Measurement, NAPX9-TLF-CA35 SA v3
U2FsdGVkX18AaKstSlY6Cfw996Gr2qiTtnwqe1CZfirWiGAOHrphduiIGajlDldlyUqhykZQFl2dAHojYl2oUuMm9+ok957yC7iyVjwznp+XbTSYWCu6lMG35KaILRAKeCTy/uFlL9Jym+sn7h/UPmko2na0LnhA0LlFt+L5LVrSO3A6EiXZecFGwnfRa+iJilftMbt7AVwli1dv22COjRmHYQoO2Z32vZs1zbtDI4DaTfI8r0bwBYBZ0EhAhjuDo+23StwH3QEgw2oS7b0B6gQreR7YeOsgJjvDET0V5K0VeEHcBnE/065oowFuNAbUgAUMGlaj+UxiFmiYQ22m2ODd73gHyAslxhmbBVcTSPMcWMnrwnLS6oD0vgYkFqDOoopBRThv0xREOxmxXRWaaVzjAZiA7M/MHtXX5zqgEmmBLsRpXplbCwke/jlMwMhtAHM3oryWGSfxnmDecHA0xU69xSk4bowUt6K8chfhKiZ12CBAHk6790CJMAbPXThdkRU6H7udjbYvCfcsuJFPLisIueAlvG5CqwQScQaAlu7Ae4Oe19r/3SKp3xz4T539WRT8M6euBulCuKunTNqCPvPl+R745SplEkP3JWd6sRbDetyYtEb4U0vAOr1oVMl8k/KqhbplWfHsT+2Prpb7UQ5gNmjCK1EnFlGK56L5k8/wD1dCmluTHyJttytTC3idSG3aXtJeNNBP2sRYzTYWXIgt/DfFLmdcMQrFxIx7A0zbB1ZbHZNS1LZc0/ds2jLyLtysvAdHqiuVomYrCPx6cpcYBlCExgJsAP67umSEkVkQFai1PwP+KFYAry9FzrLRGx7zZ17Ofu2iEtqmp48Z8a4VCYktcm7PZvBTpN05OqKAaK0q+eduEWdUpIe8Uis8Qf2tiY4eKHIYzXu4N3Z+2LSdb5sxGW29kMfp/4IJ1nnB4ClZy+Mo5pRsg6k9+grhwF8T9XDYiF6rXwU393KpjXIDNQ+l/X4EBMf7O0hQo6HS8td1TosPO909FxM/Lpb0yE15n5O/53YpdHvhb7Sbf2NeXkNN8NcAl06RKkAClo1veyhFH/MawIj5cmGLhJjhtSlN0BwUPOFpZAblDvwlKhQ37s8dt63ckdE8SWuosYpK/MSvDj6wjU3mcOYXl0J8Y+pzh0SILNyYt0IKQhjQpf78NLrl1Tk0vbzeVhukLtCR0QTGRuz+qAQePBWqJdE1A0s9ei3cX8IAH8n9pKhOjztlz7HndgcYyJ6fecn2aDB5PJBoYgjgfuiR/vCRXXlIuFJs9QjayG7IDqI8+WyTUKeCTEuNkIXcgX19LG7bDTpkzlYwUXILKnr3eKbecbhyJNfiYyXzf9+lCaQBg9gJPkK2/dnstBLAD0PKKpYIZoJjBJVMSNMdiUcpYMVy0Xp26SN7T+0IXmzc8i3Q6EkJrd4eGO24AFulXedzl5z8VNQln/fgLEa30ddeAHzRVFYzfXS57P6CEapP/AOqas2nle5lKtxfcfZCJJWFxGVYhJmD/KLVSycOik0xKVd25yRR3/MqZnLI8Sp1JiCv4FWsDRbLKPDy9Hi3vWMitXjRYm+gwUP16R4PXGFHfBmmaU253oYDq2Ixmnqh1Qeanh37tUvX5NUjIn3SrzR/CX7iQ8UN9VI9TnOR//QtFLgMhbq6JlIyDjrZVmUeSyNUaGRKxb35/8YBtZklBdWu1cFXN0RJCZzOOUsIexjHH3tiBrMQIxsROh+a8OdBXHZjRromyjkJFnpNnFJdsg2o4rjZjXYpZLnzVZktgsCg82cyn5NGfx4gFvBsjWp3vJ+x7Qi7exrKHLeFZNvAIRgC5OaXn+9CZu95fMOpjbcIhPM/9U/taOFj5ykRhaHKhCMu0nSZCu2+zbsDviH9Y1GvDFvGIlWtWRkENtQ5CWtnZ6JyAoAAYEYASC6pYAH8r2kEpHCwGVU8QaD5YvcAHtiO5Z3Mqn9rhea8xLHCBwPL5CvfExUdhYYRwbQBvLQXweQv3c8rFxx/blNHWhtdCO+N/96GIO7jkN2m3KCI807OWECs0d2HZy7swIh/mv6tE1LYomCdKrD1z8eaUxlvA0Ew0lFZq6ppudHkTZS4NjXMlxO6GFDNlEnk+QV08EvOOLY/JhfaxIGw572tP5hTbHn7bJqFu3g7ViydLXSmzxhhodJLxK6dN8Wyth+EGo2jMuTNCJQIr4yOdyYRh+8h6Z0gEtbfIrRP9woyUOzKWV616mqi0Ug6qjk0AdsrpLWyzRdTTczppKrh4TI+y8koXg+yPQoMSA0JvIkndn8/G2SyjF28SYdqbdN+xqpGnV7XweGpxWx9UI8Gk+ELPoHOEMt7i0XDGLRHq6hBfv1wCyssYZQlvRHQJTHK4KxGzYeVIq1qcjG4mE0Sm7VOy3HQRt7NIT5ep7wpypTDK/liKwHDTbk3nyOC51GsVkpnH8iySCFMzbpC12kuuxBGmjpCqB12N/qIAhntoEbqIXAqnHdx1rj1kQiaYTSyZ2v/SwT1i8fAIzwcgIuzUuwDDpfuwCw+WGW1SvaxiLgt61Gp+5pSY3S+znL3OfNcK0j+IN2i2KvKSAUpsq3rDb0SyntVSxdrdoivmB+JCheD6y3UjhTXTo+MRFXP+T3EK2KLRsoTgfRLlN6aSd+aT6RBGrRzRZqm8W2rjzZWVYTFltkNNFPXNNnbV2A0M38EtgSTLnxnPzBetMhQTD6wM6xDYLWvi3OI5/wpzz1WSbr9V58BG4HfBYkJRXOijD48IS2DngrQ3JOaN/WTz+SV2GENYhGYbrOk1redaWH7Suvv4Beu3+m53qjivNzRGZtPrCbnbqwHVHmMCdbrWZutOzbCfzPImKOppjC+6p0j6PWM2YZ5wPdS8l6lEsatn4HSrmLY5FjhfHeegNdNS+No7cflex2+42BWqG/c2azKndahUEDhkU3ZK7z2wJFV/39b5VRcp1616Zbeb0I4AaDfSR+uup7eFzxc0DaRdD6bJ+OngXQnwNsZbaAyeB0YrAbTCKYM9N6e5Kck0B4wcuoUm8wYcliz+yeTCApqgJui3vYK2pmnIBvEtL5umlEgM4ss4tJZfzScIn6PTbRftOdP8g6mjXsQQ71tuEqB2PmWRWNZ9pLMgX/HFbxMOVdOiITNRf3IzBbGxPw31l9zNDDxM5YWc9LDgLQ06bX+q0ZVFXNPAPypI7XXj7tlb1Rycbt7ZaBpBTPrjpeM1fAnSFgYHzDm1+LGz38MNAg+wXFcDXF36JMHVyk4aH7Q49q96MhxARChePww4kZBK61QJIKwLJARDMBm9lDtxSgX3KzObVwOOEPVFeRFjYSaltUgfUVC/WeXapGBi4Of/LAEzT7RMJW3HsByp1OwNCnbLHf3JhTM5GLIw1/ueqk0zEWspjrCay/ZMv7ty9QAqDYYKtDGYoseDq+uTWOMwz8FOjR1iRjBwxIHwwllKXpWq+zO66w+gbMBoSV2TdEmUiNBebnkMYLF0FsOf9xPJVBlIjJOpU67TwlVLdUwjtbRo62xY1f0aqLZMfmHjNLyWFAvAibFP4xypmebtIjEdfQEceeBdSMKTNmsY98qXcpuXU87zuMEvtMfFlggFPAZB6s2Orq3Czvwxurh0sqO2OgG53LQ0HaoDftrjQL8H8pehrWrgZ7RdyqlV0/bcR4yiDNUwpve94CMf4MHfzyFfyjWLuwk/pooOljrvx6MzGEurwg3c9MFE4zegGLJnU0mo13dc7zVdvyFHBBQcCe3vseyBRSvKcSioqbeFkaiU3TTPIBDaaLkqeJoaL4OD4EiSIsBFm+dbeMQ2uReW8Ky7JfilM+/WWIA6grk24ib1p8rND2hyaJiC/JwmOHLxKXUOIEL4ruDUd+LXaIHJx7N9lpGICIIteqBZ3phyBnxveWegvfic61MjEQMI7QLitnxnMKLdmx/7yekDaSc408E8iG+BCzt+4S4g1YNXt5PoduxCDA2u+uMnpUecKbVs2db70/ocymO3bPsV6jWhK20k9ncw71t8LLhHmPjrxjqMV0ZKAufznDEtn3nG1rPWEWxr7sLXlqN6ZHRRou+1ffhN/+r55hi58VMKWjkebemFTikY67CnBNeKJ6bO7pzNun770+66f0Q9jiso90+5ALB8NWU4pFSANFgGPFNHl/QToleDt+OzD2Dtq8wM1Ug8uWFmguIyrgizDntmEm0kC/iyn8qxhmPXeL7tOCrf2VayiQAvDvhkkzqggsp71kkgCTFCsLKLkAUPxC5hVyXh4tnOtAJdZormPaGv6QxBpTHF5sk9YiWnyxGlB1ViWF9KRjdd9psDbayyn7ZH6WD7wzVFMVzUSJuPbuxpxmOA6lxIBbL9V1XBRt0QKGoFc23KA9Ycf6eznqwacgqSzLVjo10DjLzQhU9L6odAMc8PlEXWCDqKTjAXdxLhaoA56yh7Nt1BGA1ekGmVceLd/KWNTaNRbrT0hLkWpstNod0jVLHM9gLYQZXIKVslH1Anhe0fOPyzl7RM6PuPNFjCPRid1X9kuGeR/7iXw2kNkmFV9wod98mnDHz1/d/OPLyGHqe+VKYlD0wdutJMgcboo+NiGaXqnsm+dyeEzKIwSbq/+4Ek5qoVHrgE/kjA5VBfAlBYwGSAQzDtiNaNAsbye7js6Pogh4AD53T0a9L2JjMBbnDM32xBi4+/bJbyNKdecSoVNT0aS1EIi8OLkTVDAvk5KTozOLcFyrEpo9Tad/zAPkc+ocF8br0taIesmkH42KiO28qKiw19Jo3uSc1U4OdtQay65xObjb8wqNI2ssIi0afaPiarf8kZbT1z0CZAxwheFXN6u5pnuTBOVyv9OOl3L9fbetw9mr88Ppoz/WYPa6KS0D+ubLgYzgvuEfoYKM+kzjstSeW63Egq3K2t/VZQY+51maKfOKvGF4FvbvBTpEt6H5AKLD48jBBqeXqpFQ2qoo37AZuGLn18NjRrqjZHfgJOKbnFzpgoURZq4c80N0FdzgTEt7KHHlKv8L/owcK7GJURCp6tvyQJY52L214Ju1XdIOnfumbJbQlxjqV3TeWJJfjUCb92qYpvYhjGVC1g19gemXY6hjL+MkGwlqus9VFfYr9qlxGOZybSv9kgyj8jnEWLHBIypgY4TnjakR7PQDm9k4GhGCIV9dRCPlnk9ilE7lprt4iOHSNu3ru/jrHgSXkKoFApNl/HqPAh5x7NrA9StXGtrSsWdVqvMiM0U2Mx7nH4uj+msPny138YfTwNazuz0lJRDbegBuMJxiBdXzNTrdUvoRO+pgT5+qFuSQLK2DvW0XLvpL9ILdZIRagicX+cP8xn5SrgjmB8NPrhtjyhMhWtPB2VODGW41aDBKSWPrOc9L1sGD+3y3dBEcnRsGh4k4GmsC66Yvr7wbcHE00mnHnORhRmwumiSrzc8+HfNOYmJhA94GS8EYuJecV7mFwLaHNx1/kZEAhWyDaKxjziDD2QPgLYfFyzHWUWaV23p+OZ22Q2koZQQB5hYNkQZA2spyFLrgEQkjuD23D+BWLd0K4yE/wcIV67ibT8o2DgUhM22Im1GmINc2TYBFuP4Gdi3Hbf2IdG/mEPtBud2nyYBYab54kui89J0rNxLatjjtOr6/J+ROIJQpYWIm8tZo6BNN/KsZTo86fZzxR+BAM4Xm6DBWVklWcs8GD+u+skyUNhY8qkRYRmaUq1Z4SLZQTVCMR6NlQ2BaxUf9gwc1PB4F9kDAfxGP6vnR++644Z5Fl3wvm8pye3VCaNANXBPDylWgdlAPh+xT87DYOCPUuVJC+ekg9KFUh41FiokGggvIq0X720MVKLr4/cTfWT5IU4rDvJa9HllPPI1Pc9oNtjZ3P2n73huwnzcp76KTP2wVOi/TF4Kxsv8v8fDRsSKA/6FpKcVrJHynJIm5a5aioEIfgfPfBR5rE6zputFQuH8GArlckjJPg+rMw/z1fsNUM+jYJetE/hjgw+aOu8ruJrOJbeIJ6SO8spqQIm6ncQKXtU4IbKr+rYqmD1oSmnqZsmzlFYKT3D65QrQ7yKVN18V42Qx99u7sgHptqqCfJT7D7nSPpkqiKf+jbnyS1rZ6/DbVNiO27oekJQdfuPYdGWpZmbfsA8E2+sE0ppquQGCNVkSDk1MvaQtushLvybM4E/FThnE06ufmndBU93c3ExHthvMrdT+D1LEJnS9gJJ0cOC8iQ6wuI1StylnKY+D8RMQl05qs4ZNjonzXIvBEx7/VbNz8b5nDnYRkLzniuJhEyCsOoZEvXk2PLr5lAYb9hZfGXkjqxKG2BFRStepVOSfi9CpW92xt4MfOLjt+enawR6e6EVQQGdqekE457kS73mQw4O7KH3LEO2x+UvNP891CbfCnBUSl2u+GsnjDgOiImCgeN0oIxUCAgJmJPFtdlpfhFIKhmeQvOOaNiWMvpHdiugdbMT3u0AqeiGYAPyEosd7dYrEZK6srcITFYZRmYh3NLDhpf1e3IRgmMQ0/PCxQtGfLhmql31t1t8qqvchr18le5Zo6RkzhwM6sT02kqgqIErDSepHelgp20iAyj+do0w2UXc6A8hd+HurMgYHe7Fh0INTu9SB+6N8LmpcA5m16/FJ81u0SpxbA7CIOhgYJgXhn47i6KFkezBfY+jRKfj/ahpbFsLSFh1sQwG2v815ibqcmpZzfxZYyGfJZ+EwF7XUsyeCaeAdovozaFnQIm2S2qaVB2gaf7mx2xbtf7ve0feNgphFyt0cjdZf1wjcnken2SX/Qn38YF3b0ysekcUfJ7kHBtH3JCJreqvJ++G+Useap+sNgLq9kaP7c36Gb5LXDbIhmY4JyYfy1ettQALIeGQcdfTQil/5JD2i4KeHdRXj2XdPX0EzCPLPiMTnZX34DnhrRxo7bBhtMm6snaepBwZ6Q8fGVrbcSNQ5JGvREaSK4ZYXNfnq7xrwxPO2ssnr4mkwf2/pUOvO6GqjGATUvWVaCTTQ3ukf3U66uuOhrFvUTfYzEKc9zhEUyrm/ZX85j98dIpiUYrIyAEOmIn5Yfks5nKf24+NMT9rzdFvTVPPxiNWVbuYgo4wEOygD3mvaCDlWwSKSXF1MK2Jzr59yYVWtiF4Gbe+VoXH2bkVlVfHNqpAkIg3KyABNu6v0514RhfkphRmwuPMT1REYwjPv0ROGjF9BCC2zeqh5WdPWiKfuBIB+ocbnlhqLN/miiTpSaHNLUOA2RnAKUTNK12UPM4MjSs1yJrJCsQzoMYE7UJzY5yNFdgmlI2yhOymJ7whebfd/lOUco11RdyrN5fkiiyQRdOeWilPfVT9PEtynHVmsMHi7J1wfc/TygSiZVh8rE2HBAcOdahRU3BgorEILiTQtt+mc5z2hpUPwJrqOLTRFcCuZantb+4pmpSqkIR1+yqxVNDoX2uAmReULSVL/89gDkf8ZClSUcbx2ptaIVA9C7i7Zhbtt6m6Nx+srOwW2k/G/3J8QCROupIQz4DFxXHjxhINOwvFsapS7wQs5qkMxwkYwDiXxhVHSPVOpfqvMx3BsWt3ZepvaMNJ8IqngmuzUnyBlZPtD3UrjtlgTllcRcOjQK7yRk7ZFbs28U+hUhlgyj+fdt6qHdk40VIqOZFAeHttVYcKCoMjTqx+cD7IHS6NvXxn/5Wezxi5xGDzjr6J+0J06GYEAYQswAqXKlj/8/qfpWtkDQHQoaUjsycwzLshm8mSJiC64hFsYxgUolb+xK76m5WSFYw/eLUr5lrjErgw8RlI1nVJXNvph4e75Rese4gyj1i/bKk7+yXejzZSMG+e+3XbccTLNhOkKNA8mH43ceH49/afW5EmcsPA2gbP/wbLnvAR1Pr20nh+obaXnMk1ekjMWBycok8QyMM5bcp6XeBWC6y06ETZ+msXZ8kCbZEbwU7hop6fasdwqOgYAToAVLvWLY4P6ldqOksWp3oSz754xpVTvUQJBbWDl3U+FvKj8YviKdxuEl26JwpSCC+BLoA8rEHHm3VboTN1kKldPkZwHGPxVsGlHvJYWr2ppF+rsh9DqffhlPAoedRe4Hwbczln2j8EeEAuMTf5m2E8am9IOjgtlhRzmADcdSzd+J0GdWCfzFhVyctCCNUCDmQjai8z7K3+B9K9yPCeI9sl5aWCz1LT8sUccz9dFlOHqAWOCVhP/asF/BLzPlOkhuw6Sth9RqMNQqjssMplwvlt8YdcINe183KjLsrIh0EfIpLlP3UvKpNwG2iqU2Qtw2SkO6/kZ7aG3+DC0Plge3FLtH0J1hyGuWZSbN9ezziKuRzoRp+2H7xNRq9I5X8h2u4aUwhLc8MAV6EwCZgo8deONpx0sdpTET5Ew/yTM+PIpu/obUgh5IjHZLTEmvzV2XmtF0Qc+2djk8fwzBNPQXqGmWfvdfrdDj2Gk2ebJypfYsuAZqZQaPcm2XSUWstBrWcba3uhSvCZtZwLOn30syQJBxM6voUcewUhhxcjtNoqXPqdHnzQlixJ2+btesYo//EKi+jvZ7ZhyAuIEFN5bdTIgVw5oUYb1/PAaW29IvMKBPjGLOKMMdOVWmv1HH1VrPfkBFRXjBsH3cYbqHVPTKc2OzZhYooH4mV+mbJ+L8f8ctxte4ixnTVgZ9So6rmxyKR6B6Wa+ixLvhCKrhJacnQCUX9EbDP2GuAFOsB2DNUjfJvFiNrcYA3opBQrVNHycJAJyIsdSMMbDQ7YJx8Rzyd2iUWEN+oIf22mFC36wRSlqRd0328ue1sWz4Anfx8fb+MLylL4PdFuKPjudWbvDMzxvGCG37fvG09KgbPshNYwrq3iMDpY7f+f0RZ8JR+3TujEUawExKycTWczH1ulA2+w7lX2FHQkvbIefhH0BX9aukQAWD4gQf08rk8GFZAekosG6ryaFM1nRro9LUgBtIFMh2Ar8h9X3s2Yv5sjU/lNlBwplMLr/TER5ZGV6uvFuDHydCivLYUQ4z0NkAdTNykrphSnvdmR+UgBovOHboRq464RIE6ICLMkVE9hlPwXxm8xjAfbaZyi5lAQ1KGnB2Rf45VpnmjfvPzIm92/UnS7plBdQigfob5VeJXsSLrC5Ttd4HtM83zqCS+vL4UIXZuT8ISTnOnbYO8Ka4tx5T5NtuAzPRTRl6rlhmBYLG8K66Nw5iii8/daT2lox8gUoKjDb1B0QwEKJbLwdH/b9ClDPxC3Z1LthZpaDu5KCjyl8wUTqSbQk7usLkJnmuC8iZYIfX/VnVE9m2XsEJB2ng9VMzIvTzOCFM1vZ3w25zPTz+Uvr6qZ3h0tZUsiQTZBs6O6XPKL1d3/tER0/I6ZCHPv62pMR2bA/S/yO0pIprvikrX+yWUSrx2JDKBfqhEW6N3o5cMnlTxa1FrdWf45/uGr31Z1JvgD2OIeyUQJVzGY6dHSbmr/pNPV4o0FD0NAntRyfN78X8QaCu3GfXLKLQs+CIZkTC8X7+gYFVNW5JQT3yFCtDpqq2lUR15VyYXSFlR7CNG69/RFAqjuxEEI7MJeObv4nPrnBffa2M2Ru8LfHh7AhQT4bSQHFwW/d2JpGh8focROmD0gw47DPls5WUJW6bk1+v3jf15K7B5bhAfhoLP15GJzr0wcNVA50Mur2DA9RGnsJFLqvXlbjAPhlXggTTyZS1pqHCvUva/lp+V8XjdKN76N+5koDUi/XeGqVpsvXMc2oKcCxYMS5CslMt64fihwWYK//FL746M09APvWsCXBvrzJLwOvA1q+r2VRghpQjNgC4LVj4s95YGk8gXQNwuPy2msz7ScQ2AXj5UCI71/v2a5H1p7fDb+W02nRoYPncbqGr2AdGwHNQ74b7Xy5gIXmozrfuEMvK/qRHjqf2AmavI1f1YvrF0S7FBATpMMhBaE6rme25rrCLG5CNsgODguURp3YU7MdhTCwTs2rh3pdsH5WiqizXe1EeT0vsEYgvVA9d+ycnfm2dNqUO8CDISf/BHLEDgfLFu0GdtdnW8yVWJpp/wKCj3VC8vOvOHnXEue+xHa3FVFMk3QTkFe7C3hGRMMWbTtIp9/lniOAz/xQzeDJVZ5Cdm389wfSne5elwVXTFpiIckak7TkP9SaTFEm0LRAL2PvGIjE+/HlLt8OFpNIT1sHwS6mYZLUzRSiX+XD9JiIXITqIL/pq117Cw82qNH0s2r8E0YoprqGA/tuurKlmdl+LXgiWfz+XF8I/yEbdrS+tRs/JGQWbzCZN4TkfcbKrFm+X7zQ0Fa8V4UeGgv8UxEIMHEjDjucOacHv+lxQPYNzUmyQdG24hNQGEF07nllNlwisnawDQUam034HStVdXmoc8h3E3FOFa+9UGs68xBZ8JQwEQwlrWfiuag/geSOmmOVtFHrwX06qpLl2dw3LZZNsatzss7jC+jHczx/RLPNPV8AF/E4x6yEUU7A3Cj1L2Bmc03AQeLEYeYPt1IcJD2OvYFPqOeJEOSnrqt0329NHajQu9NPnfA+VKlAhqE4IrsQlwlnCpyZ5lRIHLnp5fFY4cNfzQM57joN4ML8I4w8RAPGAUo+5FaLml6Q0unLOE16yF6un7MwMRW0PrGnxE9NjfrZynjaftmcG3ww6MzjY8yU3hqDRaQv8by5Dg7O5alD8eQnFz37WryA5vKaTMu9Gauop2VLuoPvziMTs2Gcl6MEwVSb/GtxrOK3IMskjRL/Fh5X2Brn+3hHXvagQND6Asps1aIiorwZl5W3og1DQhh3kt3pAtkZrJyWvBCHUkKMfoWLCy0juGThOxg7HT2lx2OmWdek87B4VqeJ3mQWsLbVYnh33oxOthnopsZwcqav0guS47fdJeh9U+zYFuBgZpq9FciSlnKYlT3xA3jdAE7IB79lO0ev63HFKW7LcPCCmKh0Ckz7JuOIC1ZD7d83Eq5gHTZYZopRXXXgFfIyAK6r/BU4Oyv5Y6v1jqskkqOuHrYD1l5zk1Ff4YyGqV0E8OJ/ekNKi0jtoi8bYi+8E6eZGOMTxlxRN8eazdnXLtqcll6WrDql8Wv7TaJtbTvYNpOsaY8rJArHCBZPlVsKvgqAL/HZmqHo6qkK3LhFs/CNx1Tn6JxLRtPxuEy9+40dTivyooOWlBdFNa8NF2cNFPSLwYJy2TZPULEuNGxJeGaIY23FfUX700JRZ0KjcjAp5Qp9We+5patwwADL5m1Y2TQKYlijXAEH8QJS3frO8NS+IKJhD9stQoyTbkKDD872O1j5harpJmxQ4zt7knqcdRn6LwTVpTJxDoiEymOvtam5N9gNCTqsfmq6UTDaYeIUFSuQvRdmxueE4cSM5vvDf8cvnyNQJ8y9Ez9F3a+t89lFjpAGTzPj8gzrvbwiIbTJjwjjd7t3gybEERUh/VIiTCar9Ce3yBNiDuiCCEUMEWMWW4xGukg0hhqHiRf+Iv48jsPG+GtlEv/eTZGVfDAwfQlHJXYxn5TvXi05v7U+U1rRWoPGeinDPG4s59mVHaXhoU2d4zhGmgm1UwzVpeup0osx+jmmU2fnuN6qHhIEoUMVtHMRH3CgINoT8ldSoIB0+UvUlZmF3ZfT8fyZ2CHFtNPkKRFmGnV9QndDkA0p+aWrdzMVtexbA3i5uuD+fL5FIG1GZXEWeQsHyo3j2U0+O+gxbeMywl1i4BrrIZORlSFdBLDyTFbXguxDftSuj5sxKoHBq4W+6gXYIMt4xUevpX5f4eU7TALZb0XGarBjZvJX/ogZv0aUHcVcAj7OBgAIfCHkdkTStK9R2KpOAQLVBGCaKJG73eoxF+aXxFTn72T1HlQOU4R92niFrT6C/A802gpb5D75imcUR20mhDTJtD7g8+SEWOl1Zh7weSaic1hywqcwSTo1OvmBC3fIiPIgcxE8ewoXp34ro/M8URKzZm0/gDrWfwBuGwYY9oGbAnSryqEvPkhsG8ss0xs7PMbj/GVaa5I4i4Mt6h0juKRBLpxzKF3FF7D51ScOj63wtRxIyoGMbsdcrjR8M4enVbUNJtBAAvx/PqJWgaAL9MH/Ptx33S3GLyjfmRIo9PjG9/mAE55q7HGHELCLe65/LsA4CDuMT48NxXt9rmIsB+JMAuhovwzG8Q2W1chZ7dvjCMmQyNop0PEAlbTyPtVMm3iyVrCCG1Ahargb+7QGk/V4LAY97NWCZJkXx8nzQvWzyLinMrzTe6KPHmrFiR3Ff7xuhRIsgu0+Z+sksX6b4ZChfflVg1iJt95IOqANs6UzhyTvgpdkF7SmC7FMvh/VnHS/d/jr5g0Rxx9C04JiJodn1OfepYE2JUv7wZoq5vuyIHVm7LzwjMfJGjKEgRnWhuF8q+hgLVdUrwGDeYB2AczgB4lOIGfO8ujkVxHL1SD5jT0DWhyEWQsfkPezUwORJKn79qFjeribVM+8ppLsjnpO4nZgoW0PEGZd8vAeHdK9lircIv1rloMlPhtKFqfRsmkJgxTfe1k97zSfX52PesepgEYNM+LqsO8z/ShlRnhme5QkZVhLgmdStdo3Ue9ySovdggMNhgm8eh6cszwKQHWg6z4jg0YIHC0VhNBTOPI2ugheNJGiFLbJYUSYS9EZh8+5Q6IOQcb8NCD9qJwDlec4NLFvClXXDY1Co9uD3xJ7q+HOXXDxcUl2HGmsx1lDaSWsD2UqCnVhVozRoCctUF8nMu8JEzvQr0R5KZ/ogSgNDLxrTKzSYLHSnmSGuXnmacb9jh0mMLuAUhPElIa1W0uKR6Cf9Jw8HUXVwsLj1A16ZsP8lTBsKfE7xY+cWKH4VXJu20nt1R4ql76jU3N9Am3aXTkTVL/0e7skBNgv03ZBPO4YJ55Rk8Z5XcHFYJ5ZgjMCuQxURX7r4ARhCpEf3goPPMVKWHeF6XKlmf54zTo29lNkFgC+8FWe8dCNZ8p0wuOABcdg6gQNF0e0g2urBf72ACwertcl/rDI6h+7K/4xpfOeIXfN7pwG1PPfatUF658PC+Mvl2nrBem0Z9uptkht7ksnEh3ZNBXUQuHf0cF5CC3v5QrdU3iWv1mUBpkmmZiE4OoUA2nL9VJc16U2V33DdwwkK3awmoHwXjiiQJaf6/XiaS7b1RCF2SdQUjGlTX5o7kCkIzjtFBlmM3sWAjmzCj4f3gEtnzbhjPliFLdDEl5q1+Mcbgeb/k5SvE4DVURQIuMM7zNMEWeypRRhsKfjyTiOeAU5crskALOeEWVOqwN9rncV9SSs6HybWudAQ4nM+hxoUqKNU0srQ80TSpntcs448I3R7gFC58vedcQhM4wNEZaX2VUaSEPOuu/zMXeuGPgWXi31EsOx3cthiBZ5JmdimnARD/QW/rc1dEgjJx/qYpRNUMzoaGwdmOSLwlp2x2z0oXt7koIncDaOBHBT8a3ekEluXfn+qK8+50g6d11dQD1rrFVXR7QauxJ9FbXHnq0Lq/t9QQE86XfvYo0+2y07gxJWEKg6151taG/CWK7hsY3ljBwwC92jZ1BKJVtgrbMMDEEp+0JRoQ70cCkjZlv5c+Sm3JWeR92VYFVwEshNtjPAKBWHH3LYIFSsYzPZQgesInqTE4k0zeVyKkUiAbXB4Uh+4KN4zgXLFq6f7+GyJFBeRLc/N24NdBbJzz0M+oZR1fYgm02wQ9zpFq0lwFYCHXgmYf2e84DkhKLBOayttVYxIFru+Z/bAuvwPY4puaWJ2WEYeme+iw7kTbMwU+KPKzhc2GgE2as/NuFfMqNjvZryPdd/IjK67rpwGQTFdmFEjZcrfqUEw/tvf3FtoEqmWLtK2Z8VoVTDv2adrWhffD2UM5XF9OLaQtFYdKb5Zz9Ne01ZF8zj1NEEKp5ILVImas3IcoUQzkpCZsEY4q4LoVRlY4DGLRIkrkPmjKxGT9+vK8UU7hpwjH9lQ9gE6NCvRiPwBz5Omjv86Z3/rwYrKpilgzgomlLEYoy8dpbriiCDTSiuYQ+rrJKuhumv1ozDqVOHmYdTUFBHcADfJkcCRH4ZRY0YZby+pUAH4Q0pG1QEzZ/EokFlszke4wi+8GFRB6oTk648yCsj2qf6CgXMOB9nHXy2W0X45Uvz/HoxXAKaXUlQExUApSeL0fpUYt/9ZEN+11+v+DO3Pn5I/108UEevleb0Fn9+o2G/ACCm+CtrjAnoqQWnU4Kp5Nigt62JC6PXwPmu3gNH4fw2zR+oiXFJdgkN4ExBEJVnB8fHvFKTQGyP8sVMh8SFlZ2VMIQjQjWz5LTpSJiI/wkvmYZGR2eOEHUWywjUuBeR3YredSCK/iSXPWmGgxrIaAa4s59xXzDzjJJKAhlMm9eoTaJ9hlcax1oebBg+/q9MQu9pT+yNjuzAVJnZwLLqHUsZoy7HpVf/n/wFL85pD5rjp4Qe0T9ToRV0rzXLZKi1ec7esOQhk336y/2FsCvzZJChbBfTdKPRC9ADc8sbWE1OE76IbLsBD2ZAoN4PeHuYfrb9DrzA83camJSCmp1yV5tZwWT/esbTkthYgdnUGS7EWGs9G06x5VqydQCdD/HZVnDUJmZGMD/honEg5U7Xnfg3U/pHytZEYrawdJdRRMi4gqKZKTRaAKElwO6gxNfdnnjz381v7QJv23nnDMZ0spH/N8+eYZXeOE68tSlBdC5zemCMGMS5UYT3Pa4P5qkLfqlijVuNktIqfCXMX4EhkKhU33RFsaVrkp3woB6hTosDxVDrw5EQA7kJxL6z79IoZ2moma9Hq3N2hwFVIng+7QQuSIosrn7qAQpGqFhqYk18fNitMKHLp5aqAEwQ+GcYnd/7MlSMklY9VAa1prcHWdtOHkXM+f9oS16yikmc7aE6TaOVwvr7xYmwpxZqq2YknUREKn+CyG+ZJUsyagnHEKZ+jGqz+rbMyVKIJv8KYc1Uiz4120OTDYN8y6VZJ0FIM+vij7pgixj97jAsJ3Y3eb2He7bF5M9yN1BUyfNabyS0Udt5u5KgmA1OoQ2WKk0mcXuO3k+7as/2plvOklj16g3/TneqzPecudDf5Oagf05g9QQN0Y9jukw2c5XpIVWZSTJKvMFj8ssXz9X6X3ruZsBQSebIVJUBTW56tlCkOx8GLyt0wP0SmH1hfsA5Ybt+2QBodZ3MoD7V4t57pIg0UzVYgysxgeLUBNg6HBpPL4v/+t6MEkdixyaj7AAjDVO3GH/Sw0pXBrkRGQSqiWJlleGpCZYcg5yezUj/RKubfAhssutDp/oIQrGvaLNZW3aYUCWzGFhSV6k2GYnh4I8+Vmhq5tqxvc5M7P1lUC1z3vgV/qsUzYQQdq3LjLeVaagi1EWm2Z7RMDujw4hGCTdoKhIPD++Fy5jX805pvvmRwCHpkdCDldBd3MEER3sisi+CoI9xUuDYN9lHm9akABn/Z8PYha/2rPOwaAeFAiVhw0aZB8ToFK36KCO1vyseVbPcGtA/1/OaYOQVdkpoqGipU+0j6KZW/imJxVL0bSYA9ZDglyg3og5TFWmD12iWZXJvmd3/DuF4JgLsMJMS+ndWwF/bjIirxY2hXZyXNAnR5VpuUXTI9d2kgpzRfEj4/9E7wQR2BpHCPmQnRncxmrBDKP4KJVNyPa/6/C91jQDuEVVrNH750ma9M9mQ07wjyrYzJVZlu92ZO+FL+jS+hlLTn1iLKqTSGpMemo3GezPlqLEdq4XCvf5DD7b4zrXJYDm3I2vLCLDyJ2UMGOydvOu37nXzdYH53XDsR1RawDNcy04S3RLKQSBbIVZPCM+gO59gigacZ4yqzMSB2HTizOTHSt7LJkkuTMINta40Ces/MlsYfQCviAYQ3qqy91aMYk7wJ0E2Ap8FsKW0jTVMMFzIaoLdTEijhrXWzAq8wNuYS8n+3gAA9xZ+ywHzyG+BMWdDRkxnlGmz4iVhJAPpS1v2RjxwnV3L0ndyvSIedFY6Scv7+GYGnREls9OL89PY9la0A83JDe0n7yrBuV2RlRgfuemKMknGiqH6UfJRtrTEDSTtLsAEnN61E/Y+2TqlqGRthSGMpaFq+WbMEn583eTnIqEl1d3OV/zGmfJEJmJJkV+J0vsttYKjfeH32QvnaDzpTq+YyKZgdmet1+8qCSCmGIHCBMkPDEHbE/PLOthZ85hJseUYdO70LSJu9FduG0piObUQePs641e6Ya8RWF+5j9QuMewWmukRufhllHy6Dq1meoFtuXbjTw2WGlOCGXm46R8Zz/YPBt0SoH/t7jTwl+uiZ3KeSK0/aQkDmFB1UGRM5Bcx9lrmAK7CGSlDFgzrs0XvyUmG9Ek52y0LsbJR76IAQ5nrFHHdK4mi1+NuW0m+oqpMkShyQeSrV7tr6duKAYCiMKRv/IWGWjIoFtR82bS1+Us04p5QAuaafLo/UlUrca11QVPuy2v/rZYnFf82vcyAEHgRPUvZRSqs1PED0bmTMKmc5fWfARneje8kKq9jnIzRmgUZpdGEXdbr98oK3l8IW+QdhBVE9xPUUQvhIx7b8BkcPsbmY9vsuf8akbtxV18GZjAQ/QpCGZztHDKPhWp71+LEJo+KFy1sXUZZDRiXEs0TqHcuThHCCIkJ5/5RvEoUH5lhxS+oGCmo1a4KiJJlMiQqds5ufgUD1QoxRp5T08Ux3pBitidjry2Orw7AkwRfSj0iuM3fcab3Ov9Kt/9k46pluC22VNgPwTPkhn76J9aQGOI6GHHDFUeys19OE/LfA+HpNoeGi3Jdtf2vO/uU9XOOtxCFfbe4ds+FG322MKT9aLho3+hbUD8z5dAvDVn0LohXXgCHtqWv2q3jjQz9i4dlzQYQeheD14ReE1FQiHNBtuaLrsmwBhrNO9V8J3GCjCyMjbctLGTYU5j/KT3p9H2SdLNtSdb27OlRMCVpmxBQJ7dDO0i7PHOi1IamaM3OqcIcod39FqCip2U+btQ6RtBU355C8oiAGRVDYay796PFYOg5AHhGAosATg9+EEJ4ihMHfLYRGj9vg2GfiYmvNTqGlR9VRmkoBRuADR340v+cYxNZvBTuqsWBF79wWvxdbS6drddEK18MLrNdC0cyGeWIO4V4uCY51Ax0UuDrsQS12inCGtISBV5PqIYp0SDnZ4hniQoUKxlajGP4qT8EHfY9wpS58NZ8+ImTbuOz0Oa7CHJF1/eBWweqcjRXgDNVp6w78WLAz6EYvIGIl3gcCgfcMDYxuuZ0M4g0SO227K+SnI27jet8kqV82AAd8kppAVWkyAQmC0uPjSQwPfs1gcHkChWR/8jXZxZGvsAdaZyusG4+A5TRjl5amSzNAJu/aVbQmihcr9r6aut6uRy6Uv9hSFpfLgN0dQyAGzcAuUyWJiTyruGn3YyXOsUdlO4KuHni+CfoJCThYknFBxxPacp0m0c2UYm5jJCSrSmYpVvznNinL6IIpf5AD/pgcNKqbjFyqHj0NyrWdgKvjCcr67uzMgYT5ZL/mJ2RYb9X5cgvs+Y8cBdKBsnt7zc/BUfYXJkieic54TSuOLpaiye07lU4ZFzGGT944GeSxrJ3HWPV5slb6G+Zn6A0c4kT3CFUhQH/FATeURsrO2CtBL7KVNySD+jDOT0D0gF1//GZnRkILRNFTbmSmlrkxFgWn5Yzl4klwNrC1zPjMnrgMPr85ryTHyksVK4mDkKFvlumKaigq1pDq+1x+31NH5grz0HaDnDHOcEmxGb7gGSF4zC7kk3W0419+s9UF/pBS0b+h7dxa4sz+pqTJllRkg5oLJksbBJ+VXSh1RiKIaQdLyHnqJwe/zE4lOLCuIlW6jHi6No8r9pyTPhZ1ixDNAWR+J+zlvH6TO1cHqsVwMNRsh5wPJkqTEWvvw583/T7MKGIPPFrBkuckY+4DpWL6mEY8OLpQ4xQoqNbcsIq2/3+tBMYyoAC0apRKiCq0r8uTTGqccBZmURIVm2RBrJ9SKJlnbMXXBu5vM1nj7kVONcugxGN2QvLpD7Z6CFOVmaA/4HPSmCWQvwBvXiosn53VBR11Y0Eg1lSFId0ybl+DZKNnNkPzbpcQnQlzH4miwdIFuyTe3xcmf0ez6QXumLzsAz0RtAlrxVvKKbCczQepqdE1jpcUusFQlUd+eKVbKuWy/RsjBLFuYJheePXTiR06vDDJHSIQTMBANWTDMKyYRfbsM6rct6sYjPQnO0qIjtwY+R3oU6eDSTgOqXFoztzBKXBnv/dWqDrpq+q7SrypKL6vEkMk5MfRHjSxW7dD2ocn+ah5OsYLdrA1Yg5QQuCtFsvF6UcW95tComHMvJkvsPcA/5Jx9nYub0AxJAMdjCi/lSajwQXkXxGGbRRzpIurFzebbFx3ZT7SMSeT+VC8ia8zGmO5OrwsPHUb1x4XocTMZ6PI8Lv34Ap6PL9v5Q3cyznGaLDNxue42HymRmtKWuubYXQcCwhd6MtM2mnY1CISolaCFqYamczjvl4wKxlNRPhx9iQMxVF8wmIHLJ1jyYcBAK9RbofC0Q0WVZklCXvCDch0BKXt2pJvNhmP4m45hoWz7FVGdnQyK3o0I+8oR+EhmpPlRQ9RUOao9NMyLmSybgdN8vzBzDswcCD3tLkdyGcYwkVk0CxepYOoKbBIdAP//Kcnf6ZthHF2YM6l4ga6+a5fhoFxM2rmVm1sQmpQP6DmDNt9sHMOswT0OKXb9u15fiEKMFnnWcVr6rDZyond2nZUa68tQDSldJfqRs/zKYCJAyuakyo2F5n/QGgq86b141WA02WLGz7rUnCVd3pWtUh4aQGh6pjRViZT849Xd7QrapP5DQDAopORRUaIs1g8VVvL/r3h+c09ww4/GM/L0e+YsHsAks/GDZNvrlho5aN5WT8Lk4LJ1hTyt4VtH7kLgI70IqjZRMbThYUTNJpOXwXnrCmjBlZlnCD52UQeOLz+5Ts/ZYZCSJ71Wu6noT+1rsgfeygALUyqLjOY2fh3at7TiR/jo7xPBw5ko6QV8eYlx5ivbhxKvRKx4AOfAq5VuXRwg4aVYvH+KVSYt04P7SecVa/2jxsyvXddrWtCDFMdz8R8Fse0q4IdaC1RSnAXeO1GNI/9SzgLiScAmFr3ZpruYDfzaCewpLlralYC8wIfxhxIYlMRSy543st/rMM0zMNCn/71c7Vi4GP0jD/kKmKxqK/FuhlTL+g2EHl6IbnRSFpSNaWK4RSw4/3YkdbxTsMjWWUUJb/KvhpWj/DOviHI2EPU+uT1stPsabTBZ4Pk9NWK5v6hfU06AD7dIguMoL1GaRUSGZLcBe6l4yJOzpuackSq7dfNzczqnIGQEXLcUgzuZNpIvGLahzKA0JKKuZ1ZZTsRd1Kxxd8FO1y5J4HQD8EtLN1PrW0uVW9MvNzGjhckPLOBKetMGhcSCxiOE78SCuikmO3u6IW0lnCqClplznvio17Tzsj/6dyzTJkSKvSRcodJ2Zsn3FJd28ta6bgwtogVZmslGSgG8LFVxcPxQiKlYAsliJxDQ0j0x9h83/TOT9XhBYTpHtZcvO7EmGPwuIXQs4qEDJSeNvugw6163eXNgtUGsH7Ja0BlT+qXLDc1Gew==
Variant 0
DifficultyLevel
760
Question
The rectangular prism, shown below, is cut into 16 identical cubes.
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
Worked Solution
S.A. of rectangular prism
= 2 × (2s × 2s) + 4 × (4s × 2s)
= 8s2 + 32s2
= 40s2
= 6×(s × s)
= 6s2
∴ Ratio of prism to cube
= 40s2 : 6s2
= 20 : 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
The rectangular prism, shown below, is cut into 16 identical cubes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX9-TLF-CA35-SA-v3_0-1.svg 300 indent2 vpad
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
|
workedSolution | sm_nogap S.A. of rectangular prism
>> = 2 × (2$\large s$ × 2$\large s$) + 4 × (4$\large s$ × 2$\large s$)
>> = 8$\large s$$^2$ + 32$\large s$$^2$
>> = 40$\large s$$^2$
sm_nogap S.A. of cube
>> = $6 × (\large s$ × $\large s)$
>> = 6$\large s$$^2$
sm_nogap $\therefore$ Ratio of prism to cube
>> = 40$\large s$$^2$ : 6$\large s$$^2$
>> = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX193Sy/O2LQSvcGbbs8XxJYqzv24YxfOf6W7szZhVdwQvdgVesYqOIg0O0Ot41GDJCgL1CU7ERWpE7UY4JxMI5ddgXxksmynnKnTDxXWFok2tBgGY/Os7mXeU29QewERMnM9pjYnfUYKWdVYI3yY4f6ds7bq6jEvBsw464S1KM3J/wi8lRfhcuklGs9kgLpZUlaUNRfARoTJsAqEP+iffYO5omBQpydkHw2JLwUfYGyluDRhsKaw68ya+4gWEThoE/Jl6SwXPC3+0BlUbpkwX6mj+jLl0hNTkEaL/lyA0LseCWZudVh/icCttYwTNw4ZOagrkvC5kqkWftl1Kjm1dCvXNfEH5BAGxLpZ/erZSN88EQYe1236nf61GYlGzManDjtIxny9wO6LUI5KvRYYoQt+xOxLaD2DU/hzLjoQZ+XVgcpVX0phfIN5X5aiaM4NvLX0Lp0LZ9f83iPScOtToYh5Ut8AqTXpDyDeYT5we5Tn2vS9SVaaJmb6Pr48a11EquEM20TNrQXODGW1rwI/RCblyWoeVIliLiCgOdgqMMLv/Oo/S10zrl2g9w2YJj3hR5At59/FJhht9YJu/7/3grDMJp6jgMu/Gr5EtR6yNffuMCDaQG04QeydUqr4znsp5DyEkolOu3TwyTqPWQeArUI4yHAtMH9S0yBh/qAwXniMKV3YQ0N2prOz6Cb5QZ+CeU58Z1L40TLgIW90RUn0hM8UgjpBYfoF3t4+dkF11/hfLtiyXnUzbR3P+qVnwlsABCkDcUnm0JR23mwshmRhwdSUbnB0jHEeBvlrjSUTb29D/uuuY6/QrXpB31hPJAsc7jRzgFuxFq2ewufkNMRPMwAKeqEGMvsKRUzZndHN8U4+le3Wo7fulpOQcP3eh+qv5gXKxlmGJazvpJkHghY8ZSDiJSN7Sa5gaPjWvhJtY+l7MMZp3X14swYRUs2GjLhUeLn193kEJTcaVfipambeO80eidsMuNFF2pQN/lmVonVIJ+tBIu32EAJtHsNnbxqALJamrObDkHxnKsn/egUOrcEFpHjjTthutpFyGG1Fih5Wc0SRSSQv47yeYPe5mSTxapnP1ZPNIDmr0d/+3JK9XgK7lHRkKLtR48dKyxfu5mI/NFqZXnJT/KOc2vFjU8EVGktZin9O/2oJAxtnO39G1iursRuZphWHU0uOU+M9Hcp0zVMHP+lKq8JqOWVx9Y5koPxjkJxK7agJlic+r6LgyXS6U27aMp9/aZMbGHbakc/K8DIU2i15+QgBa4Eu/EY4xpXt3QjmBW/FohrYHueIw5hQV9tCrJadF/M1PnS1iw2nGnk5kMpQt5y9NBNepGSSTKGSNPHoWRcohqFZ1mVOQoowP9P5BpLM4P+VHGJP7BMa3hJWwufQRFdAxvMx5zTKgouz38BhvYha7KukQ7xabardlc0xvYyHtTXtyp8/FZhqLi3T2zykkGP3GeT048uS1nOTIr8Ffo02G5ZDVtB8fdVGs4iz2Jt4CE6GuujaJUoWiEHQpqD8x9aivUG79U9HAs7He84XOTK9MXfZkPVpLJ6CHZH8j/EylbBj1YiQYApgWGRQRf5SbhQwbpsVKcCcWZoMu8QX1E+D+QVl4gGuuNkKNeOkXVrv/zfTxb4HGDKX+D5DFoba9CZFDsPAIZTO7OYoToc5vY+V1ptJed805iMBDXGmM5BUnoq8sMJ3kfn3fQshQ6t6y9R+O2siPO8MlCinToYp0a9o7UdtR9T0uI3woaHz7G+tqTmbUPdjdA0BwhyVuHD26ULIBFtdKnP3KEQBfthOI4mEFgMdkQLenEkwkgdIbxOn+aKKCjaMs/nEcmzQaeVIw1YAOUV3mdN2yhlC0qtMHItMs6cqeUmz8xZ9g4NkF336s55YdKopjzW0KZeuZzGMLAJVxcgfEU2FKA0OmHF/15NhwL675rTyg33mQWvohmKmrkUKS44EkA9L4Bbhkt63ZscvTLQ2lDjuiY4u6ADwSniWTYbevGyjIQYDVr/G6AiQzn4J29AoXXmt6Eg7HEM6V84+KQK8VmSlswqcKJrx4e7WQEzDedPCKUty3I6M+NDC/TvRQlPcGn9uZt6FsO5Z+oU0u91J5WIkRcJyUgIx59thUDwJ3U5s6ZFeXgMUs23fwe/qKKXAOoIbSxCp5uFQuGyDIIQ3uqV1aZJhCqd2KDINB5S8UFiDmsTUVfqz2+bNno+gnF39sFcMnzNISHH3K2HSDCFJbd2CXoxQR30qMQamvCBiIPX/7LOgNxI7+zNT0IdzqVpmIEeKgo1Ug2rN75mB8a+HgH3VACh8WizwAQOHfb8BRq71/EJHlXzA78h4GFRxU1rDJQkrktaCEdDsianZsy3ZkZWfMUx/sc5wQqSjARqu3z/FIb/cAChvl+f+vCL782vldqA01hE0nlKO6E3L4YPAI5aQ9wApIlwHQjQn9DvpRC4/P4uQ6E2gjFZpmqZBLcW8s0fbtgDkglXlw4NyT85SdHDPcMkSatwwJKAHX02X6U1gohv0+Nx4/gpgaSz60QbmepeAYgQFlvI5vQDgbv0lnIFdJvyyI1YiiNvBvGN79T7lF60lWnv9QdHMyGA9CqKk1IyEh/yu+2IyGL1p+TeWkDUecn5QWS52+MxAL7L1XdKG/5w6xl+Wo0jB44ZNamCNR+1TbXDSp2tdhsdk3IxckDz7VusOiB0zra0w/s2UFJPonu1QbGtUHA03QOB3nUoLg2ywoSlwUzJ9T8aeX9dXUkPcnDDDD/O5ZHkVNyryUpnoS3w2/yuGNf7T2MAdwMlUd9cQuzG0Fgz6iGoG0/RzDBgkr4P2rf3bPLG6alTrz1LNiBnWMktqRbAX/Oz4CRdseI5LyWgHEhvIUMIken5Uq7mXWaSv/ppEdD3lMYL1Hqs3crUiI0LvkXlGdxFQ2SoyBQaDmfaaaSaDZkutpwZ1bYQfqaC9QBTRscc0A8GQb60pFkjjnWRZA4hgxyCwYmodTQQS41yzvFR1VVsGtDSXbAINqk5NZL168+fhhYvdrtXvV3G+0S/Kqnp6ZxpXHyvQCFIU8aWvQ2h/MMJtCybimBGRZimcMOG1q02ojDTob6vuxLZOsuALASOLS4cRL5ns7VbFtPDlaIatUpiYxqovttrTjIa16Uxu55N1GTIiTh/DROAji8z+xna347GzNH4sPeqdaviPpLCZ2flf0FE8igH+ZT7k6VCeXYsA6E/+PboeTgrQ3BP+ShcaMmJb72AGuB+njUpOwFNAJP6feqfLFwW3rLU7/ENxYohjVBPWcpT0MsPozgqgEGq0/xUUDEsNO76SMxNlIDnIK6pJwZWbNSdefG3UTs4vOHHZZ8Td2WhXKuj7yLVzDJSMVKTN1u15y7rMSp1r595l2T6O/+mbOuvQAnzQ0aPN2OFb2gTKljCTZ+EZ++SbuGFouGSnnL64zUlvWGuBLc0OqVm3DXBYfPasBFe168SZD1cNAelC7s5sreRICjb+pz7Q7sFHymZ1qJkMvv94mE15JYHdGyU7VAzO+3xtZD+jZpgcLqEzgpyk+jEnM8+ohwC1fWghyKR9H+ztXHYZ5zRnubbevrFUZ2+tlhJoq8eIGkgTwMfrjp3LxmeKybfwvUNyszLAWFrNpCcEAFR9DbDIxkafX5djgY7v9GZHjMer+7dOY7+1QowzRB6aLfqvIAq4+iYUx+7T94bvrkKkRkVsjJvjgL+LENE2q5X4Dox+xPFliIfJ520tDY8CqW6VLmYLcVrNsf9P11e5jhH5+ZXTCKNbkdAtXzIxDi4SmiTIlwA4CbjWeBv0b/2+QL6A3vOG+cgzrhN5GOWMuvOaJm21wt42nxgdR0XGq+wCkRfQj5298wROYAr1W7FnTObZk+k44uXAIqrdJJXFjpgY+op0WMFrYbZiTqSDduUyUmToCAcpFFJQIpdK9MbHuyKXMdDQI1UZR1ac4b31jxn3Ib1s5mEhlI+nZjlwf6tBi95IbrRmnzsaq9DJA3QENj+CX6BFaDHWIyVR4L2TlC31E0ecInOgbcN+bKYpKGj4/vfG2TjXuNkahwelvfU9EFUaYcd1QkfUV2os5AefbfUKMLVF6qHuN6VZtEzPHrdv7F07+HUglLl9HThONJCLwUWM0BV7tYUazzR6SAKwsCyQX1f+rrJDPubX3Ohz5OEyanTUe738wQ3eeQIZrFVpO428rVKK0pupYITwUvAU8Ovj9Q0g3CPAQyxqZBppJV9ZQBuk6MBGZofTd9E5/ehLkk7RXJl5A6Vb8RYlDzyUoBt9J5lCVtTIooXNgyFLcBjcpDR9BW2JnuGn4Uf2bQGPGYnwUlGzuQU6+MPC4/cFjT8c9A/ruuSp5SsfeRA/FZcqA2b8R5XNKe+xCjjx+dI5snJLRDBGu9CRlSAD+S8bCQ9hYvAjfvRz0+J0CbIgGbMX8mh8u0YwRdwb3itLIcccq/qA6NsfEEJkHIAqsxKUNgYu3iytScYPP3gZhOR6TBAV6NZxzxrwxKDcLOlvkFRxIi2B26GymDBEs0OykmS0vUDGOiCuY2nh43pUNJKUO6CIfUgme2uXuyshXb19KSLMXuDuQfbL/9Rva/Lgk1Df0TFcHnz2hZMCCauqjnPYM9k6bYjcX/6J0ntM3pSkjGlUIsHXQ/BMq0ueKQcu7dxPZrM3HCnkH3k0RLnAxW8Gv995SqFk4O6jnp2lmfdca3iqYUemlRSHhx2zJLdJNYFjiIQeQUJm9dMZQ2dnX0lAayq3cBqKKz6hXrCwa0/E433v3mXITrZnrIlSnbmJzrgMapra5ATDRJRm5mdWdYow0LbwhOKx8zotwjeizLbs8+wBIhHY88EJMxPH/EGzpcbjY+mN7ooC6BZd2nBiqT84pFc/Pgo4QAt7qQHJhlKVQVwX9Zf+yH3VtA2Cz15XazB6qcQ0qArxLoIavM8Ue0pbS8IlJUHvE76tY/nbpXG5VUHk4XuWoFqTnQ8y40VlhHMMu0eESTfHUns/8+454iBkg0v25ZuuDkDcO5+klDkiN+HUuN7KBl/9vN+1gQFZbcjqIYHTRFYnHnJGpa4KXrcTGGf5DA/kob/yVqVoTI2Ut5LErzRSdCXp4RSLPTAQQ2YIgXQjo+cosZLmO0aQfe0vuSjpxyTV9LxtCPD1GvOLmhalyApu5vOkusbxmyynz9HpcLzL4Cyo6VNN44B1iBZPoilvsDePO+IaM5dlVCjSp8fI3ZB/SbSkLhZFAbbG1TaC3YFuBCSYOvOTWUudLReDoGoUUZOQEDRmvwh/yFne0blN566yp3Yl4r5NTemR7F4UIJ8I1ypmQpoW3g1XHfB9Bm4FT3+2j+7p1b6lgGoj5T48yBQUaqVXks57dLLuK7ez0qImQEhtB5clcjkRdYWi6IL22z4MqYPWgg28LvlY3lhA5JXbn5j+QDLcAhUhfpTX20MntAPmVA01qWiFePFcKXocVyL5HQdv6EHeilK7ZszOJvmJhMB1dssDwrKelHcf0flYBgOi5LZLnmzJHloThKIq9kwrlcYa4SyuRX2fUm7kQUV1PkPFsbxMcp7U/PJMZg59Pkf6DLr0by2h659ATcpXGtN4EHIh21OQgto9a4ceWpndC0mM+kBQlsMYJMK7PnsE+hdaJWlUGCQ7EC3C176ryFIM4kYbgRXMhtyUrA80toEAdX5LTt4h2wP5cYrD84izLqicN+b47ACEtCNX+nTQYKAlDXE7wIsDrTFNc44Wfwr4KXI9gLIc9tcIZ6OQaV2CqkNSHlz4FKaGavB+8OlElupZq62T7z0tu8DAGXqsB5UskeXJMJDE+TslXzMHfVgf5CPIY7JqfeppnV4tO2iS1ytrvaRd3dcBX/TPZpvSYU/Bb9SZiNxpYNMx2Agb/J5b5K4sE8obVf8JXCVfQdkJt8CmqlKuOElzHfIcdehjtzQsAbWMF4idYFDY9ZmQ6LQDPv1E5A5N5/zrfxjnYLxMavtHsUw8ypxJd1JjacVLOQPmfFewQs5WHg7nQHEw6J1DtyRQpenIjMgQGxu7OUVCoz5nMzZ6hEZY/WmpOqBcuIkuIDKnCFBwLo8TiI6tKSKOfHDFJMQKGQjU78jIMbXQSYBTL4OsUsHI9xH+I19Va5K7B8GUQjnYyKQXUxyOdPmTXoEcG31nN/IwAAvSV2bf/1T9B/77sI6trQyupZwKGOLgvi57cjLreWkI2MT6ciR5fB5vui9wB31Wcs6IVDsGDN4tfqbPDoVOiRpp1QGI0Fjlxm+407ZjFbLLPPmF2isDb34IJN7iuxW0/VKo1yakb0hrQDj1VWaSMSHjp6LDAGsoDIbDj5xGN+kcoP/O0mmJ2HRUw/WsrfokECmSVrCHlCjjRucRwiqNyRZ4Vq8v+lKex9nOwNe5iXGtCtMgHH4EapnzYKhcS83ofa1+WQe90CaBLxXgieCYaJ9LHfrINYVdAZnYOXZW7zny14gj6B+Lex1FLo+I4ULC12X3lmf/7TsnAxsYF/42q20xQAoKgQKr5CdkLj3HpGl/sDVupqAVdqWbnd0B0UFVnm85vXwWI6vm2aYWJbP64XTvwg1iQOeWBxJETmcO6NyW/lJQjsWk6N21LUtFBkqWHK4monmN5pyuBrmaF1RBflG33AcnjKQ2sX7ME8Yv++46lXQn/ACBwgOieokINwGRPiz6wKpNt8UIWyQf/xCOngutdh+WS1pzgAreMbskKWnHSLYC+WBNGxNOUKwGZSb61RmIRjHlrN+eaOpzuBVdA23gz5WjxcIXwNKWIkrZgOm6pNwAVBwakq7WsxpueuESc0xbxkxOeH6kdUk20vSbCd2AjwsS9lYQTTf2QtszC5P3TlH8K+9a1SpkV2ILuXImIOeDBnpzq+ZHfUVaBpxUrAteAMa30KXuGLD1KF/WUnCkSPRPZOKoZSWrGb6FNMC28Yp2o8DgBJTFgql5gJmctmd59gepUg9wXzwTffFiLO1yy4nBKAwCEb9XYs2nuymfvjuwjW+lbYyHeQ9l4r1zyo+W8SyrNJGuCx8mpyEEQ4/57QCzdl7DJAi/M8JUunWrRSA/Nsby6hjVDh/bI6XFM4NcO4PcVFGHt5ISEbgx7GYcjnTzvUGtwrPekBCUNYb8Dw24ybtO1ZSePgzwBN/QLqxmiv+F8IpQB52As0WCSqbNAVZkGnWLVU6xZsYmvfOdFWeuhqgxn/CkOyzAJ+k9T7Od9gVZrZ0GYaOQGtcZalpztrSQ4xWN6BlbhsNI8ITZBnOQ+kKUFb+fu6IeaKZZS4/jH3XUwtag/0RQu6J9zaWoF86Dyk1Bh96koL7S57KFJvtsMKFZYpYLRMfk+1pPg/1ZP2qffSOddCVkVEvfIGvC9+FWd6B2jubMSs794K6SaqJuzHVbpsIyNPvaQ1Cy0fGmq4oVKthMXdfgU/Bfwze7e7gv5J8oYFNsNeX/PPVkHGZzqpVPA1fvNFDO9E0prF9PDdq14aZKOO9NTH+cuCSmP0CeDy6d9N9vkC8EbzHMf5050tURWpG87JHSGKKzgzaOB3MQM2qOhcxxv3h2KdoQIF+Av/lxzPKEGJK4buwLfdSbJloSRMBJV3GpCiFdqVuMnG9Ul+9k/hE1j81R2LXcXUIxYRdXTi3Zjm4F3xdhGRGS9P5ygTozsdljoYx3rPvphKlcSg/nQJ/+0h2qQtoJifl1oaJeQydY+q+Ewe+oBb5ATeVDzLUO3n7E0XKhrgidWU1HG59qIJ1LRuuP2MQDRrvS50Ji2L5ABg3KbDM/eAbaUQ5qcgh/5lRKq12QXrvdY4AYBGo2S2tdePHdn2m6gTAZBSfv2ne3tcBLGZLC6c1NabTj5fJ01+r1z/MkSTx1ul+q0xj0uYaatrk8Z7bTvpsd/Scr/p3qZ3bgKIC16t1jjLMRWeQOPxf6RBrQ5k+l7/uIcNWDxZMYgjyO6FpPv+Jm74yg3PcpoXsoC6ZC6TUiBUZaueKszGRXTwudSBLRrI2/NN0bh2fB5E/bm6l2+4QaZtzYy0/SIng3HvouQEyqxfGhUmpmVB/FNNHrMYGf2gXFaWFotNrEi35LD3L38ObN3ER3wY+BSLV7jdUXSR9Lh7eLJ7yExwdosz315XJ01v16wTTQDlnlVN8aOT6mbSyu7P1CBo7Y4thyxpVnnIFW2p94gKTJMJVok+I0KNAq0Qo1m+F0yvKHbIMXsbER5dncFvha071DSfrkrR6JkrFhWkqKWiRms6Cp3/2HqsXpWp2WrIw9r2ADqU58TDcxAI4ZpfFdPi/XeZLUmb1d6Ylj4dbBsD/geBW/zvSi4AzOtsE8RyPFx+VbjKY8Wuz7Cpt+kkCg0TzHKO/7FqvZrhcGqwO2YPcHRBJaDruZfxwmAe3uKbmj9+9+xwDv9KFXXUVyMm2yqylz2aSWfD92ZMGNM5ighwaAkWuDWgGqQ2rfQjrc7vXZYNOuRRbT6W+HNw4tKNelElLV+f24ShnpgbkUazuPTO1jjmySvUoaBd/1BYXQab3E1V4dJPW6n87CEgUqENz87hLdIyCXI+1dmpQoedwipejKjxhLHaUkbjvWu+6QcmnZSrjxImujbFzHmsVfcnc74jTSYbkiprSJAbFUoVg6D3nLYAXVevR3vS9jCvsdJLSyARu0rUsewB6S6mb4g+W/8bgrA6vmVMHNSk2hGN7BM19/cOaM7Y5dk/32sDfo+pVNUTJ83KrYJDmPzFClCdIWNqWCtKKPcpY1F8RFsBTkowQ/yff9/r/QFanitaru+hNQMv2VwIVolEuQYZYG2CX54MDZV2i/I8jVWMxC4rAk0Usg4pnNRRC9IQnkadSIJBiSJXdqssAzx2tfYgp1aqISGbXS4MnphIj74MQLLU4mVjInYenjv5McLWONblrrPjg8Jya198K0tmi8GKvLlDj7DJtcg/cto8KqDtlvJDJ1fEDd/2F8C9KlLkwBRc+HVg2vGdP3VjYC8n8J6w6iy2DmzTaEn/fMInsf+05jD1uGbLE8qt9cYAjmq8BH3XBMvoaBYRQvWdAHlQUuMrCvg4tH38ULgtKRojBagtY3onY6ksD+10hGQGBoQLDwhgXRhS73W/HF+FmTkr4d57Km4mNLGsC8DIHZ3QccqVmPOqTZFB2tVMAxMDV0SFHgf9RTAUZy66va2i9hVFvtlH8Ucjk0CnEltAsyFCJuddb7D5ygzBUKAQfyhXKV4fhdlG3DS/oKOI9UzCcK49J7CtJo0WJ1IC00vC5PflxQvP41b3KNfQYKgmOZxEOdpq8IyFF58xZ5U5QZFfxtf/d8GxnSm9Esx/tOKjtOMZjs86ticaKxm55M4BGmnmrQfLM4DtkUOhvuz6iHhj+VWkxQMBmBuOrcJPiYiGApu4Z+rGfOAC6asUbWE89XfjMCVyPCtnCAqK9gk1/ebkmaQUbHoKdFln1KPIstxUIvjcrOr4KmOSRAF8FgdTj1dOi7ZiF/DbvRh/Ogw4Hha3Szv7cy21rZSKRNPCXTjP2NXY/Jca5NZve25OgzMrCSZdcFQu1dwLD93a0LUNCIkgcza5ZTGsYTW8NOWDl/NIUmHn3nd6BG0DmzXdUQV/iZ99/vCVkk9Y2L1B99YpNwKsswAk86kxatO9P8hqu1+nbWivdEtujnHQ3qgebjbCEyfR7NPvOZSg8HKWYQ9rdUIzellCPeHMS8XQ+rU9c00tnnJTKYZ9IpS3cGs2aAzVqE+LEMILBUOR17b0IlqSFpn5u5QCGQvtV/VAzk9yT0q2S9chLqpwDxdAgvL0MArvX3afy/Feio9dPCMBScbQWgyh26q2NVaMcbuTy9u/1Mt0/NXAd8fLoRckr6mMu7hA0zZ0HdXo02ERRtujK1gLYdsbIuNznRQtarm5KFWiPPKuMc3zShsKWo+wo0jOo18x0aBjh84SSCZbFdA6GlctWbbd6vm3PeXESHMCVSRWu1kfyNIyDa5UJEw1EoAI+VXg+aWCTqt+Jtxp6vuz+5HgqGKLVi6wwkMX95t0wFDeLk278z7hm6Tz7HBqoVzilBPP9wuLoEfOuarHHHIa9LlKBZDCVe4BqKobNmo7S5a2fUGiEAdEeHT+q+4Rzv76i7OwJuT0eGbBM4mqabqw+B9qkwSSNAgVnZi3yFLhrGb68F74NHjM3EMH9Uol/pRP5Lzh1sy8r+TvtQQ0PLh8Q4Qu8ghwZYAI5ywNHKxkS47fqlnTMylIIJTAIoZu4F1g7N5IoVn1IYQqX+DBFikpzyaA58hTYbLqJjbvIJYpz7uaEFzU+IQTGFj0KvfbmYHpo/Jyyb191J//udj3qXi0MNuuF7i8/X4/soS72a35ONOhTXj18fXMbpK1hIoc43v9zxCJlCrXWx1zS9OT7o6kcPhiZpiu6RJdZ/YWDIgWo9cA/csMmWctuHI81ixzIjnOMzX8K/fYkTQqu7tCG/UOIWkTm22V9ICUBGNUI7DiHaXnQBY47HTTJvL8RxvzVYqZLTZqJODjMKlldPDSHOtt4KUc0rXeKp1ZXSbXxnev0SUGHFTTB96iKSdwI1cLdRVa7WBiGZVf9Vu9yPYYhPRRNrt183sftSKkxIM08F3PyHiXrxKFd3/31vWjgsyM4eRxm6eW+Zx5qk+8icU5YAG2TR6pnolkaynvfccUFAG25toESqOeS8kjYYycR4vvyqAsLfiq1913496GEM1+7b6bKto4uYOLvhL2T/Tfpfk75My9dK1tnKccbmJNcaABEjU4zqqCxp+a6IEkwxtioXGvtcs+bOLkGAbl8kKiVKeMOThBlw3oFeD4KQGvqaWIRYj89+VRTsUQTrsH+Mq6kWMt43hIbr1Ll5LLk+sHTofG2u0DBYy8+FD9WCixnoID81Bf9cKoyOB5Cg1WFr9qNI0OuyQlRIK/rEO4AQGg0lWCKHh/hj7SMZOmx3WcvoWyS7BX2RLxLzwLRFUfSESzs6vX9zHjvzHjehMqblisyFK8/zPOeeKbiNG+FgQCSUq3CRsF6HugxKwe2YBrRxHiLdheoHLxUkRhePIlzIeFeWL4keXRW7nuGG7FS+2XYeRYDWn1iKDbjaKC8ZUo4n4826+LNqBhrx/5iuoll09mK3VyoVxuG1exkQoAQJaTHW0wYsNDNpepnstbhLLYjmed8KE5GxodNBwTUFqyUoWgdft3HFSGESShMYmVx+TAYvkmwUco0UFmc3PqRVAYRh1DEWEGM/1hTUFuZWGwYCQb+OKAuH7/n+R5wOCT2GjUdAxMxPO4RPJ/IeQF9ktAdzxqvPvOF222XGMc9o3jqw1YIhy7dK3JQgw0ucL3MHxuyBkzOFaJDs3BuZ+AJxDhPae4yOLTR3ijyr7OyHjpj7EjdGV5B6EOScPjB/Bevf8AOF5Q1fwyms7pwkgV9sB2tCI6P7oWWycDaIM7Nj07Bqm9gBihzqFuNYCZr7/10t4wR4SNmsHYJpRdQ9CzrGXlWEOt60ojS1LQnJbLaRsm3V6qpigeYj9iQ4YNpuxE5bhU5hFR4WbfbCg0swnXlmanoQmQz9TxDrDuZuAZEkn5pQulKphcNgbrBPi6/2gyAfMUUcRiSv38oJ8oDtrkgLhRLr1mxeNMYhFhvDMaEKmXZtQ5LgffWoan/9hupAesWhCvEz+8136BdXXk4OCczMW/h0ObNvELF0vAXEUAh7xx5iujLW/CyBkjgERjFCUkh8jRLDsIAmjTZxFwiAd1+KV7e+zHh1uuKv7lIC6MUH1dongtCY7jEw0P4FRGZKXot+UOluGJerFFF+InryWbrbe5JaCTksngp2wxX8NTOXuLo+Oig97VsQNA2YW0n6CcQnPLgw/CSwExoM9LNicDCywYK9n2pq9fGT/L/U0tiypawBJsjEnlR9FPGqJd+2Z7eQLhMiCWdj1At20yds/AU74rVSW6CU/sGVoGUFfdV0zjjhY5s8Z+BRFu32o8WooZ9LABfHhxnyQkxs103Edcc2n86XeA1b7L2OARpx5t8frDT8XxqBtj/gVFwuVGCOcAGZDwgYSTZbnuZ1qEsnctaqhmMChMgiSO+4DyAr3B94bu4E1kT5hPTkKqAQuVCCPM3BSJj5rtErQGgPt/1XqLVfRPtFZa43esMS7T53ZVYKv4LUd8sacWYnOMVbvcNyRere+V2oyO9vP2ING7Oj1o3IN2SHyD2/YUK+8/D5CXQS8xV14KI8eP9QPqPRFhixtv846Mu4Q3qsyYhb33T5kperHZP/01IxMKWifZZNUiXXtAPqBVVYLNPqI0qJDDeS/OPhxDo8HCbrdxWOu72FX7C9paFHiDzGxTu2U9x/9k1slys7HWJ9fj6iZ5qD7G3xECK8kmBaltUuJRS36aX/CGfAZQ1ZouRZmFwuVORqT48LOfrSNUczQDiwFLRP3wsHjMEGH47poXVVUUubKC61UCjMRexVhwOWJkszKkAuBIsCI4xfy/x1ave9oIaIXYySHWnA7gtpsc5+b3zBl35tiGrgjy+Kg/ecDkRTIz5TlmUVOydtxMCMTv6+lMFgNLJRveqbgxw9K39K0yegsEZo7AnjfksUabRTXqTHfEuc33fxU7O+yUZJOnB870TbFVGATljSTo5+Og0p0qEFqkr4+gzhLXa/N0DDdTz3bvrsj+OGcfBNsASAFQfr7lCkwMhbihsnuXoSZdOn2XbU7FLtNWPwNyNtjICWEjhqTzjshK/35ZHikMspt63DDy4YCU/zVfewsyNGEmdZLw+Sdivzpt2O1EKtM5RRuG/g4U8tFf8XcHOcE4I87Uj7dTxlb2H/bnjzwiuYQwaJsKprLMRD56XK/J39DMnFWB3W80wShRIAu7sqADE6SDRO4/PqVvJ/YwEJOqOPHJBvxdgcwMznFPKHJi0QgPeuzQAD7RztfM+t067U5g/Wi5xSCaCHLsDfz1juUfznOmHOUdMS7tKOq78AtjX6sPx4NbMC+1N6jZfQmxlqPDEq1vztiGemeSwt4jONbIizZXqm6C+kpp6/EgZVO6BiYYPlNi0m+x2uFYZsRQlVroH7Bx9SMc5vO7bQ7B7kcxh++t9Dfaezu0fQvw0H+hWvTaPunwYnYMN9fDvOy1uNuW7fD3ERUU+c+90aE3QFI4QYNtMsBBbwIFD1KncuRZO5gcVmNsvY/GMxIhUuDPR7Bir6Nk8zrDVtrj6ADuknpNoif1Gjd2Ecu2pKOADOvwixM6F5jED+Zrllm6ZS6fq2iEH3gBLfk0ba/Q/V9fSBynj+txwhhtkqFeFEKFlUPeDtsXSa4XFQRuBEPQg/ZTing56yMErfr3hccJuGh1MawSPw9+PeQY0jK4HHvyju07KBQ9U0mKzAtyNbyrDiI2HfzjsGuPjPrOOxGkCe9368t4sGbc7XAUZ1CsjwOrbAPx+EL1FPEyh44XN1gWFY1+gxp7R3ZnVlvKNOfZBjqi7cfEmmUy7iXMh0ciaWaGcDHDHxUL/f+kNCPaOum5yfapN+uLb8RephKXps3NNdu/j17xSmFw8ieD73Q3mPEWI7D/Yjegi3yeeYbG3gimLcUiNpGMwgE28wkPSsMoaTljpUrkrKXiFwbTnPxxQv/jIqz9goF13mZ7pLePVWfoGGROmD+PA/R+niBiXjv2t/6gFZjJqs2kb/cHM8JsscJFPDjeIZX5WtvRfv3Do1gALEBQYgavtaJQq5Pd1A37bVg3rL0OygEuKTON7I8DIoqNISsSt24rf15BQ8oOcHNSXnIQSu41Wf2zEpiflmylvrSwCjbj39uZ/2JLzBXp04zaDkwn/cmiYl2G9nsoUM1qEMVL/G8b6IKVNuzSLEXl6143h74z/MZqwAuVsXbrhZbun7MksDiTsvqf7WWLq3ZVNKwNQGzU1YgrZBXvNCLdUoQBQbKNWJhnHNN+0dtWR1UO4vC8es15Dpwin4tUfiDQYHt+lV+99J+O/92bnRmsmit3aftUfOGgY9urb/sP1iXEFUU8LSb333wXZFmlFAkdxBbAYU9pjYTAdJm23voe2wM2QaPlVWyFNCCbtU9E4sncEhvX0+Xw6A0Dx0sBzxjCNulaDn8hWUSufcm8GUiXhgOPw9qKMPK7XchsqAZNeuZ/C/l9+IlZB8tEXlklH8EZv5lMLaM+WoylQbntGcXikKpS05/AsJYhS9v2bCn43qn6X4TB4Wza2oo7Jkjh8+CajWnzKv/xU8gNL2ZEMdudDJ4BZ4WaZeygGFHlnKOY7heZmJTdlJTPwCbhcK6O1UagxTrr8rhodcC+m2Zk6dKUKAiguc9UWFMU/OMHnWJeinGQOAppxb/AkIbi/dHSOM2895261I2edMUh6CBgxKEg4IzLB8b7eKzPQ+CbfRGoxh2i5BpfY3fbYHRfsS1dlrHuqpXIePPbzMl5+zwAob+8fAA9wbsE2pCOz4dD1E1lTEV22JzQUaW2DHVBbNtjuVqFXlqrJtJrmR6zIoSO3hqiY3IBmU9O2O8zy1XyvwPDu6QVPcsjZabmyIgeuMbsCUof9I7bhYMRpaZvfeOatfaIhhuSy3pT/t5oNoUng3axvuof/wjuJzYbWj0085e9kKSdI+ATtK3fAHr4O+FzQUh/UWHScPxvmLAzQICjPZ2VQKEvPI6J8n6OxuIjNhKTvq7/+d/dlFa1qCXkoc6fY360VrBIJjhfVkIxG1tHXmI6OcbnFaws0Q0cK1HNuzo0x5RRFEaDDQBhYkl8pZS8OHzjiC/hoVPqhrbI4iQjr+aOx9tBOivYLSP/aCzU82qlH6meOC8FCBlAIPc67r/EmdQCdoclEtoCdaadPPE4B90KduDl4Y5kIk50wSUzNqGcE9zMO4ia8JfeFgXeBm4Mzkl0nbpS/7O8Ul52Z9IHeuYIhrHYvpGlVUyA1k6f9hMerCIfDGvaOrIqeBGopRQZqYBanoyH1lxpwiyPBrHnyry0FKwc9ax74lWE3ISzjQbsFiwBud85h2PdoKhe8gcF+A8ZXJVUVATPlYcCf4JriKrekLQbc8UGINUS3qWi9KMeFQ6ge8Br2QYf0fyw1g+kNMrLzU6gSiXkUe/i00nnSf+Rc2nGk5TgNLIvMa/z+MQwLlOETEKKfQ4BQgjFGVVHCegSsA5UQtk8M3CyadtlI+i7uWxCxhOY6K7UNMJSpJ+ANRRQ6hA7GT3VDTcRk+1ojZAgwd4kD+hP9PP1jWEqjIshJ0m64+H7OWd3z4uGNWQzZgKLqqC0eehI99ZSIpi9u4r2QC13UPuomwPuN9/QURlx5o4Hr0udHgMYsBavgkAmdnOctqy12U9XSxaEgAzR/h/MNCN/whTRdwZaK8SkHGs2PhBY0DcMkrsEroNwKMl25SSyL7fWXiDuRXpas5k5gLF6Iz6cYTsTmRwFBxp/WuVuzN4bfHDldV8KzJcPpX3rUuXXbjb0URVDnyPjuYI//7V7kdeunFlOHCJLOcUVTa+sF+pkv2TlvvS40qiCfzPXrxfvoL8QQ+ROh1X4tA1oqCnpadQNV+U7XZ8/DGAGLjfMQB88Xh1zt6cuHZbxhI8MRiC6ibyRCg/qzczpI6j9PIyLSUhGgCw/UF+OiTp9M2BqIfviJoGeP8VRuQuY6ZgzAieK36tXr+M9q+7iYmQZbHaF8BsIbrv54ze3Bh2aC6ypTEldXRrgQg+JR65wd42RoBLjMQnlMPC/JHUkigg2e7o5qUt1RgbT9QiZBPajuk1CmpOsrLEJ1HKoUE6OIOjT7HpvhJKLmS7kwK0V10+qUNIpvXLUfrlDYgvCSTFmpNoH23aJO2iiViwLD14QqTsd01OI1D05pFhVADNG049ObQfMLpRndio7paeQ6HzNYaamMp0fHrN1FNQ8a79WOjJNap83h73mBnOSqDEqqP3Fpo9J3OAAg1Su6y+pNTsQX2UHQnXESkkiV1CtLkqK0EBB7093X8VjCW3DJhH+vn3GKoXeVQhF0Ki3VBUxw632f9jm8wzYqzRlkpSgK+56KLwhUhLPTivZL02rXy1j/5m+mwlnc6JeC+nCjef5/5vOwH6BuuCTK4j5cFqs3sal4tYNAMJqHwLElF4cid8eVpsaOWpEGD+4qaRE2rS2/4KW7gltn6X7uV63Du/GBzAK7EES6a3ABBRHjKLoTaNplsBiA63h//7wCTE2sjwwEIrU25wdQGZS+GXr99cZqxygiV6GrWTYO0bNPbkpasH+oWBCXWMII4Rfuz9pVtQVHoJUD66jh0RZpC3ip39r4WFUG9z1R8idCZ1pF4DRyEKaMU9k8nJK/hyvIl+R6IkOCnQhemXQ0yMgysK8pAZvaxQwYnvKDLJOaF06+Ji1VIr1vLD/QaNA2i4ec/zV6Q9szrRdPw6huwojrSI4fQcvWS+r54AAatfp0vn+QcNnislO95oKoka0LSYsvhF5dNYyQyePFcXqyXfM5k15m17a2vaNdg66hWiLpBjFkNX7tr8NICPJOXjFLmLsbpbdsgTWBnkuikNgBoIisWmyZa+D4k5gStdhPiIf0gb15c9W/OCpdDE8JVPmpPkONAPHD9E5NwUxqjqW0gGxIhR1s687+NHEpXJsn/6Ig0/4U6D265JVWbXHy5/6uJ7EWXJ83jVHpbFM/xOKg+9d6KQbxBDPpcF8icw+9GljM4ok0siqNh1dNoOxeYT2P14we46uj2pGozDVwWUAz6Ohc/NKdybNO+pzmPfyGQ6aBoQmNmErRVtS4JfOctHWqWdfDLU2iONjyyb+sgFh+ahdnHqgm8gmabljOsFVhRDgPHf6TcRyqN0pVyvDl5egWZ79XUwEmteqV+ubrwl0KBRS6JqF2LCokrfdaYsGaKDNb1IoeRrqVWvPadEd+6BbyGaHHJ3tJw08Fpp/JOdOlfMRd6d+YeNSP4sG00FvSXU1Q9JlnIACUfsMowCWc3a+RJa83WOvWBxefAzrqfsslwvb2BVWQskiOrp97DX8LMs2ZduVrwCUt7ElziqQpMHF7fVJ/5BW58/JsTzGiOtbROCM4lhv4QbQqq4HT3QIGy8WDSXxQelEbpLJzmCmJFKtF41d277o7TDpr4eHEMTXjZSpSSfQKnce0j1xd9JFG1cJYtX7+h8pl4AZ/TMNvNC29QZMJp/0rYeMkaERD35k33b9WwEThdOLZKpqdg4qneLQHBfWbC28bZpKmeNPrbNrug+NeTZdDdYPZMKFgr6kiXSKlFEGvnq+OORANhFhIzLomvSZyKgsDAcRHNJKGCxe8jEBrX863Cj0t42MgN8GtnXcT4SY3NgyWNR4KVBlFJL7hJpvDnwuS56pgSpmsGLhYsLF3eyWGwzYZVNsJaYofULCALnUVwG/cJ82KIERTcRLEo+zxP6yUbFyMoWYPRaKRJOdHiIm3jInyu7/7AlPyzNoN5g7vgpa+OdqmPkfu6AP1icAitFGDa/WZNNC5jWkvrJVEXWtAZ6jQAeEZZe6/eYJjHsHqXwkt3l0z7kcAcCvFVgd0YRQ6yc5bMIky6oxMEpd9t/6kerd6nIGQkypxymDn0VfAXB0pzk9MlJcZ9Oc8HkAlppjwdpsIhaxS2+3Zz5Gv8347ng53d47eE1w9x3YZm1d2TyN4qVIP2D/lIzeLGUsiX4C3uaVVGlGg06bgkOfOi1S09kaddYcC1t1LN5co/uptfs9N0uXFyG1scEj13iyN0CS0AAAJ6iYDXiPDsbpWlM4IF+21vEazJfauhCZJa11H9G/34hgwqJiGpIpTE5fLFQtXDVWNlpXvUMCfa571KT+jdRUtJqEbnH+J1RaJSPqLi17NnUn5cZBvhVC6gl759PJm0o7esdY0QDjx0FmbUR5IW0YqMdWQ1kiFyk3UkVct5Rc6oaSSmi8k3QDH67JCti7jlSt5Ed4m/odjcJnd7UmYL25gE5CtNWHVAVlfWjYNAV8cdVqYVa9Njy0LsH54p49mG1yW8karnerWwjWP83o1dO8O34R7jWhbYzqqKd8zNPP2w6EMdwLhTVuUfj7gFfUXOB0eoKL1q6iyZHD5x5/3h431R3n5KY6/+dXxWeZuGpLneoEko4Mwr7VPzSwcuP/eBqbVS2yxnziAbMtnKUubHzmexPXSxUn32EWNJR30mc3rUyQ+U2AaPyLMU1hfaDfi8TJ6ccT60mCinc1X87cMDZgY+G485utZktImRXezf0u5DH9dvFaqcmAZbiIyi5ROPPoNreS97erUvUSa2316frBj90E2x2dK4RVmm7s/JyaKOVYPr5JHbUf/ntZZPF+NyYIVx+iD+C3L4dbimD3+XMcapQ+CMjZflCf2QhOkCDN30zO6eyspOhOyevuk6Z6i8L/U7WiQJqdxR9ofPJHWmrmC9Hw+iSqknO0/npmWtUyviTiSCX0uYG66/YVU4n0i1NQ9Qysl4uCccNUbHAwjMOVpu4OosSANer4k8lJoBNibSC96nzrErXAj94I0LgvoCvFyaggh2/Lg7dL0WvIAJEoEqcDxnCfgtUkrhD52RQLqaB0inzc5AlmJ08RETmF2qnX3hUjnC8+GY93ERiczkGHQbrpJrFxDwrk/O8pMMNBPbbktvUON39w/wl7aMCOR6cDflCicEKZF6gW6tudlGzo6SaA6oFxB11m0MsR/xi0IwyflTmCe5/9PQAhcaqRShcoEPQZhBOeSttoKhwsz2g32vAKbLMD1Wg8+L/tg9y3L+R0jI9qmq0aA4DpErXOBUaUezed3WKDOMax3N0Td0jyGSCKU3u2dA584doOmhDeAojM3ktVqZjqkib0S6j9jS6xWMCRq3kRHjvwHK/hSkOnAtjKNpmvrb7fE6yfIrxmr5dT16yV4x14sfWJxYlnG31CHtQ9Aa0wVPeZ//SHQPJZymO7tLAniNZWD1hrqZOKOaLrc0dIvb0j8mOge3FhdVMKEkZQDrKvoqzfJtYrPIqnSV8NFXUfRvknWg7nVss0hRt3RGOmdBwWlzkvtz+nnAMcTRW0+Cqp8NjTVDhR2q+f3x+DTyzW9/1QiR/LD7GD+KSeU+hxyj0f3H3hBe4NjQYDhqmK++8S/uhGBmny/ACVErDIJ4mMprMKrUwYq8F7TiNyvRxRLGWj97fXgnYRaDllMbw42FKAQAYoJoFz326vGrLTccCn9L7yW3KoV0HgSakZdSvTbUKyc2WmRTCK3iSn2IWUuDAQCcMuuZrk7OrxwR0xVwcwBhkdEFXl6y9fPpBa62elXPVqUv47fAoDNPD4Mx8tVZZulOmY9e0yF29qCOxI1Jm7uX1CJS2RcXpKY4JgmsubNoeFwSLf27RLJlvoiQ85bm+M1wzhevTY9pdx9EJWS9ubt/RjblsTO98r7B2LyZBN7bHoCXb+9s1I5yjHvCDQWgOOzL2jjlduHbUK+VWhW5KnHOb7sQZ/JeSbGZoVqjOB2/ilRRHiRI+Yd8zDZmgeGm4tAyPLQPzxCaoPCrZUxX26QCAl3xkcGQy0vW5xzr2cHSYiQCalpz1cueZa++EHObVkmR
Variant 1
DifficultyLevel
762
Question
The rectangular prism, shown below, is cut into 20 identical cubes.
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
Worked Solution
S.A. of rectangular prism
= 2 × (2s × 2s) + 4 × (5s × 2s)
= 8s2 + 40s2
= 48s2
= 6×(s × s)
= 6s2
∴ Ratio of prism to cube
= 48s2 : 6s2
= 8 : 1
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, shown below, is cut into 20 identical cubes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX9-TLF-CA35-SA-v3_1.svg 300 indent2 vpad
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
|
workedSolution | sm_nogap S.A. of rectangular prism
>> = 2 × (2$\large s$ × 2$\large s$) + 4 × (5$\large s$ × 2$\large s$)
>> = 8$\large s$$^2$ + 40$\large s$$^2$
>> = 48$\large s$$^2$
sm_nogap S.A. of cube
>> = $6 × (\large s$ × $\large s)$
>> = 6$\large s$$^2$
sm_nogap $\therefore$ Ratio of prism to cube
>> = 48$\large s$$^2$ : 6$\large s$$^2$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+9hbcJYQryjRwprLzXFtKjvlY3WpXBlyGyWHUpjYVHAbIwnVZblblanrcmrD+k+W95eIetHiYvvGYEz6pmCM2Bp+WUxTXX0a9UEsYbiRDlWZcq3BX2tf6OD9cWxfG3vnA+Inf4K3ezAUv8q2f3iKowxggxuBWpKIkDEydhwQ7EvICH5l3HOgr7Qh7P/WqOi+mwT7XJ2l5Bvtg64cvRrycr39LlxtIXuy6HH422rbwNxRHy8M3kLWLp7m3ppiIsBlj6NyR3W5eszOpex5dLHBqlEjtgGqt3Uznwr0j+AD4EmpYGpAcrXc4yot4IG6FAFUTra1gnxmu0tXTfeJswgUpQPH3bF8lmloMsT4VVwm+cuoX64HGM+63nyYeQpK4Kpy4bcw1CDn6pgLB/arTG0tH6Qk8/U6gTbvuCDcpZK+ZqIVyqh4nahCbWWlgUVVU0lQvKbWAIKw7HRNStKD136Mxpme9iC00gpQLKlqBkfd+lpdVHjMU5S8YqGirXWJe/zIm1K7y2ygHLeZmyuVChJWHbsaOh0pYrsr+S8yWsKFS/K6ABOyF7wmpA0U4oP4IoO9FvYhhhYeRepGQ2wUNwliYIHjeRWQblc4tyWpoqMiplgKfQZxbb6se1wo48gILiSCZ5WVNoH1iMW0Vdlz1AankGTfABrGg5osuyJxt6fg+KjVoy5H37BCVtrPfiG+90T1NNp5fVGpCNJgJwo6ZhuLwGKAzhN6oNyOvQm7RQW+YnTUxXbbhBZCMzuN7v6W+crA2gITTTAJoLp5sDz62DZbizI8CQI6u4eyI7wr7JlThEpVdS7dceYOcCnmgfX/MHoiqw5HVGDegqlSIaZzpCIWOv7SLym/V33g/ETdYXfYLVJqJ+DJ/rikFb4Wv0GPJr53rFEf9FynMcPh4A2WpGQYDMmuq9JoUBq7hCYqz1I5hMTjsywNkJFmlKOJvMeMUkDNqNgprtNWRNCqBEtiA+m+3Y823ZQbiqn5LnHx0eBfyrJpkFYcCsn01c+MIy11W5ZeQSF3bsJMrpq/HUp3W2I8DTH4fWmkLpTUmv1NX0CoQlvI/lq9VEM6HTvRxzdFzf8v0m2UFBNBo+TOyDqfim5fEJ1lWs7kBTp7puM9CXbxMeXr1LtxNavsBQv1d+uS6GT1X73OMtddVq0WbhRfgbJt6LevBDk4M2hyLfxV9J8JmXk0/6XcGegritKUsZeqlZP4gnBbdyoK+1+Ju+rsXIWvt3Mxi3FZJoTVoKhqoJp4Jv/WHP8i8bGDZPa2el2B3AxgPR8sd2MfES0MsSunkmQfgqCsXWdPq5+Cmul9dEWm2St+0lPFAQMV+Laj5ZQ9Cp7RSoUaDOw+KR3z8u+YAu2UQUngOa0L+rNHeOw39Ho0/2Hd2+MCM7ouDzG5f4hGztp1qW4x2Q1PtTYA8SRJ0QGVq6ajkoNvg8ZiRkzt/SHDA0LhMXcDRcwDzsgiH9J48pZk7y1OFFUaZ73Z8YbM6b+BQMy0xgr6DOQ6F0lpyFyTeVP9WjGAmDiRhcHf/aoV3ti1BNPh9FEIN9A/Hte+ZtKdrGDfLEkUj43z1tiSMiVI66sYHo1lGMs7OgxAhJjvdE4DQ/m/QHdnWihc8zfsn19XcG4Tql+ulfZIW42o/s/1/4Qn5s35nZx01McAnFYzkKaDMiY3/J3CTbVFrD/QgB8FwGe6Xd+dHnPGGXTTLeUHl17NLRs+0crYJ3A8xwGboVyWOIvjBGhIKllJ+PmeiGA/2XT/VQ7/qCWHfHN7TGJOLhBDULdWYoD7TAI/8w6t4d+OkKpEtjSzjlOvvNyOudHkJtbUgJQ/CwKfno0CxofypZD+wvm9lVjKSC7/mbVMCUFScYfRI8CUlfBHQFsR2F3RmGndM2NwAEbsPsB1JbNmF+A22UURhTUltN2ICCEC4q3oGQoI/+tRublqfoGH2lpegtef2Nbiaujg+qapW3WxENFng9DNmqmG1mt4IPAjfSC7MN4a3n1+XE1je44KWe6ib1Z6+AzH3sQ4Bwdi9z866h4YC5IU2k2KATsxAeRnqoE+rxa8iGExuH3Kzt1Z0rsJ3oAs2vR/DKRSm8cDSUGkrZ+okYhzER6wWKeYwuIeP2RM9BGv++NqiJ3I93JNUKS4uB7atlajaTaHJHUSdfKvnnhYAwHtgRSNx7oMHVhDDU9h1x6rCX0SDz/EV3sI7dGnNUyuLRlzW9ggaaFRxgqr411zVFUyD7tjDsZqUXwkS9p1EKieviJOSdKrLwF+mseGCRDGJ9R85jKQ1rlnT5z5JW49g+PK3NI7NFD2T4wYqymGf9UyUq188ETD+5ymx+9OjdE+evNMyEUJha5GqE+QzTpdCN3BuuqZUq0WTEcOFWii9WVpQoDtMSdy53ynNI40L7E9Ps96DfqcnCXNTPh7i1W4aVdWU2DK4otODsP83dDsL1A2MDvfHWZefQ0a2RDa3GEGJQmo5VPNpodkd2NLFG7UTsD7ZC+FypmuQtwMttD/hqZ3xe0MW6ENu3YKIAx8jfLQnuQDecTW6HTKkmD5mM2ih4pNiihJWEvWZnS+YIb+jifDX5LCLvFMSoTMLYyMHO1ulJMoMJdWOrpYHy3IQtgsMz2JBnXGm/wXQ/BjeuwBg+ve2ifSb/5xrFYRVXt0GU21FVN3YIYkQ9L6Czt14pTqwZQhPlW4awBS/ojvBqSan1Nwy2wnk29D11+UM2iqTFODdQlyo+YmcfiffcYdAwpKsKHSAyY0g5gCnaVXsVThnfnex+t7SihXzLiDMCKWgFiR2E3AalSQOuLHIA3KOdP1SL37H9EcaCGf+GDgYj3of1ifz58m6cnCsSEYyEWmFIBwpObQByajJdL3eHroZQb5dfYBPHgqrcWn0BCk9/ekNWLYflJmXTvTZm+SmhdGCRCcwAyeQ5D+WowsyM+7L/p17IUEpqhHcnRsCKLKTkl0GBnZdpkdT5ogmLiobXuEN+ggDM7w8RKqF/pykIXlGFNSp5t/g7/5mPBahfJY6YJ39yzQuG0afmazBh3qy8y7loCN0txuhjHqBlotIteJHnJBPTRxw7G432388ZgjqLEXbOF76l8UkqcYFakcDTWbFb8jkZXt7nO4dsP9l162wdRtX6CqQXJqvYKBBi5zhLPOigv8GLCltDIQIDmDiZcBrhk55nxSc6jEAkGbqoEgSCt7aICN+y5JdS4rWi/p5z/nw0NAamJtWFCNj6JGyXRdAp/jKsfqGRTbwcdMITVRlDkhihctJ05FhGMIKPqHtXQYlbtgwBMsqpkqqiMBPX4ilioNNK+ME+GHVd9eKtdOdq+/jkKwQnMbHpGbfuqA2Wr5mn8oLovLtAIMvy2GbIU+aPRXGL3ytvT+GdnFBkDoSYhw+Jfw7LGWpHs2EXTf6poysQsWUmIXw1eyS/ohMyHSC6Z4HGJ/vi9eg8/RUoxw6+kXrl3I3EhFRzUopKWpekCmKvb7w/FYxp1TcRQ0h6c8WnhNMu7cLwVraAPiAXBmrNsMjY4kesLWblQkt9jFHC+HA5Dney8xFZmiliuSo2gKJuD7pYp5SmcCNilwXWMIjmui8B76mo60nCJou3YhwwhdwJMlFu77GTaeBFPClZyqswF+D5j2lFFbkZ2+GilH9bdXEKEfcYuE4K/4oq3LG+XWmRW1TwBWuz3ERLmsmQ1wHvvm1/GFPoDmNl64ZfC8k1hBX53krSbdU0G7gcxVX+9ojk4vYrGlnp/1wo3Ozoe8npRnPXKpglwFahTRe2zHOlJqjoif5EJSyIDV7KbJVGx1wPd81QIwrIOf3IFYm/fcQUKKIqt5Dm0Pa7oKh2HXJBvM2cgJM9FeRIbovGzR7r296ot3uvdPGFTTb+Ybqjc7UkfrYufccol5qi8L9UJXQ0CyLb03PyYl0RxZ6OSN8gb3rladeqOiycbm4TnJu44zIsGGEQ63jghauRmkGoz05Cv4wXIMB40TBHiv0+MtE8IWmm2VtP0w3AiTzotA5H7NFqVUIirm/SbrgiZBo/vILai9tMblcimmDa8L2eGnVKJXd1yACXIwEbgnZL700aAYxR8yl75yf4dXgwcnBYvpnAtEfXFpsXYC9+auNsJLjdM7N2VVhsOw4HRM9FtPeqj/7+ji0Nkdnwx5QqaX7TG7nBEY6+wk4pmjGbfiDOi1/uNN+JtnpUu30okVgHYFWvIoLeSreeCHMDPfxVJurDVrVATpLN2EPuNF7+K2XkOd8cPNk4g6+fp+gBC+5m5WIfTpC6Uj8u4LNN7gurZ8nu34/cfoa8aqpy3bYOwmHK5HaAPvXjSOxsU16BLT0bKJcelhsciHUj25qhGKn6Uf7tEqlM8kduFgpFX8eZ2YgCeuglslI3L0jxLwm4QZRBb29KY4gMWe+SuMuVRF5bHgTwRP17VWpUAIzJqMDWkqBqJw8grcAi3L6BVamIIktAz9j/6O9ycVyyupV5XItAeisy+0WRIegPwVFRQDJ1HaBuLmjWvv7vrzvd+mO1kwyA/Iz01ZPUrMsxXg/s9CxAkhvqPO/lEHYwHrFrQVs+9fqvzIwOV/1FomX2BUs8C+1vtUREJbwXWH5rYL3/EiCTMi8o2AP8EkP/TFUp5R/VWX9us36Cf9G4/I4w0DuWI0yCJNjx9vRkJs+RPzCkWaZ8xvnebtmJzLoJGjBobsj7l/HlwP7U6bKYe/SlX6TjDqVk6sro6GbFwGYMGkLr77mJqMy2eBpsyu1260SlfexGcnL3eVJHkvJKgywC2jMRuBiydqUPH29pOya6V7qB4lIGLSBHETQioWkHHxDkmyeucQEaJl2xkFcejI+tS6rz0sWqhuQ4GMXxiSfI1YFD5zimNKxR9K9Z9oquQf9cPYd2iZ8TFh4g7ZSIu8G5TN/SXbtJ+V9ZVLCfezL3Ap/bwA3hpwnk/Gg7WWBcX+V4cPUT0K+1BA3Z2sHdO0dbRjaJcFgtZWJXGz+vwoTPB3yFZtcTiDzXhka2fjKOjpeqn5BiZZzZqOr86m2gUHIfIKDBWDFv8xaJ+JFpOFiB0Bz8YKJHqjrCO9btumwoRBt0WMFPB0gHFwPqbQeLNX0jQNnC9DTDjWer5pnd3u5tNXPh4+5fZYeVZzSNmuGr/nf2i15Vst0FW3vJkl0RnJDnNm+4bXur17KlgvR+0bYzKE6vz+jPqluQHs43scFNfuz2qqIhdiCat5Rk7kml/wWwIxEKrVa/Ifrjd7gw2i7z+p3BhHElnuVNyXcH2k2rQUrmSiOsUS5XMyQd9aH2+X98djnj1b535LJZiuoMI2l7vO3aLTyV/yAFu4S545XmVA0R7jurHbeUol3vlKI864+yLUPMhL2sZw1gXTbUR9eQosWdPd5jCLill9aSduEraQCbTR5LtuRf4KVTDggp96UdSipCSXmmmekzC4IzuWYDkODTew+ZMH9R2WSv4ezPemTnCUgK6PX686LQoQy1eq2qQhOqMKVY9mM60ACcEPrO720zaUphMlvu/BRBZuFjq8y3aikgr8UyG2dvidAi8W8CRXPKgvTlOEtAcXuTOv/x+8VCK3Z0h3IOZipXwwvYlW5lw3TxYoxKVWY1sVXWVycj6LcWN8fToM3y+Vgz7rA6tNR2IXKzO1g1dpMMNV3tbtZUhB+qfpiyw+INVUJq7Cv/6oQbSEeUg3rnGIwi3Lr5lHn/maBeZlJhwSiz1D7JXgNrlEEHasMbcY1L40SAx4aazT7sM/qZzVUlghQ9wU3P/fRNJdrz/V7qnEotGS1zQj4VYLjEy6aSt3TRkGUm59Z+n2ctx3gUJiLvzAb2hH3rPQwsYGp/JBFle3BMhA4fubvZSJFRnTL3WyyXsZk51bC6fGIVJ2FCYWSMh4GTv1yWpo/HESvYVgavYuuObBFzt2+bNe9/GjO3kc82atWvsg1BI5elTpd23kAovzHCitwKjwM+/UQpAhE8aICfu8QSnoOejmpPbwyOyF4vsc9s2s/N4mtTkhnOGkb3vdom63WJGL9Plh1PNWJNb4uF1KfdstcMNAADIdAjEAtXbXHm3LMwos7pzumVbvXKotzx9NxfM6PCGVvX3jl8AihBI+0739kCh6el2lkzB8PpTFa9fTRdmmiIToFFb1Ez45QMtLbG4W3ay8IgFzpW7wowprDSaDHGDtmvwcQAGkm7q23K9JPZE1Uk4dfeY/5+Su+H6R/TskGT6aX5qImh3Okuj2lhszFDEcb6dyAYwgpivRy1KHXUy822oafUYJeMZJ8JebUF5/RrPm0fASSuqZS5z7AYoOszBCMH+uC9VLRfs8aHe7IRdiLEjcQMiHLjMM1hATzW31w3NOJcRRQRhCwN5AiowZnIMYaNTQHMkUg3ErAUx73Zu6IRp7UdB7UQSSuSJNS4Y9G7Fp5A75lrM1rncZ3bjmHA//NUacMXoSLbnDZ+Ipy0ls/li5Zrvt4TzFWZWnaX2pszGlJcEsmIh5p20n0uKOw4/I37uJ78xiCcovvUOiRcQB/mH5jmKmeTLkO/pbzsernX00LpMgqvY87y74MeBwvdW4sQ3jWRdZdELytUCj7NGJYUrXNbVE68lkkejYXPZMQif8pQEgoU3YNR02nq1YKdaRoj4GFTc+y1kI6hYRqV2ldicSojt53QHqP1Imckh/8tvQ3sBS6g9jgEKYnypPeu96xxTJrPsUlmAXIPJJxqa9YJZoWNPQ9iWQHkYXMHSlWGfrzECoDTJKWjV80FOpN7c3tFbZsMWZpzKqtaGltVD0iaub68TBd8kr0I078C2v9p+E5I8QP9GM1KqScfe2PBl+gVdxLLQm3f+9T2hxiYItA59+5UP5jmFO+Gk+XXVhJKE51k+vNEboIa3xv3VcH639KavRxbt+JhhhLH0/m9OxmfNdUvZRawVUl6QWswvqXGkYh/uWDHndc8+QWnRMGXrjE8qmzWeSRdUph0a8OOH0XdFn1IlQMW5aSXEiuoNKsKhm9awXnxiL1NfmJjDAozR5syLG/OOL+7KQJT5GmTBbobktb+0r92brfn+5UoV/mxb/I+IZn0pBi1nDbn0b+gfEbgZrnZnGOB/JHChAtAU+gCfxnN2V6llY24qKj7gdVPh3zpjGq7KJTQ2JCgmB+1TvqokTsdkYwnlK9oJ51qwqcv0hcrwYle3j0j+3nof78D2K5ZBz426iZeveZ6BUdb9fpJyebxvS2NWUR2nZcttttDhjEWeCDTX/EpGIkZFlRMOOQeACIkCkDoEdZQkLA6doqQe21+jXxv71Sy+zfR24A03W2ZqCEjnFKzFKauiaQ54+ddp1fKHCevSwdc4JQTQsmQzxre6HE/1possHez/zX0yLD6stGhWNWdTBgy3iBir9chK63+DdC5OYaAEAJR0cFPOLBN3ymnw6fag4jdWQvrfLPAZnLd8qzXwM8tBSjvJyEnsfuWf0n813+00hOHAlPNgRvFDFQKIAkFNNlKXR2rQrXf8LAuAPLSgaKpwuT3onRw6huoU/IoEIFXrmSmO4MyXHETpuiNpp+Bwnv1vjp6qKnZVeZpPYwYQSIalUqxaGB8m75FmzwC/Fpy1u7RFdLD8R6cF878U5Y/jgyn6nXdORZtPvVDf+sKVIoCy8q+cxRm3BneLsHIdiNBA++VdhZ41uTBNrUNfjbMmXlSH01fQq9huRyHek+RcMHw8CAN+wd0wtVyHL52b3RCw03SsYaWOPSTxwPnPfd17j6MdxY7JgGZGUb7ifToc4vYudb/Hptqg5jpYOzagQWdhswAdRxEh4u+o5s1wt9CHT3NzPu99kNZrTtwZm+39Wzgu/BSlOv7/slVQzG2pcbKkgJlDaLRK+efPUOeXmp6n2M0+/CHw4fexGEV/rip/UHvahJPmITCHzHQiheFHwleg3hB+Hl0VRKCSL5rnM7hnD9f5Wq2SI2lz8ckNH5J7Dbf8x4Vpd7Tk00UAYX4BBqLJs2MYP//nIsOB02VfU7zed3dmoH2/C5XnQbqgI+En4hHx4R25H5V6GmiUXRkVpiQMYn1xqPzp0r93VhQcDFKrvk4myrArko0BzmoEITSzQfNVyNvWzRPNXILY1E6NBcDRIP6y3UdtM25vPseYrDElxV0r2wcAsmePWRarohBpzPNZtVjQdgei5P56JZBGXql+kj042S/4UQjHxoEJUkJ8jniMpoMYfjgojxgFPMSqGBOnE0k1hPpJkZ0jCzFfw9TQXs90qny/2BkySCAAYRGc4FRp4wsXcIdXsf4qte3XDDGiDHESxt8ZvkbPHld/Ha5d3RtKARzm0ThXMX4GnzitJt22cdJoWQKHCcpHCQT5pQlT3ThZJ0rire+Q7G69zvns7BtBK9Pq13GSrj53LvBx59gJRoyiv5/Nqfl4Nanqc6caNdMnBwA4M0xVdwybIs3dofKt/4jE+qId3MwrYpYSfhPU2bOB/x/zFPZoe9VhyWpoGB3ETHOa2H8hV6c7FF2xWODc7PP+lURkWPxlewZwVPwLSQWoLU6QbC7jX2ExdyrOqkPJDBu89p8IePASC40QFLXSBVO8YbZUZK6XxCuTZPhzw7fZSlJ/16NVuUEPNbKRKfKIa23zLVRONjA/KhvfjT8UDwr0ejIg1vy5eT5DTeR5H3r5J0JIAmgvS+FbTtgCqeus9nc1vjqmDRySithJm9aVxlWJ4piXdOcnqIeW2tmmGGmgHOkNwaUp1TD3AaguzdFvejQlbzU6wIuti4shKQCElUQT6jC8xKmP3CVAv44u9FcPdxxto1n33ejX0uxqiopAAqyWEVc9YA3PNXMeO6ZhfLdwn1//dWFFQvaz9lhea1ltxErQIqE7rTeA9RikFzdo9Oq8zyvaSARgY7IuOHy8Zl4kg6XNN0fCS3KsgBaArMrgsKH/WpSFUf82fs1uP1RNvRWpTlg88f1dKy8OC7ShHd6y7RHzeIhw8Zbddfwa1P4oxg0i0z5VaYOEAMiWhRz9Y3RguIok+obBLioTDy9ZQuBYyzFIV0WSC1rxdygEgEW9pWIR4uIXAsZirsL3+GJZOKSB1r2txlPayyPb5BFKUL4tQC40CbPuSeBGBIx1wGDS+EIKEb/xwUdsBSie+BtRCMPLPomHGdQajuIOhux7927ejWk6oQUCP94FvXZGra5lI8+2bTK0j16O8g7iZLAgOAbmoeClmKIgrCLUIOBUF9qkE2ApEPwT/MvL4zmp4VJfu+KsbrZS6d6TefeHvonPF7xuO/rEe90KlvaMzC4bYf1HMTYtpMceG/PxtC0/MZ65wGczxtyhHi7I3/gUf8/RPvTmbpZ0n/iXscH0kC64xLC9LSuDqjrxF+eI0mLzaK0teG+9IFi4G5EH62Op6yfew0I8rZjzlgmn5C0B5G/IXS2i+TcDZlH5323fR0GxDLwd7ES3StsH8cVSrlLIGEmJzVUxn808R7PnB2h+4aMWpJorhpJspjbimTdLuR0G2zvECXpZ1T8LgBFXlhs8wt3dHrw49C1oB5q7QGw3rgy+rVLFviR3QShgWLuDOdY5KIhWKY6KztUqef4NmPqISkMKIgdW3Qb5gmCjJGJ1CWnlMrv13aQgY0FeguytmUa5TM+aQEgXLcp1PCPVDqFk+fXQClnZfFgen3VrAC3LIPXsHSRRpPdKncjB1eobpbZmevQF8sd9tVUvwIzKCbRHVCRo27hOqRHEEI1vS+PqC13OyqNF1kDcek/ZbQQCzpduycdvBnRWtyLOyr+neQvTr3/65HSf+W1sm7Y6yicLDbJXSmf85253gBr76Ufi4t3DBO+Jg1mzBUi2tgYjGRkd1shazBz5pLSe7a5KFzGZ8WHlzFMhk8oHL2xDxTSQfccET+M2QdAbSYJQMukoM4ROq82svO8RMs6UozY5as8209L4mg+xRqdED8ESOj7IdSFllIzI9NHQKKecWoLjwmv7BBeo7G53Nz64DfRNgbHgheqDr2OxxtnyzX40tNEfLX+qQE3lAJSTuX19pSqJgrAc17NSxYgW2yM3xNdIBApMhhQOAYnD9jtg/VuWqML1zPGs8t7szxOtnEKHmtFkfVYMWV5zUJZZ6n8rhNhIxpbmWHuQezeHuUW72Q/epGwEUoITYXIXDj0u/vIWZcha/3Y26m4r6fUYCYLc46mD1tI9c/Bsav1ioLKICInkN11SHJB+/ci8EXoCPI4EGStMbTSoL5dtF2wzdTbVGBnXyGbvcP95DfsDOwG0y0GhxwqEHu7hrIXyE5TG8f3FEjNt6zCBOh27Xfj8QmPDwmvnLrct3/+5xeNjo/6IogRQH+1qjkN5dl/DP0KabFd8pD3DZvP8SvfuHhWl4K1iLdzV3X0O3ltoqYtcAzPwPoSeQp4sKfJoT+KAduWj4NI3ld0HLO6/vzpP8uFJdWwigeAYYDTPD4xukLoSUzQL4nqxrAVxmxpfhr1KSXEP+Bquv4b1MrqSrsuftm+CcIdE2gOFD1z774CAo2z1KzE7muEhCdPBycxqlK9GsPbRy2SAsuZCo8jqVnF7yYsSFDxicihIZ7vPC06hTf0fMyQ3FDM2nPJV+OGWEgXpN42AkqEOgyivn1h0fx4ydS5eM+PGue+q8GSwWjURQ3CZAuOGJqe67AEzdbg+/0OQ0u9m/zuPdxe3mgcPk/dXKuB6TPEX9v42deGdF0RRGh/SMrDX82rQ9pTeXFWQLoFflXdGmes86hTM7j3h9+c9gjPyfAOowtq1E7n3sVbcDRrnNtoypsAY4WfEcRbQQV2cWAvBMiWUXhysNLr0iKgv85OGH+hcWmuMIyUmUgJUfxYNjD7VJF5L3SFnw54hlQRNvQPpRGDHVJ47Km+0Yj65+BgR8Df4SK987O/w4lOZzdcL03Dt1oHNYgbw3Lwxt7qkxrCfr51bCWcgnbDyM4URsfxi0EZKGAKSbs25pP75cGJ3mxUeOz94kq1CCSVkOaU8jzHQaf8/Wp3qm4LvjcVkPNCJVgNlJxrkWEpHvv4/b9OggKXLR4oNukRSWY+s+AujNgUf6C99CJGdzPC9u7tnT2eNCKNHDqK9ko89DRX2uIH8sgnH5HglHo2GNX/UsiOX9hLZxLzl88CWomlR1zJ+EH4QvYxv+micFo9i511Kdz8f2despAk6/W/iWCE7WDKQY00Uq2jDZbd0v2Akf9wpSU7UcFdzYrxTbrDhE7ddIJAIAu7UOEsT60cZ+r9SfJPWIqDAOC6gZ5qwYsJPEUV3k+j4tMvhjroR5z4dt6xQrKB0+UuGZxfg3SHzoPSiklmaTngFqohJmo0xBHlB4K8pYoh+C6T7nQ/yhmSIugImUs6OLZpF2w/mT4fQpc1qyz6NhcHcRBq5ai3Vg/ogpW+6DwnK+hWq0USsvim3lQwa47wIJYF26rnWCMXZ3gnRtDtopgOgL50VjXQyTCuHE8PIpzaifao+lytPcYxbj67FbP1z34IY+JmOCGLeAxrNI/u9EIR6WKMqH0nCIaWpkfiotpmE8/vSqNN/Ou2vsYgAL0ntd6Yc5Sg+9T1teEphjQ4yrtBnRfohbWt8DOFrbUTnQrgWlUpaMNpIQ3nGtJLikw35JkYW8pt0OKC6MMnTapjIdaD/Oe2F7laVCxrZS/SudCZp9Ovb6X3VimDXaSNP946RlkimY8BM97fmZXVotGuPXF5IQc5GX1fwECOMIRHHSj734yZDi4atpeFCpeSSGbBA4w8ta7f50Ankirjs+Xa4bEtlK34Q9r47XlRdzPkXI/8uB43/STK68XxVqIFyRVOBMS3R0gYNW8EhpmAh67bO/8n06gKed7+aCG+SgkKLnGgz8HmsXdYuOGNFx4/dMqhOoRA6ki6dxiTdx4ZJ1t4v7CkgStWZzpcuC7JM0OnyHQavNM4dXna71AwdzvF9VBkcIZ6xZGJWBu/pwJPtLFZnQl4gcXSIK5zNsqEdqFvYCdgp1gmuImqqXDSNaDLvc5FnGFwBmiQQprUQAmRZAcrCuhFMqAylEPJBhUhwktD2K71kDKVQvEKEgdAJAoLQuD9OlJF8jpby7ufRvI60V1ftn7omLFuFPa1PSDdOANA5RnXSHpTw+LZTyBBBAMhRFEk0DdnSKrhDje3E3g8CqNJqm4HZQ/s01OiHH4XVjUHEjf+tL/x53y30io/1H4VaKnjJf6F0fSWX5jwMQFxMQcUE4ufQbvJoGRVCIjgo5pF8/POjtO6boua8AEivKhd+wB37MkvEg6HXFNtwn9h1OLKcbVeD7C724V+/DRHqGrA4jDwUBtrDlG8u4Fg3zLD9FnRaDvhbAgVek21hNF067XwQ25JY4vZc43TtJQDpIC/rfxT0YWyfHGUeYSW/WbxkWO6k6rjXJiHF7YkUg0HL9A7Qu4+oX4A/GQKr5aO4etTYEhPU/BGglbKiOyc8P7csTcEKQs6oTHQm2elqwlD0WsZn9AQvbst+cPwXhFFpGk0K7URAPjnTGSl/WtMtdbv7plY/D+gN2A1UhJTJMNDSkaBcgTIawRJ9pu/Ff4wJ2uR3peFYHfQv7J5DenlGzEg12fsseBh/c3+NDFnAejUY+43zZRX8wELZApJgoVzLJWWcgYq1/OS4euzJ9q0QdDTMAgawcEwxU4KpjEroh0Z8go67Vo6AkTkVcTJ6ZAiLgcck/IY5MWPe4Zi4mmvOv/el8ZCyHr5jAHfHwv5JuQ/6g9mQXqlxUgI10SxlbjUXMXivw08ZFMJ3858/p4p+bjxU/8HuCgmFRvG2XPCCSQXULkyjN5iFf+oHCXSWIK3FShQDPduy6HtKFxQZHbHLPxI/dP0RlVNsNmHS1qVxxPQKcRVdoaIle9yhgdwgopCF7gSfs5xJpuVPHThchTYG2EfShz8uVFaf6O1BdDxreFwg8t/bk4vihNafg5lPggWab1x0/G9/4KLkI4wDcDeeSfmuKJHriSOpUNFkh7Ef12FZz82rf50Suowr1NI4czSC1e7oVXrp+rz8Taa5fWOq4Acih7d5Os0sayk2tRNstzlvHcgMUWV6G2H4F0wbKqseNjlhU4p4qxHsSF3ZTpyyATJojPHB9b/ULGLRU7OvVxv01ZUej8uLc3tf9oJW99kE+jGuBfBXLg2LwX1E+ml3DAjanDRM527BMnzOrvl2kBzHMhmLdwXHceszqqJ5pnun9uk591FDp0rJPp2flwsc1CJazaZShOX8Th/FYQXUkJE/DsOshL5mMSI0KsR6de8ABw4IUT1jnOxbv/msKeRhVnYlbsiq6+KC9XQABH1tzcWygSmRzeAcAOK8kNtI45vOP45H6lkrLFp/dbPUD37rGfHYI5dtJt5CkiTy0CcmUyO4ynOu07ZqXgiwahdghSL7cWTKvKhuyUOBGVMrQe3CXKEMyExr5tfr7G+ae9BYiWhIYo7x312qrauRQ2/fjlq6jAnnSLlyiBDCAkDpOR7ptDXJjXQzSa3aZ3464eOI7zCnOTXk6vVg10sIuWzhgE9gL3dWvUBi2CT+EsFi5aRFAPa2yWwLZxv7/L7tEZo+J5Nipq3ub1Aif5BcT1NfhJNP+TsUIJBS4Ta3vgt3jPOY5fr9gTotwk33SihBiC2t+LfDFg8duk0mOJtYguv1BOIwr52GeSt7RTs7nBtbqtWi40D4lIJ3AEnKQg+hLoSRilpswW/xTJ3+koc1XfGSQT/8npfCqd4Ai0EtfKF3CWyyXZAhPWCliKmpE1B31ti0C2b4anVjCL1h95atjytTlPN55TexxJv7aQhNAqfrUvhzs8AXnJ4C7Ima7ruquKe092rVq6wkGDK5+uyHsoC0gA86t6SKCdlnJ23q6blWHJpne2nvElmuE8LDCK6Tp9WWL34mjow5tqml0uiVR78nIRtOn4jX+w70KugJBIMUTSBADPBJ08drfRYyxDD3f+D8DPSbJ8dZG4m6yn6dFUosxoo2QQVZkX0Amg/2tdCbC9nyTB2rjtsJJGtiJynCFJoAmipWuzIaEq9zuxntKcjNxND7/Ard+zkMz4V4K9xcFgTWqCJxsOA1Mr504G43mg2r5KDbVtmpaZtOc3hdRoVy2DZ1pwB+iqDHqRLyw7HNjso2u5tXTBijRbEBDSTLhHPCFay/2Z4kegrtZ9kQ9ATuKWKerRBAgtjJ+83dKbD+15uPUh+jtvyD6G5NMrdlX9yYtbG+AIoPyhdpOPUUafUP0nTfWlU9ZOU40aE4WCVoNRp4oFGGMiwe5ZTcWrTPX5sHqY3Vm1etM68OeZHWwHNLno17sWqHublXRgC4A248FEkiFfAVvMFYy4EDNaMLPQxMFDexV4sTwFhDQlGMMEtqeVYf0sIqLdzvbwoAV802tukjMATsxdc6E2gk8AY1M/783BasQXLZ7GflbYrhMuNd4TGEbHZaaBQaXqRaIqDbQJJioGDkjcJ1yADv9lAopfBumGvEzQjOsaKi1iJPGrjNbl4xk3lNuFuqfsInk7m7jWyDX6+W29BOEJa6d7eXLOGcEbHYpHulmd3G4JOE39lHPkicgUz/fOo5QIz3dEgkp+aj8k2BzP+LDSvP6CxShwQfcfEq1OOc6JtWcvz6D8zDHf3/1/kDKnV57s6bhGEnxXiTYhcWR1KhBkn8K19+zFKeG0L83mGgaFoFuSKh2SW1LJOKPvgunBxr1GeogTTHNP4zw4Z/TwWNQ8rRcF8e7l50pxQlEEMfDRWB7MypVIl8N9frS/IYjs1iAfjDGaHuMUc+vK2kUQvYlFhLHcOkbTFooBYmo0G1IR1gilpnJJZuKYslu3O3QP/wo5d7qHz6ZWi6TEvu9C+XWEa4Lzi/cO/SQinooMk41qnmbGMF9xyVT9J8HM1srvHq+WRAS8Z2csfn8bb0etpaV+3TBBEz9/AP2gXlCKxu7MzjqO6WJ3qH0lTdPC3auseNur3OGjgHEj4ygyRmR3mmNUbW0bqQlzS0yGz67BnN3dZ9PGTml5gfGtI8xCFuuYkxCfbka2rtDVL/oh8m6XQqE10mBrSY5oej7/Ng34vZIj/1JmKENDX7GzzoJZDX1FFD1KcjbX87lTJ/gNtf1V7fQJRb0LFvE17R9pmgnoCW3DK/e0lGlIGTVEkhGzaJJRZ0fdpTLb0RlhoXCj2X7zkEIPQh6DKQD6dLeU+XdnmBCOdqyJVqkiQ+e/hR7rVOsQsc5Ay4x9cg4eBvbSvGVjB80Zc3eFOFNeqwTEHjW9xw4DDniipesA3ywSmM8K3lTSYjvDYIvnWr+YOw9a8q4kXGc95qEXgKSjYGXae57vrm46P1Fhv8fOIQFv+YwwBpo+j2UvnCsBig6qT58b1OXzm+1Ov1SO+ikgbxNi8SL/c5je/lXyn8suiiF9ME7+mCE/CPg8QIhmvBNJiEcCMJ5Crh/pvJFnOidtG+K8asx/OFcjtSxgLLzF1c2KNQmfpoB7/Y3k4jDWBMuMstjbl934j5042hMlDLn0LIbnhBjAUIDW26O5kSCbTJfx6QAW5lrRrWUsEOsi9KT5wH6ltM0/lvYPVIRw6b3xk+d+SJCie+hU5T5n7nRkMuO9dDfInYLeMP9RswlZ2BsqWARfs3A+m1YEkhjHqYCXEUMlghM1rbVQCXcti/kAVVIYaOVjDr/6OeZwCon10LLJmTGLPAMbLJz9S6n3eD7vQ3J4m4b4tXnQ7Qfnbtz5cZjuajpefZDBQ+kugksCykV22ffQuW6W2eNQJ7ZGgLLfMe0z+/YkMggq1M1ZfzNfHo9SN7iEFIhqE0qtCaR+7T1OTebDnRnOJB+5Oc2zWjc4FMH0UnvAQHJMkVBzKqKkack2SBt25PedVlalJNPT2yZzglSEKRaVR/uS+ex8BZ0uotL59qV9J4AuoNkr8qLxGzzHN6Fg4KZ82pzwYaZx5HRh9DbFwB9P2bLYu6Yu4PDBx+SQt9Y3HgwERPMjtxK700v5c8OAAkpbkHrrdrp5Woyv3XCaouDIaEK4eK397j7GCs+zDV7vtuYpBRtaUrH5xyAWNcMmyxMHGCJsTdpQqCRXltJ3s9NxU066atOd6EJ02bM5HylaDajH+eCHkL5zkb6fqUDZtzEdFtGYWYvQzx4eazFt0npC5JXvYbYygyOCz6S6UbZVS/fsdg97O2A22b4EpqqeenJHEe8j9xUacMG/QVeqgD90/7RWiLLkaImTHpm5fzF5KcQPXxFc6NzZO7Pofzzb0sk4Wqr2G8EzhJSdKG2bM6Aaz8ajd9EQF7wSKyxRa4F6Wx0vGh3qr5d0CRBEj5D7mopnJ86WzqGKP9PjGxkolh3sntx+pTqJvz9z6kxqs55SYXdRsclMNRGCYoo4b/FqjvFNb+ajuOayuXp4V8y9sLZ+RFXoUgHz1kz6WtpCT7WYdNyfdZEAy/eONjAp3/8DbtO7mwhqNotDdQ8F7IZ4pzZYjnjNAxnCsTLiNEV0iuz6zQcOwA3xYLrBYNB0kl+tl5/tsf0tRQkJmQ4G24Ju5Lz6pkvuQvxEtGiuJ1pU0YVS8H+yYhtKWO4UqLuorSKztHd/Zz6ulVNIGUR6NvNF4fg1mhPFGt5LiC8gwHH+cPqXYafWhcuQCAkM5Pm56iJs2GF8+xkSWtFcZktpHFQwksl1+nKUaIBWCWosJCkrOwQnxGEIAEhg0N60hlldAJrJkZizGB2md0BJvrE9Q1upIOdESdna7jmv6hfQ3z9DFfiHIXRmZlj5SiwcjI1ZA0VxhRdAmgppESZPBz6M1mpF6Mf2dwHtYDUZ0HG0lDGZnMPaosBJUSosPa7yOHqzk88Exjo640SdeC+wy0M6z/tF90PObX6kdCZ2UZPskwbJGAu7W4V/c+IN02cn3HjK4GcGmj2cujRX+EP0SAIjVZdUHHZ1n6C4KHVPYycinHBRuRbXMhgQHRUvm/L2DV8kN0UnZKY1I5b/zOGbsZ84R8a0xi4v6JJKzCqy9dmwERVKD+DPSpzguvv5zitqqXb1lCMyvzc6NF+OIvZVAgV4OPzLzciRdMJrgNQch8xEsKmpbOhMcK48lgLqAPtbNFAabbZooFXX1xR+H+uhBNrCFioAVq202VGDyLodUwYa8a/l/sTCfmbkWOElZV1MQQu4+NNIWL5ASiOtKutwMkRdMjobJQiTGpf1buSB/zkwy24eVSGOJ1IyiMtcLhxDkGs1lFJtpGJHnnsnyMU4Ill13Z28FTCsjksODVhQ0dDjRHPaA5ASmyDrnLJA5BsMv9ASyoVNhcndieifkSEgD+mXC4Zj2YGbTmDzzJbqKXrl0CfeX+A/hQsjLHFaU7Q+qWc3EMivHdxIyF77drcjsvcRI3A65wk8yuSgDN4RkViP0U5LtRy8bQvFbkqjRV88PIpCf/dGm9p9Q2RkP0TppVlrZRrsj+d42uiC7Sbv1WHd1XWOQTVyku63TjUk1snRGvODmYTy5BNwYrbo3SZp5m7C/7RSH0P+4xvkXKtrm3WOGqpo53evZPOnluZL2yyUKB2mQyqjXMMp4vHCcgzxfj3Gb3zgFSBWYD35sqIrlwu7OzV61vslJsGdGnMNOOzYZfzzVBu+UFlSJ8AleSgE+I0h75iFAes4ge572De4E3VLDvPtM/2m/zI8pIriWRngAPFIKyYSO8KM2F/PeT2vMsSOYpvqbr/p6cJJkkOhaDMj+5abQ7l3O10xxFFqgjaQqMnxCo3cBa3jWi6nmTGczEpsklafpIqLl7+ifxekI56RGiR57yagsXK8g3Dvg5mvbzhJNMczVC/KvoWxgLC3Dz6v/QBEDISQR5iepSUNSdu/JDs2E1Hu83nBynmDy/xqIHnwuMOAbjc4PIWFJHJPAMlKaHsPSTLKHg9P8YGsiw24j0hL1bnppYfD+8pL+W4rh7xEw0Xlb82EhZaHRlDonZye8JjFWz3H6d5XG8yIKTpRAl4/AP5lW7gebJGWIJX6fcmTXpVZKuEWMNFFyowYJ4WAERexsGHAqYJZncPSi3D0bJDx4yaVtXZANl8/cUtV6d5G2nH3ggxQq16sDnepTxqq3YJ/MoKaFULBRTtOQhK2nbrOt79TBzeFm7OuBhYPOIkHo8DtCLPV59OUvm9XLtxtIiQqg2H6+Wb2YsKt3ecfq7CVT+hyXdS262MELZ7guYm5RvFMxMZWfVYiQ0i9IFI9BofTOm2Ln3OegBqBvIMWc1vhTsfmlfAxVcx2Bxp1YvDxJoih7zVdh1XKhS4Nfndk344xLcvfCmiye9IYYtLorFcSsyNIeUen0Vb+OSXzOy+cj7PwNeIoGFxT5hNilzCNd2Q5FXulDX301/c4/xTeNzlAuQy2FbK6S4E9e1443ToQPICL6GAwbYRTfjDHKtdizhi2UBPoWtqsiDzCNh4u8HPvtu1kGQSOlS+d8uxcHyAh9fuLpFYCfLRrFwApG/YAwokl5gxP3/OjXwYvS0h7dsIFaPzdvqSW+82eJZklz3XlxuP2nz6DQp+cvGOZUp2oEx4OjjDI1+UBoq0zf4/0g4/MsrrLjU+QiLfQjrNs/69S4Mo3BtvCvRz/064Xetp4Zwi2eOGAOqQHXaPlow9aeQeMYmEgg6W2SxKIuyKS7nan8w1LVM+esryAdJ4C0XWnonfRIg1+Vpzn+xN5mTaLKtymWX8Le1Nc6CfIkjQYCy9OemwXP3Xfx9GG+sLzVrdEGRvTrAr+cStU3PFV4pGBi1qBzodjxrp3yj1cpRu90QEn24qoeBlPafeESGSgG3w+2r6EwdGXvHmCPf4XwNWK7p/8sqRgT3j0HbiM8npAhvAWpSx5iYcXBbs24zG6St6Fxiz+jioVL5h0g/KqeU8Sjf09lVtaxLZtquQJlFW+IuKwwBBqEmMW7amlsaPqUAiyxgbQHxvbQRKkANauMtEOPr9OXnMiP9Wbe/MpEpyGAJD7wtJ3tvYamj9owFaGzWKJfcLgfg+ayh607AYktn5wf70YqkWA2P8Ay3w5J4IeALL1r95gikCLTqFntegX+x8iWoN+9bbFS8L3BXQFWY5z9uBZCQu2ZiNROseAUeKLce0Nr4MiC6DWSVMkzz8JDXOJdZEKpofdKmXu0aP9qMC2PDE9Y/6ArtxV+NTFhsEAaoGEQibNsNhURl02Ks6WKgwLf4EtgecD1Ctiby/ixZPX5VyQRrCgN7bi0fBZAdJ8bgbZYNhFK/nN82cwKmTXvcD1LTP278IiUW1QjGAtZQtiur1YRR+buSIlQy1ZM28iSMdewZORFcM871GBQ93IzuvcutTIMQrgdyJooVxRauIZ9XOflUTtfXMbwsww4UGKCFT02MuPdhBXiAIM6YATBYNtqgumdRKitFxQotmL0oKXoYa+D2CwNDggLpfTFEgpCwrlf+NFWJ8gFtWMzpCZCjhRwGsPsd85aKcyYT3rw6oZ2pPOfIh0iSRUAficiwHxusorlZWcfxfOzinZ7uX/uW3aOEWKnIYJkMcTmyAe8ZESzrCs/bbPEu2OL5cZlO7ZZGQIXBmIJr1XeyR3WnfQCUAnrYBL8mfT5
Variant 2
DifficultyLevel
758
Question
The rectangular prism, shown below, is cut into 12 identical cubes.
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
Worked Solution
S.A. of rectangular prism
= 2 × (2s × 2s) + 4 × (3s × 2s)
= 8s2 + 24s2
= 32s2
= 6×(s × s)
= 6s2
∴ Ratio of prism to cube
= 32s2 : 6s2
= 16 : 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, shown below, is cut into 12 identical cubes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX9-TLF-CA35-SA-v3_2.svg 300 indent2 vpad
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
|
workedSolution | sm_nogap S.A. of rectangular prism
>> = 2 × (2$\large s$ × 2$\large s$) + 4 × (3$\large s$ × 2$\large s$)
>> = 8$\large s$$^2$ + 24$\large s$$^2$
>> = 32$\large s$$^2$
sm_nogap S.A. of cube
>> = $6 × (\large s$ × $\large s)$
>> = 6$\large s$$^2$
sm_nogap $\therefore$ Ratio of prism to cube
>> = 32$\large s$$^2$ : 6$\large s$$^2$
>> = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18XSfLkD9PosM7ec38c7GtDP12IozfZ4gS19EvfSprwWPmUUu9DZjDdCJUi3Qo28dGCTWsPoRf4qD6KH1ZpSOp5tzImCYwCjnto5XHrCORm82ZbUiQGdPXOxgTi35xqaSnlKL7NjHeSiyrlIBTNBDkqkmBxSpV3BwsExxTWePxHpSQjUuRUoElLESdlW2E+cbXpM0Yf+y8m0fjY2H3h/+3oYDC6hKsfEB8Zos7JNSCo2xpZOdiZp9iIP7X2Pc5tyF17EV2OwYUaiDgmL1xUmTFGKOsByyZVq2cb2Hmkcrux2c7nE9j2M3T/e+9xePX7VhDjJmPGgV8uLW8wnJqralSRQ/Usxv8NXA3KTJDW+XTjDKQdJUWeT2vqED7PJmxHEjyZgQboimkt7jNPA/G89KDiHU7higv+/WxryailN/wvfcPeXTl4fevaoH93rmZGknS/A+2SidA9NRV+/wDCv8yPoeA6j3mqLFYOCifV5Exkih8ImamM2WlECjZFcCmYW74+sg7A5zG9ZLYFRONNarcCsGNC1gv05OdbYWaFu1TbFpyCBoU/5YurgvInHtlrFKb8N31Doskgnrm57x06IMfFA2brrE0n7oW6iIBEKtwwc5nxaF0hP9WBUZ04b0irX3CNpN0Dwaov5fVXMNFM/DgkoeZQcc25NwH6vlwm0W1wOi2rc0/NqLw81KCtsjNRP0fsKoln7RBeawQi4ERXhHckm2Y2/aDnqkqGgKiaADPXXcrxKfWueqT0m57vVqV1JSDzKfxcf8z5hK+HwTMrshJWRfkUukpxMxjZiG2VRiuoh7dGRUHeaoTJoZj6HQnL9k27psbcA4+aSQbhMg2PgLpzzGbohGTkdv/Pu08wmBcPbmKHaSrDQ8ED5J1pH4yjd5nN8bK115nHSt8s8AdfQ/7qW3v/BQwIL9E0RyYlbt0+zn7pKayQwDyjIaiBUPn5l61dyeXzodIR0h8hxj7gtUAAHN9QjwHViQ21Z28VOhaNR87svRCWf6fWQDcRNu7wOty7ta7CkaSe68zHceY2Mujv0iCysBHPmQCjvcQSAt4LalYY4ArgOHlZ+ZyG/PjdnSe4a1X70sK+G3ZM9MumCikFYtp70Z0F5gdS0Y66EBc2+M2R56kRG88IwfS0IjPe41L43LJaLY+6ZCkkCiwSDHHRxx+V/DA18PviGm5LxcO2sFSeenAc3MXq9PxnSAJ6ksJr9+dVv94JgiF/7tynkGCDXfyCdVlS3P5/mFovQjGZ+ir2mIfpaUNu+fy9OGfv1GfIKaU19RuSf5BtlZuDEZhcf5HkWn4bfpnxLPJ5L3n/LGEtVhkaWai6zBV0Jf4HQ1tqkSxEaVRLrDHd/0o5Pkgh2youWN1skU29uwuABi0+JdrJtxkwn/SsWJJd0sFEBcbJC3asCMCgTyTDYUg+3fr1VZsOyzpHnInByMRVMYH/y2LDEgjwXkC2yCgwEOUg8NKXh0I7AbAEAsf1C+ZMoJ6IBzhGUEhtzdwz7IWH823RJm8PXFfDoZdiQC5Jt2cweBJfEFSh4Pb+/ueq6EDqt8Dh21UBfmmMQb3oIyG2KFopmWy80kbX7q9KfiP8qItocmzx0Ixr7j4iOdNzTX9P0bnX+B9UjqpOc5yxNUYNRFZxkHKDcoBRC3zA9tzuVtKmHp9MZtA0MTbiQhxUM3vtld3ZFRQoUHRuK74t/HTOCQ2dA5FWEc2oNI9U5rpd5oe8EICZ7C3ayGTRemV66n4oCQL3a04TEMPsFIAZxctwvBeO34ANVUNeRsyB9pgCrkz/bJTEMfvIPENp3N/K/s3QK+FuiFDu2lyFBfoylSlQfdrMgmiykbHtV7dA3mejaKcJ3NcI8qew7aLTaesjJnt/Og+bFnSDA/KD58h8z6RYy3xguQuEmPIW4yakSfEMfcV6m1aYovXb7FHHOPydNxSTrSLXYiyyLedadlS1VSzzna5aT8vTwom+wGUNXnBCvTdRFlqGvMoVGMpybTCS5kAzAUAYgp/+RNaf1XbB+SwFPeRjyaK4i/FXlSCLA6d3A7AjtZCfmYxTsQs92X7ckMyh7IJX7u9WmribNflPR/dZOIWB7j6XuFbchqGLbzRbSPR0f9lKtdJ2oKBgjFiwKwUkGkman89ftDsKs4E5JSDNqGEMuXdsUItDzAeFRjnZaJSiDuQ+WAfOsfKgxy2zYX4SevyoQj4lkXV35xQ5X02r34W7xhm0l1ZkFO8ism8jGBWfwbAE4czdEKACZ14wc9XZtI44tY1Ir7qSN0yM0m+c3mnov4pGJTZ//J2kj1x37u9apteu4e5fBb0v5AlrjQGKGWmvVQC0a6DYL/Pds/gq8WMKF3ABC9/6EmaYCVo05rDrISO4Q+/Xkigs+c8eTrBrfoeNYoVqVIuwnBruqmhENOmvCoqyuNBngP4lo1QMM/mmQjGDRge/T7ZzILbONoNvr5T5DUAeLulldPpM19X92b5ThkWHhnSA0bk1SSNnSPzpvx+uqKLSQENhOseFx6EN8H33b9N2GfUx5lThMzm+t8C83e38ZIE2Zy5KB28WXrriH2QJ2HWDvJsXwFJIGUuY2Iv6r+OM+KdccbCYTX+tMk97LesvgdD4sWAV4T+FeOKGIAmCBJqFBOnmeRReWzLzLkEbWeja73io4rTiTcR2AJ1oM6/OXXBRmM6AkAM8B9aI1bX73RpA0vHvtqxnIFt74PbvyowJRGIPnG5YCRpDwAzGrnERVePJYO4ZeSKbI2pRXxf0bb5owA+POuh1A01BOM+Dm4ViyBfxXQ/fi4eLFDGgw/PnVKBz45rRdBGjTYlznSK7rKYfU0cmgWPp/gZIMdpUBJrqWXENWcyc04SKQVhP4yRYSeI1thwAX4CzBjo9vLZ80wMOfNH2zENE7yMTvs4BdLEnGrOxIng26g1Be/4lgt2oRlqV5QPg22SQTiDvPOodPI1U1UykDbNy522ZxHaSTA8pSIEsdDemzSwY4rIfbG/I6Rh4PnBF8gP3/T9LC54ZCMeESv0C9bb2XAt3GaHF4KpyZxU4y3Wn9D7FNPTn9iNobYG+0TwKw0nUeBsukX7Jt0El+p5tOHb937GJFbp2ssrdIY2hVB1Cbeu2RQ2N+S3845Ud1WOgwss/zKDw9sO8bfpJuBpL6ghhzMtXRVVktxQ2tCDNGoU9q4nQ9nLJYHxFoiLpHTG7HXsoZTlEBBSWGYDm9a6VxWAq52yeH1N1a6hGhc90JVJneMKQhCdH05B6VE11EbfVBhiNuS8fv6Gz0GyWr64bS01mRH/pEIHTzKVXO4CGsoGUsNlQk/V17oeNHznFfb6h9MP0OuSZ2gWHWRDtaCbF3aC7fjwu+oMawx9PAhi224fNVkidMcPNE52JTAaYUpLB2E394Ef0MrJspOYFpRj5I32Hc0BXYI2gZrqyNHrTC450NPzyZra9lyg4eqPO7E3ljIfh6TNf1ewr8l3sva2KHMS09+Fxw/zvLu0PAbJ1yToHr+p8gHEgRucn8aNrbzaaZ6GABHPhOmY/SKieZHyTyT6ffUAZhU4hHyYNfgBwlW1Ejsb2AYKfKeJCM/9McNYjM5dFYsc4Y6e8h/fm1lNBhexFvnMgrXjJK04nwU4CdlPv3/GPXPo/P2uVSdc7SIzLqubU2bVn/M9WleRQQQgN8S/ruZNcBL2Ik7STMeGqFKSoDeY365Aiq81dYf9ILd1LvQ7Ltj7yJfWO7T1docc1zvLamBFbIvqlNt7BajQIWVsSiZ88RWXRlKINxzt4d6hQPBLGLdzft07EfSOe5Cdx+219hOKgMl/CfnNU/Gz1g/oacRKpC175apoyA297YgGHtY0YVWQCudkQBx9GAIxYv+WSJywStW2r+yak4Ofge4JNUL+LZ0pv3KWo2+3WjD/KU27GS3L8yI3S+lMMkPM5lMiaw42oGgH63N9/x6FWqocz6vm2SggHHBwkr91NPdWyPYNsWuZKxnZAy06No1GCl5IvPLyILO8pOMISndPR9PCQE8+lbjU7N6vKhFV/VWND0pxn95b342SYy//aum5SHn7BfO2Y5Wg1o2bA3KXDSPH07ho3jCaN1o5+7muUfD8N73H7crbZr6zf5NBePB7XYalrle7KsvV8D61IZ34W+kcZksBphg7yYwZrUbNa2buHMcdU2zJeVRUQlEWX2ePJv/6ThT7+/HBNR2Jy3u5IJ/T84lTBsZcaXITxDPbEJVHbSePLo7OUf3tDNZacY7L2EoaG37iQeI/Z0ge2IrJ3sCffoeBIRUo7hSrgkP0RVST26oqsAC4XaAPYwgw0rLxZuhosojB4stgcQr4TGzGPm3BQuWRykOegF7VH1IiCmY1kuyC4DeZiocpXvfhelclethzLxB2GaPGH3ZZhaU07FbPGPMQ4Spdo7/F7fRf3pyGlXM4K5YAt8inxm3ekEBFUq+B8obXuzPCVKYdk96UlOZ58fUb/4ejUZF0FPHeDTjYz30GTjxvIKuTy1aqCTQxK1T1wVoWrgWqXIlmWCnJUufLLVlF8owetDEost+xeaDrpF1tm1YFMmfXZg/afM9E7nbcawTzUC1PL9x/f+IZczPjEKmuSyHjlwjncVgrGEmAGC9uTupWK8rEJf/3jJdDkQbCkWYfvLUKMHd1KRJmTl0Hz8IRHbXAXgb7tOeEXEzqRcT6OkKqfl2PYQ13WYDXAGO3KM/NXNh6rItDqYb61wHZ9t2wZasSRIx+8Y5VHIY1H7mLlp2Q5yt71T38W++d6hHc+WBQEr9hcBVtNaRJ4coPl1Hnc/8M1SFPRhBR35RRVyEnKo4b9UHtDVhmixGpcLgw8tU2KzXOBLIS6vl92gTJjPmSgpT0FuWTmByYzIMPNYDbp3a6Kz0aEdY38DPSAIwJ+9XZ5ja5jVIZqmwfZVUB1wErhMIStHDVsww6GV8ouUffqZ7opDBXwHLiZPo47b6hh0ECPQJgnCs6QAW8/AQqPV3u85YrH6bTMWufQwpxAO4fMW7HssPuJYXe+GguK9E339heFh5JK4ON0zcb1x6clquF6ItH07uGneyv4RkNsiFQFAvFVRIvNFb7j+dMXWx8VWnoxaBRX9UUOZgKuXW7eoAFtTW/9z8vb4UCq1zT32Z5mvUDJRXPwCTfjyMPL8dnidT7GE/xMtNeou7h3xZvx6VvGoa1VCJITt6n5Z4t9J5yDfzTL37wV/ePeDE9tX72rXIdzq8N2yTe3pD6Fw6uJtT7zBuj9MT3jdEJz8XSzH9ma9FXu/XyjA56aGyRazkF9Bj/TeXgXK+7AbF/bB+ihmHuH368t6Sb/azVJ096xMaynH5/y9YEAwQN4wZY/HdRk4q+SZRpFbLv7D4o0f6kZO2pfIx3azBb3leS18kcfaZotTzldPCtq2eb0IuuOAiaUL6N0eDw8xbOQmo84UMQYWFfsZyDOaGG+ioiT8G/GlS9IoWGz2UuyLmsotGbHvcJNnzMWyEKCox6hrv7PMlL3qMyI1QhioH1tI2lRXAdCXJSysOaEIaVgYoeuSzSUyCmzBeChHSAA4ds/KZbYmW1mm7aCkyLoAS+8/itRhgdlbL2fhKPbaRLstsGah4zk23JoFXKPLf5UhAxOM9PDbrXMLnl4bzVPVcb3z7FGPjV0E4LUlXjaOHYu3xowx6KKcui90rxNH7tMncKX+pSV2dCfyfPnuzl796wud+D+uSRSLvmT8mnQcb0UU792lCXw0zQiRooCTQCUJURiGmWf4LHSofSR4BnRevICaIERbhOZP8DpJxULuk5e6QknEjx8Nyu4YYORQ2Ivg6P9CXHlv5I1VtIg97YuN/B5p2v4HOqvVxINaEIefC6QiE43DptTIc/jZdqsbRy75uPxG6VHsHnVetrIybfjKO5foCZZZGD7Mi97a0WTKpNhmNJSGmi7aRF5Vp0PAAbRS825Tso2e+nUghlYNmOWG/Wux34CZ+2G9EIeYzrNfHoj7qD3Cw3kyUpq8EQZE3OD6xQoNdBdmunWLzgKkhgUJxvaob0p/MH+6SoUjLn6NmQbCYWb9sGguqZ1FNrCTOTxAGvtDZ2gafm8cpKak3/sR1Ai/ycPU28zK/3wwlXYycqZL5+AUqAkAIUtnHWK4osVR7IfkrecDnLF99n1wGGUbIsBRBgwmCJzGGXabnP6qUA18gq2t3UXyz0SUIwZmySRFcR5jOMclqDoJm/0RJchEJQn/mZz4e1laTLV/hlnss09YMBy0VkBJco1b9Diw2FzCOz8+faSWNMxC2nGs5Xz+IRPGs6a8hdjVrsiCMpFr9dkbER6v8nh1QKG8wjoeRj30aP4YtnUXL8ceTdeeZ82ZE5kRLMgZqyNKqmnFJSteWw/fBTNk4d5P6Z21PEdQvKA/plBWMMBcaedZ+sItU0KhsjAHRMqRjuTrKp3UrhOlmNrCmeLcJnYNb3qv0b6RtqThcNP/DjMzKDEJ8TlUtg5VgUu1tK14O8dIGuLRzCEeUiu5XYm7rIXxTCe63melhAY+g31pc1A6wlWsjdUbt3C4/xYDGAWilWa6I86odZlSPL2AVbUF0NcNPZumv5O8wBDUncCunxEQKNsWexk38QsSklsrSI/TyH06KtDi+2pSVZxx4ir0ttyfajM8zV9J7d/q3lkM+mBHX6hdSImgOFHpRZQcLXYgZusUecnQdaID1UEnvJ5W4xmrkuaUFPSIaPuXdAQcjYKTGw0AEuH6zeprdxpnhfj1MHQWLq8zkJ+ylFN9uLX0iyHmC2OayjK7VF+2UwILXdMaDcYWTCNJVXMvAirY/R8ZrZBk6Go3g1JB3czb7EIiQ+PUjIYJ4QsendhhzVanm5tedYFVatjJWNJWmC9Wb4ukeWq+DNgJIcaSVEval1oXOn7F3lSCVu0CPQvc1ciKvItzaPtjsbTq/Fd6n4j9KgAGn1LZfFXwZSlLDoTMtuQ5167aWrZd7cL3rbAtF1ufCbeGAYmwqY1nlXpZcMQv7XzzWyAzWVgrzwO1DjqLFTSPAeHgkuoNGoA9LIYzp8ZVqhkN40edqQEBhzZNN9MctqaVopVSBMNl5bM4con8MhLvT1nDGpm42tH+8Lmy07d3/uHo3drC7sWaU1CqoUP53hdNrsqJfbinvHgul3O3PsD4Y0MESmr9e4V/aKXRpDaU8kjJMthtiBasVT1XrqV22LjCTYzxCy0ToMJBY4s4GaUrMz+uzCSCS7Ik1yHpKAAXiGOwNCE3Mbh9yhsnmDU8aKcckG/+/Bo8leeo1jZMryCJ1UhPw24t0XOM6oCXARCJ7qafPdwjjTSuf7FsFT9B/hi6iG4hzwFaLMfR+MGNhIUhpAvQ0ochDOSiL/FJNgb4Uxin2SQzvDNrArqpPuSvTQytqNH4gu7sVucn2Sauq6IVvnpwLHX8G7U6M4yR7qlQQMyY03Wn+HMIiZih0sfFXIdxKCtZVXWAek8frQMkNFT8ceUMrJBqZlXNJdxEcikGQ/a/NEPhwbJ3Q5ifI+Mteac526W7dcHAenaKW1IhPA6yAzFRUGPcEYYc52O+a0jmcM/PlV3nyTvHw6luq3Pojynhv5GlZVTZJ2LywZTQhSP3USwCC8SNfhgjIjrKe+LRRw9A3piduI7CC/r/9NhxSYVyhCput7TLQ/8Zn1GmB3LPV8aAS6Q4PMiEBSg7O2PZAjEmPLAqP9soyHL/a5ZWyE35ap7r6Fz6vsveF/Cg6ut/AxLHKJXZq4Pk+JKEzM8ocJzdnBZ5yUAumvL9zbvi0P8i/MQcUOh2Q58M3gzez/s50uzPi595s5Wf5yC7crMNfqK+E1qMpIPotw7ibnnuo4XJw0Gh9RONiQw682oNXW/3l5aEOpgZsN9Mjlay3xQF/vut1zEVPjH5SFuV9sSQ5Q8Ihjo9hdi51tmE4bYO6CPIgLOn1sRWw2d9r0igzbOWNSq+O5pIMrh3+PtFJkwxD5kTf9Ra08lXFMbRkUn7SqEX+mBCkW8GcwQ15UGNFYGOtJucZl+wfb+hNdKCvRbSdrY7gJt3OvpX4t2G47Br9Fv9aJuEW+5t5eTR2DuqXmG6aM/JxvUCW+kZL40bEmIsnHGrcCRh+Qs+Rj5xQQoC6Z9wvW5moULVXYhyEQOaZmklLb6UvDVxfnNokPHAR6JelAvnFtIa1zSf5wAmq9u1Ix3N3Ld+SO4mdKRIRdcZ91tjkqI8G/SaxTRfu/TBNGryzzrPaT8nh+kWX2Wb6R80lhs7/cGfopmB1fJfLzkkQ4Rganvq1zUwLSYHkRV8PC/qi0dY29jr3og1lwHWyv3LtMEzWYZnbKmCqAU3K1zWPRXpT7WMCrCL+u2KWLFRuMolK8C2TQpqHcUCzqnuyf4kHsI8QSzdlvTIurnupjMDyOdkiroaAibSNCf36pto3K7N5hfbx8U08zdPHZlfo2uV9W0yKn4GynK1olUvq37256M6Z5ri6Sl+4wyEZrwyCBBUQ/sNc2ZEEkpYJGsQTF4WC2IwF8XYACKJ7emlKyqQBORIiQ68l8TI2qaW7urtNTIMLNNCZz917J8q6677hklra1FUr+CnNG0XXZKJs68/fROCrFLp0kF62eT8qyGrIU8p/y6GtJ7D+BkMfcSTZIPsticstnEqpn7vSStMl/9L9Qyp8mHkK94+3cod/DDB8kt/X522mX79WOymbbKbtcdhW5WVsKbh7IU+wLaHDmObgbpD5w+pTaUkz0vlxPV30ZdmSI45cvECKV0Cr3G9qBKsRwX58dtbFRMkr3Sc/cPxrBEPvebVe5t3Lx8C75GdVl2zfiJJ2RCprRVbxCLCN3pMyX/2iUQSIo2LuBjOZOfnSD9PEiFle81ZmnLez8pm+jS42No1WnwM8YboG+Me5+Csix7k6FnCcHWDDr0zYUYnQh3w0Kd5wczu2g5ldPF+bFmqz1triW0mncninoGBlLneuQsI2KWE9Eqyqf9KatHNxRxpYGIHED2alfk37B3TnzheWdxSK6kIHO29EFsPbvaSeMy3yUCK+8X6q1lBwNXX8hyn7go5iWfDYq/BU7Cswpej8XBlAgTjQOnrheeA8jUEs/1kA7UN2NrVdVwGAS1JhzHDZSuEU8Th1Lc5VIngRpJagSBeq+zEKWJfO4UR0HNyKrOITNPO6Y0FByCAp8urSSsZ9CYfGXW4fqZn8iVoaXsQKsN7AIfb49tC9gUdTSoezqtq8EGSGy1M4Ge3Ei66PSlXM8D8jP0d/RawYWK5EeV9Ran7G4kH6gCsUjPSXGIa1vJ4XiyVNvjo5puDzv15bf5WyKU+CB4sAhVVto9GNZ8BhEzQONSj+9fltSZICxwEPELW94Mx58EvCl0QQBbsVwtQjYIcl7BoxROpMwEFZD5a0dZq4KvRWCu4/fp62Y0KodaxzYX3pPZoYQXwe6Fej0MA2kbR9i15nsI242s93xmlM2E6ZFQev7qUuDI98zQDTF26VFyGPCQ7zu0ZVuJOAnUIf7lVaZn0r6tCs9DYBX7L/8BvTtSn7qvrgYDMNa2smtYSaSos/ZMLWw2pkLse8of1UfTybVa+ZoTlocrD4CjGQ6zkDRtS0eeHQ9UUno5Njbl/eRB6EFyrz4Z2JAfsuhX4nXEbuQKu9k1GdqGzXjr4Mw/sqEYK7uwITcm60axICXqQFloZe9glHV3c2DrSLMecQK0CWA+OYrypPASJIeSiJDnhJgN84DuWiqoo2Rw/KT86wVD/xNtjxPxJVr/7g9TCzOUieHUEcxMffWfnxGxaeCAYssDX9g4JWxiK0x1QXFtyi76iG5QxVFC0SMHXFDmNLo83A3bSWQ7cow4quURyZ4x2TjOtDMVOyfRbNrQf6yQApwefQReOq/GRHHyu+v9iqHETh3YELapOi1oFpYlT9LuqSEMi644q5TpRedzktIX6TM2hkY+VgfKVFifNM/unKCHkrRFUzpwK0/ZChHCFEGkhe1fkCW1hEeWIJa1aSeYVyLat8Om7zwtcpw8+rgRU+0acE4s0WWOb9XXgfZa8+jt2ijPcuzvtxGxKmiuPqfoGOOD1oM+hXJCgV4bcTb+kJNRHWSKbT1ixmMsbzA6ufZb4YkzyZZc5MKiqrkuxccj6+Hol36xUo/iH6Ob3ejp1LEUVvhArzaZBpDX7/WVB9E35VrV7tSzCMKGf47UnWYCT8booZtRX1W5GNYDaCxWoQajG0fQ/YvzmVEoVzNLNteut2LevjOKVEVUJB602zK0E5EiZu3Q76nnJCEtXVurqwHZp1SzliEHv1plwR6/dItr3sMNBGM7bOQvNLh93Ns8vmVFSJVff5WQ4DzB1py2DDV3fFoyleFSnkleqNYRXIXKuYuoScFoTfhZT3WWx+IguDra4chtSFFynLNHqCe1C2Eu/A4BTpcqaG+c0ve3LWdrTfVNUwHoqCegMdYTywVnWTB/VoBJv4R5GnJGI5gL3QqR450VGV9qrzSlok+fUsnotWMvLXR4sIcmQesLaryIR+7hBqogG5+L7HMQhp6bqRdi2fVvv8jXO+PjjSp0dDs5PemmRrDASX+YnbHurneyU+tbdIWPwgGIUFA9ghsBLUrnc6RCXhCf/NaHUMiAtdQAvId/WdT5rZSOMjhmjr5HTr0GY7mDYY6GHXDwrjZ/dABQ4QWu11O0ZeZ18dzDaHhFtPUWOAeM2EfTXzP5PwWw3RN9a2np4JjyQmg4eMfv3QFsOyuhR4XUHkIyf8ZXNyi9Xd/e7v1mNWxO68EowZ2lucWhLEXWq7taqmCQcspCUloOhPEpbq67W99YKCfx0hHkYx2I9pKCQopQsJ21zcwuBVg3jB+2LJ6M8wLwpLXfSAyW0lh6IB4aSG7oRTsBcO2tY2I/39BW7G+9Zi3DlDrksbSZakzRs/qSwnVk1xG03lGIfQemT1QodcXoE41MCxVKSm1Z6ByDmMuNXXBtWPnhF08mS395KSsGaP0/ouqCiIBRwizI9ZcK6rRbFyExKO915CSvQyCkTOV2ByVG1Hk2tWX9ZG/MVWligL6AFP/gFoqm0LRrkpJmi8jNcliWB/s1i0uLJ6N3VHZouWsw6gucVuVqbZOrubcfo7uqx1MkqP9wq2I04ZeS5iqFCRsooNsjZqeYb5fhFU/LQx8kvtWn0UX1NFLuwX0VX/N8vHP9CTBeyyF667lhd4lM0d7YwbaUDW8yI+96oVAvCCaFEWDoEkQEcnukH7BUS/eAou6ZK9vCd9OxvlFyV+wsfkGef5XsQAXjMkBtMbECfKFezqmLORCwv+6QuE08VDjl1KQBBnKA0q1VkV4W0MeQ+V1l9s2zrimXGFAEc9xh46NN1NgdVQZ1Ce9yJIzTRGn6dBCBwLugJArh7KvCLbHIcL8UVfc48Pyj1T9+/jXENUK6F5qJZhrGtGS+bFPkrBbQrEcF3L4VUtt4Ol+W7id55QJhu0ixCS/awyWPN/Nr0QQdJIm1PcQ+PTy/4gFognzs6F1w9YW9oTWH2iW7G7f/a8bL9oisvj6ieIKRSGa6olGHifQ0PlxL9imr3S06Ys6Yweq8khllnuMjcS2UVuKXB6nN3Q0cJjCc4YcGbelwOaqNB6S99RRtDzG07OMy2V2t26NRAKxr9F0i9IGSB/zG0H894wYhfkCkKxg+eJlpqPkDZKPdvuPv77XXnBQ18C+PjY9Er2NofKt7NYjvl6W+ph4a1eFXkGc7UTPQHVG3+oYdMcJa2qOx1Us+PckJCSrhPt5+6y04KyvV+nxnAzLGAVryqxygVgoK1t6k5EwzK6v5D1eiI/ZPyu0NKduk/GnUjyynSJeiZUozNe3lcXj4N/ps9bCzMppS7YYfl/TbMCi2V9SPhjVxudjNNIEDlpmyk8FK8kzqSbCrD0XXq7JaVxV7nUQjYekIA8/uzjgiG9YwC7sJQoZMaRTueVMlR9mbfjYiIzpMpJf40eqW9wLhBEbAXM2O0ivBXk7xDCtkUN9eim2pzroVG6J9AUbvKdqVZcqkzTQAIYq/Js/FkzavglELOf5WCY5QblF4cEUen1rLkGQtoogentpqOQURpCwM5m2tpTIBuUGctpz/ar9pkBSsm/uuhgyb5JspiIwjNPvy9VR3Pk50fa625BquDlBc/OoUuUcaqtALbETAtqkLljBr0+uJYEhocIebe8pdb0Dk1D3+UCZ8cMSuV6lV/GHQnttP9p8wJkXuSO7OkTOKfWidvhtTYbhiHU2Tm8wpqn3aD2DzvigubAkB/Tl+nkUrfA1gX2j0LSGZUny2cP8D93cADqNop56RTIDLHQzOsLW2fpEXCfmeKaXBToEWmDC/q2IvSUa2AmQZ+Tk5RfE/uT/9EOKhMFeyXcOYj82snsYdZpe325zAev2ZYDhxapy0/guSjwJI86JdbXcbkut/S4lGps45M892vNNgzYtRt4jfDGD5+dASDxlD0f3LISgujz+TMEch4ZqenJ5PFB29zoiwPJvkGIiJoGsPFAIYTKDgGyb9o/2RGe1raQDFJBQJemkq8OMJZx83HTSl/frqIlh0fn55qnyqhQfPu64ZW17vi7jbOlPiGSmB5V38qYZNL8TOEG03dtCC9xGujOZfVCpNveAA2lJ/ELQRsyUGVADQ1Y9jBd8qf0XVP1wfCtCVAyumw4OKRHzsCKvllGqVFQGChx3wFE83ekPN1sOvyNLFZHTlUdy9LbB3+pjkzuNnOptaIJgiEpXiE7PJ9S65zLvswcCW862PWOUmzsqvtGgtZ518A9X03tnhBNFFjvrtbYzG59WLswmWsBcgKHDZwYlHTxUlNxST+mQsvkbGJ85NeWsmmhYoniKP/RDnPSGSXdb0uTVYs2k4WXhCuDPNgkmnndWqd/hS3c4O8DBR6eYPHC5LWze4G6NOKhgWTV55GxCqIAdko1av5bwCE51x3oUGTKd1+Opv2fi9xEBHbAH5dgXciFGGjpzI+inLRX9mK1ioKNTizgsqVKItbH913MIidD+g6urWP5u/M2DnKM2Xefmn9MhIpKOfS2Pa7odxwCsQ45KLtLujti4aJgRdTJ5jIQHG73TwIyx19BrBUZB4LOJiKYlFoeclGn5huPfpcyr+hK7H9QDO5g+M4kRpWdk4dBsoHUXMzo+Y7sYbO+j5OgXl1sP3zsbnaNQNi7fKvhw0oD6BkelRayBRV3QHabZ0OW5S21sRW1JovV0oSnpfToSgq69GJfMxLZgvNQr3MwYrRgB62dcoo6EW2G5frDhBviwtJcggG7v5s5//M87JE3iEgPXDrwjeZpsR/pDgLfMzqCoBLVBIFqxeM1EtXBlxPKHqzBPuX/OxQItOdjUYweIjuj9uRYfOXj2Fb4z0mqkFsSKQOLkJP4UIc+MWPzjMZ6cKHHZrd0ZYiwc03jLVNaqZ7ouVrAkl1l42DkELHHD9nRRwRGLdAr9IAW4Rq2OY1bEL25qb00eEhSYUq/IVfdG0rlmboEbkItPtw2GFKOwDFsfPSmL9RJwLJZhmaVqUZMRkxO9T4wkA8F3YXxManHljomrJf5LXzu1RqoLFBEDmYJXIHJJa5up5V9jktviB3wUU+TpE6ruEtQUyOYolj7xqziVxslPjq1YZ4sPanvfloQXvwKijgHnodVMy+L+m+XDZBCacCmqyhmcmqKj2iqTaALXqZIuk1zfAfvMoz4vGbwwBJI+QrwmJj4tnzkamjBXrYroVck1LTwgYe1Q6SAvw94C0qSYa59HpfOITjT3/tHCQoUQq7Y5eVf+v2iUPzU3vxE4cK1IWx+9lDWPoGbuB3nSxMbndin864O3UyzE5yYXdLTnXv0QEsk/n9Wc7fN4Y764zp4P3MMiBwh/VGikat8uuyNS7bCQRkNW3Pi8DrTKvt3Q7abuuijBQ3VrL3Qq7ZMD8r1vze0kfhXlzIXfyUzUoTs5/yfJgsZ9w3P1MfCUs/xlK7FxsAY410XH1ssxckQlsmMuNFKzxWDrgkp0tS3RzuUVLElxpgjDomm65ciSALTG0mjLA/fpLi6plbhwJr20I1CeuTZYtjJuWu1DQXo4ckRT2HByulQHTbLWOH0mrQFe/fgzwWivE5WvJoh6HAI7AkMkZxjwBdZ2Ig3vPWKvV7Ug6dPoGGAYw6TwUGP7Vkhkd34yt3DL7sVDuyP91ukNXDmNt4sYn8zIPnq9E4lvqPg71H2Mt50sg9pStD3e7/ZPn2l5VwuOd8F4GMAhLMmNM2FzW2sNnEescDpOM1R0zMn1E9xqAE3JoGUKgremnUCo5JbwHWMeXmzIaWrdIBsLQEKRZ6HCgWFYLeioTZHNM3+R+DEkSi+gMK9/CAbDsNw/EBAVeo3Ca+HmPyny7JGvTzzjzXch9ugnbs2SmdvHyzSRoIL8DJtxH57loLNgvCwY/1eTO8jbparfKZ2kYNjihMCbSiTolkpG2QJbFdHcQtBgBgA2EoI5b1iLtXSxuL2eZWqkFTdFW6DZp+K8lqNia6IbuIT/KnNvNIpmfknq1c+ElTVJHwG6EMGBXIJPxYY0HkNyQ2O3dTKMTYnnDQVZoTOj5mGqxQGOTfGgN11/3VqpMBPeL0l7La0K8Amzuox5oZddAW4Z2E9xZ9P2sdmyuNWTTXrJvJOkfZfsexpQxUXR96v+pZWzacjuHHP4S717JOUHG1FAAk3HJR+mUuh/KDn/fxNAYvGaSBc6Mm8xqFPT6/+c695gVihmk91rGLViQtIYWrWaHwM+qEn3VHi7VWDfZ8i+v95FWorUdgguyL52ORQ1LG9vv1UNn+qmnRetA7gQGNRp+n6SzayNuSdJNTtDyr818/COpCVc1Rq7Krs6JAThh85L/2WFjYnncktl3Vj8OMviIW26XldYRkNz6NJEqwD/rSyKj30YzXg03tJKUPyrJr6fCQrGgmrGlaj5keEEm/1lr8e+MDrOuJAVUI21Za0Xv9jr0akpQypBd0nScXxzfIsxnCYDc2seXPl2+OxtYx7rE2w3FLfuMVHZo7hDsdnz3hzaU5eXUy75ieRGByVc8JH5mfelj42ew3HV43jslQS338o31EAHhzp72hE4OSJ+LOB7MMSjBI4kfVPRxhLKhrdab1wUsRbUjdTNhDe4sexO19iu50Buhx92gLckAVFBGsDMCi8muGBQS0YpKKyjRnQi081Hoa8VzMkSPRIYs8G3csffFO+5aKmi0KeCd1x4W4029CJBYAnCEGFsthhRt6u3SD+Am89spJ1YtRKpJJSfBakywDe+z5EAgvNkIRWTvR0G+4on3N8iM+spQZfpmZh9/dpXKoLGXvkvGj3e4MwsfawzPXP5y1hwgEeUQaZRcXTTh3aDcUvKvtPEiAk5ZwL72eNYRcJ7y0v3W6JWEJmQq3pHEpTPUSSpSCs95FQFa8fi0rz+6H6kK7mEcLjBBmSdCO7Ltp5PCT03rqt6x201B4/1UvVjDGDyta7EIAmxueQkI313hmOx93QKFIG8m/X9/bP0hHxi1b9MEtHPzq1Oh1nll8dL8hs6Q7uOUMLdKfAUsxWMGvnlB+ve6Fr3+WiwjtWGlLJADNXKMuSRPO9JnYAB/QM3YO/+NuBJbi4Ufj4lAW76ueNWttaxVXrtdysY1GkoazGjTbMJWLweOlYVVskrTIiptitsdcEqVzUSjze18oMDdalUmfdak5BZIGfPgMBNAbXVyt2ms9MqehsvqfLyK87h449czr0TSkSn1UwAPo/amRchRwfu4xswOHDgqw4wPaMJf6FL/ZKXCVi8/EA5xq7ziYDxO/g19x/mr9rRV4RbWe2YDrdOQEYGAzFvsFZdwU+tgutVKHbBzIILJZGRpq1tnxf39DyMbvgUlXSotY2dnwaLFYRbMXoSgDCsCV+/hLYtTmk7bCMSnjgCwT2qbYpM1G6o1AHndLNNL2Jwyp6AltS6fBDYlvbSfRpryRSbaFOdJX+iRs6o72vLA+BmWeNvodECZqkuoznQP7yOKBw4B3T7RyklN6dqKFarWlegylcHN8qX2+P6ztJ6HhyzYq45x72l1AmQL9V/3qj1UUrGOLOqoxcc/gPRD2NDfKcy1vFmeLq5TbWoeAK5AkhflJcHiKcQU7/Q+yfr4pmuWYnZGgY0Dp23gNWJhk0ph3ESCT8aYePRzdY7yvM0LCYOf22hyfRxGABkLe6s0MBJFMZ3QYfn6z3vTJJ/Cx2IOb1rAXnv1tqRlGOwGaJjKmmgEyXmiDZ+dhRbWDpxOnVb/djYbS56hB6x/YYzPBN/MLMlijsOy/0Q2tX0kSKQaLFBt5PVtz5X9X5R3A9HUnUyOfd5CjCrWK1Tyy40TVUOSen+2QPNl3XF5WnztTTyQOkV/NDYr09WDZZxC74EhoQ7cZWHk5vuf/uMWtSq9UV+GQsK8L6L+IgbX79uwaNJdKQ9rqqGsTkWH7SDqfwNuQ7BQUmtjqOqMWwfv+b5rqBLr2GAxQrW/s9JH2OU0YxU5Zp5jrc0nAkfXVF7ilV9KjwVgumoM5qc42+4A49xJ18OFLs7uEnkCldNJDi4kNIp/DojiizcIWEnfH/wyqsDfklovnCJaBNvAby7Px83nXIUW2GonAtbbCNrxfcXRRpA/0fHeReGAmMYoQJc9oN0MmJn4ePHopqWnZTzjmKH2d5WdVABn40jbTkG4RpIt6yP1n2Rkj+dLleHKsGSXYEnHGXEaGLuNHiqCkyw8kQrqMysmc5kKIKPxDlzLFNBk61CjWpxbgjM2+MOIQHefK3GVBfvgCZYWPbw3yZ7dNhg1x4X7VUx8Ycmr1trCgeWrZme/+occ54Q98vD3N9LGiAwp+58HWD/aUDL7X9mji5RaVmlF2Es4OhRV4kVuXeF+PHWcP/M/FffFZQB30J1YJRLO227MmV62u9Ru0ytn3oJVfSQYx7llIowbbYmqbH5/wr7IPaggDmW174xx/x5tp51hdSRkhNsKczrQF7SKo3XptxZFIIjBN7uOsGEoDM18c+ZUfhib6Axfoj19CZsgeTYhyndagDJRwH0w0/o4qCTg3T6mZjkrXLc6vhx6vnmgQn5hWgugqOHOnqBWbSKEKvoVrKo0IX4qUYTU+mHBRkxdTNDKKdg5/2OborJUWNl1Y9oYhFRW37V0l6RmqO0oQujn0LxUfSZnHppusC0Hw4Kj/cBt9dFIft08iTkNWIt7I9bntLomleMMdcPjPOR4FMP/MIUe4hRQsSbUybkyAMFM+5Zh7lj6MIJqPQ4sMspWmm+FNxfI16aZjVH7tfu8KiZH8/LuSzf0TG3L4Sj+0V0VrWvW/4o3MQ5EsxC2MaRf9IL0dH/BZT+FnjoDEI2MyEqbaF1wVtRlYU7zbqin9HoldKFYQiKQWRDd9Yye4OZxv+NdDoa2yRVwbANTmYqOWdjTRucbEcL8Xr5atGxco6+QBSzTKopuMSUSH9F0xpn4O/f8X2AdL85yrWka0Q4FiW5lHEcMGDUczN/EtRRYwidWy5tqHG1ibXQaa+sSIlq9k+7kytoX8Nv3Vk8xXEg0s9guUALPZJe/pvLVyCkq3cozVQxsB1gOv0cf6wwN6gh3upy0tajJ7ZEyWMv2V8HqJRSY4AGSqam91n7AyopSZGv995tCTWrrOfW8utcBewQC8CE2UTS0BIwv0ZyjkDDVXyFFWknFJ1jwRkxDt+UIAB1yL9yj3lsB0cfBkRwXuR8dlAn3F4wtSRgjHPaxwtike3eCX8G1Qi6M0MpFe3DSp6EOvCIfVXXAkCNUqAcRKainPvi3AkfvPw2Etm9/S4WdOkKs8j0QeP5/9NNOdmTaQ6JYMTV8whRUaom950ZeghWaRQup8g4ss0o9X7aRf6LCjPB5WmS0rD2m0nc9FAyWhTZh6AEoqA8p3IUlCheEE5mCHVTR3ccMOP2NHNJ4h8tgAbOSFopB/j5KDkCUsFJdMjFctsXvbcnyrydFl8JEcnhfSlgKrSkXs97t0nQZ2aONV+pcpkZEemQ5rzOM0pqVYufmBBlLrPoPJ4GDoW/yJ5PKhS4oCRlnuatepkfa2keihhkUtiqVnt7fdJHMYMgf5hGfPvLfScwF1f2sImAHzWHIYI5L30ycMVyfs+mKpdbRjJez4qk+z4cZalDZ1JFZNB6+lAWkvdbKV3hdrbE17R3fbI0UoULvGrSSJOa7S05bzMw1lp77k7E9q0UrERSIwsg1DaYYE8KbtKdKnZwyMwMEdeMgdEXx1NMppVQhEG+8QMJ0qvwEmGG7CW1y7YAU0pYkhtMY1PzEFbugZIX5XmYdTYMwu7q6LpayoN0x6LoruAJN0zsM4HZCoqCp+hyInYhx/L6PZE9k5ZNbPkBBm3t2/DhNJnOwUqlC0saHXBxJOV28d6phsiQXrkb54eQFMBqALIcRbPjXuFx+jYv7V5cbeUUBKhyjxnVbKQuWYuKxSR5abv/Zucbbq89RKlx5f00fTUeDcH4B0j5kRdZrzT2w15Tqy/vMKArCIpjZbHyhSbm6eUlD/cKcQbMplDA874sDW8UkajHQSDLH3jql/xrMPqv7m1JXntvEQFl5fUsWHe7hvNDF0t7/qMPAFd1u9fYmAwEb5nYvvkVGpbVRPmFo969reiCC4aDf4j1gbLR9QgT7It81NE/u33rfqm780ekv+jF034eGer5i3l3qS/m8vBXMXlvsolFv0cUz/lfrCiYyfMFi7P/9xjGJxPmIVthyRKi3BPylzndobzazuw/QmZeBnvuUdu5nNJTgFgjrLXLXdxT9CNgRMHVzeRDz0dgAGsv9bVqRYk7HoFc73gv+zFt7Ma/TIzws35gNSiu5Wj3kuAYQO2bPaWeRKq0q5Ma0RaRfcLEGXYPcYRqXP1MxFtWJ2EoICA/B/R8TVnVYW6jcTtCidWplRlhFQgE+A/l3grUHXX0+c+AfijGNW5HQRUC7yAueYcXA8DuzWLmXddweY9QnpuCgpnPoa1hFOo937/AysYuQFsnNRG+nH2STkDAEEJ9RLgFWzJ0L9lEr2oHu7NW1GcmiqUIbg0mtcYaUpw3npsoB4IGFRpIlunMOpFcvzj2AhqnJ8R+wjTS92KmlxKvvYJYU4+RXle66mKdNgCK30T+Ng7N/ZVKRCl2s8WqG6zZFV+aLVY5oPf7lah9RI+ZQpTYWMNJruWpP0VR054U3Y3LV8lJVB52CI+8XGV0vKNPkdXPRpixFyUAPUn6c/VPWEzwr74ycHnqoylGE4SBudcgcYhPMxEbmiyClN3t26Toqxn1yL1hm9vi/7dSHyg9VgG5+jWCU8Q65upeOaWgFOwxsczPe6QdOlI+iYiqSkvEiJM+ZNexMfQAz0zbjt6BCMRtaTAyjULNd2aVRs6XNqdFzYe5MZ+slbMfbFGEIDu+uy2H9fILlnS+k3TqHzHgru7X8nBBVNTjkt/8NIetl6OB2f0cqqZDcQw6X/vYeq+9yoNVTMJCO0RqQh0LETX4AztcIq3jwgxO/H2XglZSWsgGaXj2sYbdA0G9N27f04WgxkLp1i2Ika9TILGQ2JlqJNAd2j4o8/WmF7fjDenq6Ivdivck4C8rVQ64lTArsJWUNlPFqBViUj/xM65u01I/f7z/WYALGSAQxk6OZr8xAet/bCH7F74ETDn4QlEJgoEuy9yHotTkIBXaaINQoaCgBY7n5bS4APRmu9yTqCVPlHnyV+3h6bY2/9Clc1CrlObbhuWC/3oatF7N46tl0EAnmzDYvneCzuIOUWRm3i+fHYm3uk8FcNZSnGWMU6UF+G8qvAsXPW162/d9kDTZhSUVu80pgsaxKaCnojLimun1KlESL8AkogO7H9hmogoJpvUZTuyDUqysWB9L9on6vv5OvJkQQAo6pbh84miOmzkp08h03YHx+ZYMzWnFh8E3CEE6kAch3bBVMEJE43MrdOYJzZNF+if+ruz3J7tw0z9F/+4tZnkANKAA5HXDv2IxmyYs0TPYPIQE5WXm+KgUzXMdJ86hRxESP2XYfqV5mUEC/fWYL817aelEcjKnROhyaC6OXsuimn+7MxRlinBEk3Yq1cJkIlD1ypgPPJXevKSwgen5kLu7h3k/tf47rGeZSZEoD4Rpw9uvEyDATJfiQuUC9D5a2DW//JOXAj7pD0Bv5MAIbgyu/b9h56wHsfBgUUX4PdzEkjWdW6xOiC4UXKy1XiB3c3Ib8OjaNIwFo5XX8Qfc7m+oLzb3D1+5s4NThA1cq/1TCU/nIM9gd+GRHWag0tDo1rMBZY0B+7opkZM1Ui6eXizl0Oe1yjres3U3XXU91ahoCyjn9fPYJSy4c+JZKmlyMQpMjdKy98Bym3I0jg2CIrB7mJ4sTYvQwwPE3N+H7+r6dVy2TLVUUbOP3zhaiHDm3je/jmhHjY3KtH8Z9b2F5AELk+o0KmCykST0zCbrTkgQyg+zmjmj88LLKGkhRXXES6MtINnhfa8WAtCaFqoiq7wQawZqOgxKWB3u3y5GdnDW34HhkI/YQZIKDzHUI0wzmKxaiVWD/ZunPQmfDI9iQjfqos7m3ikQ7sI30JURfem7Hs5pvxWyXPm0iqiDSpT1Qp+7VrHWBI78pE8Kf/vvWVQcX4y3DtwGazz39B6KhKWE8ZIMkbdAtVYiU+bIr/6id1LNfpoS2z8sTgY4ISyCgVutPwvuZQseu9ngEoKroYeKfPLjuBMf9YzNSVEI1vz9Y4HJ/lNloqhLYBWd52G3eVVsQnOmuqze8VJrwFxZHQxoULR82e81RYzoFGDatw04Ub+uR3U9jias7Qgmm8ZqMba9DQkZFwoZfVbtNpOc7c2udOWJGUZhRR9YYShuresUXpl0OPwck/VD/dfGWQ85eV1fKq7LQz/emiEXHJ/jxKXgascI1eo11ynYBA0nYP60ZRb5dbTgxr/U4+dtB9nr/iqCPtKb4GhUITQ/kX+siiqbWL23lPj7lm9iDex+kR1lgmDjXdKkWjAjzrVE7s+sMcdZ/2vVWHoYg7vLnkMVxjU8ITtUUfWQ8W4sEaieqKX9HVR/hXpsms93Y9Dc2Rrnk6q/An6X0NrErSkStNkaO4z6LO2zE89/h0n6l4AVETJghoy5wgjOuQiYZ7J2x1mEmhd1Ud5fyIEpIE7LdY9DORbHr5GSJ4TLC0vcOVbmu5sv7tJVWPGPvHOtUVaJfIZttLuY+mCkI1WoqnpiO7rmFrx3ol3iJQTtt9ZJpc+wSB0c3fkggmr9ZMR1yUq4J2XCokAvea+lROIJzkgxEkNijpLWWzGbwfxSWY8RPkKWhLwChNcc3hs1PcXsMvmZec3fzXwxUxzQECywTGKAM06MknYPmCmROS7Ah3ZsODE9kO+IinhGETfOfqxkT6yMs8s0MyK+s9Xf2JQyUGEGO7CAy0CsTnHtCBWvV8188xdsCV9UPm301kaElZKUbCg61HHh6vQa7CW1pjY80SUne9MXBGi8u6RjJ9mWc9LTXnB5Wi1CLEsyGf6ifll9cKdWZqn/5ZDzXqKQWkSeHlS5+uSEQZSIH9MMcGwYFREfeyCp7YjGrfmelhq/w4H+iIyLwwmPa+0CsxZSkNOvpOfeVciONemLILXfQBJoIrACyrtVQIot011QW2EhsZEybLRjGdKoJNXOxvhudaoVn5U42i6lmBjDczA5yJEXXRZeRdJxvLVWcRQU+US39v1XXD0a/sZRN4E+KeKBrNrKD3D3JZSInZQv6HRSogv+T2B+EjwQNL1scjsFXBg/z5Sq9hqdLpDZPOVfRYnD28f2CX17yD9nsxdy4vMA+gCZduV9+Zmo0+BkUOR9QOcXNM+L94rpJCUSJ0Grk4Vvx+8m02FN/aX0EawhEh5uuzu4QoJDSvMYaKmrEb1ratq6HG6rIlM0fxS8w8u+qX8KGNK54bsiMIoQMp1KARMmpQ+t08QrAh9lBxKVPBlQh2lJ6gFprk4bAssHyIVi5LMh7rFKGkdNK6emVQjRtXnNBvXgc9DR0WaoRPUk5adRnzp7NUyTKNTRlAeB4QLwNtZG8Vz9b4nBkSu2Pi5JPsOhjnYI5s00W5SBH2CnYi8qR3Yv14BwO6w6+nfhgRT9Hof7F80MnlAcuocezNAEmfahDIO0Y1lEI8bY5BgXL6Xm3mP8QecD/IqOioYFmYu+t0hx9tozUDz8P6AflESpAZI2x0MB54YVOaLib8TtiwWHV/cjcT2n0QmqIkBgPT2MlYaRVBCHW84QvrB0uITYEiXP3wUKAMNWTP8K8uBpLIX10nfTHzGqWLS0BC+uTDVdCITpt+nZhDahGjJu73w/NS1cv/LkDmNCrgnAskCBYTflszGDuTRYXCDKOWO/X96EygdYdtnxNHCdrqcjr9n8duSKttLhIzHz3w3Ogh8DFhMHi2Vuc1Yvu3DqE+XcstlzpjLekI+GEFLAaDqHVnh/PsnDm3aQ7ozo7ICu+bLYXOLnOumTZuGTYXV5AyuDv1ggvyiWkdQeHIAcxBh0jXP+x+xS2eQDt/DTvydsnMeR9BtisjthmbkV2LG4EJf6m8JUf/tDuVOXpFbyQTFq8d0V97ut3g4iNR/SDbR8XhjqnjN63S+6SEWCtgjgH7+tLXcYC3kFVn6JKBEMhIroMzKvOyU5NZWmH4Dl513xeGa4QO3rNw5KhNn7MWrkZgxyYSQEw8ZnqE7o7jgkHt7VzOmFODQt5yfRmb4fMEKsS6e14vHMmsqqi1s0ZI3HyHEcmL1kJyGi4Qw8jfePnihyk4je9AXxphJqhS4KINhscp99g1FbStAKL1Uc0LfDUIi9hiyX8x8gSwgwXyF16A0yQrRz4oDoNQ+biu7cBHSc2tP7z2O6OWZWnQKc4KPMNuQ2WOkuUXs4doI15A3eg5puYBPeg1Kyh
Variant 3
DifficultyLevel
766
Question
The rectangular prism, shown below, is cut into 24 identical cubes.
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
Worked Solution
S.A. of rectangular prism
= 2 × (3s × 2s) + 2 × (4s × 2s) + 2 × (4s × 3s)
= 12s2 + 16s2 + 24s2
= 52s2
= 6×(s × s)
= 6s2
∴ Ratio of prism to cube
= 52s2 : 6s2
= 26 : 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, shown below, is cut into 24 identical cubes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX9-TLF-CA35-SA-v3_3.svg 330 indent2 vpad
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
|
workedSolution | sm_nogap S.A. of rectangular prism
>> = 2 × (3$\large s$ × 2$\large s$) + 2 × (4$\large s$ × 2$\large s$) + 2 × (4$\large s$ × 3$\large s$)
>> = 12$\large s$$^2$ + 16$\large s$$^2$ + 24$\large s$$^2$
>> = 52$\large s$$^2$
sm_nogap S.A. of cube
>> = $6 × (\large s$ × $\large s)$
>> = 6$\large s$$^2$
sm_nogap $\therefore$ Ratio of prism to cube
>> = 52$\large s$$^2$ : 6$\large s$$^2$
>> = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX18V83GY8O9iQ1kBBDFujfeCdQ0B29CfftcIYuXES940q1CsFO7ZYf+AO/2WcJSUMNQCERiQfZRob1XMIJfceths3uwHwMDf2kLcWeYYOzMerjooWrWRWSm6jA/HZYeyV4nRw5tIUDYWQ11mpfA72VftJy4n4+qGo+LoiRENYr+452ORAGeP8NNz77myBwvEYm5pM8KQvam1IVscdo/PZhrKZYrN+AP3Q/MbCoSGKQI8KQv/vwkIcw/ME4GoNH5vcZM5Llqr0vq7whpIe+63WvZg9TTX0RyR7UFPMOueOhxgrtWpDAvuecGDf582+xm/A/U01QY/+dx2Uyv2B5YyDNon07nF2IU7RjlzXQmEJXb/qCLh9ir29KOjZBeCszdRJLQustJ8P9aiKqbVjmOeFcfPL4xu4FrrnLy4D5xtK4AgvL3Xg/Gx91ntTQs19nZhz+KgNIj+r2IQHkQ7wfjClj4KxwDC/y/OksvdHFde90X81sP5tMFDH6D0Ttvv7ZlHQqdPr1Wacmbf5HrAGmr86XvSB6yqxVj8no7rHyk/VH5CXB0rCYfB1zl62Z++SvZJlq5r+pUz+yrzUY+7grAk7Lr+yHYmHrCRXyVrauzNVgfJsTJkvJOuE9HxWdxOhLaqsV5OMDK42Q3X4SPxPmTM+gs3ZBC+o0irswFC5GrNN50otVTacAssXgHJgb761dIwFUxw9QjETqHaj5IGuu6uqd9xA8Fxu/BLM0NtQNiO9Sbhaj05fH5V873kHKHc6Uo86/qJjsnZdI/KAIKof69/42jpTTRBqAiOGUG5BcrkQPTfIEKnsxgBBwgVo1bM2gm6vRfNAdp+YUVsB+8HsqyEnCLhb0v/QBrXjhTYs7Hjv+auiDY9uKRXfQjzw04N7VyRLEbUQeVeVYnCxbSqM31k7PFLpCsfRTCW3CRWglZcX8NBvQ2cSKwr6F1zlIdT+aemEOxsjFYVg25xiS1jkp8S117pFFDfw6vUHX6PTGpzeNpUFdr4NERlfgeS/IPon3plaDDI5KMQDm1huWzISgDV4J2rsqtMQSpYMiv/p8SAXV+2ntYg6D7We7u4DDwMnLrcNPr1zcVUZNC392koESzxu+jhNQ8nmtFZ42PWla43xCqr/acIp4PHUErzVo2JlGWetV8w+H/wZG7COcFQwN1SDUuKzrglStSKxDdxabuzpf4o97Vsp2k7pLVQD+byEei7g/4tMe00sfLK6MAIDzkICcxSnpMJTSuqsOH/09F4h8Z2jPNNYMjSRtmvW4PbNSDfHJJGGOEBb1pHtTdDhQ38PhZ3JShjpGtjit3cWJ32XM2XJyZs3EEwS9n2RjEgH8G9aJMWWbVNWRgfH6s+oWmAYduIAryNrUDGzblt9fceeNWdQvzAJaE9oAl0uRToUftLhhYKkgysVJPYdoEWD61hKNmZrHy+pz06cGLvl9HpLxggwNbY3PXZWlrXaCX4AN4s2xDsWxTwboXEihuayN62/EWGhX4tTbASsrgPe45kfzLhDLO/Rfyj0bnNtMk7dp5V3Qbng3hvonuePCLNDEgnOqJSbia6ONuP1dHleZrLOLcFDW7gSharLtOKtkkHQ4PlVoySA/7V+5pKHJ9/Hwldt1/jGNZvlbWgqiYKqMF58Mbw2A0lmvu6xrJiLpgrWBdYUFKGiwS33SBQxGvHUrSwlw8CWIBQ4dM9/14ITtUM3K4a7zMV1CIrB09lHmeQJiXdg8QvDum0KuredI2xsB/xw48lmBS3Ms02rI0+onq2eCgOs4G4kEUPR1Nhu4Bn0818a5IDi+ElwWZAflexZ4f2sppTNvFZ2ZSO90bo0X5neGcKVyIutx2Ykbdj3XmVQ7+MfXV3EUAxnGn2hRoj4rcS+yvFTNqIIt7OLuak2xSXq9rwYIO1vWdH+IS08Rn0uZcLhmB5kz1dnRhmU03MVBMNLa6uWrKtUu283iQgfVh0B6uuSYYuTy40b+AEE+lukbvKlGpZGoEAQNFB1uoW/DYS33mu114n+MARBRrRp43BPMpxWkRthQKtQkcfVubPXdXITi132QFfW1dP2Q1xdi993qUbIQwMI6fdatZ5vodxgVhLuanF72mNrxMADJhRnzrktrEknRHqR71CDkRf0cLIka5wr27yKlv+CDZ5GRWNDMEMvm9iiTto1wAKcHzSyYAC2DbOkFczxbB81qGNmzUMGGUDjPVJgiOtPXZuAQ62+H7hXgmuz4YOx8lVW4/84Yqwnvt+e5cyjrF2EEL1u0N04OHC1O7IBI66bb6zUIPNXTR+Ismdu44M1PSyBA68+sWO4t6mAsTHZ6V6eWYOpMC0LJzKnNDUxdQBnZbj6bEfDfGUncDXood4ATZLtCRclcdS70E850PfCxcu3pcuwxmDpeZkRkOG3fQ2oguADZXr6iSMOaOar1eSwoZ8zaPsJ1yWz4/8BBVThhK1VCXZrb6QmrXqRNy3Q93WBYBSSbds9LaEEVKk/10htoTsJ4l5l+INEpy7bUzG7GLCpEV+GY0nuReFuGREjKgfnTw4iKgynSdN/XXdBHi19Wfmu/BnbKVOi7Olsp4sWAPsPUXE6YoyCqbkfR8u+5fIWXZggfmyroE2T+t7Trtp8J1rK2ZAh0v8pUvmjTZqwuANxtVE8C7USs0rdYrUkYa05+9O78jLdy65YJm53VLOHTBKcKivr6EQek5z2JZez8MwbNYrGNyK/XzOhXmAHiv0fQ57CxyO6BY0OJ3bUHMnbFb5ZcLILhHtjjYfuzFBwtjCcmZ7CSpMDojrJ7XHM1bsG7k7aDsl9r7sfRJjBj+EpQQhQXN5mGGIEZZz+z7rwN0jCJdxm/w5DUrCmPYb7+yURXTsa1odNEaydH4QcPXSyoDtS9IId5adtskR9hgBxq+WgvYW6C3S51O7oflpW7rNJxd6EYCj9goiXuKIvjHmetm1nxjfUTID1NjtxZTV0nKvwSW8c/G9yyL6XPLnrcLAXuu5uKDMNqNBTkUHWMWAxVzSZutmuiv2sKY0bNKOo1ou/rWIaROs8AjPmkCo06sKJoaBkhhiTSsI3oj7Lg+vWLdgpgs8yZGxjQCc8aYhQuxN5HjUJ1lvwk+bc6HhpSspkdOovj15cuInsDXUgAtl0OKN/GBkuAXXqE6G7zK92U0azkvYG3tZz/n8CmJ/azdsApzPOuaFrJipCEfkc0CJIEwWINw3eFwX3sGMToUp/A/Y+EgIB82AeU5dpkl323ArKXMACqntjJV5ke8AKj0U9UQ1MbnJGQ8ZZHG0GsMiyq1gJFPEwgp+FyKAw9bzETIL8AvZ5jUwrsdKxeaR1vjmkp3expACBoUKvoe1VAdxO9tAs0WERA4WdnkYVDi1QnBFY37v7cHQ0IqNo+kClYYBUpn/QY9OqDW7MjuxuyGIWdIl8x3eni9JzPHh0gd2fnWwJdHLItQdZ0Ph8ybGqWG9OxogYntJGo7L/ZuekXzOugkotuz+1YjxqsM60h+c/QEFQAIa302dhJ4xxS7EUD+IciX+jg1nwKomjPmVKPc31nVsK1R8XK7r7XKGkf33an5FcGwd/MB770KZUxZRM8fZyvd52UyTI5tIQV4UKc1s8LYA0VY+pHF2Hld9stg1Xdl1sh0jW6oUk8+z0rJPmKUNwrcJJUNQkvhBaW+K+xAi/ZIkt6JJIamT0nt/sva6TLmSNz735CzcyKBQVN3EuHkn4iaLpafdhrSbQqnY3TbpHgOhGsox9ZmDjyimKKnmgzufQ/r+Wu4jLUCXeNVpxNFPZGHfqjXfCqAbFdOpVUrQAdq+XixXVMisd75k+jPwHYdmEYPQnlyGnICbreO7IPD6hcCqIVnVoq8YIjpstxjutUOpK7qYrGLF7da6wpW+x5khgnHNUqW4jw2VWExkVaQJYWVHU0ai77I8Fe0AHM1GIbBkkGQjY4i2DBAewdOsvtid/d6V/clX9vbSw8FCKfkA6bHOFDvMrSe68VBJ8xGN+rEWuDFJ69/s8gd8Z1G1O4IiHYKwqfY1rKwYiWRLnUFk6vNOwfnHfZEf2TwB8HpHBUqcAhNIUT+aaAITcbtqZBSXvj0q4f+NFrOBsS4NTU0s8wDR3Ubwtpb+RTVaMqK+wb9YU2sCckuIBLzJ7KJzbi5XPHhFj3s/s3fotK/fENNTVeuLuP/j5aF0/MPYohC0WRjWtFTa3lRqcfWO/5ZRjzsinABfb4eraROE9mwfJlUNLreot5MLt26n9Ks9exNfGpAmb1jlp0Zy5TB3zUgK+gt8g7ZZ78oIYtHhOX7ZiaOURlgV8jl+Sh2PHn69ap4Ejzqv05+te2NuX5JNf94XrbT7hHJBqi4GZOU+ibR/vN7FD8Yd9DDUK4ip/65GovgFxKMhWsLEtkooG20zmF5SxhanJQX/DHwGQ1IbTIB5WF531YwbPiBLQz03wOt7fqrLUHIKQW9gznO8F2tlmf5CgLAsUfc4UpGhiRGwkJYn5LKjLnhkiETWbk0EIt2/foBlamfqzvJnIvdFJq5v/mNdurk13jKl0ZOtGkrQxPc380MFqRcHN7fwMh8ecm9iFCL24MhKxy1WwtsljyDU7dJ2sQ3K3R8vBsd0wVq4ZQr0Dk3JT/ZFVL8qz++aEZNpPaUKN6a4nDA+jM+YbHJ3Poa+f4RpBk+tAGuu2SirQObdew/+q7hvPvyqlrXEtCK54+3zAd04C9FDN8F9XJIN1OaClvFjdN/8Buo2eK33Xm5tOuRldeqzcluUc9Jc+ExX2WRzoXCQSYY17ldV4pVVutNzuEJapey6CqLDVWHr2myOyY8Ncz1IbfJSHzfX2pTw9QX9fGybXSMsfHTuXAktDilAxsrxLR2aHCngkzBAtbIPlfeNiFC9qiL3tbMY/i66aKQCaGcViwOoVIOZYjlVT9Drxb21ZbwmJYBk+6kpMxPYztyHbQLuH7New1SDQwr5to0M78NDRlPYUNNgD7WxbwICBOv75LczNUZTUQ8SmmKCs5zRvThrBdaightxVwaj+Xqg4tRXAklyp6qH7lujo8WU7f4s16hncsDfe3HIkewi+5eoXcABeu1dQtgaP22lxi/B43ccohWtYzU5R3JNJOUNoZgLGU9I1JKoX4YPvX8WAhtW83OTi1N5Mp7EwS5/zVQnQI4QpoK1yO9djipE/cgvyQsPo1NDoSd9glFo1dLxWCPEonTmMuR0F36zwiYexyULHzezkRAo/hEq3dEoHGnESULbbwlvr1BgEtUFLLxAmTtb8qEI4wSCQz21auhha/jsBqsua0n1f6Nj2bw2fouwibrfC35R+E7i6cDBhI1usPQDOw+2wzVvqyaecFRBiyNMpvXWlLuJSy5G4Bfk+Z8QzsCEz7BpJ9mU7EJ/ibYKmRyjtCrMzREOpmpBxxkDa99EoXZX2MZLdopbHG/IjjeJnlxNSPQ4ReOnA+joXSAaChC36/AIVJ35moeW0q0H2cB6AFWIYPcpkJtvbuR6lP9VOMc/ceIZhnVFsft/w0XnWAiwi4d8txYCa+UY5ghCWXvJPyStt6fXFRyomuZHJJXDf+5g2JIplVEFLbJC1XSJHf1hM5xitxLXk8mWCSU8Ahmw9OSk6pE2jOd63em7yRgCg/MrBkRDqCiY58f35qyFigPDtNwlanldCyHeYiKjWrag01BM9ZDq4sI0Y8PXxRNKxM/rZ9bOmLVmxsiRtqe9M6pzH7lxvbwwO5qjwL2IJozGLqlTAWXQ4YlgEFEMKynp/T/Fevu/Q6jpuJ/Ll5DjPx/4Iqw4apckmebgtYZHHLgN9WCEfLEwVdkEn1Bcbpmc61+PlmDZNrawqpCKrMn4VJx0MfM3057c9M/yD6O6YuK47HgYhklYoTuBT1I7tkTEL2IbI62JFKEciqnpVjzz8dcKPe+Zsx/jHq3Lbk2mUgnAYR0o6ku6pYeN7D8Jb5XGY2VY/XJJC9aSTBjraqEALMooPvwJMV0FTrrnPmqbzKFKNfPQC/NO9erU/e9c5kbJPy03VWiZNIZ3m9Wr6lJq1Uq2lFC/qOtm42ocqsqx+Emr1/mgFOBIIS96KSduYiCVXsgFj4njvyWKVs5fE2VWpLg4d0iWDkXEFZlPG2VRqqtXhwSNB2E3GKJvXlUVs3IRLrgx1+ICLDmQftD5xNKMWMKfmbab3UeuJXBOYSmiUlWpABNOOa4XOrH/bINJkgvkF8nxA5njiu7iIO2ZeWE1oGp1HBiqquyeaM/vy8+9kzr2FPTnbH/GDkR8s9bDb/izMSfdYrY+4Oj14hjrVTM/ladeSzgUin3vt6ZkhnxFRxYQJgbAwturz1LbQ24yotLdEZEd8hTo7fQnu80Lk4tVjNB/9+/EcvfFDla3klATC8e1FZiuhzAgLckLYl5ipcZhlCDV/HFhCoXC+iY3v7sVI69p3ib+2oDqme+mkvtw3BQdO5p48/P/wAhNgjA6+Kab6omLrI/TY4sLD0Q7rOGoX5zC3NMx3bp6nJAGnbZ7+trlDSD4J7VEZhOmVEx6ew/P9JDnhldSvl12z7FWsVJ5ooy1EwyYiYGTmZy9s48eaC8ZE0qkEsjM4Jg/VPwpWb55ncGWy+HrlMiwXpo+xeKz5G9cI/HARudSRA7bp6DVNMoTPs/nEreUL7zdAF7CDP0IPdmzlB73oebCN5zcOWGeNvjnfne9JwsfsFLjpb0ReelGoy/N0Rhfj3MBQB0n6DE0+vOwiP8mgG90c/QO354pe9fJi4CPTh05iQETiTqHcO2Zzx4MeGr+BXq/IwTjsXrmj2naKPp1StQWLZhESweFWcbC0Opgck870BFwP7z1Ja5OWEEMy/iekBJHXfwHo33CAuUzsIXJ1dbS7nh799GBRegS2ZrAdCnyUJ95ccaHJpvj91p3yjpTmMOy/LQyfM4uATbUsEPyinLCRtNJwI0kRn0lwoi8MH4ilI4eyRCw7Tg9YsPdODliwpRZuOctS/yoedcrIIaIABLeNH4jti72/Wd2ZqwKbM3Yt6OVTtDQII/yYSKCa6tnR0MhchHXUDDJpQ77AWfGUEzrAT4cveE5Oud5bV6lMpDvnLar1Xs9VZHTSx0DC2VZbOV/XT/RM/R2MRR6WwqSVBfycJAZVLZ7vidNEB5PoLZUUqK+aZY5rj7d6At9BYDTF5lfdmpPoov2+rE76NCJPDHS7TNqJGxFoPvB3xMr7oAF3TwlKTL2I8DJH/AmsWXFAwWTNRrHKXef4k3ZFJYP43jijCRnuqT6ORFBTpgjuO4C3Juz76OjIBxqaoklJBIYjRUhYywDGVQEOtGf2TNGpwJlH4aWO5rUlncTZxIVeTC6P51fOkFeaDub6Dqcf5ElT8A2Bch38vZHiXAR1l7iQdGfe4B6qbqxvgaFqexJmesUioUn6O+QpEF2BzlpvBJmbjibhxR7Qetz0tJmAUGiCJZGuaPCXwDVTEIc0ebyPYT4Qc+9eIECxogVxPWDBCu+udUNxJ6SRgz3vRBxS2U9t7FLSZBli7P845Pcv2cdgDqz4uI1VmzBfKNU6ZqD6CJIOk56eTCfvcJB52f04JMTEjOZdNtozk8polztgdmKu53SvXMFF8nCrflkUMcV2KNL1P8OYvDES6clEvFdFxv12a6HbMdZljQ027auCqsI/oiLSAHa9aNRa/CxsTknfcH14uKGGtTor5hmeS1u7AYygXJKyZCTaTCFykpSfc3k9IQFfvmiIAH3wdwdA0fpQPMgE89xpvNNr/xjG+V+qtXoiGgjJSPXqie+4oT529vKPpkOfPITa0AyzuHTDIMJCrYb5UHX+F6Hw5YrCXwlXULVqzuX+pB8vVl5VdQIUUEnp+qtRi8Q5UbUHgtB4j23GPenZIITKxSFshNMyScCzuD55LOHzCyK9XVNSDGdL3LSX5SzTN+E0oqiGgx3L7qzwOyZPIijujUIowXi8OLsJgYybQlq0HJ6aHtpG5/xKYMGE8rZuZUoQK8wTJal89vwWBgQzKhOMeF6SFrpX04rI6ToZ1uzIoP6Q21Exo9Ynroq0krtXTMY0KGVVeo7SBv6+gopId5qr9VRKawniwZX6kN/hqesCpUVW4v9qV7/t49jETagqNw3iM+PZuAvkuBLH3ZvkFMFS1/rK/YLsXS0OTbCYZyEYuxVblPfDIzA+L4gSIzrMq7ufmhkhD+k6aU+eaR6dIntGN7eQMBUhtTplYXRabWUKs4e3wALvi1pjSTYIVLes7euxfHb+yYT6aJGcyRGVQqI4Tn3dPnzSjEBJXOpmuBS3OUuZTMmBM3riKXsaySAsLrrJGy67cczWlkHXyiJbW/HYLSQqQhu2IyI+zpzMXZXI0SwXfwuRx13Frc3AOyggva+FADslnhkmiLpYV6ULD+rOS3Lpbfcd5fSpzriJom0yD0siz84HJdUfD7JziU9pf6A/Y8jKSZ3fkdVt+Bhp4QUV14C5ho2/53wNVpqiWfJ9klJPQngX6Jzhb+yoEzBcGrB704axHRj1B6b8GqczJT/a/8ve+f1V17DKF75LYgjD10jY3JIlByhzi3QWikzc6OKLSuxLQX5m/k/6VE0RdSxCEAW4AGyP4H/ZyyR1+C/aY05LXGZZacGDplixedUH5Kq9KRrYGSDb7MXH5s3kzXPHC77ZZrZR5kzzwNoBbw5MkgqMGpW6WWNU+1Qs70gy8ieMm72WPOc5u1+KFqEJGdRCqRBcUft3Ofq62qkzXCB8scphRfE1gYJGr0TywXjItjOOjFCN7R+noKDS7GnBTISPKSU1VAA2y8HRtEQ8APLH1pbBONVN+HpEeQOdhOKMIBXOfek8WeEgpnXnTUV639XzD/qpZ3GbRY0K0ot99vHKFlyOZgi4yjSKL5I9C7BsjpN7Kb5gX55ABtigvp1vmylQC76qUQa4S8fWIFEQOCPI08HLKW0PvBD1gQyS5DHWuISKtANrH4yrP6raBSHBhcQ4iQg+zZvE1hBIm/jMy3qGpt9/tH9wime1pSJsPl/hiwKKwxj0lbSiT0zC9GHGa2kDAJBhrAU+RRETN2v4ez7AusQGx2cOKUo6mDdU4Cf9g2g03MhVr2votwyk1TJvk8erJBdpLTzbyDH+tkFkAu3t3hl3oaFPeCJq4KNYQkknUuW5itPcrX81p2bgkFXeKsWeZbf6E42/8h+LNlXaF50/srG+a4ZPLaJZTF72MNkf2FWUEPbOp8KpUV3An9/T2+1qHo5dgbfQyzBhIqMP+b9KbyA5jIBHJuiFioH7ffpbV0ry7n/2yAUSZCBuR4W71e3Ud89ttpzp0hk6keGtQd70zMxiB8Xw5NULpzlD2br0c1mkmGb5Qr2GqzIdEgvpwXI+RrjC+F8sQ4HDX70DlQf6yvMXrZdXYJiavO69d8pUDe5f/vK5fQUW5CjndzgLdyYILLDmE4E85ILB3qzTmiybUamu1wLI9MbIte+9oiVBZpyOInrhrlSQFLOfHumkzp+Mzphd9pooDvKk51jUljIAHhlspMZgMqb+aFR9SyNp/6b6tbqu4LG7ZYSsfRyJlP+IOPoTrNyL3uVl1Ud77oRLItrxDVfRLiRrv/oYs6YOMg02kzhG1dK9/GCZjJ3UiGtXnbEt+LY1CFaEGMy15aKYeqKP3CkkuYMYqJhY62Rx6lv9rIMlGgJpHtUHtl8rtlquX23gXRbPc/m14sXNuzLOtQRSxXd2LowEqpODAh0QIovwz/tjVcQlNnDbPUsg1F9qLcvU4+7T5MxC7VEJPC9xAN+o+MH+frW11IZB10wxo93+slJF+unNchzB3e+hpruKimPHG8/tJ4xLfHBSItNYMaMtxQvBbBJailm7OsqpBBgpteoB06p8XLqvItlfiGtrGa9E1SZJnzDlTs9yoWn/xYIxXrBjPpy8sk3BkeeY0pAWBsKtnTVKi83c2B5gRa+G+6dZKoaDWx93ffbL1GMQ7QAJiKsQMXvdlvpGXHYqzrn+PLCLsUUW9DFHOaoBuEgymvr+qhhhUGRwDi09k14+ttFa+jeScWTNnki7zpppn2jzxYReeEbvd7lGytY9PfIjGC/IC9DWV47KuG5OmZt2bgcsQIGLTxupxztoaW053q5Agq4+ToAcDu7BUcH79KCcRuD0XdSvxD55vHDVNtDdASucFoC8OrYm1qb+wg9lRrP5RzgCWOG8JhNq6O4vc+dH0GWXbG0GWLHXRwFiW/c6leu/sR4+13+ormL94GwZeUVcKIAo9DODVySfFdH/IB5MzbMnSFZ1DITXRH3Z1iONKP/1B3fwS6A4i6bAYfGxSIsoHz24euZOLcEVFPhmNZvBWizZULV8wFOl7G9ZjHE3l8GJ90SN3j7u52VtmG44uu4hy+024UgdMSM5SbfUfLA5fVIXsrJKtNF+S/qRyfgYwTdm0MF/b25dK/VyJ8k1sRR8A0EUTWa7yux3PO4QdeFVZfQRPuPP6H9sPDA6TWON/XYr6Z1Ig7JCUKbgQdCbxnlvcKZR7nkcb/+w5JfRH0r8IVQ3XiHJxsWjYYTuax95N9icAQtXl128+rHaDKwBjd/mVF5C3DzU1k1RU6zWfWFTRRIqCFlZgPpTMWhMnhA5+sgquxRaalq6xk1ZrUtwAmU1q7VeNoEtpgmVPyolRVyhlHzlLObm2Vv5X70AcaRTienMRogvPyCazcpB96lvoeWLLCsmry8ZIZBwNjkGsRImzvPfGQy6E6DOjEdIkBDOt4gAmNV6jmRg+Hzat5+WSmcYe+aIfr/S8fl5BX7yfu6Teaca73pOKENFcGw8zKHtIHrYY31Vfc5nPmUY/3iHd3aMxYLld+JMyfpqcYKLCwdeg9O708LD7Nv62MHk6ir54oxgxz2Wy7jxDDv8c1GRpmErImL+8HINZDyVu3SyJTFFcsGRLzWfFBBY4JCOn0zYZtjebdlmOnO1ePMBuMPs5idx+n85QPX5zxpyX3CBNLBCdwug8P/Ho1T1O2jJqHT+lvbYWetZfCr1on58cuOeWS5VR3B56ArV2XPW85Mr10MluJTOOhhDsEyBuz6x/P49r3YBewghXk//lbvZ1QuQu5tr8+3w8r7QBtdMzy904ycGe3l8xY0TE5nZbDEMnp71s6wxomZ4q3o76wjWHEyhFBlNCe6moKb6K80KIjZQr7VzofI2bdSWo2OESslWSe3x80MNJVdVREYgKcjH0D8MszyKqdijmNa4aahm9nUiiR3mk+c2I98KSpVOreKUiiPjtJaXEUXg70QT7YdkHB0V3ylbHJs9cJ3vuL8G4ECH/qcpiaW3wx05MCYWgfrLNheHNOntyme/fY/WfoW1K+m1I8fsavhL0yWmQkL8cib79348AM9ktmeK1N+ogogZj9m1c85gSQPoDm988+WFMAJhfoR9/S7+l6pCvGMWWB9+r47zHCE5M8GNXKPHjodroyU0Gd3YyC2eSVFMdYdwsbadWVW+HaxIV+5+n1bD6yIhWqVF2YUJqOyukZaY9QHGacOPYK4J7ubFSoyuJQM/OC0ttFsx43+EvyXaT41cyWYrh8PvdA9NDBeGGlC1sAMYWLofpjTmbOEoB7XQNwNuAHYDSlUEbiOV5YlxHWek1ciCj8dSIsVqOQLPAkFOqdpqp/IfnzE3kg7VlN+x9qmNMih55JnW4NdcaTRlUrccUxsypQNV8C1BBtHUEl1L9uCSPVUGMWE9DkEwFwJXXx0TD9bBXxHYVXNOGypWn2dVvfx6vEaxowdsGbhqYSOvd9OxjWlFC5oJfM9TpjW4jFID8PjUnZPke1usVomdIoFTgNODonATn9fWj4Fm5eYAf+Vulf4ZvImNVwLdFrdxh5iTXN3vwqtUZMeS16IgOSAdnZ2j3Z+7qLYCiEx1JABHQWLFs7/jwNxUg/3fQ/JJ8+eoVfusRcKKbBr+jckhERf45ZI57K4Bup0sTbD7KdirlspYM2dVduHhGBkA3Jd9P+hYrzfYp52Fa2mkknHRwP6lwrPp1N1l2P62x0zAlB1fs7p8xyHOJh3AidIwiTVlIBbjQ7vOfqZR+pzVIoaPybZWf2XeLRGfQlN96IINOkyt3bYmKiduAgfwZENJ/UgD0zU0SzpQw7zFnsoW16eFH0YyGvtiszwlAxrrm4gcMehPzM+dEFdgNpQlMLWR4jkTb/SiEPi+veStW2qOioCTHjkbkRsP5IqFe/y/81i2Ld4dCxXswfQgRLJJN3AChvg6SN82PNrZbd4+E0Q1wboVu7CZwOlTTdQcFWK/d5RuAAXwduxwXRCTh5KQ4ZyCuxxRA5duChkmM54WUJDdrpC9dccQi+c2t0Or1T151bxGWebhFLzwkhuQ1tSn4ODQ8q6xalfI4Bj+VY0l9+uJU7AeeXnUAymCtAaK0GLxpIYheXKp71LNKXkOeAJEEyH7xjfV146TzPxZs8Qfjx+BsDiWjE2JfPcc4i4Hs9PFlC4ieHrbA1PGkgQuM804V6BFG6g0HZXIdT1rplpL+AQ4JFHUaaoPzxbm6vqHLjZsf7rhXstt/YE88eoNrnT7E7OXF+Cpk0v5lXuGr3qMK2H3UVzxxyaDYy3gNN05ZEoI/a/szkEwUnkBXhaHbcD7S/Pp+q/pDz76WaKg4Wp0SgnLdePrNKD3nSlnwTDf3g/7JU5UOCAIQLuYcPRpyDo3C2H8NWZC6IqvrppI/AsPh6L+hpbJZK4qds0kRNhm/dAjS05sg9GUNJ+9ShRwVlWCxwE48UJlR/lST4cZkb9i0ry4abQ6dkEYLU6FeKGBosqpBawwVWMDA88cmj+Of945vyignWRkBHe9boTlHfdhmBL0PMhj02nfb8Tk++hPsiqhV1s+iwX8HvR6rlSsYUfUnvDw+q59l97QoKPtpaizt6Hr2U19lQIP1q10y65C5SVCD8Cz55BUPujaYxwgBxhaHrThmFsptLGaABLAiJiSfgutkAVOJPovMNHWulU+XzkcAsW8BVEqzm9BUBe/IHARPbVZW2ar+ZbwAJbXJmhvZD/q4YUgLFMcszQUmrnZ0ZqLynC4qWnJIQGwqjb+4A/UOBe6AHKOG9z6/KbAn44Rpi8uSxHrePk3Jm2buoP3P8BFtLkj/qKb8DiXdbhyQ9jW2DwMEB2gj1QwMXct4hej6fLSkC31aePuwT34M5o74rcjC2swd72BySbyrV7TJHoMvxAFhWc38DH79A8vQCzQyKQA6dm/osrGTiuOOT8So6mlAe7rA5N+rR+bosRtmYiwUNpJtjdItPLWfL7Um8UElnltFs96+jAjeEuUgVaOQt0VbGrQLy+K/vUnApNJqXwy+nH9AlSLgczHBCHaXxQTjsVmnD7LUG87DQlGk3WYkaLDztXZRCrqiwsq5uaLeWyZqZLNDZfeyYHLhYHDWmfibtXIkBEzhsJnN94zbNX+Avklh93XVvF6kmKAy/F2lRp/5ICtgtPX3IE53x8I66i93e8aWiwPXicJpCKnLjybdC0JlVb0/IAthWQqVp91J0XPDQCnAv11AgxglGCoH2seuLhFR/MY5b/HFjpSyNmEuhdcitGzFrPPv1gANrisXnBax3vJTeJS1L/ULV+W10RbhTxJI9YniXpL6bhpocVfCHoyVrxkRxRYXM6feqxiUZCTzg1j4mgt4jh6LaetJ4high5fOhGQJNyjOtjZ397N3hEqXmvRDH+c52/3+6KCR9nF7xvFs28eRtipkj7GtzzhzdNvwsEucWFYFsm7WQ+0CVcOgxwzGpSEScN3Fe7DHTWIBwDkSePgZNvyc9tDKc1k06LawEUu3WkShyQVR7i9ZVvwO6UC1+15xVS5hLxviAJhk17uLT27CQHi99O5AaoRKH5lV3EJ83wv0RBB5vuE+ukiF9IWL9Hvk2QgjjfO15EG5veWnfJRs3gMoxqnhG0pH5owHlAoE/ghCufEOivqqpdU08nzsWduDKyXjzs/nTicUhJ3cyj0HVHn0FvvDM3a+Gmt7dIZIL6Y0kdFTYvRV48G71yR4atCdviw3RijUSnI71Zlzr8ageHs54EbT74nMIsSf5DR4VmkR+Eo5HNnq8rT9W6lzci3QMr+fgpdYyhlY33I0uzyXEvJfsOsdvqPqvlP62zIuRcGNj7AHW1d9qBHOpv+riw7erRS5N0GY2wrMeNcTtLNNj8+f4pdeL4hBdt1h0XT/xUewfkfgeWnfTwYAE4RtRfYdF+wRBhGt8HM6M/niZ/HuffreA60vUnRNQOHgpVAXTl1KFmHbEOIoW0L9MY0IdNDjVLJo/XJgrtv57Wr203Da7DRqbmuqAy3cJQznGMKYUWwAFmAXjF7tS/Wy0ao9eikCq/bDbCO42i9Ie0+GBVYhuOHeSVwn+LQW07IhUBBbTrfOR5giWvsavxiQUfaUuqSn/+350+17/4g7CQ2CZPlYgVNtwo6NY0jeZzEHeiU0onEhv2JjcTmt2B7E32LRmDMGgEIoB4dGf0w+trVQNdHAQ8GbOVW5D7iOVrRJrD7dxrfRwwUZQ/xG+/Q/m8sQMoIX8lqTTAjuypd2iEZ8Fspkb8CMKVXx8X5imS289KFqhnxIRhm3+YGn8zCY9dQlS3uuxcJzNNQDb7QVOH04HAXZBmRafqKga/2g1nuarMHW6Z6GDSP1b3L6Vb5iRsSWJx19rMCuFq87luQRsAEyvpT8So8knknxqyzl32fZvdnYHTkr9rZwupZdtOwH4OPjz1XP+Osp+jQLXUmaUK2PZPThdDvAer1gpU931DyjV5rBkiNPoYaOaTkYHRoKmrnqwBk4xbwd9USUiFdt6uWumRujPcGbqxV3moNaUAh0g38yxk46eZnb8y3KpYx++DFudGWciadTW/pTIMupEClrY+/SG+x2X4JKBcEW6pntyE1oEGUIAoLPAhcwLlWtc0GM8i3wtOkRiNrw6ay0HB6daL4yKz10fGaxnu8WymMSMCDHcqd3TnaEYlYPIZARsVEKghhZ+hbcm7o/ysQXTP6p7ajOiUEduq08PXFjKQZ1iC2Onffp20nKG2M+biQcpeXjypwFA1fWrNmgZc1QxVakP1nHPSU8lX7koUheyLf+uLVzdL8wQqzwL8Usm6dOF3EEWkGqHJSUJNoUzFoFsXl2RM/n2/OA5ok0AXjYkT1mVhMDsBVk9kcG5amww/+gXNcOCmGLPeYPpX2xcMT0H+W8b+oAaqdgCv5n4Z18OYRUoh9bl5kH/zE+AwBL/61lllRRHXHnhHtsDb1tMjcf9HLrlmyd+E63N2H5N6XIWrNKeHmnlNr/qwl0U3b2/cp7JYDl8U9b7GyYXIp5teoPRgmAduo9Ev1ey0cN5QpIoOKhwYEmwudgQJEWvCnEtlGShOJuCRTVfhoTUZtTyV2ndn8LpoYDxzGGRAbc/pTYVXxmHbBS+WLDCMrZpYYz+tUfvr4m5rv3dODxloH4zbB9FdSO1Ghmf5f4paVnzck/hUzQD6O9JG73ltINZmB5r4oDyFCl4guP5mmigdTpo1lTLEFwEm7QNfiU86n4/bh93sX4UQaEp9AgmBkbPlVYYWjwPzHDKgF6apJB5+Y86Jun4MHSptCOSicJHDxjnibtr6jFfo9XDXYp2dFDf56PDZ8i56FxEie8eQQmv1sIsALA322ao5+VuEpB75qBzXKFDKmXOMzWF9YugbU/gCq6nubP2ZLwWsVuZNoaTml7JEaivqIbCgDFEfeXmIGC77mME8XGvlNWxXUbt6qdMMu2gyi5vuQagDA5+qPZ9W+sgUB3s9sXRL6NMHKHEegyLHiiNZSiJeGszG4TcP4suASYQ/1t9kaWJDvFA86fPxAQvXhJgU+lfrb+twhuMQRfXHPoQQKs3N9ODhK4EsZh2DxYP6Ri2XUEjm9VZhf2yqtP7GXoxd6TPg37QN42Ul3wXbQOKfMKyovryJOvVyT9ZpiAKuib9c1bnlJCAhOaVh9Biwr9O4c9IdsF055mJeLJtJ710WdrGhn8QcjvsW0cj2zDWxiHmf+2IEhjKR33o/oZAYEgQSns/nCVvl/SuZ6d2AOs0YBSGW1OIt4RCv01l7ar8bI3nkh7jzVbEUGccatQslTZRvRAOA3WAFZYf6WNXBPwnfX9y+XYTIa4HkrfcEL+JXpKZEnnE51m8g3lSWHd7cv3SrS//XBgx+Y9632uxpx9Ww1FdO0jR94bYtkPUgBycFkyCo/XUal2XM3vf4KVtt5lekfHWmZgAfjUEhQLo/qJ9XKMPQyjnRgmu5DIoIYgYrWyyVNlELW79fCHPgQ6UgIHuL05yjx/pGJy+YmEqgslMqUugKWASWrAlA2vqw6Z7z7M0ILqrlsliRy2DNad4M0uwDe9py69wUEc9BTycpNjeBss1lmjOWPOBRyjzCqm2ahUOqHy/0iOW8esRgYTvu7kouacCdCpKGcXrqkhNrFaefEbPGJgA6/6K40u8+iIGo/ZqKDMh+TpTsWNwvHyooxOFWj8o13FDyDPjfDcWFXCOEUnY/bSJZU0gCxQJv+Z+R1KiX5x9VQTIx2QltsWpk3GsKjGDfLQmKOP5MboZk0jvlbxwz0nKVPpfGLb68Icw0+WY1un+wfZr5EkAkP9gDz61Aue55l8PI/nqawBMmOUzDsrXFqiYAMymxs8+qKLPDN+/te0WmEzmZCulThzEqagRtREOhNV00imRszsCZFiKYt5yIm0bQWo3+//7+I22imJkWp7uRa8E9ApUxGgUSGnt3kw3cghBkJ4xbVOZ+xCVs0gFz/za6RVHb/OtFo4lIu7bFMMXkpWrEN91u4ScqJaHrxZDN6A92IZWZmaqFn/oN13mwxO9+vgkZBj5w+NfUGQtu8M9z23e+OWDWgrcGjD/J84d4OfjKAD8jChS6aeBBV3Bo74mUxINaaLyBbKLujbmJ1jssBQ7cw/F8JL9LVWMUiG/b4ETQpzh6n4lTgEaPc/iVOe9uVrvoz0uNvxKMfnJOPXyYZFOGSA5Xl6yoekUybY2kMsoV+/gFyevsf3KZ7EGYFCL9vJHVyb2M68V8UWDOdcGo8/TOky9GvR3Dj1HIQnPB6TIb9yR80GZ/ads3atIFaqgGrJVhHPfO4jOQQ9Ny6h6X+ZYC5N0micfAzoxNdSO9k3AMHmdtJ7Ihd8g24h4mjg9z08NnvDnifGrHV+GJgZUGo+aHOKDcAbcNklgkQ5cql4imPWLI4TS8DnaO0y0DbzlXuoS76jhrsvugm55oGRhMyPJHhXnjJOJoGHYxK9yN0RwlSq+1dIVwXHKyyljnZxNP5gKQafuzcfs26N0pEnM98rj9e3ESKIcIca70X5fpVEDrbhUWqzl4AdFk0IeydkpOWAE7iLdTswpl9GjeMBx7ysfUxA2ALx7FMaJx1NhG/oozr9xscRWqt9XZriULmscHtSsrfMsgvol7oIpEGRlxNS5oH/DkJKTT9aBth9JRI0HoET8hYRo1++5ZqlLTvjbHVmYvXlB5zVXNcnuG2+HXV9IgaIFEa7hBVVwntziciYZ70u28R1b3dgqEaweu9sdBP6r+jTK9HUu9MkTZMQ3fktXGv5tNGaqSBqKde43olx2PM/+0VOGnG/ZTdRhgU/OtmgsFv0koS/55O9VAy8keplxUiZz74N4pwFl8kjd91Hce00TECoQXbRS4fb2b8Dw3sOj5C8QeAZ4DJmksqeA+yQai7+XluAmLhe8zSRW8Orz6Jh4EU4OM3hGXjbH3K4BYeheHMz4JnjhFIg0eIwICuF6k6aOBmpdBJyE2HSt/s3FB79qCJ+dkV7nMJQDxaMt9moL2ChsvETxGvM037LIoLp3JPfHWvmPCyYSuL7ZyYXU6JDwqsf6NO5fS7utbbCsiH26XBz4n+GGj3ewnOY3NB8QbxFZ7HsLWR7M7zrFYzRu/EjSPuP+pgiBe2zkumzSBUGyIu5Vmtc0NUv4KqaleryuJleKvQmMZQqRJkexUzMbWaBQEPHzv/fVDI+S/8d7VGWVZ1yEO4YhQN1jSQg0Ckx5X5r6mWt8EW6ryHQpiQZpCsKCiUF8Teaj1ws1c00PaZgQ9sBLiaVwc1N6lBMVyPflUUkX04voHJum6BcEJAXXMANWkR3Vh+3NLe6/RhlDHdVTXePSQ5uq8r3FCpZhga93tGFIFGcZBxncWRITpGG5pqHr9c7K7rkRHX0gzqVD5xgQsE8j+rM9IPANrZU/x4fefaPoGB4StsxzRYdUlU937xntnoRpveRBkXW9fgyHC2QyF3ndpgk4ia9GlZqviso70SmJDd4xUcpNcTx4myWEK5NM31PbSlukhbbY+KRQ2XxVHNSQzthzAa1/qtovD9zda4TtfAYAyKVOwwUIMKsVWoSiTR5JjpMgxLgEVufzbJ6LpkA0A3Nuz8qt4O2E13dZMeCHWIyMpIxDqF9TCOvKI5XZSxJxpqleMe0UdCjSo3pNgbWox2Dagp8C8IqqkhuvuvL/i4ToVSVfxAcaZ/B9y0+1c/XXycX03AMD9k/t+fAEMcJxXiPaxuRtWjuWd1HxPzHSA/BnzBqFPUrWpL/UPStv+p7Rao52RoGNoz3N4IXKlcW3JPE1ycGxM7LqyTdp7CgHhw3vrS7pyOYzvE5nXXr/NTFKZVV9uR8PoPcBiDwhVhKJ03/Cjwbv0Aw3TKg6USph3RejPORw0GYgOqTXRPTvW/6tzTiRKFjOxIQbc+Jf2OJfP/LwLftIuaMkF78XPE2dfv12tyEaoGEtT7L5HMycZ73StY4l/EMtxWCxGAtUM8fGjGwd9hCsQo6J9o9qGxyc6AnjY+mC2mvWPaWeIW3bIqjntM40RiTIX8L5N9pJxNAQAQOd+sN32kJ/SWdENtt7D5GEymGqTHiImzJxDl2yvkt8I86YhD/JKY1ysrlSNx4ORC3L06pJLMMKxsVSUeMSS9wlAJMbzKCZ/heMoe7e+t2S1rBYm9pFbgPDO3bvaEUt6mzhXi3NgnKaPAM7mO5zYi8s5MUtsJ8CKz9ycESL+hYTNq+GtnFtWRUdj+9+JygzsoV4DUYmwJ1Db8cCsJD8YdHOryhinIhzzRDe3AU8Id3wt7d7DdHFlB7N5BQEdMYo5zyXq/WLbUIGUvyQSynLM+zGVoCJ2wAj11X7EFh9FlizPq+vA2WWlqAUtcFdRX0i8yLlZJJOZUSpqhVyqqw3lKzhaovlEUzhn+1XjM65QLAw+UPYgNW8C1d6WlR0tS1PVD0Q/HRgGfxQNnapCjMyOxecPnWcbNBZ47OfvJdpIRDw0XPu19S39bdn7UhrRrk3NkBsJySfm20xvH29qEz6m3JSjLhVHKeQmPnGHQvkj6avDEP01Y1YA12V1FHUzps7Dzh4iRyYS/E8ps2+J2fS0PJe2AJlH9uRjYaqqD3ilGZRHFuD3CzsncCmbZn65AcPq+MCCugq0kskFmAQnfarBTpfzoFOga8+019kGm+s1000BZDZ6XuGOBiHjx7rpCi51dXUBRH6rHbwWgToxIhXqaJ3iv3LysDuajmGd7fWU/xC2tOCtjxX9K6oqPZfH36y8E0S3Z63Zm3/qL36dPCuLQuSGQyUqjFg9Vlyh3gHPMIpkxqkdsulPzP/vghqr2hhQKClD7JixPZI/Q2h8sgR8YZxDHPgZc8MqzM43FSFLj/Ka2Rsxl4s57zh0EN/fAgOzyN4UePZaFzH5EkMcLz7lN0c+RF5Q1kTfShlDoo+AYH6KsxjJMjnRt/B3Hl5ul2/PsnvAccHjVvJAdTEllAmUQk//Fc2G3gLFScP/s0W9eglH2j4Ho8iNvK+zXO22uj3l8ppZ0sYzTKMpNaWrOMrH/gZ5ZivssN7mu0G3Ztf7lSeXVfAVa+qLDTn3n+AUhpQZoegarPLAywX9ErmO1o7gabOK85Ucv7+r6cdozhzCjjXH5CMblkP676GO2mwjZV6h5XD/ViXYE0103Hjf/cSuAG39Vq4dOP1P1tn8gD4zKCychXMF1fAP2ChCpA2FtegjCEmsLqfoQ58NvDXFUO+YTqvFfON90L1XzK4QFEKZWFH8MTbP5fsFf9jSxHgYUvdbowmR5jJEGaO9N8CGs3qL2jKla9oPaseTfyLndRqUYQaA8TSH3KPFnE8ihCwZ6xujyLbkYzTS7YIiju+HM3li9CPQBx+a3ewVR3CITL2YTxXYV/rah52zog4KxTJFYJkohtMuHUjHPnRFwQO/YkQ+uZUXmC96AeFNbg8ylfVgmyfQSmgpcAOVnhJsRZk2/S2BltJlz/OK4T6SUIeD30gHd81r9UE6iTqP8fVPn0rARt1R6cCDSa86Ce1q8WcE9tLFgTMqF9aqsI6Ar7+X/jZt1+BEJs+ZYvVRWaGAaCior5KQlkvY37ZUswaB4UpZ3oiw6w+qzVKy6qslksx3Rd4Gitc7223iEWvCkjbmNvdEkrLya3I3ItUxAfhzY34R8UGNu5dtQ4pkFm42WX9R1nfHjxa7EFG0az7at/AZIKSIQL0AMhbVtdN4MCyj7LDDi9F6eDcfwc2L46Ydq5F8PZhs5M/FlO3/8mmOnEyOC3a4tOoo9J+itXaNHlAusQAprVI1FpU9xSvE9QMsoGecZ2KxAGA7gwrBAjlEwaI6gMP5Qt3+hwVF2Nc9p0lsDBN24f1mhu+d6iFXiU/jqdnnvNLgaWCjvL0kzTq5yekSb670Ubx5W5XZuD+iOA8ymaR8hi0itKqb/Z5D+B/ou3lEf1hY/CDeIkExzCBTucVkshx/J5bg8Shc9k/T30sVaLr5hNejyopWA5QmvapnMUH2hNHixMMDjmgRAS6llK91jkNJ4iv5W7tuI5QTUHey8SUSuLcb8nSUe0QDN1Oaz8rwErnciJw1MOcwAmQfmImTus9FiL3273dEmlm2YXrssfXgO/sfWBqbmrxoM1xmmITYf6cHLkGig2Zz3FGCsaMYBm3OX3hhgwTu9S23JeLaYA4NA/lMTjKKGP6Djsf3NyM4+Vy223McCv1wRm+fKMCwgJ4cxxqgX+vI2bueMip7ruXRoxTIZTG52T9TC/xadfWaKcvHhktBc1npvBRNEM+Pm9vjreYOUz3XKxhQaZ9nPOtG8t8IpLdr+DS0KrT5eAY+EQ1j4tartdjoX9bqRFY4XbFUKlK08Uyb7qaA2+iGwoE0hbL2hFwHhCBixU//m1/0X2Cklce5eHvnn4FojjI8apUMbb8dRfoM4oDcDhM4sdUwtrIfJonRXCbcm0Ws2MLYkNQQpYawGxSMY7TtyaxbpdGz1X9qPNjkR4y8Yd6DLTGHy9KRR67d/jsB7zgS6DP356Jlpc9N8smqao1X4JCzCaFUet9YIwahJRJZ5w0sHmrA2UwQ4mgnH7GOpcD2QBx0RWwbXsnj71+I/m14bRH+igC6OOC0shLKp69fbF2l1eR0QCBDfabUjeAYj6Q2tVgXxXYr1Q+lTdQay/Tg0H/XZNXJETECeY0IhzRLi53wOFVnsAyg7V3tZePN+LE3/eM5LxC6ygdkRK3dkk5evd+3wxoJJHsJ6QcygfA+KtERL1zvJ3IZsG9nqtZ+IyBanKyX3SiFD7eYfsEtiydS4nbOaZ3t7hnQ1MSXRt5Lso0z0yXwKH0Q+c5NBddDokiYQ0MoHLN1UZho8GQFw9rtjDpyBNYsXImorA1EJ7bfgfa+FkvbSTRDwkWjvFydDdJRTL405hqDRi29xQjhDLaY1qWob5PWvin47NJg/DSnpCCKjACC0Uehyin/wmJI8Rb6ElJua7Kz0/DLxXPo3KHthCXE5wF51Lun//eHJCKjiXGxOuh+CuP+a9RRFGOC6ilL9HE2jMlLNASFYepCffhRvqGSFmE7aCnhtV+QezscOuerznuuekZ434v6C9UvDPi6wT2IleoH5ddwZazN6scbZceq9cb8CYJ7qg3R/ODa2JxU3bnVOngl2gU3DAY3bmTJcuWPzBLUNjkY4VjHcdcQvtDe+xHNhwyuwudsWTdZy+NY8fCoKKLdoNFTonWw4Fg3jgblqH9wtXQsmf35YLqwPIUHXkQIQTWDFkaBgemzGXvq/KIAsFQpcblJTAXh0WbS9uJjg2aPoOT2lafqZ7pcngkQ24hc3HbMNKdSZFNWMmM5zpa7FMbPJfKVRszXmT5zPk0BZfjMCxSNAxekWmoQ9DuRi7jUNfAdQMwNPWlqrNxNiiZT80VRB+kGPLbFfDFgsb+h03GHnDOj8uDhe9uS+OTubZ8soFtVQ8wGoMRupZ+dWPemMjHipC05igwy/jNk7FxT1g7FshpnpXYJ1jY+nB65gfSKqaeIHJgng/lOCgnytoaKfyn5Z/s1lMwbuiShQWpbvvp6PHUng3gc+C0ubD+sqm111eNhhmrHWBQKhWAn7tsDpdDPpAwbPYAC5SBCNagdTUbwv0ScKwJtUcQqhG489fHTrVSvPv2ODUb9jWRAEXKg34rJEoT40CzxpFK+5+gQ4E1r+qfUBGLIjteQNwiEFZ0lhGbx16Xz6MffDJ5ij1B7Yn7sP6tuzHww5Jy5zuIUCiHUHdimjOlMzK6M9RPY2uT3kJymf+8Y153AlhGCUy8mt2bkUqqkwD6zen+8hZSOrfEa2t4Gmtk84pMfDa7Y++ptxVi0Df6MSujCQNsYRhkkD9QqlgnEnCuattyZWfPooTs768n7PbkCAAoEHVvvAyQitMaTo1fk8PBSstenRIcehYfVAU9e5tEZIAOHYnFm5muyS2n4cLKQOWMp3F/L8AbZPBu6T5lHGbz/JvaGyVdOlFekB/ovl4LnKprvCX5/O3vuOE0d7ixCQRmH+5ecVNHmDI4wVSYegiaJX+mQxvq0tAZKJIUS2YWyxDRglD6x8n2n8+vPeGW2SKvxY9jJ
Variant 4
DifficultyLevel
768
Question
The rectangular prism, shown below, is cut into 60 identical cubes.
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
Worked Solution
S.A. of rectangular prism
= 2 × (5s × 3s) + 2 × (4s × 3s) + 2 × (5s × 4s)
= 30s2 + 24s2 + 40s2
= 94s2
= 6×(s × s)
= 6s2
∴ Ratio of prism to cube
= 94s2 : 6s2
= 47 : 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | The rectangular prism, shown below, is cut into 60 identical cubes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX9-TLF-CA35-SA-v3_4.svg 400 indent2 vpad
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
|
workedSolution | sm_nogap S.A. of rectangular prism
>> = 2 × (5$\large s$ × 3$\large s$) + 2 × (4$\large s$ × 3$\large s$) + 2 × (5$\large s$ × 4$\large s$)
>> = 30$\large s$$^2$ + 24$\large s$$^2$ + 40$\large s$$^2$
>> = 94$\large s$$^2$
sm_nogap S.A. of cube
>> = $6 × (\large s$ × $\large s)$
>> = 6$\large s$$^2$
sm_nogap $\therefore$ Ratio of prism to cube
>> = 94$\large s$$^2$ : 6$\large s$$^2$
>> = {{{correctAnswer}}}
|
correctAnswer | |
Answers
U2FsdGVkX18bVa7dmyhqLzm2JkHWqoAcGbm+TJpMvXoTXO4qzaMCCzpABTfsVvPUuNehBTCstcjsAHioYT6eo+XRxOcBO8SZEUlsAD9UDIdTMwMXYg54XF8/yIoGjLanHiZOROP+2QC4mCH8In+ybAwHRl/051i2ybVbM7zbAsO2jpDOLYhyLyUQBpwteFuXCEe/mtDyxHmRQIrD8K928SVmjRUd9x5b4n0kuGyHFTx/da3gCEVscntZR+MtNxE4IpAfMz8E34kZgYkHIYvtPJLUhwmvBP0vDpODGLKzvCMVDPv+jrizxTcuW+5ynfMzgulcB3tTKm84gljahJ9aFjRavlo+Ksm3wN6IiMSNIIJI4uYojPuIjDRJ8LSmsrbjfqhjCqIRecvc0g5ULNGc+AvA0xYjhGFgGH0MeOMo4C8nLjcnDQLiU94SV8JZ0iH5PgkdT/HIKtYI4JPZmOJDZ1GSUHeW8vcUpMx4vwvz+Lp+HDvSDpKYJz1lqyVWzA6cQYsNsYP9N9UA4JCnMRJj2Hqefj1Dc8Cavxdsu6pg6ryL8zT4L9JjlZDx5CkvKxoYmXj2oXm3I01Czy1kAy+9EAWHAPgFtrVkmQnBSTf/DZLYuU9VqwmvTL8gHaGXKvEGD1zApCrC/zNwspZ75lEQwZOBlofb6jdUhGNwSkhlyax+8sj6yDxR00L73JGjkDND6A0roFpt7FmqlU4Jye4r7bBU0CUjOkQ1B0uGctRsumDGXv60RrEl3li5AZ89RC4WQHIDW7q6z7sFJzhp/bV5fesupZSIDjbPJyt/5MxhAv0qCPzdDMzUwP19vr66T1B4wdHyq8zTsQF3FwQ/SCrzl+GRidCklLEiPhuiLDjEyw7fitQwCnWr4duADg34jS/bC7Hq3rmT2E3mBUWCFVSibo5Dza3ZUsMHbcKOd3rplRs8ejUzVkv9OFLq4sXfTIomhoEj1lX13KuqNpwLc43E32LIQRQj1QxC4fc5F30kT0YPS10kt6Gz3aCLrgjCd1AyVzqkGCrISfI6rbyb9Np887gjNop1j902qY3uGrQRWhv3ZlcBQGnXJsX8Gy2v56orw6xvncs7R/ELVrO1aFr4NrBZ43altzCvA2IN0fqwcBnYLrzVcv0CkPyVBeoUnQB/5VPIjV0Ayj9PmbGt3Iis5rKxD5q5aj3wwvrqrJVb9M78aNaJ/SwYRMzn7j0HR40ARLIULx0jyGqMYP7N8Pb67sRt//TWXx/Bzzt6tqvvEMLtE/N+AUc0HaJpu/hHKOWWpMw4wAqb08putlKBfyMZ1Qf7t1i5JSM6OnVtZkT0Bf3jND3+Z0iJtmOuu8DmEz9HmtNWTy6c3AZC1iINz7/hiX1q1mkj0JImv09X/fmjup0hQdieCDqTSt9GpgQ1hufSsohF2ADGuaH83cZqubdI/OlYgVuX6Ms3Hvk5iPMKKWWtfnmP6xvriC+tLrV1PZgC3Kh9Vz39Qw3bcyOa+9FNPeHq1LotCrqRiMbRUk3LyzktflgpFNHoBHMywCRPnZPhrsSAZ2MP0+/o4CtVoYET2xNM8cazC1zMoXdkN3Nk8dmLRAc+b4ASrtKNzjs7Ez6j8NjvETBwrodmFWlsEOtYzOjjcjvdS8oTbfuabSqNyte+UdF9KqMUGOG+/k1vg5+M1iAuopQUXBEiBH4lcDEU3CfsjrdXyn39dMPkIfceR6AIkJvWqVkPl89E57UIu8VzyaJLpOcZdsnCCVrZGgezJGYO5isDVRIFYe7/GtV5sUTewf1gPjuzzYXc35SlcCgY++SZrmjIPIKOQlVgbc93SE+I37GKN8nKtdg3L5KXQhFq6k7dNma9+9V16N1jjMzJtruzT6HVL103B1Rrc2Kmyh6oPci2OWw1WAc38+iUdHrN1lNeyoyO82NiyjdJuoDbq8D47Kf1JnGxTMDeBnb93AjY8+ozZjJ32fOVBpRnsCEuXI3wCOpPxFjiOy0v30wcAdrUpNnvSVA8zfCphC3F0tf03Se5Ps80sVoy+3MiE+UxHmpB6+Nt9RJIOmrEBKWyUoD7IIOH5bkoMGilT/8nsowq6nwuNcTPStknTv0eOg2GD98HRp6luGjv7cuVKglx4AYcaF4bzwQ4s85lmTkkrmr+BfnOIlzo++U28RehRmAo25XMd0bdJvFL+TMlik2UMrYs+Gf8r+eJc44p1sE82x+pS9JtCbt3/RaLpdAWSK5in/cGFEqDNRQPgOZo2nralvbRmueDVtj7sK9nyRA3qfVAsiVNYuW2vn7dKwR2YNcJUvHDpz5SI/CNLNkHUDRXO8Ql6eQguENWWDe6kXvmAqQHqOEYFzJIfaS3oUjODWlanle449b2oN4Pz+SgQFR/CB6q9P6O7cnAyPTbNvfi39TUc69lxcoVtzhMaE5a5ZHLz6+gIdsovOVlP8Z1PtdViZ4kY2p+uVTfXjSX5SXBC6+fXIQN46y0Jnxh78MoDHhQw9Chv4WlpTCEdeTK7Pl34ZxNxr8W23c+O/R4g9uFbDl2eWeGI716IOsOb2gGLJXl4Zhtwesnd++g6CYdPo7kjPp9FG2pAZ83nO16v1ZRfxknN29PA4ujQSq99VYW8eWwErEtzkBdWClh15+pP/1mh72zh713biq0/41OPUaKEV2iVH+JnEjy2qRLk9mLwEYQ+c3QlzBtgLbcGMEtYUtQ8fEirQSWYGsj83HRijxCKAK/PjaY0tv/4/tfMuGejdXXcpm/yjh8PkCwHTdZeAmtph6UZA6psSRzv48kUN9zMrBPg8Nyo3h4kb5ihdu1IrHCan2VKM1OgmlTLUbr6Nfh+PwCRDhTNKwNpxkL3MrdvGiaMqvMxHB3dYJZAWQTu6uSMt3qidOXuvvv5HcPQVUTmNL96u7SeNQkvwQHeo2EYI4EaZb+nw/ogJ1t2cErA2/w42SNEdgHAIpQGN8brm6YX7voFtjV6X+spaBEleNxcl1pquD0DieI/jx8qUjo5VbsSdmpxg/cul1VxmHy6YEk5zSLMx823MR6l2moRoMx4JHUOfiTjY1yshk+g73JK2bRaHUpdDi8vHD3msNqyL2FyyENjUMbTcJ1Bc0a6IPJ5hpi3gfNAfeBjgcaxMbl/x32Zq2Ms0cUhOe3T/t6vPjZlnCOkxw1LS6b8EJ8RY5rI6OIINiq5JWpdMnv08CZS2FLl/R5bCOm2DJrEhUSNqbo+Oc/ILk7GoZGYPeqBVeFC4aJaByFjxp7lOqOmAFYtQWKmQgBuxl8yYdkNscI2GVEQVYlBiaQoKnoKU9mWN35xI6r9uwtGU9JLe/t6FlrYslncz+csHrOYF+xCLg+I1O5oWNfET1L6WKDVFJNjbVTVrd0WCGEvZEW4eIvupw0srJg6RrmOqI37wbh5/g4HiFFcC5C7wFTGK8x84QT7Uh8P+pxxCwmlzRnlyp0IWkWFQo8SpkX7A5UjpEdynGQzbMpC9dy5IF+bB5YVCZ/tKnsfw+0AhclBYqacVgDB6NqvbkYPr84lS20xLtlpEFQ8hvifI0ysKxSznv4GNYuHn0itPFrqhX1KpnbWmtHxhXMdBv2f3gTl83e8n/UaW0nYQM/vMhXcAgJNpxaosdPcxxe4/2k2EvUaIL13A+VJPAUQ4Js7+30wF8fRdulE22GIWiO5ILnfp6xzihkqwpeu4z8WytgIX0ROO+47cAzt8qQrqcWR8f3z5GYhX8UHU1JAaoythBhzrZBaU086c7s0Y5Igyb5ACVoiX5PnZhrxtfHPgHR3IoG+49cUICUf3NUpPGJXogfGuTk4ufdgeeIAZw9mcVdzo7mifMsR2osgJ59wWqyJ4gATU+hWrzasyDielWuOBbg6+5sgU+XE5Do0SO43369mrIFr3ujNddzw1ODt7d92BgeO3AdWK3lSefoMEL1H6aneFhZ763dBl72UCZdqOuKJzJ5AsQWHe/pe64XEsJieP2SHnjq4gXGI+cqtrHnB8brmAKPFxsTS9a+1Mzf2U0W+LiAB17QjUd5mHq62HDceYBBxqFX7b4NcYqycamUVgMdwUaxeITDxhykEUN8q7rIpmMTXvD8rj9M8NjQca6kGtCc13d6OmRgrItxdRbSoitNjHX950nfsO+qjaJPtQXlu/GjZWqG3hGc5lKq+FvrlGu/YFSORWLfqoLHUU67eoe/m7BWdxyoLZpxOQrmvo31OXwGEOEmsy9T419yTV3IbyJn7EV2igE5Wo1VB3P7QbolnXNQjJwPGQ9K7QGkrzZhO3FDEgvScRr4+wSXV3v0V4o6aPjueCW+Zxor5rH8o2FIFO7gAseEHU49iWoOxBofqljyYnQJFK9FH8acZEJO65HsKEtxJMDa9kl+cfNZ/6jD6ytiFhV93tPv8SANLYB1icKVCEORfcw1O0/iO6Ww+U4MxJ/CerviEAyrbIR5NM8zVV0hsBfqUXTVAna8FVt5ZVEu2dBVQ5Zhyti5YIZnQ1DGJpce+AFmlYxhPCtjDIhaaM1yk4tuatSNA9hZon8Twajs5pRPS1+F4crp22VlIE9d8tRkcCi8Qd2XIHZmp28GraciSnfPZIgGlyxOsztxI6AU+1txdVSg8CequSHKEAf4YoFQmBqnCN2+mPmAYj6x3d/2PDQHSWa297OXttj9CUrW+ZQlJaaGxMc3M7gC1t/lV88VtkmlCtQhx8ToySwunLsK83jchC6pjhIN/D79zvCXjoPfjjxs1agwcN+Y4AP/aWvUavhZze1paohkHJmXwrovDGYA2WmwdQPWEA7Ney0YejSk0Dlx4Tb+lLC2fLMuPRuv27+alyWGtKz7i/TpizmV3hW4yCI2lwlp9ydzT397wCDSGOC6/NBfbBqQzzlNQuW1S3ite5DDMV50GI+JbkJW8nd/zGUsqjlB/ZjYvR0OqVJMB8WBlkeAPFisOlTvP0jzn4QrOTMB5IaEX3534wytt6Q1BvFRLrppdrPzkLFAYb4vv1asDCzjiLlKeWPI+vg9W/Dbk1Jfe7ED7TCCEewmXzNOvkna7MuOo3+ngChiH3SeXYirelqwO7yT9b56+W6/Cb67O5KZuyWuLdCAoZCTmVrAXSphXz3wefZ1KV8uQYfle+nfexZhBrdkJ1bKYELQGh9+UeMRIOT8ZKDVmhRKPWGzI8JQBS9FQcLc4bPiww2LnpHt+9rRHGQqfp8OoF/2BFuvwtR4qFOzXRwUIFL+R84vK92LbfRYbfGI4xo/fZ4ZuN9JnsxvXagdBxf6DvqpdAD5uZdZaaTfL2zY4AbCfjWxGJo0c56wX1LFjPqAE6llnz7baDVFLpFPTRq1GcDcKbStqe0/XsRHEF048DEtWWxt01CgyF8RgcoDL1aQdgmcL2BuI3I9kgsGjbu77T/G60KzCjmbE/TWZLSf9M1n+BgPvfbgsjATY9HrmEDTnL50fCIrz9DWTLzRJpZljfCUa215ys1FuiSuyf7RgPUM/K5jUVPn0aqb2BtCdi1VTEkJL+4j+TwwUjASvOqk0R7k0loDayVBV7/YGpyGxy3gM9Ck7oG4zS2Ro9sM6U64OE1RiIsYGCtUSLUNib8456eNlhgNjIImIoggNS4Da0qZuE75F1r29w52EeWUil4HMyMdy2y1rGCxAKnGOhm6cJWl58Gx4MV+8ns9WyvMIxjz83f7zXwpB5WWkgqkyi4R9UWzD8FMkGniqEZwWkdV/VTZ9ny51RC4cOECLavzNGEfPvUtxOWrF2GW/8FKK7g8mCPS8YtRV4XdI/7eSNzVEKLTZjve6KwvDquyOySbZBSzXc2ldx4MmmPe78eLGVvWt3v6YEj4Z6F3EBUfaKXZdWEwFvRl3W4ZQr30gfZzHcNDDxXZzYx50sCrhIuOherz0tHVZfl9i3rceRfnQXiVj9+rmEt7qtwxYE/ST8o86p2vCl/7KuuIcPj42jC7oFzIkqvcckHnd+12pEBoRXc4NWD3vaUqHb/Iy85lII39ZeETheLz8jNmesVy5mloV72Zi3Q9TEaDJ+3hNyak61rmXzY46HRvvlN4vE7+I3GHzUpZ6AgUvUaLETEDmWTMpMj9qbID3n9qwOy9iUiC3refwVUgWojaoBUd+/Kx6MVUR++z0nCLxAfcqDIwRUDoLrcbm4RPtIVtlo2IFT0tH3iU1YCA5paVAZ2zmAH1iQxDUFuW8sLACnsccFOIjGcDSttu5aIcmmS19TsK5jlrNplAjmYq10od8bnyk/TxD4Vs/yJ5IpkZK99zm28nSJgC5gq7N2dW4VWZVyIC1wk/J+gCRyKjrKUzx7kqFBylvBKAuJkU0YYDX+QOshXo//lyo3CmapKFEsd1qT2cAV480V9m21CSq4r+53CbrpOnsr+awbWacEjR3jYIjZPwjWCUeZYnOzZAWK8jqb9hXPdL2IFQ6hhGYqFSlvzG7t6/EWtZmq4SkpPOPYNGE6qe/q2BGVf6KwoSdEeoLftJw0TWestp/GLmvE11hdPsKNETa3snG39TIdkN7SYY6w+Smzq7y8KdJ85G3DUmvYNAUogq5qH/e1LKFDppXm84MEM5KuH1kmdCliy+uadqXfbqrfKAK6g4EFR4q3TxPVJ4zhZiwpyKsHEp0WNPdXe4J+/2XqVHlgFkiSZ5G1mJSANLZ/3lnDd2ywzNpknB1bhTeSl2r6m5NCka8S8bpVjST6FrOG2Yh2xvnMgDWa5cokpFNUJmZpzHbnUQu1qAC8JoD2Df2yd9RCtOl1hJ7n3h29Asm2yFdkBb1toiTV/ny+scjCjcLXOJUtS1YUOmnXcl+bYK2kSrwJZasPDb2jHtCUocTbgZOzLLJdoQ+nbCj+PB1Wwx6RcyfTTlctKYQ+pIMO+ruGQVi/qJfQmlt5RwPpUY9vgIGizqYRVGBJ8Z8S5SBBHfF7gW3k0c2rUP8s0JnYTwKyI9eXJdm0ZEsTrwq9r+K01d6tMlyRGCTlHJNsRF1tYsvbk0MnUKBTNSfKIZ5qmMZkwUZnC8TDz/YGlvwp74PGLcDFE/r7vV4OrBzqj33SwQM1GrqiToKcAoXUJj/w8gaRptMg3GWKGGekbxOZuiZw16wf8Pep9H0Jw5nyqyAf3ZnpBOzAVgdSuI3Mt4jVYagOCwautfISfmdNIRdyIqU2KqwUCoxtb8u09366XbV4+B/y2BUzbuAsJLex6qqMAfZsBClXO1JNZybxQ1iormjm1tI/F9zmJRINVSZAaoR1YJEQPNBXQY/NFJtbLshFyAxUZRFnQduLMsxnFYSggvQ/RF7ztqJXqIy7Ymi2EL40sb3cDdBxGb008P5kXoDbBjQgEt40ds4BgM/8u1n9L9IsMTyP293RNVHVUPzx0iUWdhDBVlpriX5kMY47tRBkEu0hLUEuWH1Y6gMZsDfwk5ju2v2kWMYeqmu3cQP9erD2u8OOd4MzJCpaHPGVDOatHD8S4ClQlCUlf0GknL7yl6mU4Zg3apac9HycrPTTsCkC5eI0xDwdEQYU6qRHPk8/FD6/QTGybSGfYINH9Z4uaPn4R86IEtd4NcN/8TwB0Bi/4gvA5rbSKK7fqil4BtojdP86iCOC9yiNIQBSpkZfijTQeoWNrqH2jt+pkoaOBM0Jp4rnuNiREIYTl+714jv9sAiUpz5Adftzqz0KVVr61YrHqVQ2/lzXRiChQkRxIS9YBtq+V2bkwyg7XW5bYgXTq2p9GNx6aHLdOBZ6xhwix+2rWAZ3StgIp7oAD0LbG3lD2eZehQhbi7rCmV4+WXGirjLWiRmknd3iqizR9d7J5l7fPSEFjaBQVvI71QVKwOFPc4rRhprLtRBjo8cAPLPlo04JSDy9KVA78gZWpiTdWKNYPrDn3OchK5s3MJEtijfS23LazV72A8E0V7XwqU5esqIrs1eYLEHZlBr3HCacSarwZMcwNpA4/GVa5O4AZP7fjcdkt0gHmThAGskGdPBnj9M6xXujBy+Nr8yKEhywx5kVLJHg0GGuAtyAuKs3kGunULLREgGTEJX7Sq4mEaDF/3EWjjjYMCoCOmaGv5oZkWLZEJ/Ak7vUovXDctscBfnShiDq/xOW6ITawE/xwu73tz8UIes7INAA+c4hXMPKPz+t4uWncr+3iT7M2mNz/FuupfEmTMym87594yoWbZaqzKszs6JZyTppeYumm5wXNLptzioFrXwDubrlJezswBBbdoo5jwJQ97Ap+23/drS2q4spJSFJie2lAtAtUtn5iSbpRSCG6vuryFBpc1nXKTU81n1Z2z9BQcO9XQ9DjbO7dWTBZdunD+BWE79siXhp7XbXMhjgB/JJ/anvQLIwMBHGtFpH+FF64sztYnEXgkE3n7GG4BmaQqCTRJ+EEl0kE0L9YzjEQARDJmbhzcRPG/RljnZhpqCW46iTkJl2z1hAkp0rtYUt2AkeOYuegwxN9kV+AF5RSB6nN13mutIrTn1jNLvJ9ADJ10DEwcslfCYm95kqdIuovDQF/7iZ03OXXjc3bB9aYlf26OQMH66aNAc8QWo8e4J5/2RPYnl18BpxaAdwnZKvVIluISIty313ptMZuI3uiD7Y3C7JKmcfVoJgPKmRcFMa0NiMN+mX0N0KjtEmXY3UiZKjXIK+S9cQ2an3P8BACgufMpwPgS+H/aJEpjRL5wxFuE+C5Y9twSkASKlHK+O1ZroD5cv73jxqoiSBad/ZLU/uboz4fNpTpkYZF8CRICvaflChM8l6g8gZydsLK6RzTURQ3GQJalIaP9EMS07wtzA4GUixfUZlMyXy6PyB0swhKJzTXBxkYflEfuRF2rYh3UfZjNOzSzj6VN98jTutJdh5O9kJhqwnPfFjWKaoiB5A58v1Vn8n2R6KwCs3tPWO/qk59NEUTrCz4IMgn/sGqTB4Dr63tNke35n6mIHaKgUt8RxANsBajpaZ+l7r7mL86eSHW9P/Mi489Tx/+d7YBDLQ534U4XFYsfcFmsGPOEbRK4afol/DlJVf3IbhH8wuHmeuPGDykKwE9zu9DaIJRcct/ZCBU3obmNGyS3Fys+9RMFw0DelszDT64wzrnoo4XJ/fepiXBYyaxdOeVg6d4J/9bbk+EbTfi+6yZwPSw5BnBfvN1hFWMEzPiLnIaENa1VqFRuT5Hslo1oNqgzhgbbdC3QESNV0GB+PRfDPGqhCGw2qGLx8/6iFrwp83dKZGDve5nQWubdrJkwKGLAw21WvCvcKfcU1fPYZUUSX+7pPw8YrvzqV5WLENMVa6KVNwgV7MH47+FSGxytNTW+uPD2BozR1xyOL03kND4/7fgJChNS66xHxtpXwiDXDPNcHfeeNpxsBWIPVvYsUsuA+W89kEw65FtLavrvQfV1PJGJZpQxpFasklsKd/R3AqbtK8CdiWyS0114/aOL4q+e97Xb04VVihscPpmLvWadSXrmlieM2wXfMsKLqJuce/3zFiJ9AaRGqUV4HGYMQaCMzpI+D2MHCyYkcUcoiU8SQFKuVps3KyRJ24J+Gcvt8BKd/m3WIj1tpG7goQF+nK+DEMj/j84LGn0Zz0NL9yYBhbPE1YL64t5I7AF0xMjEccBPXSM+6+M5QWB1Omd83lzaSpdEiG/znxIlxCUmDogokFmaofq0Af0/AyT30xx023Q5J9XCC7zkCSArY7lthreSGCuKt7/+6zeRkBSbRJX0oqK4N/4LpIgC5eNH6vaeRmH5EnEUU0Br6gXjrextP2lwmN8ZMC1NfdxkNQ36M3GL+f+X1RGwJy3BAKry+lrXuFnckVK/y8JITFVRn4BNNKiieWU+KW8iyu5vmqAD5iusraCPfJ18UHHkOdKFGl1HRZM/OqFZfbh/V+tXEnkDnwQ9a41XIEdRhzNZpvFsLOi9UMB8qC+lFPMxxG+WR4M/n0F3/9CXga7+WOMRHQcCtk4XvIlyvsfdTMmyzGdRf0WpnduaGzhPXcrdOKu4y4FpAM3ifm0+BKD5q+wedLvk8CMz8SqDRDQIlf7xFpR4WaewdWC/DGSH5YKUP6meQaTIyiPLjR4hNqGP75LLPZ181ecTNafz0ylI27uWExnXrcjgHKEP73Ph3JpbQ7nDfLe7LzhbIwl3MrdOh86noJluHLxBh294MCSZs+mVFFCgMh4oX61GvcAzvX6VtKDZrNijQdA5xhexXhTvdy8PL9krSZ71lTfY+EW77ogUIkNVEzuaf3VCNeannGueFZMiOyzexhkyzU6dgiAUleVbPVERJ4n+6UGPv8PWTdTOInHhO3Gejj/a74NGtCfWMP+ffXEYjofNA09tGnhgPbRxWDRqITNjPyuGY5IH/nJvSJsrt5M52M9/rYYPqUJ3vve4qtX4meGQ8LPB54xVKKdEi+dpe+BGIcWdPrzjUF1PDjGSubKNR3DYbtv/FUvPXlzEVvUUbg3aFStbf6f/NJefZXZ3V/dXf/R2dNxIWeMDhkWh5K2NITlDBAkGV3zMp/QrjLBhvwphwYO8mGJrl1LfpkYxH5D9yDRf9craU6avIDFiXmhiliNq23kXcqBuVCDPLgy5LMyqMwiU98ixqTacC3Xf9WLZNStI6II3JkV0iCjB87qV+eLz53WzmGVqxyfNRc0vz9+pgtB3fgl6njoO4YUdxrvh+hIi5dn4UEyj9rTDayKzjLbzW5X4vaaNJ8T/uEuA0eQX/CrI1+Ko7Cp9IJXzbTg/1nKTCOCe8F2zCwpLd97yEsBa+EcaCjEu8CumrLG/XEiAXk8nux1JgV0sl1fvCUFpDg1a3dFeINinlXewfnXQKDFpCopQ0JZLWH4fiV16RMIGNEaoahRIkpBngxAb4+aKA1Su65w4aSPWMT96EKJ+jJ6Euf29zAATz0L9Pn/ija0kbNaBcs/gQOBCnJbR6UldE4j7g0GivsOnSXksGVbP/XSbFVNuCyjuMNvdUbvOzbf9CZmzHZHjrnPef8ZZCWXhPOyZzBk+XlkjzzTkxMoj0Ak6KM4BDKqY59uZgezFjhvxHfARvqLqMB69DsX/4yDmXONDPc/FD9ijsheGtUfbZMX+tJZvIGqrD1jwG2nr6WbC1XwgQIl1R8qEJb31xOF0YGtSuUj9cxO+x2dzDZtfiqf5Gx+FEkPNWHKQ4tXd73pj39nJX5lsOu3Re7Har1LJHCJF21jFIYyEvPt0YDQe1e30Df9shaDvDSIWJeiDPEOkdXdxZkZP+NU4NoX6vrcAsxpYYCbuvcG0Lwb9/vfNe6BmyuxO5aWI9CI0M6Tl4rRc92+Vv2uGGpivFtxkflWLxzdCWZ/L/Gnfq2/w/chm/HrK0YS4s5mFZ6msTe0dRwylFNI0WdgawXLkYcCNExJMb0ZLRu/RIUXvG1UsDVBJpi99NxMLu1TBi1jY6gZ8x4KJsuw0QcIwHhKpSPLJRqrjk5FV+ayauDhV4PNFdgQdE6Zok/Ft1veqv/U6EiS9G9XezgXX6BIyEw1SdxcIYve3h4x4gHGrmjkNdKC4jkYD1EMTOk7UXv6NLlm0xN1EmCTv4lg5SbR48t6C0c9eJdeWEn2hitTkKlYbZmWx+Vh+a/syvlkCOiLFCq1GtO5y8fM9ucIBShmF/JpHspPwfGKR38ykRgSAAYWxcTvI9caqtVt79TPhLtXkI5MHBt0CfgdxCRynGdphEurgpC83RtsYA3Dxh+9/r+UbTTzLCMlemhWudK6QzKbMnqyODcxQx9uItYDq+D1XvmVgAHso6Gsxk/E2siI5h+wNw5+SfrSCIZrQSZy4UT+3vvLPRzcd57Q9NRa14ePFWatWRNJsObxOL7k0oZmfGyFGVoqmyoPeJfyWgHZoqUaNll4TnX5g6J53YjBX/A/c/fBSdHS21FUVAV5GTVFfQxcdi9uJch5JRvB3fkqXGTuzAMoQgozm7+Xmvn4mpB0fip/mYqDZpYsFrubDoNay8+2dcoQcenFjbc2F24aQ+dmz9EPnD/2Nv5jZxL4lvW55aoUtzHziFYidbzM5u7ttCASPvBZbErbu8DIbvrzk8THy9m449WPG0MlDCoJLN8eUdZPOG1pxukeuNyHDzT3JmY93JNrZ7uVZ7rAEge53sgd4QgVjtNI4fapQ+GVyYQk8lCDbV3Y6GQBVSuTFzfus/JEe/2ZZy0ODy2arjtNZYMqLirvUmLMMB4afvKIoTVUpwD2mpAblBy1LAoX5PpfEsaQFN63sBVdyoL5Bgc9dFbdVQaPdfIH8qAt3cBjtsip/TFkDoqNJ/gqc7LwEGlfUXvEAxpvNuR0s07zgq3otIpEXTzwRLT8sO6vfMEiDGJwvkda+FM4OVF5gkc2wrsA3oGmTJVfcfwfRlGqjqVpmo4GwLYRjCfwMVCL5ciqUuu79TwSnD+isbMQ0p25IeCygQ3Fr1N0Lh7ur4qFIf8jkpkQo2sgw3rNLa5+B5R4mqOEr8JGTteF16udjW0dodofgwSPyO7YL/PauK9nG7qEHDYzcbbIXYTaW/644PCV35tjibBEmnjOCcS0aoph8Znl8a4C9sMYBqwqXphBB+cJzwWSijPXc1Sh6QHkHVmyBLvQe61H4P2s+T8uCpntt1ND8bFlJC7dE6jd+t7c4RnT8P4yu/ugdlDWBlIry+iKzW3iJEemv90SBetMx/L4RaC6kkAslpzMtxHV9cikTSl9f3GOpTX5zKQPKBqWYtML+g65K0pILg/X8y8O7jfnRNWpBgceu7T22HLpvyyVzcDV6wtTCoZYzK59WDsSPoX4H5WlbMRb5fbDipMH3dOt4O/bsnpHBMg7TV15950igDaj986TmF00orrA3OvBmAIZI55+9Yref0aWpAWJvRhquKQ1jterRPDs7hFRVVjXyBZCt84KVyRQRHFuV6y9nkq7SxTQNtXIXPpOfWRe8hKvY1zdOqvOF1gYhsxgVxuCN6tpk4ENH+36bMJw1LvJp67B7SgsAarfLQjQOeIgSWtFZU72Ktp1N7K3zTeAvH1N5TrL7u0zPXOuc/rzM5/PDTP+eXfms7e/4I3uDVRROS96UFcgLqfQPYtyiBsCaLLuZVUmmDLCH5+wi8z3igUwSVDrFdNDstVnUJLoCNueZ0Yv6HsNFIEeW6eg2ZQOFr2IqvSo2Te1QpEX9CWX53DqhgI/JKodot3oOcrw83C27Zm+QM3lYn7kfj5WmZyal216rZTbj8M8jKNawps2afPzb2kJ1aypxCpMpGPlJi35qc5fEV18vi1yEN810rzs1vsHo2x/yr6oKH0ejyADE7EdnOW7fOE19ZLu2w3ICIB8nEGxhSXmhl0DPwT+6LjCA0cpXO1eadf0rAwJFfPybyIFjlWR0Duz69WWWfT1+VU7DMt66jRqvLdUdhV/cgfW7bOzJjo2RUQZqi/L0xbfILn8dR4Ht5BI0SWZeWbwwkdKlQ8rd9nAquJY9p9HYYZNTcB0LIw0Nw/vLUJ4ppL7noqD8JcBKm0mn69xY03YL7Dy+/cvSL8kWZz9X5Y9JxerBSmmMNhMM2BtIcOe5qkxLG3f1yyvDX3wpnfwHvd8J+D0F0lzRYEVj1HOoLHjVgH/9KAmvKaspe4OOVbkhf4ZjTxOF/Ag0T6k22jHGtphjWc3jXQbeKqxccXPEKFOW536tJiaJ3fWBnJkLq6dTUCLWXKsr8yUWsozmvlmXVN+l4d7bGjAFdgcaqKzevKfmIAMJIFejbMSW6g0WYsXqsALZPyyHa1cN5xRVF/Rm8WyCKw6zlFP/58DvCKEgi7kPoYbolS4vOB5KDQXqtLzvKLaP34xBiECqYwXQrq9MuqcwwTRFaieoy4B2IYSQfPTauZMMSpGUbERip1aFJAiCj2zvMkHd9r8obWtooJa/2mri4+0l50NifQQdI4Bra9iNaKuyfVFiDX6enTXY0ajAuxDYU35ZHKuojBYDvtyfl2GFJiFhYS7B5AIRoEJpLv/PBp421XwlqBCTi4lOTaV2ib9nLl4CXmLttn8vh8uAQuwm0Cr7Z+h8FxGZ7Q83rqPpB0ggmM/gXVgCfjJ/TMKGLW5SCQ5ruaeZi8sZ+WbeDKdwMmsJJiymCo60kKiCnxqKjo9Q/dMCCCyWvCN2RnampoxaBq0NZFBSu+ZlFLUo9Q0qzwMQRbMtQu6Cr3/fnlHWgVhUKBy2LAorcE284MXrM+IzwgBJUgmsuVrdtrQQedmHRLWS2NCOelLXU/ZV//eavbwSQeneM/kljVK3wQ8UCPHl0PVNtwuCvCg5d7YYTiUTccUndpvQDKoP+s2QvoICVyKHMlg56rvoBvQ8j9ViCAz6vEPqyCIw22vK1y4R60XRGHoDoxSOVKw85/HZHHKggDXIr5IQjxAXTU3fxKQz8eKXWvZX9bUZef/r2hCQKkK9ewmcniB98cknUFlz2Kzm9NXkibGZslmCNI4uFso7tozYdhhQRnbGPetHw4od5MSHxraEfJV0icMGRpQHobSOt5rPbJjsXK4XuAySQBEBoK6JGLR1Ftlf9/1QaBePE2gEmdn9O1zbLCf5ITPhAEmXARoDl2sTACqZrZoaI54DXU6Vh7IvyNpIT5byODWexGlLeQJvHbii+Z5fpjnfONpi3lb34hEGPWGeDhHSrAVmKC0VUYN4AT7zoXLF1gTm1Gwnot4tGP3I7jmGMjozDRHVDlcLkbRm/RJjfnQYQJ+PpR/Buwvru5LHdRz3qZx+HvKcaIldM1uNdEsDRPzl7b4NNFyBy/Vl5umTYjxE5EhWYMojU+u40uxfnMKVk1YRMm1aoDMzdoIhzEB3hIvyo1TB9o9s6ArtNbGs7wmWD5AUCj8MwTEiZ472Rn8YB2dfLUA7OyJmBHxoyeLY/OfqptwXsxKMOgwaBhFQxDMjM8dK1h9IDn2oPLnPJPYRH0pe0Jgzuu5j6S137KF2fcTEBYKcKWsl77c+/rXyi3yGNpsC97oCn7HYDoUXQs4BBL4q7SVhZSXxNKfS3aw5AzNPgvgeIO9gc7UmILOxEurvCxBU+tB9TWW7QkgRjE0iQLbbGr+Y2YWemqSq7FvgTLCrMmm3XKIXfgbYK3umfQRPLMn+vuJZ60OxtPoF5E0XZyp3370Ent1A+eBbBu8H6i/WAIH9oG/mDIJNCDNAMkrYyA6rG/Jo34vRCy41pJzejLmEhMOZuUeXTGkohVe6J4XDKRmM8btKrafsE4IZ0CUorfNxFs2d7e6GwxIUIgQU2iudJkQhehK2+Dm2Pj1Y3q34UNV+exLfKv0FAT19aQpovcH+UArq6FrWgXCQPITX0S7eJwVqojEfK2GHsAwFRrvmyj5xnyN9uwz4f/IaA/ycnsI991b1wf3T5IYlRwJB1FeTaj/Jag+NGEDYtKVwsi8jKbVi1x7DR+cRcGnykNHsDp+auaMPfe7fdguRRFtxDKPWsCbN/2xgV1tOsAVm2KeDGohowUVuD0YDsHv4C71PpGniiawWuL+zWUZoWhzuq72pdJpcJ6gf6Tn8KntNTy6dyvfhtcdbSsvHu6pkmjkl6d3B3MuRj40GGrSYnsuey/d30eleb5viRxAoJWcPf3h4Ci4Np3/T/WLIt2tCN+JLCpRSjlMqywQaUllnhLM6Hql16CIv3yn4sry0fN4eFCBhRkUAGonyyWoJQtuNXhLubA2RHOlg5EseRgQnvgR5/m6BGuvQ0iSu1Pcbthk2fz9ulhXe6zkKi0K6LeM9K++idAXUbg0zx8MqBdesCK0vFtJ85isppnUwTUR4PayPV0xY4LpExKSukk85DMesqDZYNm9JTbQK4OrTOfD+pfQPtODDRl0Zvg4JsNhhKgc8SM8sFDXGNp6jyQjuOotdZR27x6giFxPTtDWbT2dXIt3vO1EhwlbgN1NNHTxDPyqevRZNwDlzxmxRzbZT0JD9Aq9xCBAeJYwi6qgAmG4C0QLdT0+9o6wka2mCYJ7djTCnwvPgOKpdSnUAmhSTzHVxZ7zWhXdH9tb16nMrIrxKFBtKbASwtLRv0KTvQjdf0rfAZ4AttqnJfOUfDAlt2Yapbxqs0j7emJ2vPjU58Ddz3S/Hi0OXM0M40a2jQ2mxx12Yz+HOb8rDU6HYOu4whTgmTxl1fwU2WsgtLT9+A30Alur/BJRI8hB1cr1k/EaGyum6XI3GnFaxd54/SfpbBcQmYYj6rW2XG9HO7IS1uvwk2XnBOZNCNRRwY9PdRlX+DNWGD4FOEyWVgPV9qHT3GhOikXYbWG96wp104aVnAIL+37QfPzck8kCZJR/eDDDBdRQG/V+08BYtFyToCrNbfikexSxakwrKDIvsxxmIQnjRZDrTC0i/L5P/05TcTjJQYAoxfXVH5HhBB5TPXIxzhzeLWtVuL/ojgtfK4kxsGFvjyV6vWbH5x5C23nYH/3mrR0mSef5AuptMsSiYCDUHFdbqKsNPNtYCArfA7eaXtXc2Yqk/WGmpq0p67a9PyNVLQqZWBRRlJ5BF+J4KHwFqhjLz6zl6OSaRJfMoRjdvw25k6MW+LgoZ5oqMeGHRbIZZCACjshoP+02U/Qndcczdc8DriCeBMCZ3ORiFjlU3oKM/jfRhBONZSVstF1c5sp4bkeI82rsPUXZ4gWUDfGcZk0N37I31k/cyfd6k/20LP/mSp8WpH1bRejh7My2rvSOj+t4/urUlAtEKSj2lW2kyV3mlzGHxh3VW5dJI4lmKUpfxVKwIl5fDA2qTzApZecQqBqCBvByN0HzCFUsC62P7iVgnLwmUw+k969AfzTrCbK+SszNCPinSY+tn4K3c6D8oEx29/LpYv1If4EOnUSZZdZTv+yG9L3mO3eXMfXvX4RrMuHcNlKUSFxuhlAqk5DVm6OUMdxGR3/Tf6WKiuERAiWrNFexhcSj0zH88jVAFCX1rop253/f0oJanwUrELzX+izveuSJyMQ9gqfovxC2DVgVRzXaWlO82CAnVFonjp/UIHEEkWX6SeZh7yP2WHF9Dw02JlnIdeO0bH9pRlU1R41LN1w2lHt4vcfL2BE5ophG3o/vxPW6A5z7OkA0M+IH0gLH4pEXPKpIbWEyBif1Z2oqHFT9qx93sfJqsay02e9c7oEDn+UH+jziByhQ+DFkFuDSpr3mHk85+v58uES5GqkR1WELfbywV+wEk1MHWDyLHRSyOxkeDZFEcFh1cHBOLtcin4+ErZa6vFLLe4b2FwbZA5GgQT6M8TGA9r3xHDCNqV+XaGdoIVlkbTxrSY5YI8lMi4U8NVF513k2Jmm7/t4bGbZHH64HE1hpHhmmydY6HeUiG15ONkwaAb5e7ayx6HzkNLXSW+cQhNg8WwoyKxDmT8frs05mAG3uR7Fl1y3SRxHElP6G1GlfAzKQSBkH9GKiA/YKGvabRIqsa7aJOWp4Os9DUvFLFlKnYWiQAvJm9AlP4iyLl0z6esKu6ne9jOCsu+vEgSVN49uXNI7Gmrz0LSnpOPQ8vFA6faQHDXXaLxwUhscvTypm7UY6m37ADI2IxU7OGRlKGsom0ygSiGtD5AJ+STth05lkgZRbk+4ocDDwWttvg+Za/i4BuSoydqLJQbJNktlAmEZ+ncUtPKTM8PTbCQe7wQw86wmuBbzG0w5tb+z7EjjKoTxOYkkaz8aW0J/MoRTI1UsUaq48Vxh+Wg9w2XgQmxEvxFCGmXNQyW9sjcmKGiVRkpWUarDGFUXro23JUuuskMV7toqZDuUly1rzBJ8Kg3d+oJsQhvD5YjaEMJ7VqTkjQAFEReHn32okbJ9gAINJnmYDs95X6SE7ilj9NsCOB38zjddVMOur1oTSctWXPQzGhQvB1MXsAELBSYVRSJ8cr88UmA4vVHieF4Xw2FH4GPSW+3nk8Hhe9XRHReCIEna/xB4quKVi0IzFp2XSOdRMEZrH7Qf2aBmMH3c94frHXGiG8tkEA6r42svGSwlzOYLNhkyZDxN2y6g3CUK5MGdEKli27y1eazaIBJ+pHTRAyqvSYBSyEZ9UFkXNOyTs6ubgv9N66LsGIQAPZRSKgjbXlRHTAuZokgushQGi0255HmwMhsmk5eaaPrrnBVTy+N8PV0bAF++Iv3qmAwn5SlUexN+nnePmEaqpKul1HFMifD0ox54hUngSV7GhwxSO8APXB377QYNWIe/xmBx9daOJX9wWFhfPkNPt0ScJ1ez9EabNnJcFd8Lk7QP3sBFTTSOcvXA8jAfm72yr0vjpJem4RtzJSTBNE32Vp9BIdd6ehYrqkpr8tnJGDtOHmflgRFC8kVzMBHrPONJ2Js6kml6SP7hnfZDNNOfeQm4+uXMvHJZIDYbVg+UEOxCPvQA3vfhvz+aOQR0WKa9M3JlLcr0UIdVeoa6aXqQ3+mNm5iRrSegU0FRlWb6oYzsQ5NfGRTkp44EzNVxQUvbew8NMtJV6RdAhN8hrSyMk3Ah2WIYCt4gOiqqYdgsYui9GpmN3aPVQPi98Vlg1xdtheaCZiZYLii79Vlh7DC6LLvd6Zln+buwXxsmFdAtG7COvpsU2+DFcSmFpzJGbpyJ4LcMmyZcFfJrCAhA7rioGtLxPb5+GW20MPiLLr2ZzmE6J696X0yFlkYeTw+65G6+J6zaRCS9T7hgVShBu7TDXPpAWN109fP5ysd/WBH8RPK8unpXHr5Dmp0xzeCrdpEBG865CWtaTq/mdJ2+EvCYCbsK2UkfVI9eTh4aAcA3VVl2gJxqMN/Ky+09mwM2/rhFoIjMrEQ9fq1b7FEyVifcUz7FFYUcefP6yfombDN/68t2U28eqIypEI3Su3KrtxKUqn2CrqCIjEfN7trc8ioXPkTAW4lvEf1AzClGx6aO4Dw4cFM3MJqdLvkO4Nu6j8qR8suGo6DGArvjHpkQPopHsrniCyiw4u6pZWOD+rxqNhnoMp7VYrDdV4GgjfGTjIobD2MhU7J+1nBLC81YTKkmJY1BnDP2bVwwxuqHrNKd2BdLLxVabdbb/NUWpqZA0xGSZQIYhQA7RIg8pkJUr16RmIkFY9L+/b8HyZ5fCdad0tmkjZY2MaHTfPdyae5PO8Nk5s8w9GlvofjSVgX38BnmnoN4yMoDpSH2YCrPubJ1+IgRo0s6A8U3h7Y52aH5UnYRgAOegVGY0yNZ4yTJ8h4d+2z3RpOThaZ29vIzU6BpkJaphwK1Yy6ND3gw6VEeiXKb4Koy254XBbfyv9c/hQ4DhaMssIahTS6fkMQEp0eZZEuhfGpxQmpSiX3rscD6/Sr9IBDU3dB8CL+c6whuwhmQ6HFnYxT/EAacLiLFkjkEEBYwu84UHvGxqdnmNM+Did5TaS1tqCIvKRo4L6pr4rOE3OZI1RZEwU5qMY5vJrbgmTgucemQOoWhY8OpI0kug/aXyqtnrfWegwkEdSby3234Hv8WMQL3/RNx1uAhhES4A+yX842TiRNJl5knnqzbFG3LSktpa8RTny20Q1BUx79/qAuiVNO4ZOKz+f+MnQ2RYvGM/maHREimqOFvyyDeWhNIJuCLAlMXMbcAFec9ThrRqkGTAypEQwYR3IsQbLzxWusB7Rl6CRTfYY
Variant 5
DifficultyLevel
760
Question
The rectangular prism, shown below, is cut into 24 identical cubes.
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
Worked Solution
S.A. of rectangular prism
= 2 × (2s × 2s) + 4 × (6s × 2s)
= 8s2 + 48s2
= 56s2
= 6×(s × s)
= 6s2
∴ Ratio of prism to cube
= 56s2 : 6s2
= 28 : 3
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
The rectangular prism, shown below, is cut into 24 identical cubes.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX9-TLF-CA35-SA-v3_5.svg 300 indent2 vpad
What is the ratio of the surface area of the rectangular prism to the surface area of one of the cubes?
|
workedSolution | sm_nogap S.A. of rectangular prism
>> = 2 × (2$\large s$ × 2$\large s$) + 4 × (6$\large s$ × 2$\large s$)
>> = 8$\large s$$^2$ + 48$\large s$$^2$
>> = 56$\large s$$^2$
sm_nogap S.A. of cube
>> = $6 × (\large s$ × $\large s)$
>> = 6$\large s$$^2$
sm_nogap $\therefore$ Ratio of prism to cube
>> = 56$\large s$$^2$ : 6$\large s$$^2$
>> = {{{correctAnswer}}}
|
correctAnswer | |
Answers