30137
Question
It takes {{number1}} full {{transport1}} to transport {{number2}} {{type1}} from the {{place1}} to the {{place2}}.
How many {{type1}} would {{number3}} full {{transport1}} be able to transport to the {{place2}}?
Worked Solution
{{type2}} in one {{transport2}}
|
|
|
= number1number2 |
|
= {{number4}} |
∴ {{type2}} in {{number3}} {{transport1}}
|
= {{number3}} × {{number4}} |
= {{{correctAnswer}}} |
U2FsdGVkX18ElW8eQk0OXooRY6NzChobjK8RxqLDo1SL4EyZbIkmCtE8wQZ5E05Z4EvCkHZNcXgJAVllJB+vvMhW9EniA2jnmTsAGhw4NXn9o+A6bFCeLhwgsOJ6eav4KQcXf40ZxK71Jzz8uOwv4FwTfn5gFIjQKuEPFLeVQQ01eSoUDb//lx9tAB1cfFfWqvUK6CsnVxWLjYy7sCuuKt0Y1PflIMYcMhF7jhcshodcKaLEu6E6xP2zl20i93t7yvgwxWpgEHk0kt+OC+lJZqC6WyM2HIr9vhGVN/zapn8Kg1KuKw7U4dVjCRLP6+yyozDQaifcsEzJcReWfpo3obTRnGCkn9qhmpfWZY1Zk+qzxlOoTZKQ7+Sma3c9Tij9dNJ49Uzka4R7Mwok13rGGhR8qd/KfG5bnFJXmLW0uOltJKABwmum8fCGEAokV6+muOl1aTqdrrK2YgYyXcpjK/JIh0mMsxBsu0oN5oj3L+nnSoDqsqXXLxHmCqory7ZQPaqoZvXvXX4L5qrNCkotjOL0F5LUzS99r8p3AmhzPeYjzmB8L1EkVd4KW6eDMHxqWf5o9j8MzUwmclOJXvg3xVghsHToYk+s2yCvIcEirruIh5Ie+qI7ZaUwfPhUthNtpc80Ed35ZkvWGmC7B5KuzK/9dSDRNmT9c/XWVBBgiZj469//odMFVr/SxgLQrrBnecg8sJAY3cKCTxVqO9/+trFoP7Smq8pU0g75Hh9ZjWi14ncUgH+M3HEd5vUuOoIBDyMZRa+EKP/6iApS8vz3SuTMaCLq+cx/f/Up3kDqeX1IipdhD8NsCrWBO9N7BRDGA7NvLCIMMZsSHmhMekJSJUH0g8B3BX70eHwu/Emb6frP8DpEKMmkziQnfZROwzPDOosG6oVP21Z1//z2ju2aTrMHoCYgY4CQX9E+cFb8BF//+1ypvdzHwnVMsiM/kywM4sexoYBoUsiYzsOo4B/pysDnQl0DKLqt/jmINxkYstn3nV9XBopCo4DPDhG7fjfWGZH9jcGU18WBBz0zhNNI9oglYJ0z/+gmvtjMQiP3Q1JqGKlCfvRay0/LVnVD0iu9CzWsKplsIAhWlphgWF1l4nxpwslIJKuMxpvsrg8GDNFbG/VhMy6sfFZVs136//1HgDHc3bWVBmpk82ZlhKeyLC/7fmG1WQsfuPtXYOZwC09XH8sUxFynhihPB0TpFJr5qyXSkcf7u6/kGjfELUkscn4gEg7rfP5HFcx64BCQq/uJrgTWhTs1/NPoekhc2LCJP87eyk9Y7DOjBIVrc6XOGYaXd5ekJ4aDxfInJ0in2fok5XHCogjJr1O8XuYIZWeHncHwpxEL4T1QPf0piP0o4zBmyR4DAJXc4iVuEuE/XGyPa0klb8usj+ZNVixcLiTmDTofCySg+1Fw9jgxrncvC3iXkPej87oUTmikLqbogF5IS55sEqv2CoTYfU6ZyzLD4HtOhcuhebzRxzP3Ciwx+LmbP18DbqlNvuUuPYLpl9CQYbQcvLpdr75TlZiaci9FZcbQC0Mgihl+IfMznWibOAOOOPAFE8cgBWRhsaFCVpVszP29RYyoDOBQyPxiSTs892lOvbi2scDZJmp3whUZnCJ+CEmSgOwse4QEZAQ0LxA69oLeNLWDIo/KkieXulC4/ziMRH00EXCS7CyMbiFd9jn218AJVHxYP7tBZBzXgjuchP+rnCNsmMhQin2Xt/WYEgjWIimeT2m2j/jXXxa6WYDGgvR4D8GclsVnmLwAZWU923/ZRNj0Nh5/VPGMP6743NbKEAEdMUO9pFcLJ3nd8zu/GiRuDGQFAWfAvunXtfsdL02tC3m8dyiPGzyo9jPbjYMUfjJPeHJ8hWlrNtwMfEqaG+1Sw1sqLgcHgzb7FLNZd0I2vwNhLTLXT9w2Xc/BfZJXf+zFqsJ5A127D5BgDLWCbuSt6/vRWKB45QmnCUGAsQrW+0TzFDdfHPOSJO5sOhKda+lOYeZ9FWCIlynBOaZKaE0HsJE40D67u+FEgRtcqEZkXrnHC1h2G3B+ut1W39H1jqqB2FQjZO10Ck0JRO9R8IgYh+le0wGI5bNk1lTBOjPHHJyKKzWTuSdTVQSmOimry5O4RG0NSq1EHWaofIDWthcw0lxp8njz5nCnCaIVqK5wBtL/2al9cDJ9LClXe4LFCRK9kzwjMU1/M/n1Wt0wNdfJz7tHkK05Mm+iMO27NcRP9JWtSSrIqR5X5Nh3lQHOQ50Vn8Eoh2ezUPZt6aIVLnyklMe3wpfiYsfu8uoy4UhMt93GnbVTgwMRObqm5EaYFMnQUCV2h5ikOS57Cup4HoO+kriXcu+v11NFFSUp9artp2KTl965ckQbQLYRr4hV3IKX71M/OIQjnfV8tOCAWNp1JhlOxDlogED3ET9EsrtEwtpBk7SjGxlyd8C7xgBokeq78Vt/dQbsBgajEnzhdE9LvOrvAv6/XMAAxdDwXx9vUhqlZkZVpCjjvsmUBRuAZZmXS2gskpaHPDhBdI7/Zf/azlyJMMQplXFh4Vu5ZAONHDb9fYcDq2GZbiBtBr9/Q6NkfDqaM1Pbs2LOJiaA6iLzVYZBxaN/Ur71JwedCRCPkf31vA4ZZUP6Y0sohckLK4JyuYQQ6ObBAaS+JmVW8UUUw3gXdWe2iXI7yfc5VDePaSpCEzIMuq3Mt8x80GBxWEhLtJRL+XMHT0m/1zuJ4Fb/9MXigxrquU5JDcDJRXts2cz95WkiunkQEW5z9ZpSXlILtxJcJ+JAaFVJVJckSmMXFO2iVW0xbj/mZbz/Xixqf4veJ7mtjpzmiTh9dCHOrVCuPGq24t9fEf+iw79IikmhbBMmdRiJuspUbrNrILPuuMnyerFTg5UDKVUEW9+ofk31/SHaiHdN7aU2Ix+/ryIK4pxVQB+2dA3sUBs9SpTNNGpDObK0fGKmDp461YTzmmHwxlUC9YioQyZJnqjbUQ8/ZlUaAQieUQTopvAhlIyRu/R2uR5WFt8tMg/djqfEzgb6KtNm3PUHuPNsjb6/rtavnsQpdYpbW7VKItZkBXO3R4zFqhlRxAY7GtPBckaCP6Ba6o3W1kY5cenc4XizFQfVqXrOQUzPe1wKCVoRy4LIo6rrgBEYC7TenTI+DdMDu6i3yT9MsCXf8f6U0MONBy1iWGE3N3zQCbUGiCC3ZUG9WpPC+HQdQjE7WlwmwlJei73OegCoFwIfD/+g8QSBNc3iTkzCMFgUOW9ppbCUsQZI7edKtwD7v1hAT4EFnkrmqSkVUva4PtTmKs7BoYcO+GtUbffvmUhQqsmgUpB04pwavt6bz/de5Py0fDjAeJbGNI9htLBjl0eeP6Ku1V/x2V/oTcRzEG+f+rURYT51lPl2UKH/bR1IU1U3pGb1uBH1LxPsaSXU5aO+z6bSnam2VxzrUGCbWi1IO9/kmdodIoUSVnQvAO+nqS3wnttPgieg1n0h7VU/WKcRoW9WS7vJWYRqmLFle/roTaLlj2pZHDU+19xWF652uD/Ny4xoBXM9QCDTbckmdV2cZ0/0FVPGVD1eW0nOdt1pVSFe4IBSWmXZ3TVzo8UixiYYOxgEFe9495W0L+kKu61R8VzWF4Jzr5btEsUCRTKTLXCvjHg1kwsLWCpWAcNxzdTs8dznKyaApFnfYOT5PuPLH2bIlQZg5/aPPGBko9DvxILmGvJVAcqpsul/Kh86yfJ94WElR6fEQ7Aqiw9WXa+g5YzilcS3521kCVAsfF2zhhki3/ybYQX5spaCIIvQ6EyP20q6guMozmL+gxrNIBTvUhEQaN+U++GtfBrxwVjA/NPdI8Rg7Jn53U4J7CSGNPGVwCDplN7QWFWx3YZfQiE/T9Xn5bpRIIZuHyoXavT3bcfW0VYx+a9Iziw/TOlKgtBxlW21X4sVnfVOFM81a/zG225p3Dn1YZb+4YCMMKne9icWoEoFXG8PT+R2Z1bv1+2xI0NqXIOauSn+Q7KV7N6qRpVTBy8Fb/DEq6/dMa8tXMOxY4TayWvQdmFBqFpKZt/6gP6H8S/BI7PBOFaTash00aejf9VjUQ6dHakiA8RtC6aj36evlsVsenT4Sb5qgq7MOGS74PF9XkSILHY8+Yef3wWgn+YlYGg7aN2bXPrnvmtGs3OaoaWPCs5QmRw0zrMpwWLIttTYRsD5T9UaCpLFOM6+m9xyN2ZP0noX9iCLIVEYx9WKhqee7l5w7mYDu+tVanWIMfimWIUoDFFJEcs8H1mMbtrGfIygwickdNZ7V+U1y4wpK1qVWw072vJdHD7jmUfM7lcX7tVFus0E+l8WkAC2orizOh1tyQWaTeKJKx9Z9xGF7wsaE0lqCCl1DITcTWAs+y1MG2VADfSEKkuz58nWJmUsmn8Avp5I03/OZ/IEGF3vNWwWaNKTSOoVLFshglEkK1k9Lf3Oc8G5o5KMRGORAVtRh+vXzNEgJBfvAQnUowGczg0l59BoV/XOEwWZCgsfT3eIW5iUAvlQUUG4H0vJWx52wZjvcuN0mw5DO122TwxMr8HNes2gmlWx+sI5kPND97NJpbeqcFubdJNZOySJ7pKq8gjHFkvAt6a0WkMAZX5VIKR8j08fE/ryjfvuWcI7D0TcMsVbWH4CEzttOFli+lvzyJUy5nRcRNo8mKoY1KL3DpVxiC+qVgiBwopCCFTKkiv/RezriGZrTRkoS/Ur1kxLqUbj+Z4seJXjgcoqAubKGkIAgeZNfGx+3fVIzchfqOlJO/kdeuxUlu/tbkEev4zjunMe8VxImeIZHIAAFwgcXQPNSwu+BAmEw+UuE5LckBjBWoivdY30opN0amVxyzcbsQZhQMMF6CLt20hoIucCfRTmsBE6KXQK924Zm+GoOiDaFiKxfu9t02xJQ8oOCUGRzSv+EGVSw/oNAjGkZMTSd0j3Wx6erbzrABtF4G+3LHDSFyisMbEuzbMji57gcYNUnGAK444CVlYMZ8nlIqiw+TtZeWqAbM/DWvBk9wuu60QrRimUO7NX/lCr+5FTyiXtCGL3o4z4hojYhLtA2W2WsREwg8q4yYWnt9ZUTqEaWoHFxboMhDGRDNV94IiZE8U2urYazDyvIAJkpaOwhMGmqpnIjCz+3dJcex+uA30Xzd1hAuada9lfQY8eLX0NcYyfEB5ogzcnZEavlW1KGbI=
Variant 0
DifficultyLevel
578
Question
It takes 8 full shuttle buses to transport 72 tourists from the ferry terminal to the resort.
How many tourists would 5 full shuttle buses be able to transport to the resort?
Worked Solution
Tourists in one shuttle bus
|
|
|
= 872 |
|
= 9 |
∴ Tourists in 5 shuttle buses
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
transport1 | |
number2 | |
type1 | |
place1 | |
place2 | |
number3 | |
number4 | |
transport2 | |
type2 | |
correctAnswer | |
Answers
U2FsdGVkX19Xe2EXXRaJP/jTfIG11AMqIZZI9cuquGUhB7ayOt54kIF3xmGPn/4gg2SqeLp3OnVIPfqnoZIZ/Lo6Ajyb3RevUw0LiQKQKF4YrF/Db/08kozgvGFsmlZre3/Wt/F5DkfoKc51gUjXrj2KTLn6W6WKAax3sa6xdmTB2S2UWl7UsltbNhwErIuYiwwQnuaIP6YzCtWj3/Nmc/GNAo7L+yJ+GW/0G7G3rEwNh5aZOhe9nVJQOwXLixuQi9+e9FNtlArtsAO/DmWq7JwyFyqc9fnztEruYyL/mWVM/1/NsrCdBfdlyTfKobi9IWj9wD8W/5p3XSmUKdJaDvz9aqVX9L0fecqXFVdNDux17TgmH1RBGWVuDLE4osrIFaTZc4yOXMSM+TT7A3NXU94lIcWIx6SFITR9bWISwcNlT7waY0Ur/bcL+bzRAUwNUZiicO4xfsiB3Z0s9eRNtMSrFI23d3WxsVS8fRMEaeEBHsZwnB8xPG5lBCuJCR2cQH6aM9+gi/mi6rQ9dul5V9QAyUzr/vYP9XBFYrcM9A7ynZnAMmK9lcklNyTIJJY1a8HPhSUV5YW5SUZpg+TSBk36kOUSAsEX+daCEUprFWd+myeAiOtTC/r6aiUmZlLJBEwqSHbHDJ/ts8AhLaWe06u6AIVajbnfPicCSnJW6AgqyZU1/FU3KV9PDE6vI0IG+4YaD6wAybpFZCN54iBTvjFKpMpa+iw3IUfgLD7KUq3E19gfi1zINz+hdFOW94rk+N8J60dhxayclsMxSly8OOsXw7t+bdaVVqVHCudOI+oE5IwnqXpc4Dl11y64kZIFbOwzU1/hNTGbLG6CH+HaVbxjZ6nBtxmq7acJ+ZvMVT63L2g5fAPfy11skMKbyF4pZtQXPCqmJ4hptkLz8gb8QgqVB7UtBEZjZ3tpo2WZK38UbhMu2i2+DiyhE3qffQz8PJgpJVu7fJOeBp3TTJ/a0Dgrib4I7h5ARif/EkuiWXZt2NYn8dNyNo5kGnW6xi0HtLYnLglZqxAiS5e71NlXbWnv6CZhYVi10XNY0UTmYYjUS1HBGz5tGI4A88Lrw/mFdikr20JASEGwY9u5VeAbmetx5MgFIxP0FTETNEQ/u30Otm+iAySDcSHqRN6Px+22u2xK9xbdk6CJKD9AMrjfwZFhvFK8mcZw31TEVIRPyVM52xAjH56IWhWzqbzyzMEXdgVTvdxsfp0WXX0isVAGTohMJ/xDweSjR5ScCM62L5H5DnJt2c1X1xRr+Skc9oRozZhNsCQ6AAJP+hmMysJF3jH+B4rqSZ0/9mSgF7MGRS5z3+ywW8bWenuCoQGJZni9X2SfiC+gKNJ8c5iIJzCSyfsxrTcpSQzMpcG8vncvxx+hibp6RCNVt9H5jPVvHgS3EWTgx3BzVwPj+WJ7Xx9/ePr9xG+l8rZLJsiF+7yQg8DLUuBUP0nrcgih0VghNaP07RY87Ia3wxYHSXqfmVx2z58vd7JTrX1D5fBO8jTJImAsLHjq0u6dV0jyvLf/alFO4/iGq+VOEyNgl1XzEF2NplOVvZN/qKphsHkJMqlN7RR4PGpvGm31GGyRUhMjzH7ciJX3nJJjJZDVCCA+918OBUZEMvNqW1pXiN9MztbCO23dlqofOy0vql+OwAxyaNYIojxQW/4icHA2t1L2XEO/OjsIMzevFY8cSy1QOkIOCYdVPwlBIZBv7JyqcwMcvbwRV4Zn3CGvnD41TrKNDoWyA5e/a62TKbAkNDy+iRqtpxZZ60QPS8xhTThRtenL3Rz30IHle+HBtMlkU54fh3QDBDvGyx4IaGmLWOdp4kjHLt9GnkQ2J6kxEqgTU//4OP9yoOIb9zeqeAQLrkOUcsTqcJF+SjERQaHoD8tDqwBG8F01QsrHbGmB2r0g3lW9avU8loUeS1i2MA2aSOj6gFWx/oaFK8gISJHB7pieyNAI+9dB1BN5/Zjw3hVrYf4xw1+PwipMxXrlo/30UkWoecQA/MROeDzJBs5NOvA2MHeR8N7AchTAu1Bp139hTHCQPPMxEPNFu5SYAefLH74LxdaANiAStvtGuSeWoqUrxicdcBx3IZogwcfuGHsm66OPBq92Dq58AFzWbKEfYeZoQZ+XaC9ChrChmHgzqdhuzRWl56gqn7jc8kM8suDdW0b8CZIbeZAafPIY6Ja27X/V+UG7ZvAfV9y/NpCDMOXnrjehKT1n8CGdM4GHWzJqHWFXElqL6ZJZ6+tVCUdLfsW1VnRcHX/B+KaRcKRxpspicp7bTM0VRRzmpX+cSO67NzlOzdMNESd3PQLZi61kDYpvWSYt/qsWABwCux5NRDV8/x83d0eNPOROpqG35C6FVbPKU2AKnHEv0p+czxdHcvpFuefWvO7W4GtQ+DkmiC7mnd9vQ3oLY8awtJv0StT5OWZPE0HL4tcV0NwJ9f7+omO5kcIx2iTWHUFyOV8rMUnI8uLh0aXtJYiLVDq7A7rBx8D0aqI3jbDBFMLupgVjjWbsbgl/2Icm6sp45VyduK/hIEJz2SCTVR5rIydbKf7K4HNv3Uo2V15lLnnWbtYViV8QlNQS3KUtbLkmNNUiKJyO6SyLlcHwyZ03SAMDGgSBYWuxd/co0dFTEseSkn1kPteRb9vfOJvXob96LPkhWXMyIli9DUpTsVNzOPI5ZB6fooCGZ/NHC+zbY7M5Uy5eJy14g1dtWaL6wkiEV9jdnFcIduKHL7KYKj1t1aofvbUW8K9ipMZhM1xFkhw7tY9+zNJozzae/UZdQxEQgew2GjGpBJy7GYA8idtVi1Fe0Fnv0PvcObqVOdKgVbwPWjaDloCjd2sS04lZW8ETx3z+Ng+md+iwwTS/OGDtLQXyJDOAlEqWuFlqTwvChlKOm+KNLfoIQVAxl3oUUeo3eVZ4X9TuYhC/OT0kI3W/R4LoX0pzURUsIjBz8qRByfykpy/Ij0vzUTp2bvqZw5xWsfE1WVXmRi/bQRi+/KmiFVKLMOJmcYV09TxkPdwCpd3aqKkwp/HBpXPnxRHSkx0wgoqLFhDJIxfr1/339/hAK7vVpijxYsGhYufrPji14NGu/XUb7Fes0b8YH6sBMxTAv8KLGaTxHblBtFsksPSb9ao3ZqwZzfvBTaQyAjuv8o8Df6FQ6hqN/FMwi82dP5Waxi/D4Pu5z39VLylUDQkOGulfFjCfEbam51vYl9QJqFz69d0VpDygDWUZKbiZ3YbxuD+bbiEjyNGqe9EG62v9m0BqPM5fxY4MzY+dS2JODaTZ9JrmNwjqgWBhAuGhinsCZPin30QtgV91NsP3Z+0WlZWAym7eQKmelkJUFo3eWEgTM/Gu+Rf1lJenQwzYBmyYsBiWXmT+pNqhvXORa4zsp4IkYcPxm34FZby3E6nnUfnPmWGFc4BBQ79KmbQmWG8hhj70vTT236aYMB/Md7Guyh+ziB/QcGwJiQoh1gcRSz0pZDSKcZIq+ozrJE0w4xCNDNVRtKawWAOlQl5sxlYWOFmmqTOFqRsN2EUqjk9mnze6gh0q08PZhZCYJOt6jlwJea9TRElwqcoiTOQyBupTeijpTUlKntTjssM9MH18WHYKFByoUFx8AH4nfilCC02VdnZs7uXX+AMEm8vQ88LjMIhcmcwrxKeSpBFeJkTp5oftPQ4SaDyxuEl3jYVC8JB91a313Jw7WaUNVP1kz9qm6mdbyGYN2elqdXrR6Sm5iVMLtl2d0x2Qj0NdD00n+jOmmXr3F1Sk8AHN/TXEbglEIfPv5HNDoDfq8dx4HFdgqfbLYd4WAXEb4P3Dfa2tvbOSJQGdylaMPTUUOImFKTMhal2r+b0IqJzDQRP7dH+QFVpJbfiT97iwwvxAbx1/6gmTPzAanncR0W0eDp/kC+JMWJzTQnO1TPjlnZ/j+LUcty4SOkEftRVtL1ns6I3qYkNVABXSp/qHQkKdiPVYRI5nfQNd1lLuLSKFVvj5mw/+0nrIwqmIQe96BkDOjPxs9EcA/ibJrOEbXbQqbwD01QfGUz6vVbBjRqEq3c6kSdyM4pVehjFfoRkFpWFOhMHbncymHg4bC8zGtqPVzZFHmXLeMRHlNX4Hu+/VCNDOUWevikipJMNhXz2gObmbnrFxMpEAPzdTe1wioMevzVxoSKbJaGvSaS98slghPcRHcve0dA1SLIvDgug1KK6NfMuoVbGgaGQrk1suWGwge1Ba0Ryvw4tcYNrzXiROb0OdFG1/edE9Z2h4HLf8LzKFmenARCMgcnmGnNnvs11jV9eZOryb8s5QDB22BsdBWTCYasmKrwerTtLX9eLAS4LyClWAtEPcoWYS9Sxhe2cRqGgfJq3Hv2LiH5bD3mZ9WEXCuLBCLcDfrwLnFYj+W85+aP4jbq8v7lEn+4YcwdhyAs3GBviB8d4sbhMr98e8rXTl3IoHkoC/awJ6ZwmvmHmqcZwx0k8eQgoIyryFiuBmrT3i3Smtop4Ry9ce95oeFngEwDpz5q22mBbRDhunrWbJr3wQ4/Xm2lveKpC0RyNKEIR9X+EVhmDJbbbubVYQq0RZRywDeHEP3PVhrMXkpNfeuAGBx8+1d4tMY2ZatK4ZockC6FgyN3VGYQtm5rCGmG0T9CoQXCSw/I3DwT0Crd7n089zosGPRRq2wyELtgLddSyQqauY8bj6sCAN5vmQPw9NqcCDGPQx70AtEFMdpmUDWsFRIVjPMXtnS8d9l/HurUPzr1KVP/Cwygd+gYUzwsX4g8ebDjUYcqY66AdZYxw8ZYEXj48sofOTm1Cgd+wNn7FHkgm2aHEMsA7suGZok3kfFiMvvM1ln2FXGFd6ZdrFhEzMbThBn5TsZJQZf4Pa+0Lh3YeagKEPFGet0YcA2+0fkezeMANKWiJM3/1WQ2TpO5DT4lCvfxakmYOk2mfTKF7R9gymiBz3yk0h7R+VPzC0hDDzu13DerZCnYKP4jQ7CFw1GD0JITYgK5pOk2jA3joNPMS+JANghZeRpHqTay+bdlanRKadegfxxTPL/i8ClEGn1rhSH6P452Jv+C4okxtAP0G8SruuZE0S0MIQ3ppsI9TLY9vUTXRQdSjIJa8xR3S/3Xoiy21H/QLr/Je7ymFrBc06oWbT0MirCdxwLmjzFDtpIghdynesTkyLC413VA==
Variant 1
DifficultyLevel
578
Question
It takes 7 full minibuses to transport 56 visitors from the ferry terminal to the hotel.
How many visitors would 4 full minibuses be able to transport to the hotel?
Worked Solution
|
|
|
= 756 |
|
= 8 |
∴ Visitors in 4 minibuses
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
transport1 | |
number2 | |
type1 | |
place1 | |
place2 | |
number3 | |
number4 | |
type2 | |
transport2 | |
correctAnswer | |
Answers
U2FsdGVkX1+4LLFlZYk6zDlWGpNpuTP9aipA8JwPRP07byh8KlGpjMGRd+XtdPHZ2quplhVfvYTsh9W7sboXDE3zykH6wa7YDgVkpNXP9lQPw51qEXN+dDVWcNs3UhSi4MtbASqJZkUaRh8iO3xgJDdAej8J+wyKkqge/rePUcBnx6Oi4EiCKyKiPfaPSHV1fF/+pyunW6luz/Q9vbCLe/reahQKXT5oDV1nD6rDTZTQnJg5/EXKhtXvT0+QE+IjQ97qa5t+OcI0AkgvXHf+C+E0Oup+VHxSOtV++ZvGSiPyd5Gs8jXNIyNUM3A9YNaLUOnpwITbctg9X9PaAnCIrRCa11UnGS3zlFjSMgTLUaG414bitWn2woC8Os6hzfnPcugSqK1syx63CENH7RauwszeSYylwICp/TRM5wP4noy2WEGkN9oCwkkDHVlfkgbalvKJsEhyhcNG99U4fRZYvBATiIIbrnsuCKpnU8xqx+/fEwyt+Jv2rxl2D9ORo5JvnF+oYqjqb0RN65p0JYFpJGsdVhWhCVmxZ5+vH1zV5cFe17odIhPZ9SEyWaKC2gSqvXw2c3qlTR28BJbbGKj6E5kAN18z3h17v9iaZQRqwKPB5ySqQraa5n3qhpjjenxu5UYRXcXzPJw63tCecLf97kTMrh4GFkHlWXH+dkIW/TptStyar/4Jrks9F/50bIiTyXl8KUJSdNezZrjC6LMCM0/q1mHzAV7zxTu5PIr3csOUPp7oGFp5wDDfn85qEycQcaE7xT/nA1biXYxQ9tK3AltPs6d8L14Zx4I7exqL5I5ty6DmF92ubj40KBExHEQuaErjHCJMmVRoBLXFxJs/gjqxC3kuC09WNevKyqy3HZScsg+HbGDnXO0gzAs63fF4BMcJY0I8Ucw2bTmQ+0AupkgPo1hwx0MGjmjf8vSOdTtf5mdSQ6WhL7+6GICvamySsE7GE0cm856kRW9w1TXiVesVWs40LVl68VHebxS+yfbxjPqOF8XnIdhs/x0T2n8JHCaoDsKqpEIvZUP5wJcqXGCaBZhhgol/F0HkY9cNLGu3BqMxugKxhQ2YTZyk3TeB7JWv//oHVRZBn8fTxudem0AQ4MR1QH3i1xhZmgSPpLD7Xfs7NNtL49W07afnc+PBEbWeNuNN/ogFJTF6FMW+id/EasWmfXAEEqxYhpaqDWCfAS6s1r7hiiwa5T8D7pq3i5cETkvSUn+NYFVk2wLq1pUpRCacZp28GMdUfopGoy/UU1k8w8e5NYDw9WWIcyxbMmW5IrjQZXHmh/SRKd9I7ysV+6Wy96MNZsdpR0hTbKIIIilwO4ag5iYTQnGyvk3U42wuX1JkQWNOGNXlbzpkBk9At/4htqMb5W6s8J04CVoehCzre2AqUr0xncgjFVOPphy8hCm5a7lsXFxGkUZb+BVv+GZNHoJ77FoulrjAqq3AQUg6KcbPm4+K8v/Lhblto6W9O2AeCkaKcCv4baDhAi+ELhEZ+0AjJi9w1xFyb3ujAn1wDnlEgfqXWxmBnCQMXPXNE5V+CMFSo8om0GWcuE6mriDPEq4ntUa6U7+o1xji2MI4pPKHc6nMj+0q//icIRAFiIHK6kaSzZdI0gKIudhcg16x2O7hWL5NQ3de1YlbaEYsIB7jQppntWuVB5FUBQMfFd89IZoQk31i1GiwF1UsI0g3ZqGL5tumYFFN0aTId8EfEeVmZ6t2Q73UpX2zmTeaWm3MdeqAHvBzVm4oM5hJuFpm8kQy+OVtcDgd1y0u3/KKYOXAXNm1lkAKVngeq7CdU8m+houYX29rO2UEIGIUTwmE9UI6iUyt8JavDSd4bR1CYppeg5kOEDYG2s+ZNrAQz85c0FUBtSYDTNB3N3QhaHTZBSLU7ba+5g7LajYmsuId5jQ+a1G0r906EhG1lK76j1BiA9ng2JUqO98HYiI9ZjdxISV9bx8VWpuItA6V4fNdXS2GTf01ZZ9VogWg9m5k0CGhjihXe1dQeVdz5VQYX1+zdsBR+T37Qa7shrbd1fiy1O3Lajfjnjkwme/iVzFFEqETOGlz490wHC/gIWDYVj7rld9ebNDWsgmVwcawncEgey8ORJ6U76oaE+yCY6Lm7jX1prMvTTUN08oVEK5Wa1qXc+RrE8QRZIGWxczGMT3wOR4D6ETxRGnepaXL8FZgiYODJxpUAj4Y1hIa4hH81exveD2spDCSYwkc0F4jnB9YxTT0UWTyxrHrKVak0CUKLuMD5T9gCk9WpPw/ud2n0F2Vz9daXIkkhK8zJtQuyO93emHtyKDym9+4kCcSBPMNXZoMTQZsEJu9rq0cq+q/9WYb2L/ET0M8fw0roOWoLxjuLCoKchGBgCqX/yEQyIS5i/7+XT7Zl4HCk97PZXKcFePvbCTR2vo8Mu416mvXyFwHw54anEOLgzaKtJpoCSlV5FEOTBqaf//zq+NLYlDuAXLH+m86ezWqlyi9F6/shg8NVtmBzvHb34PadetP1EHOMbYHYdAmXtSxxpuggC+3jmilG/bPtEySatNRPHxLKwGdPTnMxEc0vpXeTUvK1d+p1+WAAUR6wxEKU9tkAFjIfHz8drraM3ydCFK0LkXYp+XWnOFkCaw5oMe4mOSaDCYVrtT47nPVe9CGi52w/B6fZZ1x6+C9YZeTQCh2q/JlIYqZinz1HHjZX1/KVl1bvTcv0J9gFwHkvi05PmBbSx+EVTakCoX0NWNgJJnR264fFPbaKm7rvK4bktxWaedWETsH4NIWFqaUOemB5hxX6hmfqZ1HwOyDHMJ9QSOIZ9H3MqXYPPg9AYqvekUNgCCR8jEsHzbUmNE15q39h7ZG4aZZEYVbkhfRdurpXAOitwD0G58hSecVbIE+Bnihtf8ZmH9lRXZo5amDyEsuSFX6O+KysUOIP9q16iZPy346ffclttVM4kVGa0f5omhHrh7fhxyLmVVoT7A62O7uVnK3e9R9ALfvtrzvstZgfE1Mg637XeoMRxEmavMlk9c4brVaMOom1Ngrv/mLQ/sLH/LMBkeBGvzdVEmxhrrp30yzdPriNi0d4lhP67yQzBww2wDeCcCtsUJQW71BEgPABHRoOrdSvuvqiebIbOYbX0jLXzLbvJ3RtkB43qgHTyEUaqQCrsM2nHH7RTP0F5AqimMlFsYRI3d0X0AHOeyrI9xT13N9NvfHWie+Yw8Xlkz6ZotIgQ+RISc/ZExmbZXqtkAyD2xxE6eHPBlJEUqhLdkeLVjBfD07Zbdfypzko9cgmMZOgKwqEURHlDTpYPDUpFqPMvNvGDnf272hVGc/cf8zcDcV8/P0TRCbhWu5P4N3/RCMk8l/Sg900/B+Z47h/GqLrBoQJUOeGg6pkFK08b8mBWL8HF6wjpKC//TjB43eW39FjGkJ3XW0xpB7+qcERVWhxHQvMXDXxcZ8FdnsFwlkVpf5+Kpbizd5ExKMeeapJmqP4bNhnKM0gIiT9AKtIx/no3G6AxNQDERSj7m7z9RY8vbO/2zlZAFy4wud90qig+nWHaTFSt3O5AkzJu+sH9TjX2ouW2IY71z3nvj2idavdZvTb+t+41hpabYL43d6CIKzO6Kwnuaz5HJdedp95SEu3m6FA0hoLAr/cHReSqWc/D5ulyUTVupjf52CvegcKjRpxMewP5jOX/rPSrcGBFtCCetNNklJL/H1JTTYSh7WQOIk2AYi8X3CdDMZF+0/ewS8ya6juhbUFG55p5fAgqQPSJvGD4nalluOIFbJ9xmP3lvcXPR1c4zuD6VRsZg4b4IJyVQs9nhFdQlCTy9/U2tVrURh1OWNAvVuKEYxMXO9M7ci9QqZHdCqV/v26AWVZhBXmYWNh/TTLc2t8OkjbYyNOlKkJm+dpjn27DP1P3Rc7bknEK0XP+xXq/eJ/Q6HLJ4+ReF2QyNQD5BtIX3gLdelbmzMEWD3fikGo0kF2r/B0LJpzDWtuhI+JPFHQN3fWR3FQFHc55vqv71z8rz6TzGoz9jkBLT2syDLrfJsgjQ46Sn6TVG4H6Q38QcKj+xMQmasRPBWWinyjEtv2nWiZevPP3CdyUJAh/lA2rY07xFV1Si0iondLVBh2/clTuA87Fd0wWfEvX5zNZFDXcJW9I6Abq7d98pZ6bh98pHKFeKFOLUhgxmykrgxLrRp3t8h80BQgzq+dNhE8VjC4rwQ7JHphjRRxxs0Odtf0nKeN1bmeFFZKYyW8J+xg4KH3jQsODZThLV9dwY4BxkkDIbehDUvJHgQnB/CYJsOZ7AJBA5J36pQ5vZ27r7SqgAg5nJcUGlnwPjieDYCXkZFWDS9lqbamI1uXjWr5FXSTbuSzoRtZgEdfPfKzdvnfk69gXelJX009G8A3+LWk0TmlRyOa7LY2aNcRxohwzAzKytv0ESz0g4pVwXuflg0TmjaMXXDqv8VTUYHHGvFjSaTdeGrF5VGXMRzZy2U6ks/D1SlXh1Z9mYey7+D1W3o8TjVrK2ilXzm+a/FJWe8OJaRCWPAT/l8G1h5w1Ehd/eTqgQUdClsTkTECsMqBnEE5lPLVgAMy+gqBZCfp19C6mCZe+cpG8biw/Adn60B5Df2RWBBNSHfNRrH+LzfpXfgJ8B8KJeRa1DrSsx1FTbZQKPKbW0gCYt4Zvnuhry9a7T7S7t5vaYgOcSA+/5mKWk6We5CAqJOmx3TqSOTITWbiMTqlOkfDUL+cQT+hgOtbGVggMv41dPsv+VmH9JkXoJyQvCrgmsYE3Lj3QEWzyCkpvqozdUCoKLlYLk30mC1d2gQcRbiw3zvVVN/wxCBLzCIi49v57U6NXyVXky+zalfmgJHyNFsnKgqAckvGmUVrtbEHN13ak/kmTu/EwCfNOqyjeXxq7LgAX9VH3BjlhVYpPj7z1cC6RwGSmwIDFbeVhvDl9L6Xrb5c8RRa8XkGq4soNpRPQJfE4SDrRPEkfWBlrtXcrf5bufvhnV7FcMmrfPmuUmAaMx6DMWVTFWfer4x8p5jO472ulbfrQKoy7oyIaCTiM9z4O3Le+KmOGa4n93QEvmOALLIl80lk7AdxV/jCzi45dk9ZNsN6Rh0unM+cmLz0Qa1WhHhAcoDCQy22cYasM4bnEHhQlcO06jX5DUewPtZrfvAhpAfcaXVjat+2Yx6hO/hUVfjInjI+eXDVe/fp0YttMIQxHM=
Variant 2
DifficultyLevel
577
Question
It takes 7 full maxi-vans to transport 42 supporters from the club to the sports ground.
How many supporters would 3 full maxi-vans be able to transport to the sports ground?
Worked Solution
Supporters in one maxi-van
|
|
|
= 742 |
|
= 6 |
∴ Supporters in 3 maxi-vans
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
transport1 | |
number2 | |
type1 | |
place1 | |
place2 | |
number3 | |
number4 | |
type2 | |
transport2 | |
correctAnswer | |
Answers
U2FsdGVkX1+mXlZKur7xKTW2cMG2S4LbO3xvguzs1tgJ3k5QpTIHZ94qQ2boh7O5eRJV04pdR1XUz7RqhnbvknxZ4LzjpisPp1AmaVUqDZO7b3VZTrS9L3gW0MzqcFQZo7Hd/8d3+sHCmeonJxjq1zX+V/eTYDsI95EqSIQe/pkr1SOgYtKorvQaxen2K/An+SeKfiuuwC7rGdp6SSs/XL7p9TTyvxaup+7bBiKLHuw/VdkjLW+Zqk/EAZewH/uq2teqG+K6FdVezbWpc4RtEcKx/zDdGYSLC/bHOGuh2ryYhxchNAY1Xl4yqedbUdw9fKxLwQs7AyLIAtsdW/fMzyQr/vw/xhhw69X6AyZJJpe6XCDO7n4DBhp1iGq6+XO7rs4Pwi0ofJYgVI8HEwqZ3lOjDYe6VPaKO02mufyKC2OvsMhvqu7UFiwHG84jc7NZOaHLN8Cuk/vtPAPArtLiraq5YAaE37V1TDk4bJ7rSsG3yHyAXZsSOktEWon9qtCVnHNyIgVIxP52dwju7UbigdAZHYLgInd81SBw1Rm2nc/ovF8/Mx/gFckhen/xV3+qb4JtkNpm+0X99xSFDgkQXKdQB1XC6GVak5JEg53IzQUskvI1ZukCvBDzE29svN1pSw+sZavNIj6m0nuXEOFdr+y8l67x00Li/xU9rZCySjcxrw2e+D6aI9TTytRLci5g0+yi73nP6do7/FrDMwPwfHPvG3jUVOI/6kUUAQ8KdzGB/2AkTyTX9lc0vlTiD2IfX5Y/HYwkdzN7YaqS6vyJ6mPXz2cydCaiyWdTyrQEqTp4cm4BnhP3W2nTD+735/bgrS0rkuN9WtX5fdmt1Im9RsMzAJzCvOQuC78UER9ubJNWbi/p0j9qPJXdaM7kXflr5/KKV1z9tHYpYqBdgu4y8os20HOR/2+tbn1WW4+EDyb6UZKMBd6J5RfNEiykDtK3fDg4tqx/m50fK+1OO+7QtGuR/BXhUZLE+iW5eCkBp1Y0qRxtO1Snj+CtONTdVdNK5x6XtaTkxZKKt58Yq+BBRfebuQ9MWd5lGE1t+lLPW8j3w3+CevVAMHuu7CXWAf9mIoYjF+ILHFPK6APi9Ax1OefTDcgF8E/izTKfmIj4OaScJ7IvjZh67bUS4OUX19Q3UcGQOraVtezvsh2KvqouF7+DHVx32dTDaaQLMU6jJlYKrEOmwFtoDd0zwWb0tpTDYnpnwRS66dxLSMTRAfkW9L1VhL+wS0tI2SwQhp6uFN9iAMBL7cn9Wwni2rHKqqTAjUJEHqIKUJamZ8X4QlU2xFLVRbmff9MF2rWLsBpzR6BJoAQp1jizoxnxsC/5iIIgyAXV6ZKGHgjKQTjeL0b7/gAIVQXsvledyzoSBwDn3Ewa5qqFMlrS3W4acXSw3wAP991ElTN2fY0kqEOQ288eIRYyvSY9JgaNoDMRvaSyOhj5CPeuM7OQyZ5NqWoiMfEpJrAsGWF1l+z/dA+nemtI2cllSmzUQy1LA18JS5NT8lt32HeiHLmTEG0yEdOV4V7OJnj00u4+1gJaPwI8ToM81Hmlttbo5MoE1/7J7akyAl8zTH2rfTh+UeZ68jUjCxSOjYG1K8rq7osURVQDAZzp8PoM1qCWvLCUllzf+TDrKNYovorjU/u0yiRsXl6aHap7q/sJGpb5uiWTxEpvJ940z4jsq83YIERasy/G2Sgra55uYPYwJ168rZlshkwze/kSfZcobaaTF2NYjzJnrgPtmRmPBDufTuZImJ8lA8S6U4F2pFoOIBd/NZBywbyV9Kds6rpgSYLEcgJb+jIYqFahzF0WfIhAgYwfzzUW2tLxWwjdddqs+B6i80mogbLBkdvFjikkKq85ZJ/CrPHG4p9bFIRBFnMYnc1p6ZgIVPP86BrWjZ1MAcp/YtIdHShU5EQfphlIa8YH0omq7WNj+lf+N0rxB2RqBWarijePVYqg+QXGlKzsunCoeIdWkGi6+jOEw8cxcqyEzdIqogmODN7dKeh+duNUihn+nyI5Ez8qNuMRGy3XoHtandIhhFLXAaRLpMQUTG46mCMconqDGqHQeXbuJm08td/gCESOwtWEKFh73tsfxkCVoVwjNDZOp5rk/tixlDR81qkN4FrxHfOyjpDO3qCGSkf0Z9uilfoWoy05F3A0Sah2NyEj1SbXxXu5Uw/5HoXPK/TZurvs2gxzQ3UVgqFbwbc62TbgC0CkXX3/cResW93M6ho8YzMny3lxImIsFQoXDrZ5FFRgQ6ePESNgxwnFIhg+kEKlQQajn5kAW/IrRnPUkVYQS9jWxpxYbx8Urq3Wp2A5/Td5iFssnYzT1p/qxEdgSXQ6mB4jNWx4JpeGenlRAtuaUXlBjR2O2wotC3AKSMlEkbnbXM064WDazg9D00XqyKSMWdaepRj2QwaNSR8btDNPIPCPxUtdj8JxpELow+YQq/YNvvco/A2YPuC8bupYGxXtiTv7N2PKrsVUrt8bvIq/NXu/usEL2yQPh2ww41mH9QZioP1KPYS6BWFaeTyfR0STJ30PkyTEPFPDXtlDY2AxxKaa9dQgRYPyQeYjDABVbfrj9H8M3nhijHwJBOpQNwKXERVTabRe16xXrEMisJ5WzxtoLR2JloEvTaai1dH75L3AOQW5RnTOhtdS3CCdQaBu3u67l0OVOVhp5avguNHIMD2WCGHPgNLmgB5teg2h+ouWA0ahR7tQLRDJm7HVwiQlAmOgt4gnATdSmEVsPXcz1uNbUzTVymkQwf5EJ5YrZRWsbX/6v276e4GxjlBJZy8iOnGdL03DOPBMUJ+AJKAl6PVv46a40ehWY6GHPwKDtNb9+Z6Q4st+T5uPRQzrSdMYmxNJWoZgtrz254L5cgdFoSPA6Wlb0hpg95iFUa+ivekv5JCwVB22DbYrimRmNvnNGl7bH/iFans4u5vJh4hemURnyJ1zzvwXaB7y8QyB1dshEUZsaRe3qj+z461D5j7UdElBgoRxi4OVZ44f8075I+rViQOviHhHJtxPpvd6B1nr5VYm2xAEwdNVCbeg2B5C8OCXEGNcAuZkdQTQ3BGSwQCa4FwPEDMyLHn2+n1GEc9mBNuCNGK7H/wR6X3EE18pRRG+LqsIZVV6RalPK9eFfr+wQaKOgF1g2GJMtBN34+YeHfWxiZPhqYmgXeGBgsdRuC15RLuHQDaUwYjXRR1NT9YQ+TJ3enDwQwahqrd5MWJPbvQClVpthiYoK9uVeCPuch1p+PY48ZNUEPTbfcsYj4BOALH4lqRCvG5b/gi433gmcshi+YLgUTzNyIiTs9WEdt8ldBGnjzeXKugksE/pIe/iuvDLrE29oigbN1GY41C2HyGcr92f3f95v5I0e/FLp0uAdSW5xgbbKHxVS3n8Mv7nnpNt7y+fXZ5jI2sTa0adpiGzRLntkU5M1cdIn8yIyY8bY9kp00FIHCA2a++GnGseMLKDPfZolYywPh6qfa6gJkN0FSJsRDpZcYEu90W5HjCTKDAR+bGU7Q3/cHQ5yZquP4IKkVD1QJC3dsBShpoCd03clZRbHhLtmOJ1K4OOMHLENnRR7jy5R6cRQJCUsDfWl2EFMMDJ+D2SUHPWhHovI1AVTS1hH/VYvKBKWxOKjfnK8pEC0gMngS13tknXJueoh/ku4zBcmrbafms1pB61nixxTEtYhEn6VOxY3iBX8muONDOAtXzAobj+insyVRDv0r2+0/LV/1FcrkY/lIAW2WXBimuQhYijROkNZI8PL/dyIH5qZhzapgSZeQkabjwhYWAECVcNGimL88kdOcS3Bo0gtfmVyiBmCMqBJ2phk+hw+ZrmcXaud1Lo+31c549/6XD9luLiUFDUjGD0d0Ud3W3rz1M3TK6+XP81i+IjyA++NioLVAy0mxs+wJTbGczxIprlM9DaleYM23KU2cJE9f4iB56fAmYPpPyjS4JBy2RbjMiZg04W9m4O33Dn1CDovh6CyU04uZbqCEfHYtZCpgPuEu7PZfPsAFdxd22JrihkdTO0Kt9tr7YO5TLdofe6SLHq3H5JBiU6rhklzu5I5qE6JBVnlPVzt+FoulmGovHh+x7qYmHtz2Byuc5IFOnA7UiBEfIhnEmvTha5ULyEtKZFpjOX4cRO4Tal2FQSSwf3K9+z9mjy3gFJHg48M10Pbf385Jr1SnVsnboFpI/HLluCtBV4TQTICnN7x3J4Ax4gu6+C3I8mnnXY/Rf3U1QxxdNYP1s0smC6b7EhmmhZYJDe3N/fS/1kCbjUzfZbjmVoDSxRk+d1k85HWEb/7jYqc2ICaOwxpQaw6quc9Gwl1ombCBFKZhtu1mrVgZOxSGwJVymR1JOLq0iHnY+Hk0PgHNm6lnsv1AYQ2l4+9QbB/SjL2t/XdIMETCDOtd177l1w6SnUlG+589F1X7kWp6tSiJW8Io9sdIejACfaWqJZdU7Y6/yyMfOA5FYpC5y2OQm9sXpNI6JLUUm1cI+5F8dJqU0a+a/NItkrCU0L43kXU9BTslit7RQ54FyYInJaPe+S9IbjmR1tkXPeasyJwmN57pdQB8hTCwIGyfmXtmfaXPBLf77re1RI5KNsVgzk1nxBd4pFFJt8TVP8BIzSTOYINDf/CHFZddLwvGDCkY84Myonbj9xvq+cNV42t4H+1YAvXp5cMert5NRoOuod1SBEdBMxQAGtBdhBIQS/uDHOBOErjDYgnyJ20wYOx8cN8a3pJ6LE8VWXFUyTy6e7HaGZmDY9nu2HUwicsC/x/ag7SOiKQYEPhPUs+GmJSTcMH+l8HojqV8zwZ7enYpLlAGW/gJXZ+II0a8h0UbPEWuMX5/lWHobQyz/k34aK/9TAgv4dlnd0xHD3eJLJhBRhdV1aiD8LhXrHvhr9d+Pqx68pqQx0ULlOCP+DLr4bMnXAUQ4FTlHV8wzcbVvUhiPGoc4FWQZjBxumAG0YXmTRAz/2KCQeBjatuzTHA66aTSHEZIvCOmum9MYTJB/JGHsGMhXo2/+lzL5vVpm5z4mMK2O9gRHyE7kSqtf6gUs82HwVzVlD/oxUVA+5JAow5d9hEir47hToCl4JbBwk0OPyvCZmLa7fehAey/FfM9OnyjlTj/WIDhncBZyuXC6+yFw00i5VyLsM
Variant 3
DifficultyLevel
579
Question
It takes 9 full carriages to transport 72 royals from the opera house to the palace.
How many royals would 5 full carriages be able to transport to the palace?
Worked Solution
|
|
|
= 972 |
|
= 8 |
∴ Royals in 5 carriages
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
transport1 | |
number2 | |
type1 | |
place1 | |
place2 | |
number3 | |
number4 | |
type2 | |
transport2 | |
correctAnswer | |
Answers
U2FsdGVkX18JVwC/qhntr7HCLAmh65vfWXlm41DpMWRnojXPkkM4CE/11CT14BLLDBTLhDPH+rxR9CXyvxnKYL2We6xwyBjHJUBN0Gmp5WYmbpiPUkqS2dJ+doyDN57hy/MaRQ6ZyKdsnHyuU5MczqoNmRitOZks/1imGfNazXrZrmrHHnt8icchS2r+5u5c3lc4UuH/nenyq3+ZN0TvclJukZsK/tyOPWxdfj3D8fcDIHXkOIMh341PyYLe8P68q7TvUs1aVCRZmb825IsxfssvVR45F76BwcC0C7KQRX9wiOoaBk4xGldAeWHt9gceOOsPMTCGGa/RsPpHzpZqYepH23X/XvdWngbnJrKmtzDnZQ1cd1zi0nJXL4PxlRhOOik10bQp9aSffzkcY5ggsihv6uH75yZVJXZ7H8If11z7UU2a61pGewvCRkbQF2oHT5lCZWeWrjb8gPKcN3j8wIpzcI+C0QhqFNb5+4/jgu9BoyhBXgo1mtDKT+7jTz7y3z25sKiRjGygaJ+10SBOpsgcdh/59fJ9VIQlEsuvuT7lAhNNn0P4wWbInLN5AnpGx1uHM4Y8RllRMzZVhaP+plkuBgcI0T88QjMfTao7owtByfKC0Fr0wJm6hE7Q9zdAkWelef5CPo9Jsdqzd+zyZCfPWsLC6K1DSv2hNDqkgccIC5yNdqGI3Z2WRS3PoMo1b3kt5IQIaPtqet3gHF0a2LZo+igAv2AVzcp+KfiPqxTO9QQesajOdDxPqiM91W3ZjMpMN1dx3wLS4Nr/dXOFLXiVEc/GsvXFPt83ujV1vCjeKdorYzJ5uYBMxOl083qgbfdUnqYn2Oe+a8x6AljmqtditkuhQO5wAEQ9LB6wMvswiuCUdOw9zBS6jP4T5PWgjum7pmmKbk8NPyNYqnPyPSet5ppOFRYIU3j/l/JS6BsC4yNwDaoXsbGH4hwB+m3mb2vVWqdX+D0BnQbQpMpBum1x12TeYgAClYC5zvoZ7zE5uMU4y+UkoKTueTaTT3bJV3fuSFnX3L+OV4ubIDWf3xWgNBoFIHmLCD5sp4heT3E8QHVlzrqsONhZzFR5rUsrywDHZo8L1RwkYnSZkHIxQIBRPr3n3xiOIj6Z/W6AfJb1k+vzZu5GiVDZYfw1SGxkjq0GzWV+NyU86IT7MZhDHsIzpTZc4q5nQUFpFWPYj3m5Sspn4GaCYqg83+cMRzNN65n75hUaxsAFeKWWgyvG8BSd0uNmTqwkggRgWzr1QzGpM53sUDQrAV03Riy2ZyYnvhd/fu+GxkTzupyutt0NVgdJfbN0C5Li4FflbSbz/xiGcSISHQcAsc/BotIhSAIIe6+KejK8321V192SaA55G5aCURjffLZSG3863ihu0geUJDyF9J83yExhBOlsSgGOgmNKWWF9yyjgn5AmZC9FwBIUzlsQwOk2r39YAz+QqYdaE/+gKxFuA9PaXS8cgmv62M9iX90sPvA94wNwt14Pfw+8CPHUL9G+aLLkXWHRC56OhO2rItCRIlIhLvdGKGZVPPXox1rWm5Mq4EhYspiYFaOchhpJDlk6yTugi1jcon6VVkJSUXC3kXXrXVA8v84SMsQ9dtAXHGfYvHvL+FETpPFGBdAvUlBDTX2qKxmQin6SQnCOoLMHKXsctfUjf6YT3r8jhpwHmVuDVgdnvxAO40BkkHgIwJY2nci60hQUG9au7jFwFRIzpQfCux6gQsAcdPr7mkVvFpDZI+Vo26IAuHdZCs539G9ioOYKGMoCu/A6MubyqRiNADzv5XKZlVsfiBlreX4bv6y8ZPZXTrSvqOKcExzq9CtSgVs2APvcVxhxx5ORjne7r0WLCJIR41K/vXRsLP+CmXofffr4CAYWjcDH4SOsS6z7fN1rKsYwmTxQKFzY+/cjimDR9KtZwL83H//vgT0jpd7fthUsSssyNbsE4gA3VKhwYvm5IvbZnAx47yPfKCxLmfu1ITqifoTbmGlQOHo2K6p3o7SnDQeI0dPA8fABX+6FXJpn98vktS9sqSOmopygn/OZOvoQ1MX0fmS0ZGYevjvakezoI2yECOBRD9eLv/hxiv93n/VTvKBnsOqRwKIERTRh1xRbtkvlViYrU97aYL5k4LrR+ZLO2gg5LlnOprSUGkcCDGMkF2yjNNxE1RKrVPzxzWYx3AkVo6CkHSs6fOCVLpXMEu9Mot9PCgCMeRCq7+IYD04pj6/LUFJlbwrD0Te+UfSRfM55EfNnglypyR0cMqQd6llo7gPDRd9gSquyQ15tIFiggapT7PR/rK3UVHChun2nt7H0vX99xkwOz2ccebfNW5+hrcZFvwCjvcwiE6Mzp4DgaHIolX0UB6UZZWdBRMSHvyW3AeuEKLBGFFMbHzLWNi5ZR0QVgzqMfFtN9G6POy1EF/lp/e9/68q4plYil9UAijv7kOf+BRtOmxTUlmP6xevc/LgN9ztlWQKsQMZhWnjWn6llBZJcDf63Xgdi3k7iesEfTRvIh7FW6O2JKMzQbudy/GXB42OPoTOq9K0rSIHa6Z3++CDXyC5m33wVJsUj79MONc6sd1bYKvW/XfJ7kUz2O1T5Fpylyxr+7EtZZAEDbpQ6peBJezCTkvoqHCzuP+J1M01znhMMkbKV4tK2d1IM3exq/XOALo8/7trs+zVDARm1VZGlWlwy2aVdrXWFHf12jWQzoKJQ8fyTg7C8gV6S1szCWRA6HbHbxJxiPWtEmmDN/tbZDnl0g7C1rhJvqavdwFV73u64djfUpru4jKbqzscrCR65slGL1dgrlfEpuN10UI2upDTU3DuHWIPfW0gB/GAvPNWMgM7GUiJKNY/A/tZNkvMTSysSRp52QnUpVbG9Lx4UeFN8AEcNts8pWihLBNHEyPnSRNhqTP6mLI5xvRkrh7ri/ie7Dpn8/JCf7g8NXnDSS/3XJNcmTLHXETdW1b5WWAGqntGYXtYYaSwc2y5JLbbJ+IIXELbMaX2R/Za6Jo89QFUZFHAsyOdWQmNfZCRicfRxvTfktXtAQxArTLISetfoJmwQ/wWVr16KAY1c51U8kZOaCZGRUZnCSf8hd53H+gXNNzZQkwhXZUPOsGJAPbm8LrSfrlaPVAfhaztAE1FaDh10IS+hp1I5J9zMrBfw0gvD7uif2JRGqfUhwoEmvGO2zrkOrYg5Ktu0RPMvwLBCOHp4u/xwy+irFJYL8cQzWCxySmNuzuoEHq6En3NmGHs4AQaKVeW6gTkgb82FCNFZeazsgjB0YnEdtXlxWuyFERgpG3Btf0w9q41rXxB5Zt9dMlFCZjeW2cVwDNuWyGox3mcw6/s+/2GE8+PUDQUsPwOKHrmLuFCBeJz42cdt/MiAE9xRp81/2wbDqvfqdaer+7VSpXanX83anGwWaCu3fno1CYbxCp807gusjIzxPFtMNOpqpubljZjWgkJnUTRAUPzyN0FjvrE0vFdE1E9Shqd2kpAicEj/WDvbstlOUMHgD/jaL7J7WeLB0D8yOJPJvnaXGO9WI1MHEkkvhZrbr+fAQEXFCFobByF68xv5myD7ECFNXxk1yyZQEsxmiOsVj7VEYYEM9vbNEoaol0lKICOKRiT5LAYOI2qaOvTFFuzZoGGRjnidaJ7bwnhI2nZsX0Wm75QxafwRyl8jRuyvl0NYeS6cMeg3lkM+T+kDzsQe3yH3hvOfZr5SKkUyIHeK1h5srNffqoaRejgpA/uO6vKUTI0bkbA/bh6mc+RKTFR9Ti1pMTWmU7DMqMsutqerXyFl78V9bHLdfonqC4e8Hy+tqYFNrkJ1XDqhRajK9u7MlaEnSfT+8HxfzeOg1FcGfHu1Y0W8O5NQhxWI2oUT2L9TigS6PXj8EEMw0Aig1mUVXOMLYToKuH83Y4ndID9CTPu+ZfutNO8DRWVl9DNVyNweW/PJTUYqdrDBHNRkPR4THZ3jvXr9rVqFpwcHSYC3UBwjkSaiBQ70BRxucU+Yp6MiMFxFkTULXGhHXyfLdsw9OENXm0Wd+8d7lDNOPiZh2OW8K/gUgrpaT97RVEcEsGOjH/FIIZ8kiiMmNB0rO5pxkIrRfkEzzoXvmhiAJIah2RvLuRQid0fAZNV5sUUCoBfLrOzITRMBUfBhKU8XFIEDdfuGrFnjHqn7sYcsDhgmbrlCxONtuqq/9SFowjLbEF0XVNQ4ktoGtUPWHYkzcWZOS6MhvU2qnM1Mclte5L8T6vV9UOizbm0m8uM7LE1NddYLMawul4bnoLghLNfJ/4czcgP4RPh8Xt2Dsqjgk8c68GItUTWzruU5OauMZRNygrlL5tCLKdd6S2qFmcqRjpwS3sgkN7C2cErBgXhMJRUhPIW1rDIjeaTkPdqWG/Mv15wZZjzJ6I7V8DI+uhDunm9iqLWgVFwfxQIaV8Vo5zNmnMq7mtCbFpkS28QyH4K0MswC7d+LhAGXL0TYKKvBf+/8vsgnlxFiHqAl1G4AyHPbMo0RpTvBZ6F057cPy6ma6+Ee6RwiUCE3n7KOVFplJ5ene4UlZfHfsDYlG8hgM/Y7KmkRIzxegMzXEPpIKyvUffTxQ+vzQNGNU02LnlrUH6lizX0Pd4rjXaW2++XsSrSbv5s+52LjfnEf78Nak6DcLAwiKcXqjnyk7FNWk7MW0KclddvWPRGUioJ5xk3Ic32wNR3HHMsiPTxs8pWCmL9/MM6//4GuCdlGsExgPoN6E3KeuEXWgZg5b0Z/VLlBtUvDSbfDmv8VxjZt2PWJyGJ12O4d7tgmiT7fMF9BG43ckwdOkaHF+XQnfoBnzSw02RGDWsmQDhNRvz2b7y4trDH+cKxfypJ7/7aeZbiSMZFRhexyZIXwH723wi4IJ+Hzu6C4C5K3Q4TYSleFo1eC9ohZ/awNDIpnWpGAph8NxkojCrcn+VuNIBPrFfnuPMec4i6XwVifti6IwIkWTU6hiWFMZWT5eWBWn/Pgbvm5/8HqUIz7J9MI26SqaeuD95KL0ajJXKUfQXX2leIlq62+rzsCiP+w4TyaV9+31BRoe0Hte7OKOejew6wYFmCtGHcjJZzC3i8e5bjK+NP2+bWZ/h/NG9Fmpt0O/VpTDtfZ441pituMJXdRIaIyS84ix82cswGIa54IQBg6xmnV52mt
Variant 4
DifficultyLevel
580
Question
It takes 8 full carriages to transport 56 royals from the palace to the ballet.
How many royals would 3 full carriages be able to transport to the ballet?
Worked Solution
|
|
|
= 856 |
|
= 7 |
∴ Royals in 3 carriages
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
number1 | |
transport1 | |
number2 | |
type1 | |
place1 | |
place2 | |
number3 | |
number4 | |
type2 | |
transport2 | |
correctAnswer | |
Answers