30084
Question
The daily high and low are measured in four ski resorts and recorded in the table below.
Ski Resort |
Low |
High |
{{resort1}} |
{{lowtemp1}} |
{{hightemp1}} |
{{resort2}} |
{{lowtemp2}} |
{{hightemp2}} |
{{resort3}} |
{{lowtemp3}} |
{{hightemp3}} |
{{resort4}} |
{{lowtemp4}} |
{{hightemp4}} |
Which resort had a temperature range of {{degree}} degrees?
Worked Solution
{{{correctAnswer}}} range
= High − Low
= {{hightemp}} − ({{lowtemp}})
= {{degree}}°
U2FsdGVkX1/9ybWZ8Ii59SsAaHxuwpBOq8EzmFLd0fOZtel1/ASq9QzbIVbJzfJqwEJoT3pQW7EAl7j4AapitdLXg8inAOtyeqKx1tm+gJ4CcCWcoJWP6DVH2RMvLgH4Y/RuAIlroF5yzCW0dqZUBsPHeUBJOxTaTAJ92TOMnQUeIXzj5J51YnvxU4t8Dw7V5LoWEt3n5mbimv8pfr422O4YCIcUqs7R9ndYkimb74L4NdFELDJSVje23j8uCr5nzx2tPto6bHgh3DcNWaPocsZs0rwRjsVqpH+0bbZZzPEDIRaMd+5lxeizt0kcHcjQsFID3ytLiSbDfoMgvuFD3/IU8gSB819XoQYL17oJ5X9cIFXEyuQ+n4QWNDV3FKX/w6cfan3D0Uc5usP73xgGvfikvZtO3aDACaTc9X/8nQthWYfoS0hAM6vlTPrSqyh2BP3SrIvkJZHPmbOLG4DgkmnAd5fULoa3p05gya3yWQSphP0X6uPoD7V+otorXDAiR1f1wWczO3KLPRLflo7kxrHSDaqq+bJN86+iTsbnJzGgMXuVZ5xV5PbCCWo3MhnOyxV+GpYexYGQbWvxfO57/VL2hTO+E0BzB1FKnki3av/rtQEYf56j0sMnWJXTzpQSfkFbnnA9tvwCX7bEfHrSZ6bgh7qhbUm0FJw1Pv47u1bNX8/+739+70eqDCD5OB0fxK6YxAsTzoKT6wL++m6BCUAy5InzDF8x+ThKDvjPE3pVckD6qqOVEM5Ud97f2uvJuzoAYF/I1DWV0qctMkNuM/awHcw2IY0BtLM4ab52fZ3wpeXIyS60zMbMIYEzMezbtD1YTmmMOn7ghtjbCDRv8TdXtinO1VZbohdNxYBKPLaHraUGunrkwar9Ma2L6iqQbGFEtWFc1ERgeovJOXxpgZs+Cu4r8LT7XQQf1oXFgu0EUMqiB1Mi5s/D5EsxpAiZHYhHvZgwMEebpD2CYXYvTkujs/sZLPIk8t+VN+5X919D1BP1cw8H9+SWy3KxUCbgRJjj782KPMg317UNrYbpFcJgr2+1CQsI3ZPT8Xw32siVmi3R4URrfH/PgdjgeSDLe8dIrNZvBYN6OHOvGX1j0KicpIJtjDI6XZwN/kfvsYCmI8K8yFTsbI4Twr8aFNJ/n+yck0uJa42/7ehxERZ1Cv88phkTgIcQGkvGm4dtOHkaKgptJZMgDZqPN0nivw5A6erotKr0v3C76E4SF2e1qhKTELwnLhUPuWmV5yGVKDCyJv8wQS2aXuycBJ+GvjmcUBhQk4qetJU/rMHB25cpMYpiaXA2P2UOEDC6h1ch6SclW9uxczPDmPcZATti0GOaJ+93Rm4fvacZrMBY8rjrF2t+m/QwVvP/3I0LiLnrwAl0OYXQXDOy20kIhuymJUJIkN9bUEAl9CdeGLcIRNEtWmaLZO+jWN6IPNwG3s3VtcOkMJchO7bptcHplzAl6c/QnG3Ar/qfmnJwPkcObKDPzWy4bSwF2GYFAl6Ni53YNmJqGA7QKBvs4o5+WTDmU7Xz/GK7ErLmyoSubbx+PlVPivJF1kL9VcIUtn+B+0z827plDMQwWaokzKV0wYEHdyL1b9edSSBxt4jtiW0WJqdkNk56+pqXRHYUjD80VM7CI4HuojFcckHg2Dd1BLrxlio3TDDHoAfe3rw3ETPfKuD0nTm0aRvJ1Bv+T1OFhyWFTlU7w+sI2CeM0JCzMgenAR2qJUmsNeS2LSDyW3zOcvbu7lF6Fr3zvHWeCI44ETWxV72N44vDaTrKzsrmKB5/Q5wVa0fcTV1P48MEKX6QQARjdUtW44+PVxFFCTuElRNCgO+ZeUyf5caRLchwnTNKM0xNuq7zM+xVmgwglslhue2ciWTF+XbQgfeDXwrrDRyVk/KVEN+iSO3rRB7wcm9NDnmHK8oPl9fkXadGCQeeovVUfmzgn2+VB20S7aWoKfdsoc2Dexxtte3yYdvadcafuf7UMKoBp7AxWs84N1tKPT7WGhGV7zeUkk/FuFfmm521i+uhMcC8pTbBc6D1o09Cp18K7Kask9rbH6yu2A+1aJXVEBsYJkVAaxoo+kGQlkknrVhqYKRd8bZfn0MmGur+lc8bwKcBLBKMLqiIqBV+YkLs7/Q2VIUkPBsp+DDgdbmwfP8wNxexgCOFgMZXWbWkFgk9myGfVExVecMe9mOj1x/B7L4yOHSQI7yPzlNJuK7OUpZx9BetVmpbOepznbjv7jULbSe+u3hKABbSTocKIdOsjryBU4mWnfCWb8CzbLgJ0t5DSnsdi/IijwvnamXDvyjI/kzBKWCwQ4VHw1i7vN3SeDVFBxXfRsdLL7bRnyAhcscA4YEH4B2ciKaXnnOUdA5nmWf5O8iPO4VsgXtSTywn1tFegGrPIQj6RrI2dgDzq2tpVuV0/CWwtj41K/JDH0IXrthR7KrWbOlUGAWQdeg7S1HXK8ij3Gi9qvhBqae8U5zgIGeyvFgRUN09UuWiycLS8iRQFz/jKo7c/uY8S+3KyhktgxGd09H9euckzpZTrgXPb7Q6tcULtTP7Gthn05DNn5oAgTWhKbXH87k0y6yJC5ganjvRfbo7Mly2gkfw1T6cl5Q7qGjWvxqgX1jqjOPCecl9Gv/e4bNTewNFf+V+9NHw9Hf+gMXqTLXtERUeFiiK7CRlmWKlBRyeUA10KbbKFr5e7rioF+5tBDIDGS1fFp7IOgRCmbS/VOTwIwR63K8VIP3hCcm5icN3dAaH7H0kxkga7rin8266/nqJhuq/7X6MaHFCdWt2qn6EsgIcfKWl0OlO5BsOyI4/4Zxs2pKWIB+BGfJUEV9CLGjULQrftMb4ySwhLtj1n0FOSihBagaxPnwxmLtNdhtZT7Nl8GxQnPj8SiAlRkhSvGgK4Ujums7iljHRXolpg6ouoxpV6mMHcd4gMCN6eoIFYYG54eVINJgfYIficgoiR1/moeyrjvhi98tFIkRLvKIJYp8xtVrf3hjs3wKNbxdItUCur2NWnLzDtsroF3F2sJ8bOjxLIOBE1Vyz42U+nRFQLM2lP3TBXyXI/5XTY5nNDJ1sZHCeZ3jOr+40BjetpmgFcdgWD3/hM8OKhgKADZ/8smqSzwvUmPqLn39e7pUDSzQtltUy4g7FHD/O7UQVrYj66VE3fktsRsX96Phw2B3vaEggW6MDn5Y4XCbrlUC+p20prdeQJMsN6XjRrrRQ4uF7/+aSD7Z6f15KhaihhxT+cpZvVHJtCl60MY3DlayRwniqKqrol9cic2+RQVHD+izD5LfS9HJk4MEcyktH6iHhOAUKGe6EuSPxZdwx5WpcuB3ucmmLSsqSIvs9656PNDmlaBu+ud6GOYOhTewS2MjUNJWlTuvfnnGa7i/df49HDO32rFfj935nUZYp9Q+ypMXxQDU2SpIcLGR3qu4kYpyuArGilKBDSnR5vOJCnGQirydcXtk8kTVuqsI1h5dptP/b9rW1BMP4MZSbaQejFhUhP6jkNSDqmiKmX58ZMF7HFnL9FwdbOWkeX2ORw/8QZ6dqUVY9n5sAdD18k64cAG+xkgdrMis4GNXN3mdi4RjuuPwClDK/f7gUBT2XE/s9eBVe4TBzJXqAcEfmrSTdtbjoi2iHn77ew5kiWHBuY/SSVNwcgd8FQncBXrycZA72rFSl119mw/ckOXSuxvH+Up7ZPSKBEcQN7KdD5tPGtHPXcnAp46iCybgpwmBIelTVjYk+rweEkhJRb+jhJPbs/zSL+xb/2HJ/pU2qUNrr1Hi+cZqXZFAfU63S7VS2FFDMdk4W8fMsqrzBvNna7GAUW7KWWL/uyVfNNbA7p2kVe8stu9r7U/1So6wD0Zh7s3tVYZwpYLSWwvHmVEddwOdw9CEPO/Z+linpIh0n2OQsv7QTt3fxT2PQupU1wAKehBXkDQbOzPw0k5H8rfKSI06Pm0QMSasLm8Sv4WL+JrQmPzT4jkV6MltsLv5K5b4GIw9m+bXzB4hoV9eEXaPrWAh7NhBWJbIeN4J6uROmG1WH6VHm5+CiDJB3hTPmF+EojWlisU0pgKFt3IsZI9wO/B4eF9nKvq5K/3Q8MCIKdrVg7EFHl08OZ4ruDc6441fnsGlByO6vmJsm2NgqivD0L6h+MwLhlSziG0UmMLrqJBfnwguSBAEjiagqqtOUDgVbaJnYy5YUolo3g9mOGhqLDRVl+txF4U6dEeE4X96ltcwcEup5wImEBI0W/It5c/Lqkx+5YXP74NixDHqmfed8HKB2uSpaZcpm37mcXaAmaForr/YZ6FH+ZH6d3/LVB7TKS+RRADzhw8HB6hlV7lPnG/VEwMUL5e7sLr3PGxZKDxmik/Xc4/osWg+N8HGPjnTnoi6gvtxuhbFhozODkeKlQn7qKANnklwAU2rlZ0pr1OXxPxbqeE26IbACvukRrVWOrkC/ICfM7EJQsDqIEzcC5LmeOpW1RnqVRcbK0IU+w1YSGF8VrezZy4y9Dmk1pkBdsH3Psr3Padfv3OabBnKewRHjkeIc8NgQ327uhkA+MDlM6XUio85kDrZsTS/+QUKzMyIt+ZKofG+TpZzoGP3ivDi8FliJBmzQ6dy6GovjGqvcK4pzVo6+2zKE4C32n4gsHiDzDUQ7RsQnPHVukB9Ep3lI6tvpJVOGBrVHx9E+1OojtzfccMZ938WRqPDKW8o++04Fq2OuPr0p/YfQFLFhTRTJO9kBeefFK+/2RvoXOXO5+uSXelG7UCAjuJLejYSbEHlTbN/ENpY0kxlNFqWNBqMMRhso+9hT+EqJ8jfJL1XDBFrNPXmMML5wd/yTXNfyJ6r0gnLRojbCthYrgMs9vh5s0twN6W4k8jJWmiEFkzh/1usCXmOyQK//WaEeKm9d//OqnXXe1lW/T6x2nb/VRPY21a+lmoc8u6OM5c6UBay9aoarWcS/mWWGwTZScTCaaeZ8SD+DbamukVIIk1NVzch92lEsmGo80il3jkwAaIgU/A7q7XYRfMbCTVKQGL9DQ8iuNQQ/LYiM9DO9yDB6LAr3k+uqlYPU7dH46B99vWUJmHli56r4XoKz1RM7ngmN22YLSgJpclXkaflH/2RQdrD63DjtTs2yAqLC0vv6mHIHNZQh9sYTgg5Clv+mKBOkM7IVfwHPzj/J5ttWlkk+f0yEe/eN0eFOi5U4g1AUYju+MG/RWBv4Krrx69Pyjg2m25WlUp131KUXmcyjp1MQPxSBq5ptVtXPCRrleckzei3p9MFqUuXJc0wvAih6N5xIOjrx0lEYicwR0d495cfwYyOzMt5HkbonGAf4MzAMRMzoTODa3peK7+XAjdQLtTfdMtYDXUfkf7DBruREAG9dgYCsv0j+JhhRRc9gC3wJPgC8M2eWiZFkwKm1wRUeX3FD6qv3LEB1tI7NJuczwBG+Wv8iMjxUFbvn64zDFWuG7PuVLOjljc8hpGrSunpR6SsTxlv5IQr6VYQbFUjvTPsf/4POUsMyXYSesrpVrIa9YR4oUFV0ej0G7hJR4NyAaGbzKcovsExP7+y/PUV+dqfoxNVMr7BGJSsV/gYr1tgJLirAUgJa/HL8PEUDneltr+9ZExyxgxZtSyFYnqHAWK8KGqjSbS2xfd3EUFPXwKNJO1mBjtIGshB8GNXlBJqnXBUIVwYHjedH5RgiCS3TheSPOjPVI3eH8EZgReKXpbV3tBo1+27yOzsqRugkJtxU5aYLzOfk5RyIl/7os6w6pbbtC/ZGBk89Lu+nADQLVE3annTUoGfW2gD8AGJG293fm1dMS2KXG21Sk+yrvPOWLcCs/nQquv9ND96zMnmLUw1Lbg9HiyuAvAurxmVMIX+iQtCgmelmh3H7t+M3Uq5iF53lQjz0UmzUDnU+YolypZiUkbfHygWfFAAENjE5mgsuGAnqp1D4crW31xsmGhc/ZFpZF68Sx+CCgDq6hPoWSPUdodOMCMyNEQH9ztkQKzOzOTnDVw0TrIJkbWzsXXmnPDmd413ofCb4/iQeZXXrZzxh87HPKUqQmokn/lFPxdCMovwnzgAuw+2z4ooKbalz0uy5l8WTKuqnbTmy7YmnRkss1D0WjVGrAUSdIscB0LHxN+StHthuYFoG+bCCvHa4n6tFiKdw6To61CRGR724FUHuKth18zLfPVe0rGJUBRXjLSAhqdiOGhzVZ+YY3W2coyZQ3WWw1zbDaNrqEzI+Zq6Wi+FCOGH7zPbiyuhalBejJ7bB68T4YKL7FWmFDCbNq+tAvZ/bgkL9aufuu/jpx5SSKQPUSy86ZRSA/7LIiEOQNwubmGXEuCEXvzCLasoiZMsstRXOWVUt5YAqF0DZLgXZRwdBBvs3w8W/ncGhAL75L8DH7z7VGAhJUK2At5rc4JOPY+k8U/XY5Ia5/LAoJ0zFOiAcIDy+nm4rKu+9X8VtvTXR3EVSaNZlw2rS2KyTFnjWEqBXhoTilHF+Fzvucx1oFvGAoPGyz8YawKJ4w1lo13Q53fdI3CbLZ8w57tqcAgLyQqtiLmpc8kjWjrg6CzZw0cO6lsDk20VmuJL+5je5QojbRwRzF/dEJntnpgJudAGgBbKw5du/VzAojDKpO8QaAZeTcU8Th5feiejk+HN2YnU87oU5jamMgbfppXEYg27MEAO2LpZS9MV5AGwCGyNORy1+Z2B9lN03vOBvLsMdswRe/a0E2V5S2G+TPuMQyJwLdfYXOZWbmDTAHXGWHm+B+ZDoe4ie9bRzNfjGYj/N5Xyd+A/J9FjPfW9B1f5wCFjFklXx3Vav9caRvITMGutEwu3rl1n3jAqz+cFM3+B/zQKSiZRgiB6n3U+KKOJLx6IIIqkv21OtD1qsy9MQFcUqQUu3MeGciErJoI6PcjWU5Ne3Wx+2cQRPz58AiZtFxh/uMDs6HPpNoU7wMgPeL6mkLMQ2Vm05oFGzPYakgdOn4tbP/QDQiCWHQX5iUBCZ73GmiY4tNFbtACLKj/ZiVzCDZksaXFnKDuf0BnFe5yCFQzeswUztUomqVjkHNKPU4qsMJdvrw2xQHXpTK5vC7QPdTlGkrh+enbyZdJVnm37IIJU8CgMOzQA9KtCF5/FonWMQCdjGnaAl8BFNIEDJTsKXcM1djuLutOHivP7bIH5RUJ6n0uNoeaHL58T+lmupzIBtkVNfxQ8SGMO2TdcJ953PRr5QwvyQc3mNxYphinq4WDDaDTuOK5rLyUfOVDs0AQdcuxGkGwwfr9lGHFT8GOOAW0a3/9v3I8qRsgw3Rs4Fi/QmctCQxGQI/rOXux7TiSysdyhZZmQd0cHRnOtdxvIzeLPMcBMCyS/BIHGVe4JUkjt7C8d7GGc/97O+pSSOucfJInVLFAkUq00sSuda61TKCp2oboqfO7JedwVF8cw/hBDqfa3rDZyMrg0/EDP7E8ly4Ph1YFKa1Kmriu1KKBE7ivwuuRtvtqMkOgwrMf4qkJqPxQaUvyusJYd08bwreIN/3vApYYbWY1n+/PLvrR24pMbQZ/RcE0Hza9+KTb+ET1o7qsOR4fOBZhrovMuc1VfHT0TMuW/JB0ZQPOAkUroPJdyJDcB65COCwMxZo7rwMNPp7218bfuxrRNk7dYbwxh8sme9LV+DLGPP44Mo9f7eBbwY9fZKI0tby0nGZzTBNLxUrW/DSE85nEuUzieHztvjxuBWcib/WvgI8aT22o4+2ueiK/Dr3v7CuwXeeP2AZ4LT9FWZBA6aAlyxXFy/REvax4thgehByozjEg6ZWosgi3D7hqEzD0pH8U7u2BXfNaO8rOmRmMpWhYV8JYclLquQeEIX9nvJRgBJxXrRKul/h5nS6jCGUs/GNZg0XTpF44jHXlZjDKFI8H0Dd+iR9F0QTxmdqJxM0yAkj0c4jySHI3EwtAjBF9bALH/ZqM8v+aN4HW5ZB9RQsBDN2wg2P4keI7g9ATB1XY360HnKkAr1VrpHLoPoWTPESZTi6/oiFntvwD5rhZzazSl879WFq2T/ASE/6nszYWHVIeWh7IeIFt0FEzWm5lMj2aY3F1TNu98vjzbDXmWiP4kgR+94g1rlxeXTvZVcb8yo/iruJ4CGizzP7v9DLPGV4dDrSo7iofTvchw0bIJ6wWIQ7DPhnz7k79WYpgj+IvyytvVrfQtS5dFz1bjztv5ZYdwBUoZxaiIrHgJFvn1n+k7z9yuUf2CVphegLOJJJOi0QEv3QaGBET4RkY2EqX9pLWP8J5TvzVW8ZF7t1drFDFsamhhDBktMieeXqEJB+QZM9d5oKNRJ73uELp2jllnVEBj65lwrHu3z/vnr9/Yod5TARW9vEKrgIqX2I6Uui7oQdvTvKnwaxQc1HYOZnCVfaeQA0jq4n+aWkSu2Nr/I2MFZPqodgTUy8P/TwTeFp+btxNYyun59SU4fAS3Ac6wqUFMfes6b1sjRd9h1zZyf8Kf/sjEip1nnwnBjCXIx/iMG6XlUqOTlI9KLHVYfvgetZ2q+w8aXLE7SXqK1gTGex4rufwr5DNEgjAwGOafuaduaZnBq7sV0oYzD6OyH6voatETHXPZ03sRZkXiQSvietF2iK2q2e54UZy+rn+NpiUrp+/8koSe/wQnG7Qjt3OQ47/B9u2suMdEVuk347eMwCLGSYSC4KnBIdrmnTQE8VBq42S6lqEUIKV1ct9zR2q7bT1ohCUgn0Cxe+7RCoQisszwhrazpprMDAfEq/WFxkOLiYStFU+ciQZlNvAPI3mVtlCdcvFuW+S54mA49bDhQh9qudrFxU9NpofoVU2C9juNFyPKTWjAnC69SJjovaKJQ99DO7jGI635Sm9ZoppykQBC3unyiwe00DkwljI6cPY7CGzNwy4DVg1MJ2Ty1F3ZULqQND1eG3szL61EN8NvAkgnqChFHpP2IhI1zVrgezY+DmXtC9iRWcmLeVH2BDPxdpbEHAuJAiWh8r2pKAL5MNJR0p890zQyLyaCLeFu49iAz8RGfxOuQlavFERfGU5leKWKqcUr8LzHdSIsdnZSyYKWQ/DLo0ZtxVjewBxD+vhHmbS/aOT1/cZj4YUj7+YmGZKlgFsTpUfqUADIxxR5gK1GFG8Fu3stpYl+lFzGlLAS9MaSZCKSxhha4kOyT9YTIXgMfH2hqI4vtiBEYk0jPvjHsvd1A4nRNILq/6iKEvQZx2MhTk0LTxdTpaYSKmxkDSkWPeTbhRu5AGRlTglY66N74gTPzDasFhKQUWXfJg/ERDK0GJPuXroMsPOtVacCsQ08urNct2R+yi2XzagmtDBAGUDUNvh52gZpJJQBNEVPEkFVqpfMFUe2rDEAiSydxJyjKtVuOeD+pCY8uJU8qI3Y5x1vfYTklgcIpPA4tAw/dsuFFVFX83LCU5UJVikkPr9ADPeU78DhJ71hlnqWS9c/4NS74toZd4MbzSxJzW5YjRekGlyg2kmfhUozt7ba2qGuYTeZa7WF3yymSigu+Qt5eXdBOM2uKbCdJ1hc42jGgmOJUtm0L405K5KF0b1wVdWUfZCHkLUoMV1tQ4otvj3bzTj0IVbbcl7VpXUg2cbW8eucV4T89dFlR5z9IGp2Tc1oxm/Oa6XZikihlZ4LEr6OPL2TWm39c96x/zvtafZjHkxlmxmb3f8ah5nnrlsnJscFaGcrI+3r2kxQr8bHr8R43wb8wPXXKVhDL9ESxD7mMOJD8oZCT6tsFOFbCZTLBOTdFYdGZaHADy2kJKuS7yj+Dq9VQGxaLIJ3VtK1MWUFaW0DhRslZQTtjmIVWmH1UJIoZKBSCT7E0qeahxM/niLCKrZBXanG2hbxtye/CalwYWiDIDWcQhTTqd5vFEh6t2JUKxv9glMUI948obNDMrNPfdJ4HZlI4i2kK0XR35vNsQff9raqR42YLq3wRwMhVLAt28FC5Pcqbm46E8tqUNVZRE0vvzhLarq6Kf1ccji8/NQyB9i5cLA2LFRjW44STPMoazcbXzwW4YK/UfXI1mjFue1Qg/2dtViWwWKAc3p05pLeNMoZutW8QZCXpCf5Bpc5fig5BTBVJTUs/ejB8zfVue7gNcbN+fJRfTflUIaCo392IHKWZq9zyH0Q4OTvkon5Kh7s1/uFUlgytBzYOyHDCM4lmtAXr9P9kY1K+DiSHTpDhjDYTkuSyLOmEWJ+Bv1e/2PZEnYFtC6/t2rDZKsSisZeruvwL8E89QZd7Gx0NgDuNOYl11DgJdS+6jAVbgw0SO+wfNXJFWcC1m8zFX9HUPi50bSk1g+6RUmdsOQLm22gP5Zwe49BHatZ1nAgvZ0r6bnPX0hoa1nLGeGHdxP73iNJnweNCMGdHnI6D6eSnAK8b+acbHo6aqqWcbGf1JBXoqWp8sHtIPI3V8+0r2n9YcH+lKyHAzlnf2DD/yOr5/Gz1GQhIZ+VH5IcaBgD43WRxL0PpjVz3faw2ZFBvdBTSX1q+rT9l+izSdtg9h48cTDYCvnCTSGWr5bWLq6v+0vL98sa/unU6d5j5vtFKd+OI9DwDDwXq1mpz9rmikHzNAiE=
Variant 0
DifficultyLevel
525
Question
The daily high and low are measured in four ski resorts and recorded in the table below.
Ski Resort |
Low |
High |
Thredbo |
−1° |
6° |
Charlotte's Pass |
−5° |
1° |
Mount Hotham |
−2° |
3° |
Perisher |
−4° |
4° |
Which resort had a temperature range of 6 degrees?
Worked Solution
= High − Low
= 1 − (−5)
= 6°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
resort1 | |
lowtemp1 | |
hightemp1 | |
resort2 | |
lowtemp2 | |
hightemp2 | |
resort3 | |
lowtemp3 | |
hightemp3 | |
resort4 | |
lowtemp4 | |
hightemp4 | |
degree | |
hightemp | |
lowtemp | |
correctAnswer | |
Answers
U2FsdGVkX191HKJ0JGHmbY35Fr5eYHgndt02yjB4Epspp9cACwDPoCWKWOaCxm+JyYoK+3lP6XorskYvm1tjIkrCkWFOtKL7jnucZu51M0xtbrO0zf9GPHcxSfvlAMHVtGRQTNpkkbwQ50wMplG7BJS0VkOhHWkCZVHHpiNvH3bQt/KeiF8VTEFuqEdZ2oGUJCuG+8h8exAqIjaA8f9GmGEp3PwIlJel8MtIJupmYUfCNhB5mLDBujFcSpaGH+oa+byXEdaeq5egQCH8sEs2Ntom2asgXoNSqdk+OMHcqDEL8tzpZBkP/iJLCBubsWxPpROe8u28B/RRplqEBu9NdKZGdoLQPZj1RwRWHYMLDnPfgJK9eUHbm2FxB62OMT7mnmfSL1CGpdNs1mJpUA62CeNJ2ZLcy3WZq6ZNiUqaqN4YqmzJc/rxZ06zo8uDVPGoHrqD+JfgGge+0yCzDbEPPt7R5y4ui11lhD5OyeV7OobxxW614BlKYn9n0d9X/UyqEPb03y4NFsiLIp5MDTcHf5ED1VC9/keENfRoyavspUsch63cIcy9Z6VQdl2nEe0NXDuKKYxaXDuJXI9imsvm8PHEEfaF3JNawJsWqn5RxpH6x478ClGCEQGcqdsd1080PfZspoRMn4k4QcRFayopDX/83LDTHIO9KIyx+yuOoYL5nZe3mFSbwD0tawNeaQuwMOVZeqpgHqXTjZcNayp8U59VXKxK3p/YovVbEVd1Toc8cGRAzyykR90pM0ZszuUAbBeUnzMwJyciJdVubCXIsC9uFzniO9APCsrlEqqK8Lk65Pd90VoS6sEpA/S/h2xOvyrxuRqOo8s/ACh2SxK4M6xX3wRm6iDiN/BU6+4m0GsPZXvaETOf8VUBsNi1BJIZsM4y3MB8wEXDMOSkfB4TqD6ucSInZRpCInSmrgp9F2phlZPeQQsKb6JXCiusy5VuI2dJKl6EZlGklZVhgmbkdM4frzFPE9P0CrjbIrSlVz/l2JbI5tfB2mAJ1tPpXIffsW0mRTGbbK7jFmoX/XY2sk7pyAsF0ZlJpENOTaNG6fQyYk4AG116X0nvF12eUzJLZnzgCEWFfjEoV0yyfIReK6/wgTn9/rADprlFMs+UAlZcYXaObN60GaeRr7NbbMnc/PGI/BxZAv2awiLePjBO2kYJWNPj83kTCg9wEpEC2Ecaplt6VWjOiWahkjdjvIFntThek9cMhEYSa4sdpDiJ8lb3+dqBf9Nrxrpw7R7tCWT7coTgB4Bd7346eSSFGCGFUkfAFPE3536BbGPzRjtGddkcECYJ+dH5/WpRUs4suc5nsrGtt7evidOFqv3jtHx2rAhT83LqfZsmzNuEYOA8r81S0OiA425N7qUXXGAEL3yShz4510RcaZd8+giGKbMD3pWK/rO58dAwS5CNX1/TkEwgYgWDonBXJbfORc2MK8NJNr/Cj5OEgMQEA8AkucJ8I3O4U+pnKsf1r1nCwbgbB9HanCByVJCicQYeecYrgHFXBzDeAQWwd/9slLq9RxsB5gZKFtRAR+e7cknzsJxTtRT5oCqqfCcjqZJyYRm85ICvpDR9rIS+MKJKuh1of9qJkgEPlc0B7rofVtkxrl+0xki6RGxQ1YD61AXecqI0Mrr3CQbu6KzCQzgqj13rNmLF84ursBs7yFiLixT0iYJ8dwFLAKIp+PNmMojWaE6PbqFSk7BnR+hev6z7wzUBl+EXFLwG0fJfYaWg1Wt2upxHMUUmB7GEgLEug4vb8QgvxLnKmjWecktdrOJHTvq1/8ke4j8wH7IEi5QzNERhIt72sPTG0cCvgOAusSbEUTGYmjCYP7XZoDgMGVHbW7epkGBeP5iFEAHW99yXZwUITX1MtA2N0Ci3gqAnWkgQT4rWn/Urbq5m4wkbLOTG/2oLRBeLDqd2To/AoRZM9X5g8oLRoaBbKuAw4uDHCfsqnqG57ahcx8LiyRSQVD62ElVcunDJT+ER+eqm7+yPy2Ty4MEl02pDrSS3v+vEbPFcXAnGPTHaBPf3JJO1Zvix98CtBDJ9U6sTd/md/CcA+swOfIaMC/J0Q+h2NuKsKdoM573DjtokqrnT06nlacpG/CHZdXJ9awVat6RPyFB2r+JjobY2H2qNpcP7jRP12HTAZ/hK3nVoZh5VnbumBZY1N/NbBE4dbMvBRHNzjmz2tXFkXiY9cHKjVwODAi0Z1oH7eYaF5TCRJMtzLFpBLQ1NwrYTw9AvQmXVlaYdhFUdGTmRorOz44G+EUHXAsPKm/ltlEVrdI68uoaPuPlPHNh5ylL03HRhPscjoQaFgASakRRweBUnxzrqQDHUPUpvo0ST+E54GNIvy70uWMtYA8zVd/qqApBJuLV/cVcDomR+yc068KvYenMl/Mg68Wljh3i3Asm+Ky6JcW8dGPl6ZMVmyQJWQI8ksI6hUZfNFdB2eSpWAyjOyxS1Pbt0GjSrepRAxRtMLU9VWP4sPf/1jH5iywE1xWmJFDhL0ah5yxJmGzWkhNXoE8RdXcOxvgPEOStlZGsGbXK7opCec3qV5OtqYW6u2Gr8is5zeAFDt/vGyQnjYIHgihipBT04kHSAjur4VHjgM7Am3ggOEmqb0Dh0z6UV9xP5cScsMx7Njgo9bqF8d+p1zPBtNcywJgJ2X7dS4R7OSTjeGUP4fi7HOkZ+KslGSBldHyenABB+biowi6dF2Qt9VwoeGBn/wujIt168Zxq1rfbA+Sv6whXt9P8+JlRBMQ2wPTjku2X3mtNlxjKLHEYXsgj1Yf8GzNiv0MwoO1Rrw0xH3MdYIXXQ7YFS/qeQTS73YQU66fXNbu/hzQuqBw1kf7iQyfNBJPqYuE+Poran/H3wuTe/1Hu7ceJzyid0DcZiP8bFaiS+a3BvJ901Qm+Sa15Nw78Y0rShII+JzE1odJ/xUXHwXQUwSCxEviJbBI8FuqHPDeoi+EfDnE30nh4YW2AfrJVTJstN6YUBwxWz4zszyDgyECpLXit+VCbAlsYwR/SMQ4k29jXYK3sv5BRfe4TsfVYdiY1Eo4d+YL50tEawN7XE2wqB/6TjKxlL94DYagUIIJV1R9PFWqeBYhbbWLDZ5hOGvKeYgMQjf1nL+Lq6itAYNYtMomfBh1jh4OfzCVTuaGUQ1YSv3up7HZsZQz5Jvj0Hwvze++SAk9BKGKF49850MoTHjOlDQc57nPlPhqciBLUPyHelFH9MaFS7oE3bdn7kUsrG/FkLmPEVFR5uEcIdiSHCInz9J4o/QGtSEaQosQfVfBNJSMoGRH+isXEDM/YhrO4WaSLAoGiJRUNGHZGCBYYvSLsp6uUQ3Ym+sTVNJi7+72cTpxICrzTgOvyUkoWXz9flLnM8/HIRlsEDS6u9jfYy7o0FBBnvX5MeUnd840iKRGxarPJZlfTXUbshxHNtBNutx61zokoaaKBScn5q4YLAu+xMGejsj/YqEw0dfYYhrCucWWBy9p8yeYZeVcM2qPK1LsTeccRekMCQw3LzqWeqahdPG0Q4f4tZNH/boQxu2OoXW+ortNRyjjBtAP6z6i0PzJpJ8d4tPJNs2mZz9fsK2iUTHLh9QHvp6MR2vIQDRdkrDn/VF5mwMEtMzaZXcTFLkokhWzkrKRyf4xKLKGUvkbb7ykb1lGt2yUm+a3TsT4tB4ZGRmeMYPfYAxttfRiWsf49wadhApoc2AVdnYtxtUYCBs84w0P4L6PbKTUlT/2xl1iKA9FzjZYcrMHGPL460szz2yZw2gQWlgL+0+qMRUS9ytHFs8GzQyrs/XewHdZVZ/SJS0wB7qpuNZIlDhTQxjGswmIzJ1jU7e0pfVJSiu//lx15tgmcrYmITADdRrMK5Gr+pvTfL9HpZbYhr/HdfEPYGwAT/itK74oSR40RqEOYObvJ/Rg1d84luhh+dNVXK08JRSFdeTeIwByW8DU6CxeVTVJG7MghT3+iHw8sqyPDjy4oigy7VNmpH7nVzG59Po7DdAo5F3EFWWvbkYLcuNztTQ6Vy3FnO09d78g8nJ0+5VOctd9J2TyreTYUQsSmymNMMD4oY4QSjcWEN0tVQ4rcvsx9D9tEZeWTnuV7KgDHvEw/l5xFqtVsAW6TlN9GYLt7TaTxFfecYw6fP2G598VRh5f0FjJbRP6hnc2qDe17OxEO4WkztAVjp+CCtZnq/Elt7LTfXFKM9PyYTPaaoxr+M+LwNIeLwkJqCLDZU6Rn1camQ4xU99bqtAH+j1UES4Rvn5euXC5nAmlMkvpFBMcJzGxdeuoRdc484rO+90Js+rie/iQTiSxrpG5H56N6f6GMaUKHS68pfoS0maq5l141BisY+2h36IDanF0lPN03ZpM4dsZYjDBqGghK14p+vqwBGwI3NhbH1otN6o8xQrfXlH/+FTa2GDe+CtSL8EFRBk0GnqAqh9dZ8uhQIK/Fj1ZNnsRuWKV0c2YaiTpm7cgbo8FIHpZz+splbD6e43DYB0Jzb+nHj5o9WDmTSoVPZW47gxCcmXZXVA2+k1iJfIa0cFQw6o8Z5y6n0NCGaFMzz1VL7xJCekaTgBknNx/xZBRtL8zK8gjoXHtnD1diPT+2ib6EsuJlg4KDC55QkTPdQejY77AjFby0ZY0gDxVlLfR8e5k2R3OTBNrTLB+MBVLac8nwMjIwZtqrCM9E8xph/204/TOPnVLdXP0p7kNJaoNfcQH4iD5aYqqg4T/yFhBXV2hoAvxK8GwhbSs99UyzyKFnPE0xkDVrbJFZdRIPwaGDFVWlb1f+/vXN5Z514vjSbJbpJCj/+wlFnZbtl3gX3zUx1f0XZ2mdq2VAK0jktZbtc4KALrCn0RKcpDp6GWrXkzP2BIPO37dkaycnBXggnhHfkRIY2JMTuKKFFK7mvhFGEtdxO1ApaUy1jcTRnIhNUZwhsaweR9X+Nyi0wo1liLis3IH4mn3vlFUz+ongpXz1KVk0yrt5GO2Oc/ixjh5xErH+NLR7jkpfDPaTyzaMcf8IXaRqs2Xqf6GJZoCqzwnGORWZiWfAJYtaiHNi9g2iQDsvOnTjvWwY5SBNGb2yTuvGgHlNZ4qQh3Om2QZ/Usi6d3MTQSX+yGS+GW9bHl6nyl/dEPk9KxD+g0SwNWMmVEXkuhK/odlkHqRZwVyOYGfJTRoRZKMOl4JcxP754Q5Yyeq1ecRAs/c+L0TuuXXsURQDqbtZnx0QII8Wato8Un/2GDtPGFOcLM6waLcsrkOV1X8S7wdxZGdcKTKNzbvzUybGzC3CMP4caf2ORJjkuHUMM5porhl7gjmZgDEzrxGfOEbSUy8R4VcFAenUCTEUf9fhjGwxQV9Xzy1JIcxKw1P6e0qjj22CfvhC2ozjf7eTmf2Rpahdng3F1T9rQxmRvwIMP30tY17fRKoakgEqQIiHh35TgWMw4AOGwNc+vmrm6Td42NPtSyLCZrgR5ueSBLiLZ8QCEUiurnC3wJ5SOXDTI3HsYKs8ggak2/vHF+xiJc2UsxI8vbLwL4lvH5zIt9yifCtjqSoJ18bGZoADE5p+lC7hwXm2RlgUh0QAgC/rN7F0G3wnxvItUhKBa+AImD9iipVBDqWtwFRSTaqro+wy5ZH4CAmNmFFCkPo6bftH9x0VA6V6i/en9PYFw/OzFwg/fcDc6ZdENHulA6vS2ddJLVS8h+jS1r44q0B/6D9LRctGqouUgPrObPtHMp52olodk8nC0ZXzTnJlmvluLw65pVRKFoURclsdenswBEFCr+AcwFgF2fwMGimZTLUbaRoBCRQkmY9saVBmA2sEvFfW7eyPXORzbyKgR8l0G+QmK2kTWSQpVD/1iVBnaOVFH6yrPOAJNQqoPu1LqR09B0b609grkyxIysfCxxhXI7F2deLbkQ3X2ooDU3/pywA0lBHf2f5ODo5trUpYstK1Hft17pd1m5WIBwI2x+AIGrRY/79A8rYLZXsUV20Zx8v3qmUl5127YVUFfbTiAhb/3n7VfaxBJqhlHjr7t7IjEOEiG68KSz9V3eBc2c7eXR77O2qz6DrX9Vd3TI6b+koSjro7ZWcW6w+JISKhdsvQ2m13Oc21QKEnU+j1NdJkP7z0nobH9Y8DZQT9xzwHY+HKsPDR18JltqPLKbBZfr9nZll1+jHd4ytTXLmrLbzK8X0UM0Xo+OXQDhimPmMvw8zEUMjropSDVLDxlWVZuUrVx13pzGfN/WXDlc+E/WJk79udAObvf44siM0Iwt8yVP1iomvRG2ZfDgB7fhq2MrEUilOHt8KdwxVyfXkHoD3x1LeWWwaPF1AVXuHqcUtv4aWmvoWFivvVGpPKgsCdgoHJae9O4F+VYkNw1lHKWh1sPoTfr8A7qEG+0Rf0luv+iq6O1jHF+c5KZZuVmyhzKa9JhH9CB2e6j62E1IZQJlORPy/x6YWZIxZy3NUFr0MEzc/tR8jT22NVOvo02cGqZx8cKCl+XGlC/XoPuktVRDYm2Y9KVyCWeTOLyUWIKIFMlj+hGkNtAo8WL98KA5eMKcdgT0jSxFlDarhezbA3KQNG6drBf2owkpb225R4swNlFwq5hCSI6CJKnulQFgK54mAXP++sfRVySZZwQ6285ZdpzI2dUbk05wFb5ikJGJo54Q/SMQr2G+xAdcSKGjTtwuXjq2Ld5q4loYVlA9Eg8ry7tosO03PmPKN5c5C43duFuwwSc9j2VKda7Ky4vlpDSlc/gDTwfTH6pWlT4WHQFGzamsiAgfKyfHIKd0Mjh8vZi8rXaTJgxP7Xw1hcLDcyGWc89AlEcUiWjb7XbK+rBBsMjndFWkfsUWkwYSn7e270IoCzDP0TNiUACQwN3XRpY70v0xewWw0J9O9bsWqi/YhITLTxcYFzDtwJyQCWmemfW7w78pJ44E65qmboQijiwlhy5zQCzU0zvB7mHBTs4resJrfsoq0OwmV5JFTvtSFU7U1V6VXtWgEzPJVrvPtEk6HNdywPc0tfX0ff564w+2Xa7ZntOJgNXN67sQgWsQjdEfj9u9onBGQ+CXF9mdz20te8Ith5n6kHQ4aNv5K0yPbBcyo7u6iEbR0P9rHLOwE1RZD+Wv+Jz1cb7I79P9+Zc0haHbZlFfyJgCXgsSrS288h0F/u/JWOrvWQvImedW6UafvMMVLsCjTU7x5ujUXKn1/Qsn8eUO463NemJE/cY/Yhfd3M5UchPiqFA5X8Y0gBnE4xN1WAtvFNQIBoZIahvCFvTE9JNfcu8tsEt8/Rj5jm7c3tI87xcaOl8NW4pDuTEoSNw9/QJ+DhZCjiLW+iLNKJNUIWkC6b6YkAthh7gLMUkWPfYfYEn8Vjw/ZVcBmuZmyJB1uYuv5mA4FXuNS+DtaWPnr983uxiRLRSsmV7X+4wVv1tZkznzXm8e35qxSRV6JdD7sxcW0ZP+3lX2imewMf/sPrLrx4BCf9qAm5TlP4W85NqfBeb9xyCxNI5BSxXqh8RRIT/ej0FxaATbiUh+AJLhwcJFBfJg2IUxty5T6psSZyMA0+t5iwu/xjX68aRYQIv2e++BViC/OABOYUlTqkDwvRi1giRhsMnoerGPsfN1QdKi9Z43sqoHkVYCxZqmZmcWdfXI36K8HPfO7rtFlWU1Q/YVCGbqCTnt9Hzhtj0KeJGSMEWl1vqE8p1mDI30FAque19oooXzL9Wg023lRO3eH4eryg0nPP9ajbK6+vON9zl1hwI2HbK8/iUTmZer6ow3up1ye8mW0zA8nP1DCwxvCxVzuKRouziqa7vySDO86wQsTCd01Du+aPgrMXqxtHtEcCAU+jWA11lHMBWSYzXwpvSG3NaJC4kktJCuGFUB7xSVn0gzknwWZQ36pvwdHqGAQw5mijuf0cOMvBOlzdfIP3oz6xQH19yIQTOgHQO+bRCMmkMp2fFERE42Bmv5Ph4XqoE6LtBh0MRtEYSZ8it5VzyCizAiF6+dqRhG+YLuU4umK6qei1rANAN6BgIL8QOknG5o4g1lv7K/RWht3SPGxLuQH2ihImsrFCDzJO5dBUMAATTaq+Xw53tgOHISengsC72gAwKTAUCnpuvPVZlEulCIdq64TYntIICoZijtkmJFVt91eVuEEYKHcjfobEbMAGGWdbGrnwP5GHJbVTHc9SMS5hvD5D3YhFN03t2EoPtK/nguHnvA7UGBMNK5GyBORpn01KyiYN8GlKiYYIq3rC7b6doZc41KF/Q4PoGfr0XpQ6Q9lLCSTqpr2NTOouQe5XghV1U7C67UMvU7TaZPbsarwt45guBCwm3RVTbW6zgcN/T0dF0/YqpmMPKCGd78d8L9zg0wY7H29e6+0fF2V31l44p8j76cDPdWD8TYd4aYM/Sk3t90rhe1gNyQZYkDSkmyZ2XK9T5V7p3wZzvwXW2dVTXV/QQiCotW1NgA1qI5aNkHVtzBFOjwAwLuGIhXoZceW2beqpBPFGDIktCsCIKToFrOdhdAjEXnMlAjQ1Iti2gaNlG8zD7qX2BukVjBxQl1tpP4HbI2CrXNZVNpNqWrDCWJixUGeHqoI0UR1pOBFtKtuOUajzZ96sNIAGZzz3h1jfpCVPrY5m5yQPT/inQCqwh6R1Ngp5ZQ2b7a/iFq3fGdD6KWcqJPQqXGYYPOlxIhTmXhXru/5fUcHkssE3qTvBVk74b6Sh2p1WwNfniACQ2KO+wUJY38QewLVPCT9zbdWbAvgfVE4HnHISwZSwq73mX5A3FqLSN4n3KPnpm8mid5wg+9Zt0pYAoYWEs4eHJuzG68MtupELzFgEBoRwdooOon/rEROSGrusmwU/WoPg2mRGnnSiZAD4TC/budrtxeciMPYddttzwZ50c2O1Vd8b2tOgfYb4fYwduLpgZ9OXqOOd4sDhlzxoZqkSL7QV4EblHUKKIZIeHfoYvXijtOl8pLMdBqskPK8fpUFy8o7bE5Q2UeNwtoZn2z2trUnzs3v9Mo/IYkB7CAKZHvTUMtFXlKlZwu7tJCBgQei7+wJ+a0g05RATfT/IvgtSWw/aE0+em4zOEOkT17xKhzQyZZk463kdQSuTDN/+d0yfmVvBSXPoIiE7UCUMv3natvLuXJuvb0tpw9vQk74YVXA7afS8JAf4MBwkWgqYHoA3BbRyXCw15+ARlVfgIyavF+3478UgIYD40zryNYs1Zg54L9EDVWGC2x07+CZVTntXhxx78Bj3BpkWjM1nFFrGpa0PufzcMhrLcZ/us5WM7YMZX9NxY6thqFauNm6KRebiQDnXxHduec5NtsN/IuiG7p+HqJWQqiJ8EApi48vKPAjRE/Pg4hfIwaBAOyn3UjpDpPtufrWvb1szJOHZ97JYQSwJslFd5YmirkjnpdnL1IoDaq6/YsnItob+SeulA/VrvQ24B3h0S1F9usmZNVoxt/U6n4RhtrHRAK3sUUYHZjoxRyVOSyWLR95UsdlT0MVFfBtDeQtcp8LWu1TddyFtx3zhTo8tdTK07BESUi8D1bKxCm7pyue3AGrk2NiVuo3uGhXC7YIxUSPb3+SD/1HlEN7E2MxhfHaU9VhOpF60c4KMjLHUB8rczrkzsTX4bC1IlMJ5uxIG574nT4wzbXXiNzfh4vTWXXWnGnxVGsjqlPMiN08Kz7eSHluMZs2/wxYQCvmzbntnEi6NUXExmg4O8/mMCRdNPokZOSfC9zXYN1FNohmmcJM5cplCQ73EZZZpSzkbnuzrwUn/Hapj7APX3gd/WyUFMuVds/GCftLVGWCnQXcWj6h5Emr5VYfOmRJerO4uQCeG3wPRliqgYyfXRkCTFvRD7ekNp9ytfrgzIHVwgsIPJqE3L/OeDVjqNE72jDAvKva4FkTrzTWMFIxUNYlzEcBuYEbGFsJWxb17zkE8yVdTCcXeu8XxOq1L4gRtRXd9wK0zCqMsXOzpL+/w4iu579LV0jXadl/zpOYRohvqmiiyZkiUtrmH9cwWvi30wn4hM51P+ZjWW2NI7oiBj2WMZ+2kHlNmDKRZBKzVN0ZPSmqpvFfxc5OjNiDcq/RLafwFb4t6emet681vZ9OXVbBY8ljgE1z5VwY9oeepb8QDZoY3TenNY5WNLIyxCG1F4rQH7UE+6NAS1KhbA037qMirsawUZajqTiXssC6teHLGQQMwjgM0Bn3BmoJ08As5XIKEJFTuAbVTVxlun8rRoXvTaLVFEShwfXDj6HeOjrPZDeCd+Fb7YHhIDRtDTEN/OtzCXJxYUE17SNCdgiUCkNaPBjGSyb39cxZvV1f/2+BJpJ4cSzIpx0vQIS+/K/VhhFIEZdBRJEB/jrM0h+KEUf+em8qz7O6MNmEhH55Qpany1qG2fOdqcN7fBNc6lQc6toSyMZI7KIaR7JKX6Qt9RN7kmpCuTgH22nDZJsEEZIgWdeROGicBg2V8AoV7dpWGrY55T1Jov2fND/kdy9HInwQy61czLoc2lDggyDWZ8CRG0nP+yA/UyU3iE5sGPGYQGP1ZflkAm0rnMJvrraxH9AFoIVGHgFA==
Variant 1
DifficultyLevel
525
Question
The daily high and low are measured in four ski resorts and recorded in the table below.
Ski Resort |
Low |
High |
Crackenback |
−2° |
4° |
Perisher |
−5° |
5° |
Mount Hotham |
−3° |
2° |
Thredbo |
−5° |
1° |
Which resort had a temperature range of 5 degrees?
Worked Solution
= High − Low
= 2 − (−3)
= 5°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
resort1 | |
lowtemp1 | |
hightemp1 | |
resort2 | |
lowtemp2 | |
hightemp2 | |
resort3 | |
lowtemp3 | |
hightemp3 | |
resort4 | |
lowtemp4 | |
hightemp4 | |
degree | |
hightemp | |
lowtemp | |
correctAnswer | |
Answers
U2FsdGVkX192Xb/fQsFoLlPJ44rlgCnhZgGCmek5+Lwq7o+WlmPFkqsHGj7IDcrKp5vI4xPQ3JXdqqNCRe0EcPiXFAj2nGUIklnFRK70MrPhua6Nhc55JhefxDO2E3b+vQ4X01wqNWsROzzcitw3mDUSdVXeJTUVW/2zcS/pzu96uaWTTp+ZXobooW5fw6qragcvFKBQVcBOTMDZnotW0xYucVwfc3/CQrnrL2nTDdwjXJ23xw1vKobe5JXWnj2TSCP0dgSs1zQGpR4+8mL+6Osg+uXmGc2RNjLXQZAQpIVJ3HStMjAw84xt0OL6uf7xlQKt/+l+1LHT27gmL7dBXMDkNOx1OIBuLoJBNjCw5jLFljaMbOal0Fq8PvQNwcHemHmYOm2RfzX5sdLwlpzS1lYMk0xNrcbrfIwTmvcEbuTofB3vm2W+6gWAjczC4CmILt7yf07cCNHfHA1Zafp2fSYfS16Hsnoa715oz5n9Y+R1J9egA2wLYct6Ivw9VWkPQ8RMzpaUYLePrIMUG5YzBMup/d0Kvm62FcuUftYejP1tCx4rAoD1HFoH3rWZrWzcK8OVRtiPitz4o3A3Q9SRsC80UhAP5oICdGiLdBwqD9G0E+1ovvdHnQu5z+EN1mhW1/CJsgzvcJHO05mjLu6u+BK2IyRaU7ftiH1GFnhZ9M3nkpGy8jHRwFWRHb6mvs7mEf0MBAOjWA62hsuJkExFxP6q+8E9V9iceQmsIGt5gIkPN5TsB0n4pvaTd2RptW6ma1JTiMY3HuEsCmlegpyFiX7lPXqQ25QKP7Z1UDhldvwXr0xuJpp+29msuA6pIfyhkwEflUkmoJjhM3jv4AncN0q+k4APxQWXPa0gtKimpMaTzRgt512+5JE2d8W9c2mvaDG9Hq6SypfaBN9+b5kj7+oo2PWCiBPYfJOe71+YYIY9PD0gGsie7G8zjqN8elZ3DQaXux8BZ9eFriz7q1WaV9QDf3sh3hWkQodr6MNHXznTPW0EBwGYpcTec7psNMGmz/RzvVYh/qbArodrsg+AgISds6uuIWQoUECbwGFxpG6O80LLKFvN7n/rWFantc09PocOIqCVJ+QjYu4bzNMqt74InSY7CRhDGSBiEd1CRuqcvQr/Zu3hHfl6kkaYLNE4QeHJP/azOOGBAsp1W76ZFPqvxkrjNAaokQhTAuLV7Ord3/iADMJ2W+6RhBenBm3IVvWdHi3iaOApMx6zVBROjoesZQUjbVx95VHoMOP4lzF9ZtH9OQr2g4uJUZzCAev+OO6JDXuCuclMUnt94+iCEzxaER31ou4TtP5SIv3MF6a9zGXcri5zxTNi7sXmUdeVG5RaLZO6HqrZnZqciMT0I6LH+vKqE576XunNux3YloylH+zYshOHnjR4D6qpHkVVvgxuJLNvAGKhh9BagVV0hZ2LCVdHutHp5+cKINnQF4aUvHtCyV64inxS+UELPK5LRmDTXgPbsSNPa+zqD/2Mw3wfDyAE1hbgtGgZPNnWQmFtts22g71TlMczQka1JXtycW/5pNgFWN7tj3O+5+9IUroVqqM8sE96T/+bwICYe/hmb0JNmT5zrkSrwIBueEwHctygRCONA+L4DY1L8fPZXNm/EaZmS6oGrDkTpceIBdCPbsEH1+TWRcDgUVkDyuE3vkDIZyEwiX11he4YJnsaEElwirVvEwJrLIkAfta8UFI/hDNVTjAOzWDojVKBQ+mrnHi/OnWRjn9WhNWiTsg9ZItz+ysYlVI7DO9CL76+tMBlOXqDdxGuMagqrBgPIJ0oDDXXcpxHPLXqkrPPXMf+LZ13xZueFMZlNKnouO1L8PCpa7FjrVbFoZ/j516YQ+37x7q6mw0Y3s+eh0Uoy+znbiBPsg9UH6PIEUGhF6oNNfV0W86UkJtmiDsOLXV2ydaycwekX6yfbv4csl9JuDPO2MNcuGxfio4KkiuzaT6U+T/mx3z/AtIIchUUXnWlwZvOSq9G9szS0YmKS1LAZD6xjbVxLedpwNKrKW4N2xoCMwaaGLMz4cTNJO+qJTQDZHni+qotxeZjfcSbLshudtfogNNOuQldTC9df9xAQYRBqgxpLzhiSCmQBtsZl74PmmOVnvC82TS7xHFgh+9fldLpQ8oSwTzVcG6S6CYu+4hRV19RjCS7jENEfNE5mN1mxBJGBDlTIbz6lVYRTrLeAKJiaOSzQ/EVvqwa3V2WXQt1IvwpI1UgMBfE8M296dvGZNWlRqS4odrgOBSB+uSr0an6Tw/YNQx45nJDUc4klH3u8JoDUPjEVYNbYVRBmtL86XPXIvTZVKQPg2AgZjN5qNT17aEU1CS1RqdmwiAJeZeaB3z+Ydr4FzCP7iLM9hcRzraEzmp9ciU5PGuGZcaMYRHah0vGiam11elYgnnqzsAQcA1uF/jhE03JLWhyQY3pcu1XsD5QRBCvd/fF+KPjcJw3vO4fKEmXSk4LVpRmFTqxYguXBHSFtoG7QnL8hyPxrrrvP1sXoE0t+OHrFKbCn2U740BPb7JWRd+I2K6OscBvRcmLnOet52YX/3287PgLt9gnCRFPk555cNranEGALSdCoIHvABJ7mK4n9amHa+dIrUb/eHMfv5P/yerjpBrFxM2ZjFkC7g1+T70TwmPJAUF0/pAJRsSJfUEm9dYxFTz5/B+ioylTwNobewrL7fxL1ZCXTKNOUouG9taEulX/cA8MV/6NnYNsmFNAUDaZxJsl5jttRAAl8hsezskKo9oB1JxyPZ5g3L+jW5zAkIqAjQVUN6BPE7xA+1R49qLT/fenPKNZyCcegenLfMXCHnt8XJytCgKK5f8XrcAdTIvCpk+BkM2uBQEVdftQ5RHYePPS8JcajtEnQcTBiHZ16XLg0xaDnyC3tJXMJCNARySMapfJIuoSaW7oxgC+c21N0r+Uu3cpHKhyC4DpsSlJO235L7Pgco+tt8AJ3P/NjIoT/S1lP4H2emP94WkPJuO5XoHd0OQZdaNOe3l+xvMr6QGHp3hoInI5buTQTzdDz5Fc+8xB2BUs9HqE+NKMKJ7r7zZe5Wr9HlNYOyBkUCCHuDESkdkj72/ZKA+as0jJBzpOovJ3HIPdkLUfXqAkTg/7ZA7wRnCrpChf/9TTCUz4Ijz/RBfYQnSwucKLRzzCE4e4mEFkrMMIwaSefSU0032ffhKsoz6MwlxY1mbFMtBrU6f2I/pytAosRNOfJsAMkBK/RqSYgYsZSHQP1wQ5DNdV9tTdONV3nsOgLgXWW5TQf6i84qdwRmheix7FQuCj/4pNiQc4nD72+F1f2HVNqUE0fehRUIthwwAtWAm8kebNko8kuvSnLazfg0bVAYVJS3J6ls1rgI7E60pMiH6go+s3IlAQDyX8UiYETiXGJ+YQ8mgMHJCZIIBRCpv4DRsiTGFYh6xe5Lqx/4qa/+iJZkAWFCNx+4AAkRzB8YSJTaQKEQVYukCg9QIzqTbiTifJU2LHqJzqeFa2S00Q7lRahzceO3bm5H7gmcOPVPaloj8eC228tD/HkPLrjx/rdkPFsTA225KPuqW94KEz2IKK1ztVdL/vaFQD3+PsrFdZedU5jASwCvtyLQtDexZsRcFJZ0Xrnz5vl5vBOL5KegWniY1fPPIutBsR+pnkjgLgAqfSW5rNgWR1jHOuagDKF4cszjas/9D4aaWXJQ8aHc0hpO9/RhClCbMbgFIME2057wygIk+tzpCR75odOPyQtKMhpOUHxd8eYkxNkfgulxLsl9WQMT7Bg4gJTEprTORt11Zh3LLnV2sSZmv8eWuWTKttXJvqJ8VgKSHvFyzNFa/ejZ+d9W8FURygGSTYOgvJk10cHXhKNkGyAFYDYI56fMmxKfstVZNAe+0JTjsUhqrW4cT2mu0YHUjN2CpjhnEznK0Uo2WXKp/qgfTohh7Tuo0cxpuIf+s0DjrlSK1piqckDsIt+H9MSfMgG1aok/6x09mudrruKmLwb9qAImQhZPSmoF/b96Q9S6G55zguHerl5bl7cHUNr1LMslWV+nLVadb+coGVjQxX0Zjs6fUzEaILGAhU/J8EOMGhh3/+YQ+vbk7nWxhZ0PA0yjsOPVXwWK6VbktnkpXlMGjcYIcN6yk2iaQLSBzeRYGWYrwqOPZeZ53PGA4Nyi7RGc/oAjWLtA98y9sR9GPzGUXu52N75t+gtTE5ZqYuLZcfkDEkafTz+CT4QzTr83qZ9uLZCoNc/aDXSvr4p/Q9D9uNyzoUDTq+2GgerPnTeyCfy6gZZOukxx6wCj4RZQB2URM08VNkOx94cUtW2/NNYLKVFLqtT447ylORuXW/6LM9jOXA+UewM/bg5J0IT7x74Cy0PIE4dvn8a/ushn7IwN49s2K4u9mXbcGC2PpXQfe3jXeqtVc/wwKwiHooIyrlkCSeg7phCij7gYeq1PbXaG9yQJkypsqN7CrD6zaSUTVxIS2sf/VqLg5zXO0uNgLcBIeyHRlsHgG3XGBHzgtNOtUtHU57cs8M4xC56Uu2u6gLr8XHOzLaakgfsyUhvEiGqP09lFudb8Pz+fPK3e1ewB0XT0mG0D62UWaqGf+a0ZYvm0jISQfegPyOA8UTndXHYipfS/Q1v07U30ww2ESplMoriD+lKiaE1zbuuHq9/yBoB9hrhi+H86vRImCUUTv9Yx63DmdqqdZPETfwxENaETMOwicaCXCckn45eDvOY5ujG+WswfQqK7yPlTZVUtMBxmlxQRH3MWMS5SLerIjdbK/pYdPL8tB02PD9Sxo6GLPultRhhBL+hJE7+EqdfmHwYn2uONr5bGK3zlm2b/d0F9WzMVyHTVLO6M2ydg8M/U+bVSysDcuhQKH8c/ZXO89fi8tta6k1tSs+iN3fvzCjjCDqe3nb8moKb2zK6wFrdG+/cWP0ePbeNg9S3zhRzw9kvNHdtfqoWMPWL+2w9gCQ3eNsErTnzbk4s3K7Guo1CcwRPWXBcDyuTTXJoz4ndNdyNXrjSLFtrlKoNZmULF/ccnP3TUemCc5RRDJ0GBaDEtQzCQjeW2kgDxZayrLPv/Ukmx/iELuqmzpitLIiLzPrDYj1nGTyCyaufOb8VA6DyXiVxtxzpjpVQD4yWjD6zb4jRbTpfBVpt8eLvk5LNIg+j1x+0+bxOXuiL2fRQSMD12f1mefRO6teM5uTiXeJp6TWQ38enk+oT9p9oxveDNPfBu/wCTO007xMozCSrTO7lxzeYMJtBk1k3/LRDBWtGMaVECr38DHKCebTJaOduQ65szaHwBLKjb0ebmGtq1EISUcwaGhwx3At2GXJMiOzqwvv0iPMWpK9y8b3CcnyuQ3LeZdkenWjldgXcmSNwLIq77C3ASu6x4ItL0KU6AKnisVGBxkEmX0HU4eIS86UPMVGZZu6C6Sw9eZN1P0TncZ+kQrcuNP3r1Yjr2y4o6A/tf+0aszfg3DxXvzbmESfvAiaPKNHjItmARPIwGVYqX/6/FFdODzDek1xcs01ruSbZdl8hvkekkM5Oa8eWlTAKhogg0qf2I/jo5Y6yslPru4sJUjRJW3qZJ2wkvApbAZmEzc+JH1HxLMW5X7wQb/MTyOXNOfQB5zf5R8zY71+FOhwgE/8Bb9NP2Ogmp92KrUVlUtA+9AvYAK5Tj0/0iK4dFdYfVI2dMYvmCJBS31jGFobdP48t5NHKi38d+VZNUurV32yLkZS1ir7sCAw2uWVuovb6ohAJoudbrefcA3ctgPrfwwZTjSHRUYmj7Tc06pIL9RHFTGCyuVKJzrMrStWkPTflj3MBw+XSJwtshhUyxqRVw7Fj0j1UKa9PkZyhdvz2OBZ+zf2Jdo8X0AGzwaIUxahqzMfKO7Y+Sa6iXQXbrLa3/bz+8Q6HaoYRrLcGZNgSYzIvnU6HwHNfKY1yhMikyQk8koOiLgKuqOIMlrTAPLVpxXst+Dba3iwbb/YgkhFMJPHDQDxGlw1JNTl1di83bdX2jZTOv5/uZIMtfvGhmPG4hxtNP94VT3/VTawzBFeMLSQ0E06lUbCNwSZFpqUsMJ5/FeouOz4qP+cjiCgAMccHaLRewa5u/jQOhJ8rW+rvIHZ2OsXX/he88kuCDPuQvAKAHaQylWoLJA+NiJwBkNysb7Pn7NAuYwPlEpZERznOaMPWEV+cCkUyi+VlX90vts/iJT2rhS1EgoXr/TFKktXxWRyb6cjQCXGf5ik+Ckc3NHooZB3n28mKpdQMuR/kKKaJp0/E9bhZFreCUWe8sl10fJ8MqDkx88OPYygZ4b36rlQyyzN3ibc/J5ZHetwryiRkskdZGVle962Q2qM4fwxEajBE9aRNKRAiGsnIG/mjW400BflESWGO7ow5wg5zhNOTfz028u3LSX5POlIx/ud0upBbxNXfwL5Oh32YiLv2cK5SLTSTJcmprZXxsl879POeMF/JkVSM1lt0go1cCiH2RjqwKNrbyoOx6oTCPlvwcVxuQ72ZJt8qD0+EnAzH1yLaEMi/tolnW2HBXUEWAeqYn3wQIaLZW9u8QHIf3bjAq1TbjhJ/YHTPrFE+AZB+JBdHaXjMxjarz/ZE6FV42CiQI+oULIvaFEkvr03ne4Kzt2DZ1D6IG6ESKLPogcfo5AuISeSFFiafKUH7UtrHsY0v5j6Nhj+GMrK5n3AU8Bt0iK3Z2K7EPAVkdcGNxwvTuQXyFog+HVKifUum+5yZe0O7++9p1NTQsyHC68lO/X44hHbi7rt0sxKrOomBPzccekrooldK5MWKzEymetRlZhd9owy5e+XxCH5gnCY2Ie0hrtU4min9D/r8gStpa8sbZ9BkIkhQUjlODlo8ZET5KPjsk4flXk6l7Rv/DfhHWdks3ZQijXqFwCDI8g0xqyK/ypJT3xg4Z8W6Pv9fiXQ83ZcPSDeCvdBf/eZeiy/fLArjOVF46YK+2St776/+mxNFIOqGVSyU/HlfC/SGRgJmeAguiy7o0zSo1n5SZ5uvW223VqCfkKARvVwzJLXHSD3ztAPPgOmk5y8wU362SYIY6O1qG925HGbzyke972oP1UO5ioX++7WBegorQLMLhHhshRD1Lb0i1AUqD1oeva4285jRihn9R9vL9SRbZ80OAj3bfKVkU85R9q9uEM6V39kNYMyUPYutfn4xvjY0VmdYbmYTUB5D2s0Aggb9b5lC5t4SE1sJol06y+bHEx8S8+NNdJb4X5fv2Am5qWLaiGlA+GvyvM+GnVg75gUzyibUTln7AMJtuiYCeQPyrmoKSVqnN2IREOMFC/hknj/93NHIn+UOz2ZX0/rFElAEYSAXojR/owRqhZg8XDeGlpaiI/znm9NAPuxM1FsciVvYjxVIn7YoKvZyz6raz5tH1YUQn0NiD5hamjlS1fLi2w4QLoWB+5hnaE85T+ba94Mh6n5orrH3Xt3n2dI/bKvFezioOudHRkOClUYs37mAsPvnlERUJKHZ65mH3EfkdvFS89YjVBPIgtiEkj/hadqGDcWqPQ9/9VyCe4X4Q4UBUw8wwyFM1xoF4HsCcinkaRO4vxOAdXlp//ShyCPj3advWtA4MCy1VVOsxGu0bOcapOte8WbzJ5anc7L2GWgmYxTp2AcBOn4Rrv4+abhCSsUk66S+T8Qa4Cn1UMonuRW4eFP6uhQTarQTR0clLUJkz47jSi2sm+Om8FfrSebQrIu5bC4M8au+NUVsjJzvXQqrQGcX2I3ZU7ZtyeAnHP3AztMU1R7NPNzP7vb8nE2jwZw0oVLfbhHiNm7jDugtt8FRhmq2ZQDcbURX5zxvjBD1R4wlYSWZVaITF2/vQk0+Ejn3uZhiYWU0sVyRuQ7w+Le1tuoKOFBOJhp/JIGP2ztXxrCHEnuWWu8T7b/5hatOvqrUsmlja1BDc7ZNl3oxQka9+SAO1BXzXG/KHWEws2P48qxjLfCQ5wkA1d2eaGjkhz/62iRxPHEUgJyAD7zlLhn673/a1BsIH37sY3MtPkvKtHU0qEbXyQz5soTmuPMJkvSk1KBhcGkwTwvbteCQS75kBkJdBfVXM269Sd4ggy/V2V1lKmJOdAsuayMnpHrcyESazcZrug0TxPQo0LweFCVloKqzJ5P/fl7Iymq3EWWeoXliwp59qrlgSpfPprcUXD3pClNU7HrQAHPI17WQv7HRjPqFtJT1SszEmXzDZKSy7R5WuOqqbQwVqM7/bpIWnrPy6DPzSrN4v2f6S0BYd4CowNUPvkJtsG5jXJXOghFaqXxd+fpP4PWwDl/J2OTvKtaCD9Oy2DioAzwTSisKOO3QcmfNNfpJW6mylOCArM0qeJjA7EVXQdtl5W7ZF6cLUm5fLNDEuT61ggyWdHeVM1yT/QYPHu2bvwbRfQ7eelZCfcatdlw7dUriXVvSwWvU78JVlQRC+H83su8RNuP0PzjgOgQSjq5MVpno9iIMzyVleGQuHgxUMj+WIloIlrbj7/CTT9HOu3uX3/9GXX/61g/xNg7YwhwcwaZv1lw+Pdfnp2RQ45kMHXIMAA7qvKXHrst3zuMC2Maa9oJcVtDPrQmD32Odl12J6f0nNspdyCLu2XNH+LRJX5PAN35C7sfJ0NEpRALumkAa5nNH263XJKb00CBCaLUq789FPXxaykE1+YjDsnxZyqeFHjaT6haa77nSuTeltqraOFYz4dXoG2jviFzvL4mTfVaqdsmW0lmU0S+CLHwYyMb6/JJEbXZUdkUJQA8agAD+hr3cq6k9EVF6zmEqvLgk45r97crfOhjBcrQFo1YLCSawIIr3olsJrfJvB+9InkTCy67ozvYRpetaI5WxWzaLb/PE3b5q0uCCIZYGuPAq1D+QQpk+qtNl8QenJwlEN2kKkQMOduQwV3JUwjBfQCXWc6yFfGUoEB6MZm1ueKw1aexlipvDsarJqXXBav4N+GebmMqih5bpFzUKWGI6IcAd/SVXIz9ebYY32rHlE1coxlFYmpEW49B6DnsUYk/2QwgXJg2UHoJAjAJfTLISAju2KYBcd4Z/LUpfXhIhywXMWS13JXF2LD6atFAfqRKR9KpJHZB5dk1Pd28FAYuGduJcnJjIOedaL2YxiPITSTbT4eAlWYmBhAW0HIPB1g7yDFomxa8AUD63MdlsxfT7/lZvmFutAt7W+58I/Elj8o3AEHXnjwWHBS9gHa/50VQTBrRJaTt/W0185SegN9J/wSeFy96OQTyTyW3iviXxRZkQurfigqR4q+ZVQpCXdbm7w65wNhwWUY+xWuHHppLtU/fsWBqcqTgulon1OtzMkK0JeHnqZ0KyD0UsLMifp68cvypDolo7g0MvgImiatIvuWU9walSnJjP0fjtyQmpRNbskfxt3ra4iyFh8ZCO47+De/8x7znr/1Msd8lAjIsxyBM5BWUfe3/gyXf2SdBD/T4eszkrQFhGOT006jgmnYSZef2RFvF8b8EnBjJEtNIZpt9kM/+t3WvbTyZgb7tv27DaJWRc6nsfz8/IiS3E9rJFivzPuRrkApxSUdva0BoZIYssWoXeDXA3KTRBgK9Ln9cF4eAR8qCFuaMmh51RKgIxEDIRgBjFiahWZ5m8sym7z+rZ+UIu7F9uVAV2nBsM7bYaTNlUp3lW/BYj0BaDi4UjZ/KK4Ijf5WeoAA5IvChnR1YQ/D5KKvJabNdpj4KszeVBXlF+lKtlL2Db8dn/7lD889vHUiYviuPcN/LMZv5oWLeO6zChQXIZvK8fvOjxiUGuwx6uIhujcBUEmpfGEmz6w5/6vFI/a5TJT8ZZuN90J2N4eRwgS5PixPY1qgGlevpynmpZcz3+IHdnmJLSTITx91yPXxwgbSbAuL3TAsELQ8UZcXKfvDFvb80v8+UH57j1axce8+woanKfq/k/Jv2PsbeiP+YcKNk8gZhEPL+ColTuPIZtcBHrxI3NYHuGr8/dFcDHUl7gacILOf5xiBHw1hDFuyx3RP5tptZ2fRQ/n9L+TSiUEVlSrYnqcWUR0GF03ys8+lh0j1pUgsgNWUrHyBlHXP9kE7GBT8MfAxQoykMy42eX2BpsMU9Ts1/b1C/NxpEcJlr5wCzBrsPuwwThFbK2LkRkEyVfHc+KYeHjKzMtkWQaCOfrWb/2HN5bkamjLJ43ngxapBfLgRGF8vZOQhiZ9RNO+JF3Rpo+mQz/M0iJ9j9TJ9bPUkwx+SMqtNMin+fKXxBfQ6TIc48nWgJLRPBizP171wn2jkq0zRM8oxwyUk6haejNnKdF+AqpxDySKcDfiitWfChW1X+zsxo1P0/p6WjJzZX83zMOQaieKtSGBpioxwDzZlADGwhiFGlv8a5k6q/I2t2flztMperQDrJTlJeaZYEUXOEQgQt/WKL7wrmezzc7IjxyRK3OL5SaArf+KHnA0SlWJntzwDNo6j2le4+OujPtMudgqpttJ5m4PHS3AoQZummgy4sQlhPfU6Qk2oKx3/w3nOD7RDTCAhyFFkR2J7Q5llEQgUi0EZ+L2WekTJlVFjRFZU8T8pvO4BvKw==
Variant 2
DifficultyLevel
525
Question
The daily high and low are measured in four ski resorts and recorded in the table below.
Ski Resort |
Low |
High |
Perisher |
−2° |
5° |
Crackenback |
−7° |
1° |
Mount Hotham |
−3° |
3° |
Thredbo |
−7° |
7° |
Which resort had a temperature range of 7 degrees?
Worked Solution
= High − Low
= 5 − (−2)
= 7°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
resort1 | |
lowtemp1 | |
hightemp1 | |
resort2 | |
lowtemp2 | |
hightemp2 | |
resort3 | |
lowtemp3 | |
hightemp3 | |
resort4 | |
lowtemp4 | |
hightemp4 | |
degree | |
hightemp | |
lowtemp | |
correctAnswer | |
Answers
U2FsdGVkX18lm6mrUHnYgp2VCyAEYr2L6akKQ5RW/44H4PUmSztyaMyKGU0iq9W21VKkhW/bDeQVWLaQdZPkXVOAdh7omNkC02PC0wKpdg3pJ/S1lzW2+f39MOo5sU8i4zXZXqHM4sA61XDqCbPt/4eS5xKtmU9V9G1MclaOgQEpxode9I9Tqq8HuV8NFldlgLpkIperpNTXRgtF/XoeFPlzDseeGXYmxAsQ6gwQH+Ok89DkKmKjWe0KXSHddaC1flia3/hTUYG+A4VJvZ5yKu7jsMCoMG59Nf0mPIvjpqI3I/y6Ypk1OhPBIfLbE1zjrXGLqfZFhU3c+V0FO3s4faAtRWz6m1S5tjS4OoARrUanxMC6mvT5ayfssCs3sJTQYE1SgYSrtZeStm5iaIwxkNRfeYrk7bmCzY4oWCOQwCa0fujYhsAwvxdEPZ+E/NhpMu86hdXSeD6Ki0kVHtY4h/MGahB070PmhvYZltyrZ1Fb9dVg/0NmHy0weWe9YU5Sij0ujV3HnuDnIwQPNTSJAOKuB7q97gqnnxPvF68mi1IJsLKMOZiEwAJHkTlZJPOJhERtg8Yan9mgnCWP5u0+kf42n7LGxrQcyViCGR2etT0KufL7Q+nEOh+KXTM7IvH0ywNIHPJg+NPd0jwEs1zWR6Z6JvEBBnTSldfnM9aAlnyHsre05PYuAs3F17Vs2sAfsbyKoUN2FwEMuvhWAkFwFqXshYVx7PRXGV2znId1e32qzR2o9rRJZIhGMmRUqPqwMNhHAO9fQLuG91NuMRTDsr1YyDp+Faet43IyrpQ0m0KK3gw5oJanM3s5ODB+E+0X7sEOHN32D1tbSoKyr0ZzUA5tQFcSEQIxINQB8dmpiIsvwt4NnA6ExcCAI3s8Agey7k2ZCg5cWeEZimD+kzUo6BUFtPmnn0Tt4aaFlpd1rricBXmHX8v79phgL5we3meaOj+2Ylttuix4rv8TiiKEDcQJ/ZrTp6xiug/j9jUS8PQmnILjD6pA5HgOptwG38OutjxofoCw9qcGFkvfT3nqtn5zjNZBOP5eoKO7QveB6lA3NNL5wnjbIbngzAX7tlySNEnx1KFR5BuslKja6YjP/5B7YXwgNa4fE7XAqstcU8qjUXRqibn6oXjEiNqcb87IZpAp5TnFowtu1k5VVT73vUDgk7xhzEGcInz/MS7551fRtnPUPszCrFPyqV43omD6dZyjrbOvrxtBw3RVea7i9VbYaLUjc36+999/uGHB2HRER1qL4OSRYnusxtqeCBGJNfxXnvF2zFebdQOVzX6js/lct64EupIDxr+O4i/gdSmmXaGLKw7qUZv2leIzGoeNvXTu74rRnnQ7x8Bfo0PsdcOG7jWgE7H3nzDyJVtHcQcpseoJBMoMOP2gmjc6HhQ1GWsFl9pf+8VEYYuFYsJNdi5ZsRjLh+p8ZF2mZsdVO0sfzINmxEWm2mGAjH7VvbT/bAGjpjP7vBfLLa5D64esk1jENVRPjYCKNcS/i4q8jHFtmLK+UGNfLWntXbqEnD3mLAeDB5QO5qmKNl/W+UOFyn7VN1PajKdX4YHJJkzbAZRsz8cFS18dnIOBCQYk7kRbHugqkI1MQ1iPF7xyGsoHJMQ1nJcVDJoXewaVgWR8ryUw0vn7MEv0n1jkffIOgeW7bCd6ybPHKN7YFEGnBHZBguvE3HQer8fDFaAiULLJG+x/UrcjBrUGFUG0IAGe6WUxRC300FvL4GUEMwRN+K0tr+JCbCiqtVz38DTDfYJyEkwCW1JxnH8QVSwyK+MJZq+W9DmLM3m0ROpyyz4I36lp/V3/4TWxfVrItUhagNhRP2jRIEeDl4KaYC+1N8p5Ab3ZOklsfxYk87zdW7RF4GHzVpujWMxKPYWlHF87AYoFUMvKVONgcg4fJRojE95yiRtb5YH+PJDuT0d9oH5Zy1sw1vairX7oCKgL8Y5MaUoWOou1n3Jkv9b1MiLBdBBzhUGZsrPO61ojbOE3QZdHIW4QyvcURAEAUvumTUst/pQb9e3fbtJl5b/QwAMIaFqz9GIzgKCIYxReQygdoAfL7W+YhkImsN173JyzPgdKIwlm1WQfT1S9Btv1Y33ZxEhSJC+1ve/leCN+rUpaP08eOphWBoB/aSAF79shMkLHkaRp8egxmgjI7zuAH1vQ5+c31zDME9KMC60COXFyEOACFkbz1SkahxdY1awuakfMRkjGfv92uPbtIeThqvbQ5KLwkQ1Fc2cf9Bj5NpV9umBzb6vdnKhUwbm19zmaMyZMxuaKfOSQNVCEaSjKrBYr3XwV5+0IEFKJTCY2AtBz76Zm3v3hdJAg6z/Z2HTs0JBFZ1gcQ5+KcIIU6VWArJxpbLPLSAWuMuh4DVpfJ4ctx7bpFKFhUgSXcSmbwaBizbZXpnYUZJom9mCbu+55vNNc6cmfu8tXTf1sODA16LHob/S/4wPeOwUmmiJ1QF9BvUUySLzc588bWSLeMhoCxFohEaDOhPQTdKcKSVavg07kuAIgCC7VGWQ8CtImP8qQ6a4W/lMYCRgZqyIB3yScqe/SUnz7TPIfpQIP0Nz+/rtSktuQHgABGX+VFkKyQTEYMJ/ReqJVO8nQXzzDjmUaKEv6giBxyI7wxlc4j54UPuZL/UtacIpU0WRx31Hi0T+rELh6IrIo7+QWPpmc73LC4hbkyjzt2JWWohaMVGVy/c9ImuHzU1qP3zxlD6CyA4QcWTTgVSHdWu4Vo6bfGbGUO7D2t7F9IAk7/DxlIAW850+wO3aYWTDF/h42jW+Dsax1+629njz23wunpYz5hQLXJIr8nt506Us3FiyOdCmVsBtUtNpWTaezmTLSHTZCtXYaVOjYA4IWphW/MCy42T1ITv3QLBA7oNkankH2P6NunDzSSt5LEKeNIOxqoq6jqBQZLZpzkgEvnxhJxG1yXvdd3BeGgqKycsNy0HOmk0zQjqoxgyTpBSnsVjpKRpzhc6bqDwbv0AKxvWH4NJ1SblBqG/FHM9vucAbJr8skAYAG9r7OmLMwn2llC8GPYdUIbUKEfItyC0+gnKTWyzYF3SKp4rxDNs0lKVlueYcP8s8W02aEONtImL82G163aUx0xWCCQk1lOZIRzRNTSxDtXBZK/XwYKVfmJYRtY/gU9vH1GQVNXKeH5aEsvsePqAQ9iMwPHRNkc3c8C+uKMDK1TotFfzkt9x5spSGIDzjh8IvmMHUXly+K3VfecpJs/DtH6kq2NsSqQluvnV7VQt3GuIM4RsfknIsasRmQAyyS6g1Np5D9Y7i65McizFNpab1v0Fhb0/b8+bR3EEwsqLjCn9OaLoUpDIaJUCgTuUPoSvnEBA+rxWbtQUYV8HmqAR8IEr9WghfGCkll3ekisfU4/jt3v5crS2Rh65+9bVSz5zKOrnq7vYsgCtCHa9v1dj2r50pHPy1BWP024mlei9+3HwZdB9fH5x0eJ8qDGjAG2pnfjNCMEe+ynTFg+VVEgVtUwumj/1r5/0Xeb/TaDIeHg/PO6kwCba3WHAhNScfvpRPMFBHjuAw36yyXDhN/GXM60g6gL5DK01krRNfcy5F8kbWWf9Nf5BpYziDubDoS0yrPF3z89+Clp66x3bd+74f8DC1f74LAsN4bPn8yOT78jTn+W+ObdzInOlqvq0w80oWlW1HSmrNGFNW36N3dXYRQ95p+ORmG/l9h/tkAKv2I6qw1rp4jwNECbYgNkuE/cGKLxzYD0Jd/ze/avA2VNHBLlCYVAPDIDaVB/lZjm/wYpCYLfZI1iBMNZGJagYn9ijbt7RKjz/8Ocgk1hPsCa+UlU6TKobVZWkWrGX+6PtLhgy313zWbJP0x4zqVnDRBBHFqRSRYMTp3tNfW50OUhjaw49O+ycAFsJgkGaK06QKTBN2AYsBooQd0HFU5Ft0/1EE2RHjlpb0Kt9f6jqiycsr32I6zJtZh/DP08IbLhhxjTQR0NCQmx46tIofZKXLjJTgIWe7T30QkENSx7E4vwQOfKbDIvUl80Yy6KvZH2uBnEad+Z/Wz2wChqJSfrUi+rtucBBZ7+CooxSHiPLE25OLW6km45YSHkVc9YVdUf1AL/qgaFgX7jb8A7+nCUnpaK3iQTVli3utV5EvE4SnInQr8kfLTm8I3GdnJTKvUEN116+eEhFBeQGm8TPwKeZRBd9LxlxyCexQfSUSAdNNRLzCaUSMwV1b3Ii0l9mX8lTtEyPO3skiVi8oh0SCHBnXiN9qYTqKIi0yVgsWYemNUO3OU7tOZa7rAz5rcCZ7UkTwr67PUWd53mqUHiu8ZCs1rBXSXdHqE4iEeND+Z3swPmtUI4DtyrM2MMTq3hJGcMKx1bJfiXpTl7j1Fh2MMnMGRq6ok+PK+XnkJdJkZjbyS5EdfIMcEQHYq9L71Po22a7RZQ+WpXY60EZGP7DgghDJhZK8I6OYFuomXgGC+KtcF6gkoO2NsduNALkFpvabM85hF+qQ75A4uHKgiUncnB80SuWzZVBKwnqobEKosyuq5N8r4mlC6W4p9UgTWJkNMMwAGKE5rR6NAUduw0xnUGYAZ5SQmKsJZeEBSxDgkXgGKle6553fdtecIzmaLASMHhLqNKdJT6hzaqUGrU0f1H+A/xzDUOhKqJP4YWHb393RFG8Sb79yRV+s/lW3SluxbyUBF8qqa2uf3c64q5yKGhzNZru+m4qW2KSXSXCjGZeUi5jd2OZ7WtrtC2Om+JrVgsnLsCGSQs61F5nckP8ZlRugtrhi6Nuu9aboM/y1Xxq4Oy8iqt2/MYkLOI5rMab9B3plDK/0fUSP9z9x39iJLGcoejZgOhMyCfvNpt8DXL5t7a9DpAB2wChgw0FebAr/RuMyVQNwulLsIQAIB6eq1NZIXLL0MOeTGST/AvuXqkAcbPJKY2lS8FMHqEwQmDL5LBHQ6dhW3VH3kpljfKr25x4MEHZG/4aE/qvYGw47P+BbIa/XSDmo+ZMTZ2c864B+ZjM7qAjnI+GIdl+dtsaj6d4HRUOZKJbEOD8OPyq8GaNMD29kimXIH3iW9KVmL/ALIkfBFYzw2avqC+My9bUEz3FHli93DG55OvuX/fuC3Q3Ov6jmzXzjAfFU9jfgf42vlhLuUigxTjAFpw3xbwtpue6qcdZy5gDkzs0ca9PsdcibMm6JudSOaJ5yWa1vyHd8889v/rRbM9AQJ0hhxAuSVnL6nbUv0fuXae1dRkvV8eVRGlI6xlFXAOHCM9UDdFN9JcKK/qqECX0ZKh0PnsG8Aunycdx/jNRY3TpOxr6LklLzo6D8gvct08CZP/DATOKTVOLShnNjpRbYM9s+7D8/oNxW2delcmC2nuNr82PemxdLH87Y8sCp4K6aMizY56lTNXzhttm1c2BgtrtiSnwAbNRef+fjsSzEUoK68DIknDojBL/EYmAu/i38V2X6O7sQkcezunV1rh9Qh44YpKYESbjeTlMKpNPHHpfL6Fx2Ltq1lR9RvpIJAHckPBs0iIV2mJrUk1WId9K+tCO5xyhypfaDPQYRO3679jFqDHzmY+7ro3N1lsgg3nrJv2eRbYX1vJh3wXmi0f0Uw9Q76YE32s8TZ3OIlvE82uRNeiqpm3Xwnogd2IJplachAjl5lt22XbaJhdpaKhYSVFuo8bnk31BURWLoJp/Lp30f8K9Ly3xbsKAppWGuoSRUkxnnsjeskyaxoyyAoIXscwD5f1+WgbzK1toE/YCSdumuE1OTERR5MUiX35xpRSYE4rtzIdZYmREeM933hmzxAuJDz0Qz4w5QXUf84YSjradHW20gNCxxDm/ye83gUiDhiAhiCgVmVRwiyxB0RkrpSB8IDmi3yH8yY7/OKuRSwrPW0DQpyWN3lMrzmXdkdirT74RR5pbzPijjwbfZToc6nMhIV8z1gZ8MhMhw/LsmcAbTsMGupcpc1tnhhCEDSd9AXeB/NaQ8klVYzhTwLVaqdeJ7QpZg5+b2JiMKcJhg1rqsFWRLN91GlzpiCLNjpQ+PmQc74S239GifHA6JoAPBFJA9Co1IlDwuUK0k5/Cy9hYzDiF69s8qPsPXoZA+52HzUx5TJ7J36HnS0r0pUVeL71CEjGFld1kG3kWIHsS626piVgiZ2+ojZ09oL3ReHUwwVLAmjB/gs7N8EmuO7+taU1dderC9pogsf3wRP4k6X7kkh4syDMy7aKwaU3qtF3izKPekktM/6PoGq1zlFfgwQD9q6Tzrg7FSy7TzsDLnBuwjhDynQA4/IUTPgh4gcghECDvz5cjt+Bkp+7GCBI587KpQRQ5h6aY1fQWDA2rB/cCkB3JtYP6TVM0OzrBbxf3z1WjRNOdo0tyznQfW2qyUpqlrPeXcH+MrRGW/3h9wtgn1E7+9zBAfVOW1+N895g7aUiWIU1yJWUe5fpFsMCcU9CF3pkx0HotgBJfSlovsBC7e3o4B02ppapkSA78me/cuk/5GjSYQhzJOZCS3IpcWBqirsdsK5XvN0vRHHKd/psvjS+VcVP7ut8ReSF/1pCWut2WovsK+Fl++dDKiNdD0C2oUEjFK7UDVheIK+xlheeYhD11dR00wzF2z8XXky5xFzdhHlaIV5PBw6U8X9WaXsMI/EJMMFPrpGa1rNGzGLN20SE/OhRoTm8sszN7Re+4MT1R6pBEnfCJNbTJjN8PZz6XhJ8sWaVWAZiTytprgA0G0DZUOnIxs4ZtjtfFVuzeaBWQVteNZ0bV8iofYO9zqfRcORFHq867DxJCBiMAc1UJgpB7GXYnz79t/lpf684Dc77K9XN+hmK2PpaE2jFO/2Sn2+W9B4qb71oXlAT7Bpwy9fV+342cvFB2QZHXPy+pXO+GQ1BkfKd1sSCj7nAluaCnXiLvyHSgu0NIm+pIn/g0IQRBHsuR1J2ZVCoaMmaf2uy1BwO50mPcEkdms5aX9BTxwNC2lF9Y0qzzyl2YjAQ3R9I2V1DpqwfdM/Yyp2nNlOZIbsxan4zzwxrRIn9x2m10awyQwn4fzqgb7TonfWT1O8el5gQFi0RNxI1poHc8wxGeEfU6IHdQXiRKm7vQ/tc7A5+oTZyH9OADyM6/XT6WH/Sz7CC9ThqM2jfT5buCyuMl1P3aQf5OJC1fn17HEUtzBfph7Yt/FcYjJ+2nLseIVw1y5BHMv9pVj7JcqGAmTIn1ESrC1mYHYjYk0VTm9SRbLF2e8uozDvVUqmXM9yHlAOorzTckxrI+VVTtrO7USgP6xN8UGG2Ked6xBotLvwVFb/Q1u42IAXqMMklHiYgyLu1TirXbMo5//s5ZBFy28znSeZhYb7qF09YY7YW+MHeH8UsPi86WO6CJeT1/o5eF2XqKL/Ln5bv1oGk6frsneoT3lYhND0El5qruaVFIzPStaPFu555MBdEuUTV84wfh/pVhxyvu7CDCaW/8gEX2eYDXTd3Y+8t5hU+Ee64OU8A+stLrXh8CidxfR6/tSmYajDw8eyHeGwXdahtja3C7OH70Orex0dOrksJUM1LpKy9Xq3TCiOaol3zSh6dt4yPOYQcmmG77C/JK/Ej0u10sTCc94sHRIU4hPV1lTjZz2G9Ke2NGnhNcyugh9j8T4pFC8MTwWSSYmNfuWRXjQE/kYGiyRTx5FT1pwjONuqJoJO6jHavdQ9usktLS8Xm7IR/DW5w11Pb88J73X2ArEV9uUGZaySo4SLaqMZfZMPI1S5R9g/vm9RGYcJgpsqnUGNuoYmLTz4CXtdS5S7R1y7ynPDkUoZtsAgQ40DV+G1nzcOozbOdWZMRGR+X8siP146U1wv++rpimGz7LFHsV9kldRCj5zugOewiknoIRPyuabVlSa5Mt8IBCroEYqbenZKr34ugqvsp/VMROiQ0oLUJ4Q2vN7fOhId2h323jI3S5q4+wJTUUEDpLdR6c8qziAzvWX/oAmNW8N3dtAosTea1GP4V7VYh/Qy9Ono4ZigVbCC5AUfb9PtuYS5vQurfxt8GqpUTJ+5jTJ/0vDeeTKgtzai6QzRZN48NGv+Yy5i6HX0z3Z5j3EOBoEBH3mD8N0Oq1U2YnbY/i1BwAVe5qW+3s4lqZavJoVvI4LWxNaBShOxlt6u2H8DGMR0cUuuhPBPvNfezDZzJETarnpAUWZgV5WIYPtRaXVJ5NTcQJnaQ5mX5kpUQ3exwzWtrPG/Sh1VtXqHxb4UNEs5/STzpyzVMU4UU3egUC++Owg/SQo84XtG56idFV4IYt8RKl1iwtrxsK4lkvA7YU8IUXP0/dGAKxzcSRvRbMq/5JzQ4TQN05AVqka2QpSldGq8Cb62cLZZHFmaq5W3MfFjrM2DjFoIQx/l+OMfETYPXGi9OOOz4fSQPi6P2UQojS3xxm9RVr3tDNvvEFAdS9TAwjQcSUwBF1NJctzR2Ox3EiNTd3DCKBrR/t5OYJnF6FYf9CkUm9aZ+OhFRjjGta9uhZvBPOyDZWNKqFetQGv10HkdYLRV4DqWPM+7fMbLIVpXD63jH2+6H3YCWPYBLsORxuucARU6FyeOo80eadu78PyfYdqucjPnTStZT3BQnkzySG6g6hH0fjoxa0S5oAe7xYqo19bHvZiYpVEH2L2ahmrEoCmpjD1DcBY5nkMzfJQRcJgRt3VCE5ZFIssyFDqIz8zI+53YDyA2X1ZviWKpVxoWVzqXG2VSNNF6PB8/Ob0CZxZdAteWC1ledDvivJ/xvcYSb7cD9m8om3o77QxY/8Gn7IvPHmyGlE0JhGwrG8DVQ2di+59d/DVDxFGJiIpf4ooku27O2v7z6uQKRvFQh/D5tzek8JT4uqgyLSPu4hOlwGsupnIvxhLyqanSZjb17MMRLOInaZZ1vEbyU8FAxiI99QaAGZcNkap80V716t+GLjSK49Cg7K1hOZDpwsSA7UiT6fMu4l7iYfFzDJO4Lc6cjirQfkISGEhfbmn5+TIL+hVh1kV/vgrtgugNqKf1RHSWp0vPvQdQk9SLFXqC16RLHrCGKiybW40W8vH7OZvdR1slCYQmvjk8arzRWXJqDm2dmzkenztU5mNwtF6xBmaqXTPpipwKIsI57QdCuCmHDs/KFvdryCrZVakYwyC87JRW3MWlF1HQkpxs5Sx1Ud0rQXFVDC4pJgdMi7MRQN43ssbd1GNXUmqWBXZZcpvdSRpooR6wDsHC/yxrNM3HXf9faQMFBSOA4/8RfMyIjNqP7+wkEfv2ZC/fpW083mjUQWXk1d79V0gM5vjKh/TaV/4KivPhU1yqU1eNu0A4zFQJWKdIqlQ47UNpmyjEeCiBMonv8yV33r+wtbXdz0t5Co7itdXaqQk+F5GP8TFlqrEgLiAs+Q4SaDT38hmrHndf+G7++Pw27kJiP6rc+bZw0FexRPZXtl0fZ2geJ3gt5eeWLssQ/ZxwXOr309LXhefmvbU36jPSLGqMjbBPsboXTSsyf7aKKunDHXez1/AJiapEptevNKKS+Xl/ZNJLC/Mz4qDMgdNHfd8mFsuOecW1QIwly2ZJKIwbGSOcszPfcT/JAOgGAoAbPrhy4fBdonjUFQIm4QwRXCBKPQAlOT8HYvAH9buwGlVxwc03cDt0iRTE0/HRquWq5DxT4/CzgdFYDuJkU35JgjRKhYIjCrx3B/JMRw31KnPtthb37g26Ya0vQhcJjyo3eIIu+C1jn4CK6Esy+pNuIcydItdyIaP4SAzHon3Z20xdBZZwFtRBZQ9Y733aitE/3+P1Rbtnw16KN1pOxDprt1qlid5cJ9dTjaMidzq/tdpvCxydaDtDZ6HgWgiLmXsoS30e79eN83zD3PyJvlmotaDwEnfHm4+z6sBZrneBsA+iAXpF2Qe0OyTP1TcLyrxntNr+oDVWSh1qQHwQNK/BClXrOAtAcOIIgb1fDuLHs7lhsOakL/5+NIsM/psd/CwDzeyR+YCOYJ45bySu54xVVFiG0aD9mtK5ra+tigj6MMWCK35MDj+cmtdnpoCPUeOgaAPnfe+dSIW7+GvjpNbSFRSx+9XEWCwCaBqCLlM8+SDS1rfsRzztLOkIhMef1yDUQstKehF2L6FP1juu074+RyQCqQ6QPT6k+CYZKJ1KENXpHEYCRFGxMzXGu3iM/AyhvS1+oUr05YmGqr+OzSX2VhjSAEhE9n/UE+r9ScI76oE3ZUq7eXx2daa4d2p8FPxX4WpZig93XyoWr5mOld5UB0MpwUoUNNKmpBpJmSm/BShYTmX+/fgjEDZygZr8NaGdH4mb4mZI7TFDvXQf7r1K4/fOm4nID+U4wnKkhJWRcMBEz0Ar21ninCSCvf/bTRnfXDqRtgncf6cAJMPPYZiNsFJ0bbx1GQK/zDC2dSAFgVA1TlST+KCFZuPsIcPdLjQvivd9dNsADI0SMflXBxXVtW71q2HTWat3TK2BA1TZP2pCCVaoFKFlGfY5YJYFiFLNu7y5N/mtFw==
Variant 3
DifficultyLevel
525
Question
The daily high and low are measured in four ski resorts and recorded in the table below.
Ski Resort |
Low |
High |
Mount Hotham |
−3° |
2° |
Thredbo |
1° |
4° |
Perisher |
−1° |
4° |
Crackenback |
−2° |
2° |
Which resort had a temperature range of 4 degrees?
Worked Solution
= High − Low
= 2 − (−2)
= 4°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
resort1 | |
lowtemp1 | |
hightemp1 | |
resort2 | |
lowtemp2 | |
hightemp2 | |
resort3 | |
lowtemp3 | |
hightemp3 | |
resort4 | |
lowtemp4 | |
hightemp4 | |
degree | |
hightemp | |
lowtemp | |
correctAnswer | |
Answers
U2FsdGVkX18FlrjmOt6kvTvlwUl2dn7Z9SFaEG0Lz+bYdxIhXWc2rPPH3NC8oNHwi+78eGrcSc/1W0mw1KrQm5gs5Tqh5l7tmY0qTFa+Z3PtC8h/dny/oJZfT9gr/yymZmzPJcFi1bXdNF5repwH5JIzKidz2QX884jmnxTrEa1wDZZVFmrZrK3T+xsEWiLmSdP++w5tfCtEZCK4WK4wRHUl4qg0FN7Eu8Q7EMV7l+SMCkuh8mcWjDSigbyvgPKgnriSEeb2esQ1w2LRe66YLk4aRC45IkcQjOIdDoiT6TEFL1YCi4Xr3m+L0I55hieSngJ8mHu0dMawF9dHhQgW67CDS00c36dXsDRjZtXDw84cmtLQbl56bFzH2yY+e/o6U9KJmlcbcVh6z/odnW33QItLTzQDRTr7od9am+ud2WmhqJEhMPjefs+nxmKHwdoQDy98+jaOdT8v4eKQkxX8lYbXbHTeatLzSyqT0LJ+0QrQGIM+/F3PtFA+OpirYZ9dDpkgHaWNkkVpJpPebkx+nfcM3VtZIdfJjdTyUpOl0qdAHArW1xbJp9FpfCvqEDl+OtFJDvBjfpw4FcOsvRidRS+mBaXOC8HaKovfqkq1tz1Gj1xuQMqnY0ujBKGbA66nynwGvceDqxkXX/geW5N6gluJUxneBGGQ/9twsW3Hz8bfxKEV54Hlqu+uPZqb3Zq5sNezQBlPJGDWODSvGQijj3AAq3j6VnlKjVxf+zOVb7iCpST6X7lZFdXS5Us9rlpe1NP17oeH2Jd8PSRIrxxFRYMXPLXvlYJNQX5tL3hyXI/+ziTCzhuVuJi0dyiax+3T7WAAvrOz1ueHZBEYCGPM+8m0ahc4D4yVL8QBR34AkluPoS1QQBPCnnJUvf2Vg2ozdscksyBGdtyDr39zfYvoQoLf8Ok8R459Q+OepH9g365ZVblmaJ7zHcBZ75Mw/hL5aO+1bCcXrS7fv1aYntIfMjV+GuoxNTtY3SCeZxBweK+gu/ByTSEWDSuy7V4zlCP3x+8glKf1dn38/e/5tKmJBg+kk6KE6TW+JhSp73vVppN8ubIeEkDGtR3r132hZFhIViFzaj9n4gNykVarQGQWuY28Wunj61NEIEHoLMKp/rlbSdxs10pHdj/+ozJ79XQpi9fLj6F2TMIuN6wmr61DpEqAQiOPx7KZhcU3BYqXc/ao+U1z0zRTiMiKZpVdVZvdpBpvKe1wB758UH2U4tJPc4uzsa2Ugjwrwk/BCHQR/4emE4G30hQJxoVlJw/sDnfu6sJa3oqEmxIcBV9/vCPCM4LcWFhyvGY8WVdMQXfR2Cgk+GwMA+DKpX9lPtPVMpuE9n8MIVmlWAo1diJA/gGLWYkic1HsvfTT1mykQQO7I3vUiXQN5Sj/Ak4GNGUf7spM67Q9ojFFZMnMGD8FLrp8Dwu3SH2HE/xkpZmenwXFNiDPTIedVusxnoUVjyNpZmaXVffC/A2gFgvLXneGYuMMugU6twphDoXPu2V8+pD0IP5ce+u7Fy1LUNnq2CXEGQx0QUaWsHC2JUNCTLXhwhcpEo8zmQSqkwRykyBTafCTO0AYLaaAYSQUqH9CeOdGMqukRIEK1pWuGlz76hWFMztSuk8//g3j3PkfaBO2bDk6YIQ05vijhAFqe64OXIFQ71nuceFoBc0mdDdeQW2Kwca/uFVaRMDCPo48tAvFV0ZcSGieLpHa6YguFH3kaoM8RDVgEc7wS/Xt1gRIs2DbIUwSaaJ28ZfA/kYphAP+9w9qdtkrfE4ykQQCTUhC+Hj35mu/zVkIt/EyphgS0vCzmEfQ7evcjBLU+CaiBTeYv6h0wX6jU6mIiLOcHOlX9tSn8ipKZgp/iCBXSAdRYeC+neXyaFO4XY2E+hIoex9YrAW37Ad8nxnkH+k6eGcKeeeqXUvSzowW/rJa6tq3Va79A389gl8jdVA0xKoox5U7Qjr/oJ1/QYmIHJguosPinZWxKZLsCGI6v7O5rJ2B1VCBRezxS81XDoxi90A3UcluTCRSSYs41p64/J6YlcuijNReqB2OU7kaYRDfXmDuw4O1QnuhB6o/q/c6AUrEA0xNxVpZSqA4rGZsYiNHaTbWE/Va2o0ZohSNktEfmLazV2el6fOfwRDEDMNAU4PvoKPD5gLF/0YY5W9dnItPjxeODYHubFmTHhLFlCdJqPBl0C3YYHGScAM7iEZa+KTM6K7WEu0YSu7bJQ7aV7rBplKJMnPpqNhrEjTpEVj0rrx15itESRJVxu2fk7ImcLPVHqIP01yAFEt9yH1j+252ljEjCBAO4xnOn4SwUz0JlDgWMKMiweEsJ2ktuGIDOwmEJEwmR4N6izNKtSh5Ra22nut8iy+kuLKyhTcq6D1rtBT2Vmo0mzMmDrHWlR5mesz3lseIXBivllxXbmTWgTL8sbIYLQTXBybEs6G16IqSdMyCQO9Se34YaP+ZS7i/8FA0G0M2m3XttsWYRnwJ2LOaFtsb4rjyC86lXa452c1s5FVgZwFK2EFEsMAAo6v3sYxlLhsvPKgYcZuvI33ynHiTvylLeKgkcPuxoYCHhPctWpB7ppffaGdSI56V1RyQJe/oo30srtVN4D2JM0EWz8x1IG5J7XLgrb388Ua+JOPhYF/37x3MROyx/0ZmHc3DeKcW/ru+O1dbq400kNt8Aen65fU0hjCeuvsiyCMfDFY0bnvmTWYo+R7rKJUSOMGNyZADrpAnFTBq1K0+kGq4vScVKpkn4DYlLxs5+6QXepPEQxMrDUlxOr6dp9CPfuLrt4jfLjTgpPWAGC85Uo+LqGCy56NKob028c/FdbIZJgWkT/1lvmR8btA265S68LLhx7koYX7IjtzM7cmSk+6jzMfgCVmB7WkniHEykwzlxyjISajIDejjnK9S+RlVGGjx1KLvU38sIhelE9ZLaO8hUpL7R1OX/+6CO6TZ1A9+OQlMMd1/m+w7El4+Bxkl2+GD1R/t1y3kWP5reoM7ORI13b5/SgcXHm4F+QGagfUbZnIjJeehje//68xPyQk3hs7UsvMtaB53Xm94xxZgQGP/QwiZWi3Igvrlu6dVnurvJdWSJW0KEz57qKzyHxfSYEdY5mOF1psmGkdZ2cQ1qRROUGL/OImCX2Omx16q10KW1fP978YCApediVY2WqT5bqVtMmzK/oWc0Im1SvF3EzRMB6FDzTqaB8z2m0l3uzwy3PYrJnixaUBGWXgjaAduOjgRDMrW7I4K1E1jStByD6fwZxT2vKjh7odKVWW/l7nOatRicGuI71dvdl1/2X9ZQ8nWeem5c4QSn5grGntWKqOPZrP0RxJQSpM6UrDe9th/yTWIWnZTaQBdrrjNVs3w1jxJB6pjYVWWJZMruqANO3dtBNN+RCZj8qfra9PshoTLjQ7BGTHHabY6jyZcIbMJlAXIDGrXXaQZJ9ObkRua/rG6qgGyDltw9hJrFeVqa+YGy9ndL9hqSRcTegon6eZ8XTDuC76WiOKoE9mII3jCm3G2Wk6G7yKKyxWJspwLll17/hXuTW+0WNjhUqhJN8ILVX7jOi7lvsOtyT8s3ez6vmbfFuRde5TrsGduffkzgYYLvxvLDbl6AaIQTGcGV/kr3ZgEd/9b4Qu0VXj0oyv9Qi91e+SGf27mAhAZP3aiOgx3ggQ9ydq32ZnDsRVHnC5RmKasqChg/qUEaKTEmr4rZ225OUQ3lx1G4Fc8QltSf03/kXYuJNVqvvHrL8erMtMxVVPGAUo6e5dyRxuEkOG0eysi10M+xebxcrMqowf7XX4x7FmdDUwj6XnW2mgnhLghdYjyQCkO7h/eBWFsdfOl4SsGYKuMLrV26Zo5PHfgh0PUNRgbMBClUhzDGt3IBSZ7IIwDyQtijR/zsqATTnxfEyjM+JbwnXGhH2VmFHF08sIkuij1hBjU0y01rIvr031mC0sgWgFvrfrKk33B98Q5SibUulj+bObrJt+JLTUnv+ZQ/YczeYyaaEopCINT3ujy/gkDOcSzL+bVY0JlTeUPVlMUEWpWgytpbkFjBzgFobBX6k6BvpnkIYul2pRpWSNlZ6RGthCrGaCPd9L2wBbYuF/N711IPuJjFRyUNhPTjUJLg92oBaxCtqV0mtB0wAQxBPlSAYHbBh13ccm9b5QIC6R3gvK1cC110Ug4oZu6cUIdk+UJv8WkhakrgpV3vBpSQ0k45MaX+tnD7FN2HpJ/An7+hv6e0HEMScvzRLiZNUtttjtDkqgWjRUt9APw5GpGZ8YR0WPqsRvj36/NwyLmegkYlOhN5p6e4lin/FjVSmVzLaEqXAQVtaKDE8gx85iN/j3Lba/s2nmEa6qcyx3TD+3OoHdTOYlK8Ut2VuKk4LYDFQIflxfTubNIhHdRuvNj1NoD5ST9NPKm0pJBr1qpUK+FB6xd7qhQ0l+nQCi0cny/5bhLFL7qudOcpgfCzYbf7N2JkwfviqmWQM4huB4ibH7c/6gpxbBxNzGTD/3lvkOcUtCYo4Oe6Ic64wO+klq+bd+5VjPAKoJSHAewWIERrVDqxX4iWVJ2qB6lV+TATYqFd+Eb6bR3DddT22goZ2L7r+9358YQGTEFtpwqiqo0TCkZBT1kDGczmHZXY4y7IR7hq8/vM4kIcW5Km3a46FJAZ92zjwag5EKy0urOsRZ5MeIz4FuGeXWCZx2krWM175kscIye8Qgj/p/ydSsAercHo4mM5yY9suAWTdjP9QAcGLCFsLXJBUOXF/U7uqxFf5X98hTzsuXL+1vBQC/gNFMHOcO/+LKtWxIFIzhS1QJZjDx2oUru4OO6uHO4prhEJxYY+epRBkgo6JWi0ouwYhE9STkx4TkLN7+JAmPbvMfdgyvAdce/3bZ4JE6IKLg/PvNeTHrtGbtYFKYe+NRpk8TMiLlxr87lrz4bomAhqdqTJ/27gQBD2fT6B7jbCobmgEVLx6ksUZpAAegk4gMDdIiQT0EzrKm2TbG0UXln7jSIJIm9DOxOI21J1147prK7+/Sb5BwUzLy0ve1B/ALBykq/YYcwQfVgwYqQQHsAj+AZLWuAqk/OP4JSzB+qIrr+BNKkFsIyLF/g6dVuLASKLGbkruvuTEhFXnLL8/QT9C7n48+/2bDd0igPI1gLqKXMMaad2XmaIxmaZ+T1p4PENUJWW/Qjc9TpzsOyiCofK7znht8yogctGH+CeZ6HkInxWjDCL1W0Wlxfq0L0S3EwlonBHUvxNCr+I2j49dQG7EK/+UdegYSj5AVFGhrVwYwPex15oY4vrfzQKEbzi6Irp14gti9pVfjfvo9XgaSrUZkeJIxIlYgwEflHxyjZB2p20F7fRRS5RTEgXg6rcNrzTksXtEpoJQ744S+T/gcXANLvwHPOEerLUl7YPrMu1S8HoAguMI4vwo7q5qx9DMxDlthWW93RzgD6MtX03NcP3nGTPovemgiP+k8lkfef9WgEK3er+uwSlaRd73zQu6Uj0hfaUsriIworM5qp6euX6kEYyJS9K0Vv7zC6VNpSIF/JyVXq74nmdud2+FVz0IU7kC8jTBeYJB1GFdaIGAsTkLHsRTCHYjIdyWybInJcIC4GZdahwc0n8Gbnmbjj2oe3PhiExVeAse3bSaqozFWbzZ9j6ZVZBRnIONAKK2C0ajU+Vr+XetbztDqttqFRQxB0jMnDqAED1oNcMahgP+Pqps0mkRTWfFqLmgyOB0/UAiQjEOPzDTHpikRXh9XORu3uI1Vkzv+OcMF93PKAbZgcQf/PxiNgTS7j2XZe/OIMpkaUAui5kNKvqloRWZMfb8ILKrnNpG3MMOuVb5piIqCtNRTA1kG4uOhxGsf3KitATlyIA33aauu+XcHk99ba8/XqQdaLGf3sd667ow5CVc9ogPvRalXE9We1kheRX5dUtzVxuqqCKVKNBSKfxbnJaOPcYpQEklWi1rwJCGeBh+aBtnUli3a/bsvGtBxVHrO1fJ4QJIsnD52ZuXE6+IbCe5GHc8jM7FaIQtIGaOWwNywsfXh6rvT4JF5JIr1JYC0a+5yfHqeMNjeIyASs6Fyp/FBoruUj3uwivzC9lJASeHYqonOtXTkR7adm9EK5dC5OwYHHk/2VdrJjDUerxtL52VUBtZ4tWQPseLEbJl4tFKHCy+LXLHOLPEl3E5QuP5Gvs/BWf/vBcTwG/XA2VD3p7gOAoVw9yICDyVxJ5Skq8/YApw6TOF+FzjVunU0mxWWZBmsJ4p1AB5e3umBls8sFfeyuMGjfruqSSc2GnGFjORmUqqA3BZ7/UwEnbh04fiCpvD9e8bi2JCLJYFrsHRqNt0zblqM7LMqJYWSlVOW000qdFcnkNCzsEO0RXUy6/ENoAU+di3/cI7tiA40psIO6ieQcBU8QMmkGbwPYWGNpFBb1Y9FZR+pYHo0oL5PMMJuPWvyI93vCWJAvZDzU1glcIn5kr9V4QVN4qrNfuvplVCA8m7ANbdYvk4P8pm47cnzD1N+8v8uYLmOvJzwK4w+5WZ/FAhk1+Me1INkO+gBXyNc4XALdzw1at2nD/RiSgkF1PlPHOYB/4nkbhn2jVQsLn3hyv6BlH/ZqTFzD+OvgKinAWB5BNyuIfcQQaUD2V885UZ24jjWisYmc/8/zdrFzay6uVb+jIQVJ6uEdaRZ1KuBTbdattWc8jXBLXE4XvtshPQ9Cjg06FIg3dzLnx/bbnd/xVKgviVqgdzHafqCbkIa9e5q1dkhp4OFcU3QMgCEqXRv0pBAPkqfQwIP9Ag2jF4X/TCC4RAzR1FGCG1upy6yPCIOEChJfbQUkVSbE0nEikwFLGJZrPFZjxzO6jY25CvShBt+3tflHGPS6IMuEeWtAHrch9syyNCkinhEyuahAcnnRmgPAYUdXPV/dpsn4BN6EUbV+5V2Dl2hkcw8hmR1+7vSyOdBApTDuXb8bnHfmz5BeP0Nn3Qli9CraiWTPyEPL0xld9gTW0o48fN6xtip6ykFSvTmA+Vjv6JYlhQVL0T9eJQX5uQdG43okDCRftDItVWgCN9Poy1ialff2olttSnY/st4EmqNwm6G8KcMIwkOQcjGVTZS28pedOMrw0iivajuaBs3R9i4Lv/wjIsWcoGEcMqAqEotZIIwnswMS+hWaTV2lI4rohdGdhpayDnScOO5I4gYL+vU0YkdeGO3b+Eo6MNjtCQmE3JToljiYv0tpp6tsjh6ibj2vZXdHG9kNwGIW6zwYCQvAizGifrTuPP00Nd66sThKH62aPRqWnA3LqVhg6Rz8MWB9aXuSVhv4zNiUNkdq9r3VpJ7KE99EUpC0lLNiGuEPivRtEq44XcKgV/f79M+xd3vaNOE1owdyQ8YLFx4Qoo+yRajqN7OiROuKRMTIVEbKvDzXbjC0tfmJcprcH/fokAmK8NcSQ4cNyLwiBGSXDryYDwxOkj3XsjRiRbh2yLSotskkd4d9wicakVk4wAnZ7A1qSFooweg2T31kWj5LHbKzsZYfGDxQwJuqUW+50MPT7sBvi1kEOp/KKl2/APoG0nPfdfxdfkQYp2BWngkXro19cczV6lynM0kO1x2PFRCp9tLcFln7rSO+JHFvMkDF+1UuDcWSZUW4U6/ORL3qM/AB7/gMmCnW+jndhnt3LciHLtfIAgwuNBnPgUHAv5FE7YuWl08KcK/Areu33a3Ag9BrmSpDEXweANa2Lfqz9I/Y99IJufarpaw0r+U124LHwvksfs8ux3A7ntk0nQg/gebVPeEDdOhxrvgky0gmApaACxZ6rUxf74fSN32s49Khers+dd2YpqLhakc1SRqofhgOUsMn0fATeYNO0Yw7DSjM5ka41ccgp5vZZh7dURWzVIYWvFL1k69H0RChiH/SRITJxHyaFLLomHDJnh1YkMgmKpgcy1iL+TCplRUIGTjyY9evi46izf7v4ND/liKsBwuvweMlO7T/38az3XTiP2faxG1cDysRC4I3D4/KbEpDSZV6XxcNoX5xJ+gJQfSh5dhYDGcop2N5NDLqsGDp5ogSNFaHUpDXGDq2rMEf18ovIAoVPsafdJmyaAUiiwyquKw4waM5BBDP5szVCagLVP4oFka4Z4iPVng3Qdnfe6uq0TN9g7MHlBPo9TwiJslvMqxh0/+eqhShArnakcgvZRkvXdKnvuECaneIEHAdXBPVPjYA4rAeLULMtCrDWAGO7kgoOHoEEWsqspJndHiTaSb3+sMt2nrRZxlNd5ZIyf2OoPKiTCZR3S02Czh0eVir9a6o+U84CqLRJe0ht8dgyRrWNY2dJwYM6iPOW0p+S/eFk2Q2OiNjSfxl5diP06OhZgnk5rlqW62qDlYQHw1mmOfSYi9ia3e3kw768gmXfUlUr2IN+qjo+H15WMAa+eim9N0/47Gw+sEdAnqWj7KK/4Uu/7d9KYKWuYB+r4GqFzOjaUBadm+SXoJb8HZWy+F7sXFfdY5QX3UbRfF666Kl4rMOOy2luAFZQixKtwGwHXsoJJy76QiSQFHRYg2Vw9IO5p1yxGld6+493C+g+7l1n2X1G6N0mv5RbCv5bg5q6ttsNy53CWDsiM9OcBxr8YMG/5Rx1gj8jL4MaIX2NoW16tdSzYGk4g71TQJhZK+FPfAURUFmC1RUSKo2F3ouf1kU2bhcf/2FxK8VJGZcL5HGoAzr23VZ7Dx/GADtDr+ZzcIS2yROICDcatcrFuvNT+tE6eFQWmY5Kzf1diMXwN/9omXKD6FBCUX7cHVBFObDZaTKcwpTaaNYdnV4A6Nt8Mb421kYrE59tqsNO+nkFWmUBDr+IWv0YNCc1BzGsuJtauV152unSUpjnzjDOFSZPhYLLblw+Bv/k+xImhGOBYEFLugOjBGMswjXr6cVetv0mxnbEtSMi68w+l5FRnXlI/eemxQaipi/72yAFjzYFJKHl+X5eYWQP5GFZcGrQ9QThEpCdqTUmxLcEAmen+BJ3BmVkQ2F7+xGg1ow5q2xosjBaDIxdJ5YpGoDleh/0aJjpdHYs77jsDaMCr1zD/PJPaVZTmvmNHVq7PCEkDVmCUqRbkFK8dTfbNKEOSmWZeygZpxZUiOw/af622MrJkfWYRf6tJWGp6AnIR4wp4RrAAPXIVxolzbkEqEfJb/8gP2sFnV958U0VRtO7PaXGhh2EkRl90v7IpeMvoXbfnsGy5ul1n8o3Uw8IHG0jkE7KSPNG0PQ8JNI3IpN1NmPPr4qds9liOG19YN0o7lw2CSXnWHBLkDvgpWsexue0KSg5cfG4OEg7lEydS4riQJ8paSQ7pimXzr7RSGXb9r+YN4e85/SUqZnaPsYOgsNThqXvUfsNOhjxT/0EWQ2Y3vFBBS9GrCqd+zQoQ2x60b+EdtQnFmBer7H4ocAX5t5xjLLmtGIFQsKYsXNJYaioFcSRwM++XT1wy+3tPyNslodaM+kely6wBW3ScotA1eOA1KpipDN5wWClt5zMIciGNKtcYQH+RQJTfXNUP7EexWhYK2JlbSXC0GNozuDXARJJLQ5CPacbEwirn4DDQQcHzbsO03DK954F5rTZMpbpCDnihNtOS1qcLvHKRNzvC1ExWO1fp9dh90g8NIod4oA85/n624DY3QNt7nwaOuo2w+Io7mFZg+Dnm1yBLaTuqn4sgZxTS9CV7sG0TToFG07l7pa22Cfp/MUksOctSx3GYOWFSFDal0hNwOa9xHbwNjFLj/6HxMwOUnkHY09FNB1Leeftr8wLpkXScUQEV87F2sufbQepYqCdOU2LPxFUAL5dpwFeR7EbuDYEW7e+25lqC9uVcNpTDKl/tmnod4Hj5Y0I8as8fubqhJuBqyTxS7LNkrPfQqLU461HJSJeTqwiGy21sLwhjMuHb4hpHTvnWp4zpJaFdsecAWw//YlcRi5a2fZmRUpZxBO11SSE8vYrJkY04pzv7g0sdOTOckPEnq0OmiYY98I1X/Fc7yzdRErjG8dhFWLszU8i3Hx/Kbxj9rnEXvHz9S/+H2gUpOzcfu4k5unLcAygWVyAt3/PpgJkq5OMcbyU4dXQ3kQJ4KakVESVNmRsv31jEeH1zhjcKVYGltyQwzgP2ejcEkH11obfWEJzSjZ91i18xL0ythA10ujtRE9O8sjhG5ETiuOncTHpAPkKFOE351Y1q4JTZkeF2a8meA7txrhiZRX0YVSuIxoet2a0HKPm1beHJPqWhGTWaqx9uyBgHSgdDiySeYUGF1k4jp2j3jv0Y35MCRZ5R5/al7LS6LgE6F5+ZR0BlGe+rEwKLJgaDVp5/1zbZ4t3StgN2VhPQUyAegkrrsdd4W8IT/7sG4ajgXouZjHathpg7c+aa6gDgCVBKYmZfN9qI0dMhri7Yh6DAobVVzJRBWC3xQKAiV/dzsJrPdJUyjy852HmF+SjCt9d4yERKuaPD9f8+KRmHjI0ieNk6/MMpmERLEXKPaZH5b3DdrANMr6o5rmPeyUOAKBgQP51kFL7zMsKCkgp7B+baM4+1ygRFHHlQ==
Variant 4
DifficultyLevel
525
Question
The daily high and low are measured in four ski resorts and recorded in the table below.
Ski Resort |
Low |
High |
Crackenback |
−3° |
4° |
Perisher |
−8° |
1° |
Mount Hotham |
−2° |
8° |
Thredbo |
−4° |
4° |
Which resort had a temperature range of 8 degrees?
Worked Solution
= High − Low
= 4 − (−4)
= 8°
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
resort1 | |
lowtemp1 | |
hightemp1 | |
resort2 | |
lowtemp2 | |
hightemp2 | |
resort3 | |
lowtemp3 | |
hightemp3 | |
resort4 | |
lowtemp4 | |
hightemp4 | |
degree | |
hightemp | |
lowtemp | |
correctAnswer | |
Answers