30041
U2FsdGVkX1+8I9dVQBBFGOMfW8USFz0XMJB3Nt9LsGSVE2uDHJtOhgnGpWzD3vc+Bl1b0JNPicnbnpvnWrbvqpjV4Qnh29uIBryh2QfKxHZlGbr5bAjqk1k1uXSw8MD+1+R5ug9ltqXZ718sgV8DNKWoQtXITZHLpWDX6nOkPdLXpJz/vCkyIV4K1j4awMrj2Tq8pfZqDHaP6984CThpMp6QhduS5C7e6bnQ733g07+gARa4+Dh4z5p9Pgf+JeIdwrqzAAXlcYqvF47xxAIUwtp8raIXovUqO40riZZRVW6ZDeY8C6YCD2leBouZiWKc4wm6uSRWMYarSb9lHayIdSIBh0AMSJDBEF9fzVfI7dRJ6/LIDVcjOYPJ6LbvwimsR9sefdhK/MxlfxtA6YKhDjQ0kvP3bptjyVNb14PJxFMYRgKVo2K4uoA6lkRcuJmjeO/OFeuAQJwYmFIOIn8tjmv/P887A7yjq5ln94MQ7OAXQHwZYqmrH9bKv33iFt0bo6WKden9BYZ93rfCDhXPWpIp7m6CVhiw1BGnNMKK6sPR+iSh2lr3ch4GTVRDxel+BcVEI/kFNWCqj36oHWAu5dkqdZOhVnjgsTYzPyUwWTJlpDggJXzCjapPCe6anumQp4EI1e79dMPehstxitxB53w1ZQcwOxEFHPLKrRPFwstY2BdcQ/Y/uBVpQSO/yHk6Kta39ycOexDUjcOTzdm2B7x3cgc3Te+6ijrtAvcqRR370S9n8sFvSb7EdlAjuyzguxJ5PZZMzDhH4zl6WiIieEb53veN3ID4FIZ1RrpGE9Cj8HYYjR+ItNDWjOu+DXHQ56lIX6Yc4DgLNNaJsycC2quGOp0cLMU647XtSjkFAxZ/m0eVSCxWuTTYlq8u6nQjev51yCeX90HvS3f4wi+LlWEH9H328QV2Rjts/S1kIy1JMXIZqH4f9EXxhu1PzZuSoin1VuAfN8wIAkQQowwAmZhWsOB3vIL/QKEafn6Ya7ckg4VcZuxgoJIyZP01dy9XE3VGtt8GP02BJ+TFC63TAmjzsJhi1dywAItayW+p8Lj5GoeBnRE5uOeaZ1GUdAeNnOiklYxXAiml/WNGxoK5Q/NCPYE5RAUU3pzRO4iI0iTHft1ozwVM0SRqs7FK29v9C0xPkyolwbibOGnk7xp1SwSLPwKtj5MdBRVrseD2fbi81lylUTgag+YYjnPyHblxzJBoKs4I7vBr+sTHvii70UKOMNsaVRiU1+lvuklwpP1myg7v/c5nmIuUU0cKzussureVpQP6hprmr+rymm4XfDDEQXIXXGD6kNEzNC8vcKQjJrB7ypPyq+nHLaqUd73PY9wkfTBfVMG8k7EluIDS7Che5DcTXAq4EXw0cnCIo7mljhVvQVJCs5iDMgFrIQdg4ejgHhgIBW8ICS19CGwCpjHiij3mc+iQ/RImxB0JYNBwwSpXRxwxA9CScC7il+OxOA8EOdKz34JL9SDKGHe3CDlYuzZVK6VOLwaHFNhT6Xa7myFFw77v8Ygz9JzEKtvYtgqDyJF2Nd3nJK6zgK1JrAgW36WY9cTQR5XMjjE/CC+mrTxTBnKFGYBRHBKZbN/cMXJzwRqHu1JcQNpL5GJIE4mlHapKmK3taKF3jjoRQePcN6eKnvecobHWvEmd9uCpfFrc3SSPHtaNMjTvtIc8IXMXxueIvkOl28Lw1rJPWiV0hR2uPB6uUe8L+8zPypZL/iJmQLcCLi+4BvSOZLbHL9gMV89wnx72luhjq1+uvIZSqFLrdaTDdqMvOjOd8PZTZojIuy8uqQe4cXFomEhGZuKK3npS9BUr/91gh4Bh0InZFjldl7AHcVi9rn16kx5G4qKMUrtANtpwDy1uj3vQcnP/nIPiRjanb1KGVRGj7FmY2eZnx78GXsPmAxlC+gmm/WlGl33mHwtcDMpxZlNue77y7WqQeMwYpaAbY34NAk6t/fjYKjNmoLO13TVXFIVyKHXiUo+4bHC5KyURrB+F2iculxkxZVljlrALnvBz59IZ1X1qcUxH+WGOgLDP6JOAg5axI3OLCfF3Kzuxz0EukgICaGFZK1fAV8xk+XqiATbqL5FfxI3xDsgze92iJBxOmtiXh90dx2g7iNJ3nEkaBEbhTx48SgAOW6WdbnMwW0aoFsdBs/KIb6uExOrd1D5ign4WfEDFRI9jl08nAfe5hy0qybewckgHM7dj3X3W6xMyxdx8m9JHx7xA4b3SH8IY6FQTaIs2tBSd4MBd8Le8XwG/xR/ptTxXWliM6SFWWp1GYa/H7O6AE2zTKu8OkzN4+8xoF4B8zd4fdJI6VNV7KEyIpKbpA+0/cQlIRNUpA3Ac51zo2tQWYafKNgsOmG0zPmXr0JtA4AJmS1qkOQLVvuK443418VOllmn3JAy75rEOrYAi7qLARX5FqtJjXaxLF+ox+IU4psw3DglLv6W+Ux3RzKMjuoHV8CSHgoamnZEk05/wtfuUrialVc16OMwD5PsN3JIwFLa4dOV2e1Cx4IjlzymPNF/qwjXZV42xeJNDGnb2MVVyrDuKdLcclgHqnV1oPyCisM28sg7dxNpcRrkvVibXwxqGr62Pj5L0Qs81bci5r1vfyA4bG9YsBW51lpSyISzOmarikWxSHpOh42vKy2EoKpeAnC7fslQYRNLyFtt6wpD6fnuXKdxTm9DOhiS++9TG0Ekl9MJiy4Lhr5HlUdWs2OCyqdyAeHFwFfY4OLVcI9MrSKii6htpQCOkTDYGj4+e2/9JJdps9X+mdBpFonrGPxmi07bgK0ZRhcYbLCuCcoB6Z6WbTt/n8u9t+fdANB3y+j4dPrhzJ0ovUfMomL/uwLByyhGvwlFexs65WzYrWJBsKOh9uRtZ8eH5Iui1usYk472/sZIo+8T9MuMdoJ2WkRqInkxBw+9SKiWRs8vKQdex31xEk20+jdYehNmg2XlTCobQU59/IbMT4bOar3+/Q1Y66FAdelJdibjCk252TNBupTw486MwvbK9Fb5lfUkaflN5Kbt60doFKrqKt+2/7zLEmXfb6b7bMFT1c2bXwq6bzGLeZ6peziqQePR62dIO93doFpx1SRw3kc1x3X/fqDDRcPApbF3lpicENMZsrDJmDv7m4tdyA0bBNw66llONgUwQGjzK66Z23I/hwTZsKMU0vSbwd4I9UEB7Ro574sG7gU6Wwo4IaeOPXT7sjIQWmmIcM6Nx2mLwuxqXZRgmuSnT6BBt0CY+fUf+XeL+CfZzQktXQHiK0x52GWhKJtHQqv5ULuORI1482IILDZ1ltpd1xp/ijv8Peq1OG2xzkFom/ZFbTAc53iomdR+aSJ+s9tKSI9IddVVKK3yZb/bRh+sHYUkX4mPgfpVuDz4BrvUrrlf62txZ2IUafFAWv4XzYpToJNYf7tYGxCVlmCtrX+rvQ+wH4UTEJSi1QrdiU8pJbnnSqVEYlEiHgqjshIJy+Aw+FYvVEpuqbD32WZ6a3jguKjVKq8ZNJ9jBd01Zs+FqwIppv6FJkLYQzf0g9q91LA3uOsRakJBHL8QDrgpAL4zMWFnzk9Azveh/DOhmjdOHQtUnA4PjCBG8GIpMyPgVNteavouH4iExl46aIyRtjdN0CZjSg6G+Y/vkR2o5BeSB/IVLNb+4PPncPZq2XlOM5xDP1XczNqsMeIzhyoYgpmHNW3YW1vD3Q9FEqVnXHl4k2cLt4708JrSAZWn9Au129hNXXXcjGgV9nukq5rg1WUdf5zZd5tcMMKp7rLR/rzwAh20nYWtHgsto6Qd8phby56s/5KyT1ii02JyTHy0eAX1Z5OaUC8zfjDYe2Wi+1CjNWR1uzcO/MKFMSasmKa6isUR5MXOCwdEeerFANcPtZeTsltNUmW7Em5d0ZREvBulw/03lfpTH5kaWlIKynfodCUR8DnaXKcAeKlEKlxrUCoYGfF2tkj6NOuAFDWMuWHLHw2xmLofCU8LFhyDxrYthdsvTtvZd/4Q7O6mpa8vvJZGsHbZPuRAPySWvXVg+L3iL0fQlSFbuTeKFdlSFVeHSrS6ddr91a+TwSRJXzVNRV85fb4BIV2YFjwX2tOPQw5LHOnYmF4QMmgpzuuq6WdGVzahagT1ZuvkjknTlt1XoXDfD12I9WrZ7rID3arcgDWMm50hPUMLSg3gUY0fyvf+H/qKdwq7mtPAhFei5p6GqSQPKXywGmHhzSDRCVcokqSSRnwud/gwXdwYgoqYb+wvuLNeRElqccW2lNX9lNoIijibwhZUQXsXei7XGXjEVJU2u/k7qPY4JagvKpmKridiwgQX/bEKVDTgsMF/UAvBBiSUQSYza4atecOuj6ZJF3urubp1YZ6mX1g6vDu+rr/QWFtyo5gsaJN8Ne3KgCo2wyrQASP9x5CNWo+nrVkNX0l2K4GnLXLdGV/cHjUv0GV22qZtxIiJx0uzSWJsN5LvZif1x1PSh79xewG/+V5iBw0GtyKVj+fbPxVqPqGBfY/+w2S6qGEdehZT0klly+7Liw+bYHfnhmTi9eu/WFpaXjTIpagdNaALQABFekcixdDH5Tdh42IArDvEXvJErPDzrFy3Hu5hImApgxFBN2qMVi1vxA+FJhqa2sKv0FYFLP7cTy19VpVohRy2e6K0zHJBqXwxhlbtEb8XUgskX7/9DCYrMoXY7TcdntQDa0Lx3EHUUAX2kxaDSldaZvfJrNEyH0zYfWxE2PAq0haQ+iq+ev4X0YOgwmiENRmcdhpMwZR1GukUwvcGtZbHYHtr87VMnm2EEdd8iXQ+xbrCz1yxoRWNUfXwbnfCnMofBl3Xmw/TBMAKbNSCNtLQAa1ETGVEysnyreHCy+1HRx3IsWiCGntQkBXOI5+46z6xjWbYORp3mAVC30PCptbNGbax/FZ+7usv0rM/xPgOwu/8IygywvOHaCvjFHyLPD8XhankxU87ybUfnnhkzpCdGh9xQZ/G7F/ePffLVbOuHKkxBi21OsYW9IU5lnNylwJEps7TiDGsQx5g4h+nEqqDIxnzJrgC+VzBgyFwPbwQBQGMlHG+4UzrmnlAp0gsA8TKQe3LeYtvcpCrxU9FBai/r5deDE1V4UG0uXxNdHQ1d3mA4P1ypom0ADO0RclVYSHa8t6E7EqxMrctGMwRYO/jMRzoFMufnP5qSlX/9VMd939yk+ocCEju8pmNgmq6VLPO3dl1B38tykqiS8hMs8WjMcU7IMONAELli4Z28Gp/q3VzvPVn3O/2eNo5CeE8N9Ann5b8sZMtb7enLZHhNd15kdKRNUZi3ebmHmv/ERpb6G0FFK2FCVMK4KZQWiuzsCcyNY6Uvm2Sh5EiPqfzpbqSst/3B7Kbi53KP05Krao3G+9Bkvy5kMiOjrft8gdsz6pnZ+aijIe9uMmhKZy/3QPHGcYyLxwSHPCBis8kp1louUU+WtUBPvKJl6FaRIfM6hd3VaYIYBRYB4TnPEDOKr66z4AzLSRab3YxLabmxU3i9oQPaCNpO5e6LACF3dmYGOXkGU5DR22PBCTYhLbAApILSBXm+c1xHimYqY9exFyBf0pYVa/+RucPxhBtoHnUnI9vlG5ECbXzLGtAfLICHB1du/baQPaOUrZu8lJmchkWwO2O9pZNmRe2TvA9K5iOB4UJNHp6mN5vCp4QGRcvxNvU+u9csTvnvIRKTsoPV3/vPL0q2kimiADmg1Hmfp1KEsvXO6Qw3M3Uj7I5i/7JnuUMtBdNIiduC94FQDVDLjDWbR/Shd1WifdTQoCq8IuxCkQKFbwyLv6aFf9uPxwfA2cg3DOSLlPt21TeR2m9Gk8HWB+vljbUQmgxhaehamVTXtSa0DA8a+8x7fGEoPr8j/h8eYovWVMsNn3rg0tn9VM2JTmHr/qe1dJrAOpKxh3gwn1dBgY5w4Od+Nk5G0tvTKnr43XGXFzK6vlgicDmy1+tmh8Dxu1UJpmeynItw6erhM4+4bsKYh1FMWm009b2myAFLK3PzMNCX2G1RYdK0BNDQJ7r50PzRN4hGD8aDaMNwiOGgtrk5/PRRlu8pjHfiFeOVcn+gokhNybd/Hu2fZf6magjMuv1N7yG9otOcxpddD85sCRSpvZ1Uar3CMRza8+QI0cBfywKeP1BokE/3jAxg1SWB2ut3hzWDSq3+3NsKzarsjn8LRQfG0t5WthUM70ovAQPlaWHyIHaqjXzrzbfPbucFTw58EojFfPdol76xOsbxVe+TELW2TZhKmZOdpinlY41RgvpXL7RCP7shm/AoUvXIKcg12Ds5f07z17Mi3FSnZEVKJDkbcryk1xm1gmu++CSuH/L8QRRRErMIBfTt4BPo20aZjnaiFcEhnPmIBAlWZFyGAmDdNznfdbhH6elDO9ni2agG+tD9+sWG+Nt5r5OqzMRLumLBVsN8N5iG7YDmKJCIM5pSGSe1PGQ4N8JGCBP5gW9fRbjaN5f0Ruekef72FjshmBmP0YDUteALZNqMo8ys22WVtUrd48Hir2oBv3o5jzHZlYOdkvDUu66PGhdel8A4PuKfCa2kymdNyVsyQmsp/J/E7sBCwGAAdcNxaodyS14au0gLZ3fasUmZATxcm389XDUkwfwlkpUeetSqcygSHmI9d2md9R1XLAdE2PkzsqTU4o90tCrZppYTs/fLvcg99Ckj/r38EN14xL4AWVKEW7J0Lq4i6yktn5dtcQdt3pDXUit8OrrHlCuH0N0ckAabqjE7UofmgM7YhGrJbLZM3HpmJ7tZnEtUg+ngEiwJoatOEbh0/T2njTM9/yisWu4YcTfg++ETnROFeI6EwWS9+CurvwL+r3oFBxbk8Tfwvi2NRJXHCxdUbWyA4UHF7KDDP+Q2PDd72zmY+mHovKoA9JQpGQ3fycDDGANwhnQNfpoaIyl5PJnfG2HO5IQ5aIQ6Cwzc5vqpDSXmD7NQuftOaeEkTfPlLijwCMOJv709KW2qj4mDn7qqT4jaI9s/yUvL7Sqg6p2mg96DXvxJJqP2f3hNUxKDjgK0qqCPVWbf3/Wkh2uO7BlUAsM1gMsmdPCe5VtxJlJGkU2IEe0JV0QumRPiNHz1wmDfYdHLylmZ++dFm8MG8Gm7qT9Dw4hruVZrbYXV+ica1T5QREKg0zWhB+6IZUtaa4Vd2LRmf6RFJto+kzjXQ/uDuXyzRBLu9pEIxP304EKvbuN0RNcOWoRls9XMp9P8K8sOrc+Axw4BxZgCjipthxDQw/c9sM4hCg4qkDgbXQ2zRC6zG6M72M2BUvLnGxCHOIoJtJx6foeqP6wHfgYKpJYnf6mMrrC69f5i4l/edelEuWNmOdcbDhZtQ2JE87HGq62w8ppGLoEqmNtELcbfn9oyDg6ilwTr+EW2atPB+CQnJPIDjcRprpuTXFAhPLVVnaTWX7zw6wZ5rxc2HAYXQxb7pyYIan8XfHXHcaE8VEAvsivv6+KK4rhpZrcr/gzJrIguOq5rfUkgd1WEtdeeqZcZvolPsxHLXe/tvVb99mkYNUI5evHyOqecChZh5zanS6UjBCXq/N/LvteuhvWkQgkbEWHfVZ+Pb4q223pyT87oVaj/xIVsQiTM67Yvdkv1bNP6lHIb9UW4q6c1gSISa+/RoQv3HSCmFpvTkASWcexSn6c3p5ALpcdjunsrvUz6atDhbj+pjm3a3rF7vUQOySku6b+VLbUU1W3P41GrwBKQZfgEjOgEEB3CzUdj5BiSsKu1av4KavVzFrtQkphojh0UuVFayLtm35C/fqo5b2E8yE2qYTqGnRs8jurHy4UGhQ0i4oowFENG9CRLfUAX2w/yV23eKhYGXdbFEArYom75R/JVCKOr2o3sDkxtupQ3cYnPYpJWfJ22xhAFdkGeGoiBeYV40Eb81RXrMl6IQg8TmfW0pFDpsjIALvIIfsgLedEkg0HYKGQomY/yPpgZyGUKU/sd+qq9becGBWpzFJb2xo74kaVgl2jFgtqoWunP/tBCWGuvtxpD73uRzhpIv9cxVAqwP7108Nkfw7YJYgNau1wSnu3GlINVNR6uJGan2qqltxgoyjtma/EraeLitWNBMfQwkmBWA6RQuwtzT3F95gEtkZN6vyLQMVP7aRboDJqqRUNaQN/FwiczsfAIwhMGY5zqmK/phsugjvoEQql3b9CAHC7gmf2bo/0AyFoTYwetsBFOBo4NMPCFgJOaCrv63qdwEUskZA7q/dBJuLMDJgzdQkOpnCokPsaMEnTdcjZrK6OLbQmbcxJfqcd7uZ081CFhLvGSs4exhOaK08v7Q2994uXfxAeopt0NfEch7e/7V3r5NUB85skeoJY3xA5JfySKc/HuF8hf327bTnsG1BiACdmwUl1shFqFxdGmjPzt55mnHshqF3StBmxn55uhpNZPP+Qvo4B+20ZkKxvU/oeel8DN73kjameYA+6ATmsNX7iiLw0f3hfSL+1voHsD+YbaTB7rD0m1As90dIHGWi2D0p71jnROjDnUQ8Qf87tpshOaN4LRyk6uuCoGxzGSrHVq0ehkTxBxG3uCEadlr3dlmcabJ8y+e36L4fZh4eK7Y6X5BRNfY/s0imxNuGp5xgtozzvHjjgGte4zJCpwkanfO0BQtBIXuEQvtf09qjUH+h39TMHDdvMPo0Bdf1uTmt2lGgS+Q6YW4zVaAF7hVQ/d6X4WAymnBeMyUvN6oLHuRrcln2fHKiBUCcYq/h3TAkbwQVWN8/gB5g2U5m9AbkANxshX38QGpgYpsuQ6ED/VnzEw/t+4WpyrryjNY7ON3kNMk9wm3w87gY+RfxjcftyS7QiEEDSOqiQWAT8bgXV/fhIbxbwjl4D5quPFsWQNFTac3e0xm+WpNWwaaFhCS8bYr3OSeIa/UiaYO/lUO3IVqtfxLA2Jgmhj0x5BD3DyRrRynA9Cz2J9mo7UaS7LMCLjfih3DjLsiNotqVZAyG94Vdo3xFdJ6CDfvfAM/Esid2oCDuYu4S+D2vHdA/PRBMsd21/rSrTdMYrlJCB+sB3q1NgCCxnt82jbk5a+6tA8mAFHXqmRtWW6VpTi0T9Ip6PckxDD5Ygij5e2nVIMGg/DlEG1wsy89HCFi2K5TFu4L7B/6sjdmyEjUXfdY6OgvMpvde/cee2sIwkhzg+jhOdsW2DgLT7q7bGASF7pFmtnYqlswvpIAgSngdZYU8zTwpu7c6yAc2M1+6yYPckuSVXAtmHT6YLe5SqmRThCHYDODqrwb1XQd/c941i0aA7QLKonAlfu6+j5mORFJHGxf2celm9NvFQzlaR43SlzbU9C8QSdDZWKVrYbwwNxoIFTM8sq2AjZcfDimNftUaiPC8EAB5rrF4b8pTqvrViS0rtF7NteFKFOZ6Y6QHc/Ip2jDkqhwuaIn2R45X8zbD5DS/w+z/u5TRHKBRhO+1WNmfftbigEdrqhN+HnQwBzlXa2LcusZpThBzj/XK04dbemrH5w0Z14Of3bsiRA/DEWadifuOlaiBTnWgsbEiXJROAE6y5jaGoaVuRixhEMhu7K1Gek/7zc6Vv8ArmLBsBtoqaQOOILghaj7jOQRH9Cgpe3w98kBN28HgidegpDHdRTVdf58xLxJw/DoCgtq+3oTCsrLbnWg94guoMLtUTwwcjsksmFyJxb3j2DlP/v10pRmCCR3JU5tCW0oQG81wiU10CFNJbW+36Ln+QVIk5jFQTWqL3gSjRp7e9X1vQsYSUrAic33k3nws4k9WsJHJrZYmVtRcx3rE9SGtfe0eOf3H4KM1lP8+OAotQyQhAnZn2Pg1cDb4hgIU/1wkJ//C1UUu0nZmTxoq+m2wH/kGpKSj6ClO/Nnst16pWx7pdXIXbFhc3DVz6tOaDFsx56LSIMBX50ZIZLlGfzqw5ZrzGS06HLsiXNmbQp3fB0RrKtBpvN7nmT0skhlseYT6kOyuXEIEGh7JwhAPBAD9tOXMuDOZnRZb4ijX028wZQA8TaoUVPoUXpdh4A/oko4H/tKx61ZFkifXmpRaAQenOscMHaxJAEKy8JW686TE1BzzMpuOj+xAdTSqklooHWTufqNHwlNV9+kyGxFA3fzhd9fDgUsjjhrPqYFi9rzt5PihaUxonnyMkhROfimhaUo9IiK2mRvF5p3XdVHJE0mog4bAVb9JW/7VSu9+/bk31G+9rn0oJ3NaLDJ7rbGp+0qXaNjZXVQmMXndGduy/pcWxcDMG/6bVwXqQegw67ae36f8Obd67qlCNrXL8Fl0Qs7QtAeAyGhIbjf3j7SU+H0bMKlK5fn9u2J2BALLjznOcQYA6ii8dgrj9xmh6c5YChmmErG9LqsXVLvcL71JAH4KilJYnb4eW5qrs2jY9r3xwSH8Ztp8aK0wuRYqhv8zMLLy8zSYDtwAW/BLCAA4N64vGk6auJWvzbQ2QI+OSXvvwwGfZ9ER67ck9BqoRmrW3+ia/MPwxKJvLxMF0RbStdLktO9kjoB9Sm324Lj41mmmRU7DJlZ1G78fbj3QjV5zqRM3DZO+zCfKysChotMmEoGSRi6Otb0P+mCYstZUHUhRmzQFL6zgZz1zbJx9LrjKVO9J5VqP+HkxjxFN8TJWCpio8f6RJ60iCUKIr3LuJXcARllnlac9OP+cAhauCtkpFbScyIBNG0V7p7Jd9ZWb1ALg8M8TUoNBY9rLWZ58t8jAkd8VkdlROl0J28OxpdwfS8Rd5/LvopkaI5xN31Y4TyyetMqN3M1CUTPS8qbD5ER9F9RELUDd0tdKrPtAZD494jT6Spm8Y5EczBk33sNlAHoDQlu9gagIx8HMkygssYdkxqcauYbxX0n2gcC17LLJRxB69F3min95KvvmLOsHEhLnHuFyXwo9HMW+X3tz+UpBykmGmQBqVmOy1u2teOCQpANEzKMflMI0gY4knmgC2z1WdUEQ6c16t9iJm5AzAr4JkKqC3PjgWroMmfjVtPcTTdDipXgfaoAiMwaiT7dZwBTJgD35PLqIWQ7Gir7N5d6B5GI+EwN0zbNjTE7uAo8sxKK+ckmpGdU1/x99twg6p4bIX/MXIOyx//sDLnNa/il4Ei+MmaSGSkxPHROmLlZ9y/BfOLlkrwGZc83A9WTgRTCC60h6r3Qf7uznibCdFlsHlK3wmY91IdL7TPQk0pk7NE691ZKE9CsB1GbXznacI8qRzdPGRDHOy98fZwiyuc1vLPrszzBPZVZuTw7doa//pOWBPOZxeUmxjZNaHPJN8T4xlxcBsmTo9tjEvwT3Hjb75+NwxOa09NpAGUH5EtTiV2jy8ILrkNUi9iLHceOaJl5kO6O9QJ50FLBXc2zcXA3Uc4/gA2O2qD56IMbcs0Giex8deCy8TGp2WTXEhnmWAg5B6aoG9tEOqQmQ7yCtmwjU9CBdwNm4eaTxqy/13oAZHEBDjWnacKMP49G0pp90GqSkjyIWGqSVJZghO4uuv+S55ifBR193TDlA/xfreAjpkTTaoPpugoCbhyVLW7pKY7hUo009PFu8M9cSqY+sCpPzwcTzbFXN7iyhH45Jft1RHRrIgRirSW+hvp+CLjrVbw88FxkhDk4IjatmvhLlBa8Pikc/yS/9hBkGbyITAm8fon4nPuQwbYgns3nZJtzY6uj6bJM0xgrEblmHP37Z1CgdxkBK4hrFZ3c5SgNH04Tdv8/DWWkEs8BW7HLMm3nVPjGF8LFDJ0fPoKcDtM18MYTory1rqa3ywQf8bLS2EymjfhR2Xf+KvL42GroqICeE8F3DNwQZzcTT0J2KG5Ddiv5SywtbKFVw7oDaYbRhgDBV8RkImyE4bRizSX441qt1XLN0XjYs9P1i2vIf8486ar3g1hTgda3OLrOS1g9pAnq7zkHy3sm4X4+mvA89G8JQTx1MNMwtu4PpGfH9ghy9/VqhFzcLmsNTrEWlH3dAz5aYRIAlVqyCTaTlxi7LX+fLcdGBOEIbwKt5K9Q+d2Z9KwHmAwEgOjeDXOCDG+67oqv9AkMersy7uu6Lehm6GhVj3zMhSEpvG01Qb1IIgOruTHoiZazyyqWd8wpQMyTulFnAEqhU0gKQ5smppxvf7dYZOsntrqvMPxoJz3StmRqY3tyvONIY7lPDLMNHuDlDhSk4coKiljCFwu6ZbSGmHPBlyK7hqSZ2UIFmRkmld9Aef6tnSQqAmcUy2BG746hZbqPq3syrKZaEJRyZ7msUWCoqG6L48r1/A5ZVHjus8apQZoqtF+qkAobdPgjmlHFgI4Z1Nnx4tuoJuGMvMXkcrCzlI2lr/88W0DYq5+45Y2uZeigtRYI15FlEt58rU4NWNm6dZ7eKfe5u6yDwQ1KSTpP37g660FRI3dU7L8uxbtVHsyLhx8rMZotIZHrOSkhKm2L0owaMFEUCnJ6HrnR8ZeWUE2WccMzR5FCvoVrFlVePhJpaHkl2in+3bfWxUksCNOPajrsY8lR2qq0d39z2EkMrpLAYCuWxp33k0YYl9nm3DEERUExn7ngegcEdl8GixRGb8obTqdqA8RNow0vpgmFa+zPmOndeW/yk3EIUidTY2/UHyRFOvgwciiSR2ieThvj6rdR0fmuGOUGOBKMP9F+/ImWPcqI+PHBEHD8vgY39xG9r9e8hGAy9WDqcvMCm7H1/UZTRKQ6c2Mw2Lt0J18te+/i3r4OposV2rrf1G0oDpy58nDKui4hxY1MkRsnUvVBbNyPWpD8IUrUWu0bNCTg+Vlk636fcG368vMMleZjuyaqFmJHpCLE8gupGNr+1B25jNCFQVek96NJ9hN4NSf/IhA4dBTlPg0Lzql/97Dfuh0+fkbOw3kSWApcrk0U1aWL/xcJffKaz7nLGSaHMstRTRIRV3/BcoBzo6GMcak1GjZ7MBp85LV4Axw/bzPSu8SIJhf0jBUbykkJKQukKs8qK1KjeZTla0UdkKnRv6wraBGAPhiTKjXYJUBJSIRpvguK7iC3/P7ocu8JzxOoQibPConkB9zgO80dkZZ3UNk4894i6AuDVVjGOXNGPau98PWw7l+waZZDjnYsXgXXheVgKe9SXgJEnGBLBdWbRxx6SJCOiREGRZXh452651Eh3Lh+nyg+rVn+BHQHRNTxmchxsnTZ+l48OTOifZGUGRIV+LKrmibIC6svYDj8zmMRY7GOBqX3YzYAzyW3P62PE+ZZ0ShAnOV/xz/2k62HeNxIKXoj8f6RX5XymBOszqq01jEoG9mTmzCGA1p+a9hju6UB0+aKYXDHhpmepuc/dlDOstykYI1fZ+WS324j6leJtEfB7N4gQCmkZAzSX8c7ywpK4946xbaZdA4ae/z6wO/RUSeitV3E0f8wFPs/AYq/4qSfLYGr6o2VyOL6wX/aUmvjtE3M9l6+83ssxd/He+tyD07G33rTSQAqdrPjF3oglPZ6CNCLkPWupMqQDi2EEvt/rWyK375bNCXCtgTxAMEEWp7kAP25v8UPvL7Wcpvm/0v8lgv3F7zaDYwe77jDuEZP6RiFcHLJ25yn7xekoD2IeZrAEaiK3FEVgODTxNnABjR2aiHbpxFisfQQUyte9W6YhUpxueciZf9UKZWjd8kqdRLQ5d3tWNMCuZPfWHOPDpqXnFGQ8bSa1LrIXadk//SUYSsJ1qlpJbshYh8dPaYLIOCeDeN7fdOqXKRpMrv2JzIE0xFz/XgrJuGpgl1SM8acJXnTEooyaQhlNTEhy81FW1/sI6jzzw9ceIfTu/+GPuTp182jG+XSjZSF+HrtbsW8UFBK6Y+McQVA3msEJUWMgvrUykgUQiWhqgHk05hqEmloFVUO/AitGwi2KfnZGR/OR4nNqJu6mo6W4+6uPnK2GFNCoGCYozz8MmT7fWjO/kuhGqChlI62MCE+rMAR1k2r8LmSUeroiPikpftyk4fwBxd2dvPGP1sJLtmP7LytXgCSd3DG5eF9EtjOJgMvhyMiqWuF/0+9ERrVni4Gfa6heBevN03u/uNHTmptSQCps+5kAqxogm1BHuLJOgaH2NAPAiQ//XjX0cq3eqXgjytJHSRXjuCsyNaZe8hEwEJbN8Ume7xha+S8aQ6TRG5xnDLp/xdM8/5kvDnCHhSa/odMjBGC2VUNVfWlbwOVmrqYEF/JOyGCtzHFg5sVT6BK/z1zGyEE5TctlaeJ62/URbgtK31XCI8wGKnitp1b/TXFIJQmvcwovMcrakKeVPTXuw1DYHGAfcfwttjoyahZePFKFMCpB90vUqVq53x3sf9qeJ4FgV7k68KcLcjS5nb4LAkGH+M9qaL1R0E2zRZ0Dhw2egZOEOMv92UMf3nfH2YbN5k/iSh8zb4UntctVsPhUGP0fStbyitJf9b3H9YmmIcYRI6xj6BIEd/pYLgdQDnPPdyQbUHu8o1Ehotx/47OSaPNoZjVxjhMrYAOugmHoQ/2b8QraWdYPsbjCXFs+CsLvdbuzws6E5xensITlfOttlkoo08dh7ZwsVaY3UWaxUEpX2iwTCp6WmZ+LZABAGfGz+QGv8E95qLYk2Qew/Cd8mBml+g7T59G1JeK5pM2zKHtZgSpjFXPSx3k2LFmp1OndAPsFgSnf8x02KXAbzzeW8E+EPZ2Yfmtwnxpy5jJNWb/Vf3ipWp7HDPdkU18+VdFX7g+neaj4WwYBxFuMpJY9dnXzKn0bZFG+Wwmf0ulzskEFSs7cCb8bNf07JZ5xTfBkutxzvKsOhuA1YsOVlX/Co3o860KGvXsssxiqIPOnLkzjgMu3Yip1qrD3zELSUwlMrJgDjGLVG+A0EJPJEUD6AAEITREVqeWNamhXccf/Eftmur2G0eWp2LD/p96lTxMsIBlbqM3hYkSOwEzYPkDfqUi44eflfz8QcXuudzbIdqxuLRHg9ex9QkY78jG8FQo6i8ht0BazUslphpkwn+b8gqtTI8Yb55Khim08oHWU4wxdZkomGde4qx+nhjl+Eqkk4X1B0qInIrJG2paBs578xAbyxNL3eCdCD2GzuQu+am5kNaXRvkiHiKRhlry2fMk9U2oQFB8snTDpphKW0VFLTA6kxzdZZJiQUnKoc22DBP+f1rkKoWKVAVwJlWVleHtg//saxUXkztD0AkCDi9KzYMbcZrZckzFusS6mGPw8pW782A0zWiYHRMTPMsUm1JYBBiMys+OvCgntknjj/G+X0cI3KgQHtdPzfoQs9WkyG1/lAAzTWjag8zv0I876RKYibismrzNxy955XV4ht1hhjnDyvMVIBZ1WJZKNAWlyTi2kq38MoZIXtQ9YJUZY2+Ia0XQjJUsZpTXRYVS4xpYs3hB4dARvPWgEoB7kC3LIqG/WDjkOv63K+7otAq936d0sn0BYhcHQeKQPiMbkDm/CCRA5VuE86bbZ4+qHhxpcK/U+cC5u0rm1mCABDErtfA9PLcEDBSfs0zNbTvrvT+H7CDJ1i9nfgSgQ4CGVaNFT1O9PjgZSNuM7ynxXLio0DaKnu8P6TsCtedbWTJcRFd4wgo8HwbGjWbCKDLOSQdoFiZclqHuMn7VudkSxnG6tcLshjotFeGmfxOUjjT1QsK8UoXwXAlvOp/1pSc2gm5+Y1vHuqBZL5pW9zTl2Q7ttW/F3pTa16xogLl7Lst74QM8L7MEwSN+w5deIYoB+I/0fO1DWE3rHUmwbBAl4YQ5+ApKhrYYWVcic3ubUdANZgswDQi0mfYQsb+OHpWBnMNppG6cWn1f6ECV4axsq4ZPTGMPA3tk1v6Fkq8uOxueL5IWVKm3WRXUVoY4VVtqR2yVA7WHMDeTlikTNPA9Tem6Jnbe7IpSLlPOGL1k1CJnG2kzNjKM/tfUR27nQ950r8vBBMVUjIyG8iO8GBpEhUrhnlZnGPGkZv6XtEoBI5H9ubepQ0sHZ5CDamzudL4brPcb767ZSrsledQhvldoYmjm7iPPvvY1Pw7IpJeG5XgkT2OisqqKtabwcmXYXQddgCnh1mnMCktyLBTRRI6Qjs2WOcgnJTU3foqUSwLJ3XzQJUQQn91lxXdLCg264kiyG2d1JmRXSm0aCUSIlkKv72XrC74mxMxICIJVT6RNlGSCwPm5N+Rsl2hKkAyxCix2zIhVaHdhfbGAERcOs8JeBlivqm//qAOPxnG131wktXxvC55fJK3OBP77IYPiP7i4/S9BSrz5G5DPpmg5JJYB8InCb+KjkKqGssroCc6FEW6CCM+PcsF438HULS62vZZ8u9rVLgklNOaldGDqHF1VeMb/vdahjYV021MXXtIroDR3cv8C9+q6oHKRueJgUoNMtIrAxIlRWN9vrioOxRdSthoBne3ZLF5dyWEOtNFt8+cfXqwTvV/dx3iGDRTcTWU3NQyKJ+4hsgVJ4YusTntKQkR8TshrU6VihXAvtHgayH2/mRfa9CVLpsds1NePvk1vcDashNazhMv8+zB9trBHxVo4+VwZq6mzjAhMauE/3FxSks8HRYpQNTamU7cfUVhnJmsqjHUCr5JmPIK8pmt5brqihBk/zJSnWGBS1Io/KEK9qAAzA8YI9s3+gruWhg0sVmIc6aNR0h6aSL3yJYQ+4pbT/RKatNmHRm8BsjpE+ps5VT8zPwz0sKKizGKJQQ/bdVcxW7UBujR0bu8WItt6/SIGf8QpwqEHmLD+VT4WcB7RuzCKDV4U4tQN6Gam75FA4Ej7ZnN6AG1re2hMiVWOssh6kDx3oVjgURo3xH00DWfG6G8Vk2TdEc65czNzLQ+eMvNuk3430RhSGTsXx1qljcUwuuJDI/ITzIlb0z2XTqZUjq0b+Vna5KCmDppQLVp5KhkI2of3IigO9qeVo0nxda+U69WXfXw6DCMNpZUla18JGifNRJ6JMc=
Variant 0
DifficultyLevel
687
Question
Blair completed a double marathon on two consecutive days in an ultra distance running event.
His times are in the table below.
|
Time (hours:minutes:seconds) |
Day 1 |
11:18:48 |
Day 2 |
10:52:52 |
What was Blair's total time for the first two days of this event?
Worked Solution
11:18:48 + 10:52:52
= 22:11:40
(Remember to convert more than 60 seconds into minutes and seconds, and likewise convert more than 60 minutes into hours and minutes)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Blair completed a double marathon on two consecutive days in an ultra distance running event.
His times are in the table below.
>>| | Time (hours:minutes:seconds) |
|:-:|:-:|
| Day 1 | $11:18:48$|
| Day 2| $10:52:52$|
What was Blair's total time for the first two days of this event? |
workedSolution | $11:18:48$ + $10:52:52$
>= {{{correctAnswer}}}
(Remember to convert more than 60 seconds into minutes and seconds, and likewise convert more than 60 minutes into hours and minutes) |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | 21:70:100 |
x | |
✓ | |
U2FsdGVkX18ARVg8SGXz920s3M33ip3ViJf0Y8VH478MPRJ5xV1IfVKWENpzQvOLs0jW4s4kFwf8+gBtlFoQEMwk4L6QSGKdfJk4EWIYiwKJjk5P5tYE/brXjEVH1AFRV1R9LFnWa0bSifV+ECjF/rK2lUbD6l/NVgfIPlb7aX1E2KJrcWDW07KuUEGfCbeKumqtlMsnLsCMGkCRABKuPt3VJiQnrfipzzR8MPv6WpJDBTPtHPbjt54z3p3NXQ2+RGMLn5jBV4MPX/I+3zjIMhpPpQYsFma3Mvm2EjxKrBw39qI55xt7KhGwVxUEZ/dV8r7UFd4c6Gq2AwphwSlN3p0uZ4D4Zrsr96T4ocaNa0PKLJ/3kZ68yvOYaVyVf+Y6oRrWUbeRF04kcKYmKzzzybpFtWpX8nBLnPePhecXjECM8ognVddwW+Fc2ll7mmJqrbiOh7CKeaEd9VySF1pSW/6v8RshdyV59e5uKBB+7PmJ5zUgD8e4braQIi2+ybkrGctas01OX3drF1v3CvjF+P5u8YYc5aCs2CYAgQGhFOe3VIurA16iPLole+ruCM0iY712usp93bykyp1QyFSzq/Bb5Qp9guLX83GB4OWPBK34eaV0AMdajaaG7PIOAGTCxZ6w/mBxxhLz2ZvbEVTvp9J2mWHCd6aVNReCcKv0V1L+iSo+BkyXVUlroVtgExoXGxtwwig6CWdKwOnc5D0iV/b5PzQPU+kqv1FH8/eRlO6jW5hTzs1a/vAjERceoPm7oli6wkljpMYWo3ZfK1c5PSw2UToQNp0S4/IWTQ8/ZIw2iDlvpE4mHh+CbFBnD4ditJFq1j9Y7l4+FLs1qSbQTV2IgQEUlRyLJclkXHSwdKbBF2uJ2dGsPHWwVGwMqzqaxsSr6b4e81Hny5rr1hGDFgNb+vkwsZOzI32l9j2MpLkebiGAHxww9aekLfrtnZQv5YogEobpmXwfdOWYDje7ykqwA9vPcdBetF71bwlxiwq4x7zrwGaMR4B7obcxVHqcBej4v6YOdaDeOIIB2iynhIjn8j+WUSHjp6KZNZUU6CRBNQm9xsbWsfcuP1g12RGaeympPzm1GZH/gkQHeW2akPU+j04kwfyZFQ2JF2+MEoWZAaKU4VyyBAbLUtDNjpMb5y3YrrZsiLimK6nZ6n5RgtNa1JTlugX4xEQ5cbYQuQV19874rhJPGI5OOOFFzmR3HlR2HOKd3NE1+FqutcV3JC6yvJGHsdmCsQH3a6kl6sGt8Wi5WDbbHh/upsFRGN6v+KGAk75++4/9M86J/K+3HtJHbl+88XKbnjLm/StET6v91dquBRaOSjL8uv2odfyAX5PHZ+KmKZpATkcjTNv2bnNmWdprZD6zZFlEk4gnL4zeHQ3LDqaTniJNQ5sayZfJ3tui2vZFPPZz20AjSsSlFcnpyhpW5YtxyqFMsAbbNbahaYitQCK8ocLAiGWQd2RNmZfoNefrlPPdeIkVbzL3kkugc9wScvxgtXgywkaroX5R1AIqoZHpRjZGEJqS/YMHAavO/GWiiP1pMbPMMEBER+iuEPE9uCD4zwuBrvZdlwEBhQpIpeLvL7+Lzn94mO7RMByfMT2+7HD14xybdsDVI6k2sER149y5yZlKKIxG8y5En39CRpxZpSi5b64zzjcowMbbyZjwz6tTcA6cOWJM1YrF2XzX7jAUKYv7JuRdme7FSq2kVCVUepbE8bKTIdDuUf3UA+X1Gsa202CfoIU4YThkuZ3SrS+D8CcEM2KNBzgjM6owxCqM4s1d86hErRGm9ClX41AI9AGbtv2pNCoPcWZdZVETQCR2IMQ5S6FlCK2sXh/kU97/uEtQxBx69PNaukRg2D1cWTQb2hokp0FxrfWb4lSA2NAR2On2pLjkV5WxuHcjZqbdDUhGj5LBvojHGfMsKhHmMcKx0y/1rRqetcU4AyUPjyicyFHDwcvQ254u7CJCeYBTXENbYqugpHbRdKoOElT4DAQHla+0sxpIwEnTKVqe+YVCIaSiSnlFs/cfto362+5p28QIe3/YNWtab5GH57CBPJfZxVuNZokYpLCPz1d8T/LcSgotK2dlImMNkG/txuSFXPrgkipdaKpb/V/Q0h6KbsWiwgv3KVPFiZazB+bV/A5g3JdP1iPIXofWZ99LHKxB8LaBJIpynmuOpjMZq2T2WlIACMLAW8FC4T03751Fm3tYzZEGvcLRJ7lBeoqFZNgvoxruIU9JZ4DQGpz4/VULkDkdkFSck1ZawzGQE68cRzweW0pILi2t9pvu5u90d6rC2wZhOJmLBD3BzqsZ6yrBvjoyzERe2h6XFOZTr9589Afh/0ebWuTh1isOk5JaoWo9b7nf15y9vgP136RikrX3VuCmEMY0neK29yvqJKmUFToslNlOSQAibXuqkln7s7G2I6QN0Hx9bMyTSdKT9D60bdoNFnYIijSIw6+CFpQsTo6dlDSoMNAlKwUuLgUcGSBHVCutRzOaD+3I1YVC9jKMJakDUoa/c+z0FGFGL9yynRCkWOA5QwVXNKNhWaFi/LBULBd60ChbhgvfN+Ua4uBmnmjFXR/KimmbnyqSe6rMMiFyzsLqyLT3l2EXlFLliRyGnlMud0GqyEtOS4Zg04yE2c9VhUo5IdV6o/L+MoevpRwjtuBIeh8yonxRiZZVGc+btSlOLoWkOWBZcmWTA7yCJSFvUHIRUNhSipEHKu4y22aiZqSLiFEld+B6hRTGbTF7GHvJ2OEthltfmF4mLjHpWF5+iifpZCbHZQ2Omqb9gGD3lcel3wRaC1hqxr3r4VtmZnYY3yn3PKTS6aIMJEhGEHeV7v41RBjcbKoMnsftEHvzgXb6gApvw2M+BCU2UNfuIlqgK6DAqAqIuXtATvoYDmp7ch97EZVcEOhrvD2vDirpY3L7cM0yBFP0zL/05A+En5OWaYVE37qSvnVTLgSdmjiGVY0p2s7ox0bMvJWbb7oqZLt/I0l2dbHAdB0iizZCGjsjgMp538VADeotP0WcHpSsnHJkm0v5N/Qcbc4SPoTva+FqOxOg3jjO4HHZZrgEv5sJTkZakJnUOM5edQfcwG5BHi68G++o05Fvp8KCWf9sfU7yh7/dZLlIo4tfK09bUqoetfmWJujg8bRGMCNQJ0ClwJ/r+0hgTcQ0PrRozDNi3JQ/VV2Hd5mfn7qFAKJORrTA0137z1SeyzEH9yXSv1zDwOL0mJlo1a4Rf6bK/vVAB5kYL7EGhi8FdD0xkg/ANRijAr0P3Nyi9rlpxO3M6Alz4i01bqA4h/d/NFO8xzCYdnWeDOVQNECfSinKfUF9YkBm9FctJy/77+eqgWzsAQ3EQV8S+TCsTBcuuKWiCDbSToX3cFXytOGOewkksURSbDagPqy+V4lSQVZOqbJhr3IUiLgPxCREzShU4+2craMp2BYLjWA0gpTDTisGMO+u/yMV72F/elIaIWt+ZbMJK/bFaCekkKwBOHGFwKmJJznNBOZSZMcAWvjN5pUAKL0a7BAWKWdLQxHYFlCemJTgoCeZ9e6mZlPmTvRyaJdcHxffRvDPJPaCjNIWU2CyyojmT6LpanET+IXTJAoSmEvKPy3i86GJaF8GqW9I1Lj3D+3cY2BYAwTW9HcCxx0J0jGeew5AeX6hk+eeyxQ7pSqmmdrhE7pVraX6F74z/8CJQAPMsKE1myt0BaYxHaJspqcNMeJpJ+WOy/FOszXK1cvrlw1VUwLxZ7K7M3pyeSM+RCGAmtKcJ9BEWuODqEpCrEZgdYxVrzlImb9x650Fe2a2tJEPdZpJnn9QtgkklFGGtE43ZybfkQRYv6I+24kWXG5Fat8Hi0vOQi2S0BHqrM722qcsMgoPBmnHw4/m60XR+i3MGovmL5XOkIyRpqM4R9w/5OyAicLsqjTcgQnp+DIYlt7rDyU0FntiqigZ8FcuZ+AVOsLE75yYX1TbV59F8V74NExthZuvQtwWUftRkGIpnyUgKcpC/uwX0acExpq0F2DUGX6ctOllqSNdju7iifVjBscvCfMJrltIg8yQC8GXKmQ5EsXIpniI9+XmjgYGKclADuNDn6EH8aBmWHr6SmmuwxQ0EbYVDiSF4iKSmTNbWzMNWVhEMUhRJuyIRkB+c57MZkhfLqNmVIOY0krN/GOROEFYYgJQET3n1NGgOmnrHdsLWL9aiU5oxuhi6CuHGzw7j2RGvGEO69Nw6f2hxETdM1h9kzDHPj+TPu2dYWB7Vuxxp2sutptHocp2O50BOmKIU1mXgIrjlmdIgXkKVnKCe/QilqSRzHGRulGW1mys6Q3aoLNEJnR6+MtIOg9spqI1KgDOyIu6GrY970BgdO8oa9WwEUJec7RdwcSqHFzaUYxpranhmUNMTnuYlVU+3JJLFyTtRJyvN30218ZKcF1Vy/h7ydLJx3WhJml/bgS95N56bYJaNgGtxmaeosu40OHsLkbdxhtuc1P2kP1m/faaj3fVRZVP8sW7+y3Ysuaeq9NMJYEQ3q8jR9C6JsBSRnUZEm/UdJwr7vklsAorVLpQbdsTAoWRO4X8Fno2X+8lmKzlRGrRtTi2WevPbslpLJ6GEOHkzUJTLXR3a/wSMB9iItPuNWJG99ICUlhU4sMo6a8nKZxQLN9gF1CSqeeckGbeTQ09fgvqQQmo8GLXRYWLQipmmtHqX1oS15LU0YiPDBGQCq/rpVEH+MRbozzKNGQ9QwFQMNlWLfNRLqh27OVWX4bhAStTw6MhZ9046A/0SD2tIuNLd59UZciQ0ylcvY1DJ6PkGyAOVB32GR7ZetUwdgA10M0G2XfX/ikdtAee1uEIrMaN2E6m1dUUdJ6AVHqQ87zDHUHA6OuQKTpEkxrpDcpVfvwcriJ+dJnhKe5CZYAZVWLlJFzR6Z8qhLChzslMHsDgaY0ucUl95kNLLeVRPP804qLz3ypeLFTJ0vbC6ZOM3kPA9+DWkfAwa8ORG4wBxudZUtWvLthf+eRE0X1yVJ1b3RWkEIDabq3Wb1NKbutRdAEuwfBwQ7abA0sat+TrDfDrrwSzvJghaJZ2UW5m1Vjz5/PeDTtJk+EvuSWg9h4e0EeVPrvAofOPuNDZOXWua5B66C04AeJ9SmHeesSfLOXyY/g9hE3ToOxJPJtMrntFqiTAeLoT88PuXxvxQTsyN6BDxXLJ3NeQpRg49io0CZDntIdaH9uVu9zfamN82qDKPQj9DS5w5fg+0QsVj9QMt8gUkJ1tgCMguZiWNaDCK4QMRyxuNgvOAko2ClGY4SEYcs58xPllyLFPa0hyhBKJ5zpNtJbcVEAHBpm1iTRGF8ILw4vxP2YlzJrsIPtgGR9yQJdylFAzbDPJbyf2tnUCCIBDEnpUXagyvgM+zR/cPWy3Zh8lEM/YlEs89ZmvYb0QFSh+Yjga3k6A/9jsq6By33nyWtsO07W5lhKy77fweZbtJ/5IEtpOTHrlZQvb75Lb3F4aIztbA1ym0lA2bwHpbmQk/81dFGBjzL+9sHyxF3OnhN8+tE2NCJDr6mmzbrmPY2n0K1dXp0B+4B/RvnWdXCUTM6Q1/bWdm3WSFRvtXy6mA6yg1cNtevkD1ar8l10ExaYluia+nDoH96+A0YTNGv9vglPXSURR3twqpNL4T2FpEQi58IdJK/UKsC/glz0uk88Z2mwXjuJj/LXh6M4i6z5+8NmK98aiZVgFPEunUH/xe6f9AetzTNkAsVPh1+hWowJBQPIxm+bx8Vnu2yVbZZgbAvi+nkT9vPk+39FTDy2ClH8a5PgDKf/Nq/xgtvNCXvbr+cyOpktIDpPcGE9KKON3wp/4na3HH7Wz9b0CFc2O1aQpwkIsrOgnr8h2fFDyvSSinRkx0KNhBv1f8rs8litdoy5/tC2gQdpZclHLHxotPuKm0QvAbzS6hyzRX2gvLlX6i3t/wJ9lYc4fheftSGNpTsDTydTbVPjCIG/zMQcAF0Lx9KqNZI27xhU5IS+vn3UcrOVt1cWKFA3VKCLjMyPgGby+OoCZBUQQx3S+ZmP9fDDv5ckakU5JJf1hYa3ysXSnxAAnCUGKKNcFs4cToKbdgcUFp3/JVnv5yWd6h4fNz7ZgTXOuM0ovujPUwumEYvsxC6O8aCgujMkhk72SSszuP9/huI3HQ5bwZCd312Q2gt1F+ag1F3YApNyZ+u4qLUV+wZCERimKE1DyYMupBhp+LVQzFcYkzEL0BM+luAC+to8pBlaHh6QmdotRMvcmNGLFJazd73gLxO5oJA12PRb6pHFIDHQ5YeWjjKr7baD5ldLJRE9TSAVSH25+VB+0oCloxxfD/Pr743D22y1FgQDkGamPt9/Flo8O7m1P9pHU0aGEXvWoH8cZ/sNX32YwrpLm2BtJplZmen9pRQFKd6a6BkQptt6d9Dq42HXEpm0OBqvFA/VAiW1cgnJm37lCv3Xa7OJKNGdnJIRQNw72b4iC5hU2QzftGMVXEz9t8b3eAJFRQ92H94cGJFcni6IvMieg6+H8UgBG7pzvu+Kspb86/IGitflTXfQS3k7Lr5fMCOjbQD/8y2brZKnpE5SMq24Cu95/FaTFQJZ4ui+ufR/4xp/LCqJrIv49m29VSjy2hSc+r/toQzO5bnqfJcqqy9PZN5b2TeBE1SJ3/FXFlgWDP+1qQaslOVfNA7aO7ZxPFBjrBM3IFs7Xwridd6jeAr84Q5Ws4JgMCH+bxsA7anrILcQFVAiFisgCzr1LZWKQH8GSU2o6yDxfnrksTfMT4lqUk87+dowsjWWyNvpWRHfstH3Gi2Pz/V3/1BnfmbjT4TA+LSQueuNpWidg0KAQcdg9L5e8mEL6NrfwbQH0fm9FwS5y3Pi+cHjEp25KYB08QR64V1IvSds7x1IbSdIdlOIZmep0uJFEHc01YjBhkP7qILWPvI+QnLUMyVFdlMFvJ5S13MO6/B6lKC1iPO5FDthIC8ombyN1ILF8UTm7Vciq2RDdKL2UQ+Q9uD0FCKEdt0TEoc6HxEA7ROfTUPIESCTGLiX1FaSaIUp1xwbDNW0qtiPHBTnLJMP6VbDrOljZvL0fpDjqlRM0l5t3P+8x7BX8iO8JrZIae3SHcnya0zh2By8hpu647DMCwmsMw8vV6lw09PKySEuvR9mg5NAf1rf4d584/ImO8zgX6Xzz21nCg2Aic12m5W+iiQQSFaoyjj9EquGE0WYTgUL/9aXHVhaioixwXSSPS/HXYVUEfOr8+7yNdvUZ4lAR3VNGTdQBl4aVS35oAdA8DnT+kzTdy6noLMDhdKsIUh78ZHIMqyHQba1RDNCqAeWAjCGEvQ1YISeku6pfOOSiBH7QMWrj9UeQuY3XZMmlD9VSXNg3X4Dl1OGA2UClpbSJ6yklgHkrox1Wc8U6VIxjuZb27xaeDcNBrTS1jw2a9sCzGcATHc/6GMtd27uz/l8RJ6r+jzQwfwsMb8w9WHQHxsA2LDCpaHA3eNVBx/az5MFsVYG1uPN9+1RrBqUkApeLS7dUd8D9LMKYFdd1o3Lx+uPsvLA7t4Vkp6ifpuRLvhyIYsq2cCMd+4OBEFgs67QjST1xr8ZnwJNuk2r48ogcd+cUamEPprvswrIGd7DOHqazTMTTBMHcYk2I8Ndck0w6kpyoBjvHmrVU/K5fTTOOat4G7TGDcHAF2vzxTc7kTkTG6QEtLnJ2UmKmLMDN5O7j5SPlPDc37sVbZ23hg+VK35X7Whe8BMHYwofQG8LZG/6DVmgs5t+L44LNOsM+aTa6Cfvpe4abmSevr+y5t9D2zlBQHk197M3QhFRnIcqkputFc2GHG3znt19EGDWYe28UEUzdd1qXXg/XK+Ie3VlZSeMGsnPRrrcxxQMRjyNBCBk0Ys/Vu2mKrO3NfGPLwl8raXTifQFeFqE8Q1EhEPWsDrYI8rC0IOKrBa5+Bj/zGsrAuP19uPCgK5kHyGae382qdr9qMVm1Mi8HxnZBoSyaVTXqbUo4DYGM2cKEQF98w+wD5sYeagtrlLov4AtCmqXdqTetnkKK+9WXzmB3ldwievrXQFGEv2mShVJ7jVaiCeybGulcT0CUXSF+HQVRXv4oITanE0MScCiNniMQDIa9lKEr/v57nfpq/SYcQN4kagdiV4MLg162qU/q4z9IiMS5WGwQDIZ+/gDfRWVpYgrWWFnB5GRpPockjOm2weWoB299x8mGZ2vKrXV4ye3HZBFF18Ni7tFLvWnpco0eTjw9AzR7XDXuCWxUlz0CUddsV46mHr5s7uiBzJKu4vr8SvJCFdwba34dQcLKHD5xzEUWN5qbDtxrXwX+OpmmHnLhnLF2TsDp5iQ9+Gqt2Lp3n1Smw+TwjCkm5z7v0tBc/KywR4vY25T3eVnU3JCvjvV66ejRr72l7SheQlvTc1LoU7ts3QDvdojqN37HypdirVoGLV5+7bTkhcuQnwFSUJng1yQ6/ujkHyPfvhZ38MzR6w/FHnpmJknT3jkehUib+8Z2ZKfyEZTU4VQqko0YNTn6wUm/mBgiDE4zMBkUY9da1bWBD0fDN4ifuh61/Y24MQEgyBhx6fz1p8dJtqFMZ9uiOSESrlv5a1Qr8p1QCzDadkPiMZS1Vw9iV+fqAhu9sz/2bZUYMlEvi1lkMxIpKK+5voE0H1DNtztwY5ihGg+GFXduoT8VJX2fH9F/dC9f/ld82to8/EajAfqLx6z2hiSXI/CfkABYxYoVqsyIdaFdAU4U2X+DNQ+HkQws9B8XIyAKP7jhrfzkpGBCZfVHYyllqZ9SUIVMr2nOVT7vIueDkTzhNEuJNGguBmRv3s61s88HBNuBbbUIYYfKJ3G7ArZdsGt+IHsLe5rg3XEkH0b1cgfZMSNKRIVilZ/lFyJ7wSiLfSPGcmEFR9RhX8lQ1vanHb4Sd5LZCuz8gUzIT8oMEn8rKybjS4wx5nfzdLhRMyfrmS7XK7i/7Ktq8NJmlRLTOND5B6p2mp1/GOBOWQHv4AfZm3r0YRapgeh6YU6mGRN1RMvOOJsAKwO6Mbkbw9uCUrsyGYBwwpyftubXLd36NTGqqev/2kiF6/lRIxTofsUiR93b+Ay/2WlEgLPYJeo4uITRSrM3j2xfgCSca34MDX5RBvKodySOc/OBTpm9H2+T1NtwegVRYiX2Jnk/39JU2c4AtI/16pylRuq1o1IWjpOuSF71NjNJcerdrXSaD27ipNhFxD68dBSJ54VZ8Rj3HiUCqfXjrj5tvI/PvWfwhltEAtn7bdwRqPZ5Xb7NaG9dafM8netKDtGnndOLdEEoSz0KXNFcg8WrW0QoSC/W6Ue4fpkvUoIAuxiW2zq21msxPXPlp0fh3bkIs594x1FKEw7Gq8RfDPKR9NK/SkwOxyqee6fq+RXn5Q7xbMXgE+kEuuKRHRL0xcEFgE3hpDAddWLGhd6TC22mPbe1mZpRu6Wv1hYYyTTJn0UGSU21PQEbjAEFjX/mYi5jFx3qY2l9HrE4ecoQxqtjnO+vFk7AGfiVlRXlYZYq9hcP9yzubHHTN1GVe7ohuTk2jUyRikH2A4DWndfAIpwZ3RYlY69flt1c/P25QHyMo0Dt5vb4jZalyFxEFBwTg4JrhFBlEKv5zYmbWVkt5gql6s9hGyTIct8lKtv2dfwAKF9p6SbPrc2XxOpG4aZlktrxk/QMIPyWFUzwxWNkZIT1ICHA5OprOd6i9UgRc56bvnPyuY4ds7zlEeaoweD/KOu8ijVypy3lL33sRkDo5nMrhKdosUFAnXZb+NqQtjEkOKx6RBwWtskPNUlzudHrPkJKLQOOMa7HM89E0b/q1cIxN0pg8d8nmpV25fKCTkkspgPcodUP5CKci9/1AeTsEP4wAAvaxR0nzugebFLEJvCIcu1j3Iw9r/Lsv2/HL51qWTTkFTnmFto6U0GyogEdH5BNcfc+mA9LE3im8Z9ILmC+FP84Phrix2QeVGfqyZN7YTvlhujS6dGuF/k8uDCwAS8thB2B/MkY2h0EfFMp55/Z7OqI2k8f8tM+o1gqe5jh6fjW0TblhLgcB8UUUTlhZD7P19OhgxFBFAHMSJn28BEZHwltE14/hVljK7/ENV4vaT856RFhi/UxSbUkqg226RY9+Uhawnl6fSvG1giS3VAwCEdj0Fxk4CstE7Plm/Gi0GslhQDV1t6AjiLCuHdJDXAbCef7w5tAKonjQOn6myQUA9sBIvgrEh4SxHUTcuwlAX8ZZWYxdGge0UxSKqvuSugSvVQ0nu1WKCMzauO0tI1oTL72QXHGdWkcn05RkVvposkxcKEGVwp0nhdjXbNKi4OzaxKIFZl6/ws9iZeqs6FF9l2aaaG+6AA6w2oSgawf4nxuyVXFOzUSk8Me5L3nFblww2s+R1xQIxDGeJwG8woziZZKolS7cTmyB6BhL1+hs8QKFpq9or0xXoyWYXX4lAj4V527/jdRKDsRZ1c0OeRIm7onHK+CN/Z9bmCCGs5qxRg458MD4s9r/YRbQZK/89e5xyqyLvs+ue2pKpgOsirly2bZslbmm1lTWyu4h7PkAQKS2JOYczP2eEAGspDzQVxBsf76Grkk38WnsfuohRrtImhdP1rL6f3OCLJMgrmv3BguICF5pkgCd1ZPZoQRSjaNlL6awXmcAXnZy+0HBBtzLc95zwZqT/l9Xw/mVKDsqTCNrCQQjLLtYTmWT76Mkw1FA/bHm9i2B5Vx1fCToRSJHwxy4B95UGDmSzh8cGfuzPfymz/zkDfN0frBhSAsezP0pjmt0Os9ODJJ0C8/97HWR0cZCpd30HtzKC0GRgIflVMCYDqta4lb4p2mgP0kxGT3JT2rfsNmxVCssyUCs0aWkgFV5/6u+7ebXVE+cm01x+ULY7thJkg5qIcvofPzyg57QQNtbF0qS/ORyzQHU5eRzZ2efKhVrdwWpuQdqoCpl+wAMA/V9yrNqIKxxNxnTY6LnNLkwIjBTfC0BkFMcU7GcGW+tuhbY7ZbI9hZgrddM5RKx71zTyA+n/CR0C7Q6B9LwhIsrRNBthZIJCk8LhsnBUI9P1Yf1tXtU0CB6gTDVPFnR0H0Y/y+kPM7eCsoaHR3sI4gk4CW2g4R/Z544+nEBBp0n2PYiUHp9LsEy2J0KgCDsgE4tWZV28fK1kD9RV5IbUB7WtO+Si1PG54E1cxHMehi0f4Jf8LGp1HrG0l6OE0z9zkwg++/iLNF+lu0r8lEBFlhhSC7AAHd87OZjGnE4JbuFdGFEhKN/ulblpI2RL73P+g7uEfLmbLTIy0WooiOBXnyzGNNgeI1tvzb/lby5kgJz3YILKHE8TcIj9eVcAKNVxiCTaCndYhAv1ZxtEIip2cDAmATMy1qZjO6zS+NYsl6Wnzsla/Q1FSgnwjy5+Vy1x9svzitP/EQoyw3180dSeh7dlAjyfcdmBkGhH/6kQ1TuhaOTs8cVkm9jilwACjtvrhpniaSpCj8oobaCfZDozyY+4r6UX1EiseJetH5Y97lzabTHkbLcmac82pDi0vRh4PRmsJlD1KDrVmTUXN4F5jUyanpndoJnqbIJsN9krDgFpxXtLtDf9jofV3C9A33toRUYDxLcbXXvtU3lflZ1CxTxWc1va7ZKrEqlYxS2Y89Rn/C6Ohl6z2P/Q4wpL5a+92UifFjF3m6zYRHPCqwqD93loMnSE0OCy2iwwP8mSMP4RDyGe8pM6iq1y+hAzt5nyoK7RlyXD7Dex5V2nvGBhcC18AFgXYbFMBVH/LvENjtwPuF8WKH8YWVNpXfNMfBCj67hwUVkd7H8gTibckIR4BTv1CS46aKA9VWIZJrAibpawZAJJx1Zf4ZmYZ0xNeBKt9eVm4xxZkIIWGpH09EGqrMmB9kAbVSorDkqVPoBIYt2wh5zFXofFXKXAXP5pJknXyrtgOYV7tiD/L1ES/h2jMFFg37tWrFt58AZQvqDJvYTd3+uuPz7742iaOYrGCjK7K0ibsjQfrsPyLMvVpH1FR54H889rV6nPyxyRcUl7yMqweqbtl9Dgr65z/sntMhpm36wlAvHHvKj5TdKiD32YvHp5r8rYADwzewGHiNUYLEgTk8T4N56svjaziBqr2JmlPEY2QqQyh0CnAOCnimbda0KwNBvT+yVSg48lraj6l4Lx7JtYFGBALKBw0QY0jZROLGonNL0Dqs8S/NS2x23o/vSCI95TZ99t9lQicp39VIpeqdpVMurZmpGLmfDS5i0uFiNG4iQxWW4vv4+PN3auePfOu04piMJbxQ090ewvBAIkZKMyiiX2mqZnHNQd/14oXC0M7ZIu5xxKbhV/r40g0dWZNPD+iOKmXSTRWsp5ztHDA1NrbQuVKY4WXH7lR2SGDXtphZFxCFARqCojP0bF5Ir2qmWe55i2IXe44U1QGGSymWXD1SB80ZK/1V1SKBKI19iryTNgPnUTftxyS09oXJpa1P4LPkYXYznYASbqP5QVwtET1A+5hgtDh2apDw9tuTIqDJNP7OrdSmUeYycNhU0Y0sbtnzvrSlP+eUT9weLLnx5FKuk/3dprnP+n2hhiApz0+ZGcnbcVY3AOosL3S96lJQCBR1tRX3rVC3Kn1FeTe5jsz65enzF95UvplXhlNW5gZSzFVyKcPxQYywHCA/QCIt5zq7Pr1ca3krXag9zjX1nSZ0qtZNG6Fne2+f6ZxiLD7NOjQU7lnZXSN96BK6EB9nkhFYjQ2G0xC8swrIDx3Ir5mqNXegPHZ4WvJJcYq0Y+HIkHLLh1fWa91excEGtNi2w2XgIjagTowbfw9xMDDy/19/H2UnrldD3gT5LiM53+bQ7BKxgvUEu48bBGenxQAD7aEgqXrEMVjyZPFx3qFlqFsUk/JYy1wDbdTTArjHicttouLPR24TvUdLtKq2YMQv6H2vkTigyoaMz5xRUQ+dWX+ANsT7/5mZT63qfDhOfNTeO0xDoF0P5loT9YNwGxm5weUzyjcW9wTobliDaMizxB1BgzopU9w45WMFzaLPgXNiMIyEwugE4SSx7C+SFNSrrvNP0pC82+3oS8LPjvyZxMKWiz2lNQFl8LSHXu1Eg61vdhfFWm+mxAw2yepFjxPclfsusyZi5Il1/dYWwyHTRFGzZahhZ+8s37pBQenvLZzyqBvg3haRG6qORsuK4mon7sdoRsLuiyU5wL0Ic56jOZ77MbsAV9ncovL++rfNC6MuMVkDXn2V60syc9Q9X4C/z0L85/GLEek51ylh/VFbOAFKCkHElJ5G9ESOPzyN3x+EnkUg2WhMiXgaeXIXHyb5Nz8Mma2oApwwYfopuVAmh0759AKJXMF4/524tD7T83z005C9IQ3DIySuTybtIEN48h/lHx1HwNM0/eNKrmiFzRS7a7Q5fzp/p0K0jgDv9VgwhzzLfVl9EKNY0ZtKOWLOQK0O9G/fEuko9tEg6NpqHi+lnK9NJC2hy/H+/xcQ4I2Qz35fRCYujgX7iT4IeQFYKCsX9ki9FvJePp8pfP0kr/k3mwNjy5QspJZNJ/5UkVOzstNrZYPjF1aSaRfVZMvRhSNWWF9CySZdFyjx9MZjTgN3V6HJnvzwAOpYxkBabssKqsoMeOSJmI7oiyuG2MpiA6zhGZ8BuMTJ73ZJE+EYlEzvRxctk3hXKzlnlNG3jNfv+et7O2v3HgBdShTF2KGAeC35GSB0DjLMnAZwTz7Ui/Y7t3AI/B+mAGWvYXQdnb2gXlox7SKV2e+Sa4t7dQtc+BxXnV7HuLzUGeTSupvdlqk8APklwID5Tn6wk7BsmjzubG2Dxl7wtfRLsabhVqzxGBnTDEiSx+uU/eswUaj7TRA2xiO8Sig76kIDrSU6jzv4oUK/SFSLeQ1O02Nk3z4uUTcVpuXrL3lHn6bFvP+p/oKPwK+NIQ6hl8tbt/aIWbQXHeSxRgIh61KvEFBq9ERYlIP8rosIhnyNnM4Itv7pHsAy8Yn+Ir5VbAZhsu8wEuFkNh/M/YSA7bzycvYCk/9Fy3oeqS06b69xvEr/XG8OEYvutrLxW1QC8ubkN56Fy8tnIal+QOSKqHV3YafUGF38rAWxVDNIp8RddsSNP8ZVAJOsH8WjlhuKYhIFNCnhoyqCIYiEgUMYEPQyJ4rKZ83OTaFKEhK3sHO1zg3BxqOPBke5umjGH6igEl5NmEL0J7MGSMKugE6w02OP5I9VkUBBKlkKXeWXB4Vqr3s4rn4T+BnbjpJ5ucigLO/W+aqBT4G5JEY/b+DZ8BXtRP4uGYPwHdELdDMWMVcbc75eUS3hFCrphM+FtYpyQEHVi4Yv+7RFjqdKIfiqyMLIIO93iZixPp/fH8HwKimTG0qCfjaqcl7kvHTc8r4QZvzg5Pou4kbmNTbwyTBky9T9pHqsIue8fAW7MLB/jqZKob5NUyxqtvoq0JUhQKYvydo3ClZrUckRYmSmrhDCNbyPmyO2+YidxTeltuIZHqE0EQzLGZqR6of0LA4EPebDn+q/+U4xCVa8W7R+ow0hnGlZy3bKCkDDWQX+n3DVmHAhtDNkzjKYp8liuL5xZJLofNMfQSewQymWcZD1tLgDJK/O08lzCXeN1EwKAvRoIepSX3qPZx8Mi/ipUAIHuGADBhl5+eSu5yKNoDGpMI94hJz8OlIe+AUHJX8a3EE946tKS5ADX+dJ9wfMo8Qk7SERzsrqOxvoeTUzeZ+bPBwWzxoDvgpB5JESvowMQBfbrwaoOXGp334luccHwk9P0zyvZHYtFkYr72+CXYtb/lqEEZU0sBgFHrAfRsFk40f9SzcquZrKBpRAS+fV7y7jxjK+LFKi1v+ZrmPo4a95tyvCgCoTnL8Xeo+MDvXE8PEsj/NKSrou0EWViOhAPM17SR05iBwhq1omZ8bT3kVos4PXAMzUpXGt88FbdW1R6wSwZv61S6SZoYOWQPv5yt9Rw5HlhSyBzimIZxNj1Ua7oyiEmubyagVQk9JHcKSjfdA1ZGMuxTbtcIBfsX4VwM6XG+IEXJuztEPF/ajkcPtbkWh2uo6WooIrBFS98PWDKBsKQBbqTTNf+Dv6+vR8IIDK+IVC8BgGPqDhRqH/X2DNj6NlUZkU//Huk9xwP9fCsVxkcSMtrAXyvZpUOgndf+sXeq6FtYiRIv9Vy5UojkwJAVSiwAHAXGWi7sNRgjogOJ80ENBOABFIwFFwt4LLySEMjjWkvTNgm3RXagGcbBoJgRK06l+z75AY8IRd2k7vSV1SUuhCWpbluuF7JkSalxBqBFqZAXhoAIStyXjqsFnpZKc2q+/wzizhjkdxmQtf+8JWjb/Qrv86zR1HYcK6hRtrqYaXIT5Ia0Jc6YtrX3HUE/qLcbXSlKdhB9lXaSWN15uueUz/NXsDTlkh3pifwc83nixDF0+ROJf9X0AeTSzHVZnzYvN+l8XXlFVvDeF+dEP5IJK2FjJN07AxWVCRgzfDeGXIU1qX8FU2Gq80+BV/Mksdt2S16O1aFUDUvnAj/Hwjzdroik8giqpcOMBQQpY8uCldP9uNUKoHe4q6TUQzLmanZahENkUUZGv4vgwO8bV20GkRx49zCNbQsNp42ugNGNa0ow3FK8Icn8nNFeC59mokWt3+X2M5WAvBPuzHDZbZdXFRV7CWpMMvTHnicVWBh83ocR2M4KENT5SP0TEEk0lUWsu4B7f4fX0ZSwGO11occ1gAWhl8b52ybZUu8vYDYu5hC0pCO+PjSAGctBLiP/lON4HNA2WYWrgUMLc9QKGlGVDaYv5YR3rmIF1owm9zUZaZq5r3qnvsx0J3/OCXtj9junIQBfDJGNU7wBQC1l9raZG+m200drtZwtOnIK7NTfVODR04UivWtpP/hE1gB89CdFNHCvKVrKFDQBdGvLk4Z4CBH+E8oLC204I7wCSJbMBnqkFcROqV6LV6Pd7Bqp6e479mbNceIl0JMTO8LPrVdoOJ3reAVFuD5n9VffFrENFwrbk4bK2LBZpiV4yYDcYOQMOTWwKYr/wsIsBmHN4ac3lqii+U22Niabt8zILLrRx+vrXP/of0MvM3RkDxfTSyQJZ4+JSvW/RSmuOYo0TPWjpwdHo9Xz7cFkPoMfkjIIzb01v6HLU1DPFsP39SPfYaSBFBmvf+MBmVn+Om+ODTofpY8V5P2lw+XOQQSjGcxoMAzZw9pwJ48usiRx/C4SJA+ODzHXklgflN3g08VSb/m8pCMdzCdBpgt9PGWFzTr+jrvGJziYpC/xiVpXHO7PB00htfqzLWx1geLzwXvTvGAgRVQ1op6Q42/NkpS/hNEce0N4fXEmeSLX6gIF4WSFWg/UnDkFvfmtaNhqDHxlzuWq6hbJpB8o64Zj3MdcGHwgtsA4qpUC8GEKUGsNh3vbiw9b/2BAajQSnPBx/fv4OKWODjLYm4whHqAC9lBCCT2jf+SGlrMsOo0CvwPB9pL+oSC3uxRoHPI3FjxckRj82zeGfWQ0+wigKC/aaSHYqqdXx4Omv6kK5gg2MqGOWM+5+3sMoaKFw5d9n3wg39v0fGhwlWMzcYs8TnxfTiT84dVEOIReEcDkZIJa9sBIQpPBPU5uqyQrCtSsbZmJ3uDi6hL2CpnIfMNFakBx21GpXTUh66DjAMDpGJD5aUwV3uSYpgSscWYmcWsQZ5zA2bYCRsxMhzoZLDCJ4x/NDcjyzFPrBremcNT822Q/xS8nQMGc8OYz3ETbnyY9LzTex/7rQHpc8097q4Axx6KTmAuaxTEiAKbHN9CBmF7O0Jhzr95W7t1m7U7oHDlT5J4akW8dJjO9b0P/2aU3UESZ/MHFiSZeDfr+orXNZ3
Variant 1
DifficultyLevel
688
Question
Phoebe completed a double marathon on two consecutive days of a running carnival.
Her times are in the table below.
|
Time (hours:minutes:seconds) |
Day 1 |
12:58:46 |
Day 2 |
13:55:35 |
What was Phoebe's total time for the first two days of this event?
Worked Solution
12:58:46 + 13:55:35
= 26:54:21
(Remember to convert more than 60 seconds into minutes and seconds, and likewise convert more than 60 minutes into hours and minutes)
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Phoebe completed a double marathon on two consecutive days of a running carnival.
Her times are in the table below.
>>| | Time (hours:minutes:seconds) |
|:-:|:-:|
| Day 1 | $12:58:46$|
| Day 2| $13:55:35$|
What was Phoebe's total time for the first two days of this event? |
workedSolution | $12:58:46$ + $13:55:35$
>= {{{correctAnswer}}}
(Remember to convert more than 60 seconds into minutes and seconds, and likewise convert more than 60 minutes into hours and minutes) |
correctAnswer | |
Answers
Is Correct? | Answer |
x | |
x | |
x | 25:113:81 |
✓ | |