20146
U2FsdGVkX1/8je/OEYP+QCIow9IThs+gEG2QJDrXFjm7yfzVo0MHHWzDmprpUVenMFBHtbwfD+dh5vWFJNOkJqH2E6mG9U2Xsg8lyo8GiXLqacoIIytidvsKJ3q41FvR9QalnzdqBeEYM+cd1GwM3cMlpZy53vX3OncSivau/GYxgbVbRF/+CNyUdsaZKBF78xmZjkspzka5A7tTpW8FD9+jUyAXCcQ3IF1oi64OLX5sstqVP0PVKYxMXhe7Ko439Vvft5q5OOUj0m4su+JyvWHVa9dBiv6Jz3tcW3Ll8exjffz7GZMGdqBbgy4f6q2bWDFs1d9ug7I7TZH98goxweZIu8fdvpYPOiHx76br2SgC4R6/QTrBHMHuKHjs/xZnAG966tzZsQYpqcxRtt2Af5IuT4HwcUzJnk47CA81Ac9ap1dJO/CGZksmvdOWKnYqBE8kpCwVakot+Q9YMINTQiPAmmJK032f3FLxkKWlbb4G1RM0brh8QcSmug6ZFMgsH0VBWs0mEfdLLXz/IzQbCmKK0r1lC6Vjcg3vwPy8frP5OPAvveEBI1L+oSiaAzjOkH8QH4os6YGiziBtUfpig+3QtFgVeJ4wwiETis+kjN/JBfgfpn+j9+ESzoDn2ikPaeb4t3M6CxYz7sKFqAANbq/qV91C/eN+gH1m5N+DKe4eKD5IhNeye06xDGrLLLgRRIk/55VizgLckjLplzJgoKBPPGprsX2/lGBalYwPLgxs/GylQq4TKnklev7zcCo2+ybd5o0ard+wM6Pg73+rLZy+ecEL1MImrUQWy1zQaASb4ef8GQye/xuynS4nE2rWlGgrEqKAOO6oTw/3kN3DJu/PLOOglUt3bkNt0YH9VQZ4MB5jJfOFmP+173PNa8ZQRaGP8W9WritCOXok2KnQdBBpr0McOv7iJJMxdW3KcDkmqAF985IkolVHt/mnhqhX2F7CIX/mBSRkKgTupl5d30LUwtMPXeWftQVjIi6JDZhtQSx+WTr52fYNcRCQlye7iGYP377xfnzL49d2OajWXaCSCGqk2im8W3tQUab4AX7e/xbp9WHH4EZDuw1AZuHCUXp7OxCKCN1SHgdEq93LO5mT0H7gGMzs4AWWo7USmRasuy5Mdb7BMCEKbzq2eTc9iNZh/guFZh0RRdpy/nFUAs2VfbGbq2OKgUVBNFYUmy2Y8ZvUE9gyWoxxm2uo09dlAK9uB3imvT0+VkX/6icprX4vwGjPDejCCOdgp/1/7wgWE5TcaLxQWcwjvFgrDx27+6UDWf2CrY8tp1/rYNU2xoKXVZSgbseYqDA/OlA++PB3B+XXltQni/vhX3fptjEX+QfG1ftyM8gaejKDYzHxndF+PeKspB+k8iaa28pcgpV0d6okWboL5toSfDnu4kB3je8JhrgOlqV+lCyBQ10EJJ/JdCzqDfkGo+Qo4EXeRZzmNu8jWYW6BcxVwoSbHY1QzzvR2OUNt1sQjIsA2aG87ApLhCx0HCpF7Ben7GpONIhdtprdTpem/Vd/EnTa0ASOP61muiOtLa7ZbXRepPFbQqsBaJRJXC0OOuzpbKIzmfHsZ4dwnS1qQK3K4mj6L//WYuaS5dUCWeGrG4LohnCUNp/ztgc8+nL85RfJodDMWV6rC8gSP4y9Ykyq8CFIcHBRO4OuQzDCBxP7aJEm/emjOFf2nM2SpvEYNNFYscUhce4iF2clzBj4HocZNfp7cdFEay7tJJsNIwVJcqOGxNMZUsgRubiDNcq+h+Gx90WfOv1twfGdbNG4iT7EAuilkPQ3YVj2F+FwxX8qQQLYI7Cqjs7zUz3+PIkdPlgVuPs6blyYbFUjdtEB2qwFi3GKY/tyfsBAFVbVAXg7G3fzIIbPKVdgRGgtjkiR0zyjXXOhOEYOlhn1hob4XFXdvWm+1wJKzdxt/R20/QYGLa8zu70QYPBpTwBvTlp8MJF8wXdO543LXKy5FWXS/21GnmHfvXiDL7lFqZmW3lDfxWNKmrzQwLkdQkQVrxZjbeGxOOj9Z65+MdwN5DkkX397tg04FWK0m3OPRlXvJBrp+o5rQs7ALZugddgZubDiv/056RAsw9m2pT9FMMC97JHXFWIk6tPeLHR8sttLSlgVirmd/5CKRHs6DRhVkyrQf1L7EINmS2sNYhnnm+F4V90bJoh2dp5lm6v6OU8gK+Xk5LZvNppLZrRROzIvBcIXgBFjncUtzo4X89smK3Z5phUfNqwpF53rV9gqOBrFAn2qAudcaML1oBKwjnYxOC8335627yGWrz5telrgi103kp9BMumdVg9pZ8Ksz7/KtcWEFkIiH9Tx4PWhuT51dV5FcbflNoZSh9avL6mniPiFEovD1v7AsxzPU8MQxuyw/jRkJyhTfQsimT4Cg/hPYha+UI01GPHhEB0xwfa0WUEMXJjL5njxsd3zHW6PVPo2IQlfftmY93cZCJsoS6qpz8U0J+1kHxaITrB60IJ3FPEiABXGYaIMWIfGTCYtShmvOjEG3YGKN2GxzlfDpu1lx9ST8a1HrjgclpJtkXbSnwPD64TeYgIq729zmGA7n0WnYN1VW9FmKUXM5N95lWCDZrw6qfpmYaghYnRk6srRja7uE+3hlSegM9WYQGBrYfBMfWq1XH1vaFOBgpUjp+jzyYncT64aJXAIkM74iIFOrw1/N0FLIEq2XdZSGzhgpOqD3Z+FurpERO7wHiNs5JuzC86Qt2MiQtFmOwni0mk2hFxe9ZhzBRZ+YiEghgbLi91bhVu7DUDO5yMPO5XNpjvryaIuS3OKG32OnD9MaAfdmgisXQpqefvxAHMCQDfzPLFIRKPxEMWuXnqAttGV4yRvRXjZVgegoOqoHKPzXH+sSnZfllHJ0hpRM82Lc1xbOgftudDcxmlPnWpTcI6FSdQnTrCH+TkXAtBneXxBwYJIyN8Z9NVPNna49LC8Q/ETak+QwG2ccVWn+0NIQKCFn/0bJw4mc9gAjG4cyEEKQImNpkPZENKwbLgOnMQz9qEBPeXYr4MEX2K6fvLa/aidu0iZnkcffBcEQN+2WSFsUoQIqTw/C6UeukSNh54+JAA8M21/IjedG807u8/sXE6971UTtiu+QWf8vnUjhBtEuw0eI0wExE1TXmot8Htj/BYgE4mFOWm+W6GR3PmNJ47luFvLQeWq1PR5IQMRlg/KtJ2xR6M4Ko6Y0CN6GC7Im1jcYTKIrxHFaUiiU3mXf90FmB1YowagWjwl26FM5oRnPNIBGCzlgA419MS9qH2+4mtk8/XGh20Xj3eSg9PqXCtoB8r6Hje+I/LXYNEMeaG5fQs1rPF4zUnDdi/vOWdK5vdWktIg6uCY3CWvn2zTOEY1t6O3jA9LGj6NXD8QKpZvc+5Z/zaZVY91NC9wIUQHkh+xr8nEKKaKYV89A2UCdJezmN00aKxurGK2HrX5OLQIVoPk7g/hj67Fdwt6+fQFnIR+tFclpxTc51umQ1b/Z1YfY4ByYnRAGxBwdA/b1L1VCFRo40VbuoUtfniJHk4XLxt93vHn2hLqebBhf1xn209PN5Z+Rb4yTbs3eiMBajz6ewxbB+qkbwwPnda9blVbVpctRsRxkifs9Apsj/BCiiCc1XxjYOTFMWFEn8zmAtUw08v+uz+sJ4LDZl4WwBmeKN8POjy0i2IFbTHeBHuJ0D3eApXVd1nmfqsi8S2T9RbteaM4OdaMYIWPjWAgTsv72+v2WtPMKJLgqLFBhFhz5cr6DM21PQSapEIosAKIwHPhkQygugfqlAhaGHIwIfw5fvvlkUAKRDPsRtniKaEKcAB+fEat/EqtqqRamRvYv9aTNt2jlUbnlZ7yyPCMMO2z8KJfKsligyV/IZyQMkMNzGvOgtsdD6IjcIQlcAuKxvIZvSazGGuqZOs1eSj+mQUWgFttmZ4z0OCCh/z3gDp6WZYB1JfMjMjAuLaQTlCKUernH2Th0MEMtt38IE1GjS1O5BjIrH/AZHUl38TMKG5/ZG/CuK4sDMHgfsJ34kCGfmbbQLHSWIv1/dhRJ5mxGe6aiJW6XCxTn/OoQ0sW1tdR5niw/xe084xCPQ9bvHldMS/zLNSCnrWnPyLyVA8TQ6oen3KG8nXB88n5rLIb3bKh9PkK5uFDo/0u0ESMwxTVAyaCO1N+3ihRyGh8QwrTgft8UrgBROqkldnUNvT9zLyW2gXNmZd/R3hf/lK7aYGXlHA8J6PVS8QEaMfvDBHtcmSYYJMnWgHbvkttYXlvtjYDO77/IB+3e90xsClA6hzU1tzRgwu1n3IBHgd3AAm8+2PEU7g/6AblYC+3LqkWz9B1Xcqgxv9g6U3kG+Vwf/3eERolBrXhvH+10CdEhNco5jkEhHgwSOMQnyckjT2b8IyPtVw5WrYOXvPoXhggz6R6UK+DhSIJstml4Zn6vNs/Ou1h3M0rBh8HXs7DmsYKIUQtahmq5CL0LTs/K/ihROEd3jc7WqhLKDI4DA5ljsYRnFDRk+pAuPlXXXKm3mYhq6Ln09yFT7x5cwDZrRZxY/d8uY+HYBxne/LSj+uWkTuC3L9GqsQ+Iim5jiYTNrmPk9DE7UeQDkXZRBm8qL6JuW9B9opVmdbiFshDTCA/wve+HMWG7+NjcAtIl0XgPwcgY2TG95YeSYliMjEsweaXDeVuugcsfRu9Xwg96jnRuNkBVzyNVLTtgDehhB4mlQ3rwTgY1LfSvxrqbgjIe68mUIqLtvLOrzT8Twn2nfs/KVaFJB5S7nRihnNQOYuMotaN2UviX7wYId9r1skFtc1HyIkZ777EONDgmN63AmJWbWvM2/9W9DjesPn12Wo4M9LoYM/K915KleZrae2f+NpaKdbm6rJRoxV6Ej7ZQ9oE3NWrbjvcCinOg14aMBLPNIsyFiDLy4K0yHXk0uDBHocUz3HZ7fU9khiCArxT650BlOrx1smDG0J1V3EsitWopuFTFxfYiE7REyNeQAbk3zkxLOrT+Sv0P/kBNQB70PrG/3/zP6YmN6oI2guhwAxWfGrMQkgrK+2gS74zOwkfBSanqWOQGca86tsxGJK9k74pRfDCXHSvo5xsXfJLZFwVaHit/PBvwHPRLtg9QsJvCx8CTRxspoxaqMpulfKntBQx7GkfjaYOHLJDQ7PW2f37+J6iED4jXzaLXJ5+9K93R0k8Y/4LCGEn9ZuDx9ZFvyU+BRoxC82cBZdsnYAHEDtsuv8lPh+7cDPUJ+mlNOjxExpOmo5zaS64UnPyYs10ie104JAEGDudFqAdDNcOkNUbqaKxCp/NHisCScP/kph6vd8U3MiRM9pWKpVYqk3SwOQWMtkOnmkj0GJWBFqc5xijnz8Bz3zvIttzdT5veOZtSmatSn/z6X+RF56+R3ooOC2Px8jRCz6nNVGcXeh6KAZ0ecw7AN1eZj2H/TCkRCUiL4suws0wBYmGN+w5fhRHcX0568xqT3rxILwheTr2sLiXB5cjO3LFwW7YwgFycoDrWlX62zAaqiWEaVahHoBfzcatkNI16r0P+9EkbDmhwF04T4aNsrVF3Rsgoug3M0PvdvKDyco+w1glFiKA5k7CoE+01ySwsaLl8N4rnQhI5oDx53dwJGt+KiVGynRpcs1GHm9RXi7Nh+eecRCY6VFieFG36SZsbrkZSs4nF4+LSZTOmrMwOSs/roBK3yIHIzt0aaCeIKMSisrSapn/38ZHZNzJ3PW31z7SKSnvTFpnBSncsfVXtArZXeYbYGGirSjBIfxx7IJkcqrFiLc97yaQOnYn9uyqIapeDEoyCKXKAKlVNIt/RDcCYaHWsl0J7w5bOpnwOBU/xl60BFR69YwZseMkproaKa2ziTX22icoksRRYfEoSS/jgLkFaNaDwtkdrBT7olFBoV/sGYWzBgvzSHmbfxF3e6i2drhhqrMtv6oyKwsQCpO9Qfw9kyngQlUsx5cMbW0Ri2ZUVuL0JkV+VS8mw7QMI+aAtAzGI35DcPjkFuhZdTWg27TkAwqcj3fc+ha3djOMO4YJoI3KFAAnQ111dhsn04e4lkXwJ+fj+zGdKxe20ujNQ+tACQ0biZn7UN4sfMmflB3FoBN2mKGpeSQQ6BZeOdNLL2J/GMqo/zmAiPLEYk0+JLZ7hHcE1IXNK7dDMYM7lTIo9jJTeqCqnsm1d5BH7kDf6XB07ApRH/4OguogdhJopYEEqKliEuM/GYhgREHJDaKt1tBtl93HswLqg7kJrZeCavpen8TB5Fewp0tnXjnU8UpoGOrIn0CVr8QlcGEnmRLr6wgw/aeE7J1McoDGcz5FrksU+UeF0vAJXUCIXnAf6sEQNdQrLsaCN595mIRzf8qI2YO41rhhqF4bOG7gwlt9TRCIx7/jC9XzMpBZyqAEryu3CQcOLpEa2LVCbqqLBe3aot1XZ7oubl4jtCX2QeBo9R+ThYI/qYjYzbqZihNuiXFX9mx7xtGDLo+9FdIA+9KtLHuA18+XtJWUdrjID33O3EvL3CZXiIb0jN06CcFnOQeeenu2x0WMvN/3BXPBCDDQg0ESFVhcWCWn2+xG2a08yUoyNI/CNuew3DLm77euOnRteY/hWqVbpsJ6KGo5P2KUNzargo2FWSYXoxhzNcTTyTGO5TBlFqqMIWKSHm5zDtpFkx78gvguc/zQEgIUSTuN4G4CfZUaYCilkMGTfnGMYqEUfrG5n5Xru/v7qcaOMxlFkPfReBhcy8FAo+gOHeR6HrsuVx2cr3KZH1kiUsrEqSAhrpgsylNSeRFrshDiZyBhcoqXUwyGuyYy2mzVdBPKPyQi5M4j76Yd+N3Dmu85MvQkD+qi19tasSXkf6s6F+v2AQqq2bC3pJB8M0SUXXskGg9e746vWlAiAG4C3EhA7BTqG+tguZcCuQAPC0UD/EBdnbn+oGhMmZHZ0prdbRXCtcfpHjqgO7rN1ih9nlW93EFZwwK491HaQ5Tix0fiMLPUMusSAvfpnLtML3jyVHS7JmRVBB1OfD5h6WBOg5kTDvpRS+mQqdgmZTlxVhSfLjv1S+AfxWQuaPX6uaKR66V9+EerjRQI2VCOIh2/ad6CbopT4p7Wxa891vhwxz8iN04iIg9UDX+UNiHqgHiD5Yl/dq/WJ9eaUrN9gWjFfLvhVLFxyTG0GMz3chJHRwZVs+zKRTiwep9ImVNWVEmoKoMMuCVg87tlTN9bsYFpN5ZPHZTLrv9Q9BSDPNF7jmG2AGMysXVuaDDufCYRmx98gpcS63cZVEM5v22STeNn4yDy4RuMVe2iLBcoptS4Oxvaq90IriV0aHKbgTQghUD2n2h/Dm9QhpGwMQ5KluJtZTdckHdEi/7wCnRVV7R88YkptTxANPX9FwVuOqQhiV1978kP1ei5q5gQEqR+VJEvOPQyt3s2EBFD+JJux8Hbp+F8O/K+v3OotwpzrrUaGEw//Wt07yaxcitGIE4bxASOQyVWHDtf8xcjruFBDq0fQQiXn29JOk+1b7PpJDov/8GyS30Z+CsBrIUW4ihVGiIillczymYyta8DojAc/9hPthznnvHqTkJ6sCTN3R6lRzplb/5YXBP9KLSgsCVNhlCzmB3YxZA+bZmr4C/DJp8Dcb3oBaQMibmYDJbFC5RcjkTJasnLJGZwl7LLQ8n6l8TQwRmfv7gkg8MHLD918TWZI2bEG6f4vOryOjLso+X1oLd5tn5S5f1BJNcVJzA+Hs1D0jhQbgDhhyED3ARauc59058qaU/9Yp5vWr23IYf9DeVTqPxmTrAXrgIaBi9ZCspVITpcpwbSf2tKl7dHw0lsrfPMR/vId5bUfXO+OtFdZpJEeAdqUfnR+3xL0d8qD431hVPC7sCRYzzfqzzkB9sEvO7Bv8yu6l1J5cvmZYaMKY59f1aE+5WJrIK7IAvWOOYqUGOzud4cIgUKoiIBt9BhvMddnV7i8kwaVAtHpUeHmNFJUYS1wENroeGmsvUSWnKu66KiecTizVCE8pB70HpMFt8carIMllY8SIZQACMJc3M5mi9UOe2GQTut0pVjjvv40bgk3L4B739D9pVyFOCHlywwBmPRaYf0b+jTSt4wuzLRn9URpytw36Vkt/O5SYmt5CSt5IMbrf9FJtcVbBR53W5UtEinYBD6t1vL9Gdm7v0keBvI635d6orORQGAXmRA6p29ey5hir5FbomuW2PsgekJfFnwT8ikHy9WcheHlt9usdoxRjS5AxRLTzsWdTfveKA67+Fb/d+ehAx3BgsdUdXUr5+/Dcawfi8CknW6DNDtmV1aVm699v+YvZhn7aWuzPiHiLxL6YUvKh+4NAWwbVRPj3QIPuLeD7flS6inRqVfRYkJsiiMrrMvWZHaD4JyPmmNsYVcteQE4IFKBCyFF+uRHTQfHqYgoGIlSsCbSeOwShoYSSI5PUQm+GqMWzXOPJykmjDBeuHsC/fFxlsXOhZraEIwtWYSGLNekN+etvYmMxTHTJjTJAj4WugmlJrcoxSCbGkW96st23RraJNK+EBnv74oPDZ7Thuz6cyM9zguIamBbnyF3E/saX6hFc81lqkxBdmcX8U5HBGIZbXtQXIjItZa79jWmB3ed+5q55QX2wgfUcqtWdBFpc+xKlLBWBJMIanTIIhUoPTBmjSICjsQgHBoAjmwT4p01Svmj8fsDU2WRqmaRFuGzk8KlD/+0JIlWtY//URe+HIjAWSKpNtIdmEePvNZwHjPilYNEw6cDOpS5etN2fe1p6OWAmxqh7zzE+ZyZYyC4WL6bsB/4XKt6pZoapewPWFQ7nAYPfv/xKdgCkIykZGtd6gpTF2X76viq3KeA9yXPWwUAEhTGijgnJFjE81fLmCosBecg8lj+hso1xcTKbASgykALdv6vZiku+FtZa+FMdX/SyLvZ9PNUQVuLuvg63hkMsBCBsdU7Pa8eDiH7Ip03AdDkP4yw+Mo9DeZTHKGYi5aClFCAejGxsvVb/fob7KxkHbz2uv2TzIBnTclALioLEKyj4xvQzENMfhtZgB+EVMQGjquKUNUzxwbD7Ai3/o4blII+rMW/PDRRCWTHwU8CIupek022rA4IvosLZWgSAPCLMpY1c/eotgFpCFeSWnP6iYYiWoaNGSi9syMlyBGJ/8zRgsDjxVNdpUpc1lUq9ZYbyyrFhrZ1D7bNb2HG9by1cciNRSAUFUiolRhWxO974QWfYQuUBp26CkaTeB76v0UpBTeoTUIKkiiil1OWNCZeezMd8N1dHemNEC/nYt+v9XXXYFRBh3ZLSyeFd8BpctsGT63M18GjRiI0i2zE5n8XqaNl3uiPtZ2DSCRCSwCaPXeQ4LjmCVlyldFSJOkQ6JLwXcB9Ns49/2iNGSUXxKmXqodP/KgkVuQjGHZMZy0KLLhotcdzAI5sCpg7VhruXOG3mRHJ6PbRH894kSvz9QuRyWfAe/gXZdqAVxchuQLOlIl4KAHGebw1IyaTkrpgzWTaJz0w1aB+BhmtN0WRC7dIaMUBM6FBIPYVzHT6FBL1subBEVK1CwoxE6WInWrdxqn5nbs41ImEyAYPA7c7fdc9RhoYq0VXzeoQj9vjbD97hjqRGPtzDaxKowGeJ+4bp4yITr3KL1bEgvDADcBi43aJCTthRRgG0T8Yum4nxNjRr1xplI0ImvpEbnrxBMAbFKQlcl7JLzajSF2HrugWWEBtWpBSDW7QHyb27K1ALhXLcp18ZBcuMmCdK26w3vY7q4S7P0uVTd9FuVXmvjet+Gwm3A1GDL0bL3cNRt4eurp3kSjrZxnrjeVHqWLdoqe8t0BM1F1e3819KP+kKrXUQUUCLlrat0MaGi6XlIFq+pADbufAcN1Hg+JAmz8JcZb/5W7gY9Y3/hCHCb+g190mdyTZzhgYlovP02IGIn/+23sKDuwQZcJ5RysolF+LEMrtXjk4DrX2/K+B4PBZ/QQQAIk5mKThFzzjr33gMkFWkrSQaRdbEe401vX9dBr0a3NrjPmS0QWLsuJyPnBSFT2gpVsfi4RDm8EClylQtivhkCN4hKz5tMwtYjD1EZnLNOJLMB8YXcVMAPjL4HszWy9aip+A4CA2CcKv9e6FNOKs6CfSOZ10f2Jq8+ajm9rH413oxRPsbzvky/a0KWxOdRn+0X6QaJ4Jz9eub7+AazYboFfhPdlpEI4MYaOWWqDsIyfGtUSrxm332arl/xsVfr1fxBIFkOZcPSz9lct3j3Ce9YIuyKE0g3qkEy2juKpWPC7S0gJOQbN22xy6V+eC51wKoPAmtzIXxjbPjXYbN7kAs5UO7IPaAinyPiI+o7PH3mqKCloicF6TdW4FFXFvcp2VJNltVjtT4vhuJgucz8ep2ElFNkV7ldBsy+agob6v37IQ4TyVtnQMYUaVQnJHm+KIcbytvosLYRi3QqPorapSCRd2+CTiJGIdBGrJVcsS76VlzbTYAapAYfDxDe725YlDT2mtU1bODO3Y3FKhbPsRM9G/mn4IIhvDJ2KNzktvzCTHlI8200wpH2tzycVYvwjmCVZ/08naSP//lQ9FIe5L/komOgOL+nEf9aPW41zBMcLb9SbFrW0uwB7FzyCiKMitQllnvB7FASa24pdCo+tobcM/HsiK3+k3nK19Qy5lsrCE1dOLb0RydVoxPyYkVgqHB7NtO4fnnBrt1hsejEM3ZpI+98njQOyuCdrRTEEsocOYgIpfUCHz0cMQWZKqMjtJ+6+1UUR8FxbsyXjVOdKvoQ2GpV98KRdxJVYirTeI+Gyaea3GVR/Kt/nRaxBgr6FOBpH+uQ7SAUl7YPWi89RWDe7cfmD7XNQQ3S453xVeHQgfTA1C7UauMoS1LBPJwvzzajYZVVJtrDgODK3S8jkjshd5G4/BsnjeMWQGpgwHFAOa5oXytpaKhQE8zQvRdpS7HHU2p6CaZeQVcifd2LXkaQu17EDVaJX4LGr4P+KGbTofHtZ8MlbsqIGprRLTzqiz8VIoNTYneNw3SkdVnBKRfUVXC+QkKfmsLE1b4mFl6aIUMNjLICwZvvYqqhz1gysIaqeJQl32FaeDmDGIo3niHvcGzr3n1ZXYvqUzPsFfOdfC2fVWRMGjE/lYUTTF9EhRgTM0Vtmxo7uMDo28rrEPwK5fX4D9FpJ6JJGohlWD4fMeOtu1aCQOkEx252DRNJEm5w9DdQ5j50mDGdqyY2ZJKqQOuTK9jWe0+6y4SuPCzUQC5n02rUrdkDFzbe2jiKnL/WOvYbubrbkItlh14yQHdnkfejn0yRjMbwjV+Uq+ju+VgCt0i56WHo6eX2UQym3c59EgXggv0zSZlvj7GyqlT8Nt5KoEuQDn8dX6aZrXjJRInDksGzLL4cL3HMzSIG2l03HgG/LwXAC9fe1w2B73cNWtjFI9FHoQ2hrg3gm3Pk7VRwNZiRHGd+gkf1zuvZCMiIc5nyBEgiZ5k1F0Gzl4i/8cP3UHrFNM07nnjemk/xolQBll2OutVBnnyobb/q1dG1jZ+gMHPLT/AUjSHfB2b/GgazZ4WuUBdataaIz8gXa3cYE0pQ4AuXZw5waDlYx0F/ScgUeBHEcb85LhqTDR+jT+VG6ObE4DLZg1ZaBQNo/IcmOhV0orh2qUk/lvoR8zMdJ/QTx5S8+BCzkSeilqRokQuSvlhCI7Wh3qHjUtW1mRdqx6p1RkNpR926NqSL6MzndHPWX2eg31BMOd2+reH4Hz0iQb6U+fUc3L1JU+S9okR/2WyCIF+iK4kbryMZaAM7ASqqJ2qDAriBePm0K7tCJ+a1rYRICgVEhOLAP+WjdhM6U1zu5Be8o1TwkUKzqvJvp/vfhKkzjj+vRKkq9uA4pRSbAXHS6Mnce17aPiy03enNTYmAxV6rCIjPahEVOKtDEwp2Kw7nw5LdJTuCaUEcASFrUFCisz4PiF8AJw9XRYvMiflUjCdjmuDxtoYgf4H45SO1Zfaz0pMjRAt403gmJxMSTu7XOLTPsOTx/UKmySNXL/Hfvsn9QtlPGSMWNHUAfV5G8oQcD+75RiK6fIsWqkrmX3n8Jb3svaF6cUEoi6ISC34BZ7wCZ0tAIkCMdftrYonPk8UFkZkYxnV844x2U3zSKINg8IcmIeHQU10nfburqot7e3Jnu5TL1NdVhHVa9B2rtv8J2X08Div5siHnH6YwiDtbP0tXph39n1+M8TAqmd5Eb1sui17q1zGNeFFcsVlxAzIm+W/XbdrbHjlDvQM28IuFN/87uBU+7NNpVs6S2OX+H6Kr0kyc1UvG1uKgwM8aoe2Zm7meUFCKQY/1d9joX35Sjxq39WixsgAgezupGYdah68+JS+//akV76txZHu1YbvbPv2eF7TUUM3kAinE/xZnik1CDwmsxZedeo6vG8w9TfUpMpEgeplzaqOiN+D7rsGOL6/UZnyIOsJ72+h6FuhBfQLG83t4VZSrtrtpA+Iy0RqdCVStv4N2005Z9LL72KgTal73974K2U4/ZJBtF5KR0OtkPe0lEKKHfszJ+bxSmPgZlcL3ChleDxSPiFIgmjZASeM8Inpy/47ohKCMDySa0frKZ6WChcXu8pVAYl/vyIy4Cw9Cmyo+ObLLsVySsy5rkqTLNYlnKDJ3ZKe7ySunrzqNE+lDU7L66b588Ok1OBQ0QNSixrQIy7qcZfhQd8aPrxCz59oIJcOwm3XHx38bRLr7pa3bqLiDdiz0BL5h7phi2sEPu+RpqUcg1QZuw81bvJQXjlApClxQiWC+ZgG0/TvokBK/T8g3Xm0z84zsLuZK9unotPT7VeRBW5pKRMZTvJbaBcdP8YnLa3KlKzcxDht4jn7QSude0O7ul+MrEyyVsbs9PuacMki8J7eq2K4+cTAFFNXkYGyslbWALW+hZricYAI2O4xuEO6G8RzQICIhhIA==
Variant 0
DifficultyLevel
480
Question
Over a period of 2 weeks, Tony had to fight fires for 8 days.
In days, what fraction of this time period was Tony not fighting fires?
Worked Solution
|
|
|
= 14−8 |
|
= 6 days |
∴ Fraction not fighting fires = 146
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Over a period of 2 weeks, Tony had to fight fires for 8 days.
In days, what fraction of this time period was Tony **not** fighting fires? |
workedSolution | sm_nogap Days not fighting fires
> > | | |
> > | --------------------: | -------------- |
> > | |= $14 - 8$ |
> > | |= 6 days |
$\therefore$ Fraction not fighting fires = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1/UetDb7F2q1qtJhoaNUg4GCEIJPM2nJYRBAqIkuaLgjsRDbUgQZrvOXd0C/0ZBhoQxSobtp8UiwUs9BSXXyK+tdYfVCJS6XD3/JIP1vD/C58XcncCAgjK/RpGpHUS3CAtGLjczPZyuG7vzzsPknzejVcGAZMepx2IAJZZxLnTerlIepSyQ3H3V5drosOYhfc/7nn6rZwrZls3QWLBtDw8uFrsxCU7h8mRPwrfARkwA+qwCVBwlinm35lkYnijhS6S3Z3CPihimM/P7DW+0ZG3KK8oscIN8H3NI9m2XE8FEGhkfRITRt+Kaq6twVdGLvB4sljiyZcb/39eQigIMM7E4MQDnN26hT/pRNkzgAHggcq6TuPTEmucJy7fme1AjKmyis6hMkWPPZJYhDvceQcom7kG9kvoHJzn5TV/Tjn/m76kSDtyaS19Lvi9YrYYHuhW1o55XWxnKRc0IyGjq0TqIlyTDiHAuoArV2YKL1iLBLDLP0oXC7z1PCiO1bqQccxFDJxsnX+Z7PXsfkyR69tLsovaGfWQQzFk3t1aYK72u2NSjbP3FsrNL6daKvpAqJS1XwZges4c6YRUijdAR/lvTrS58x1rcZlz4qkbraTOhCxlSI+xzyMfs9g1gIdSmOZQQr0a45Ti/3TVGWkb8xBWf3LiSvspSXMPBWm4TV87qE9gYgcys7u5MRAvFkH2hhC8HT5xVqG02OyvlPNHUiA2OIMZ9QnX/AYLxkKUXmiYcPkLpHPYRoLJWUgQ8Yq2OTHazxyYxTGaZ+21zNrtxTaEDGRw3wnMQ65tFeRdZVRJOFbsY7drKMu4tt3Zd4yjXuKKezJZL1+44GruxD1cxQvZ0FkkJrVlEsYZdBPDzsbJNnucS26c2yfPZGyS7vupZeksJ8jjNaQrN6mVQFTDzrlXQTq5Ll4IQP+PGjcsUnJkVEFEVzpCdF7/qHHW0VZ3JbWDn23Xpd2HGL4BzQeMhL8MFpKVWObifYPxRtcYXoxg3oAQCspBznRUaIAhcrIxtTkmIYJhBHBvIje03zfTN1oIx4D+HxxdYMzWtq/zp8RjXUb5SFgdSYpTFAxkDEhIdXG50rl7s5WQVvHyjVrlvW+Wyac16SR0fbsMVaxX01DUCwI6/SFTKhgYqY/udm0qk258HGTaZ6gzhEqWNKrIqWoTs78LtZHeiwc1TXQ3K0LGribMrR2icvmjNN2fX7NJxBcIvf0cVMXRFlcS81cPITiZ0PUS1vmBOJMnMySATVHQSY1jqNTv3F0dMh4Kdj8LQGKBitygb+2CMU64c4byGlR1uGACIZ5YTFCst3B9viTizV/SOp/ac38vJYk3uyCNx+Un0/tZz8mHpo7h8/XOLhsLCMiEr1lMQwpOc8AtCjme0+4isjh2TqwoQI6www5GED2JCK7/CEBLSBIPHTCWzwHS5X1ci5xFfpvPBtji/4yNL/h6sa+qd4Pg4/RyLtEVJgqee484QDLZG2+R49CgWYlo4UiXz8bSGZlQ3LaKXKQ+30fSFbzCMYTUqonFdHuDs37mCKS354PJbu+MUbiXiFVTPgkzKwVFoH3PT+g5+SshYq+TiGRDtalCrnrv5Sb7agvrEPDLghfAqf/95z5TxDhWHvmxULGx8hCl8HN4vRE/JM06SypqQyapAjcz1UYw9zm4w7lmI5UvFWLb9aDW2PzGah5NlL8pcPeQsySyiV+lkEoB/GMZ5bB4WfNtFkVD36BttRsNEhfhTm10meArD4wtkdiDb6Q3xow2pPWz8ytLNk00QYUmm2eS/lYYSdIOrS72NPJhGDj/jBSdHvmLjaMqttKsOapjoP1SNsINbxIja7zZtx0D2+N4SvA3NyrNEgdqvqpTjcrz8LoszDdJkfLobtHG75FnDxZz6OeJ6m9BgQaccO9hwe6M3P+K4V4mfu7WoN2Zng145a2sIWm0PJubxJDoV+teDBhzEoHTZn9XlxBKNkbQkp7hbdTnfXDvB9lyTKdmwjAECE1pNCvymlFq8W5+SAUacQ57hcP+GQyrvS9CtixbEQKiHeEzDIljxfXMwRa81EVKbiGpxNEtT8SFMvaOYb8YgItPb5YvIq8RFjI8TiGELGcQmbC2qQB1wgLODFdqj8Hh9djua3+EwpZwnSbJu/2zmgUUvYRmgTnsC/og27NBjoak4hizEnv+p5gAhQeYO/T2wIqUXhuCDjMfMKZAxNtGrJG1eD/ce6dzRZYaICuNbrJGFz6/5RhhWI7N6mqY9q7K+/vFoIFgmw9NFeshbykGAI1PICPTdEJPz5QfDBRN+WkKIQy7r+t6wcAahsiT40ACVQ838AIPjBu/lxKbo+YFrGE8DN6JqquraWyy14mN2ejCOC7Tb6KL89MgBUpbNOZC0qAn+1oPJJcwRBxYHYUBWPHBuMfsc9GFxG3nsDrR2pIMld83tsUXRbomc+o6hkG00XSvF84QRHyBxc7i47RdHCqd7lFSXf0slbgNsu5Y9XJV8CemSJIbNYiQY3yK2AbylcwDzYU7puVslxPGnDzxGo/3H89uJ+ZuSPf+W43NfVpAAp6HMURMs8Vb68+CnnsEjSHUeyvrWN4aZPDatIEXlIEDCfRhsom74uxIARQ6Na1etxI0zF+//N6wAYl5Tzk1eMstmsLJhNlshagPqDFnfTjHk835MLPntnR/xeYbKfo+TxVtwsp/vk80OhWMcUvzb0liSezqmZjUfhMUNra/GtZIT33BuymdhlKLG5CuJRU61ab48PxC0J7CQMQXgGF10ODiTioMjoOZiZHy4qjctxX9rbaSjGurdFvFKeRsFd6B0IixwTU10EP8UzIIIVHEprOecyOm8Kp9U50PU9Hd8lr4Y78GoDCdUkQb7leut8nR/wjgnfghQwZ27SgGq4pvECSJFq6DWf8KCXd6ACDcfYRvejtqkk7XBtDnIKkCIsEQmYvrozEaJHjKuI1bvtWUCrFCu3H67Gjj/Bbnpnwf9FPhgrIpAMDqTV6nyLfgo5KwDDb9TruYGjWHzB/B3sHwvx5dT1E/X/bezTVs6Yngdllq/ra7/bsgb/H4HMGzavBhVAdt9ZY8FdUHNJmmtpiiZvYawRpKq5TeW1LMRioo0HwO4iDenszmhDaF3/RD9HPxub09ciphpR4WOXfyHJ5qp3G6lc5LFJtCWrbLqCBr5R5giRNlSwj1+tXHy9kXAUytBb6rHIFmvWATUJoTBCMQ5isuMMUTtl89qaroQUwBG4UvaaGFujbPF9Km+ULOCvKj7Uu2nq60zpsbTxxGZqmw9VPTDNu71wTJejMEjNicFuV0G9RDdREbkJDuCsECWbH5gjpOIIbu6KX6V8vmVkesmo/ciw6MJ2/37ZqvUmEr7BeOayfy7seTQY+8uocuVBdAXxWkFjlvfeb0LK2ngXxNF+9JeUe9KY6l9kqFGxKggdggP0b52O2Sh2ybnZ3ic4RNeoHJfc3unMVCxvgsQRgkDPEbS7pbyq52QR39KQlrzL1hGSBcfgdlFMr/Hk02vjt9gRZIBJMIm6UECp9J0xyZwX6m9LMhX8/h7Zwttz7L2+5XwOnkYEFmuJ2iPq9R1iMMn9FVxCOioe1n7o7d1iUgBYizS54+vam+fkvtfokz52t6+tLCS8jTRBrNpub7PLhpXJSVoq+aSeUDqpPve1bwAAnU5A2m0tzeovvYnkEwQtUeRtSXJc/Ebdn6zfoBVUeZALbBLJB8fe0KGnKELQx400eCBTpOyhDc6V0wlXP0KGPFFT0XYTQPg0Hp/A2/ZVyXhtugHwsara3y6dcFElKlENIJxVORzLzk7FpBPY14S3Is472k9FYEnoTUCnqNB3O3hNz3tvbdgv0nszzH9uwwa0slMrwQoUbEFqchYmgy1hk0QIBEuTP64bO4XldQfWxL9lFA80/ozJNq2zdlaYh8eLoKjPTeMfQWDeKvfzKMO8Lppx29bXqLFWtwlcmG6SoNDbe1/XDSSq08aSdHoiqVDzXyY9jQ0OV2IbC1VnuRZregFaC6fcNIPC1Iigw8WPQTrXx4LaRWCKOcZCyKFqvTMaT42fAWDgP4RsxqgTHH2Rg/NQfl6zSlHO86N6mpy6dwQvIqaDoufDSbBAZ6E4pgg6fpD6cwmYD4L8ejP3Yd+8ioA7jQFbccBE3YPO3qLIpg8q/GE845hG80eZexz5a4l/AtPQX1kscPwpL4sR1ALcnrmI48D8C9WqDXGA59Cbz2nBNb1xpL0oHyet01TSJdtNWvCDlxICwCq+FBONz1bAYzviD5kidD1kGcaYF+kL5ael4Ku+cUsH7E5JCTRvYqw3LbbkcHHH/lhzPI9ntbL+MzN4Ykkt+se2kZPzLXt51MDRzDKTUPPOXc9QNxOUgvAw8dnYAPUZ8m0/2TP5g+IjQw/DYgu2Ol4BbJR+akE3yVOZY1TS7Cejh277YOdrcU6nzk2xNbwQ++alEZRTDYnpz9164ZhcgpMs2NH4V+IXgT36dtGtkfNWdj8as2kX/Jkqwd/EtTxwA6iyyDrSbVchGtdoDo19bNj33TQEHy7iAxZi8iFjlhQbpqsjx7XXAOm7K9OWSvQr/5xzwD7+deRs/Q0l6uuoE/m1VShH/dVNelwv+IyU89d8hw/DYAM97JXBO+jN83NR6+OBapDYtcpQCxRg57HsHmVkmxu/CP42I2K3dYN41QCx2EI+Y/p6GjESO7wrq8w2CODCK1H2PE+RCsK1ShtojP5FxCndmJUCBOP3MpyvVWIpN+QDTP/9L7QzvquUzmsqQ8RH+Av9Fb1GmTeR1+bKWZRjReJ3BpC+sLiXxD6zbrrmjbmIFAPEP2t9k1FZA4ZObk20ook6KIFR9jreXclqioO86xh9rMRNR7LjEOWac7c8PpdyNP/2MahvDCRsH2QW9YBeb+RCXG2BbSUtCYWsucbW3PCHGbpy0FS+tCIJTqAiri9uQ2Zt2baSuqL5ZAbE7KcAGqubPPZueQssvbSSdTcYNWZgdKBCYN50lCd3XNmozcGduV2NciR8XycqirEZol/dTURMHKbDjUQcJnTm86SmYZqwNhI638ZwdCR0DEy3Fn17kz3EfOH+S6NcEehsIZGMJR1x4MZYwiBHgez+DlZzmUMSJeB0JG959okP0oDoKdkNioFCiwqwZVbcRXJeCvse32cucMVmB6GPEz43iCYCvstUJlnocBaZDU9d2+K/7fi5vz/rvCXV2tlFHzzLQdlP8Oid65dkY/FX2K/cJGtsKrWHxVSY3z6AB7fj6QLQrEBtQObd0Nm59+AGIheAyg6iqIvBCKtM4VKao/owNT3YVR3tNIf5S51l8xz8hvCi1y6QGBuE0HeyardFHDV7FmMgQGTQcX7pn4xNb1WuzZMU6XIdif5Pd2nOGL6BmdkLjg8lNne7Kn3am8DdqZlrEJOR1QA3k5Qg5YapQpn1aVBB4Xb2gM8ij03lFNRvhN+MsZnIAiqd0Xv0/davaLLLszMC94CckussI2StNFI4QBvmno9o5emwZFn90yceHCFwQQEEt10mQndbgAfg9kzdZq5bo14c6EW8UE0I4hIOwYqht8NXs9+1Mqskz+fZcHZjl7A071hnAEs45ImpxXadCFUnY3Owtmhhh0upuIUuOw+r0ekcGzMmFWkrxYNeqEhBda/xOJK7f+uHiVmXVE1I7XMkU1l6KPcgChx+aZcjyrxxlEStHBDV2rxlmqzYGC3uyiU7Py/E8Erxgrjj3NaMVPfuQtiBcIea0C7j0Wh4Cy6+LQ2XjiSabBGnsibtVh2J6iHHdP6F2xwTlbC1Z2QNM3rldBjSU9jY6DUdL+ietwDipJOtYjcc5p5YNs5BS1CS1nuqoHLVItx9lTlXZd+ZMUdx96GY7Rykt2lak9UpPZnvf55yKMdy5cbRtriuYrWNovoKbtfmnIRczZWUrhB3J33d8ilk5MsFT/Ywqu2XQysGIpAdniJeQIaYBAqRZBtVRvB5Juykq7g486Hycxg2N2r58ZmEEwCqA9bqpUmEQZl8aafPVmYWVe0vkp6y1A4vgD5gPQnLDQtClWh8VlIjEMkRAattluBFR54rEOlaupgMJdEkeYL5DlIMJT4mmklyJoJZE/i9tgEqcsRXslKEUDHCfYb6ZrefwbXD/NQhQ37xd6XBCw17wKh/DNO3SCmNaP3WmMaKoTGbd/nzoBGB3rqoYAoIlZ94n8nLlv1uhVdJywulXGMgeeUT6fo1bTyenhTuA/l9UVOSQ12DAuN/eAY5hjrZiumgNUGpLx27EZfuP+XyL9ygl9SLTS/4OSTBIm28RTKlMVY+b7c+IfcDJlCyUuyUPvtqrk7eokefRwTS9dQgYPD62SQ1OVhXMJq6WBb4s1MRrvDn9itfPYxp/ieUEa+fciHv/h9OWdXFYgfpFxhhuuAEi+h4U/DrgQcfRCnfRhzb792Vwz6kFKB9AQIp8kf4INW3AyEOdnM1dzpLlyxTdoNGndc8xIJmgW1w6koKK0/1RazJxGt8LFZkT9dsGwLHmivcgH3c0AKOwmJTiny4+o6OUee/R8T4H2gtND7wjxBLU8+CnXUfaKzPGb8iD51avh0flpb7RlN+1XV28X+x5F/TRTSQOl4VI8z10oV59APE1Zss/l3EbcOOKKS1uTexhg/+XUBfXbGhfe1CvXgosInLojKV+4AkhlGwSymD3sMKLMsKUIgh2eplekxvfGi1LPIi8+xmhciwQL9i8u8+M/SiwO8CTVYinDrqyxgH/8Yrmdx1EtJCYTJ6lhwdP4LTfR3oaFhG6gPKf2W7rZaS/dyEd9Ei48GcL0Sm1vsMNEjas14ydboemCLcZOjVM/pyizcwHXouINIrT4yqX4u/bQWAJaQdNvPIoUV+jFz9L8721UvIeig0Sa1zOf9V/q70P/CnrrxfX90TXZN9lyvc7TgULYy/gWbDSHJtALFDkw2Qo7mUNoVg8sx6wv5O+xYQtw30+/3G2+f6/1J+SzkhEakZ7azSNmbFDOLKyh3CBDerhRJWY+Yssg+DuE2OE1yohlQGhwm7NL+16gTjl1ZXl/WZL4Zk/OC6GwDSRT2qUCtNcVDDsdEY1ezaWUgX8UzWVTaFZQYAc3ezDQFb7w8Wpd/X+8ROMOR4Y/g6Aqm28WxGuoEd90nBTc0h8M6lrdlUOKPQqVsGxbCPlxAsj7aecw2V4/X/WHd9Cdaz8C2Og4zH99gJrkTbznGwvdcvAx3GmF6gJRmazuk9gKItc0yAu6hBjPX84TMFFUVVFO3n/u8XGajaC3A0Kps5QdIHM3GzgZj9CWKWZkE6spmIvY1KYzoQttbxViEbm5qlfankJqEAZRwddrNtssY1OHRwnAKYvicbFaraPxNu4DpZTY67GiJPeV4j6uB7TUa9ZktBYjHqunpCs40X4v2+KeU/HhkMpgaGnHHnOPLrd4g9ooviUOZrsA3N8Ef50qpwYATHQ+ZxlL5nYE57AQvAXH9mkdZj4/dk4LsK+TU6NMTqmjJhOI4bnh+gnnFMRSbdbs3B1SzUe29iMbk+6r2DNtpvpijwJHqM+yzlueauIPa8DI10fSUdh/lZnyvsVPSOL9hhQjsVAVR67m1fu1kNWFFVEk6Oq59oLXrvYviUbbZa9/hf0PfAD0mLHkBIGex7wFl2QbM0DenIcW4ndk7IB7jQmHgWlY994ELBMM24lptDoFc7Xe/ijhTKTVCapqxx74NDl+v4o6iJt22GEEfOW7a3Y+UdaZayidQpjMEmSoiY3s5JU42lv/BKZTG4vIqw2ywkVGbF//DvgFuIs+QW1i1DV+3POeA+tI12rw2k3XywEY1zWmsyLt8M8MK0zhfKEouMrv/WswHSJeGkr4rc+cj1pBiXOovlU8acWrWsmQII65WoIpsNWLyCZElpJGlSXCQ7LaTt0aC90ZS4xnYPFeddBRowRt6mx6XbV49aj1Q6HhfKM9qrxe5A/In6Eu2lxIn2LpJ7rCglktPj7MCMq21hXzLoyxFJASi/yi5M4+80WuVOSBsFtN8+VyCRiZq05Da1oGBBG4PLj0R4wjrbnxcby6MkdlpF8F6tYZQXo66PpzatCLcAH8Yvp7i2uGMYQ/+mLR7rjRoAffW30uOkmQ1MIbWSCby6V/XnnXqCcO4zlLJXO7/GAA+IxtG+oYKwucY8ezU2cI4B43OH3Rw8gwdOnz6JtW189PnPDsYM1jvFddnDjf6/7Ty+tS5bQVJ+Rjf+U5iXyAaA2ZaOPDQiKH0yOvvfkZcW4XqHjDH7YtPjD8qiGxHR9EN8o2Z6EadQkP/NqdrSYO8ktdaFDjthHCiM2mN4XAtFEhdf3zzoXz3slBQY9kmV7qF4mRihiRcj93ILLUW1jlepNBoc3E/APJQzdZdhmQzGsaD0PIlr/QdDIDkyEZ9rbX879UFHwkCeKw9ARXB9CoJ8CtNRY6wQ83mEzUgV6u6nN5WtutEUt4S77+a+AH11jrr7bA0dksYQPNsv2EPWxtm45kPD+nSQFsTWa29FXpnBILnIlb0TdcbDXgvaJv9i6mv+mu07sn8PyMGiIewgO4C2abIkIem2roPoU2F57+YUev8a//1DjN+4qb576zrGsHXBcBzGzErfW8IhFiuAoi66CnDO9sI3G+3H9bkT7jFukmg76W9RvFW/e3Zngt08Zc4R8ewKQvg0IwQzhctHisd8ahA1P7rHTb60LL43MFP8xN7d9XSqRj0Uw6FC55wYeLkZJJVvejIBV9jnJ7oSJLUqAcCwgsL5+Ag2f10XC4+RD4VwN1I4b7wR63Z9W437PnDRdE5bt9QTfnKf24suReFPBeJ1/Qt3XZYp+iagxtHqYqCKZeOa+8dV5PQhMmPxoG35fbqsgA5pg+JBM/btWqlp7LLP+slYxq7mc6x/pEEW438NiSmWeiqXfeJA6AusMmoJzFYFXOp7vNsLbj+kHttygjEcnjtwN0+Du+2joD6bUQMrh3DYlk90ik+BLnVp+LWPkf/B1zvDRjTIlSLzGRdFepY16WIWPZ9tzkP89rKb+Mgv4raoTw7qXVBroBG/DOOta9/Vfdz0COcw6SwJTVyq8DWd35mHgoLw3kCA9bqmm3m3bbzBWgU5IJIAJlcLTgxKhmT3az1hnbnQbyHwdwg06ha7wRBQtKdCaUxaLpNOrOxzQCPP8e9XpICcYnJPIkZlZ4DWmtKbwQgC92l2e3hxflcG6aHF8D3uJMKG5j7Prf7MlzyY/QzzmzJuvcZ6JIRZ7OFGcqQ/V6lpnpP+N3vH9IhjUzyHdU2p/RjIRND80Fvk1yCyzSIxcy943ac84iStxf9a1VyGE+izcF7nItvLTIRfHGoBhJMX8GjI/QeRfqnA4M6vURHOW5Itf7sBLHMVrmlOHydtO3X/nCh59dBYR9fb90UfqETmSgbeeF03EIkiOdBxTuX3V23GzMjnd12G3DFaDIxc0ZAxjOfposR6NC75Ek/jNYCw+Omfcza8+eV7LXyN4BoHU1o2g05RGKf6api+MQltgguM0DtCeWdZq1gzQM88Zv0Ck2rfgwq7RYj1yOc7++uoWwRiyIgdN0kW4E23nZObQo6YpidlHmSMFTViGG0lLdRIFhUJhczoH+05Gt+Eov8CoM2SfuZSO05unh3l11v6Ta5fU3sW0IHUH30tDiPrTpfz+EprNOe9W9OOEQCBYUN9pZ9bgIY42w0pvJy/8fmgksiV89PdyXJfJwcbR7BLNnNILJMw1LHob9y7ju/iFWXoGIpiEMHC2J1nWYbKqm43O0TOdMDll7IkEUxjeBPVikSUXxDWFxYKXVB1duj/fTB2ruxVlUOVLpYWG9SG7K3czoBaiNL7PKu5xiql/MseU8yl/ci0bv8aOaelNL7JYtnnxMDmGob1NKaeWXOZkPklNnyyxxH9iHNP3RNkJ2fgM593yCbCG1rno0wcWOv6QEL4+dburLOZ0Avke8vdbv2UQFgnRA9I93hXHe1XmVMiSr3qDUxjpoKvRRGgQmXp8+/kritfUphn2i7PMNovV2LPXijdTsEWjlKZ3o36JgnXZFFVHXVdrLu6PAiu7qM0NrUkpw0AOvV3Pxv1A2v2u3lpfq/xUUpw5/e5LnpUqn2qW4iErKogdTqKm18ys/4RuzXwuYHwpSp5JTkdBLm5Q0w5pYTamEbCda8TlAVjE0rW5koZdkn+ZdkRsCezM4QTBCzn/x3eKgKUSsmMRxNnarN4za9qlWgVURSnalnuvK5qp1M63mNaPw8LYWSv5zdGhhCgvG6P8yW0j78jblvGW87Wr+fXpevZGRk25TcGF3jmUgNpIDN3aQVMe6ol0Hpn5fjQ+S0WDkPKPVj0sEVElaudkL4RDYOYkq4OsWFLSAm7sLytBPeIjONCffYNxIHRq7ecPhyNQTHufg481cH2VkFnW12Cf1IN6labR608yq7JTFOJ2ViKzSmoq311WAoRIWZu4wl4yOX8Ll0JAiXnN3i8dAndkgNXsv127ICq5w+PYkekSDuIA45bGVIlVPna21km1HVvjlfQnIs8HQlHQFAfXIFvSNpqO2g+69Absg3vthVOt/oMcaQP344KVvbuYXAUMU5HfZyvjgJ2+0CevvUGzbvH4LwKnnzXUJb5BcL4nKAML8+rMFqsUVsXIR7Ws9ikL8Wgp/1Y13A/LA1D6fGBd2t0th7l/nFrNbsIDrBJXVLUtVbfgrL9MwIy6ayotadS1ZWFnN+0eH/WkT4FGGt+PMg3p+EpjMtHXH1C58jbPItQQ3a3KOuERLW3V529hSrHaFQkdoX3Gr0S7rjLIQnSssgtkAyOsz/JoAxyVpEriEiCquZOtFAqxbqtX8gxsn0ADwmzpNvjyN8i6JhXzPcWQ8ciqxaMKVJoYQXMnJlvvhvB3y4k3hqSS8S2gtxDKA1j76zDktnqprvGJAfuUgWa5e3nUcHawQ2Z6OjiQ8tNApPJYEP13lKdgvv6PPAREggFuKU2tq+iILy1rQLuVNIK6cIHIX8M1a5Y0f5M0YacpW0x4qV1N9COAoVTbIqLFCS4sulkMiSWlh5jMTUYuFp9Lxl9dknLTL21wYupO2spMlbgmtv3QqdNP3ubjIKP1HUz4OdT6zXD1n1p66K9Wnx+VQ50es0WB406pEhleZOv3PHo1J5YhJCkn4/jG2zZUZizblijsENIOh+LloK6oDPzV/oPEcLS2JnI2Yx9orMYYoikIyRvUa4M2oQtieGUO6B6Fb0K32H5i/lI3S7kxxfg350vh9BLeUQOUzcHNMc9BgmRxG8XV7I5OxfAmfHtOeYACnwg/oMxsnXUuuLpBB6+jUdiNHe3728CPhM6FTE3KnuYwRBboLOBlAZu/tgm8pT5v9EMQmLQRz28znWsPCLVz1DT1lH/SMwPw+Iwwsn1kF73fxVGPoT3aqYGdzGuZiDB976F50lNykVVeyDyGT9ZLshVVtnqeWH/KbHSChbx1wZy6Y5kSKzqo8RyWrKjYsnXKEsFPdhaSAk/iQnA48kTYhOZVIRNeXGIlxCVxqt5FlgDMyBeKdVAxpxFw4fcsYVz9I/BDi+eEEZ59vCTwhSjpzup83wueUtU5nLwa4R6HSZ7qumiyk/VAAzD/ZF3jvT2PyajAf47OjyGdLVkAXFtfj6/G1RJnfjRbahfl0HgXw+Rj1W0ahhAbUXDLo3ivwVGv+ElOZ3NKIkm2HLNg0aJVUNr4Guo7foFC+f13LwiBVO7nLBoRNwzlI4KhsFJuWHcE1nvqh5Y4Q79RJMca4SeFFz6iD7DBw1dpCziDSbcO7sYTDSMrSlgdSzRgcSdfbtVjfMcrkG44SGCUbkCymcvpNtsl1IENyMgI1xmjRqo/BZ3rWr/MCnTWJxTRikSOfq6foYXAc8qY5fT/VdpY39sWHrNnACvtAGUpDnx2v3yjkQpAdstnL6lwv7svS8Jjdvbd0WY1gcNoOragxGEsrNHAlMCT9w5rYs2wf5aqFctyczCZetnzRPiq/z00UQCLLeEmibvGhHeqd8SouGZYa2dDMfPmyibvCnf8QBpF1hfHXZmPr+Qkyfzrf3VEZUr+sdFp/EnOWPo45Cik96U39Gtyasvc3Q4nbTTJj+TIFjhTm380wJ0I5REsx34CKsmmvgMgHylTs3HcqOtfAnrb6iJCbg2XWA3+sFAExjFDy9quWQo9ESKWCphRrFJG177qivXYDiANxRelJ4FsCB4jDAYivOTmuauIZAO5tEZ+wcGCPYuSEndyQdgJMF1JI3PnP8tqFtHCqMG5JPTrwHrU/STNzg0MgppXbA8SNYkVGnhjJ+5+n9EK7aq4zh3NEOqQXy5aAkxkvQOLZQNP/9NET1yG0cuYdTtNyhNKPRN45Ssi/oGUCN2xUZ8UBfPtV8ed7IKYVWOxQxMWssnj8jfwK29Ap87uFZT+XIYgA9bcrINOmmTZik+/fcF7R1Ni5JIzU0guEoEPHNwwm0++ngpbYkjVO4Xkbbm6X1iHunhmzlTkpp8XO0Zo1ehu0/+Ybf1vAWyoXClGEl1MFp91guZyKc93pTTL7mxe2Upnw3l+0wJX4SMdmZH3JHAJXBYcir7FF7DaDw0HwzjRNr6l8NtA+MgWriEU9XI6vm3wb6Olk6dhFnnJ9JyGk8w9NuoV8UrID/ZRkEUJ6kTOfrp14yCkeZ0Re1wBqvWj6HPtyu8HNfFvA+voCG265HKhodyNWFnHPTb58HdsSJ+pan4HUSohJTTEFbDz36c+y/Dl6zsxjEmqMwhcdnoPQiEJsHl1RspYFcECo6gx1QEv9wFglXxH/dcS2wqjkF8uPWQPUwHVn8lqUigAgYQHbMIUqGphheD37kmAQsAcADbUV6ocqHA7c02hVsHBjDZX/ONzpMCJ42hF/3TUgD0zG8C3mya7jYNCitjHvORHTraiEoo03FVSw59B7Sq8R+irB6/xHXiNVuaBfI6z/aqzVILvN9LPQnSMsMrCl71248wE+4wSAgJ2SjllUFSLlZJp2pHnsYTqYRSTqSyCup7dGHPeg=
Variant 1
DifficultyLevel
476
Question
Oliver trains for soccer 10 months of the year.
In months, what fraction of the year does Oliver not train for soccer?
Worked Solution
Months not soccer training
|
|
|
= 12−10 |
|
= 2 months |
∴ Fraction not soccer training = 122
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | Oliver trains for soccer 10 months of the year.
In months, what fraction of the year does Oliver **not** train for soccer? |
workedSolution | sm_nogap Months not soccer training
> > | | |
> > | --------------------: | -------------- |
> > | |= $12 - 10$ |
> > | |= 2 months |
$\therefore$ Fraction not soccer training = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX18W0Q4Qpy/0p/i1EkwTpUt9CMZKsvD6Z8mohaz95K0jzLgD22/9GXcAAtQIvy23zBUOe91dehk5DksNH8KWCHmz9LNuo/zu0HQnxWTvCoyxJ6g9uEBL1BI5VEN2B8X5N21eE3GZomi+6jsh7ouQan6H5Y5APk4q43gVwUP+aWq6fVzaDLe4foruW+27dNzx242ZUJdQjump5gjZQAM1/SUnLbEJ2ozlWpICuUwVVb+az6/ipIWISzaJbTsmhzFStSG+3JBgJC4EThEjM5luJnVJHNbW6rVz2fOxYzai4wDZAXqFYv32ipgXmgVPrIlxbC+zvAiYyVzucbeTXGDtOzVIjrX0M8Ixt7HvSK2AwRWSEBjWkhe85hkpLC1Aqu1yIIvdTsv9cIRLU+BRvtq+LCph4V9XwbYBYlBfSM9UADWwjJ+8IAqh/Y8QOodt2Zr5UP4yTLpl3fftTlc20ez7LbsgcQI6db8+Apv9QqfUgmLZEi8U//6UJVB2dVpNRsK8XCWzWA8XeW1zAedd9Q/rSD10Imkw0oVqFtn9ChzO+ZiYTg2iRv05nKPW9mACLKLC6GqI78tdoNoop5Loaj6w36qcmUuBTOvUa7b0ROrvwmkcrzz+F//CVLmpqwOlDW1Jq9I0hrfJwNcyi73Yc1XNd+r2cSP+442LkUKWWGaeVZxYxJsEXaHXlAQHNSLa7hM0iNR1bDLGORpKTdm9ocS3p+Ezrv+fV7729URB0OhGCG7O46hmgXOcKy9mIkx4w1rmMhhPziR+EWtWp3FXnYkAVDwUePWGjGJitCfUR0qUUc5c33bbwCsJDZaTjxVnT11rPQ3Xp3+6LE8sYiq3W+WVzAXzqHUGTZZtB5KBjsaP3rLwxU8LI8ZrqP2xwtGdVc+zoCYn2Q7iVe2ATNWsypyCcxJIqvM+Bd3oE3f1eVSrA51m+YLiD5ClYYWgLdAQvxeHeNhdEs6pJcQf9PtikeDvr++3TrmRD1eXHMseZ2699SVxDZXqVfaIlIcf0CLyV/Jbthb6LfmLNX6mUPDnhl2fr6/DuFdNkmQ2pm0rjD+deqJOy6I+1hYcWX5YuxTOthQEDQO99LwRqq7bs3NzAbvbmTz9EkAlFi0PD2cb1LWinmQSOaIsuueSf/AT6ABqJXMGKa3/3db8P9XqTt5k5fbRudMnWrqC9yJhSkcP9FiQSEOjHpDdXICk0l3hV8LbY0X6Y20TzHUeyk71uYL0vVF8ZOpz+uIa3IeJw540GKJgqEiSAqk2KH+psPzKnYEyldYDQ519gigJFn9JrJNiLLBaMwxHQ4oBAZhf8Rg3RzeEc2PcLvQ52QML6zzgUEDwc6tJEtYpZ7qR9QcghyRSd/bGfT5nOVjxkxsgh9UPy7h3zUFzckloZVTuCQ+xMvaSIXibe3KzNNJusOaIwGiqx9vB09ZFhfFgPBK/6OUmbqR4Kah32JhseFrl6mArbvnxNc42ZCRwpmxm/CMuRQTM+iNbsr7tszd68KBZKoDfo9kG7RLpOP9JjyW5T19S/083++x+q4azItgsL5vCZ3laOVfX0FvVGIZ4fKb3ZxCPnL3C+O7LauPuY5EylyqSlLVuO2KGHTzLdj5qDVAIm0CyhjGv5jjmaFVWsTThOw62oNLC8KkBA6QMs76ITTvuE1RisM5HiG/69CdEDoqwXvDsE0+mJgy7OibJDNHoeVzsFEjTOdkstx2Xilf/vkIVu6kmZWCE1vvPRzzM028gym6RVrAXYLGbg9cLg0sSsROs8hL7V3vyQK8JIcbO3iLqdUpTx+wfWsQ8T7N1LfiX2/lr7Yv0fTK3JUZrSP1lgBV78PoAymjTWZDaUanSYOVIBmyzLgfFGEiVsqfcmNtmyhdlhYELoRreHAGzgUkf/6KOcVkBPrOGjyi4aWvJSun9aZWE/TR8UTNAObDp4Ebi0ZAyx7o0SpH63qHEKZmPVNzTNQv94b7GwY3Q3itJNm1fvP+LWXtKyyP/j6BbQdO+5+SAczn2O5Rd3YdAFiNYmd/cTcyKMYTtU6IqkPNaMf32iSvWT99DVjbnl8G29hn1BOD51n9NK1anejLIJAr97QeD+iVUtis2UKFCgWPy7th8E70lAQhm1cHKNHSNUHBgMW6U3ICEawJ0MfYSjb9i7w2ezzCEDuZxoesJs1jKPJQGBZCqEiQuOexpMQiepMNdO8F1oUcyHV1/snfMHs53MoamtizMiPSjWCMA2sZeCho283dIzVmXdxINtuDoqX/X0dw55k+nf4GcXMTHO78tF5H9FV2xOio5bmIhwXwG1N3/e8UJ6QepzYkHcZye5/9As3wbh2taV9rRIcqc6OM2e+CsI646y1D+TVcJX4W+M1Y2iW2v6O28i+94+SLboe7QaOwXVi9FHhg6GZJlVHXlt+eGJyFq0Ymcz5mG9cvTi8dTu7vVwbUzAgSu7mE01HQQvPL3QquyoHvMmaOzHY45hMx1XsoRXAhJ4UoApirpbpz3lX/7DE8z9S0sUKYMIM+01umXDooNbKSFy2R4AlgSAayRCXozQZTSdOZBmyyA6jEPzVoeQ413EE2lHAdEI9zhs4/uMY45RUMoCPanb+5i8bVklXAoQMhOC0pZ2lW/Uoj3rj9jvyJRP9PpNM9ptfimCljKuNawwBDDsJOdMbFjRg5LhBXPwuQaCT9Knngrzf8JQ4Q2Bm8BVoA3N9GyBxhK2qq1PkNd83BfOTtVgFd0h+/+lxIkZHS2IZMMwS73m0Z1DQIiHz7wOb76IFt0mK5VFsVxvXAafEB9fHS8wqMIWMbg6GK3K67caP0l2XW3vpw6L8dORuv1r+66ZKNyq5k786SIthw/jq+KpkCvFQVZTjO3l3dfeNdRXtngwPI0T43xUwMCpFbBwnuUAG5f+/A4t7pgVzuapY4zrzYInLDkN6vomVJDqelE+0b+0GQW/669v2zR9vuo+CRx2YdBwxBZrnOnTZPlp9YlotDcYcpnMq4U9xmc3MqezUNwuyxShXqYYtk7wmZ5XPRp0rwHOYKJkqPHwp3mJByM3fdHFNi5YUUjja2xdTcXx212/R+KxBJgoy4rTNLKnKkG31umxkztHFonB9GwQG7MVl4RTH9tLcj3f7s38FXG5TbHTLAxv1boExh7gfUSnsEFO1ge/iOTpxrqRiBIcL0x+volEOFog6bjTnhtRB0ub9FF09ZZElHQ0QP5rRdT7UwXRgmlo2/CkNoM+raPNMWSXWY+Igwz90M5bx5Ymy3sfqWvtkFRwIKfsk/O2yOi4O9p88huONqdH6Z7uhtYn9VE67K9TWrRkmjLQv2Ze7GJTKL0wLZKaD5XhgKG9FrX1CtTlSmeFzBqQ30ntBFd6+XAX/iIr68auvDv5xtZu4J5NQ0+v+mwawTYb8QkL4G7MRzV0y0+VASVxikUjyHgGlZ87C0KLVI3u2o2Sp9Z1Ru+AQqYcTVFEcYlex7DFfYWmctalrB1NPICsAJIn8+jy0fL6aRq7lQLOJk9lBphJU20KKU3WlvVhUHvVeMTpcIBtflLXFVbtJ0njUJ2pPiBlHMDYaXgZj7fAu9OpDksk4CVca9+27oXE1wBQrxW0zkyaLkf5lbXJ7PakxuEtM299AMxNw6OLZ52Lxh5QiDnlnJAfSa5xeyGIZzwO8uYiETiFx0OSc5/nMYhOdoatoNthpmeH3cXiLOyrDOMWAH5igg+O/xp7ANLXDpeMETbS7r1zUXDw/RdG9Z8uIrinu9WUrI/DHUjrovaBFwfZ+b6rXKaRg6BOGbcDH40gEtowvfo1hhbZeNW/qfbRyYNMyV6UC2ILyHdnAt8/Q6lVrEqkWnpR8gQx+WyGqJ9OGgedlYmTSqrCbgtvzwLoPRzABdl4P2BwEu6C6KRj7ycG7TY+MfW/yQAp1NVJBrJsrTl+azvo9TQMe0CpkVUp5yQcwtbDokvsPfNJKF0BExsEl9ce8zFgIltothRUcPbtd0z+E+4Bv27GPTbMMOl1MqpvfM2mNx0DpY8+iSbeoPNqyfBW0jIBl7ND8eMuBRMfEkJF/Lj0WFqzUJpjdSMpFtK1p/k7TGaRinlXZzA0jAMoUEW3+tin/9elribPPLhmW9sFXHilNFjjBAuFbgf0q0aKNdVocQvox7V2vLR2gmLCyo80wnHop8HCk4OAZeNpcaVmLS6vimtOFjjalVYbxzSRjYlSyvSqhPe6XAnYxe4F/mgSlFcoc8kSlX/NeR6HzhP+mM2saG/CtX4JIQtcprY8pAjmMAoIh3siNi9x5BBvmvsy6HfMCGy8ODhD11XZe6jQFxKkciciEXBqYf129bc2VCikBcWjCMzxoAG0vWXFBRLSPpx6JbC6RNQ2U9W2uIDfgNjpYxc4VXfWxqgwf8j4/4Hr6m0fkF9I15h7ekFEh7TEEDE9m+2Pv3r04TCaCdhtQDdy+95mkCoIU8ogGLu/QLiXv2vF8KFS7LhEdlhg4TyRL06zgeKNqlDGVH88GYKDmus4cF3Po8d6+IZENTf9mDdHW8RqTQb/0vhROt37cNwIFo68bz5J5kqtA+6vucIvOqs/jgjj43hMIk/6f315E2HZZiSqUEkIeU+2+p8mITv/7DlZpV1zm2Er/OYLTGjqMejdCbU4GXJBVCSlJGcwXD9wuOQ5PciLgrduwRuJOqBlDxFU084+JpumepVEndtv/mQIsTlUTh4j0UzG8KzAWqRv942Nnpl+u5A6mbFdVted4KZypJeQroozmjAx+2EdFK85ltiuXstnkzohWKjMKFF4+JT4TY+IUToyPxMQwGnZVld8/WFMjCHYS4rjEDmsXSowioflKDXW229augFuhILQnOCRF/jNyCpJaGA/EYIWVhuDmwEpnMVJdDla1fD7sXeZefKMiP2A4VsCQDLRM5bd+PZhaKf9wNCCShFO9r8lWyMgTMeSWdiHxePTP+GVsUUbQ6cM4qHfKhO0nlcOPIqNBerNwWrPNN35gt3HF5ciBZ1sToav8ezpkutiLmvNnR6sJ3oUFqJU/9HW4syWfNJbTJ3HRsTjdOOHqhRD4GIn4TtMmzgQFy+kz5Z88EVdXHPP7M4NpoB6HDZFPl1dV9YPGId2SchRcRCBiQMWgught0EkpQr7yG3TC8G4qp19QHo7YQ984sr+roNFOusKH+97FvzFbdJMLFczYYx2o7c9XL3UYR4ayaKJxin3KPJEoCWU4aJjjbmZO21S39cshififYBCvVvYGjTjOC3Yaa5/gEz6KN7y7vXvg1AAF4mQ/qi6cBXf/WN67vJ5GDqXIyZD59wnfH2uqcJrf5CYDN4uzSAMkHkn0odLYWcjwXIZiS6+iNnDdwdwKZwvb+8EXKNgcRpu1Dsp4JlLQ6uO3IV20cwsexfPDsTHQxrSo7ehCMUd2btN0po1LFgPQRJ+1NkhKGA/eH0thN2aYb1Or9mn7dCK3YJzWdLaCbwrJGdwmbTev9gbnTYbaT3n2ijE/WQiVdXPCFUgXNWs2IX9eY8HjOaxIgzmPL7LBrj9Cjo/0/iiIvlfElSG+VIpRzNlCRB5HHhFF29Dwnv14nkEysmX3WPVfcZOd9xmCiLDPBCaKEpaiBzxzUwqcKsadiAZSeg5lDQZBxMQpD18bV/8GloFEiwgkX8wqWqq28OBe2MuyJG8uNa97+ki4A6K6LB10JZa7zS6fX6Cn0HACnw9UpJQaOcfdCUiyQNxETK1wwK5mA6Da+fdh9CaFTeEkNeLy8FnDD1dIpomMEls90xQTw693ooAYSAC11eoPFcCZVs7sFDgHlIIfZtD6R1oqQ0EwNm64E2QNqEUNKoU+A5hkOLmfpV05Wq8x79b639NxDo59+QjeH0FhjkzXFlLU87H4xOiUq13OKL5IFT/EhDX+M1D3OmOnPGeY1kKTMQKkd1vlKtmxjtTWfaRXw6nHXW4MFXym6XYfaqIl17CodGOIP70Nc8LiEbGHjSIaGjXlQsij9+0pvkriUMLbNiIOl942U9mHxPpsxKKaqiHG+xw35B/Zyjo7nquwWgyFK3yuJCCW7+eSvYmrIgLJmIwDEEt7Rz9e0M2gB5kbrWM1W6TiI1niMX8YvTI3Gc79MA+PXqach+jydJwrufDFQJvSttEjarMbQFeftmrVWNrIvAubkQeXUsq0WUaYcKpNhpJjPMYvtKr/BTdTB6nGSuPHTL84o8I8PRNyssc7s5cr+HgEhyhVGCG/AqRLB8XihoCAi7HsOoDTWWkOG6GAsVC0BecJ9K/+bxsl4eFrB+awD0m9zAV3rAGtVKJWAvixxP7ukE06QuE3pGa37yMSrXzLEeD4tDxGI6wyTwz+H9ctrc6bJg32rtgFLIBQK+AlrtYoGaRCu0R0xYs7NDiLWu4XUfi7SytTwmbCTVDXseA7K42d/YcytiVthBSB44T+mdOmoTbGcwLS+o0jE2MArucJ4PVQ1L5AB/RGJtKN6s/KTIjRs3AQmqSsu3IeKt6eMif3DEXW/kOAse3tU49XFF6gT3zZ6RrzMSEpztxFxtqEqkDgUVmz15MMe3SUfuXuZPmeLML22o6+s9QleRQlGgRvWkct7JV3BWZx6O7B3m090DUM1NaodrB9NBCzpR0jfxSExRyRrN5FvrranuPPB1qH7tYgAd1T4N6FXjJ6o20yRrWE16j7lxrdbYShcUEq2G0ENl9xqTSGfQ0qT9DrLDAybSreqrUQ+OOW/KyO/rLqbUOLMnMNE/5URithlOA4c7tQe+WSWQ43blKVD+n9W5b+iQj1tyA+byeOFiH8k9cnqanVVjD2AWHFd+OVTnoNP9FNbPlYsm+/XsrkNSsQk/gLpD+ENMokyNij2A/qOTpd4oNEcraki3BNHpqmm97x7NNOfVpfuh8cDy/GIuoibocjeSs355WNAUMJYf8ZsTzIcbB81YldbwNhOjVAi8xG71kfe6QafU9Bcf12+m5+g9siuu0GLetNrcx1XqtSG+2J8oT8CDxZ2s6WbcYMd55sqy1WLoVEJLlv2GY6uEVISzQnK0KFRNAr+nCPPBY2Czd1WpLsXn9nrFqg3k99nYMhygBltZxFJkxHoEoGLRDt2PfvZOhpVsReIK/C9GwQEOG9hyhdrBC2w3Pwn9OwVDzOaiZF33/8vbuDLh1yvmLxEZPohBgswcZDqAw/g892+SWIWYlfh8rREra1wqFGsmo3a/1G3oQ+NYi9Gt52EINVq2I8siBK+OA4ZyvmmTcxT0RsXZlqhPynh+iojWRJk9od+aYXnKIogGYcp85k2Kpx7Dy/WJ4R/EKSDF5ZaB2MaTX97u36O/7ssAjgwuXGusf6/AdULLdZla5lOD7fF4icebaPvss+cNA/O6Ais8r8GPEVduWATXmSBdBSQb1yJorQ9sbUfqG1QCOOqIzix6FoigYfgh04H2rkuReXew0U9FU/LPiQk7m1b2g65Ar/HyjkBA9s884mteYrXXccXnZkbspot6h7YG5HlytVLCRks8eXFHF0Xf7StSQ3GES4gZjPeWoC4Js18x5+E8zV70vX+uv5sWZpW3IhMe30eMcQSpRBmijxBwcS/NEgYCzH94bvGzXgpwnsMjcjZfD8RYABUZuRmd7sCek8p4WgWllGTSQgVPRWvGt4pldO8RpfZRhNAxNlvI0T/0+SQKsNYNBZEhV9XX6dptqp5SQ9OZFpGnpr7IjgutuME+RusoAd51fKlHGmfYm/dGYk+lvxEFmg1oT5B3RchPS/N83jLiReKCmpu77zss9TaVVOGiyt7d0YCqDDw58YVDfv4DjTX2h76c8O+Qf6aPNqD52rjVw66JSmNGuXmsW0Z5ySIsVUu0Yvr2hj+GoChmKImQbUgujidxGZovsfn+t+7FyQspenwpfCUJux/4cFwaKyD6eDDw7pQO8ve0BWkF/NSgEXdCH/92BR3Pgoywpp2tT5I+v38vqrS+3qJVz3yV0pEoZVBwQvhS1hxCgvYTnieGxKhIk0lUMqE6DDRXh4yxwqrsE31n2yI157LNxIw2QC5KTJViLwDMFiwX3PATBZQ3Y2upZph6jV74xJhYb60CRmaE+iWAox0IeB81MQzNA1NrEwctn2pmKZ4u1VzVrxUYme53KaeM1STyceEYLTnBUN4vdYPpvv67Mm+OSLdNtWEsmSP9Ak33W/nF+hLa68LVy3AMbxmBOx0Fq2WcCLJ1UzwikwfrvWTNtUSsL757BEEj4lnqAa0OGIbupqzOwa+XmdPQh3CFB09iDIThN5OV67cCaFZyG5VdPdLeMbpYdiUpD9LfrkqXHIqOy3llZMmQXj3Bs/fFrZiA5e2lVm7t5fpi1Y5w28x+zfafe7n54wHysutDAUfK3F+cdS4Rdzu3JJ2JXlJ775mz+VoWmaH0lk0bvMK0MDxPIhoIesn/iOnV+wMqOG1KSmZLOU0SAayHekMhZOxTh7FIhxpKz/MAXtrg72FUbqP89zSZIbsmSkMcsiiSIk7jfUcZBJj99N7fynVwPSCPrvhc2Kq1UpRUfGeBIGMlCEaQ8UqFT8K8hxHKSEMdzrrl+mT44DbR2hyGOh1ngy6KrSs2wnNJkUHc/Yu+VZX2SoKfe54fmL5qahBXv8x+2fueq9iJ5RISeIhPkmiBO7fNCZwFxkmOmbdXFdwgHz5x0U2fTwtRskcsA47w2TtPE+ldvIqQnFjpEXY6H926OYzX11hPAzs3PJ63kwJ6Nnbwf57+oz9x4B+7qRGrTZmVxA+cWELg/US9yFEwyFO0010NDn9AFoiWCfUKdE5lNq5NaYZ4CXLcL+0EiB/oKj4HpnGpe04GpqhcxW1F9yCfOqdT2oXoNVmv2c9nPf3JjFEXMmPJfv1T23wlHUxVoy9brnzontus0fDJeqekXaLdAzORCaxKCR4ERvM/pYem/9wODB5+eNxITUE8UzARh3EEsAB1/JLN7iGDNy/CAgo6cUctw1a8TR6Yyw2aLyZ31wpRUKYPc6V5C+xAnbSvHAykIudlPjrDvAPTS4xgxZnHpGTDv9oaiiRZJS0Q+I2E1JPN9WrisQ3rSEqWnGb3GpPZhf37saiR76s5FuLtIZihJZcZolBY325yuLzjnhEajqFxlzvaLkW7611HE06qW3UwTD1Fy7Qa3Usj9DdZnOFYq3SYe3akkR64HRA8chuW/lpp4LVjnXqGw+SfcH+5uuja70svusKj6XHW8z+g1EAfaEMgYCGk2CMpVnNalHIKsPqc2LArc7QvLSLhiONjb1Lktsc5Az3m073WcXBYnX4mOupfGQyDFz0AdibuFuUiQ5XKB1S7mLrBP9uIVobiPXsTE3O/ECPosn4Q770hs2qkrfp8fLxBi/+tLAdcvTGicdB+9hz5e+sUj9/+eHZj0myLlnOrO/B95TbNqUrWbsepSjvVrBRG3J9Qamt0U4S4TRX92x7O3JXsanqvUaOcydC9Q7gSBx0DJjsV+FuT3r2iLUcvI4FWBR+3m0E+mOeeaUKZh2k8C9CApJ8DynWb2zXNHOB+bLhsxVwPm0mLhIdMOZb4y77jFCudM02V/4/MJZ2Iyk7UDsYxcWgPnRiuN+1tcnkh/SH5fXBqpgqqhFIyA/omNWnq4T0ChhO4laLSCcgw0a86nLwgjtJfWadQr+7qV6yn2XW8di7uMha2xeJGwCyi4VwJWr0z3dPRmjr6/j+R2CvgIvmoFXLJtW7vyXvCcur4Fn8NfoBd4swm0u9LhCJ2sagrHZE2VHDWVxMMFUO4bdLz1lw4cAsH8beTIHxluKCqos8oGTWdbNsaJM3VI4OQMW6qQ/InIEAC9dsGNTeccrsHyeVffinp5XVPellGVCPb+zVAzvdoe5Uhvhkrdvz+v01UoOH6g1c8BTtelGFe436fnhlA8Auvj7LpEK3ZbUZhF9AvljEMrFqnwszWLKhaKwNwyjXiNeyjgPXFQZU1HVVybK3Bnwe6BGPBfFMXHW8HUELhNJUPLYA5yZyYOPIOtWyCnDEgEsf80YtKvqnBe2sqqxsGCiWpRoGkeYFyLyXvLVdtVRQlInjmwgPA5iM8YSke0gi5okXw+9CELu4QRabtM6P4y5eEP02edQzmW3lPNn65BykEq7ebrGPzhjRqSSA9xHHaihtiZHP5PhVMratYnK1dcq2cBTT4JUS8KjTstS7slmd+NPbVAHi0jDZyJUX1UspKDtuS6W777YpcbMntRL4FQjYqaDx6PM99cB4fT/nCHbuQDhYxjiQunDT4WZUZsaDY7wZ7Ed6RpSPfnShTS0RuYOntNbgAXLYc6SNISvCzyaWKuDB+rmjzZQ8tGLRD5AwGbROt03j39Yd8+y8lv8l8xw6vtOcKMTjAmd6ZwtNs1gu5gZYy1EGXt3ICSVMEJ0K2F1VsOpzSZbFbSYJp3heyXtxfksTeAJKhNMB+nWm37q+SjX12gzl0Ws1IUPFN9NmLiFWMEvEKShaYjwkvTO6uUnvtoRUpZgoy1Kd1sdu+rDOqdH87yKv08OOmCdFlskGMxgiaPr1f0XPONFELFhCM78Xag7NVJJr4okKuaSWOh/ZtsmVLUlb+l+lb6tSH4frqbIyr70XyJeYWsbA+oiANObaGNXZe61wtbTiga42xHrIq97T+K6ZYatRcTH/15QgS1W2x1TtxoIl6unBmOW0AreUEYh18cjKcf+LzUoQruPSoYoPvx5z0xdUW2gSQxldKq17zDjAZMNGtGFFMsL2f9gYAqW6AFdAQMbjSJyWcswXBWDHbFu8dbhQnEC6Jrv3mKbNZGWOB8iydmK5S06MrGh3owfyTduibSgkrlqt8m+o4osqdPLidtCvBhTHpVH6uexx6UHrjzD6nIOcgv+rPulWkkVZSt/HY43DRr+b2fuOxqIYqLjPDj8Dh1wby/pxqZyenr054eSXgFMP2ITyqii5azKvkdanNeMMZbCOEk2FgonaVImEVbcVsOV32B0d7gdEpCcreA7VyegVJabx021PerXZAotOdm3Wuf75UnoJ858rVf4o5qjViIf3AnWdoNfvljSAPKyB8hC3Mc2kAOpOKgrf/VsmAh8TmrSFicQ23unSMNnb1Zt2NcuC2SrAThL8jqY6l8kUiIkXEojecmhh5ZWvsgPRkcy1DHZ+B1x25QQUjPo/3fSJfE18AVcHJaduqkP6iGa3eC1UXuLKNI14PVmT4jQEV4hqDn2CvbdUIxX3vtyS9gHDaCGX4Dnj9Io0kQqzCJa2yyl+bhj6SWthBO/opnOS/Z5a/Bu8etg58EqrftbjfQI57/yj30Hn++1Ek1A6eZ9X5FTcoA1N+2MJ1N6bsWnGnxmUdwHYmfcriJ5yhtq3TMRy1t+IEsDRUSMHgOLqo/9pUeEAEjwzz0L2qWoLoCySaSPS3QHKY7nnrKXwUY+zHpCiV4K068UF6xE3U9M7wKeMJvYfjrqHFlGCqr8oXPUq457610YyEixWVstAa1JQMGZmXNuJvI7whQKuUSM4o+PAazNNpk1KAETJdb25162TpFoTaPRLczUOLbpciSGKbPSwp5HU+SatZhhGu0yZ2RWrGV2G5L5zPNxRzZzs/hp4SPmQiPpV0sNz7FccPVUJJyhq1xD4C3QaKJGj8zb9F1T5NSlpnyLgc1WRxq6HAsUGIeBBc8fROr7EHwDqJa+0TcNKxpiOOSnx8QpzarJt8Zp0q9Uy8J1knowFGUXTEYug0UP/RFbv2NoP+ca8cgs8getr9Nm9a+vLUJHGhY9IND1ZBuIiwdebtosKdlu5fZ4ORKWJ5Dq8XV/alMPorVUAVoXYgRp3JkUO1PWbUCE4PH9L3G1HZ19/1qfWoN2VptFK1P8IaX7m3mu6KJ/griAnsvpG9QZuZ3rvZKsjNOwxcOCMJqhT5edDNLYVvg3javumzq7weG8BwjeI18X+FixiJp3E2PLgDzjUn95XZBPp3pwURqmRp3uGsqyC2SGafCCRM/IhdJYPVJJ/lw0KKdOEcHyS9rE897SgjfAMYv2ZJoazn/LvdXMXpbXYIq5whxmJ4sj7gWotWUQX7GzaVNybI7NOxMh2QrZIm3O0OAs+Dw73swDWICs8pHSpGOOGLSI+lNjImQlWWWRBydooJD54rI37FyjyaPjLfYiVrgVYRI3S6qEkmxIvLdHhNR4r/CRU1adhYxy5GRwSz1lsdauiE5Pq5vxCNlDG2svIt1Vwd/6qAo9YWPn3qg3IVVW1GJgL7qwwwfEWhvjnt8ruDYnXYX3OamYCnKJQF0eABpAV0QTg2fkDY5Vvvp42pMeSzmeT78SXVU6osAPP/504jVXXDZKzVeyHiL83Ra0Ec2Wtn2aKxeAd59PwHZ8cP1B0INqRDcHZgHSalVK9V/a3OK3EE+iKslePkxMmpNDXxqqk5ty2IgP0JeMK0W8qVISmMuQFPw9jL6Qy3S0PS4hIGwctUy7mBJvbxT4RSYWX7Qz5SuQWJbgtD12fK6bbbBgTy1LBQuB446H++GsPZZ3pzQ1eS6sI33TJmLEzJkXtP31Uxndindss1nkyhHUZAbpzVfybroOrxftfrVS/FtxdyN4lhQvAhd9zmA18bmGAtiToNdogJELn60BI6VUGBvXY4K+6lv2v/aLM/dR5WJJv4BG5CAyzxexMIDrGnVrAt7lInZK7VVRDwuP6TI4ReKaeS2QW52iiHJTVUV4s2sBlf973z9BhUhnUWm0NLNt8O4grZb7AnAIkkU4lrBPqb69JcySckbUm5Rg/pHHHYey/uIBACIETvG/mGozokIu+KcFn8NnJDfq+dJ3hGwYcuGYVaWHFAmDZYe5xc93utZzsUnZVXFbwFYlsBy2g6PWcwnd0Q5iIm54YZjwQ+MiReOvI3LJ1h8ds8jBrjnBw3klt8OQV+lFczFWu+u+gQKdDWvutm96zY0rCMoLtVkeCWAaBNurJX/AVWynkLjYg74LLnuM7YByTTz3X53dALUt/yqrGqG8fxtBgOQCf8MgNjBFo31Ec8/pFXqM/an5SXWXZv7hEGeEhrln/9qgA5C7L+J9FFRx2OEu2akWA9Cjptym76Q99ONuyHGTlm59LmczLTNXlPhPvgZ6rLw47rWqtVZn/iwAZqilnVr29Rz1vtE8W2ZiA0mYVBix3YDpqJpQ9/xMibHx6xLl3J5DVITGnwlfV7YDk4BnwAF4h6pAYL1uHcSsoOhrt+pIdJP087/cmjM900MlmaAw==
Variant 2
DifficultyLevel
472
Question
In one minute of a running workout, Patricia sprinted for 40 seconds.
What fraction of the minute did Patricia not sprint?
Worked Solution
|
|
|
= 60−20 |
|
= 40 seconds |
∴ Fraction not sprinting = 6020
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In one minute of a running workout, Patricia sprinted for 40 seconds.
What fraction of the minute did Patricia **not** sprint? |
workedSolution | sm_nogap Seconds not sprinting
> > | | |
> > | --------------------: | -------------- |
> > | |= $60 - 20$ |
> > | |= 40 seconds |
$\therefore$ Fraction not sprinting = {{{correctAnswer}}} |
correctAnswer | |
Answers
U2FsdGVkX1+SjHWrDmR5LDRWX0JzP5tNEmzrjEmMSQW2Pi8G6rT5iLHQCtzUiQTauqbd9chmAOmPgZQUVms17aVTnkbJUcdf+R6KUUCmkGRhpqh0+2ttJbnpnSnEk9eYo8uW6/eay4uyFMNAC7hvusLDrV4N8QaH/WP9KGmNAJJGHO9t1F1eDBzpKyVRrvOZPjuc3D1VDvhseNujw2vADYtnY3p3KzMILOr04jKmzOD2anu/fa15FiONoJ74TDhFfSeTNSqXT50odV6+6hhvs65LCZzfRPFFA7ZCO/iaq4xOMoc4M0BE7BRq1axVA/DrTvDEsBhjszdtCrrwGyZzcGlNETZ0+ItSIEHVvHJrvri5jOmAKbZMtwkS9qRCMHdmJrhlgcEBxHPGfPhlPFsKhmzZT2oC7K8xkW5MRAJpBazvOH7kbIrqwJiWWlvc9ue6YKdq5L6n3ksku/Rd0j7YRQrEtGHspBMImenF/8O5VomBGx0REAl/IH03BDD7C097tKPhp7j66IV5DfgfQHg5m9a/2lT4EYkFD+bp1ZgEErPcyiZW+Lny0eI828JpvTIeP1Fdv/c05bpwFeYxivowhMAcpO4ZhOLJQOCohffi5pWMedHmNPLXlmjVlCBH9ml3fc7hYBCGT/5/8OfpZi8PJl1ZZWaUxxno8H96g+OKSO+Cjik+Kpg9PElU3uUx4gByv4KvI55YSqhNPrVRCHKH4n3MxwZKQDOL/hpJKMwNcC923Fz8nPm89kmvtllm0NqU5DXmHT69qNE1mfqDUMSfymH64v/k1YWE389qWKjGoIdcYMBodxsyKtWXMp4PijVEVWbUkzVsPGKKe/ViOsZ9dD7syvVn/Tb9cHUAKVEpvsKkCCk988/9VVMe47SZ4LZLOyuKM4aK/Anw8DGRNgVjSfgBO7IwziuRO+T3V4SeKG5qlc9wuUvdtnaCkuNSAC3FLM0nx9+rjl7y8XhNRpXaiQCwp0G87+Quj0IoqoBdTvBWb3wI/nanaVEzLKkPsjg0z4Cbp43HSw8x0RiukT3QgVwlfCI80E88LfErvy9LUIZFiPtHChECU7woMFuNs16AM8aKHWwY6cLdHu1iIPPbhimjRrHn6LkiIMjSUAxQ6rSZAxfbORykzAz1ayV4lYuDWuU58As6agNidNNppy7sq7RdrFzU2dT5Vje/Z9y/BlgTvdMlyDetuZRfIyk42YHCcuAtI6l/R1krkWxpcl/bqEoUxgIh5/x7ze20sD1TYzK5xOcPfZmmEdzRkf7YHuVnSk7LkzqSRUCJ0WXJ6Z/H6+PZnC4sGIaw3zwui80BSSkAIghD+0Or602RwrhnKHWg29e8TXlwkc8zJYsiSAV0z35lm3b/FqSlQrfz5iiRZScA8cHuRLiSr75I8pAeEsfwu2sRwV504mq8OKbHfOBR0edCBDN4GIslALjqvC42XDb8ZrQjHKaPZNPapZ5b8lMe3SSjznLspKnOIV26B39Nb3Ky5WRjQqDkxEsnrRfGLbeEM+6jo7ThZ/HRahIxRPB9BI+0YwiwlQ/5Z19VCSd3F3s3jXii/wJ7ZIoa4mCy1KXyFkA9pfZOOHQgqFpmuabKsQMdwnsOFKdaqMDMJNWt3v7qy+FaNceHtEwF8v1liqttwN7tkaKTfytEPBYkDm4uCAert1ZFxYU9BrujdqcvCz6hD5pmwSNIl+ALiIV+9kfxWVEqAEua0qMDkNY4geLC8TZWpcn0bW95xtVXx9nZmwQ0j9mVYAG9E5LTvBAyphtJAuGDpB1LOi300Kk0W69bPPmCgyr+EMOsG5yHrHROlUj4lOgOOTCQesgZcjaq/COA78c6/XnzeI4m83POdruAv3BPNGuS4CdkrV71ylIMDcZkl7mrqZBE0eitAsbTYLZWQBVSpUxW5g8/W/kO35Q7THsG4kKHcGfzD2hc5bTxb5IW9b6K0VPf7mFVvFhaUZbGnrvEUZeG16VGMiiLAljo9ntKK09h9gZzQYu70HJeFpiIX6tDkuGuj+VjnaqW/g0i+97EtKmfeRFzzyGa4AxTjcuyL/JISHHaDDWzjV3Hir4Lcih8B/B9tMSW/HXScvTER3wQDAcBx0FFTH0BSh3gbQcQHO+FWN1sVfqPnRdI29BGHD7Sn3ks6jH2Zp1qEP67Zv/CxYW92AmUyhtU1ftTPD+s93gGxkCd2+/XZYRJe83czoIMQmqtsJoRAYvD0PrYLthDX9yCr4Km+yPziX4QvgyYEXf6CN1n96Pp08uSZT8dYWWLUrAcIX24Cr+SdIG5FUKlwJyGaIiImwvzk78c96OqnbPIEnZanSj+ZNf3LHiLQiJnyQk+sUmIq1TRzTAWmc+oqp43zWX3QQwX7/rp4L0hc/gavw8DeIaHu8IqHd9JJFBXUC12zshbBhCzjA3HsRojdiWD7SCjuflEQToZTsJTLVPbnP/IcWawM3TVAwdyLWjNq4Z/YEzRbulJIecdOyHlJi23dTwxsCvBmgPRxlNo2SvJUfcl4FWKo71LHuCd28uBbhstalFm5WfmtCTYGV/rP15gwLCo9S+4m3y/5GnSKyroapH8jlIbvxfzqezSd8yIajOFw6QlHtUTZYrEODt5h4T5XVbTPVILmRC0aiZA4PKQar9R+sVbRPgHegT+4cdEw2hf1r1PVEzENsMfJMcOU1ClE5n153iwpIZIyu6UtPPyBQcc6xdxZULHruJ6x6YQcC+2xELpMS9+mltxgSvbVj/S1ojW5cfizLSxG7LEG9fLgjEQE3iqB0wGFT0doVmLAIslBxHhHd8do8L17Utc6zqqbjn6942UDTNTQVHA9csStCi+wX3/rsEB9J3sncQI0D0Kfb9AbTSzOAx6yAfGrkvNmaFlOocpUV0rrZ9nnj+f6HAPdSaMS4yZ1T2Q4Z668nVA5T7O7yOu+LpOeTRYt8GpDL7wQd9jEG3KsFlo0d258olP740XPfcKWLWrUAZBYNUwTZ0JdFpKJ/GnquAQmOmecz87prrjdVZdYFlirldqmo0cEBkJYpTeqa10GyGZzgZ+Dp1Uvx9BshUcCdle9dRVtTNP+U2bnkFJpNuS/229usH5Z4QJNmT5kApqrVRhDwXue9o5/2OUrShqasC/i664qo5PCaZ3gwtIJ9u6DIHiFg1rZL0deOtHTwpT1LQwlS26ikLKWu4QMN5zlFdTuhSaA1EWAvS7RC2LwQQKqC1GaPuuXplDCE5fg5WwuQ/kfwxrtRJbTyO5iPXX+2RL1rurkBD9KDQ0M3ZOblT4ysdxB0zRvNDzbqUs/khORrKZzZgBu7Ux4KeSO4mXi6OCNELRJIlDTwWenVo8kLESFq0fZ2kbs3hK0Py4//L8iI1pn8rOiDzOZ26xCA4aU2PjfeFtX8wtgHuM2Y6ULwHmq/mxe41bxcRl7FcPrOwIk/blj83q+F/xJTDF6SneHYA/2rGiF4yhgfDEtCaFJUGvAM9F0cFFbNdeJ+4MmPwZH7Mpi3VCBPR+S0Ku/4OtbW2a1+YoaaPYNuRt68BotTru7tQalcsWbP54PWswQxt4jssRe60CJYPqqDE+OasxfyPKYdf2/6Gd0PXp355oEmAUP93JCd53AB/UDao8MqkTFpxTM4wor45pyhjK8R9sT16ARNmnvEeM0W2cwuk0lRZg0WHMDCF7rli2MctHUwkoYcmXBTUafdapzNszexKWJTFEWOdqIZe0SkXWD1G4oqv9XxtPIXeiGZHjqYBIi9/wVeJaRitj/5U6tS5SL5ifvRjLeTWxVoJw98FfNfVC/0al6LdPzz0SD8a904QQUHaigFK2PRLdp5VUGfl2dEjyitzpT1PVwSw73FT7XjRGdDqU1kM+YIbeAoq3e6obn76WF3wX4spFfqUu0gqbx7TkiJtisi3EVyzHcOiMtJRtVPp/XwHO/7ssK1N+EVmsGtNa+Nm4sWgHUY6O8Bv1OFvZ+TPutF2X5g6XoPpKZ820PliXV+RomA62TC5bojuts3pXJPr3Yb+cIAMAfr2qt02ojCM9K8t3QbQXkIRfsXwMkwB9EM74YBr5/hJBZMF2nvR0AVm+HekuPdN3keBjPTS2PHRtFeRIEgsVINw1myMsZZa43TlnRDHjVJ5XGuwrq6iD+xJqzJMyHsDZGnNoTUW0zIAFVQFPjD92CR4eSWe40Qu27B5MXn8nNVoSY74XeHJAVC1xDF+jGX+rQ9yWh0Dcjztd5nEZjqnQgQmTjF9XubZbjEFD5BHBzLEXHvlSnUouwkiGiORonTIRP63fuNPc7zUtokWAOqPWsyT7VFhd12X7KPqZw0jUbT/DywpM2SUfwOluJH1D5D62aPCNRiKDWwWKvZlyhXVBm7uljAzmSXGPKQ9hvLajz5bj1wgCeq0ovsaaXrnYcajc6HU6ZO/ueF5Z+HvFJJkCvFsN+vC2YwZWgssvn/DMRse6Mz9ZC1kYB9JzmyGx5IUlOgdtIYROgV74nLg1DNz1HQtahJDIWFCOVSz9UTHZ0EAhF9TMq5PCwV/4nI5kp3dFWNd1B/3wYMMilQzMVOOZkAdu86ltMVo+Otevl/OC/02TKH6RW6jhgBhiDw/lUI1kitG7hIpqDDGIivFmRWmHlmpTNtCv8ZZGbcRTrS1duzt+K0MISY5LGpNmYc1udz77pGZfHNlj+E2MroZAK8Z8PHbts0KtlOckABFZAsQtc/h3h+c1BlyRCAt1lyz/6CwWmHVFCXG+2H3XTEIy3GAghyZZ/ew2Z4Eid6s/EbO09si82FeBwC1H+zRxkX2RsSKh+daEMemZWa9uFRmB510MbLQtNuQSuG2k64Ok/QLMfTJbyexsc5NExhM5f22z8iyHRT8A7KzOtUYnx1lv5bmKdHIy9T3n9ZQ7MuWT0Uy6pNglIbbLJ66mg7T5AQVhXgxH8mqElXyavwYa/5Rgsjn6tZwyMdootax8qy/A4fhbRQAW2gLqnE79ccQoINpY/YxNTk7huzFhVQaz0zWiaDLgqVSq+jfRQ/CekQJ+ZLC1dOJO/yquItQy4g2uPTQcCqIxS4HfkrtF4/44/xKjyZQCgMhGGRCQ20oxxZVNRKoFMD/Mb5uo8RMfpzSnSd/nt1IQnCsMQIpK4EFYw5T9zyv4mh2AdbRJibNPRLVjuWpEkJGoGjQfSlayGqIEk+dNKfN21SAa3qQNfUm2DsnKoyFRPn4WTX6LsPAcrTChlIXsbu2Htu/Yt/K+wLlGIkjM91WCKgiclc5WWbHyt8Ji4SPNywyigJVc2svjk28wxtwQIUQ/yWlMUEPCLgfDYaWPT4PoZvnBb5ntmypAT4YvYU75KVvDnZehjaO0nOkjh9prh2pkcew27H2jXU+JEEJUZSVrRJSzaJKZtz+NmQzkdURcqjmwpdYikHesjOOskHvPcFUWA/PimrI3DpM/hutKocklO9hPoYcO4r4Rp+5afbvZNaTRPuCyppCkE9Gtgo7ySnu8Zq4P2gY5Yxr3VlWY1EkAcvgh5DNGYzQsKPIKB2mcdwvVPsjfrvGxjvFH5DH19BS7kTl3WCGKqHVtM0raWKbSGOJnjf2VPRxQ1MnER2HFNDe6XhYvc0XeBrKCsgq53sybKLbkiNThCGvNRhcuNF6ZJ03+2JSVk7Xs3nx4qWhBCy3ana/BJkeH98Vmy5NG+pAMrhDRNQ1kPg/X3m/eTidfNrlh9qFvTjGeP5KIeGlQbvOTvdgrRm1u6n7mX75N53rvQlkIZ9eMB2FFChR9Hikkukwx/g63EehSpo+yisE5Ycrl2h7VZs0MRBD3nKrhV1wSxKPhUSldc1miBqtaxoQxVlC+OWmkSZsmQd/wJOE+0fWYCUu7ylX2anM8zZArj+2Rai5Anu94Dl2UQPfNSADxtJKSCGFDhmUYxTsr7deCoBef0K/qF2Jfd2Oy7u78zBT+YBPQxdkSa3Kjrl7ExBlr9s5o0WZ1BgerrfRroher1ZJI5AEIuTVSDWm3eptGdH/GOJM0iJ6iTl8k5cB7DLopo0ZNowl65UWDCw/Kqb1TZ0kw4cIQGnROYvu2Ssp6DPVgljPlkxeQzKxJSWh3Ext5+xJHw9O4j3jAXs0Yk3jUMK1+Xt2+AHiiHQkNtMmC1W7tEslDWEYibPihytDRcn4DfumQ3IebQJBjSok/TCwG4TtKk67sFbB5b/penQHcOEZ1vQwQCXP3ReqcFOUndTrIwkk6FbY7cBDNAjETfb6LY49rZAxU960rckWFZxsusCR89Fyygw8NKwbQLdlnoNpN1r8BUiqBsy2gPPjuLqDbnNOCfUNR5t/jgcfCAU7C6w2vnvtdW9wQ5ydj0UF88PxiDdHK/gkyZKE+EDazh9MKGT72/hdGXyUpHsij3Pm8j7OLfq89/dBgan5XmczBJDiXHrtSRHmgBh7Xak+RJVzI0i3HwsGhn0fuhR5uMzbNWq2zTUgC7D0B4njyNF5rHGiBgi5hdtJ3apV/D0ncKT8WYtUfGvHef9EiTy6yGSAAJKl7J5mTRGzBH1VPMfjxs1nRp1Xq5DYCMOqAznXssiVJobM3CHhR7ds2FaNfrWvNTKyL5LTNKRWWFTdoWfjrJvR/IGtoax9IzedLhH5a45apLXX6+eHd2A98mniOnLIffy6ESTc+lVa+0lfVHsZBCCgu0rReEeHtAW6rI/YToC1Zyg8eBVZAWDItgIwTm/9C4wFNt0GEIw/ggmEkMt+MkEqHZPG51wyQRGgTcrtfwwOLvWXnQspaQoM8g2tVWm/ICVYRh5ZSSU6qSBgLhKQbS/V6lzoZRWffsQL890PjFh63l//tQpy9MIwrr+BMtR5YYqaw8o6rGeG5wC0wvFKYi1R67d7Ws1peO/0TnguYuvKzplyXMQGlBBuISf+O3Q3v7VBcY3srRPslORFAeEytWSOEuJHq+/pBztGCXMiAuOFJx2AbifqOU27yGZ64NmK2uluPuUvAFVz1G5KNgcD3TXBacMDFoXoX8ZWrNzqw3wf+7rMJYTQ/goPo6gEnavJANUnKKArS/Mbn+2C7BUj8c6QSRUWI3i0n+9P5NfpAVIwOQWJWreJq8hbp5bqb4W7HLOUalBKrTKgVG4ReSXudZ9HJpm1GBBJ6Z0HPuo+J4TgnGQXG91Gfd2Je6AZI47/wwg2gQTVON3Ij0qwV0S8qN5GvUAmBVwM2zY9CbJ4pPeyNblM5U6I67mVbCgVF7GBzcRK5kt0c60ZMZNmLHenaQg7GJ0CMsTepgHwy24YfhaObVpkebvQJR9HBajHorLdnyREJUaQxKkzFSn79E+QgGnp+NoJHg7DFW6gDIKiD1cYqJYKSZRN8+DwZOruLL4jiubnzzhyIVugsMBls4Rk+NZBlBYzGc0MFYQqwpH0xMK51N6bHZ91y9bhy5YiN9lW4PuFDHwkmHQvNxKc0HH/fuIkdB37NzOaEyJ5C1QIRBSxeeSuu3dNYSuj4EosJ9eRvUeicQzXNIuFbr+aS3GTHG0Tve93BxOxP3gzoASmOLUH153C3M+9/nFe6oBQmmlxohBg9E8MokKDjIceXjS7gIQTkOpl8T6ei4SfV6L0nEJuB2js3YFwqeW6MWVEoZ7Umj1UHx1I7y84q3yvBFepwwXzGygIGYT3n71kyHL9aiq0JQREPdSDl3Ddsma9aSKS+oyLmjFNTL2zHdDCF4tE61B3cjkxdgpw9hLt9ZycfEABfhdxfIXrKbsdCE5EagLdX45clotE6eNg9q7MrlLUL4DwvqFjFVf7YtISltx4MMVFAOvaiV6y/gkh5N/rkI1Vg1LTXLLDB6n5SWsC8U4053a+NAb2DUpOtCia9J7q1qiceNAHn5WU6gNWQcO74fUy7TtN9bAWzAputslVmlau8G4QHPxI0jttP9nq+JlMZrrxkVLAVLFwtm2/nCX3pepVUMR8F2vnJqygdd+EV8Cl55Qjg+mMQHYLlGVqSl03ag08WZCDIrbpcdBecb8cqIcgI5xBSh7Z3+bHhQIV0FSlXsm8SLxaOVzcl6lHme/jTtdJAWUu2qLrP/pg14QXZ8u0ZaWJVOVqpfof8qiivNU6y791nmrGm3W1JPaUxierfui37kPqS91tR0JLhGRGr5/W8q84cSJ7bXBjRTUh75eWZpF4N+WkfJ/As+sBbXcRcQenP9W9nnmMny817+F50Yghv0472LXBNor9+i3Pyk+/fC0V2t7pniRxEHYubEWEuYHnRO0E3KXmklMvzGJGqJuiKheZp8709hVFeMEKqi20GhIXfKpo6D3DhifgpxNDLgyaH9l5XRDFIovo7M+CSfNoPWc83psa2PdCQt88oHWa61mM9VeZaCorqR07L/QGpEcBFK+x+Bo2o+YmnMfSenbGCq8ZQ3p/ZlQ8/GFHU0pQlXharXCEOngosZXHqsaP7zMI5lXR/FPlKb9o3USZ5JvslsOe7tGMBPQ0g8cYk+KTQTUqffGyvrS9V2kT+hK/efuY7O0mZOpJUm7dM4/ceHO6cO1gWQEfftwJESp7h71VrCsjePHipje4Q+7fNfktacwyonXyl4v3FnBwgDOzf402AjVPwS3I7AUd/w124xDJKAn8CWU85f9/fHr0WHbdRge42TmijDP8X5Dfj6xGYPtKgAVYWrQSvnRvts/keiIsoMCq0O/jRYLCI9EF1zynyiN6HjyjyBAQid5Wt1qXypyZiNs1QwKAkHm5Iq2xkwipJPF56NCmFIJiEAWIy1TkAMdSt6uMw3IIf2ZyQ1xDs375PGfxHKMSN4l293IpRCfpl2xblDP2GVes4XUgTf9Cr+c5ID3rF3qsH4G0GsaPAQOF68IAfJFLDlfv9LpFeL0QeQziH9OASLlwnJPjbt4jcg2GlND2+4WmM0w/T3v21FjqLqN9AWrjcaoyQj62rLl+aEvmUDmRuTjgQhPhDHiXxqPAuqS42On3NtSpVQeQUuPRKc3r8AeSgn262/ctIBrUDwdAEWWxQ14VIVVXBmh8x/6qjdInnuF38G5CaPgK/0CT30eQfTwO4PCMQiYcQuySZ/k9o7WoXCvo80a0Vmsy/gWVGJ3K1Nr1t9dRs75gvMnXBhL+SQ42Ys72uLtnaeUJnePQaOQ67ggOAmuYBuPZ6+2H9sC8ZubUHAHNAzfigwmspj3pclGIThylZJl3Hl28GnBh1KPBAJa/mjwgPQncV5Hi7Mj0ULq2jaq8IUc2UNG8Ge0NkCU5RMxBBPgwuWuJV3NrRHUkAtgPNdKn46LtVg6OavLAhRnS144P0WCuGHEj2p9bN7bG3a5WT5Ay+w4C6+pkeJVoTgqEPCruiIMgSyq6kuwUjbs6vSwdq9yG9RfewRRHWwQbX288r4zYVxxo9O3UUbqDf8gH9Kd4rKj9U8JExuJGO160wkd4rq2RZH0am4U8fbDmG3X0KnRbnaXj2bIc3+wUl8bXrKdDk1EHmNw6W+wd5lyMZI8IVyfEjqmD0CBnunD1+u1DPNJBoBrSmhLEcO0SRXoJcAE9N5a64sSDV9u6LEWiIAiEKiJjCBYbs9kBnjRXp/orHgiXxJahvtV6mpUHMXR/BXC2jr1ftTTL0hZyaiP1h9gGa7BZ9pvv+RsMdQPEh3NTT5ZVF0Bh5T4aTP8AJF3wNehzy3vTt9EciYgKwxUn5i+GMg11QZr7UkivTOGL1OLFoxWm2NrDP+JiIqTJiW2Bny5ekxHkhoodh6A5PXJkeInWNdwFxDdvOrG8E4qDNAmcNWaBo7b9smxHqquEbmRO39DA7dDro+EUgPUiUkrbBacxiw+iwbCN2+ecL6nHszu/+KfUL4YckIZcTYVLSDPmwWZcfU42sIE8QMRZU1lZgUd+AOPAX2VcNqDjWdSrLUQvUvPv92WBKNG1ypZ5o3vT7vzdvrWWmxLz/VQeu5GZHK3yZSa0a1rBon7eiFQNK3/soOHsp+9S6+X6YEPVWGehSYj+t8wl29DgRR7M7QJYKVW0Ngox0DyySXR3R13MndD5wdpFASAXmOzalFXNURGeUpMJ/dv+7O216YyfRqTRwOP8fh00vDcVpEyiBcysKqvuDkwI9QFTeN6jSyComll2UfcBhaVWifGEzzs8av1W/lo+1dvrqAdVZXG7LWA3n0mwkeUNLxOQWB7mUB912gZPi5zu05OYddh8cbPjkN5hx9IYhCC2wO4JrdLoVl3homNki9NhCHr4km6qXpG4tLBoBNtWayuLVKrOwmBHjceggUaKeTA2zzfkZp2xIzMPQoBtj81cWooGj3Hh2OMwxDcwH6hOsy1tMizsiCAu4jVpWJluXXAoPku6QTSslhXHonqzDIfCGjJvuh5P4OEdQSIfZFys5TsFtJCZPqVxl8iLi/xBZkF9BVkuwNXe+w9Sg23ipOr2LUFciye7TiTpIJT2oULDY+YPMHR69/CiEspFM6kourn94uyNC3GRQoKLR/MM8HDaWRTvq9pa2ep+X2blssoR0FFopiphzrDSVUuhVjiioicETD3nO/BAqjMysH0PV3zAtVs/wkzu9/9Kl5bNFlJBy+5C0me8smcWfsIHDTtc4+Fq4RZnyisD+pYXwt4KhJxn1Du47BGz6YBQYFDjjDaIQX1TdKZwUfZYcjUUj8WQqt+2LsqyI4qfWy1iG7hKHRlpldIWyCnUpxgibx8/2umRp+26Qh+rnZlHeS2rmqsj7sqTR9jnEiWb0/pKNnqljI7S39AGMJ/qtqstt53eEANsjTVpsnwaMp6il2Rt0SHCat34gXMZsyydMXtp9QlUvIysQTFuDgyvIvyrktWwe5A7XawiOopo/lIorEUbKcRy3A3GXjKq4Xu4c8E3wFdgJi5LGF5EPr2eMEUJgME0BmA0s9769D7sRwCPTeipqc9db3sX0/e1geC70jGLV96yinuqSBZM06gEGrQ0VJChfJRLis/a5e/MKNPPWiIRE+6Q2CleXPTe+B/llzGrS81vs7NC0EdRTOageplAQbEnabKFGLb4iYVsYC5k0oyqQuTCwvzzAmUKuAoaFjzglxNey0yEkzhp5xG3JWWO9DeadKmRIEkAHMO3ghLFU8lFitqVMnK6b4+3qlbIeBAT+kv1FnLNjv2f8DWbV2Aadq8TDus1iS6jmXmOfsI8ssbN+BYoDOpicB35TLqZ05RQ+fq+cQ4i7Ld8wmnPs2ZcBZnXr4ouEpt4V/NwMFVL1NYHvsHlcK3wGTJDzC5juQ3eBFbgExxQr/bMB6NUDGMqdAbByPaGAyDXpLCfcSEPl62r3WFcHkGb3VF5VGZVrPpApK11RpwOLNvm8CX3EvxwfD3rNNtwaCpLVmd0bq/+CfHxNgynB+v4BsoQpU1LifcN8v2KpoQqdfDCkY8LB3k3rwEWeT+sUF4Jk/OKVVKiieJtGkIQ7bDlvRdm579heUJd1aefrG5qV/Yt2bULP4A2BqESiyGeWwmnv+FshMT/cdNlvS70wMcZgS63K4J30S4hf7nVk2J40kKcZSoChzw68dO3lvDRnLRzr58hexb+KJn2Vr/UFqb+zOVCbjfamsMRORaLE6h+MWGLNhNh+JMa4oc7vmUAsUWD2be8aIvDCtFFlCoYff6V2XQmfTgPufm/X0KP4fkShpQmK77R+sTOgkWXwFLPGLaBh9OkzLObvVhOvv5gcciwA0+aP2PL9rzGAm/rcXeM+wnLA2fu/xYHCb3XJq7aGPTVv8n6hZI1xNmcnJwGsIV9xVBQcTzA8/Fna0Rm2qyqhWFNgniyhie8+weySQeGCNqqJbxLsXnxV6BXgRXy60tKlhfVjDSTiGwCXN74/RIzG89zLTobDBGQ5V0FHSqJ50zLwVS5ozPUIXaNYjUepTfAoaKkBvJ+eHIV19m4t6wZ6r3XLFBzO/OwdZ+qg4+j+HrQLNiE5DJD4rjIw4M8CP85+Hn2xm1sv+jDb8a6zVOR51yQMcKN2qEvq1ATK6IeFaEatZ85krlV34wDezwe38x7oAuvU0k1b18/l+b9mX+fwSM1NddMOpucfC6CKS7WhGxnp3US7lhEK+7VMbWwiGU+ZusCaODvK0CZm1qW7NL/9T+m0tc49+x6vViKb9+xhOmZOz/R4r3yuj4UUg27itjrShEkPvrJBrSvKaeyg6lAjkcoO4HWHDokHveUU63NUSkX+HqNdwd4G5ucLvSgoQmu/r6OLwHMOGzFfzQdkT8EGPEtnxCQJkKg/ovVtSYm7Kx1230stzf2KA5BuDNPJVMCs8Psa63Tn9rz8dKpuI8f7dJiaO/mTWLB36swPn1KIXWGS9VPZ4K7t/kPSay8YS/zEg6wMd6QnD3eL2BKR6P9ZgqxnNGKHdBLjUWINeHvRN2KrAdRhYQh2zKjuKUjffQTMAfLsB/yRX48nwcjFZ2HWeO24+C3i43n7lraM+damupungA9cc50gopS9XUG5xzhC5zdqRXjy+udI88BpC3A/xP5sb/3FujjiPupW9qwEMS6wrpXCEZNbFFy+KnNxCCUXMwe/lB/d1PtXlXxa0hA+gxgbJrM1KDMMADu1uMJ0//BVguZzmxtcSmsmkTaBDuZ9nywKO0L3wLRWWgf4lv5DEZzBh4R61TMfZJ7ywzf2heobNzy20/MvsHSDd4OhGMxs2IRL2ypd4dLgKHtHxJqhU23od6J7WyiLusoCnOk/NYwUzSnbIRCJiWVftytMVu9AEVrpoGq/TCNPnQRpUi3jxgVBJxRkR/mgOKreeUT3VefpKbXHpEdPMqvD3uqmjYdPol7R5toE4v41VgJpKPQUC0joMHKQ0R8q1VOOUKHKPRQU4SnqpsfZbOMD+sk3heWwsz3BlRIJ77jJXPdN8NkG9LIMzktlogo+2wEwx4uYSkKw37YygVFzwrHnwiERSPvGjIW432YphRMQVfQZSSlV47XlrqrRLTwPSiJ+gfE0JZWSo/RjHq0oNfXi7Pi75h7gB9kkIFuTf05E4uWY5T4XeTSNXeI8MNSAeOxi5kNHJ3RkyzVcyGCEFsJ/DIKGLDSr/wGE5RlCCKtUb92c9KC+QNZgcA39mGEhIt2R7Luiv85coashXVM0GhYf7kCa5wWYUorz2sn2dveTzjVmpzJqO6ooYOLpkzN1lCx81ImmMsekNe0za6tDsdE4QGd5tWIqrQAsXlegcxrFvuT/hjMwt7et3O9lN5R4LCR8ExHpFszop/tM7aVM8ZgkK82gVVIkvsX6hIci2BD6p2OFJY+/gvicPLrG/H4wIRU=
Variant 3
DifficultyLevel
469
Question
In one hour of cooking, Manou spent 50 minutes chopping vegetables.
What fraction of the hour was Manou not chopping vegetables?
Worked Solution
Minutes not chopping vegetables
|
|
|
= 60−50 |
|
= 10 minutes |
∴ Fraction not chopping vegetables = 6010
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question | In one hour of cooking, Manou spent 50 minutes chopping vegetables.
What fraction of the hour was Manou **not** chopping vegetables? |
workedSolution | sm_nogap Minutes not chopping vegetables
> > | | |
> > | --------------------: | -------------- |
> > | |= $60 - 50$ |
> > | |= 10 minutes |
$\therefore$ Fraction not chopping vegetables = {{{correctAnswer}}} |
correctAnswer | |
Answers