsvCV/RuhRLmlwqX9SmjRSiOl3jJp2DIzbYDfl8qCLeLfv7h8P3u3LoWGp8bbJjyIONciUsb9YuoEq1pXPLDlgraLhgCaDXjUAQ/Ogs9d/fpkCEqF2gOK0XFiDBsSwZdMWS7Eh9Sx7LJ5u03DsMSFyLWx5nGpvQh70GbOemWgnf6QTHTS6gc8RBFXBYbxGsEea+XWxYFYQp30D657a2xERN0qqH7JwNbJ7X3vswBoSjIO/rbw5noyyKbMYZE2oanknGGexI+oICiOimRNmetM6NYRcxleTLJRSJmST9R9dJgQhFCcx8/ONAisz0YHEtokadpeDY3YHZAm6HLn48dwbSYGpg7m/xaVUvNPmAQHG4fEdIUufO14Ji6Z1fRQWBqOrEFXgu5vWlRTBZlaDwI0/iu4XOIu9hXfq48CvnPJdKywP0UDwyy5qoKAfdjlnW2/PzmTVMoTkUvxRPf88B/N9IaamJzzZasjPaZKHoCWNbWWt/KAmvDcP4FP6YhgH0EZcmfXt2s8R54iR2Jk+1cI5Z4g+KLAShH/k7LS8sAhY6ViiA5y5V0okc81n/x4pVF39N2JTk6ANTJpFLbLQp4XQoBjZ7draJOQ09ki6ebzsjVM1gCGfKQhOjalJHGgBAd1hyF/+usgJqG6q+IUnPAGprfT5PrLz7coPt93eRtTvRog35pzb9AhY8HbC6d4eEtRJZksgui9z7eXqlH3BREwj7E/46/eLFCnHUn0JrqWCUcbO05/3eDsxmXaWjyb8uZI7GOzFatmPO9qnDBtywtzHHKbKAqIaGSBtgshFgBd99zCdu994n+FGnWYpZdP10njw9kTfxnS08eI5sN7z8LIYkST0NPrQOotjwUg3o+mjy2V2+ZLhi29LMHrmKy0xbkc2dnrSLZ5CJnjb/VmIRosio0jgQEhlgVoXg7pNiuTd9dzWGDmU7ZjVBwouZK1dq1cpdcoBJWPE5kY34mXqPnQEwtMyeDnK5hnD35gtw3gXbzEii4Lw8pkk7p86ER7ypIKvZu8jdnZ+vwcUgjsYM2TjP3Kcr73Qc/jRDm4eeiUZ7Xyg5W8jVQMHFMLaJJIEiO1nHFhgfs8blMCQ60wmV1gw4sSSa4KS4HqOQH0nlHZCJWLI=
Variant 1
DifficultyLevel
494
Question
Sam buys 5 water bottles for $1.50 each.
He pays for these water bottles with a $10 note.
How much change should Sam receive?
Worked Solution
|
|
Change |
= $10 − (5 × $1.50) |
|
= $10 − $7.50 |
|
= $2.50 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
Sam buys 5 water bottles for \$1.50 each.
He pays for these water bottles with a \$10 note.
How much change should Sam receive?
|
workedSolution |
| | |
| --------------------- | -------------------------------------------- |
| Change | = \$10 $-$ (5 $\times$ \$1.50) |
| | = \$10 $-$ \$7.50 |
| | = $2.50 |
|
correctAnswer | |
Answers