30248
U2FsdGVkX18pvDd2n5nYdAhb9PqF1BrXjKx46sQrtRKF3rP6EXtIyCFDbojROiybdTT3K/Athc7VA9g0nZvD3XRWErySJg/cToi2jLKXEzZyJH3n5+zwXUMW5+EhpR3jnCjWgiMyMwB25Se/hzu2fkJLeopwCXtx9V3iOtF8sEqaQI3sp4Ccvm2pYU9NuwMNREL7i4+BY5UZ3bZr/8pJoA1iOY70uzEvO5ANWgAot+By793ieTYVzmtEtWnr/XpdnzWP+GDb/HuN7F9bZGswEBLwFyUK6sLUdMq6cjdqKzXBNBMV1jEKZVBS5+lfSlD+aWX8MCXnNf4NuMtxof9P9hu0T7l4mo72eCYU62Bk1MOoX1rzGNFDsLUVF4/FQ0hZADGMe66VBML1lr4fV9Mg5tgR22g35RAt4CKFp0jDNQJ4HyaRH162GCBJOBb1bJ5W/F1Zv/D/nN5iLi6ob0hkI08DMgKInju0CG4UlBDmn7C6ptt288uHrhZBuhTsUnI3BYsHKHsPWMB7tE75/3ADqux32gqzBevmt4USUW9Iiawn7TXR0nOBU/waQ+4zYr0DB8e9mA9pH/1dS7hY2FULpMveRF+oTUFZ6wP4wo7o8efjVjja+PEofqjLH0Kv9MNzX2xMszF/mjdjPEvWu7gNetuuJWNYIWPruUCY+QHcUOZrPYdAirEW4tExQfCkUNKkH0fSkaNd8HtYx8mZS/+i+Q6zU6NgDOfWRtdVaUoItDryHwV57r8RgliN/uEzPK3YCkRTGAucncqkATlRrqdJ9jbulkATCIQVZvub7sO7TsxozohcoZ8kYKuCEbwhzQhwrl/N2qZ/m4/ZUII0ejAZea/iJJMFv2yAG1xmcQzrCQO70ku9UBByqgAR+xbPPp910ulYjBsFDh5k3jhk5kEorZM2f+PiGU02RsdjWBssHHlYOI9sDzB6ExOIkTRWGDhWeYKhaqrupzt5e2Xw6o+tWljY6qeZoIpEvSBvoBXXiLcWjzmUiAh0IXIhsmKXDcdKQw7lpgJgvjM/5CE1e2tg4thm7NebElLGAeZhkHnaX2YYGBoTrL744EnXZ81dJPHXcxB/yXtRMXhJhYyFTGSrhBv8VtUyf8nPN+jMjHfx60V7x0P0xJbqEbF796R/wwKa4/HXuzDBoQIa37TLtk2Nr0P4Ac/d2VkR1JeCpTo1Hhj1i+sk7rKGygk/wRYfrdwL6jP9x5zpSVs68aessFaTDf9ugMmTIziH/7J29L5W1fQMWu62hB5rGZV5uPQVvBibI1xG6GilP6C8ZfYhs1NVWs+kXvVHYZJhmKnADxaIBGSiaS8YL24Niqfobz1CUPX9qXy2HTRpzK3mp7bZlhiV7KxZ8D3gtKnf9tcVMGBmX4VhofhdJokgg7rpv7hm2wS3hBx3kwMibufES5gR9n7kdXAduHtUoUwY05mS1IaE1cWAuBQ9ADc75g0UPv/YkHxWR43DwNz/cCC+jDYYVVT2jQCyc8/Om+xtmuOFvs3Bqs0O+PVHpkuG1eJoRfKw7U5XGGW7T0vSNemWGqaMYjbo68OH1L5FzfCEJhRgQwxB+FgEDxRUBjCcB5l/+/z8mzFQyMY7v460Rioq8hDE9TFlgWlUvMQAC3X9Uj6aYWdgpA18HfnPYSwC3dle5DvBYOMXv+EvCNxQ26UenJvUmSxI8k8A6pbfLVEv3Iv32TjwwcRil3dI3/KeGMOdTRxoBocJ8PU0xLpUiNDDbXoshtVBS1mQwV+b2BffBZ8MS8Dgt6Sd8leKPVkdCzxqQOsJcCErXukOc+1WNrxZfqCDHIhYI9yxP9uGsV8lqwUa0hE80LKGS9hMIV14cSZQAFK37T+ZmK3Xg2uRkTZIl1rrUqCjNZoORogxL2rjxr3YWgns/YrFRiD2ksQNivRDimT0tXV01p6rwZkYDfIY0vST/MiZWUYMpHyHY981jIRSe7VWV3bChwXF4qWXl/t3eKG4xZFD45YnBLAKiQaDFqzMxHVRpbtuMMRtZhMBJfHL6iDFLJegjuETVEixqYmI+AFNEAvVnlIG9zeA2+VKx2Ee7TzwmfGg9vc1M9zQ7Yk60TuCYXNbEXj15NcCPbYilVfTK+cQnpgYyvgcexoKGGZKaqRcHAkuvWq0szTVOxe3L+vOiJSBVOcP65HPdVMfF67Mw5RyHgrsmd7VRMiqBcI0nHBp+TjN44oO7vFA8CHJksmlN4sGkDGF8Bv2I8P6uoi5JEGMbGDv9h30q70Ap67+G9iPbIINMg45HXsB8ZL6hUa14eGE6RNJu1UtO5qfpqTvgJuKtZXSoOtCCgElupeqtr5a6k+gDUWZwLyKyCZq9YOH5NHjPoSNRErxNpeAMONDuUIkyq3s0E6Ic085Pqct8ICorRFPxsI8EnpY8k+xXsXsEDKHVZL3BvH78U8Q8fzQI3yKd96cMsxSIJqBLshYR6nldFEvYNhZkA5c79zkxC/iaeE04+jzdbWJAJKfBcwWenNSPmm1P1hJ2B9kQiyyjmEYPR+Lq1Vc77MH/D+Dy8vuQN6GQYLOmPdIJXFIzL9aP1l80/wsHe9XffkefTw6sKTuGC446lTWD4hboEZsNQZVBGtz0DrqKfJ3vBRwCYuAfJ694lfFFsoU3rLBhaGGNlJMZ+ceG+eGWUdLGOCd3LrLGBEqflNGWQXxmiQ4g934leP8YWI3qsFjF+I4QEq5XkGvPIum+RZ6HzR3h2U4fGHRinIY62AZaqAzPWmO2YsLkWMnbw1o+qUciN+iKdG4NAPrT1bN0oOoivDzPEKKfRQmONs7MLtC3vdwjInsN7ByX2lhUX3PCekgNwDy7F6UdT2TLK6ejJ906NYs7Z9IeNCzFnnTmi2KVx9KAFLHcgvyrZVOIQdJr+2ibwX3t++MsiBEobx6V1bjKRU2ok/xvtq0IQPZKXSRLO/qPlhVx4n5HER8b8jJ7DlZlRs5BS8Ym6CGrtz/93tJ8ZoKmwhf4NAty7YkTVIMpAhyoBtDbYrWbTbQNnAmU1B3Gl15UJfWhSN6GwBAn+kbFVs3EXsVuX9jBisLKdDvxn6Waz8n4GMV1RQvTJofrBZ/p+EC0WtPbzAmuFFCbYi/bb4pOQAQv8fqFjUM7g4aoetkZtsd4QYj937eDc4D4F16z2U4m9MllQtEpDQVlUDCFa/n0QZXu7Tb19DLBsdQdW82tPgGcZEmtcDvVcMQztwEl9bZH3LSl4m8lRYMIYuie+jNcQY23MXg18zkZgsZfxefA61eRLqUJ1JvY6GhuQXs+K4cBbvRpCF1H6p6vCGbe5vInrYlXN0TcmtDQpbnGeRVTFWMGu+Tg6KQ45A0MdfphD5k/hySjqyMzviOhVQbDRTzN2MZdNLbE+cE7nxgsm6iP/q+aq1zZ0PbkGWdODyvuA/c1mYRQ4wKVDoP0+JZSCePFXCvQ81B2h0ow94YhICU1XY2T3b4v+BKO6Y3fSVM8K+qns0JC3gX2hhuEO3WPfqxFxE/fVZjN1k0foLBS3KlMxC4Tl7ZGk3PkQHGTWKpfUI3xGOHjXa58HKTn+Nhq2T4P1XrSKcAkGOAyQ3nh7pty8kK7JzBDP++6um+0KcWT7r+6exGQ82FVELFLrJmnIvu8m4mmse8pVhDzV1U/qnFQMxgvBodnF49rLuSr9/dbZjyC5bbDEazCJMiFypeKbI0Z2WGHrcNVTHsIAYTYB7DRvpLwdzjul+YDSmDk9aK4A+SaVHm4luBVCOO8yswnygvZUvZAlNgOSfIgr/1ACxve+pk1sLwEHEtKw4d43eZujd8oKwhQjrJd+elzEiVw/J9sQKOdjkDfs04q6spA7CWe3dx2lyiYGFTd6eA5dK8GtMFJuLnSirFka268uBOpEeaAby/UajtN4lhqKvWRH4GXgcIKSjfBNJ4BRt78gK3Z2PxlkPV6a+7smQWs1OG5IV4wSHwR/mVWCbOxLAOJ24WbLFjW8i2jOGcg4a2fPQArAk2s4qhlwN+FV9l1FUYflsGfzu0i+OBsG4ZVfjyLqLrj0c7qyJ54NGUvysV1VWfV/pO5CnfWNgbSJq561u7oUpLXPz9X4chQDkjK1s2it76LCF9tSiD768+Jzb3hDQdnuKhWKmJpJHiMD8DznRUNPioHEkqL4WVG2dHjENPWe0Ha8Y1R8Hq2MmpHzAyjfI0Ope7V/jVPzcsFAW4yjW0Tu8In3UwIBQS1OhLvvS/eaKVS97TijbR8s8Zccq9RQcZaAG7xd0/skr5Bw08TxtdZVRzHP07DdtuXpdkEbk9bedmxyuDwm8/tS4QFUcHBEVmVLckhdn3n8mp4IM2W4ng8RlgisxrZxOufhdxqbVoWS55gtLHF52t8hsXJlsGJvIQ5AvgiNpuhNS4ZvApdavRC3vjinf/S9fMS0jrqc0rD8yszAv+Kaec08rpvvge1IAStg5kw2nBIJzGXA1S3NPUmpZyLY8L6IY2DOmocvpTNt5pMf3pl3W1zpKCjcNDMg7vTnpfEaUdQ/6CxGfnd9HErU+7pWL6HdF/Re9mnF0ic6D9uIZw4F6jJ6p7t0vi2lIMb2LQpKDwp8O4vXFAqwt7s3L9GuOOS37Ifi9rM+t6B9hyFZikrN6GEI7DP3/Bnz77C8mKbh2y3kBrxirgE4dusgNTbVsANPjppITL6N2pvWbSeloScErPN+GZ03Bt5Yk76awrlpxdGSWVR6Qxz8uJTkDr8QaV5PUiEavL81/GGMGxFgETIxzCc2+V8sk/I1ASvojp/odSLuzJeHW1HSQo6iA9ruKd8eCmU2JBvUJqsYUr3008sO5qJggmReRZlGskDdGkHEFmDQHwEGHKFvHAW/KWuuty5ZGgqOIOCu4nzPqsT9G/s4IUDGpDv/8IBVUtjCiwjPOoJCAs5Qriw5dOrJV1WV16nqgpWIKzBbQxhOeehKzfHbwLoyDR0WlYgWLiu+4wWvdr55543ve4OhwWUPUcPs588+TkuV2WTo5rSJI1E/L+bMVlx1Fyig4OueefIRUwhi7+km7hYzmrMwYRzPtc7GGas6v6BjB1QhTZ7w6Dti94zPU2Ij0M4yomDJ1A1s1DPthi1D3+Sp1g7G0blnVvRgcyJrEEsXKe++/cMKThWwYghh5o3TH3C2aWJqhhWln2dp+Tq9k/w0mfWef81D7w312D6sjMQYTVDIxiHBbN49aORb/UwsPf3cltuMS81XHTWT3GOrWRgH4dwDbTEPqtlJdMfLtFVS0zvim4zoXiykrm6SJMVhkheCaG6B4SlL4vbWyd/uPlxhtVha7WWqNjo6YYOBa0boOcrXp4CzXIVQ7GUGcJyrfzMAGHfJ4+nmUqn2A9nglQRhRbWAUtYguhiuLKFoAmcw2nEM34BGAOIoSEniU6t8aJExuOLWBms0Pfzi9v92MRGubOl8gHUfdhlLoypOttJBCvnGivZzhUqhQ706Je/uoBWHF2c+8uYMY3Ce0BopLQEHfxBQVMUJKSlh5V26zp5WbHNu2LFoGnun4l7mQwjDMDthW1zyrl0pWSQhHpZu2J07IqNHcSmyRmTEd0gIHHp/baHZ3/CFVBNzoo0DiryCbkkv63EhPeiT/v+ZyN+nbPXcU+F/SYzwdYPmrznV3QmBtuJ6FcGdYcFg5KE/5wWBZ590aagYDRTDYXNaNW13MT+ZLmTmaf9I9zx1f+o9t2XIFBNYBH+Z3MvzEAoUSytRRW4D4YMb8k+GPK5nJ6qnXDGi8X8PKZnszNCS1NvgWDJBa7DW+LvfyAuV1nqVgw2H/U6BQPMPiSYGt2hdZFGyR8G+5oVbfIXmPrFhI52DtBdxDrfbXfjfahPvi3H1j5QDRbUvrK+5NW24aQONWq9sI0F/yppfFmcfBhD8w+pnUIAsWRGfhiLkN5JtX3+G5tW0b3muiVCvAPO/d0kzTUuC4AUVgcWkHUjgZQjSXiSeWnWpxYY4ihrD57qKnlHrO+4DO1jTAWGhNVjwYXsmA1+IiH4BCCrVmO2j0lwHyyS91bcxW9qV2BBC4tOque1aM7sY04J0lNiXkp2+T+NJHHuW42dm1ukxURab9aDeP0NpcH/yZS17DUpHtrL6zPbMtW5S0nx4PoPtcu/ui+1ajJ9NqBJGFCV08lof6cm9xYDvXcKb4AsIpDiKrmBD/kuUqfQ9ecGvItO5arVBVJgM2cH7PRbs3dI3GzB673G9ioXy38//TpaCHoyYtWSBVPTfJabiaPw5fwm4TfuOgU0b5Tn9pXwKu3BJDBpB1uIhhdBhCB3LPQBS7aDVqdnFI2AbgDDIKhQnCAleDT0354Kw01U8HXf/m5r2MtjfGDS/mp7Q0t23pweXc5AqWEgfzVQ/2Qy5pWe+PV1EXay0UT7ej7KwXxUWKsPFBq9fTcsDWVE/j5ev7q8MNdMP6nqdatqWjwP/ngY/fwIyRarUZcxjU1QXKxyzPRUGHduwmgiVpMvVd6hvQ+f4lVk50f3KV37cMGRzV9wkERLzokeyju1hFoxJF1gc/3QjY/44S3nr3bGmaO2WMHjRvYWdH7txWD+fF3brTKHOGLbBqzH13Z1jx5ndr8jDwStvwT1UHZxJisM5kBY872e2cGqJyeiu5GZRO6iSslDtiqUCp8PwCSWc3dr0eeZf0Yq7pd/tibM3m6qKTFevMqH1jXsVdYTczRTeUZO0yRb8Qw9UYDvCeBy+S2wlctCBq87YTs/Q4mgd527wMWAtz72WY20dhUKj/Vo/G07kxc9ZU4jG4xlpnWzFGDDHqujhE1cGs7eYyICS9jYDP8KbvmnGeWubfeXoBY2I1ZRUOHleeb6NZrU+uVyxx94xW1MpxV3pryW4+WA7GXFDHuszjmdkW10VXUZC9jYaxc6hyuR2n6CLHSJ88g8cvkr3rDeMObmkLjYH2JB4xTr1nn1UBCTz/x1Vy1iJ8oZp3WQup2GLBT0ar8xxte/5sEHEIuCYmeQ9a4C1XX0z/sevZmJxEBzgm2E0jvJIZlCTGnb0j2Un574qC7TDthpcopYU4AjhBLak7JLLTKjOJ+QjvGOlApcbP0lHg8BWdlrPfIEuOXxKSbFcyn99syFlUzR5ryVLoQHKrcwe2JD4J9t9vsn98BX4nnoupnKqNMuCPkrmLwiX0nzjmmhJJfIZO4O2IcRvGjAXBiE3BaWnK5yDGHb8p+uCGPFvva1Qik1uNnZYNAaOBRRKmpFK9WDaNnR7S5lSVjocvhuojIeo2RnnY13KbDXkTGwK+oy9Imce1tJtf4yYbC/8lBIUaSI+9qC3SbCWAcr4p9rNi5Bpham31xr5enl7o2pa6Q0YpzMUHSLtmIT8CUWuQbGmBYZw0oTP0qf1DsJa20cHeYTJ2uC0s4Z6KOPIr03gurPTm/BvXmi0MOWiDQVOF9L+3FAaOUFqcs+U6KQZ7lp1x4fLGq7O8Q8Jq5cbExbWZUPcxZKF6ZW81Z36KYXgG1PFQRfR29vT3vLY45Hj05NRJI+RYkRyboMTLpqlU5OvrAp9cW2Mo0yR9+EopTpGFhWQjngwG5NwD3rcY/Qsv1ku2AHYVMFzwOUOkjzj/+63n0R0+khh7DnmLdc55brccePuO3qWXHtHCOW3ww2i8SUDKam5rqVKtWMC7E+7HwSy/QPfOzPq9jmtjWHmm0uNIQWSYR5YFjTwP4iYfBVV9XLmC1uC6a5tKKFPAN9q3g3veyFjFYUrdXm0829S3vbz3vfcjDA5hJaGY5DqFb52CHtEwNi6qghux/7HiM5JbvOG+DF5bactUgvc7xqiE7m7p0gFdEGJjARzuhYHBgGbJD7YczTpMdd3khweqpjQM3PAtXMjnrFQQpBTSlX5ca0Jb8SVoPMVczX/M0tFx8VafPs+IfPsfy4dWt49L5fXgL0L5cbDo5dqlLI6xkmi5ll5pQtqyU9rNYPfJpthfTkU9SfybVzxx3v97101oSAobgUfQ+an4K5LIsUOmIrSIzQPETu8LGQQ9/7QwS4suPvkuMqjgpIxD/1J9PqlckTcebUws2NR4l8vEfVgo0HitTHN43HNufZp/A5MNNXZSdmv+OzUvOeDlHurJCugZ3D6RKq6mxqG5Tr3D2vkvpzshZE8zbITzPAIV2rRKuptGTVLfu6eSecQe6mfBLQhAvzQe6tb6r3h5HT94lzs/muU61R0IgWoX6PXcRFCXFdqvpS7BKt186ekv7FOZZbzlcAZ8kLqE8heQ/yZjcgSkMLLMrC4YYiKgRkNmz8C9l9Q4LoBXgtYwqMyplMR2+nxSgNN59KHC/zjQ8SwGcIE9PgZZl1GYQRAzLb+pOx4Uy1ICpex1KMY20L6aNEI/qxBGZCNy5+kpEK0QPctvkMqj5qMkT4CzUuWRoEMWLfsUSNTPucJnn6o6Uof08mtc1eGIq+yriE3fXJ+sadE0oKBG4CT/uzhYZQDSMiSd5Bl1OstQ+xftscknjgliIzOcjR4Z1kKYTqtf2weNr7Keqwysz+dR7xkgAGqQUaNSVjvUhloBb9SaOIkJ/zagkOqCAQVsMbwG1ezBHmWfjqKq7O9LAmhrWsAMemN0kGQck0iDivlHGBWUtCcZqkiCjjNdxgkSeQJbiduahsZihZyf+g13ts3jvtEV4nbkSDfzak4pNsuVflvHON2j/v7Y4bJ6T6ztImZ5Lg+AdJYA6ydvxU2ceS3jqYuGIfo0qDuS9K+tyxa00nYW96m8eOwJ6q8e15htay3nFbVRT8L9TfWimyosJRnKfnBdQdV0Cuu67qDvJFtE0T4/oJ8N3iEUfwskKvuaG2O/0KpHJHSgrnBLwsHIg+P4nJB3SkW2FosZKuh76dOq9p/k9pUAX7gJcf9FcRCGO3ZGb/sjlmA2rU+FoUCT5jRzUd/0bFvA26cLAsRuvfGiUT7vDKT8W4CskII/V13SMkdmEOAJ8gmd9sIspSI74I+k6Pk+/TRPOymESFY+Yhj64HxeOnbGxAf9Z+Vap9SRAaauQCqRwlUzGkgZD7U3cBcvN6RATUfU6CUykGVjtZA+KA0ph4LbpT/F868v5zvwLuGThdrCyB7t3TpfCN6G041hZgQrnG+eS4dOV0PjIKGqhGotETvo89X64gTlxmBeL2qjxUMipqtbiUR0uiqHrBq02lTFHvlRVwP8szZOiN3vXxP91UbrV5WnhteOKKDAqzWGdKdmFh88SEIga6SZJx3YexY47mrTGdQ4KwpwkZlReL0qPT23+NUjwPCSNXal2Hk+VZBv0g0IyLqQJrP6AvC8TLWkrWxJFOSRdBjqfrCFrJIerwsZYF/+Lq2w1x18XtdaKQ1WBEVyJqh3PH6UAKMacGDX9VbiRsE+lQvGzIf+LKzsDnoTeEhyNeUz+p++aBWLfFITcmyMytwgdIQOiWF1DBz9P+b4qqed1gK0aQBL96g7NaZAFAmM5EjP8TNyXmoes/NT2+TJ/lSPLiAjtaF5TIhx+5blbFj5h0ajKtJcbs0EuS8nF/WdLfHI8Ah+fWIOkap9Fmmv46ILt+8QUwm6xHtgogAOpoa6RdBiGM+5Q8qGtHchAM/q/4v+KygqwuYD+g9MWWN8mROL9nvhRzBkZNDkXFRCgNTdFpl8HDplSi7t7x4C8fXajOiLUgayh3v/oYE5+K1hD8/wJD7nxvo88xskvurEXdzVxUqS2wnO/dZkTI+sDrWAkUUrjRPNwMsQDKAi4TBzTxLFqjSNySa+CZ0JSOHKrF1Ijt9R+f4Wt7/bCM4Nv0d2fPOWxm3EKTrQU/Ccoc3iAISn5PFg6kdYS1ll057LWAVMC/i7JL4K9EztskQHqB7HSrr5dYG1Y1SIgDtsSwkXukSAl5fZiEQJrjTBaAGNPFr6zT/AkglLxMPeEWtXNUaYLOh5E/Gi0LpumRTS1lvRbiRCKwh4vBl8mbVHVQUWdcuH/hDVjvpW+8K5UeGNUhNuZcNGCi2IxNYch7vBMxOxeHI53S+qZf0BL7xgef8FDyoAwKkdQ1qdgvANdWnJwSnpqocGUCM+nuz94Z9cT9ZgD+Gx6IBsbnM89lVv8wvGgWDrPRQopxlGqN1+hIK+eSWJoYcLYVud0D/6pksJmNQXat/bslDqb2q1+IJT+flhUfen6PGh4s7LB0U9uYypPNnJEFRu0C6b+6RQ/b+oD7+SqlIG/U7yMt8EZSqQ23Ye1wvzeVzAAf2u607qnZpAIiVmNirPLo6tLA51cdoyJU/ZFw2DisCVE3dVA9Byxrg6yW6DN1MGSSGhqEcYum3fuE+hcwe874MDGpLNIHK142yHe1HUUR76RrYU2rYmTLes+NtcpLKr5lYOi/D+cv5FsqVKPKsIcpqrheK4gdvPIgs3F5K6A0Y3Hp0kgSUovlhPsWHSpRu1Z+NnIctVNydY7SvJosCnXEiIS8Y1fzYiHfdEemKGirCZ74SLJHicG99rbDipxINRyiK5O/HxTJrZgalg2YrdeElC4m08FMp2Si7CjofG/CLLEzw66FFLQRjW04GZzlBTD6KZ7TVNcCCE0IQFp/cC2izJrcf6yvIMWn4HyGDE8Mgx2JZ3YaZRg83w3qwdNVDRm/k7v0ZTwr+9y98mCSSEjDFiQrGg3SvUA+ImYHk/8jZ3OuvsZ7iFPuYuVzR4KUzSVCq/bj5agSFbp09aUKDM4SBhFnZxWi5P8DeUSriXAdAW1IpqSXkuIy6Zc2z6DX5euBC/C3E+Gd0mob8OORY15fCbyzyh5HHnNqAWOZ9BVnw9IIkFmaWS30QHwWsWS2DeY5V5qFbmHepLn074Ml+dgCB4mkT+9n0M2CC5BuKYhzq/pVrEFMXt8h06QdnM/qLRwQhaRrHvC62eJjzIcpf/q/5xXnSK2tmgJXJPKOwvFQON3mzdKs+db7nF6JRfHP+OyYMgFlZyb9jqRXt4ezT8yOIbAHkqlFg5Qlu/F+f6dDE7Vq2XYggUMWtdIrb5GoC+BhY7UfEsK9GSbAsLIVK4NpwJxhKovlzRk0ZkyUNcqDydu7753arCCteWt/+oU8oPbSQbCHZwPdD2AHZE5hvZv19Ma3ut6ApSAhbMm73C7HihsbOIYGYkjFRjHMgw0wHhKxEXdbhcG53BqNoxza9DdquhaFwkP2BJkLw4VIATiGrRYhSjsEA6uNI9K6slF5x4KXPEERWj5+NJC3vGztv6AOnd0COxswtzvDaySXT0+eP0PCmzkcD/3RGH2wZSWLhg7pB3pJG5Dick/Kp92tu3OzhDURkgYwTXEiq7F44uKICQNI9XMz/z08KDCwzqTXfrccU5vrCricfDWiILa6bJUK6damuytPgZlulCgh+GyzGuLOaMJ/H0GM3Ws4n+EpmmogWBUagz3/dbMpuxL1OLyKrMZYJARf53LM0Vu+841dSt54SLfhwUZX5nEuTlUUPHzeyUc1Arw9sCdLig1s44TvkPi01lGxFbJ7GM5zLdNchhGWpC1TvFJut3X0m8GA67ovKGfIqMriUaofDnaDCD7pj+0KmzyKfAEUFOvai7yV4TNwMEiobGof1/RT7H872Ic3IpyzM0nh9SaT7la8j5R7hWqKeGr3OrbiLYwD/UsPwXxlqKC3EP1zwn5cLsiswV5Hwd0sDaR6kffBzWDUCNcNtXlRjsRrc3Ncmyqu/vj5SF5Jh9PBm7uVYS0BIx90wrnfCh5WD2SRCQyBETzNVa2l0YownWHPSiLvZTMYdbmA+Kd2cfvcAMvdTPGhou6tfrBr9yVexUcl/LxaQJduNCbaQ8jiVWltSOYxRUKn6EXmSj2QmezH2FWmPoMidvMx6p1/XikFj5H+HOQ/eSZasqAufoM4X63ZN2+RljFtK3i+A3qpt6F+rhzIPP4IvdVo/aOgddAKUAp/NmNTfju6RPo//EhB9SKkBePGd4bQ8Oyx7NT3HsfUxA7dAd7ohgmGGowmggc6cs600M/6QS+jaZpILjJv9g4Ogif6bREMvEzweqRGNzDGA/sI6R8tN0pXXsm/kX/g+4t5OjNM61mow4I6f7ml8/Ges4u8VH3AeGgjZE0jqo07S1b02VJ6hecB1OtA1gyyYqvEWxhgmxGnbk2iNFYIHq8AasqTvoGzg3BRqWRiLWaTbkLxrqqhOrOS6IXScntHiyG42i6OIxc8cmLL9kGI40c/fqXCgI+0h8byds0RFP0gy5fL6OhkSSVqcAAMfUXBQZxvVFOafVHd7cg43zkhqH+jWJuXxsTzoVex8+M7fSA30gaJNOtXXtk/M8/eWISXwvDbfJomRhyXJPojRtYMJD5N3Gax2Bg70A6IPHaWJAkCSPLeHdbcJ+l1gO+7GBL+FX7O4lfZeGMFxWVxRYEgDkrKhmOYtcyDNNs89f7+OpkzBCFRPBk2p/qZVX5uv53VRx9yYUoo4wqA+BGGxZ3oCQA26UHYvY7lq31rjHpMzdD/cVp771NB1nt1kqysE7bd9Nqkwf/jbqP7KQD9rfuj81glZowRbsPJWZJjByhmlL27BdbSI6P5vB69m4ZmtOuTqK9cLEGK2zVJtuVpZFLvC/xag/XsOvBWrlXHpKfX46DetOmx7WeNkEyZA3wtv3aB448ayppkrZA2WcnyGeGqMhfsD7OAGmzg+t+50gLqrKP5xHoHVCI6b7rclqsnnz2RIel3eNFnjZB0oMPmNUCvuAk4SGd//meJ1RkPQhVIb/OEYPORA744rTGjVVmrbsst+jbh2wFQicL/VRIw7LNIe+s6PdKUMjJKIC/WFKZYSolReZH8CBCGJH9GYtT5zJ/TJK9OpmdP90XZozM3SkQDpyCkPW22VG0bfzek+6rak5BiisQFnz6jJ30ivXSPNZPF9BxQTKAfMEExsycg/7d3AwjOn/DkjQtvQw3vUlo2jv1x+vzaUkV+7P3tXkp6uIGQ8OOWahus2KF/HPwxQzGX4AY9BGslIlMmCdQwvkidSjBvOKaLOeKuvgEfAt3GCwsbSHAyVKftoOoyuvczf6srAkbD2RtTIp4jDi4+6DJsnmRuEBUGZGTp9uMwNLUHK6wgLett0ujmTiXjZlaY6LOyw4hVsVL1Tj3AsDqK4zsekpyfU1HRbSbuufhZyqAM0dJlLoXeE4E5tLi3Atjb85jQcHronZZpM63uQSxYABeaebGbQszzHyiv/EbGz7bk8iGAACuj28naoSIW1jQGLhkjLt4VQJP2DxrZmdSeTmZqOzNKmtxlyf628PA9TGjtrVSVKII+RfURlwOcmqW0B/nO5prPRujKoSec6kKPjBOeEuAj8Or2cE9uxnlWoP1FZcjjAQMWC5sIIi13vGyZlyW4ApH83Nh2pBRuj45DlxMHxYuovWqEnQlG9r2nOg1jQek9a1QvDmXaTRCZaImuWQugy9s2NTakpiAEFIXVan1pngU3MV2X1LiUMagKJa63BcdOnqYLIbE8eVVxmluUFtCCJ8DNZ25hh9IgaSTrq9ErgR3nZI/ToDwsxJ1BOSO7ltKR+z8HpyGt0TPGKAzJFNX9uCc5kvw5hRx3QAcx0STCjQvoSL9Xi+vzJS6Ie4y+O8tY9l5sbTUm+dFRn5c/MWZmoisQWvV1KVpFwN3F9bnFf1kazVy2+w6gE1Cyyo9VFIhDXGZVRF03DRVRBycfC0y/Irjv7M9fm/CZzmddyzhB5uK3Dkra3FH9j+hOkDSBRnNfHpABhV8lrSUnQ+dsimceNv+stHIzLjUgfXsKoHM6C6BrtuXwWs9JzXvhyeoqQwImYslsY6PFUao10s12KFtEksgMtY/iLGZwVAlEaXNJ1/jaEDYwoedA6T8Bu48dsg3uG40hNILJC352ixCW9dMa9tDWEM1hQD16ag4HnIc4bCm+/RoaTO6wHPAhXMbmxu3k2/T2i+ekhoNFlPfZTsQoCp57W/Fmf0vobFZ17c1mBFpWSrV9bzfcpbySk1ik1ciUJ74HpCn539AgBH2HEO7a5vDxvG1Ysk6WWP9ASREc1KO8AzLwE7EVR3h52PHIgfs86oL+2k30qQ2YRzoVjcWrQn7WtHDGft5aMotmcXc3luBDzEYaj2lysYmW68wUto/AJdB/nuCqMkHFnpUi9RbP5jQ7ZAGiS5cysngezpfr6LZnD6cHOUPUwtWwjOJAlCdjTCB+JhvScUKMKHH2MK5FL79ZojgtdrQM0ktPecSY626eKZn/l13TCP6haN3jXDh0M9qMsIXfA5R3BdTJXakjFedwX6I+7lxdYUEXK1XvaslBjk6BUfyNqoEejT6CqWBT91Oy3GLV2+rTe30lE1kw0/hzru3xuKHt1gDtnbeWlY7u3z1fAUg9f5C2J+eS1oKxUNBYQI3sdMUUe/oYWlnHM1TK/XXpCvqpX86RE6ZimWnyjPhmLFBpvSzjr8jC3ejUvUFMG5pksH4FbaIaJ5A0fOrgiYUa4VhkUkT0OnxxdgSgBsxfa5cxvjj+GH9gcfRAnCZwu8GAJc1beVfreMjMQ6PXo+uj2ctP4Tpe9cv+N857m6FVXleSQ2685/cZLbsdiNwSdztqmHkKdXb+I+I+xIhAgyFvbDIuUFqupXdMd5xpWVxW8XHuvL2G07qWZgx8cTtgrRh3bsjSUYLakCwcK2cLiNOrupzth9kci691Yx+xAW/ZCxmkBaTdFKf0+WUBQ6vO6d/u880tQixrmUCeG8BZCWL1olqjKvpISis25MBFFHKFcJWsiq7VR0ePI8q+jHqZUk8Iaw7Wj8D9yr2jgUqJ2hQeNazOtWFAgz1O0ScrHAQUfOXNBMD8yVcFGU8kVPaPzEozZkFzayCNboKcfSNgwU7ERuzuZU6wyhwMgM1987ICdHlI2Avi3bq+5d+9/Rze566odNdbg4ey8to0dB9fSzUnoSptOXzQJ+eDzFv5Q8ZQFVYFILhmBCIb1JjVEXclx3ybKYJhts83XSTXaGZU8kEhSYcpYG91I0qAtAoeDWUv/WuluXewiaMt9vb0DTjq2C9wZa4I1uvOV7ng3L01zFEKIV7o/xgIPmIf+j/7t7U1dRUr6hhbeOsYHCGYLG27yQp3BD7A8KWbaZ/BSGRojQi8wpletF+80KHTKkXxxUjV80i9rITQcYkbTl5F4VmIdMLaftJpmlXWXmE5FATaagBXY8LFxaPqoubLgpMZb5vzzXhHgmUbl1IrApoJ3phBm6UyaEPL5EayGDtUkubeFwRCjqLXV0EfCaR/Ikj29/2XvGrqSDr2Dus/77+tiR2u2i5LG2cWchMlZDZNZYDj7SSgxS3Rtsr4jwX2r7TH6YjC/e8ft4cKIWhLORCrIKBVC3+YHBvAvUihTk6uL1mOY6e4YJCesWhvNpckf45o+b8m4wB5jZz9ZE3wahjCD+0UWXUtAEmphdvvmxuljEqmQrME5t021MEQN3cpO4GZzWK2Hyw6FpHcl0kUvCA79hVz/MMdGcXvJMOv0HdKEHaDJMxSKMuzJvp/+qfdo78fdw15KmvIVleSGePnNmMtXzZ/Jurplokxfu2IJxjp66CGEhGYsLGUZ8nWo42e50ypoiYghbgvguIVJdmMBVmWSpmOSrajAVGyMfeOCX6A+66I2C1/kb6Ez/NXfW7h7vnKDo06IHvJ2lXtNa3GdZsiL1DcLosoBxck/wWoA263BnXzwuPWXEwTJPHW8v48fa8fef1xJdBTJG13cagsK4uKJaScowtsPKKAkagQTKuWZIVyC0su8YRg7IbJhMT1c2lxv4qUMGyOEewBZIYmrhCb+9QKlLjhOvdxLoyGm8ePa1+4XHDBWqUO/YYd3EyC4Z5PX+583Rpb7s1f5uJ/NmK0Cp2DXSWdZgRb3glCZ2HmgXh92dLU24PUCaBgOJjm/S00PbD67km/a8eEq14T7xvRnZffko4MDkSkVZigC10HOwwDHOfGNQR2UCVL0rZ7O4SdaAxQCNm5AcSWux9dTpMjbJmQmKVu1yUBhW5NIq2o6ME4uW/BrGkJnBmFRtCYV5rb5arBf21hhQI4r+fNI8VTsj6fIETtn7wuic/hv98+CieDM09nFPxVUwbwTCP7/idp74PYh3rMC1RPK9ypVAKHNAaj/jB2ftuxt8Adrp3irQWW82vxHlOXIXUrw9pRsypN1i4oX8rr+ruWJwAVQV6RdHqidjMwEE3fhYZb5vfAo4HR8Dm/uzB8PpW6Lc0RLj+k5W/+bKgG3/4Fwgw0DYOpi/f5uv1THfgG++o/LUizLGixV5Mx3YYCLH1QIRBXOWHC3B4AMBMczJ7AqEEoivhrzEW3QWuwFgrOY7W+XNGOpUUg2bKgP0/iUX2K1yUvrgLGbJifoN35h8DgBROr3E9bZXmRl4NKNHYZnigDvXVypfb1xqRwKMMcZgn0KCMWmcjfobl3aXc5C2idn5qnLN+o6Uq8rA+uV+sr5CBSmFKur8ivGdkoGO948TPtxxXK23zko61iw3/4GmNc9qGeHswHpyO7e4u8NsB1Mlv+MnmR9dvs+DO01I0aramCfnVJLJ1bXZ1TtZnDNKz0X7XYvX78GBmh7x1CQSgkNzmYdalXUyFXzAODdBTJsBqKHyB3n/VQRFHMA9cKu+XzjdmLGOT/rdDGvXO3RaAaQnB8sN2COhzN3QvICEbNudQx4SZJo15UpJ1p3ViYY2naXlIGBa9dLt1FIHtcdABO57kcw6tEQzllymW12UYH5ePkvK2yGlWw/+SnYj3ToTlS01qP5YBORzobyo+Qw1WZC8xKZt5DdSJfSokmyH43Q9NKM180xtSvtfK0rVe9Wy4dAMm/SWcPOtIfmW4BMdDmIllbGUxi9QLnZd0zyakgOWvayc5CRVBw0KueJhvkrX/fUdvYoTgydoHaIt0K/XOyzY02LShdJHcJM25xnNsiDr6TSKr9rrpSWF8v4Q/EkGDuNq32Cl0oNMTPA0omldbTnQ1+/0MhNey3fHM7G4cRQzFrt5d3hFMPpxKZeG0n8pUdwI6r9xhtILf74TeLEshASAK1cgRJQs2mXDwnPIUAv5CHpyZDl81g0TAnnq5M7f7nQOsLrQD0MdCr1Iy8P+WcyUlmgFmtfpO2dpbHj4gpE7jvZ9a1w6JG4X6WU7d6ofQ1WfPsnkG6fBeIm3O5WY4bTno9n/aZ7HCRSAjb0MJkJrPkzcSFvQz1DG6/c89uu3woQxkC20zwAIeQhoB2Ed9KIQvUYRnjFKutQWHOtQSCUK+zTLawKgvp8x7qw5Gkbx1OJcfoJQjjbPh/d/XMxWuqHJAo/P98zNcxMfuAEGM86E0Q5o5/JBs0l5NJTQgGJuefSDPrId+rXw4y7XsiZaRMoVoNlLPF8tabwBK8aY2buVLiX1h1s6Z4HSGo13ZKF5kzn+HIuyzMruY9Bl/YPbfBAwTGmeBqp4diLWBLZfvgYHzUs2e3xomgBYfHyZAa1cJYBgBqEIFMW+wJ374hfaFIdiBnGWbjar8a8B6aHAFzx8zdeKOPWkwyifAVs97Mfzg8Bvb+JdGheNRMfsmtE5Nq9B9dICN2sy3g73EHpehB+jJm/fagvs5ZY9w4fIZe0xngCHYQCFmxsrJ1YChoVxcPjYn+R5QztP2RJkO92VwnIdHgaPSuOcgQ7psR1Sd+zUbd45OvIPbZpeV30ZMAm0XzA1/h2SZ+VCC6/DFmTsBNyG3UdxxPldw+9pa8OnnRC0atR2u3CvQmnf1L2G6l79/EPGSOO2Oo4OqRvhyTKgCl44XNmyd4NUvD3kO+gUms+5dC2o2joOgihunQSHKf+JX6hgpwDn48ATylMb2Dbus5+WqlMPJB6mguLeveqK2zZzvF11CnwW3gVpHpjPYj7dEuCZ9aIKjhP1a5Xcjli68jWmuS8YSEtAe84BHyCsmXrAq222V+rh44+7sSzJpzB4+bN17C311qIJ/M9m3TC4548EyexeC/l4Q5C2ZR9H53fKx75zpwNBhqXT7wY/vTDqpFYjN/ui2XhZpkEfyy6pCpJBVm+nYF4E+Pow3T+SqId9vd/VtnoSh+kTArTf+cXW7VVkCnoTpJhz0FLUxRKZdAzyW4s3qLRflSbA7nvT/I78yJbBuUbg9Xvx4DQZgDmpBfQUVua7JcGyUSMrq08HbotUA60639PhZr7bke4YnDGdl0N84wUXia53tUZ8IjCL5KjA3PtbFI1zRdw47NzP9Rz31QO6cB39xyn/apsvZ/pUiPoTidWOiResITkQ98zyM9m+1WrN65IKuAsLZmFFVnGLS6iV5EnTPYWfXQRGX1HrLl6QFvO6M8Axk7sigjnoAUQbZxq3WhdPqy6ccu1I9NWWshGD8luhtFrGVYr1CkEYNnu3guJ7yZ2e0geZpqYgIPeDMLOBwJ2PHWyZJt6yKIHi0zGOJN3CCi2nPQV+Jpg5jYnxZ6BqHPbGtIVYZVRRGydfvasB4JI3pAJoHMXSp1Umdhw2+vgtyDJbxx+5ZkF4Ks2XgP7Osmd21U26/kHn6iEGcXnZ6vI+4TN70xYB7yaGyecmR4dsvPOi6SR+cB62yOEb7MiYQX40UFjqqbH12TVY8dbrwhnmme4chkBbiAbl0hj3ju6Afc9oLQLiJVw1cW7YuUL1gWhv+txi7HdQnlD455BkigM5ZR4+e01eudhy+8QRP0VgRV4uX+MKG3ZKb2Efo1biSBVlNJa+xxozP8JP2Gf4CT94BY9yy/LgWv93fpEduKOqEolJABY+etGKzw7SjymZgHDRNi+tCeubeJNlv6gyPgArpv3ptK37zH8t1AxPPc6/YlW2QNQ/K2gNvF1Rz3wO1r0zxS7yAVdgvdljay5uZ7x/IAgIG33DzvbqOWn+TxcpI10njCLXBJVvrHZ9Rw24zbo+HHS5MgK0q0vgfVChDdWqjz5XD/r2Tc21TlAHCDwjHD5p6i77+udACAHPPHwJtMDfRh+MVPfqfLL/8jShWQ9eKRdjwMP6EBe9+RL3ohQ9w9iethMmO4XRnAabhvpxh3epzRLmTHrEACc4ihhTg72JkC7BLyvmh9YOuY2gh/zsvbzi2zGl20kR5VmjIvch/H5ytSlHlfsMGYr354QyRbmYW+2VMnqI8WrFTGbsuttA7UJgMXPpFpB6cJERgKrqJ/16P/46rdcIPjTHVOjg62rsTivFfjH7TO0MdQlUTRKho6jOrEw3af5SsV7LhwGkyJDbLk0wahyDSb1xlnH4PuyvSrdXGK6H0J9JJVnTEebFopDibetUlKTfv7TyLxbX9ZMM3hHl7SdGaYTUU1wc1eChSJp++ivVpEAb0ogrMXunePkHULllvV1ccyqOXGosJ0dUf2JIXO81Ro9id1qHlz2cWJ5Nxf5FyjstBvFmUVm+IdE28MkNlTjuWZxYsqAUwgtTbppM7A5HUT54uBzuMBUYzwCecxxO+I249D+HS7QwJZiumCvCvzJToouR98ito5j9d+komWxXBykr03wW/CELflDVlIF7buP61QJg838oh/bE6HVlULCzsXOqWqQ2lAM4zpfGnwRgrETtf/uSXW6sC8wsSZM84LMhmz0Qk9crsqxfCLngv23R5uYfCjjKLr/zwAQBjooJ6PvwvZ7b5DqkGWOZ15eb3B483zqdZFNs0Bk80b4/yPqBl40RNv6fTe6hfA7JnoeOKvM1cptJvDcopKS5jtYX30mTUI/jS0TBcerHJeuKCr4GIwE6EOXjrK16dp1AUFrU2Mp0P8NUm7osdtxhNz91sXeQyos+eEGsXPdv0Xw8nnk5kOM0lLMuJdziuIlxIWcxsXlZSNZ+GFyhY9SUKHoZXsa+uOiyETTrYB9wUyBrmxYjv6Sbk4UIIhIBHTl9FMEp6l7n8j0Q2jCB0szKMs3jL4kZDN8Audct1s1YjIJ/VP3QydMhf85Zan70A3mKrtR2GyenDaz4S+0UCwB5OsKZxromTtiSi5yu8nojKIIFP230uWgmcwsBU4D8UZGyIC+0ftc2R4BOFs+x4VqJN7n8GzQB/WmPZiU2Pu5UuX1BO6f6j/J1KlRR8+15tc1S/uo+2dPujQiHaMBVQ3ZYT/O49/JBY/fe0Q8LBWRr2knYdEtl/pT8pb0G+ygP2WHq0falIft1XUiZ8YNYIS3iXjijmb0NzrerAF+J4KQVp4VLZ5XPOQUutg4NWAr3XNDsXIyC5hzMpytCkTk1YwGf+KyCYG6UOnjOPfUi+nqmRuUVpoDhzM+uSokytvytA3qs/UEbNK63n0s7GevanAEgmoqpF8urZV/4g0VRz12fz1ON2GEeNpl38uRYpsYOTyncXmn0WEHIZOhuFero5CpJzl5LsIueftvzB6KpT1QUR0s8wWmfip6WG31cqgHoQWRddIxdtQHN9imFKbKYOs2qAqvE2VPlBLZHjRpPNj0ARX+o6PRHQRAs/Wkf+WuOL56d3oXab/Yyf6itriXkgGXS7ln9Qvrta3JkYMTmNbOgFp2FKb9X3OdYECEJ39DFZ1DHE5fh8TlluEjE2Nuusc4FOa5sN6hZUQfgIPQUHi3SZ6RuF0lsGrKo8FSUuquo4/2yZ+2VC7nzS7j3CBVWYcaT0jZx9sQwXHSj4LYjMrZ5oVegWCHzHbcVX1Tf6x3ziZXYSwdEHLWfgUlA24aQ/1LYz4VEdOoz0KhGiXRFpKkjXHYM9SpweXQ/qjVecFRMKZibmuvQRUFLYtx7xk+R/9+rQWriXb8JOF2qQ5nVD/lrcnTeeNsOvt4O2EFjOTjYg3ueovRk66tfusu/5TqHAsS48W0o8RmP4ysWIljTSXHHvWoFTTfRWS9rkYzFlSW27GlndVKv1P6Ph62I21T8FwY0Tq7UkGqA8NvCBkCMi4DQbjTzLcvVMVuUoh9FZ7j/4Ulf6wDCLOTy0rD9u20PHXKkHEk5KmPyaIClXM8PVpKtjr2BB7k6QXj8A2EVZlngkBumBeYV7Pa5RRU+ILWA0SpEsAfWHmnD7m9qXMAT0na2sZ8B0Rz4pHYXs3DmwH5coZjRSRbiYdmMoSfmlnqRb8XUy6px5ET/R8aB0bTGPr/P4VtRsIWTtsdb/1aV3KB7NkC1/b6K6Jm6IfucsMfjOu6F0TqFB5xNeQMH0kyEw+TnohNG+NFvUQdGZxusZ//kibWzIn4gKrBrjoiKB79W7NBZsJKrcvqblZZCZWlNjnCR6smwr7EQDPD9BgTOXhmxCva36qRslUxbnV+H5/UcVtDukVvsDsZ+ksVDPuPBp82nM8Z+YLXwLsyp7LQgW5MNmvNKiwMilAuxPQJ6LgqP/Fhuq9MrdAJm31c3F47fDkx4UcYHytnwqnX0+Y8J7tWTfdwUeZcpg5okuQwYQfucTUS73zVPGAaBzmd7tMb7BrOFWAQ4iRQWf/Qj8blJ0cb/x6AZlde66VOnrK5vrt7Bn5AGyvntk0Cc+1W7YrBWhNh+V+k15d9mS2IbIWq+8hE6qCWE4KMEP2gM9DM4nus2HQwti2TojLYHMmqhwVD7EE6zQtu/OO9boRpgMdFQe3gEV7QaGpljlkZ4gZOO3Il5bx+zQYUSnY0EvfKr/dJCxgJsTauFZOtlWBah+FpgGCnFvMAI1HNHJ38o6lMa1biuCt9BG6PeovGRQYXHVvIOINECBas30gaWdVbmHHjncXM9tgmP30w9diFICxAoz3jbgveSdaac6QsjB70mYVF0d8avQKN7izeWzCcCfU6Vtw+tUya/90FLQCd1/ULcIfSYKtPwBZ6nL/c7hHgMMGkicXAjulGNTsI9vtzCpCEbfrlfpYm1DREWYyVUiO1ArJLyPa15xIDLJjSxNErblh6jYsPwIG+nAZICg+T9qnqicMKEWQp3veFP2PTsvE7hFhx08wKupsCpVK6OSbA1ZZllxEemT8T5HfrcgIZ+AMde8/zAEX43QjsQ3KJ1Q/hp0Yu4IJQKKGoIStZdm8Dh7ZaSnMJHtXX6POZh0p6zJPCyyJ1Fvr9pPgx41K0Yb8vApINZWkzRVVoCsclpCVOr619CHrxZ3aqfKZbfiIt7KL6EYJLU7NBik2NqQ0RE/ezptihj99KpGxkjOafLZpov8Ld2uEygqRfMyEIGO3L2PXB5t9z+Vk1LjLeIOPtcc+1gZcBqDpZOR7+B31MxB+u9UXEPfUDWk1hQjP7Hbh6Q9Av5MRfAHxMBeHaYH1V8ORZvcqHnajsAfrt+HBD+rRXiI1df6O8h1cHhJ8PcOxr5foxhjvG9gLyQhK/wCyp3A+6uqxNBbmugbVOBhPWUayD3KZhXlek8XevnyruDRXcHW2uVKuQYleN0NcqVtL+G4CKeOHvfWxTR0XDjw2LMKK20/E5HJv4qt3lgYMa5UmcptTNLXQfrBOLHy1BeNq+moe21IWTibYTjT4O0RqBQs0nF2sExl8yM7VvaNcVpkVfgIprUq9LPN5pJXwulTBxeowk/BLIm8Nq1VPQdDJtL3kzZ/1xey7GSQe1riQXzL2V1IzAeLdSP00ZYay/PdK6jUJI/07LBwD/oDCtRNPghZMYFHnf414mT2sm95DoEW7tayf6jUKl3MxOv/fjSyNUbTK1tOFtLpWBQFAMSg5NVi6G7u4jc3ntYc2BloRvAt8Cmj19aQEgWEucQNbN7sNkE8L4qUz9vu/90xOSojiwfykPlfbziwC7H5OaiC3k6AXZEM07XbBb5V8/2Ob0uUdP0yFo0EyflPk3srgzi9u9mObKFLYROVZmv+tLdwDJ7gUK5NAOGyKYEh6+baw7bgKnTAdtaeGYt3Jm5rRsxxafwVMYbIJ/aAAbuyrn0rqGzEJ9duo7YDLpJee+7mbJwwMZx3nEuqNPmfIHIAJha7Gu07Ns3KIRgMZrCucHfbPvkOqFUFrRp3bIzp7GWEdEgEub/ZbG7n8Mm3hvs3yUt+TTvrtO0qn89eAX3dLq819pwc8wHwzOPO+tSkcfsWRqyUA3kCicIW+bYMvQGnqFEnERk3qiyBBE3waozfYrPPNEqo+wZoTGzCfKK3asz36+W7UyO9XxzKMOLX1RJwf1YBgNKNcaQQADguoNZBfAmB40uKOUx6pBFJsv50sNMElP1lz2psgWV26LDF8cJaxTxWI4JfenlytRBLAgdrYFHAGPC1Jcy2AgwxzTZBOSw6SPTRwkp85HnSPnUawimhJljKaaVzDt1HtXdiESQp4temAryh5y410Gg1pPdujaPa3+sET/LcuW4+sH2+Is46j+teiQz4IDGkg4aJY7rTsqqUeLXnRKaXvf7UQPf/DIVN6+Nw4y0LGxSaTbUF0EbjOh+2PF2NB3STW/pt+Ck1qcCMhx13gZ53mEOnuyxe005pQWKhnZV5b5FX4w2tA9fzrPu33HyA/iiMORG4ZB0ex01OX6zSYA2mN/C/7TIN+dmVTC02IBnc41xPe/lVyu5phcwYVSTfJDj+vev9gNHg5656Ml15RJ8+RmsdihL/LwyeSNwe3MazUjYFFQfQw/OJdBOYB/vtZXSl6h3XX0B901dNvLPHpP4jaAwgYMZiFAKBFHPdHGM31u0vhaa3ZLsR/xqmXOfcUTLnrnWpbjFppSlIKufKbtg5UDW6+LkCnQJBHO2zwm6Wx1KVmygprhiFxsSG09vIuOXXssrH+2BCXHrX3Vvw71OAJxH42IbTr+YVuZ0G9cgLz0OR8ONonu/Pb57En7ipn3xgaE8H0Me8Eu34xmpXDvKggob75ZkKyaVOcafXb1bddthROhu/Oqrf06vXiHhSFb8WsJdCXlLTcYJ0eys+BxQfA0StxqFN4hFWIvdxyo0z8Dc2jrv1nSW6SYsuKAkpCEnzLsujvIxQWUdk7wEn3J3e/qGHV3EO7EYdoxxsmosBOxzlaaCd3ShfJEuHXgjz91ejLdfgGV84/rIdtLjV0zfCnKsk58L/+vWW8Pm94+mGfb8nzWTtmQVReIoA/LxWrN9UbVa5vasdo7H5vHaNOlXTVsmijzv1ZZ2ozRc2FJLUXLElYN0IEMv/RIPWcV3BBfDTocOzrXkOVtLTEov29BqAC+4iGVdNawEJb/lAFeHZ6bzwzmrX2B4UVrpYcIIuGvI4mpvwhd/xLVufIbVCAtRHMDSHbZM4FEtW7YwPch2BmjTOMxPSeu2on7gNtIrWAJcXSLFLfQfet5cODCH0kk3WjOiLKQXRRCf/GMrZAV1V+z51nMc1sQUtjGgFZ05ojHhO3Q4kR486DMhxIvRwoWp8WUiWVnEuuLM+Hq1x25FrN3Q+Z1cCaBd2yONoiojsFLe2GWjTdiv0AuvJoXh9nMw5BI1166WDSxMXAkA+54EZqVx3+fN3MUKALwaDq6FbBnU4kXFXe8u5QwCWAEPbZE4MidwWgLbuMzTgOi6ulhFpHEin4DUP9NhEyQKAZqzbUPnY7e2psTNDs/vCsdQMuE8s2eFtA+3VB9scZ3AVtFaFbL6xAjzpnSvT8NtT0oODQzwv5oZsn8SyDwn72OmDh7qLwSpZEqQ9P4VXt6LN8cEMBkvkVq5NfJc3TUpHz55byDBZ4dU1f/scVFJqPKrQbnVflGwYrtlxKKixTn8gOxU6yAS2iSzV9OIWJVjxvFB3YDi3Irz3xVwse++biQ3ZUhK2R61fsVzDDBGRMbqBVQ5sZQtrTRH09CBFfcKQ9R9YEsD6OH6rmW72BelDEaa/drh8j/ho09xFJhvvzS47sbFBwmoDzwBYGhG1nKD0rXpll6Htx33hnrRz++9DbKUBt84mleh8gVgE6Hlr7L0ONhEAn5PBYAITKbORwa6CZdvQ6dWt5bZ4YEwg5cOyZnCCfcO3DrQohBSWoTzPsyWFBi5ZbGrPUyYvFL7DI0DDdSKFcQHGPCiivNk3hLGefJo03WJJxzY4MzmF/g/MAuvbKbuDlUzQTYiy+10CEq9dj02bHxKgJhA0n8jDGu1d3fwtKxsHWz9JNF1/YxwRon/ZzB8ZEL7S85HvVuA7XDAPRydBxp97+3d4o4l0fWVY6vnfNag9hkG+i0UwX5oxQ/R9x6I/GPbn7GZVUbTQMTzd4Lm2/MTWdW/K+Pftwvah+S+6RZdPf26ae2b/QYUkAX4c10x5jnjRitX0hr3DjthFsoA+t2jy0onR8hLRR/JHmiPPcp3iWfHAe4tYSUtGJFjSgpeLhtuvtEKL/xpgID0PdXx7GGGWAcQBeLhBTOf2YodxfmCATgVJmnkBFejd8a4Szk18+6UKTvr4us1GPX2XfjD1jjIuN2In9k3dGNtCOYizfT/HQ5X2GqQhuUZpDyRWi3clX4Z53jAFXpJM4uwOJKM640Qcy/UFZbKSNizsJlBMcZC1lWmQ9C3F/MTJJFA+OEu4d/aCcBBmrgBDYhlEYFyJ+IH06vfzKM2pkyxtCC9GBvQM/oXuJ0Cpc0mwovk/xjYOym0MLmHhnEHrKE7ZOlNnPmNvlqEkH0cbl+hbPZ30oKjZD+n7T+t/syseX/F9J4J+oOW5umWnO3VglDLO2x8JDtfmzdg96hPDBf1psaVUTlYyhKJdpdnQezPpzDKnR2aHfoHmfvq/bhxjci1lSvxpoKb4Eqr7BqkRmgk7FZUxfKWt7Jxg01UDW06KtaPxFj4gHzLYkLj21YmbKUL4W0tXQBjGxk7CYhdST8rDlH2hOgTuLmbyGdl21t/4MBsMHMUwH4EGXbgYVyUvDmoJNuRTR8cRWc5c2l8V4yZFKgfrJPTwbgjMYkqdz2u3XSDad2ZhbrWkGOYlszoWK8XiutyRPkoCoZLPQQYkhCR7wH/JhpgLk+92DRxGkweISuwgCQr225hVHWdcgnR+BSojfoB+vkC6sNJz2c7w3R3Z37Yd42Op0hUlb2mwuxiMmSmN3UDmPTl4F3s/FQH5wRP8LDaTDiBKGub0J+Yz/lpV7FRBdnKqEuByEPlwWs36zdJHBuQjJDN0s3kQeqPc8SeJZb5yEbTul9FW1KKvG1tXsKV1uozvQkMl8IfNQQkB1C6uHQ1t1HeJiZq/l2h7nyr7p5+V1976vCdU9jR6zZrhOAqmDTQgrF0haivdbNJ9zRyrcd5Gcmax6tkWjzgcvPT1C9yRDGPE8717g7Lfvcz9WEP3IhxHzAIP5fWqNdge4N9gDvCbN6Hjhd3HtrPqQNOc4xSpeM2+iHBwQAij/Bxuw6hz++cVDUjISspKmtkCEZOoWq6SAMuV1qJjUykGTtzTr90c/N7zKbc86BqAFF8iLX4v95AxeLj2OYsXicnwtFNLziHj1NAzPD3ta/KryjBeaYO7a/bNQTmq0IXbpnobBfs/q+2GkgGYOyPGSQKTO32U2E5OvJRG3X54J1hiffUIsAORuUl+8TL6zeoZn+6h36rPTjCPzAaaPxOVHIo1kSIGaIilF+P4Fhok5r4Bd5Znp2TPF10TE0+1Anz8skny9VWeWKc9XWgF41MBw6KChd4tvpnZai9tx0dtdknwkgi/c4aVxfRTtkxBRaoz4zQtb8aqpVlVQaUruytLq9T1+L4QT7AHWyz6iJd1rdeTii5EzE94xd8VtulQ8KJkcbBIKdQG5hQUoeu1gX4IY3C5Pu6m57jAF+srrPrd4zSmE233DtaouMI3hQ7gdZtYNJW+wKtza5G+dIeSsSzZ3oJRUnLj776esTC05L0HYOKszlva4R2bxbgQw5VqsnvjzwNMc0gpg6IRRq+esaCEf0eO69YOWOQfT/1/MrOVnxt79Y+9G2AqTjqSvusNtl8vPyA1AKWf/ex66xOa27xvzTJSfLBRWoGhtnRI9oIg8szhe0SeBAcN7J1u6LBGW7rP5CLrDBT6v0CaVlLaluRF4jIXeZb3IFMW6rgmrQZzeParzAhDSoJQwFow2ewvze/I5YVkEBF1eMs735Wsq1feZfaFhHXzrZpXSM/6MA5a6gOafzoUdaCyVlhkb3qC1qCPnitJH/gYBcHN78qQL9yuCEFg9LQlApFlRw9T7xO7hwmXfMCosASC5GeAcFwOIm+oAvvQSlw1ySBlD/5r56HNDPIreCxxPc8j18vOd/iz6xIo+jpZQ+nOoNqtYboYyXhEY4RZ3nVFjhFddeEFo9gOOaBpv2F6SZaax8CkhYwkNUirkBNKEgY72ZQj0QE7ZQ77TZWl+olnj6l6K8vXnv3Tp7BncGYGV4Bhf7y3PlFFbWUyhiGU78Ej2/dvg9Jbtg1XeAMrCWAZY+J3fjEKrn7g0OMv7LBAOzRSNvovW5flR0dkobiNaWAKrWuJ31G2ApfnKXfSLOq4rRXr3Ddb0vn5ckIWQ8SO6T+tAJp+XKnei9zb1p9UEo67ysF1Ptcaa9NNu5mLImjxbJEvM1R7QkVT5aG6ui31+sq44Q53SiU7RKaxTCTDt/ZllG3SI5DFcyLyTPCshczw0RcQ/21DBHfy86EeUtx0/Uuxp8MfPgeumK9AhwPwkA1g9rwViHVmLw4i6B1ARBDGtOcbGDN+mh5Mng9kOwcQcLu8NSmZck1Q4kJKuPvTaxoQTsO3eShRPpOdcL4dNuX9DS6Jm9baaL+AuLOfgsLkP7hYyRGjhpUVwsvYknBKC2o/eXcsS6/N6PUcnOmhIM7HJF8H4jMQf5UWwF+5DLPjQioV6EGFZoUuRNt4Pzw9PkG6r8OUN4dp48UH4OhwqQHL+m0Hqji0RzB/2pcVdRHhiYEZPAh4Ym6kYaLdu/Z4V6vgIlmq4zubWNY58sqSu2kYTDcIyHpDmtqGPchYWxAH57ASpy77HXVaeQTT4Uo5jOgTBSrkEe8l6RJ9aUnNjuNQR4sPxEjIPRxYI0cXzH0u1KRAjLw5Ep+3PZqbAKHCcxXYGSmKJ26o6qhp6epRna/Fy7NgLdz7krJiL/HltRsRVFMqmaSXm0hphShVLVvGkVOi7fc1AZdgIJB6pkTsuuMD89XbQg3TY8cwcATZxJDR1CCD/zr7GxjpaZU4oIDF4JxRyvud6PZcrZBJ5bANlDtay2baZtxAzVNadBaI6KJGNBFhy/QM1bh4y6A/P2vkfMZCqdqvBBEGg1UCJAAiEhvyPAFJjaumi3NayZUdujEmsTzim7Wq7LIN7LI8YgVAhaksDxqFdsF05BL+d88sOg3UljUhRLmEBswhUD/V4rI5S0kRBK1WfKLNdVAXqZtWv5XJ+cwiKtVMHFqkgVkrJTT0aKy/2FEFxqaTXuR6VJjPR7K0Vhx2hydalPeAQmTu20IjAkl0GBSeRs4S6lSaXBnZOdfoWr0Ms4ZGcQWphc/2iuEyd3TG1/HlH3yV1F97Oz6tDYQ5/yhvIXhH46gDkn3/5lyOzjyyhGqV03zcKQDfA0gX9ouF96kh3IRvZtQuYwG/4uj5GpNwqe6rudaW4KG8I/jjnEr4BCJbqvm4wha065uDc6Wwi+e2yJg3hXE3QAgURObNn4Xuso5UVE/bO5xl6p2lPLy1RiAOeED0IqHDrBY0anGfb+x+vHFaa3FJ+30GR0DXS9s0ZDDXq1UuoW93FKcxa80G759CRAqNIcuCjDd1TiaKVgiSFbDg3ToZX8htbNP1VCLXoR65IhNJMonhjCF3TXTkk2HZC5Lz0oeRc9dRL82nAKRbZ4/r0qHsYqLcyL1bAHqdBVctlxadSNFooTLhHsykqsi/6GV0d51mwfxWDQC5lnBtTKdyPIT26DM1M0RdRFzOMxpqEqkyvqygqPAT/JpFrn/jzmVbC4ZoCGnpqCHm9pX08l+8OjQFrNj4fBAGb1BrNTWgNOKn8msxFKJA+uTND1wEyh6udDRMRFgFB2KZFwPnG8ypQ7AR1U+aT7yo1PV0T+m97rTRCnz3g9dDetmKal11ccgSOqNTCK+pH03bQcblIpl10HDxzm2ad7Snkjzfn8ZLquCpv77xxJuyJhtdWbV1VYGXeO+8lbYOUKXo0ikXDZmb5k+cQpV5xG4P4yxAEkVFDv2Pak6LRoJNpH/qhuzF9Pe7FMdq9EQuRnO9OoecKysg8oGRrgzEClUhgrjFOiRicLeI0vFOCMmgHrKoXrP/ZkvLbNZwb2h3LunpZ5tfDl8MTbG+hyR22A6aJXQWAe3ySelQUl4UHipD0Ls9IFiyZ1ys63kU8zm5uXs0OBxP4LMw31Xpm0wtNTqpnWdK5WDQKSAE629+AesnZE7SzsfGh50nfqA9u2wa5tlBwNnO21aJXX+K7Y3s5a0Nkwa7x7U+jtiXlIRiTLenxfcu/61oCgr8c+oTfJ18bWhCDZNF2AscKEzhKQcpLT4V5C8E5Oro83+htelcsBNE+VhpMXu3eczR5G55j6lWQ6J3yjYWTlUHFhDY7frUmrjEE6dKNEC4wu8m8G+I8U/BlA==
Variant 0
DifficultyLevel
571
Question
What is the sum of 21 and 52 ?
Worked Solution
Establish a common denominator:
|
21×55 = 105 |
|
52×22 = 104 |
|
105+104 = 109 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | What is the sum of $\dfrac{1}{2}$ and $\dfrac{2}{5}$ ? |
solution1 | sm_nogap Establish a common denominator:
| |
| ------- |
| $\dfrac{1}{2} \times \dfrac{5}{5}$ = $\dfrac{5}{10}$|
| |
| $\dfrac{2}{5} \times \dfrac{2}{2}$ = $\dfrac{4}{10}$|
sm_nogap Adding the fractions:
| |
| ------- |
| $\dfrac{5}{10} + \dfrac{4}{10}$ = $\dfrac{9}{10}$|
|
correctAnswer | |
Answers
U2FsdGVkX18TG0KvbvLO+rIJNxTfZX0F1PJH29pqF/flKIo5iqmruSkOXU4LhdDrEXBy7TKPNYO7VJtHD8Jo+MHkFFwoFl7Fl8HWLdgAxqWvHmvlEFZno0+RKqPpnEH99ZCTJPU41wDeSnlWnW/HFP92d2Xed8vplsePU0V3XfCbVjbgAGBHSENm8OLiwaXdfigV0lu9QmMF9mvkxYR/hwADvounvF8tcIZA3iS/fJiLazXyLBVQEzIstpPyKgDOjFu4g4TVkUIPTv0oqahTup2ti33b/hemxJ1QWXpSA6dyoqjJ14LBOjSxFe9ClMG9JAddb07HKtfG8MzPyxn331/tkMHv2KqUSAj3MwXrHFP8Rv+T6yOn7JAKwzU+r91QrnoB8+OfLCeV5PqPorrEEOUBgRyb+4XZ0HwvG+cGrl44M/GKymdj9ah4WUOFk9YcXPoO//lINKGrzb56HMMmTg4uGe10V155k3Dh5JgnQtCRGbX6cwb++30jmGyXxqML4KhBAA5PC33mwcHdvcUmP04Z6q8f5AN4vTEg1VXQHGfawcpzwT4+AyZs0qR7r6MD6SOKVUdPzoYceV8QzW1RA8N7nYukACj+j4r0tQtxZVYtPXO8JFqkR+6Iw5cJGUZ8N8njfubfHC1WgW3RYJbJT0Q6Y+nv3Ar2geknEgd+6foGtwWa8L23pGG8Ts/0y68nt5OUbJe3o4AmfQep5X+HPRLPAXTNPhOXqg8idB+Q+d0aDEa68SeeN4AupE11ApSXVCKqgk9j7+7WvBydERxvpk/G1Dhe5cdlQ5FEenOjzjgq1CfcToyIrQfkpfibvjFLwe/yFDci+HDON7FrlIm3fbNy3NA8fWoTsng6AWo0NkTp/X847uZDdjr+Ly47XpapPNKxdGYFB2QJ3XbMuDUuOn6moYKKx1cYE9o2ZcsRzoQRn+x+CHuCCFG/5XYg4petIf70637a3kiX4H4EjSoIxeMNCYQRmicobMs2QnyS+Crt8JihB6OVjx96cdW4HnZEWf5Mh6poPUxKAnhTM601pMPVkFxMlXTqyS6Rz1UmchmYe6zI1w+jkTzcYfR1QGMKUs0e4IPCJ4vcsx0uOvSVCFU+009eJ3mMV1GODvhC5mI2Zelp1t0/S1GqTekid4ipd+cViZb6pLYd9QA/EWsU/i6/u4Hd71vNrDq5fzzDV8JJMsUkRi/0MtzNE2UdM1ptlMEIy5kGpD1yLosaublr7bNcD4i0kG7ZUNbJizf50K/KmN+h4rl1OsuC2q16+e7d6vNuDrdTdOj4x7Kh/9f2DHl3SF1liVVThM/dP8R62FlehDbn+pN5dL+SFBEx4J5Z3Kq+6ziD1C85fPrOG5FtWX0jd+pLXFXAoE85dHGoBIq/sh9Aa6ngiTjvvGu2b+XoM1r0+2/lE9ncLtCUr9xl35irR4EVZGouZ5ZNwjfVcA/gyp7+PHMZClUPKPeYTu/01cooIdov9YK9renugPnx3l36uYb6f/UTPDeTtpEZ1Zu7XWxGGJGAwtV7TClZN9lllD1Gl22Vafja4k2YlshM1WZXF2/uV6dibLdkGUUTgKGZkBzNHqMNAM5/hxgQOtlPj7Ox/gRJ4PjtawLtzFcs6BSmCUZ+WOBKqtVq2zDrIrWu0lMcxi/oIOvQWkVYxk6nuyNY9nKF7exa64moCaTKHJUZitp8i/JeZnZAkvWTfeQPrBmv1V8FZ0vmf2PBsmJ85jiMqBlfN+62gb9hg7l78bWIdPL2sry6/TbPJZ9Vs9JhpvESSWpHXylY2W26g9O9Gl8Cwxh6vN7weGlO9qwI/tXnitIYLH1XwdwO8NKu/itF/q/d6+3hdWBZcmBaheYqBvA3BQzwKn+hT0VulUlFSTp0wpLhUJLTLV+kLAm+e2sOpv3mq+1wd05o3YBsyFe0UjWNHMGDZbGD+LfHNJ0lTRhEmoC/dDP0Jz9pBPa6EIkehHyvuGTU35NvKNek1j5TiMn/FPm6Udyk00aBw9iFBqWDs/XV8bkL7zqiQC+OrOHArjaxbArj/T7NEvHOTU9WkrzsKpk3KwPYLFovFuG0KfxlqJAHv24BsnWs4OP7Mb9CzPT4FY7LWFRpJJ/upLz6ijO/q9lm7RO40Jvbc4RTZQkx17E8q0Jxi6Y87KtHl+FUhcZHy3tNf7u7IJrQxDGc3jDMiUOfCD+ZEktgRPWUtkXtA9ewvw1OnNYPrTptNPnGQaxw39Ls4orpVQFgGpbQPZfTHi0PMfvuEJWlc+cF/fgFNxD72+wMb86SDFQ8CJl62Aely1hXDRtLLBSQoMYSmH7eTwehHDcbQAtA0XkMLXWviJReFLMs/oBfa0f7aLUwtJKjyMGai/WVUBAUOsSIQl1mq82YzBgi+FasrD8vUldbFDnvV4purLrwmiHtrEbt993Pi+K9ty94MVszAk8g+IyejfpTUImO1X8FOyp/QBv5UMWwHA+18K7RHOcJBlhtztT44lU+YynIXO6ZuOsUw4dY7qd0NG4kzAJfQKhB6zm/3j0FWh6fNrGDpy3KDL/FCK8oCiFir6DC4ZgmWFMCRiQPlRbZ4OSJeMFdPPiEU6jP/eLpxqokhLMiYy8OFDMXqj3fRcewyEehiqGN2BWcAsBwTnGbG2yomcRc1gRNmuSD3ua0vHEUdY2ECchz2xrSp9QzaIZx+ae4fWq4S1F8jWR7FLwmyajRfCd7wleGrIuEtuWdFToCq+F/GyTnoh11F8kWZrMUNTY6dEqTlE/2vlK4KGfz45qJqLiHaf6NC66bi732aSQtbHFIZLyCV2Caha3G4Iq0T4i0FUCPrIwk8cSOTWCsUjqmxaeyKqCb928uZStaHH9P0mTq05N/G/reBrdCYRMueXAhLPvcaH3p3auY1s7naegVGoySySb1+uG90ZAIQllQKnLsApFfC5id18/tXkFZlvErCqFpjiBfeWTY2wlTOaQSwXLKVYtkkS4AuMuHNMZXRC0EWVxyGmibP+NbuUEMlqW0i3QQcbkeTbfNpfmPBtOES7Yf9Wxt0lElXuF4NQHl5Gi/n81SOCxQ6FMsBF04qTViUCyqV/dEOgvfTWxMKmUmzPsitd7Bqz925jNaHi4uuBLpplA//n0kY/Mbl+4QE9wzH/m8j034Q9DWtdQnY8Ei++ERx7Nfq+TLl05fJX6gR4XzCUpffvghQdEhFSKiO65vprCp+0wpeOn1NSulE+A7bQxlwy28r6KMcjGnLxm78iMsTeYOfAY25G6leh4NnAAWfEP7tuz6OtMAhpKGZtv9EZcLqFfzM1x6bRw/B5ZabjNZe/kwv7IeSk9Li44AE1J5toXCh21+R304zsM+4DBYJZbz87eXAnCVlBYePdFwVwjF2KFqtSrR2G0Z2vJBBhRFnr8NEGOt8DqqkGpwoLve4QDZeE7db6zHrnZl/9jpf0hZ9S4rukZ6f9vjxe7XCD1I071r+OScisdW8BecP97QEhPNf+zfZcnsYl7dpx11A1+Gi73AQiVBF1CFS1N45XIS7FlnNRc+a5kjamSEhhRlSuZvRcLVEWvwbkQvBkV6hjlLQ/Cv8FJcGgaqTuLoMKi5Bztg6lIqnjyFjbO6a531l5HsK8g4nZt0vzt8wZJROrTHgpWJhtdMbHTk71SCnQdE+AXoKkzekEUJVsz6MV9IS3v3dUgsEAUPkUUxWkIBYwRcy+7EMPa189VhYNLknqi+Mu+lngInZJSW8nLZl8UaQ5PrLcNksWircfmmnrVHY6xh58x/y8YUDBimAjaBrW5fhxyeIFiP1rHO6zTVSPuS3iVGYuvLklHkquK0FEq5ru9yxXGno8Gz9mHCC118LkwI+TsK+4EtGvGysQeExMbh1cKEpW+NHjJoz9HWulUwwzjLisWtbuSfyuysgDGafRxBc71k9hKGTFge6TveVIfsGOiaxVFciijTqpdGthN2mvGwRdeDQRYgzNl5eaj/9W01fyVbR9pE5Ya39R7dixP+cwkDp4AohbwjV/Y1+rUBbMFXhbTSiuVPThZVThHQo7XWY1Y1R+MIzBMN779xqZ96L85GaymiF710Vaybju6TJO0pJlKs5q1BRmd/m/Zq9h5rFax9G8aH92aIF8uWvLnmKX1r+GAlSsYcagr5UV6ucwHwti3DZNTX2kyq05kw8+aLddAEDdtRPNj2fbs+xrOhoUQ2dDIK1K2zd1kyvs9Vx/lY9ffhAK8Zm9NwNxs8rErGR1YS6ter/L/cJFCc5CaJV4emH4avOGmA7s36ThZ5ISuqyQNqTaTUhTjPFRRppqOKf8kGdtFgDPoqHjA5lFrkof7OffpbeY6zkYJlDFTbehmLS5vkZOI5kx5yiP8FMsSmDbDJL5oktm5HYl0U0Rgg118Kh2jj2cEl0rEiRztltRIO12KwLWMuEFTUWzbkq2GfNILV1akrnBb3y8+2DQetLHIlNzPyrJRh+9eG234bHHLt7KmEDvMhwJeL7QXiyvHONgBLjc6QGbjgnP71hDmSTz83TZRgwnU/ukAsypC1gDgrx3QH4wbtLRxqdNFJbiWMmgrbs6u4PMNnt+MgtBVHtBlytsv+GYoUry7nQhVo2rPu1jHK7QXd8n0lK5OfygnIqDGSNNh+hOhs4b+b/rBljEVmouNAHsltW98YcC6bDCsIw2To/lyMwYsVpp2zuZDu77nXepN/uWh8hlRI8BqXOQOpmw0wioX4muKCzhPka0rWLStwKnVIU6u2i313Pj+ACAZ4VndNyN+QWb3y47oTNmNYECGHHgPbgmqjOB7Aogn4K0efIPkEf8oEs/Q2jfCMuGzyoqKbbvVPtd+Loo7OERcw/8gLiBEd3st3R9LEE0nTfKxbjiat4bcQa0vRZjEKOkoveyBH1gkxeIpbCGQK3mfBdrFnnxCVloYJDLkd5urAcQxJwuSe6h3jVy8pBKUK1XxhPc448D85em7m3b+Fcclju2XeTptG4klkc8/bnYgtE9PzGsXK2H3YWsjb+SybyarqGbp//CnQZUH2deZfw47ISalOg3LVuhKRX/mk1aA2rjy7S8Rtjr+kPICWWZCymY5KVvMtbDqgdi9DonCoNBp+GW+zkZTjWHY2cS49XuTktASBjBN6gkGOreJo5mAqLJvQQinSBa0ZA9SiJ2nkzJiDMkO+vOWKh4Fn4Pn/tY2JiXkRnLfVoTnUNn7iUPTpChfb1KEZm5gxGXl0K4kfJ4UNVQjZx0Y2D0Q3zv9Vbz96TlqXTY2nsyS/OwEhCjCu1qGGWNqSiD+kSos//ehSrXwyQEEhrr5GpUL2dVndV//o6i617GgjCjlXrGStd22f7i+LamqKdFtneB9lgeAGMbezoFRi4z/hyP/XmtL9FF5Bt+TCiDB1kcinQHcT0UndxBAzuuDdJjhZ+Mi6D2MedAXVgWAf+OUsTPqembaTlE0kR/KQ7mnq9hMwscrQClqH6pw1QgOnhVJiI9gpPX0bBE1FsWCEp0YRQW8aPQxNEsdlxNRmdmuFIctGacNoC2PVn3x4iB7yuzhoBJFpoW31VDCzk/MMU3eOah22TnN6VgiGYKiIG+hy4a7S5NcLr4+OEJzQod5CtkvXbyYVnzLB7IrWFd7KvrRgth5urVuH5CCRiUDn3WBel9bs5fWG6DXtpXHo4wboppL+u0CThFmoJVdCm66ZICgqfD+68mffvZ4ARw57B8xi8GU3iMKYeGVVgze2+QHzFzZo+vm/TwjVn/jpW8H4aF/zBDhmTydCb70yeQlOBNCDwUEZXCPiKtjcHm5fBgLSCrfdaGF12aGDhhKVSWfubE1DaEm7bk33bCnshmyvHsIkqPoozpTuZKqTsA3MEXu/SDgP4GsDDRHj/J0DM3PWVi08mmE3WzEmCHKVGscR1ChSFcw5pDWsroLHhBbiS0z67DTp3jGEssMp9XoK021gUIz7tfYOJblaulo+WgPna/dXy/dmqjIvdeAxOP2JeVO3oIHeec8nTUOQzfmJnnV4A0UYY4Kb5lb44Lz5rlO7Juq9rbzCSJmXiq2zbbC3Sdmjo9+33fitMae4PjgNX6sGHsthKCFWegiNbkmXXAZZJRbpBHVwO0YlNwLJOHeKGdhqbmyheba23yDWlP5a/UU2futoo2WAUqt0wxOk0uJQIwfpcJWqQTX3/lRwd5vBzxKJ41VqLyNRH50+YPJRR+pF/6wSHKR9kF7vYqNd1QyCe8pA5DoDYZPur+cY2mx/VuNPmXtCiC2pyrB1OU8J3QUA/1GOsqwM3Xd522DAzRx16AlKoF9O/h4rZvoFdIMUHIU3UuXS8OaYxwq2EwpIs4aFKzplHdJpxtLnt7KUucwx0CIO1Or98YbBeUdKg7isEJoKx20pzwwcsJNhOLAgeKKtxeeLDb9+ttlXJwJ+1wtJ2C/MgwwiIwocROhFCoHroXd1yWS+2I0/tmHmIZsMrpdAJaDqXFwuY3V/1PJpneRDz3qN6eyOorBFLMwxQ3OcnQGrQ3v/SOT+tzzWrNdlfuQ92o4pZjc38TGIyCG9YcbM+nh1SCaMCMXGWltwlZnC37D8fKFCKn3gg1kkeKS8GdpVm7zaIWZDOWO3yGAYzXsuNIEufmOnwcdgHbhXUbj2Kct/NkT5TKqOkijjz8IVXE/a6YvBVYebTcbvx2fZWv4u8KHINi7Jq/2j+GiS6tXC/RiVxOK3ywWLzbwfFGd1VyGwDKkCyKUVq2MwI+0JEYqbLNks1YwKV7+0SqKfoZ5NrITSNb2sWyjrjoRWM+1bVRBHrjhFpqpWSQLl6pD9HZNlmOOO9cQkDc0HQzaBmEoy+sw1PrLiWsBes7jjmBLtQjTnjIl3bVxNisrPrVYfScDIcKuvFiI0qpBN5XqfjmajX4OGaxZd0w8j6TmqZ/6zbrZdNYJMLZVjLNBWxETbWvJNnu8gdzEO1vlTnTn8UH6Py03FQp3KduhsLD6BD98Jgdwr+srPDyqlnPgXjXEj8sNmTArNeMHGFK5e54MS3jPeWxLDMGHTA+CZjwmtASR50iH2ywyBKsG3panmE+VtpFHreLC5VR1rrUGxopyBhcJONbKVPDdimHpnup/Oc95EB2JHcso1FM0BV1ynI17nD43E2WBCBUAGQws6ZSqL74JRJRG5fF2Y42L8S0ue0AUM2IukR6bW58pl/CAirfIGnThlmg7j6agzGjMl0NJvM/9Lcj8Ck6KmlhIVyWnT+qpmES1dOCN42Rceq1z7GTD177SvZ187/Zk4W8Og3rtGf9zPz3DKw0pjEuEtBSpl5FGgxwv/J1UIsQwNzpjghsV4tg0O92v6ymnFzdIrvD151CzGq+cfP/N2sF21Gkmx9Sk4HCRkpbGR/iwaBCOv0S0+hcgVxE0F88PgWFE3xA5/YHcg3qDX5eBGxSGowv++E7km7eapqlJlhNWAhqnl6BrdUaLEaCioXfxXmUXZiDgm2UIXHgRJ8nRfyRHB8JHTc1jURtez1Ku8DAzFD13ZkMHhe0dqx7OxRrnjgKa8xzVCAQ+00iFitVYAA+qhdmOl6spWzwLsdCuqdYxLefDyMDwkrXqMAOgHE6piEoABfUs12SRbW4UAoeLjf/i8SyPm5JSopNAE4Xnx1+551N410pZH2w/QLPI9yoVDMy1yqP4YIyWCiP5Pc+enYuI8jr1Fx/a/vZmD0C+GK0pndYgxr0AvTpY+jFhXIYqBSVQK+okYnYcoSLVen91/ya4SaQJeUUgoI8oaY1tyWl2ANksZIWB0i7GmU/sYIb0txUTbvi+qcceHDgEeYp2lG+zzpc3MQ+PiYNQ6YmdV5XuanbR+k/EaY2utNepEp4Mh89GIzAovafEREgXjKLc10fAVrkTSyfQapt+lEb63kG9JrFrnE5zmMd+8vLVxaX/dd+KsrrsyonYjV0FXxVCDcYyej+st1Yi1wYCYAx05ItoFxvkpU+eJF9Yrb5TDaCsg7F92TsyyQlTWJik5dPiPfasGKH1FXn3ckJPOGC7H357GNMXLlV+zbftNB4tLbRdQljG2M2YWvPiqeRszjMvVyoU/7Ws3GkxwJIsUaFhkYdvVmyHy7VXnsg+Rst0CApIkeDdiXSQ7jeDnqULuru+wKXdYPzy5hTC95tpuqh/Hy0SWOH+dSyEd0TKcHgHGOFVBxymRtf4PKECrZseI6n5FNJ/f6CZg4YGJiLH34sEy25R1fLl9MTL0cpE2lX36xOVS4PbK5FaFlSPX2/biMPj9FL7jEGJHFml02zaPjVsTcKU8Mguf+nD/vf6lsEkX7vn5y0L1KSnR7mzNBUohilhXESiq6NELxdTSa4HINZzFKSFwH4plDY7xwApOIgyjFEyn69kVPNTMhIVa4M4nZLcuY9fUsUst7p7FWHFBfrAWpxI4UKEF1mr//8WEGmbTyy+cSsWJgQ7vyAdpJNC/Rl7CeZOUECbnQD4zHoBcCBJVrZtIINLDjp7XNB7RLjbwMvK0mLLTb5vwhteP4rQIjGjFbPsPQvVIluvvxax7TrUcrcXufJc/Zeb6t/KWwRxDMt4HeFy7nvKrdF6FNmxj+Z9Qg1Apk/Jrkuq9s5cCIGFmzUn45fOTAAfneOEhgGTCPP1Fi/ylMACFmhpllb8ICsZWXHzETK//3EaH4mqRX6izG5mqJLi+ha2sawlhB2+xGgSr6EgX1jsTrrw2OK78nQLX56T0H7NpP+cK8Y5vGx4c+EVQbld7ZdcRMQVBpF75E7NCHHejGhqA71hSXDMcSPLpYUmhpVOINxAn8z8b+cUS6d8BpbJT+xYMdgg3vWV/f5mewvH3R3FxUFVpw6k7cmRIYBmRqJSEdsJ+1sq4WGPCWgDaycBQifAXSrpkQdqhUg6IKjUcfeHsX5Hd7/7befyWSNVwj6y8jcjSsbJPFtBbhJ1gJ7qhX6SLicsHaDT0DmOQVCDGp7MOD7Rhhj1gD904ChvcVRoL7q/OaEAHZ+7FYCGqDc2Z+XJw0/Dno0pSmNP8AaTibGdKDubhKjg8XmV8DihTozXiusmAO1A24hATj/9xIeQR9IKpnbKNNlYB8hd5Abeu0uV/dm10gUd7qowNZpSSenMK+gdIX7AY1VIcwRakIJaZ/KZrF/Mm3vecBnhEK/wcMPeAX+9fyeg/H9tJTjRErwutfzK23GvwbZeu/g8MsebzVG5u+xCS+EeWO6Cstjb5XyhvQ3yvXwynN2yrubbo6xzy50Cuhf41cXV6KhUokC9rXJ0R5d7+9wr8qvvgpqT+Mxrc4SsX4Iyvg7ODN+GE78Zed0aNU8skxL+zJhYnoqVgfBEpliMZLWcx+MBi0MVWGw0BTj6ajch3PwUrcmUrGXV67yjUZXdYcTwYA38mNEQ0YGT+ZL0sargsR+KreiAGp77ixk3q3JlXbT+l6bU54MZ+ynIkn7IobU/3wi0xJIYiujlQE5xoq8sBVfVkeRLe1VjU5jq8xpDnZ6DIhL4H4EueW7XF5DPJ5No756mQ/3oW3aHonHKnxg/c/Nsbna81Dj3iclSzkIBs7W2B63vrEiN2WrXwwA4XLSzP22uKhNA9PJ4qHfA4rhg7aS/44oorAuglef3GYwpAcsVgGd7VR7M7seQSQbrX+QN6AVa47tU8c1DSlEbIeWH5xLkFsVUk8qSTORPbvO4vcJopnBDNR6ozDkPrrYs8PzxlWSXPyAHjQnTZ8rKsGM5HZfYFr93tbUlCZYUwqVvsbeHd2XtWXgbgQRa1OlW5BbTRNTdBgWmNhxuG4C3S8MJrtVY2/Am85T5L/mkySCll/YfzwE1o1di6R+dPH8DbHDHu1BA5r4cA6I6LXNzXD2IFL8V/8rJuaa+Oa/XmqPic33kLOmY+5uRIQw2vAUBnPPSt7EolL0c31yhGuojIwLZoIiA/GSz97UxM0ZWa1YPwcBNb/t0dLJcEou9yrFWiabkIebiV9GdzHV98gnM+cin4ixyKOi6iZSKooli1byOlFhMrF3cwY1ndmIUAAloxs4GDYDVV8gRAcs2rsnup+hcRCJDZRcIQMG8YrzeKoeQd8AFqCA98zTOnsTywF+ANqjMD7Jh8JiWkIKnsAt5mF8OTEloJyZ46oBu6aMZXBll3YVk156VwvAOIuheD7aj5HS+pEvRE94bjNjJ3jW4MPTVAKv4QAUAT2jOatsuxIzjchGOphwfj2BUWRvibKrZe03MMhP0RLq+hJ4J+Hi9xfNtqpjZJjFPBiZL/hIppNwE8i0OJMRMXUd/xhXwfAQHn3GwguENppBwfXc8NbBZkKMfb4rSLFjNZ0ELYFhvjJFPOjYBZ2Jfd6btSWGOVJfxkM2XAVFMXP/5US8LJ2sytLF5HkBx5F6y4t7NeJvjYrW8q7Nlxxoe3ALNFE11r50kdprner10gPHVzymoGUhvev1VbGqmnlwS6A5DcSIQ5JF/GRMxeKGPlZB5lKrX2kt7Xb8NhvBJ2smhIoTd0yUlfnixpADdi1OCof66O4VgJfHEKJOUPZFSfajvqj4SApHwMs6eT8nCUwydrzJJYRNf9HBmv8L8egbhTB9qyZxnOyjK1pD3OOysgoAByBMp25Yx7Gc/HSPK1kAkcXtpigNGkJnxCtm/uyQXoidT/N4RHiXK5qmeu8IUdBbwqTqQSqtwfuOXFrudcw+5ki0613nVJdXVeadb/Z4BRpwWI16EnwCuZClb2jmETubakCsalPb/I8JDoNMwlhfVU9GQbrbdZIneMMqHLRcs4WFLUiIRJcZlvwtpj9nG1Tfwv0erlI23lICmLSedgJKn2McGu+JsI703yrKJGYWQwfuCwkD/F0505Ayid24T8DbQRkVI5Te2bXNrN1d982mb/XVTDMigCBdtCkU12SHWXbB0R14Q5+hBCHT6lNKNQiWXOskPpl2ia19TTQSXcSqNVxTKkrevnfil5haZJj3vmRrp0+EZS9WFrRuwQl6wPJz3bHnvCC0B7L6xaURNmrUOSN73lFpJSZXdhyt+W4LDuFEQXCpa1Xk5KYuWxcYC9X8mk7N4ZOK5+AJ8pLFSlGKMyx2DKZfg8gZAkqdDpVO5jkV6V/AyCSGIiWob3Py+DE1aCcU3TC8ujlXwQa5ZXNpMJzIx0icjKCFVx2sCGkY/QtIyJZdZsRpWtdO053dIj4g6SYGPlWHtfUMZ99SLGfcSjsYjQNgZD691TLir2vQcl/bsFchAfvD4KkcnApM0vVw+ym2wRpVjA0KJbuiPBIOE3WTv9mDWU3RCSUXNQShufJDOi5oV9C5aS9F9lszcM+67xHbSJj1HbKMDHCIV+7OU5/1IwvW9Tnf8b0T3rbB/avvljM1PQTeWUAiOLaRk+WbQ7lEy/MhbvY9J6mty0BL+zzCcFgRJ+/XoAaQKJlLVIOMC2f0JUbCjEKHG1hoi45l8UQ38l9GWSz9gagjRqdVXYsYiQMNPunn89e6FJZif1cXDsodg+t2Q9TI3rN2zivnVrWWnjWopglGkosjwu8rFlmERiCkLSbl2fDPvtLuqxZqfU+UYSBQ021QELNuDvN7kiqL1TV/PDrhDlrJI2hhsxoO7oG+CrWSeR0G1b8kSv8DzW3Zi+/61D3HJFeil2Uww1u/SzuXhOgXKO2M0yn49Bs9mK78j1uYrH4IVTD6aMw2KcDIPp3+Mh/L2gznQFPAuN2II8VelTM7dtA7TfvQX275JR6s+rn0YL7Wx/tzr6IRgwhORljOLIiidCc7Jowk/Fj2CnRFTLlB5gwrAM/83vNdHoD/6ovO/SBACK4AVv+7P9mouuZjKkoMj9iBO6jzXOXESXd+JvRBWSsDSVOLTjba6S4kDxuk+ZIOiPKsjYB9acmz5VLpS23PPbocAmPGsV0Gjpcjsyz+OjCE9g9ROcPqdFPLCEsco1RLEDEeamKgAEfTAFsq9HPRYDe3o5wmR5NIqb7tUfalKuERcVxQzB71Ktbmj/2XsJ/z0sTWtBZtKnq1SADahs7G76gU0oH+TI6EQ+G8wRLWBZHjeL91tMEZTYLugwDNeFkPvM62I4Qp3qW/JR2qqJQ8cTsw36Lw/EuWeXILI5B6bjCZ4n3ddEq6cYgMbnm1+rK9+af3L1Ik6CRfW3Ny8AqaC3MKbAe0SX/qQW3USwNgeI140Oubr3DKgOiVm2uUbQHaT3QL+nMQvxneRTVf/Cub7ksQnX3nzdsnkKfmAi63VdfkGjydDE+lOV99Rf3AXtiftswFF9QQQOubG2y+4rH6Lcvkr+IfXZ/XUNz5sedwX/vNd37QSvroADMdILdxpamJqeqtpISNGEco2I4D3vFwU+aGrtHmt0g8spHCiIl0H+TsMFEbQlzsZOew+YScEsP4di7+QHERv9kMDDqlwLShGTySgrLInbt21riiIt+Iv8hNpeGAzsJzT0Ee4LgLBOmdU3LkTJ6/9Z71A7RSl4u0OeFt46IXAATgQsvj5+RAK1juXyPJ1mgNaBU1NQh/1IJAsypEQmlWKNelhnKPLrH6nktBeAqn+eD3qlpCdDnLI2PNjIWhH/DlQOhCqKibYNPmKcMzkFABj7slisBFu7xUGaY95OVUf+MxZClDVVBlLI+DxaCMRv4d9jm85zP5vLe7kFMSp4X3l6OqfuhJn7TGyUZwzRxI7M81dAeGZ6pU4vatk0gS7Rtvqo+7TbfHTejoOFZmJs9UuzciB7xbn9byt5BFQ0c587Y0z1n6Odw6TCpWrGOV/+1xUTyf6DISYIUg2uLp46cUeEHN+OY8vr4rk4kyDcKTMozGBWY8Ol960WjcKGn5CEhix/HHojWObBPwfkLOZBx2X/pjt7D7mcBbKcvzbWqkAdPZc0zJkO4DwkxMvBnxLkJSeddo1p6l2otieYh2wsWVfhbk/JSCnxBAQ4bsrKXHXM3zJEPBqcaWiZcX1gC9fRVPA7kEbvr20ZJBw7GjsiBw/llWZs3JtWVS0uox1A+R6B9V3755TRk9elncNhHj/XpQPUbBnFqRdlctf2VN+0lWQ618A/CXrcHfdP7IMUWsE+WHhgbhY/0aRBFoAGdIeEjyfXcX90BrntBqGXFTNcDhKqBLeyhC5/oEPKtH3/MwUEWpgFuRTEUArFOaw3ya93mqrdM+CnAOYzxYNkOOOnDS/2dSum+Fni0XowYRHWylSyFDpHyhbSKK4Ks4xiaAwLz4gdvbQUyRdFYNnTZ9M/lhn91C8aq4dEYP3gQJNABNZL5hgF/rOr1x/Gcjt547E+ZHGc31VT024+zrBRTMAlizRJyUhQaW09+z02sR235hULkhAgDgo9yKDDuJQw4deVBtD1fw1Td4GrHRlonpuML0E9AtkTWkIir1cOaabAxCgn08ysl+CkO7fiuB5YE+Br5c+ec8lowoXU1RAbpxE+gNEiOkO4GinMJWV+AJq3I9T8SGn8xvgM13hDgjncWRUyavSANoaHeVu0ob9JkltW8otXcZreJ6ts/ALcLpnlhtKOwjYxMDUT8rnot6ezrchOaItGrFV8Q9Ike+9AJ3cyfBiGUhzhsDK6SUfAvP4c86hVtOeRdCkLvWazC5o8xT7QjW3oa5uBhV56zdnMOsY1T81v2nMVFHnK31RbgTffYzCPivjAIYZGEgPn/MSd4ekCm2QfX2g6hufMiGGck5ruylzEfr8JX6TLGBuN0qvBz2h6x067Lbh1iLc+nYYFeZvT/Tl+ZYxCJjPZyxCOInLCjZah8JnWQ9BlINr8mCfYXBIvY2oSebNpzQhYWEo2fIYoeQv5aYcLltzZEWQtESFByoPCqg66v+Xx/gSZBaCXs5+VNrmNfqeA7K0KZLz0oAjspkLOC7RRPdkmatOyyJiw0TCWOaAf7Ecjc36opvfXaQjinMnvgIxIqp9mv2I9qJksEhnDO1GwsFYSJfsMa+jfgru3hAUdE0av0kOe0pMvzrRSzvAPx2CBUNPknvBWZH/Jic4Wx2xLpjsQ9jOmuGrMzq1UbjoSYwCr7J8cjzs5vWcYICSFJ8NXqTaxCJPfDcarse9B2jyuEOdKjpKjM5eXrEH/2rnrARdB8VS/3gJ8dAuPhp90iHm8fRhRi3ANsUHsCkyHkV0CTj3WJNvbpXOu3BHb8nCwKMX/DeM0Yci61S+h9T+Wo4LcrUCdCBZa9Cbsntqg+Jfr7MkfayoNVBUhbYy75zUdjmy6DmObBhgXQaJ5kD7Exywfb2y8XITUvzS74hxmBGlW1TKrxnvXQ3CUxMyyZIphKRMFsem3tX3nc6M0ktqfCqfEtYB4TcJnvwCgcbJmIl2aKLOmOUQPjRMmNGiceNYL9jJ0tT/HzJ5X8peErjxQ7UzfWfei9i45ZLnnd4/B6fzMgayUqQQx7//b4Ezp8Cg5Xs0nua2iUVyOjROjcbIw19jbTPTNG6wMhtlFJd5o1ueoScr/40EApOUzn8xRaHpJhOpw5iBd3BDeRf3WkktOhzW+sW2OC76T23WFBsb1hyT3dCBt0S2/KdPPajGItJ6dYtIYinlbF1akWQgFZ6O8UxzHyx9qZL3uOuL7E2rchpowLdzrmqGp6/7lEVcjflpsPeS2AgllQlrRPvqYeuAFK/f7Zhtf9mnHZNhaHddvdrIMoI7Skh13pV50HSKteR1YrSY81MlDi2ThyTH4PF3nXBZMMgC5jAutcYzy1p4yRPAARNGxz4PoFgK1f9OMeco6XOm2X8yLuk4oyUfrSrLVr5rCwn1TmRUiPI5ceGKnYLEBcyEnM47wIuIuNYW3PdXJPs2jQ1Q+R9tACWEwV97iXCNYCrM5OVmX7KZqPFka4VEGpU1JHXRDMm2rdEFJOcSDtAkjzIKeLxNTUgR8+ib4hh7AaXKkdaw7NhRSgAWA6OfG300ki3i+tvgV2eWwYd2oSdz7oh9Mi2vjBfIPYpp0cGjRGr7uhNK8o+yuBb6X9N0pzjs7TF6dLvLcqc1RfB2MeJJCE3R/W/shf1jZCNcv0O9OxRw3dfZLThAiRUWQkixdxSUF+Qo1mT4ZKa2PpXoeUlm9kScffhIFtejnfI12kalv9QirknvxFhwMsmSKPMFjEreWBZFL7dcYyHwgq1hoFbxpfFN2bAbUN4LiQjTBuEqNLlB9kn3emtQy/c1zVT+xyaLUaaWy8vIUGtSqhZtXX3f1raO5/Q7MlRftHGtlJUX+TlQ9HbVaUFs0LtnAnsFRulkRDO0m0C1S75GqoYL33mTsxnSxX6BYhxw7WwlCbF2ku2uuY5pay6HEMZORnd2kcFIbpsQ8lwX3KoADNnkvoz2LyAk1hnk55RpaVplagcP3ZBuks2a2kJRR/AY+EwIY5uIXImU5sl9aMnRr6wWqkkFYj1bokgpSkAqgEfYERPPZCUfu5o3aZ7r54395vF8z2dKG3T1toamxmYm886r2/nFjoP4tNmeoTpJee1Zi01u6qmY5iXf0wtiR4ah5V0u6Cw0XWpraAQRMmNnUsph2qJg+12A5fq2pulnCqvvKGZHCTwP1OpliUA29VKL5yJx69QbI0/Rstxt5FghRwrQsgYFZ7xe7IF+dYHbQTmKwGIGzSFLGqVW2nrOOVGaWOc71v2eXZfR5uTNiKoYj76QX99+zwFtKgwYqRkIHeHsDS9EgXhGBbdzvLyTmLCf2tropkAbUzXxbuyjvUvowiNxuy/ARwLYQjSbzTYY4fxVrxq61mxiEBbsn4FEV7b2IYBjLEoOQdbo2IrUzTOHZu6vzs7TFoTzF15brcpBfcqhnjqNmW8K+axMj1vprVF2YPdfqkIbd22tm4NRz/XExJipXuwm2Lqiw5iSw14VEeUBzOfDfyNO75UkXDvWRh2ZfiTrLcjIcKwd6nX8Sm8vdOgDe2entwHxV7N14Lzw9iZATnqpmLL7KdPTqR4OZVy34+JR/enfTdIE2ufNXiERSSoWZejOquWhz6EG58Vm1jfmVmpMvstosb3grr7RCpwVlDTm2NiC3+YPMh0Ut/RyWQSMgWIGBnc0eppWh74CP2pGj1SBhC3OKk8Xffzi8fonK7Ex8fco+2TlPXqGDiSO1qOx+BhZXczL9DWVqS73ABCEuZFSjfjI3KRKRb/0WNYhrJaouHO+XTUoUjK0cxTxgLD5A+5385JAuNBO/E4dMX/P6pX5VG23SL3DRtfQ5DujIrtpu2nCrZR1WS0sAG4dZd/cr6REa9ctfIZ+sHzf9HHAjPSbc84+GSvITSd5Q7p5sv3/kddFsPCNi0z0Y2JDdRo7rjnI2OVzXm0Jk+nE9z5debA7MY2JaTSr0FabNdvGMcA9g3F70SaUTVVADdmsvBkImTBKU+y/iaHW2+784qOQcEgyPiQW70+e8DaS3Cs0SNPKwE+jRWx225AwK3OzefyASzjog8C3a+CN354lv1aMa9Y4yBjD6JbE0G3a8VO3hiRvG0QlTNe+177u2JVNgQzo7CeziamtLfcz7bF0IHs0xdY56psUTAtAaQHQjNRf+kRSdwBY59cI0o7nZEHFfMVzGyRqQMEGdjQmBArptb1hlZsiWXO+IvNN/f0EBt4tYSKTBqZ+fp1QhCqIWqAqMxxu6pNOb7l8/O1qyD6oDStbuzhAqViCYyRvym5WmNyqIOK2XgyHGNzJ+p17nu0WXYo7uKGRwz/0xsBH7KTD5BeMRtcfZWQxNK45+Ujv4GKyfFOKkM7LYEgEDjhusEPptxJI8VMl9hIPT/41/ThrzkTE3fU8eCBfH+lGdqpzZbSXbiiCp1r2QU2hbFsp0Q28guzvj6et7hDJZ1RhyGc3kpbexZKXKsYh1178JyC/ApPRnIMTeFTZfCqmuDPZbdEYT3WBd1sa/FTXXjoTnOQ4T+RWLHahc9S077iN24pjjJmRvRq70Ydz4NwTFZewQIbnIcodQ2vFflvCxHZwuOq2ybf5j0A4z4vYSg05uTsa9QhKGKLA9FpD/Zx0Ec3Ri0hqc2OjboN9B08S2GmnqycHdbZJkbmRp1OFegPwHxG/J6/WAABkIU6ubX/pVYEQ8tLGSHE1/1KfzPGydyKwmak1YJwtpCcihweWxouRikI9ri80yCCl3VroWa3kpSHPZmhInEL3vVRuZaeVmKpuqcCfDS3N1yZvwGvvtKY53xTQYwLy1iBzDEentXJAcya9s+UJTLxOxd1aRSTb6Hr6VdHdl4j3jP28peUT7/UZyfAnO65SNaLaKrKonCncLL/l+A+lSKiPyyCYVy714cgWYH6483OaWq2tDLHP/R6O0QiKCsNDHuRmDJ4oQnY9kJgZ/P5J3MpNZEOR3jdQP32dRRUg5T0ENZ/O0hRmPzM/aSaMD8lwsVfJ6RCe6cBlO0aw8WGZ6Bb5E7z2xJhVaghEkmZP3A2/iXSsonvweYKllyTbOC9QlflrN6i8I1UqLc1tN51W6TxTft1uV0subjVUNVNZ9V/6twpS9R0e6ux0rb5b7YoBOErsn9Y97EJjQ1XuHi7VAnt0d2pov74uFyT9AB6+H+p8m1AyTLd464/vE40dq9ykZXq2Bu9U3WjQ/ikBOJu4lB4FUqPSeNyGf9uQkaggMYh7EX/o1VLOOK2OmdPsrnin6fdm5OdArapiUenq1HgGIMzDpfQb6A+yyy4ChN4BMzVcT4a8HpYXwkPSMs5F3icbxUF5Zg0CxrwFWKzL8m8C179GxaHETDIhzOMiqOXiUtERVnfh6VJKh6p5MaW/2jVWTTAK1p5jXR31LkLMR5YYgQPAmuy5cNLuiZqd31xcztZPOhDevu2TS+Q3K3jgUNnmMYRwrWtqyzWIG5zlfjv3DxsMxxtIw325ybblZ7Rcpp5u1QLp9Fz/p0skA479yIrffs4tfD3SybhRrDq3gIWUItURd90c1I8ps4e+hdLfXLZDrGXR/hUZKvak5lrXchnXEIczqzNHIw979Gkh5g4pZbeFiC9QWtLiIEf9k9ZvnY5Ots7GrwbeNzleu5rBPCwZpIUEtW+A7rGdGrZOJ2GXwbgKrdThjYYe5UDsC7VsjJ451FYTG40v3h9AoyGlqr9qxqdWyJgdg0ZukFvtDiqqts95NwB3aADrZiAfgsqA6x8V4lDGWyDk6Cl+HbcpWoLN9HjPqmJcb26k6pQM/wJaXNbgK5dmGSIjGPikOSGh7wT9HijqiXTGK841m1MTczGCpjwpxFxmYTkTWSCRpaJi6sBWUwJwAar204KWEvLieKQcsajDpUhV06rtUfk81lb3EiIgn6iRgGa/K+o6BtpWKg+jJILwUPqBtCbqm16xhWa/i2JQ0cJFtFjJagHClRuEcqihq7DDKE+6AMRlkJsLpPdsaCRET+5uWLlFhsXBYdhbpXLG8nD+v27R4jYeqxNKzTpm1hJMgLIEELHq6sqNSrU5+5DuIeHspMOTCRwUnWFjDVwTYwYrkskG4U7+DDGQiwdgwXyTVBjnWQI4vOBMdPzJwweRtcqFFxUSZVJQZJK0x2rpHhdnUlaCVM0to36O+W+zHR8/yL7kZC3CsQ4TPeHfwuTTqdriXLi+/S3wNOH0ANCIqvrfSLc7cL1xWeCA+4b0a6ZurxegUlAoG6LGGdahayY8sKiJ8yW3uSu1iB3cpfJSRG6tLKmr/3arYX4aHdmBINOH0cJW3yjHwK/s+jyqm85XvmvEWTdB2LWz7bSLes1JB32m/5mvh+r2Bbv6CXilMGAT567QLFidBcrfzW36p1y+Tnet25dnOWNTsployMVMwlRyF4xiD3dFlAbrZnH3+PsSfUnUqtSaWC+zwBqPQQ7urxtmhqCrukQ7DZTDt8+2OSqcSszEnLrrKAA4FyiCAKlhLmZyAlcA9PoFS+LLJvYlvy9Phu2qguvPdAhq8nSE2BRtfz2dnWjyjsrnFx+PBliQCZO1LVTnpTDWB0kqF8P+ynHBqylFKU9xwdfcJ5rM7zKeaQwjDt6VOdDY1U2fcVV3OTR2L6LBcA+raWFmAOw0sSdHwEoEkHa09+ic4OVFtjdC245WvizOZ58kQy42Yww432+uiV7oukv7MiGci5JeO/08BH6kpmDZFrlJgOCoRWmXhCQ3nO+RhlLSn+GtRMw9x0w1kk/jsc7uFGt649uSiuRNpyGbQANwJuaVX4Or55Ay8OzI/5crpI6dzOtCd3wHMe7s6YuLIclI2YrlBH16lPxF4FnGfCQz2jk4gyqVfz+ygGo9SRgrStUuNPce0wHrBgBEcdyYZtsMGUIlBJmt9ApDA4udXqxPJU4MPHFql4SkBNz9rq6xAqWvGvORAO7DHEiIBHoS9HU6X9IxIl78skW1TJNgHdcwprd0yH8QBrF9GIhxEeln28mOpIs0f25a91WtS/VVII6NV7p/ZxfHASFqgWfStjoHizUtqZ8oTToXwnMW9uX2GroRpCV62FJdQT62VroyWcrsSr7XvLv1c5BlBg0V2V/voz4TNBS3TsVLeIJ8LyV83CtsGjiYVCXwynXmV1vKhOZHMJQMbSGZxoId0lgSyUbQO/QUQT8ljgLUe0I7HVarxdHM7vunhYHpnjVjXcq9n1gltJbHK6iBD2hv+zFoAnINs16hf5f1AuLnzzP6Lb7KB9xn1HQ8XOdNoTm9AnRh21AxviJR5tr2N6F13JK/syj9RC4fdQNRb2HhAIypBUME6ARAYXaHOP0vzipdveCnl5GraAj6EIPXgxUoMugijaV9NK+A1b4HvqoQIl6qbF6A0XVu8uYs4HyPXjw475EDUHHfdpaVZ57UNjct79PywhzNHh6L9bRhYJTktKGQbNPOJXeWDyiyaoNifl0O4NPJH9cYizj0D1hWdVqwDxnKktl5gWSBNdu5J2ylhfc9hODJe8gF/uRJ/OjTQLVCcLT08n2EnbvRkDD4yBVucZadCCRJ/ir7gwmhKmBrZL75yMLFvL7ebhaVsMb0T3nr+QP9XatEC7QXMbNymJxs00cpClu2qpnSms58GTY2YxVtJqPHPB/ipuVQrKWey1ZfpbWSIPFKuPaWGmX1YTni6W2i4mym87LSs1vXoDVhJMCoXG5hiJqCtj/S3SbSeceuhJKNa7JxdkjSwC9+x6h/20r/Zw0Du2rpR49PZE0sqLoyo79KPnZ8PDTgUbf9oVYKSIVfSyxo/NA7ZCwpfOpikp7RsaFKpFGyVNiIC0swCpINzU3PMvOPA2njdXHZFh8MrVzKQr8iha0aXQKb5ygIn2gGBVRGb96jR7vaz1mLQ+3n4Mm2IduqKPUSscBWbSZ1lrdnq/mv1LV3Oeb23znz7YjVXxZZlGoHPjzgOfROMJhvoUn8vVsaDD/74Xl1B79LQY05el8sIKyhxcFfzO1GSVZQidmXzoPdlKVYXToHAFtZEce6ti3iszCUSUn2mrLlFchNCHkLOZB/zpr/OhNAL+EIlwFb9vOVymo4KvdHdt/Y+OGT6cHuyruKtAIa/XXQSVW7bEH2WgklqYtf6i0kZ4qZmPtucbz52NOGi6bHJmJ/dyafQsCoMO783b1Ol3vLr3tqrma72AJJhytOhbCplhLvFpiqy1Lw/RnLuZPiH15XJrnt4oQfrakRth9qTJ1ibnpxKfgHgn8//PoELEUWOQ172heGKqXiIxVIzntunGHjpCRQ5vnpB23WtcBVKtq+Ag1OvtURShtz+WFUkWJfhJKhMqpHkDC2vws/hMJMS2VuQafy4tXpzeQa2uwwjP1hoITxVwL4QwpIXBoCuQyrVtQaxrMviNiBWp+PPKmh+CQ3JpfWMr9pFx8bYKLytzLrX7AM52T0JEUN5N9QCce2RouUb4D3IwERKqDZGQ/nJGIihCrzz7f9YS31HvkuF2SIaRAv55BQRHvqPK+LS9ik/UDFYSUOPL1T6o/6PA4jwD/QzuUSn7rSfq/ohO8wklIFonXBb5x+HCnl681x3sWAeMYJHhjaJo0rHTfImG7sRKEOLH6gQ7xgC8I+zLYeu23PRKnbT5v6R4/Vk0K1HOuV1uKqqP+3aKw9QFkuWrqMeJIQKF/m7h30q2UHCZxi8wpSE/1qsFAksei6Ln9/NOquu4CRFvpFnpVIfw/ULnOQs2qS36K6OenHB4deGZfreb73fWHtqpL4hm+KemrMhJIDkUbUI3z1ze9wngOUCCDxFTgNbLzWibbGmUHgbQL2Z7/Hfk0h0vy0K3wDpyjCJSfUVzAuQo1RWzjw8FSlPyrlq9hlznMLZES30kPwglL+l2OtFaHG6yXw4qmuq3CPsmRrYlv/twR0YRtVqQqkbbrk5amQgRYkiyrxD9+CQh+2HpXog5GRp+vZ+aUOEDppIUmujMSwMnakbx5vt/2iuHs5ramvI1WeocdtcEmVRW8ejSh4LPIvN6/h5Po66MPg5CzKP4G5w324xliCEv1z7Qhcrk6e+1pUk6/3EuwcQ/DncLYldHmZ7WjoCn9ln39kMaNBMkpi7DdWFJS4RWcWYU8q4FXE1pWuQyaVpNWvwCdnnVawtWFhZpR19pNhUeesEKPqiPsSpqPGUKYe8p+B97X9DCfHYEijhwMIxYa45BKWoYeQA7zOo3k3SZA2oKoXaWghR/EqVBbrCuYLT/7PjHn0bHjRUbZhST6XSXHToSIE0knsdMh2Bx7Ji+IQGHLphLn1IXIroBTFElPXeJ5Sy4msyvSGz8gQipWQfJ1FnZr0NrWs6P2rVuodcntHPg/VmxfG00oNth0jwPW0g9uYzSqHqrX2aTQGSDZgl1J2R/oSnomGxwj2zSE8/OkJTqoEsibU7eCEX8H2Q+yQwyp6lYS+/7NtlxesDxIglY02Go/Y3ThvvSxeFdkVVIRP0SnHqGUrVHLg9kZ9V7IQCEY0uaOfTaUMzacEiFR8MSP3ufb4wTwvkGmFtDvjCUoMgVvAVrl6jqo3I5RZ+I36jwxyNs7dlKVD1JG9TMXxbZAI1EvLD7UYKwUno79svNrSuhWwgUBV4+i9pYDg0FbIbkxeH5e4dXJx15unRZk0VqFj3lDdxA/t0u+MMmUodcV/6jHPn5cvY1fQJnsCifLO1dKfwZw2DyjZUBbd+zC7R5HRhzXRdIuPXNGkxvLHbdzNYRF0fsMghaWtg1kCBIzSUCw51QvkveVGxPg9WqSXJb4YVFKS5KUPEOsN6MtiYUqZ9Cs8Us3+QgJ45MCIZdNqKMvYGKU//TDCo+MclOenoGS2wup5usTC8L5dcMaXgv1NXv+AtJNMDtwCV3zLOlZfvi0wKAGuOlhZm1Gg5315L1LiFHxCm3b1HrIluhyrDGhP8VgZ5ooXn5Z6wwBQdn/L6bpOElaN9gPl8/BX1NktWZ7kOIwn8CQB8ArwnvSGmMnPepUsI6JsE4EIFJVlAld384ywQSCj80Dwf1R9aU6rTC+ZE3DkvJa7QIhDCrNAZ9kmhlUwhDukNpmGMm8mnW+q8wZtu408rJ8CNY5urSLXRJKspFSeh8+o1IpSPnrNX/aBYrJSp2e0nAx16oYdQT1P03ZNqULB170NGx7/iSjRtuUGBe+VObAtdIiLnpXlK4aWA4LOa+y5TwjNdJ+x3XbK9YS2qYGh4ELM6ebZ2ByndrvS6lyLXaf7bMapK2fdzuy/y5WxhsoLgVxvO+KlJ6WqB/bC4srsFHJ89Ke/ivtO6Ptl0/eaMyKFFQ6Za5yd5TrmhytuK5es++HHgWvJGRXAPvJlXTjJHr4bB/S1p4SIx3lNQcSlV0kB7zlKUt+/y84jHWDKmPE6jGM7yYZ7R3ssXkfR+2bpXRF4IvCNL5bHmEKe1UE7i0ptY7wZXRUVkXBc/6KOx8Ej0UZCeLkOjqnpCYt4HvZNmWU+Tg5cUe/7wpIzuLrj8fhd9c1sVpe5ecftTQuo8qzDeKhr/2v0gARXC/58Wxks/86J3qSjc5oxfrsHmDTdLb2PPwfJ0VjOx9AfRJU5+nHWPDfxT89Vt733r2IhZMMn7R4lNCi4PYFuqCn+lQvy5ipBnrNOe01jj7FalGksHi9rFKMoUvwPIGZLjL0GAvD+chAmHlkgxDAwgACzbwKukOe4Ei7mu2DQIsm7q2ypBHSbf1wHiLM9McxGgsrpJG1fTOCusM9BLotpBS5Ugtc2hjXwY+KAvv3PmVjGBvcEt3KQ4biLxnyFoiqJOTeS8xA9qnHxiB0CJMZ221aaPKaAbPuQnSACqwqURBeU0SuYYuPI6UoxBpZd5vM58mSLJnYQak6adet+6iF2xaL4+KJ+2SSEto4DGIqaLVDJqPl/PteptV01g9qte6lTi1bNfCS9kbzDGs5maC1ls1rq6NYHYj/CO3VpJpjtKnNNg0cmKq4tpTFYivOyH/TZpYbtNr0yWeNf9w2iEuuuMjzIjHkf/xPyga7zXYxVUd1qIwLdLrJNGMpQsv4n6uHmW6WYNO1sQyu1heQYH71pxKdb/mouJdedGks/+zQ6zE+JXHrEHWA3lQJcHHGvNpga5XrtWeMN4wAhm/Cv8vCH2uBVSAPkhYhCkB6iDNvT8D1WXvDleuvq46htuP3DzVAiVy625Wf3HHhn8rDISX6awJsphtuozIZ0D7sIu8GzWrxwczLS7pvorM0NV0LAV33hmbh1RuTBjIt/SolT/82UsFuXiZXG/3Eih3RnQfH3jbBkLqJVIsxkoo2vGH+IReIeFJmonqzsIBKRX129SlF/KaRzo1gJJDp+6Zj3WA7cXTMkWRee5ejeoES/73+RQg6q225+0bwW7679y1Qb523201Pm8rebwCW9Sf8IEEXUnYbUgPhjrXwyE33o2cfWHnFH6Isbnx8nPa4ThvMiIU6ce23wqKZc0jHAoCaA13/OqIjH/15tE1ZJVPjtx+MjxPDiQMJt911Fhdo7lDv2QcIAvQ18uXK1KO8OrZIOmNfxtsOJQdTDYUzx7DI4xKFbcpJ5+lHIHdeWR3qy+hu530dngEa11XC54Uffvuon5zROsc5u6XvwdB1ekq4eab/aDPY+FnrI+y/nQl1RAf29D1tpMJUnYfJlfSHyJlAnT5ZWdd6re4W7cQPOmPUU4ldOseWJqZUnIB9Wt5r90gGpxbWgUTQsYr74mXUItlMbNIcrSp6Bt/nh2aT/mj+7MTRXCP6BiOSVswu4bRAKvd/3dMryvh/GlfLFQLTZdWL3xrSjKPPCSwNXFhUD1Ep5EfYq4Usi88MooWQzYBTezRWTTDkC7eZd3PBTQIh7LelooZfqdGH4zsIENskJEQk4tWCsRJJIXV3pefE6rqZ81/INVC88tvLtXQW5UjM05neNlPBM+MN2l53LJUNLUXPmbTdzxtmKad9DOS5qxoI0htOSimvy9JZJE2qiFJLbBS7kAjtDsumuox/48XRpgM3k5Om+xhg+8SNEkVkJ/OgzlPVEvEo5FHe+sOglOdV26ovK2FLhMwZ3BgV+UGPTUFbLx2RpZzNf94z0XhEqH+Ku/PIQ8jYFQZ1MrTRkDR1eHIdNju+9PKQgcxE6i8QSO4uvP/CTBSpg9ugQpU3PAlHRb+4ftR6oquPxyz/4QsJcZZPgMLm5u64fzZiRRIzCU7Bv7EoSykcTyLJ3g3v/5qWKIWhoneluNgPhSx+7BdNpCDbJREjiHxKDZKTGCcQ3rCvlT83s0GXVDKKix/Yx2Vyb7Kn+vFRoHh/fWE3Ax2B5++bjbKJMYCRIrYpgJblwcOmxMs7v4ci+AWTAVWl9rzb1xZaZlAAxDKdZfBkjVvceHN4A/wTNXTUSk/ioEq1OyBK+DqIeHTNPqJz6uyGLAfYIXtBHkmGstz1oS4eDka/sWy/Ouf90JAURCuANN33IKmpgqeFMHlTK2CWTw656MjqhfbleESeRmrMGiEwGbjyeuMGKFe1FpiX0Tt7O1TLK394xI2mx4+F1Y1UE2b514bliDBQZVwnKbeNU89ZtQ3QBPCzP4RK5STCY//kuw4LSrs22FCtCYv+6ecggpuxhiqLSKdjy2249I4biucr27LRkdmxUygYHRvK7HRePe4wlSCn1GBfi7yKiRT09zaFiKxCrQcnX3YXyF/wGSGgawdXZJlmT4Khvn6bNB7Xx+rg3ZzQLZ0nDr4ufVxoDuEWfQPevY2A1RK9joDirEWelAKiNec8EAnJ/KHI3clK988zZkrCZDKimzBYwW1jfu4qJNnG5NgvgX5CqFAU1+gpouTvjJ8F5/lN5cup598HV+N1JyARF/Fs2/8J9izDVU7CrVTL/cu1nXweDIdMknuDQRs0TD++QKiVkpJQy6lqgsYeGyjfRyyw4zjo+Z9DBWtMisBVF9g9pbpcBa4WgHEGjo6ugFQTeDiWBZYYyo6nc1x1JhnKptaAcaqjLcB0yYqhXN0Ls3lmFAVosGS4sABFqKJVbihzac4fsycA8EwzWmiSCzEO8Z6MIjRHlOQ3ww8NjGswkIXRptYG5YXN/IsKwLLcC20etrR0UqxfZtxYgj3/XeBsBYlQ9rpPgmohQWIqNpxW/t4sieZsS9YWvJb+q1FPonJk6VoXFirB+7A0QnSyXwwdzB7XSw9TjKZLeIDZ2eZhbeb+X9QWtatP0JzqmvlNp3pUxnm10n7XOTVxCyronNyKGLUonQP1XV1wOyhmJRh96z6wdXDDG+1sHPxn/z7I2eM51WMtyxEuLMfCQMLrcdYhM9UhXZclg1MvcQWKIddJxvJPlCdsdmR4dZHWh0+dt1iGSl3c2/qifoSP/XiXgaF8pRMtTRhUDj5aohsm63AybK5W48yuxD90tlCjc3mFITlpZrNcB6AwFpx+FkNyiMqqfZCOaauA5u7oK/hIXvU6f4PlIx7An5QybPOiDeyY9OK/1s4KBo77vZX+5lwKdgJbGfFGnJnpjkA/prWyIuw3xhmrprwaHGYRuwTxMT1eQVWFhlIK95SMIu556SR+zfjPmf0/jj0kag25wZCSYqq1YmijYwgkEUZhedMZ/qKhxpZo7TBBlQQd4aHMr8etAvgrJQUlNggMKCt57hDLE4qQIaPrNil2AzJ2vnE57HvlxG9j8oPkePLQnzaYEj7icID9OwNCb4kK5578MLooA/cJTwRy3Fq007eSoREHPvdQSSV6OH2AljVdlT3//LRQlLgqwI4VWcNjfIfWwRUbellNSRaa2kNP+fb0IHeHBGBlttVuelQDGnnfJqSsVbCsH04ojvAfMunYfkxwvSd9FT55AyP/kISs5txeuVzo/lH+JDoPWNNpg2o6YOwuwMovEVXrV3DXif8QThRJhWOLqtgiHVlwBxIIVNEynLO5z6EKjNrLLnrcGMwtKS0W/+Ev1QaYz04Cr67zxAuyM0VTthOyzjsBo4WJsZrvfBqC/e5d3xSykAbXlb5/fXX46xHnIzt9y2eO2FmmLYTxhqM6UG6YmKOA6dgiPbayAyflWfIioySHIjp/gqTCdSXIl8KvD4cySl5n/wAQN8RyKA28XDKEz6uD7xRi4EcbgvRlAFIL+8FZQhRJXyi8ryD8SJDH2GSlRGrluQh57NHkx1rnI6tZOn2yZEbOXXzKa+4pRi4IGWyCILMcGACXfAwQmjUJAl4zxbLJ73z3TiN9Q1ZNaqnbqNX7OFGiJnexTqW9tGUNB5wb08gMHzbNf5WlB3e/jhCPSeywj+qv9XWz70BDRq/oIKXfMCCS53K84lvEAZ6Z1B20r/tPl0+neHko7DSKPtxmPK70kQwUUwu4ItpUJgK0aJ8gYCsIJfNtrVmCBScSrJllH5cByKy52jeKlw5/dJYNA43dsCBDpzxVJ9buCEbfJIdl5FXHtKjc5W8deJyvDuquPpdxGUFuag9HgIYLeb4amjgTKvXa/kUsWR86qXf39lWkcA1yXklOvAj+cfQeZ+K8vMv97ZzdXXHcXHJ0EqliU/uapA90isPqzAWSpsAv0/ku2Vdmp2R5Lw5+cE67ikXIU7Dw4Z3Y1cTpwHvYxxxgDoy7j1dIQhKFjzKOnI19f8utnzSUeL7GuMvMHkSVPEPZ6lt14EAsB0j0W+cfd0D6I0A7DSEtCEKai16iqpCCa1KR3WWI8RvLepyXOnr4FwxyeHQnOFeicDn4EYC4Bjut1739CSRDfi+4cj4pzVY/TZ9o+GqndFZWsiRxG5SmN3erPsorAYrflYKM2Xd2RnBrFps4mL7UkN4T7vzY6hZwv4Ob1APvriDLQTkqhkw08u5QXXX5HiFTrk/0nBQEMg5RQfo73VzRrBGbu5NQmi563rT+JzZHh+cq1D0qU5oPWGDb0+HhrbWcatxU3nRNCRf/NS7zAGSqgM20aHGIeEjTz7DDYm3D9GC2Pe9A3yBBOgHjWNo1uxQokMA+Tkv8rTUgyS+jx6f4uw91vzZpDYs8g4pPFs8+XNSYX4N9msprLoXmg0XaTk0Y5hUP/D+xPugiJZ2aRCoUtHmkXhe552+ZlDX9loqh3t1IBg4IjorAtfljuXakxA0vN/ynGecx50F+xvlfWGp7aHzZAnmjCZmjFFJwuBZFc4xsNDSp3u5IUB57YD0YzFF1F20nS+jtavcaKDVzCISUekyE7edhwxGre7VR4G3Ikke2fi3t5+P1XMUwbXDD2HrTUQtZeNVTLFz/+uc9e2im0A6nUi8SHrFIv3YX4xhcRbn/YOnr+wWcwflkzJhWpLHRwYGEtFZ5UBdRK7FDH1fDmZ8ix42WAgUrxa9/l3GTDYDxPk4Y34DbnwolUbjAoTs0JmvSmlyEcoesq1Dgt1KveGR2NY3xD2ReouagFEf9DFCdAqBUFb0gs2K1LsuKn37I8ZvHUjth7PSQXIeBe1IA/8mJoB5ZwhvkcNidjldOj96Jm8q5Zs94qAzNDPMRknQuGeK8pHRRiBD6o1yrSyIYLcFqaToQfPGnD9k6hYYnxTypEM7cBiNUcw2L0nMo6PFqFjmrORR5/DxjfLqewYXNFwl5sj1o709mRTUFAu3Vil2kRxEo3kr8amFwAL7CQLfYXn5/hQIfgks9f2zG0yomNzO4tSvsHkLUoooGdc5TkZST+AQtMPZY96X5AcsMtVDmScqedQVhSgrgoJYLYfSnUtwO7zNwexZ2/aPg4kJM5fuhMKDpwRREag5t+NEXXO8UpsgxI2c6jpAOc+5Ik6Lz5ZNrhuTGnYfWLhAMKRGc11RlR4IQXyMhQprbZBvUgN+haROLFWe22dft/xlsGnYCYoMn9ZPIIuPjsawItMKYBOdda8pK2XfZ7giWntAHPCGSPvla7MX4mjcBrqRvdFluq/vtEGjmrcu5IgZ6rmDD0VD2PD7O5e40GZ11U2kJfmgnlYFciW9oPihVQAzLwZ9ZG6/ITyLrmxIR+JaJIp9I0vT0v0zMioJns7j6ytJZAg/fdpXF/YtR0M9nlhddSCAG2dG9m+E8aE6G8m9wPdVyDEPME8Njfo59JYGssAThn0IT8TC2tZJu78qMchsIUqKNNVrmzSREvlEV5o1cqkhPUzdOiK0ojnOeX76TE3VNwVr1e6qfTzZej6H7zDceWW6QcXQcnlcwYbyjMQ+7uuYEqpJoFJWBXhhC9vxsch3QZTjb0KLQ5Wy2cQA5oMkG2kPrA8Pi7KlZFV20uFYWQs22CSr+efYy9/IjixOPONdg3o5YZARNosEcRofDUMKcpV9iR0Cpfs9XMseusuoH2Mm3n6PLbyw5WFGzlkHKpJMuFHtAVBaHYIFqaIPFGp5/1sqtX/eo0Qjz5hxH/VsB2tBHKLnPEjdlFATo76a/UDaV1QUOKulC9wLyMFmdIqOwagGHF73J3axZyTY8HE68K4zuvJRgmo9zQfOTWHR19y2lg730Ip+D7OJrPmTKROWM7WrUUHdV4623y2LbQu17+q/CTNLAXgsXHPCn9CqN+DWHPRlMuYGjRpgLM55nb5h8pYBKj0cZaBWZNE8trZtBWc7/o1HKbsyNqejeSfr3A25LqAFS9uJhM5KgtEFGtCyorAHV/aTtzC8iDTVaSLty67HhE6bkpjTmw+IzPyefAJxtSQGQZgYybOtt57YywEE3+7R2H6CvaCLZcJ1iwBUU9uUQct3Y+lbZNwFyqRrUDOAs2NQszcBC0J65ouZZlyUzQ7LEAuC2+kPXg/bhBWgDMxT2QiKnMqS1dcYw4cUKGM09gh5coLNhqRpmzXx2zZsy+4TKt+6WMZE/950UkgVV2VKt7ZNXOccU541jmUIAPBxwv64SIUjy2UwmUxnyYIq9PxvHDDFDschbP/2dGXrmhdYjvwylsOSfCN4f02ezGujiLIb736Y7LjM9cK8wixrNwOfVYeTl6JF85VTxKM7wbEcCV6FFpAmxYDvw/x5rxU054JzeazzZFsv/y8AneC7g3YlJfpC7GrsxlgGZ9gkd5OMX2RZVO0/C55Jiiexq+cyTwpx9fyO9phBDCT5aLRKsBWKxb0C5fuMRl9DkJuAF2Ro2cwWFU7w0s=
Variant 1
DifficultyLevel
571
Question
What is the sum of 41 and 32?
Worked Solution
Establish a common denominator:
|
41×33 = 123 |
|
32×44 = 128 |
|
123+128 = 1211 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | What is the sum of $\dfrac{1}{4}$ and $\dfrac{2}{3}$? |
solution1 | sm_nogap Establish a common denominator:
| |
| ------- |
| $\dfrac{1}{4} \times \dfrac{3}{3}$ = $\dfrac{3}{12}$|
| |
| $\dfrac{2}{3} \times \dfrac{4}{4}$ = $\dfrac{8}{12}$|
sm_nogap Adding the fractions:
| |
| ------- |
| $\dfrac{3}{12} + \dfrac{8}{12}$ = $\dfrac{11}{12}$|
|
correctAnswer | |
Answers
U2FsdGVkX1/Iqjr+M7r0nFu+ABuKEW/js1TEeszOPCKr3D6yyDzEJXqNHBNr9xLf6nDuN2B0z7bKwPi3IoJyaHlXZx9Utn9taIOS9GIFEA7PWk2Tq3pu73W1GbKHpp7NSHsG0i70P95B7k7EsAyTGQjkAYzwD2NE72/7RfgyxWsmcWznpGqa+rc4PpvJNdLBt3rBHwJknrqwprbGEGeRI8m26CTG2ntjT2jS4LIiaSDikK7wCugSudEbfdbwNulC0MevnrrChV3UjY5ORvYEoS7unVPboNP85fDLP7wz7duqRmy91gPEFqwRw9PACOReHcwWx1az6pMhIUcVW+ppJJlacdTrc2l32ZP9NvWXeJhay/MPOeKUKX4XOvYLsvB/Q3wdchA8b3/+4wm6uumg1V8/zY4Q1NaH+EvqFJmHGiV+XichFIyissFWk1IWgRBZ4TwAnveBnmjpavrHkbxsz7Zlu55eHhy14vsPFdKY1V10OzQ1IHI3BWwV9t2oUHi1OLdwHkYxqNudsD6+xSzFzJ5d4eWhhcHltq4/T37v/JwRHxhU1YET0knrwBW0MkqvFjNC0RNWpguDWDQVPQJ1vSUKgn+a3pxNgNTvYoCXFK4jxIa66E6XTpDULXddStsuzPNxevzbvsFmvSCMUJCQd0RcTz0h8i33FzwV6baI6A79ByptzguGjXFUpj0eShkUuHYzx9Yo0G9EjtxSH9wftGAvIaAYsG4VXBZn5shMN+KY0sZZXyRmL+fLgxvbp7gOtPOsZkjZ44CMOYjZTupGfxkARgHqiV+3SlCwrrkNms+BejyUrXE2XDv1gZv/lkndivcBctybVjpU9oKvLChKX29u/SwypTVfGRlfsSFwl6uJpe/lEit0f9PCW75cf3DmkuL/oOZpAbPr7T9Abk5Sfyx0tfLoXvSeFsSW520ZtroKiodichEnQRqc/tEO1RFrPXt/IkHfSi4dF+29QrIT2j4v7g/XSgbKukS78wWxkQdl1aLmHxvGuXlAPJbGxZPgNp2vkkW2EUzxxdWI+Vb9aeEPUCKDIwto9fvdlYwcnSdgJyCEmQSZnBDtvrTXGEYgLLyaZ/vPLGpJ3PPji0YMfslMYd+zVaBa+L544j90lAO59cZ67xgIfz+j1rDdjC64U2nBv+4rdPUHyAlY6NWGXXzu11lfxslLHx7Vo6RdOpD7EPhJWUwpIMaYjoLhq/GjzG8VBEKC4iTqPnj7zjV62MKXFv0/2QZzrTVrLFtS2O5ANdnR0Q1HSI8RzOGDUYwJp6cLeH9xnvsjIIltUUy+IxFQhlcQwUyq1hBQ7K7vIni0c7PuewZWBGckM+l8uo0+z2UQwr8XXEmHITnGqxQRzYGiqN5lhUnEPAPxEriAdogeRMJH3iMI6iIahcTu/weVVGeLS7E+U/hp+zQSjLIR5Y0K1xaq839MOJ4ZWTl6YW5fK5eRbGGr6V96hV8eCnkOpcaoqk1QzkTAZk6Y1zsI8aa9ARavMJ2BvAq8EgQLiHzCXCKpBjkc6RV5zLQC6MWlmoZfUOY2MI1VtDleN4CvmsjPiyMGFqbOr5ONkmR6VPtfTaba36VSPxuPsosXdYoPp3Wqn7EKnHQs3+o9FMHkFY4hhtk2EpfeBwCvKBIv1hdkN48SFebJLoP0quVEUGBvsBc85TFzAGpw1nLjRMLazAGe0cO0Xf17END5vDeu4ESxjA4ysogIuAinjR6ECrE96AM6RHWOfh1kN5UYXjj+TKOrCfDyhQCPGm7qNUUXfxuNYz0QmXwNvMxF4Xiy6w9yM+jZ8ZWduiH3iTCdrj8GYIpomqUZ3F0rzpKNYaEgla/+XTuwxUElkp9AVmFz4c97R5aB24JD1hEZfuG/iwYYHO5Zvp8Fma+pG4A8vqrlGvIdPPK29uo2tZxvEJ0KnVllZQ4++mW1TPq0wLRa2YDE01Co6v1RpA8dHSVtGrrPker+knu6EQbEvn3yYDxNCNrccGht+M1HQkPIQhH8b8cmQT7I4T1ngIv+lz0qBjbbvkxJqQXWwxGBqZ9kBFLt1PYY6aGVCPJmFo9y6jFMiJYJThRfYfUO3XeR6Z0A3Tb+B6/Qa6x65BQ55BExZdDR4whGARnpFBmLjBRBb8fUISRo311JIKshH1LC5p4X+Zee9P5aIeivmev8GiJtMosGW5FHv/MkokSUbRtjsZboFg7661gZLi1IWKbTKt4yX68U7sEoF3zo2VOtAhNWGaHcNJy/Ra5P/+xsC8juDV691B7pmLB8JAr3wRLob0OD3Ujg5TYFcTnZNYdZIDGpYPzfZ/xP8L+xzQyAENbKcIBwqr1H98sVgPCEsEFNmsh2JePCEWMx0bDu+9x1LGgLMqQXduZPLMmrEVypXOmEsc1AiHDrWIUEO075vRl+SBkarBjiqWyBos3jyTGwaDUxM8Po8KqDOo26isx5DFFhXDD/CGGXBvZTAwD65O8ruzsLlVeL4j3EQwOyjMXBE+Zmp5fM4I7tXEwnaeyDyeg1fjYT+/DYDH/nxDiF1mLIjPIEhXzCKIx1MOEDuZQUJP1NOaRyBbhjm362jreetlGF0gPIDbwjhJ7az8BVNNHX5scg2MOkTv+X7KuOQeGAWTfZS9/3GeON6Aa04269dPBV1UyuuoSep1zliiXwoZNREv9bEt2JiiBo28zGu/JFXb/5U3d9R89PtbFXYzS0df7LsbuhKNYnclDR/YN16nWSE4Ld7OFekzk5Y8ROBaT7XhhvqVsW6bFzpoklpx2itUpnKmiOIkXrhxb4/cXSI1vXYJi3CksiLeM5RbxUdCppuyMeD4qkB7HezEHhHs7PucWy13Ut5xP8ts6RpGgBfdbwTMBGw3++fx1k5hIO4mBHs7o7MjXCG6P58f4idcbW7MKLTZ5y7354x0wZLK2twUBrGmUDgBsYm/106WKsQYOIpUpJaL4ikug3mcetQJULDpRu8/ef3MtQ7nX6I3NgG26gxpELyWxsIn9u2ubmBODEEuujcqZCFoIpPhvCCMGDMTR1wkDUXQUMWUpewLFySYG9DM9HZ/1mCsT9PWKy1jeeHPyIHy3VX64Sr728z/iiJf8fk/1ymRDOGrkp/BjwQARBIIll4GYkZJqjc+vo1B7fThWNuAdI3qkDJ7rmIXFhgq8lb0ksUZepBxBpI5n0Dy5L9KCDIgiQJJZFKFnkmdlW3tPswHe1tUgWuHDDhU2DXHViFAuvfe48sf9qHKtoixPKwph9QLA80p4ekVeV3DtU0Q6xq8mGMPpBUyK+JNIeuuMFoZXKv9iPZQHmqOcrfdoKCRhO7+k6qB64nmaO3tW4OkbYDOjx9k5OBVcUymeZ/LugUHH+C5Ud+My4CfUkaDphPwPO+4YdYboor/PSaJ+YDiZUHPoT0I69Tng/bo1FhWtgjsiUm8WAkvbM0leHPu12uzHaG1FXL3qdJb4EPCWrov/i1QEfc3swayvDwlR2Rj+b7h4jnNgP41mCE0P1bTocAMBNlL/wBBRHq0MJeMmaOkQcFlMQ/6nKqKhIU2fJO5cTYLtZrMRguATok6DkP/9iXgsvbRbdKcpll8wL2U+Z0ywpkFhdMQcuBMDN6AbIJZPH+gti4qrH8WE0uhZ5tav0BxJrGQmqBUhMoIawNbLRG7kXsD5qcRayFhG6V8RW22HPpn4Bpg17DPEEiVGsPDDJA5e1mqftHryzjirQM5mlE04M+hogXgQXtegGD2SnYqmD8sZSbBVLCIcLghHMg1ljrPeA+58M5upuEaZLaGehU30+cK1z0UNVv6AJIBNforTtIo1a7rrRos5ux/2ldc7rIrYw7j1KIwgEv/BKRTNIfjcHsVEA4KfUXrWCrL6xEMDq1HdhJvTzn/8yPyXK/phDgqzjUdzOWSrGNlTOl1zNJloFJPsfQWyef/cm1dDN9RLTrPfEBgrquTRCWdeZcW/NuIz4FmdQqKVrWVAaIMYvVth44s6kS8fJhJQkUNnHOvjfrUBYyEuLBcCVoEl6mKr/srP0ij0llkaJdfewromizYTSJ+KWYPTIVpGO7t6w2GH4nGCHdKHAE0p5nxXN5+CrnulFSeqqP3f6XxoOVtNGEWGE6HWwCrNk49MlpKtNSD20cXKM9J00xQzCbwaHEoWsiIVe3ldRBX22hnA4WOvSAaHIdfRJgVP6QnQyqnJJxAy5JZuYaAaUxM9cuU+vpGHCT7NiMytQf/+BT6nhjEv+1yzp46e4pN3NjLgvy2a+BOmUQPhjqlmK9ZjRzm1B0fabd16tngC85Zj1QcgT/0asslGYlIoDhWfaj12o7fVapikdO4vdERg2qZ/bHqKUdzI54ovlsUBGwb5MA5NJKb7uNOjtY2wzirdPAsnY/2GCixacDQXxgxJqDN8QaFo1J0oA9SfaiOorQf2LumirbH0RqN8UAAtHmnlgHvqRULT5g4cWIVsyxm7oG+7gpd+hxw1prir79FxzGyDDSf0Xr2PmrQq74gDP7ioWc/vSxpUgzzhddxVx1LrMTGFbHsTt+/b7J4PQSWGG1JN8KJUtex2TTq7i/VT/Sodm6y3Vy1JIZIr/EwPRn8Lv+0b0Pc84dlVy2gfSoDQkVvOyDpDdOdQAZoePKWSIo6VcShJBoSUgbQ+FcN/CpTCG/PohkQ7+/Oi5tlVOv45jM7SKRq1SzBhyqQBqAE946JMha6smna8SPgyqtX9zdpSqlfZg5PaYRFsGuAQnG+5K4ki6mwuQeBRwniicBWmYEgFijP93ROLMpMX93UGNtCtPgeYwNuaoa3DZTJkQDS+X93VQ/omCQKvAeBJtAKcy92/GDyMvXgU2gqOutM58TJxWALkNEJDQzSxWaxRw0qXVFOdqTDwX4+0yiCNeZCpveIi4UJappuqhnvJFrUdmJQDTUDfWkTTdPP11XZNbHkZE/1jgRnoMVb/XzWXyz2bBhfldo3jjATiVaF46mBHmHJ5PqAXvuH6AHZKS9vsKXpcOpWhWZ7fAoWPmQsDnQ10yQKPVrieq4ugBh23+o8z3Mz7hLwJnJaY8cjZ3oNFnvLacHWiAafEuELnElAfZRXMGmxEJtnBTC3golBZrVnyIIgJRlXnxjNiNte2kJJfnWFKHAmOnbaPIur/IOIsOpHGtxfdTikEvBn6h9dUxHxaBJquoS4hDy7Ap3UyX9kGApByJtEm8GUScPmz10FJTNF0gZMgDMPcZ72aeNUnWo3QpAE3DxSLwhN/vjT+gVYRSlxvfWcogxKZU+DCMZbyFgjVKtXnhCPzVUek49RF2EuKUu23bt7qFbgIW9ZoTCghodGAtS5UJmydtlDetPyHRfqfwLf1DUVbbF7IoWFgAKb/57tCkpTYjPujEyVVnPk9O1pJ94MsmSANeZ+qj1jBvrsVLlX9ho0/q34kQB3iQtNQOlBYMD2PCeVK6lhazmWz3hHb98B4zO7VNnyUxw+M65B50irYrMsjWQFBxSHj3rgpl5NNuSH697dVFTxePgl8ysLsgnql22O4XnbLkCec33B2I1I8vLvCtbZ79s8uwVTnqiXvWFd7d1xktPcFvp+rqhs2FZg0TLz6V8ng4jvon7Q24DwII7iKp7h5vo5tJLZXVYNGxidpSnm5DtVbYr79rEalx7iVXS32Q8XI7asixE3qjeQ3aj67ybdNPXpMgGndj6wenC+f8Mk50FRkcDZZxfAv2us5sRl0350TWpCrHjs3xnY2XEBeqzbxTVTQKxr0KcsRuCWkS3FK2rqTeWbXiUYx/03+AbAv1oTAJwo3iMDoH/hGvNDxfLz+Xu6BjhQD+TqZY88x8Pbr1ZlqOx9SZmUj7LyLMSCPbId103ZWv8SvxwtJFHzy7jUjevT+ACWMioqk5V319doCUjk0OqoIPxUwLB8tTXAgAmw/JPnFydYXre1Bh8994N51rn7EDowDpzsXiJwwHfClZMiFZu+sed6QEhMlq7zkxvpDBm4iBNczaJl5n/zmu4XDWYT/Ew9aX/gAhyCPE2Zq45Ih2P/c/M9D5rOWEyJ28EPebzhF7tMTK6t2tUlyXg3kebAgYnKNn7NB9sokUZ3Nhry8eyc+CNhMmOyqYAhysJMUGOBsQ7NBWSSy6Mj1xOWAc8k9JUeqJR5iebf/Oct0zcmyj97MIYpkcymrKaO6OH6b8BdAGoLwU4jJi4lVBYx7NL0tRqbTs9+Wg5xk1qmT3xc9534tiVA3M33y5Ui8BLaODe1VqtEdCwsxlm9NoHXJc7xs9mTpePBz+34RdT673qlMXEqfH+HTS9T11JPLWwvnmMkfA7VWg7mosZi2jK+9ovHjS0vHTY12C2kSUh+3MHGiNzLbU0O+4YY/eQHbtT6VwXLPvj75afXVcnF5dbh4lJ9/DFausmQ0juArnZMUhWMe57A36B/JUXl2rpyS0JJ5rv5j2PQ4+c2Z+FRArFYR0R7uGOioy2N+OpK3R+iqJNwqver60V/DCcyKHh2CsBdW6srynPfdHdGIzmilWMZpAONcZ1tsZOYqOFK59T2kNS+Oyc3lQsNpEZK7qsnokPEaLo6qli3jdJdNlpB9FyGTPaH/o4X5E69eKa3IbkApQxZ9QfHRaWoRZuuQpIZsMt+350b71SIguHfZftCY086VJiyCCI11v7O8sHoMlH0KgaKWwtPLjlZKd0DZ8s4UV2I8uSAhVUXblh7+Nd/v7E41q5O2LDrIN7GsmrwbodtlKIzDqfXvaZ79Sb/Gfmj6tXbn9/Zh2D9a4Ea2VxsoYNb/IZAR7YysY263k24lK+JYtR54iTiQGAhsy3Nx9xzEYp4Uo4Qa+52QYkaghMGqnf5bxXyP2PG1zqRcep7LF5JP4U3162IvRThedEKGcW+TVGDDawsn1OjrFoqhkvVu6ZnktxRzqXDhBXnodQoLnhiEd+U+qmcrK78PpInAonYclN8EZNa/m1kiTSLU2aysuWW7hpHUifCVf1lxRkIfJ56yHJPNlECz5uo6i/E0ZI2C6Upb+/SxQDUd0KXyuo55vt5oXEP4fTOEtC8RwQ34srpW9UCFnwAEEBkm5LOVk0DdeSUzLFWsIIAvfhrhraixQtuu2Hv36RoNX8n2mV/Y4+acTNhRUB9T/JsBPO1k9mkA68IXlqD7XuXadbhrU2ysogkZwzVlvtJ+tK/otENOR5x20pv/ECOtMp/pG74h6g7NoqkVpODsv4FlvwYQsIGtcpxm2m84A+rYSgVRWbTWIowyZEwlLzTZlJAf8r3od2k9zetk8GgdgSyBn8mG/jZaa7pVoaBcgF4gjTXjwN2nYa8gO0tkzE30ues4NyrIeFLdZuxsJLU0S1uQsD2E/RlP7m8X28qNFKKElDpwQ7tDh06HQHr9wPOnRqofD2I8ooSmBmOOWs4+qg76L06MBArYlwD/WHlUasT+XKF+aAZRxWZ5hnexfmzlB6OLHFzd3GBBE4IOrWFPiltEoXtGMTQ/FGX2oGBGUaloUZJ0ZIUXwme70oDflvp04Diviv3wkiNA1Z2TrsEYOmc5S6/131T3kSOu0zjUjUSNnc875k4jYlUjCi7DtnaE/iHPyYuPNb97Kep/2bsRO7KcQa2oeFcOpFBNECU0Yakv8vVUWeCbtvFyNs7xbE41wJwen9Pec30WnTXfCgDIyS0FgakNPRIPfSBgdwhHj69ENLz22HEjlI+ySVKijymjdIGcIR0BZ6sOu5Son3jY56Fd2EV/wjCVLy/x6cPktV4Y1eCuNc9PpY5RF4qsnv2np1jDAs+IxE2ZrNNNxwrYEYu42UviUQWjekfacBWpkGUOaCPU3nsUEBy5SNVBF58qdJ2Z4UsaY4XlfVKm1Pe1VeHwkt5ddwzRuFOOt/o1hFC5FhCgpcHzn2AL81AWwJL77WYvKip9DHojyFv/RwjSdWUsPxOpriyUS09SpPFTVcpqmKQ9o08+sU/iniyATSR1kiTqxbRbKu7D7NSoKLkDWhts+on+qsNJzanXZJShmpi75SmPFPVX4t9u9itRC8E0LIXIJWNwQo2cvd5lCXb1cDALFWBpxwHhvLQR98L1ruBWLYjRSbFmCGID0oxWyqB1+RjC/m0PBnq4SXDZ5LhctarMr2VywzpJ19UN8EjJDbdlJMSMJO94FhhoPJGZ/iYMVSRO/PAjFu+Um3WV4duwwatIBPiRKojdcEPaOwig/KbwXYIVPua30EWF91XXaVGr3623ujddITq4ob29jZ/CBLhwuB0c+kYPgO8jtw5IYS9nmqeSk/soAwV5kbBSKx6bAYkKzAIwBEp+oJIFS3RXQ/jQZuadz64Vm0BoVCsHPy3w/1S91m+B+tJmqGYse0/KsXoyNpN3PbPaqeWOS2N76JVuQJkc56Ei3fwz4N38Wqs8YJF2BPTld2U6GupBz+SWskVh7FNg48GfIxjccOkBSmDvK1MpK+vdFCw82h0JNssyyDgk2qgsh/b6HvioPWbZEuqOSIeQ3xA6rzCt2i1TAScnBe+5B3YuiAJdFLiuad8HiLZ4wvEA31m0XPZSsX2aMUsF4c10d42QlUUlzoXbn7tEjxbgFxmy4bPniNPlfVWQiQjHgtzo5tqyjaSV/Mk2QoehfcLlcp1W5RuwteXi8XL80KNJlXM30z51e9Wgi6YmaNBRh/iH44MBf9/7II02zWaJuI2T00v8HdkfkKzb3tv9hEoIH/M51xX1mXedQEuGuqR7xIpX04YwD9WHBxzn8RfeuxoZeSmIHpZS31iZSnpFwSa0CDw2lds7IB3yUXhnH81SnKdKgwFskueh05RJgWZzFkZb3G7CQZmbT4jG2fkAWddUsYgcHhC68p7EdaVk7ex9uIXfX6j0Nub3arg8fd/jmiDcMKjqN3uxlc34LOgddiB2qMOwoH9UOOdBryBiT849EInCcu6/gUxf2u9relkbKNNOdp/gZAX/GjxkV1dfQ7nsKlABLpo34zc39u1zDjOAMcsx5ZZYbQpyvthJzeGBmn54rVh/OQZlKCFlZOb82ooAKewtG0W7nft42Dao+gaTxuyuXhDr9yc/09hu7uVWGSodxrMXcnhjFKBkQHyXHXi0MMLp/SeO4xBs7pfCLVPowSRylhBZrgTJV2Y3CMii5LD1oxMlQUuGtxXlA3Z7RQfyNvXfWquTV3WBxKIhjyVcHYl+FkIwt3r4ImKkKQmUkIe5AiKmmkcMGqxSXCVpjMWePIh17mYC5culxJ8RhMb3dfzR+cRJebXSv/QIdMSo2ndhWgYcJPBjwiNR8/p+9iLAWUXynRxiKqTrjj5RoxhoVwW4XiF13OZCiImNF56IPFEA58xF+TagqFuULkjI7A63S9w96I1mfo5u6nSR81gGxpz5nLkTJnfAWP2ZOdWHFH/1wVDNttPzXpobMKWEeLi0OvJhNKzgIz0HQd6I6OBoha655/pBB88gf/eIOVA3gOX5bDs7K55ADW0rz+CXQ18VVXOca+p1qhulhbIQ1JUpHqBaY32QO0JyhFDuwrdVtnDrhLDSeZXIAb7Vl9XlrAYjaWPdx5SyGnNfYJQcOqSechHggKOQQP2PrYCDe1vU2wOnqqutIrbu54MqG2Exqk0RG95wU/O3R8/+akXpQNy31LtiSEA0ycjyrFkQdlSRrIjD/PY1SGIIfyYp4MOnA8fjCiSIVKAZDBlCbiXqtb+VrEviBiCva8W+3TTwftJIvhOZnh+Arqrvc+Abx/W8PsjD9M08XsGYKrF7+Oaw/nfcRpzo4/KTsE+TH3yrz/ioznRad9fzQ+e/7ZETJaMEMo/et9LmpVu6p2B1I0G0W1mMIOZokU/dk0/kwO/93VcmbupH5pHIxxeTgqbryG/QjX3IVtsRqjz/8u/OnixNni3+uR/b6YW5qgr8umuNosCKw9D4RNYaGXPYgHY6tuLKK2YDNVZCEYO8zsy+XPcW79O/ixC2UpwWmEiIO7KWp/oN/TQUxqR4iJFDwkQxNgtvC98Z8j4OkFXLduE+dWqTeFWsQxEHJw+3fYXCiHXPv41FhOFyjY/xgZvlTVHbydvyux2Vylz4E9jVLLcMwsah0qZyaiciHA9cR0X2QQhLrVum6WYKIVNWVSwwqBWhxa8mB5sEdpDMiUttmbhiogA8f3xLquvqhy9KXHv75la+V/Xbaq31k0kWbuQEH4uxU0qxRlrJa4MeUziylMFoh6GqUGDVEDbnSefQFXDsBusf5VphuRRMqKe0zYh8S1dHeBo2Ar/2vWxpnk75SThqPNFsWNWwYw+GXPZCwyHlB6MVmx3IyHEP+EJFEh1LEOwjef0iyiN3r8sKxcXMGudfOJkGuuJlMs9cbbXsiHW1eW/o5maaFX3bJVYPopI9asEi6pczN1l1VSZVHQDfVxkMejDVBpFKtG7yr3pXX2KAIHW56qkrFqShxfILsmEgKdJFWztzkeVzcctTcUQL9HHa/ikbVz9rJZ1lMs4jX5o7FcCycMESJFAOBBelIOd82feqXek0diYK4XaszL1+Zxu0J2xje1dCLDuhrV9vUxprhBLTgMrLs8pFKzodOUwEf3FqUfxCqoVAN1/jMZ4CzHnR9A0UtiPUOH6xuHki4PPmXmE+bDx8Jhmd90Ik1Emtvh5m2Gokh6SQw20QrgoLjNiR3qPocv6jZ0FYyjOfhWFP7kbDtjehbNndD0Bz5CrLBH0DsXiE/XOnGCYb82qaLlcOUwwK7zChmn1E9xakbExUVehjNqJEu6bzBeinaJo3f/x47OlvuP7KvgW5REoeGgkKN/yAV41cMgC2fyefRxnaYGJ6Ky2Lr7JiAL8kb2/cFnxhosoFndTKhgYHgtTQkHV2VH6u2qNTG/bCb8kXkmamJwFyXtWH9V65HrcyMJoj91hK7W+ZNsXVfFUgGQ+whbsI3974/gUwvQ09M9/AecoKXupyMNuL6dxvFJREBPFYRcFVw29jwDg1xDXgfwBSgLrr1R20CObj5LI03q6Hjqf/MHsjVSbYsczqm+ydYXL3DNi0c2DCNdpf1oHmFsW00698KDjlLKpwXFRhuOq/GGmtaD5E6uq/5juus+0HzWKXyYYmEWiFsdBtquuZ9PcAjYSlDehvgMhS+tHkWHLQHkvoPKartwLuMXNiswwfDgEij+BVZ7UZ9ef3mmshM+HKVa6BYo1prWCu40tN4GJqOdddyxNJ7QEvCyjIMGjJFoWKGSeJVs9mqqQFbI1s6/dRFaKL84cw8WEalDwQD2045wyMQvTBfn2Qif40W6G5tGRUIbft3BbtF1WibQp/2ir/Iz6Hi5Zme/gnGvt6G28pCwfti3cukLgmHQkkw9Xdn8g6wDwMRQ4zPVsgOQBgO2gNo94N+C6vw59qYTRkxScrSmsMxJiOnKIf48t2A4p0g0YIpOSPY/ob3IffOE24hWoqEHHff7JmfbpGvQ0fakz8qYlsHSS3FSBuqFBnTnwyCfZJF0l9nXxjBBx0o2UIaq2k3nw+hPM7MLglCrmuOaDE5wzL0SgoF+JXQ3rPUTO8NqQ89DbMCzy7BbkJXHbBtlrX7OeACokRdvlBNdVshfH1MfuHs94675kH/pZMxe0VvQ+22eEVDmwxYiOfc9JZN4Mfcfug6QHs4Dm5v1D3W5Yyk23svs7uSjaMIwWA0i56vRZhClCPHH2ZdMr8PBO/lR/q+8/U/jhi+6IadPJSRL7QTpuqt4a4nI3Bl5B0W0DeiYnHoTE1GkSjTPbuva+EFEwcqly0UhEaq2hsjz4K2UuwgphFZic34G/auLMdiq155xBttK03WaDbyzR2aYz+njI8yiDMPq+GfzpRfD1dcrOr93IkEc5+bqBQKI+XFH9UlxcWxMtuBbnO5CJ+Hexdmk+Q7tGuq4zOzs6zLGn3rEORnyS0C+ZgML7774SthbVWwK8NWNv/dJ/Ux1zvaIAmI+8AHfDdGiBGYMzBSP8SGamelEE1hWp5lRxYBBp7PnSwW2Wobhlr7DZYbqHHwJ0+y/yzTmkcovqkLTMsc+oZSHOAMXsJrJw8uv+Y/tM3iMXiktxxg4htzkgQbgS/ZKqPtgiDu0mx+DIfnDUNS1Ztfcr7CqvFlp0cdGzg3zyfLvkqIBcew22nNB4Uz+nuE4Cnd1cfQ6uPyHKjQIvKhzAHCJK+OKNiR03QyHCduigF2gNhyMtRP3Gj7SplyijL4+aRpOnSfN8UG7ZIVAmZ9P7uCZ8WX2FLhKhjAaxJ0X8AYYhORwpg+6MDf68Rk9yKmye9KY81/2n2sG/RVxwn3AYDR9ZVdPevgYiKmFlFyJHZdyP7y8Mml+so4KHFKGShPJa8WOAUy3XfFHs4EfTgGXlpLpgOWTttE6X9Xy1uUGhXiqohciTOy1J3dc75itd9CnJnK+6M5oVEpgFTarv6HpAYT/O2HWPMdsdpWl6zyyWe9E+72mjGe2zIt8mNIZdPj+Pi/y7l9H+kFLdPB4teoeYT6kYWXducDuSNo3+e/m7+IqxWn876JvDFvRmV5JQzbSebG1Aoldy5NljY4OJW3Qeeu8YgSDeR7cH9O37CodoaeMjAUi4Bsa2huAWf9LMcCfWzz5OrE4a1estgXPd8oHGuueoQNzKRSL+MpMa0lrUfdIwhrS6ckEoXTyOQjhBhC1qnmM2+rDN/hG0t55sbogrnahRIWHOE4dYvcDzeJafCH+A6Qifv5FBrMTWqPSoPs/4eclLQDmWDfLHfULQJXHLr5FkP9JSPAO1+YHmC8as+ezuqtWBLtvxU7TVBN4ApuidsZk5vnS8ju6oo8bGTEMaDnQBqh3lucKSrxeKRRD2Z9JCcO+qOUIqLl56yUP3JNgBvfq7JSaybF/KNh2btB96cblzVRBJ55W1fW1HjGNb97H61Xyj/AkdICT4I0DX5RM/ARHWCaTlxD2n42g85Gnnj4I3YcvmDvEStOWMJFb4MtKkvA1OWVTQZDoYBpQ4t21neHjIa5C+/QAoNPCXPsQ7+9XDDXu/PzViyt+chbmIOX2fRya0eHidl5JT0xmZ8HgVoYGnU4atfSxbW2ekcAECa47hlqFcJLJu9c6M2MWefUcKFK9Vb7fh2WOOoodkgzdEIIdhneItMLwRZ3aEylf8bJxcZO3UH1NB7WLOwQ6SORMganleiD9sWsX1jgGt4NNqXqIhsAwGDfJxWVyrCZnFL7A0ble+d3AJAwlP1da2FNY8PyaKPyYPcVDJYrBigK42IEbo2by8h/Q1HPhjSGAGV6hiy9MrNgzDKvqBw6mMdnbyVHvJht6N25f4Af8LL19xJ9Ehr4x34QhvNJP4a1i9Yw1PZYSpuey+tpF+gcG2oXUv35ccOWkdqqLdeZeEEGwYq/hebwdWOb4KOollFPwQqeprzf699zlM6a1FByqnJQ/JXHAAyUS7MFEcHNUXZDjYv1iPLTg1Z62ShUKCpLyUA0iQmJkX1IHraJ5ySllBu/+Df/vajA1ln3T0hKoOmhLhnNBJg8zsGU6uvI1e2AeKMXy5OwgZBI08uxLYxo2UGgLB1qpe8Zo+1Okmqhg2wXw5tPOU17KfMcliV3U2PemdMQ/PxrF/nd3vsZM1wgqkFJntWtnUKwNnmFwlcaH27ZfEXPIaizkRDpFnOAs7dZ9ir5H420vBGB+b+IBDlAa6WdBope/lkuCap63s4Z8hlcxJLx465zYVLhKb4Qg/tQFRtVPe18Je1l16LMCV37Px3GAijr7PrSuI774jf0+oZ3cXHR/FWtCcZs31KYlIzfOQQZdqEtFdHjBYcYc2j8X2/eVWWlQD+SYOYabm9L0OkUq/R3ykApkh9tDDtJamP7fYNO/odmpYsVEW2nz+VtiktlA8xpAmcFnfmhAD1sLVTEMvDw5kxW3wnVU0OeM+19PHZSR5hfuWJvTvziyHC4A/Xa2fHXFF4H+F+jhRuqBnCJ/pn8C3BseChSH8iev3gFnmt5kwb5k9dp6moucLd8yYsPGXFY2LDSIMnkqo2AlG+weXUQbus5AoWUDxzVgC3xfrSg8x82dZnmmmxk/8+KY15p6XVUC8K/pGANipi6sMWyE4CILBgnnSYVdyE9G89SY/Go9GxJxRCwM7DGUPbVFd57mCcSwsW2kIdlDLM0byfSKWsoMD35P4xAHcjdlbK2Lt+k4zzNmCC5cfn7FARrhK24qXpi/Zm7qKp/25mEvxfSnd6zyv7ztixArDKcLjQ/SB/XPhsv/noCDc/hi46ScRdzEIAJPFBPDvKnOx2puUNxCYzeioisYpDWMt84on8STWdji9TjuJgObrNvG1+7iKJvJrrXXEL1ju0WT3XR1mD7quFU45mjwFng5r65QT5rd7PJxgVrJZYW5B2/2yToygPv5q6PwOykkhUlq0x9McyIiKsG+f7lt91h4B81pD9mZHKvpyAhTFcZZisqiDqcRkIips4B5O8VRuM5kTM+NgP5tvfvq++oXJ0aafn1+BnnDmiOmmq7NB52Q4n2Hw3Rk5r20zvGvcDuIVDU0ltXc7qBHWOWSsGOM59NZMlj0Gazkjap7h40CZJG4OqDqgurFzjIz75HM2UlpleLzD3A+MjnOVbcbH0cxEaIk8rutpKD28iyRxbtW52lnvxi+EWUCk2LPxoUKv94PJSHDVDeybqlRU2e4rLm7h61kBdmkazjXqtvUHr3aoRSDO+JRUNNUu28JKXOFTqpGP7IAx/lDurCCglfDezDEh3rTvpGcu46Z+SGh333H3O3EOPw2ENNvhKzqiAXLqfz/wf2eFCwp/Fk7vbclElh0i/75LQS95/1U4GeqBYxYV3m1hAwOVUPcB/CxTs8tZxnPV92tWQt+RvXarz6+gAKdJn5B++P3O0bP7YfCVKsUCdG2pGRZEHe6XcIXpCHWgQ6il6ijugmQJ0/TkQGxE2RmFhHyfpVkGQzRX5BBOQRJaEixgXVbnPLG13/J4rpWfjKrCK76DoSk2siuF1JUqqOvkGNW6vi4SnYUOBf3/t5AkMGDiFBRI97QkL6ts9i/CX6YabxkGXg03q5xaOgJUMI48V1VHAJcrIK08NCH9YTdjdjqFP7tdNDS3OxDHELa2sRcnVERLsV9iZ46yvfyhHYK8PHJSUlfix4+qAji2HekwIQGASqMBO5E+fpEHaCiLVX+mGM9UJ7Z/NWwhi0m9Juwn/2gAC6hLCXHAxvVo7NkP8jb12WLbZsp4e4jXFwVI2Gzxg27i7hs319Aw5w6uYQxPeuc9eNlltl1wd06mgKozw31BONpwJZ739SqC2FBWrNX/daSzuv36/mRUSalpKwzZkV4xecB80civ0S8wKED0PhE7RMZ8Y/iirAlBD3o5xtbfHW5+QJuHh1DH7vNh4EEqbLUb0+ervDPss2pY9KgA2ntQRCi3uxcQR0ioOsLKpM6d6WOU8iVju4NjjqKxXaUC4OX4aoyOWm5azo26u1E0AwqNUU7Vfg6NvbhIaayiqjOwzmyYDy52ZzrA6Wc3tCfGR5+MTTTge2TMChaf9+Kqgd8xwd29e8RLA89Ae2TeO+RW5rGX/do6O42yKvDN4YjHEIWlQRKG58oltaJ8qvnDtky66FjMTmKiCol2uvxh435zbxuFC1FMzj7fevTx9gU8h6eWAUHgtJAkR6s8uP9yypg5k5N/RCm4jn6sGA+i6P8PFGUU+GkzLnvpn6nE2sJkergh3ejBXPd/CvnKBAoqVs6d6Lbg1OR6V8BungmZ0NcuYz5mPbYwtrosWYu4a4VaGGiR7qzIuGAPHfvUsutMR0BWa3aS7ofem1Wj5hAXN+B018hY/k65vZhN7Uvi+kn0oiKoCaeqZDhB1kpL+24Tx8tzx5ySfFhFP0fwCN0P7FxkO3j6idtDi//3Qh4ktk9vmYbgJ7Sc5PP1vaU5dANnPLTp3Y+eGsZZfflSpGKwWfpnV59YNrkI1JmFtM8qLiDnMPt/WwGiUMExoyB/XAPKcS4B5j+J/88FagPf1hB3jQGNuZ9g96BiLCwHYocSvtgjezV2k3af4wi0SrrK4WPE8zYBP7LKjeb7zdLQtum2OMX3074LjvcEXOlqaMg9ssGWqiZ3gHI2tk9+uMieZssW2iRWhjZNJg7rckwmMC7eFvJD/Kwgb9CEnGxZlcNV7kqFO+2QCz2V/wVlgZN0Aj/SoW5e42D4CTZhZ8ufLnAtkaYDE1+x7XXGY+UTAGyC9KrCEnqnGsojsflOkSNQkBpXr26sMWIkDX7A3OG+PFIKDahzcbvvIGzbfVy06OCQ5gTalWXsIBNSPnsCypDRc/rbATopCdx5NLdyZjJ1CQw6cP17ScJG+LZKpTSalFAtJhonP/dhOhIEwWdlgIRJHqXgikKS1gqgy0BlDyvTpxLDgsClMDVHaWgU8aNDqEe+jVP8BGDA5n5Ghg8D5NqGLaGC4rFn2I3GxZfT7XEdCQGi0A3DM1CCrv1aXbUdpqXxaxOotjvGi78SozgLbNezJGWcmcAhXH9pJpA0+ct6rX0XNIZY+SXbciNAMfbqPUW/Fq9E0fgRnliDC8kPbjtfqIlnWGm4As5IPTFIfwO8zypWRzbr6PwFFjfTfo90G8kPz2N4IzMWO7JgIhoegUYwp6tzedMmObZdhhx8H9RtBPtMf0Aarp+DTFlNtal7KU2UMS6ud7NHOShOXWBlOv3f/uCJOFl98awnYDzzGzaMFARi2Js8HiPCoEnPZ2lZxDoen31mqh1AGhSd8T76eU+5v+97/Zb35+C6v/QVu3fRKEANWr5B5zUmilj/XAsPDQJr4BUYCk0FkaVR6X3PHqHCJEe/h40G+X/1bjmc4t6mM0JrnAErU8iP1sklh2k0Zc4heOUZnDXl8ldwS6Zy2m8vQSJwAAu0pIiCwDAKTT0NC4I9FJD8LZDYnsR5D40HrsYcLyKRLr84WPA3vHger2y6qioN0mb/YwvPiQd8c3uGxkIN2C83U2O/rfibs1jUXNBx4wYW1+WD3jBY2k3JLIxnAxSnJ8eVT5/8L1XXWqB+pbVAW6EWkE72oZDFOBgRJCxTaLFmVqDuhtnb5FPZbhWrXWPV47BQgiUWKDBn7SF0MSuE+RtpoZ1v9xq9hKliB3zAoq3GhnB4bMNaVXWlU4MRtMzMun7x0j6HQqiLSKwi6hRBs/DPB0T7EXpJjLNUOhOeBCEauOq9BaAGUceqc9SWREW49jYjuBMcejiot+YeVNQ0dBiHhBWQhM7U0/bJ7eItNYzMJNDA+VRhpStr4gBwM/ZD38wTCblsn6phuHr2K961bQUpqaQAJZv4h4/JQ3b5mttHFLx2NpNLSy34kJejONQRanB1b6JC8S3DnWkhYmkER6YS7Uuw0h0PKCEImfMfYbfT4t4ASEawoROUDWKxbMcV0vPstBzqZ1EkdL4AG6HJHIPln59kZqr2ptM3vv9XtGKjA3vJuigH9i2giH4oH5ZGCQo6HXxYcgqvZVxZaTrotmLQ8nbJ2w3BlJx5+4WgYVbA5+R5yFLPWPlPpD3aUi27EI398mVBfs6O11xDsNFCVafOBhxirAGUQKPMr4cAWhNfxWkH+tXGnVHqDoKxLHZJdLaL9f3J55aKDbCjvzx+I7jHeuXbjg/GIkCVQjU8/ahdTyyipj3j/bJIjquGhbfOJgV/J8XaQUbjVpmTLCyFH8OSXtp0KNJqb68H4b7qrJxTvdWDL4kDMOd6hmfjtDsgrtHVTMrZWeJXFB4jkL1n0GaAGsxNTOp9lCMYYtjlKhX3SbNMmnjKU+eq5ZSkAWD6flmxs0Y8tjkMV3cy+sUl3uFrBV+qdTVaPkjdY6kFAcaum0JkhkfsA7U3oh9NhIlSWIrJiUlBzdDFX8DBoSJQP1OeWU2OHPMOS3ffmSpEpF7/+7fYn14nqFA4NFiktW42xUG4gH3X/glQ3xis3c5msJdeT9SMARwFpOVbhy5N1MCXain3+xP/O6FWdRSZgG+wDZBUkPGnZ0px9SwjwbK6B/lwsQNp1cArGHH8oNHj6LTgcw0bNUA3ED3IxeJY9/ax3kK9bC2ko+BLzzjx2qX03JEhMfl0FEgFyupjAsuOIUrhjHURIQ/MA1RGM52McmfdoNX2dg8Wp3AKZ+1Sjk1xFBXf3DQDf/9TvJKBSbEIFA72l+bR1jrbQCpXJBw7ExxOKY5UL9TB90riR6bDfbQThnC4yhwSsfYW1h253C/mX9addrjONMXZ3c3/yHmOy6HMxyR3jcPEqplfaMjBEx7BGK3Q2UZVgUKLkSLXJbrgfMTbdV2gyM80NEuBdlDJh9Sou3doG8x28yLznWTtNVqswbPssMAH03hhBaS5Pyy9KkEwtj3mcCdrwTviObmjPhdZVFAT8GfA0DWbV2HAPDJ+0r32WL9j8LbDJAB6lqSA3NDAZIcd5QTupu5U+yrbIBsH/T7OG016m58hahtELmnifp2SjToma/8O92E0h/jQulNyC58xNidYWAJUWRBaZ5lIagfUXn6a0sqTH9R+4W2sdC5+782Ndj+5cbGt4No9ZhZuqYu8vgVpv5MEsydHB1ClYIHjFNuPGKns71pdKScMDijF5dFlOL1yoF+WRZ3ikmTACVoVAZvM/LZEKKABZNGU7jXVsrpL0JAiUeuj851MUCRmW1JKOSKpFVe4+6uaJnuP6uEJdWCDP4Ah+/rF5a6r0vwqaWtiPWLS1o2eiCQeYCCCB83RrIlLUX9MDgEMoqCant12VaOVgC8rfFCf6sM2T6y3RK2ZE1btOdhdynJ9IWgxJZZ8ni0An0epHEJFeqr2Cc8yzMy1r1+7aAYblFqkiRuHmrxYHURBeA34lwyGWz1OdRLD+TyPaqFtA6PoA9sFue2yU3zOaG7ZSBG306Qn5rqKzqUdzWCxeCRqShNT4anU5paJ3MutT9sxbBg9UC5xQl1bcfWW2MIfib4H0G5socGwTMNVP2NRmRB0Fi6iK8eb8EX6Y4HW1Wge/ONaRJF1QFIHsw6Ic5GaBg7tMPiZlnk3Dhv8w+m0+dK0WUmpnQJe6tRPgbKDB6tGIIwzY6E1QoTnbz/VL5Bn/88jBZS7dUeK2dKkD5CUVTDALeOXMFVTwpsxu5ZoEkj3P92M3NgIubv8S+KqQbIh4p/qQSXw9V0k6HeMkyQcUWlyVhBK32tQrfEc1gTiNRS/OupMeEtugD56AUN629nSjvbrpLU6RqnXG7lbYiI5a9VmJtxCsjluq2otyU+Gaz0h0ElzmzqoIY3kOgQCAfUM0SZI1sgTANcQaw9ooN6F76vwnfMGmAdbbszYEeVYz5ix7IKo+7tJQUSQ9sRvs6KrRPsGYWGDcWqLykN+yFUGx0SoFkhhw88doV6dZwkShpq6ZNT10H87Kr6pjVzaxpjogyPKdkApebzyEA3iDg9/wXF2ayzrQ0N2NuCNsiTEX55zs+IUElDrry8wgyu19kkeRTLcVa28LL7UTswUYpj/+ppgaY0JdUXS3/qEwakyhJXC9lcoXHlOFPHzP3HmtioVI81yfBLYS359KyqgW1BhS0fEI1QVz7oW2GcWoku/GMmZWUf6ersiG4tOPSDjXpb3tv/7ljg1LX8zjQumLswErgP3mNiS1H7q7aquDuR1A6RgF4BQwvys99pueFDF9geedRTiqtUJRrs02XaryT0CtXMbz7DzdabICGQQCsr7xCzJZvO68ps6/RNsRR6e2/Fw4nEXlmVRCCvpIX9ZGMj0srG34aiCdGYSVP24+SlZfxethLswM8SYkd3KNgCU+KBYJPVBWEPByOZeWc7JJIMNHtheTTbiQ8XK/LSdn7nSiQRjdYvVe2SdX81KvaUo0+oxD21iDDsAfFPPDywF+FT40/ZEWvYzw1b0oXqiU6IocTKToHBxyHZ8kLeD+g4kjr57/BwBccZJvpqsZPfC9Cp2y+63en5OR9mw7nmaXN0FyCtrpeoJLLqWgeDkUiCgIh9t/1uAUivU70dn2LKpMS1x/mQz8ZAzjulRyV2AyBDrcIiFtOng6eDNSjMvje8TiIAoDAVLIWw55C30r2/m02/yKw3g1PB0IMWso/xxwqEPcA7+EzYkh5VxCBotjCHdaMLxPy+w3ZjHiMKbYCim4lWoqlZkKefNhQoXsuqMNzjcS1PbiD/EukepMFFxyixpuiUrZEGdJKTsAdi8mPTOAXFZnm+KBVkXyRLmjHhzYtwfBgEq4NkCZWIqcOxgR4f01hGIrH+H+8Euo2gja2aqwcr72eirfCTPzmCQNXgml6ABPReSu95tUhtgaNMv5Fjpd1cjwWsBu70SmLuVE5yf4yoQSecblDQV2fhB0o2Yf7F+pyowAHenMG+t31oK9gL/oD69uHKI+xVuhSmAWZB/zMMedq8+R1Qdi890bd4poq8Cw19Uz0SYPRI7m9Q+Hf+9JFpb+dS54eEzgZakkUBYwYEsNuTcsquoGNTtLFUF8WILGL91D72LzqYsN9ixEjl/utPDuOak04ZKp10dcm9eIkUjwv9UHViHyVCBx/Y8rQR7XbhPfRXCe+Esne4/q0Jzqi/yzCTHig2FeYv2VLAKr6GOY7WbwvIHvnrx0wvBXPakYo9/ujdAuo2mVngo+k/yR53CwfCk/2iQ0bVPWoWpLcP/10pAaAXIT4HCwYK7N8ESM3eoYvi5RxqbReLnp70B1CprJUJXVv09q2DqNxpVPXVEFnAUiWBel+UG/IBCkwdca18OFVRsHrPZ40E1sYST3keMiCeMIyrY76YpgwZmOAFX7uNpwAzcNLl5ZlPwnveLe/1wDvRnrlo3C2O0U2GYgAVzK6fJ4NbWEkxuiROc6ZRL+UxVRIe6gaa+atCCHit9n6iJo0Upa8nKuaK69T74VwvahEm/5VPe+Dv+792XaPzycJO0jIf1uH8Ht01C3r+yhjKoYw6yHhkB1gmFR9vBC6cv6Lqq+05JW3bWXcFL9oPbGfIp5gJ7xNuwdgFmWrFE1ivYfzUMd/yEL+SKOWupP5h1DC0n+0C0xhR3uaXJFKWtvfHqOHFvAY7PVXln/kqDXWE7sLwRgjbZO8JA3a7MoqGrFlLq3CbGKhcey0vi4nlR74OX1juPaKhnL/QCe+A1tktwT3q3e+LUgH2mcXPAJBjTSB6ky7C0oOMfO0I73/qzmR8VSRoEUKQG8ZM+tfjaChk4zcPLLoizvYYYZ/Hy7ajTQgDmNYNEaX1RP7hTPpvji8Dmf49wu21/eAzqDXz5ACUWZg9iexZXQEZZKYLzND961H83H7BU3IHC/zyKmxDvbSQNPovyJoY5G2vKmOzRdnvUGrFifRkbDEpZxnBENqmTCcN0DTaXDHhNsuVjam2je3QaQItTAuefOD7F0BeL8mbqT+mS2B88oNXqXtL28GPLo9T2VQR0IRAp1L6H7R0440ahLvhY+tT5roVvNvsRvT+4NZtX6JT9e0nU9OYmYqVc4M0vSrKvON+fRh5UOAiRoyzExIXbxrKtAmNTRix8gZGsaOH4flAVDRWZgtE6Au7uW1ag6tvVxSE8aFNfrRHcFAK3mQJwGJq6MYzSdQSc9JiyOSXhAtVj/R37reBoyZsPcrPR6vzOvSymqt4NJGLPWc1SP8nkqY4Q3yerchR+V/JY4Meh7bLDz00x94TflVsxwqoW3rp45B4f+IaF/YFeWUQPyEaUcUJPd71zLnSZeCvT8n/ZBqZc/MZXKT8B2y17uBKIkGlyz+/+i95hG048pEriyTr/uOuaQ+YDBxi/OTkosrhVLIjAsIMRrPE8c3aSUF9arCU+cyysQ83rceuQn9oHrVWEBe3Pht3LSlNlAqRWtIMxqKqFu8iLSp4ShQDPVl/s8SvfG0CKVdDTo+mY3DHkuoOhO2KCa7IL9Q/zP+CKJrwiPnUhLDxhQn4C8OMj1UUyz+QvR8bdOjLT+RPfMfZEYoT+ONE232bjaHOfREP7HyZ+HIY27k+fb1tTIYA1FP1x2LMQHAcfEGpGpG+MEUAxO+i9O3me+n5j1umr1Ky79iLcNAFQWr75D0QZ4f4e8nUVLGocSHRPHpGn/sjaB3OD6UjNkUXSpOZPiyRLiLyHfj8DLsgTvnDJ4LBCRAfzx8fOF4rpqZqnMqjJyYaIxHPMhm+okEZ1Cq/FeHAd4xlIdC554EZepUHUSb/XzJfQZUuDnubFfAI83py31MwQfjBLonOsyiRbvqvSJ5vJt7TBBBI6zZLQsOE25mML4hFvNhkHtm1qA1D3Vcr+5mgMSnGxwdYGpPP3RIA3jKFp3kTitf0B+MRARUJOUe/GnOQPZbpS2ZpkjrdI6mT/XGZQS03gRhV0pjhFTuCTZupINrcC49mdeTkhrCCxQryqqenU9fWDqMka1sKycD1uNmBV3/7ofQ1aAexdM0n8mrcpoONgpMXTShuXYULSe4KGwM2msYRpEqICuBJk2DmIxeAJggZGioR1YicFekLMh3VUYmgf5D+tSzoEFwHCHWd6gSBhGW+kYqdohWAskHPPHi3hJtmcOUlaOsCA7hlcTlNWUYAyhYMclbnIOuVYjkhbK3RO/G+AoZo6UKzlzcUD1jpk41jwWGkQiElNr2IJhAz6LaCXK3i+ezEqlUziwbQO/81Je73Dbj4MfaKbArom8mas05NbJQwS6i182spkNEzLfK0TqzTpuujNnNCUr8jVaQSNCOhrAUAoAPxDpNR7Da07GlZq7+h9YoorkilFPT8QUGZf/aaryLzncyu/cxzVn3ZP2MkKESGdE/jjTyj9MJLgmHJgNSZfdRPt7oa9aX48kE7EhrByJqrdmNI90QzwOn1Q0jzGezzCuRw7t2y+CtJPEjq/NAXkST5rskLPB9XFzvJ93kslVjZhO4zSsUow8xj75NSOepaTCsKICeAxwxQrWtzAF0WvYAse67n7uEYcBKhp/Rwof6eBtwlpJidvAl3nOcvZzfs/NLRM7Qzl/aO4/mkDF+taaG1mVMu2numqn4wa3oZztcHf0gNDjuz1nnaOjPHoCYfoZ8QJonFBAWRGmG1rOK0ji5bENzceF4ru7jX31gObO3vEy1a947mjKtMunQH8d0g73dz3tQFATRsB+tLNda/Oco0qFcIWPE4urZMXGSlb6dspOq54h8Bd6T5M0LZSOc8NQppf9RgK3Ng5LX15JusivoB9CvCJDA5JC/tk7KD544zpUn1aJAcFdHztB4C1fnirxM4jTpJAcDFpEW3IH7WUo5RdE7VA8Ez/klZUT0wPrk6ix2LlnUs66U0ck9iYZvHr2imzYqvJxRDtOLcP7UyKHI6/TVoJ+poNAaWqf2w0uVWEAzmO2ni75fsJ1BK45qjf73jtutjBoiF0VQ0l4GH7089PLQg+JsTLtb1qX6ncng19LJfCf23QfzBzYdhRqDJSQHeOOUWf+aAB8qenTD6VUO22LBLRmVRwpAC1b+dEJg2MUgiUjBXMQoNWChiaGpE2ayfsWxp5dCHfcGJHmuz/60HFzknCnGZS4fOhQX9rkyrSVCgrKzyJ27ITcnpMdkdOLxLIZwe/FGU845vCSoINjH+s2TNUJFWEPE/R4f9maj/yu33Kk1zVfFeCZtENBFUXDhN+uGJ1YIvGAnq3RX204H9vV2Lr5fg9EluuQaRG0u1rlLJglOTRZhUZHTcubxgpYks5aq5IINW6KBaPorSjRfAX9zVgHENpycozMifKnQr7TNQYoWYyFZnJ1N+7O6pOpJfCJzOeSSJrGeCqdgWT3FzTyJm4iD8Eq0xo9Bs5jwszJ+wgPoG2gWWd4wAY+Cz5O9+buaXADcpHgmeSa7028KsxrG79q1aCd7mrKEdFN1PxHnmcZ1xWGfQG2kq+jxuui6Iy1uAh59+C7m1teMlIcKxiqVIayz13D5VwOLNLBVk8Rorzoj76LXpxdlzXWFU0dGJezJf/0E7SxakwSmeBkw4/cIk9kTtgyAO+IrW6KiOIaD1ElPag85zXTpCUFbA/WL8afOtnTy2ML2NdmGboWxu8wiLsNcGbuQEUr0aAX+DSJ3E3zrXl0SPz52rn+sLg7fuGZibDxrFOPFktgwV1JRdFrYnr0KQJ9ALrmkMnQGqTbi2cql0KY43R9ivGsepoIAT3uViAzaVyc+iRcUhYXXwUgC/v/6f7UIjlbLTwj0oXXj+aMsbyXUrnUx6gOILcvSpMQ4ImpxfRuu5rzld5PKX9tFG5iRfkgQ9ftA3OFrrPqsYu8jOFhuc4LNo7/4GcjStWO74SpJCy16iQLF5wedEm11iF+2JfupIbNWMBF9I9oZhe5xCwxqqKEfuvBqEo4TWHwywi7Qg77ONqUbdRHY1TKHU7IsIlmrPm9SBgksTlMWp9vcB5N6TGEfd+C7GYGqIpzkyWcqtUsdQvoDrL9F7UJO3rSTwaJbjxTF23XG7SzSSNVw79sWqew2CjyUYal01g1SiJzXQ+J3Nc3gVg13K2SJNPOguiy5gEMnYcltGrJsYZKBfu2r9Wu/5u40s6KMt/a4VufaV740/37E/EpuUJItQ7qNenMmLrtJZIASD1RnI7sONPIwkFx0Wb871CId0oENJwLCyXQcHy0c2cLhWV6frctAc6eVu1cwnFsUoVQyzQubiTZJ8UmYM2WwQEZfhuvDlCynX98m1ozZBumA59oJVp9BMKXlIiAxoRmn8CRg7fR2ObLwFmrtrLB/h+SrBL7CuHDrxFumO3HtQSwcNjFBPDg2gqlx0haqNqlFZQfXS84NiXWUIYWGgNV1ng1wp0q0ye139XUJbYSUUW5h5zg130miTRtherG9WTS0C1Fgoo7WFyciP+MeTh6f4aKiuqLiudVl5wpUgP/tJvGmMpaqZpc4LQZKSILGQQ/piz9JCHTThFpfdlZR+tYevBClRPQbxtWMrGOUYRLVUbfCdM9s47uvqiby8Xht9HNxAyG/B5mMKQF9F8kQ/ytvxZ0Vh7lqW2iASzSjUI4sGqz57Y0IMFlWAoXjbr48oO2UsuXLypyBRgKrCWWWXG5UobByGWma1qaXRpFLfvrCcTNiop/xy3C2JqHS4F9xsb9CpD+4vrqElqTN5LEfRYDsD5E6jWVoPJhTCdj9kv/4cO/wEPM4rEJn89xWiN3O7125ZTI3Sb4dGxu6ZH8+CtRBK5b4NMcSU+ZzzU/GgRMHDiaFp9J3pQqQgCG+wG46VQLLg3K6xkFkM9D7Cu6P3zJVOXzPUpqwjx5FRaaNTL5rugFLoViU6CzBfkVl8+9/StpJqH/mG0eD/WzQz/jDGiASv19YNsNnC3tvxNYZyzzVQro/zzvr+ATneE4BsQ4Whyjs38DdX4rcWhnuyn5/8BPlnFy4v6nYsIwxm6pVSlVgGN44LoWGkupxmNlq27bUCS+1B4MTnlD03kV6qvLW/ruBqxXimgdXfJxindSE/BoYC43pm1V7X4K14y0LVLAdIa8hvRF+jDma4Ixs7r1SphwoyP426RZ4w7Bs5BenBLsubl3JmB3hGAenDQ6ipg8lC69si5KKtqrJ2vbEwb6fYKfJq8SyGwcHwsTC+ZdI+dzm5htAAq5Bu5wZT/w20v2Oknfsh/5bD1Lrgp8bw0k8s+ddh2tClKdcwCL0yHrH25y5RvUzmnc0U0E5iCyJ2A+1rmptMrY5enpJsjdWFg7n/io5lPx5mdLmO8KLOPJ9hFJbjeegdlKxbmSqdty37DX63TJ58fD7pJJPNtXb9Oqo+wg6eJEX1xA4EI8t3e9JVGhX2N8HkOQSpr/+fYftlVDw8caazpSZ0Xdcmnp/qHXEXYl3csNfERyAGlYqs34kPwY9mJxHf+rKxzWtc9z+V44PxYcCwqZwcbP11f39id8PIa0b3O4onLfnVK27/NsWU3/pkdiqt5MrDFdAo57PfDmSSTBuxv0YvtwIKsF2jknVSO3iK0v4XaOH3wVPquRRf+IndoBDYbmUgXocrWm9p758SJZuRLndOnskFZtX60ZUAeXxU+w7k6sblTU7TaeO2Ph7+ZxF8wpgwQrFA/rLqLvgYdznJ2823WxEOdoQ00PlP6UQ/dvfJw/+QG+LxrQRox1TOcocZ0Aoa9TpX7P+ZF7DlQ7LjTfaGJJ13GkAjnFlktW75dlSxiePdPld7tleXYfYJbdXZGGgFXN/wW4QY8Oocv6c8S8utaTBtAV2Xmvt63wZA+OUXRegyX/9dT3TwHbFsP0tULixi9FchYPp+KGuPmU0QdJmAhpnxxI0eLDFnLvKZhxe/vuPE499CCqh1+g8ncj2jRasxI9q8yez3mEY7vXNvKhUybb2KpwoVSnrdD0jA2Hp3vp82txAXNlekAxpAILWLZo7ACwRa+CLsQifGXqV3ZTupoHgQs/w5iS7l0Qwrvz+IcyaerHUF+QHGu76pdDibTL43Yim0qHKuszztJWUzDY1jHXKXDhW/FdC2HaCQZl9RAjdDxiCvPsFiJsjgTXQ/u9YXWfzAi/SP7dUhGuG3Xm3vS2t/YvUnPDnUYCOW6F5QNlvs34SAtZkflivjdJCtn9I5RammEIn8DIEwHgPwzMUQZ56ZYjIMi2XyLF+tARRc6zQ8oCMjJ7nY1zoXtrX6CrByIo56a4p7rBIJFAa5kPCyDCl846uZaB4rWigsGY/8EgJqctwMtuh0joIMeY0NscFX33KuJzQMJUMmjyBF3iuRZOABrLmAWgEt0ewOJVzjHZT73ooZ1HuRee/QP9sWg+k+ehtM4L1EIwu86A/LrtGQK7QzCDIDfNhhW92S/i2fJxdFQeFGBlU+9A/jsWG8xaGbCZqWSrvm6qo/L07xh3JQ6vk0WPhUWv4Vo0UhNWKaHqMY4u7z5ejz4Fq3uv1BPl11u27VbjubY+Skmv/0a4Z/FErWu0aJfxar0Xgj3vr9w3cfArGHA3+obROThdc3GiPWsqmZ9WHZSbv57jhbWOBmMEGdaclretgIfiGGJ5aPmXzj5PwAFzD51PJOM8J0p7hwYoC5YS40inp1HXw+1fsH5T7u2J4TZhyJ7eMjL9XvJg9CoKUeubUWUPXcdsNOpH2rpM3/fOZwe3G53UeRQD7oMjJZv6oP0V/NmPAduwiHMdOlqIZSdqiCP51tklrO12AzJ4e+wlkjtV3v87YLK8hAqevPS7z4T8G7jchkGzMaUAX9EKpzBUiJCo40dzejnCZ7WxTssoEJWjFjkjmfvT6L4+bB8CaLIiIuwugIvcA4MTLoQRM0EuSXfdbwM2iwpir9rmEVVWpA3udBwTaK8IUWFp44PXIeUMh7d1X5+sfEyLgzRYAAnpBkImhlhtwalOzltrIkJRfKWgyzFuZMhVD7pq+9mIsSgL3XIaGcafww8uJQbYL4hbzyRssMntJanmyqbF19aLD124JUayLIudYxLam706gE/P+6ROYTy4M12Y3OiY927kiX9D/0wq4GFz6ErzggetlvVDjZ0I4dYyMD/RhJPO68h2tnWrT2kNq8Pohlv7iCCwwV+h1Z2PGY+wWg8KYqYFIg8gUR6dF6Ac3ZQufcG884vAmruUY+p0jbNbkaERiHG1D7xOGypCsuHqJz6pQi9RltUjlXD06kuPGzyAXwtE7yT1PidEzJr5e+xkjjo3SZI+oo5nzkvmF28S3JxGEBNGflWa95Hn1WH0ySuO55qBonHqoZD/6HFQV0PqTFujWiuC82jlWqfm5w1dEeONjiq/nUIlnUlNSRhI7mWuTG4hHrhEtmFBROL+fP0JXzh4YxoR9wgEUoNecazMPQHJBfghrszVgXQpmg4HlFsdkp7yJ9mtZ66sSfWyCxFVd4x7yNodAOpUxJ9172O1L/VnDXUv3j88RZHNRhWWKJheKOs4Whll/AlLH1WTcQ9ErEzpeS3zZs5iuOuj8/USXWPGuDj1CPIf89G80QXeTq3Klz9SzLwmWK0F0n/Dt6yKBlmnX3FZoz5ldzT1f0PUCVsnaXmN01RzenHMGOVdBEf1d48Wn3D3RXrGLibP7tCzWdm/+WBGRoO3mflK5CWnU/ooAyAqMjM6VmyWZBec6uL3eeY4BaKP78oq6nq9e7iWf+xdDG+T2RleRw5xQz0sGV8bL5/CkwTyOdMT/NSNdT/ZxNOgW5g2kd8SIp3FhaO2HiLy3EvuAjUyqnTuksl6iJMecHs3HGm0TDMeEnttRVtPl3JqdhhInLxq1LooSBNSSzZ6KoJwDxkgLBFEQBzlpL46MGGgECouOuEHdLQM6zZ+bJTDnJ6Q6AAGWtj8ziuKCi2gLWEWoofFPXc+eu6BscPfpN/lRoXhbDboydyOSaJ5/sdxG1kMK80417csqiMpKDoBdaUoHRDw6dlSAWt9/iB+nP8H5WlnVWIyI0UXZ5lWLCKlqab/pyLFq93UWCzjqPXfdcR7mpVj/kcJHBnxZKHigWU9NsNL7WIil13azbH4iIK8ajFve01a5XOb5Trd4obxDQ+0HZVajNKcyU3VA7hMLmAqsNPs7W6jzDsqFxqCZF3KNhDe33wn7r7twn5mmEz18Q1CUhxn9z+5bFpl4QIDPG4FwIjvQMiaR7c6oQ3/i8pBINqHqrtuedMomiuXh+sunya84e4xb3a7wcUup0noerNklDcyjH+XPQHz/ZexC5JSIJaJTHGIeBtLi3FZ6c+SLIAQXNLuFHCTxB7qpxnUggdUEwZuHVeE7HC84J4Iw+JgAU1fzMcbKButC2Iv+O13aJjROM15eBUjhFmUtOvQUw+LTyJSagUn1H2X7wYLeoGvQjKtRbJ2nFq0dky+RE/mVNkUQUMzxILHemrgLdHCLs5MI/5InXSqPfg4cFsus2vUuiixUtt31wHC5ecucRruXXIcjXhAg6SIlflAjh+0/klDeWQQJvGrVhCvNtIJBN+7yKHZ/z+HdSIVYdBi1TjZyP2YGrdbT8VZuVnz0qIhc1s090J+rN5jzzuvZRraRWdcRM8IZw5NVEJHn2dKn3hFzIaRPjxA2VmHY7HAXGKVFD9bqkHYtmJJscRP9sQiCWk8quV4GAAT/OXfwLnBj7UJBJS2tChIuO98tJndJYze018+3MHl97XTDidXUuzn+FKX8I3GLGK1ErooQkFFEZ5xqPp2My+B3TajiUQ5sVkypiwMerK0kv8cae3tx63TmAJ9LLKJxd27h6QH19dWgyZtI8jwds97pEoHi7D37cG+F/B3vG5oximyZUfIwxENYbnuM7hV16WgIB1VLY3Sfh/MsYiu41EN4Pe9CabzLKtWptoBAwMBOmexQSabmd5tirF5eLcB+G/RJisUUJ4d8pf5W2FFB8rB1esNpjns7fYC8YK05/RzkNhlg242T8iXzQwppkB6YDXoJwl7PJCjBrzuboy5D/YBy3jiO+arQqMADmxGz+T8/SwezJrCzHUkUBpEGbaFcZFWB7qTAWW4XUVIKFBkRqafs3M552rELDQmyP73Lc9h9cw3qexsu3n0HKnd0CTj6r9FIaGMlg4NPhRiQ3zOUijQ4fo9D2W9LUlAyRLFTgKWkaHulqnJJtH8cDzfHhuvm6jfSNEgU9bGULc4MPtdf0TSqR98+7jyyqA6r5mqw68BDcBlhYY0+TrsCnWFPCQ==
Variant 2
DifficultyLevel
574
Question
What is the sum of 43 and 51 ?
Worked Solution
Establish a common denominator:
|
43×55 = 2015 |
|
51×44 = 204 |
|
2015+204 = 2019 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | What is the sum of $\dfrac{3}{4}$ and $\dfrac{1}{5}$ ? |
solution1 | sm_nogap Establish a common denominator:
| |
| ------- |
| $\dfrac{3}{4} \times \dfrac{5}{5}$ = $\dfrac{15}{20}$|
| |
| $\dfrac{1}{5} \times \dfrac{4}{4}$ = $\dfrac{4}{20}$|
sm_nogap Adding the fractions:
| |
| ------- |
| $\dfrac{15}{20} + \dfrac{4}{20}$ = $\dfrac{19}{20}$|
|
correctAnswer | |
Answers
U2FsdGVkX1/5xLgDk0JkK1TmEabbdZVJTueryxvROueY0RW9OX7/Dikz0LBOGjeyAHW3Io0cO1+E2cUEg80f15RSl+VyyaUH3z3ZcEGNykhWtKuf+mp7ItmAnJ35a/8uZ/4NG1z38IC9ywfQlUtEjAtqM8g4kwsRM6xzwXWmNfooJQD2cGN5Jrc6rTWLjcslliUoo24BNOdcgu7WKvLnyRSC4rDFQgFbsDmkzaP4TZtYLWP0PAW//oE0N02MsiteqPvqN+K98agi4oz1hnlATPxwsz0MtI0eoGKBvyjHI1kRtcquzhmEimOEwZsB/csJ9+IZnJtxczQSda2H4jDPHQRZj7dnfpgDwh66a8IEuC3YxyHVBLgKzCrBWcjW1MwiLu65sDXx4VZ5nE5Ydu7XrhALFa/R9J+eLIFrWfS4ENed0SvBCD5edqJj8sbnrVq4ohpDJSHtH1aJvNmnO3qYJON16QLuxwj+8z5jKECWJD9LElmaYPR9EX+HaMGGjxqwcWKuPhkhQ6kgAcnF1WGFws9/bH7OAgEOtJn/2unw9s/1Pp2UwaGyLI3dRbfaexaNEXVlKoD6NjPaMyCgFJtVOvXTcKwf8qEuZaKG5FJmcRxOgX0N6GMesY3rfsqHiB2DSUwARBs6rt0LwTT8Cbm6FlVG8eWeb3xyXRyyroNnilQaMSS+jTBMZi4exdcHFV/EjnqtIx3YCY2UusT3UfKVYeivkXkMlasYzTBjSnaRS0zmkHe3zR/qALqBjLkq0S7mDFaztny4Sm45aAyuJOQfJy+e5CBPvd8j9UVhAwcF4ls2G26CZu73Na7/alBewtc0eqRmU7XmsM2/SjoTPQeqiOeFeI7IMQXEXc1aiYV24DuwR2zHUcVcbcLdQwOFh10CRvJglnG2B7beOzyeGjoQEhGhUC34K8wbEVUPJ4jrsDfZ7uLe5PA3wT7XKBvm2lFb3Mk2TZM8KHqESR5VqbOMYZYQ5cYHy2LqxJENQ+TitPhBZ4f7TlCUOQF9SCl9vk1UDECC7AgV27bzPEDDRH9AW5EXT00+XYX/Meb9SOn5a6F5rCMC37JdNOz7chKH7ArerlIz3K/+sPDwi/sH3ZFccdvetNf384yuqAuxoia1aihEeROFw5xPpB6JIHOSHO1rZY4xlLOhWPId8XWYPx1+YaxRr8X1yKFEa50ksEm60OBfoZx5CK0BZfAM/XSjJofYopyDuQwpUp16d7Eami57xFXFekU783IZwMzu+ZRJ8gPLLIm1Puza3W3dHL/NI5bZ3lQWFSEbzW7j/BDw9LA5uEonI3/pRSx1QKC+6VpzZCKdQl+s0vJQIqp+yy8eUvEW0KxlgjG8I9fXBP11SJh7W6AEzH2GQQUfe3bC7m1zmkLIyzH1E+PGSP+O5J6G6l9U1YW+d8usT5UyEdbBRpytYIBbjxEPd20xOuo/UJo087RgQDqK/bLvjnHVKaSVDfjydPiGg7UTnwChWENCE493QIYPXrxDM3SMIRExUl8ege6Im1ghD9JKFKiqgEkvbBa/o1NaPnl1lPKrdSYuuiby02gjMBf4P0rcBRDF/HGKZf1n6kCiCaOXD3p3QO7vU+nvuQ6PfE+FTNgROyapBCl5Mo9I0HmVP4mNjDIBogv3Uywfvk2eznCd9DCfyAdSNyfNNYBtZgpjJIfHXieOgvLevMA2CN4TvgbJbn/TL3jYW0AiIBvyXUoomrf3X9eQhCBWqEkiEZ3Wm6OKQl8T5IckY9/s4Tlz5p3BUGG7h1X4A8RB3nghiTIBL/G/CMEszBSeZSYsTHPOPK1ImP0+3HVsHrPJe7LxSKPpmZHgVM6q/Y/dKRVrplld41nTT5fRy1xVZodwbkxGIk/x/c/WVphN/mw/RkiIKfyei6InowxiznY25JnFPLZzdylf6zbT4apToOudRFRajQ5zTQJKo3ZkllI2/M5a4u4PrtH1HHoF36buKeAS39O77YYSxqqei/eNnmfIqw125M2+sksDMaLHLkYqZjPvt/PxlxRb0PMIl8E6CoJwbaYF6RTPxTnCDU+KUZxCvURbqGeQZQIQ7jsDnc1jdUIBZ5YXapNIWgQ8hYLK5bq4oDhZBNGEecRW32eYXigf1m9Xm92NmsfIIACKn0bTFmurfM3ncF72xKNd1ms9DAS2eL/Gly4DoJLTwfKrBAG11zO6jPzHvHm8rryo8yGkpmHcY7qKw813LB37gJKXAzEL2Oa8hhcpycReGxlSSHpsPtWErf8IkCblkP3vkLnnmJxffz+P9ljNM09JpMwfJof6vW03kIfGlEsghS2tO1eVBe7/dKul9FOp5rOUNVzqz+/OIxDfuiFiOJzOf13hFxMQCmQs5OtXDaHUO03yVM1b6hrCNclYikpjw0LSdrKaZ1C+ShMUpNnhjd/1hfKSbtm8FXQdfqJsxA5vbZkZDxNLD9XDfuZqYW2UJY+p1E+RGA2OHlNbxL22at9e0F57ne3Aoq+78NaGUKwh3ggv24Vn8kG68jdIVjDU1mzjMT2XRwu0cQ5PrfrMIVg+oyQARo1BCjE2dJjHif0oYHVCLLE10RnB24ckFrBhtsKpup66FX8bWqPtVdJdAQajQ9hDF06CGy1DpWepfuDWxltytxl3ZXhiOFYng6qKsWyv9q0ASXWD/SYt2oy3dXLvUU4lfkYGmfJ0ITpG+K/uuUnQe1a7T8+LeZggQyAqalG62wc4KOXO8tbQ65ipGJAjwjiFt1OSabAlU1tUIBe7fG8oot1334Xy96j0QxqIUYIN9mlfP4IPCB9TYaF+iJtdeskkkoMWzC9/b9CULZNyVjxlTvp738BjrQ9GpyPT+mK9C7z+OZW+BkwBItcLXxZMp4VUWMdWo73AA9YnO0y2cGb1sj+ffB3nN9BmQLZvs0cJmtTQXSeIqQnvm9M5tM1Q9urSQN2ddPOFdtSjEfn6suVjk1B9OEPf7Kxwmm46HKI5tFTmFpqcLLmGH3x5a25bjBMnaew6lFAPoIZ3dZ5i+nfgWhgogzPnRlioWQKHjx0hzkSkmA+OQ9AKJ4jrlHP6sNHH8M8Er+MGuEZ4wx3KDu9Qjd1LhRvd86lfi+t0SEQC1tMEGfRmIdWFv4VtQphCI+fSfYKYON/m7y/MKSSAxw9rK58xmu7FeFGJxhQVycXI7+RpDsPCaDVocp0dc07TuM9JM57IoYgoE9RagBYHB5Y0MOgroTArSt6i/7MJKcEPGk6lXbEWrETAxJlzJEmDEKUd9hmSDBxdZF6JCzodcvFmLWQDZf8OPW/XpNE1zAUN7naJl5svjVyunE8gPpA3khPKoa/HXiHsjOBJpnCQJ5Gm1rIrY7Y6x3BH/kUsWzZTjvs0ZRKr/P0BMZIept3ENwOLzjgxv+ahUO541LmEp4kG0TyEELVgvxzgtWnQ/yhHDuNPj7P7lLSi6NPVDywO9HpagHPgCu40g3ksx3gUbxImfRcwr5CmzSteAvP7ITcyjxoOCabDhZkswnCa+aagzsW86ULG2Qr4V5XHwGwADzTKU58T/u6hnt957xzaYmGiji6PjGtLcvqXWIjlpEJ8Pc3lAMIGOD/n+TY30DQP9Feo1S4VABH6bwACMV3TPsq6QFVM5z9zo6/PGqhTb7fHdNbFmCN3v4hs6qByXTgQwr4ECGPU3S3/at2ylh/bJQ3gWe8nTshDN3795T/NOa3AUyExU7oCSIgNO3vMB6gNe/vaIp35Vm9DGLdH78Z1dK+2cYB51GeV0tmE3aKGQIG3M2zPrBdvSUUaqC0KmHMON31KyZNGBpCGOzZZzyNNPxZRZrGDiaYa4fQrE/7ckT79KlRhxIzU7o2/aFEmS+W5Q98NwtOa7BbsVTYN9/RB8tR5URQBvwVCAuRWXr2z7Q4/DtERkz8smf55yYvFwAWEGUmH/+ZWVr/cOQKYDh6y+usOMUYxR6/E6L66lt1ht5T3rb8pibGOuikagMK5Y9SkWv8Voqn8rvDZVLGrbosV4CG6MlaJDszsJBHlmoSMKzF0yTXfYzIaUaB3DYoDK7MddroBCNVspLw+UO/AzU6v9/g9se8xDj11Ffeyp+w5X6E31EaOOtmyF56JtZl6PGByvowqCdOC51qBbQz/Tm6bSxsz2yHM2N91xnktKOtT1l59tdt6wUu7qZx5tqdNF/2l7dp2mZ08tSp5A9hIBYh2uwqZYMUrfStjxYGciI4e+HvEQzk781DACzn0csmNLIcC1X+cmjS6dqpEJAOov+AygJPBAFaFyWo8F7yKpB1Po1u6GJHKkiPSJsCd2DjX3u5vSe4q5RIc5o/geohQGEbl8wDzPaQjKgrFwZA5R6wrZW64wckcEQ/ImL9SV1lFOjaa/ffmrakOx+6RCCh4MvZImJCU/+RSiR07UPjQGLfscuZWgg/6ox2F+xt3TpQJBf0hkOIZaZrPUvdPTO/51Yaqeqo5yM9h09OOq8mEiQyVWABcpvFs3lGGS0sTAkl/vMQeRKNjqbICVdvnwz4DlIEIZ5cHZijYneCza0I+YMpZGGOkI4EchKve0kTTk2G+LoT4BPJS8VVIjO7BcAI4ii775ND24cYzRs5cPQix0YgQnUbC7mHNugkHyaeYBT3Y2S9jm+hF94u4NhJfgJShuOtZTXR1WNIrVPvVW1yiwCatzqxczbAGH7Cf9gjfyGvf0KVWr42RmIIuOz+AbeFcuXxr/JlPNJ8nsU7Pd5GnodESJQEVfYGt+AidQWQh9eMYw40DGx6XgZEc/DNn2vwki7yjTTIL4xPu7VsIjFX/8HihsS8L9j7VLA2qj8UNgBq3QfNe7sQJkw4nwNX23g/kPR9+/WWOU0sxXveLaHM172VPLIGWKYaxjFW1U1/J+B1PP5Hdh4ponJIL7QTUocASMMjkaYgVCejfMaNmpjNzLfNPi34qYlE1YJv2oT90QjJS7oE6qUuDbS6wqf2wDP26LXuZ+wDXgClEQXOwpkx/8DsA3+THXr+cZibBLg0JFyKdUEDf42W8DshRhNM2iEaxCoPInBK9HNDliNKI1BJoliSnCr8bq8oFmKpLPz5btSmViFqSJKAGuNiv21V+nJ33p5NCwUStn4zQvVLKSk1Isw+vZhd33PovMSojpmYKqb4n5a6JiJxcDYsmck799Cgas/wb4XJxCGiAFQd73tlyg8m6b+bGZcx5f4NIWgCzx874fAuQMZrqIYXEd3dVyGXdbn8ZHonvl/WosS34mzIdCOYD0GqQ2oxSzOCn4qW+7iv+2QOa90Hm0CD5e3ChqdiWN7MVn33EXq7NWfUSjxbFEDJ5hdovPdgr5AKN9UAoA2ezJrOKDUSpI9fuGm2pyORuSdq8qKtcma5rCmeYECgJLKE31oKCBQpG1jviXTKbTHAR36wikg2/p1Mz7G4/2PllrzjvZQ/RqWkt44DPcfYQVxi33UcZtAzvXfHQJOelJFcbDOhg4te/H9GTfUhCEnwrAqe0EWdRVN3G8861k9DLg60UlCDbvUMVTW0eqDiWaCB3oytejPbgJHWxTfAFyIhIvcvSXtVzAP1nNrZ4i24CLNFL0/kUQ2Kb2M/0AdnWIiy2MEjKTys3XczMHF5wyF6Ui0pGMAo+URLmfloty/hwUVQuCczBpTmQaAyziNQ7pPI7J06mZUhU7GW1eg44WYCWRegdI0DI/jk+68WKsG1h+zvB0+TdQf/MwoAIAQoCHa8QYCT7Bace/XmHOj7dgRrV66/ft5u9l7KjktJ4hwgBK/ivt+j5Mq5W6/fHRz4IDyBUcfYfH++AsQUWS5jVEIo3xIrbOcg0GphzocbnT2xLOzaS5UO10AalHlphCrd3Xkal7ClWhWTrVHLENUG9q+1UH6EkXO69KXsPNht2VlkB0DrPagih44ke+nJ34/PZDC/XP5P9VHZQ2i+XERkcaXCF84jhEtkG4+m4vV5YyT57TOm0MkSmEazIrNoISuvRmFdSKUzCGfJmiGnNZhYa5SBGArJ/0wQ5cUHiY32DgX5MgpW5QRIuCxGf39N2FLiOH62iwa/5TTDlJINsnyN5SMDCjFQ3Vdd7VSzzJ/DHXqumfJlUFsVcBS4KemCCSJ5BjWSUYXdYi44AaO/U9zgaEDLgefRs4fyEi/BqeDRIYEW9/EaG1zc24riDTpFnssOK/DrPo+in6XlSD9aGpaNKvNFzpvQVINJWZXZxtNGLh/+AxybyOdDTc7HjwnG4OY+7TJj50vuo00Jb2Ylz3YLDNyQqHQkb4gBKf6d3aW2BD5tqilvEyFbWKs1wW33aOj3pRqsTeiWmvrTTa17AhfPWg3bEQiuVJIloW10I4YhSHMNa8YcQ5VEKCADcJoeysJ11+MXn8WglGvr90PINSc2nJiVHNLxMux71gp7DORcuqL3cPCMQRKyMgN4C8oICtUCklDRdQFl6u7brWLdsBKp65ZuEtV4LyYP0Wi5mVLu3DKR3J8UGvowaa7jjLfMbJo5JQznB21l9QzTWDB+jp0uDLuhKUyEhPqoXSgu+DiJniltX/ovaZrEaN3TsnCopMmcQZ/VrlKP/DMV0OeqdgBMb6ZEvtz/WLDFu2F38MJDliWQl3FaJqbXXOGzxVtFHxUm6wIzz+xE3Y0tTumpSEbemcDZryrUCSUJeU+7yYq0Ps1QCAQnN9FEar/07EdbzKlqkNJ9QlZ70g4kTcgEFJqXXC6lTclKTI5C8EDkRPO+HisSgGXQcceEIq61iAdhivcQBG0c7Lxxn6mPcXPK3Xr7AzXSr2p7rEOgbwI8Pe36WSguE4JEpAjMd1j6b91gSGqVGFK93b5x35/mVaHqsl/ZvPwYbV+/7OvKAt/UANmJzHS2D2nM2eVsiyu2a5fUl5o8UKOtXFq/zksgvzqP0+kWHN/59P1sxQ9gfNqyiWNXBduqTbFzPy48TXkKQYN7IIl+XQ8vpE01xSNub0I3vuXqGMmeeA68EoXSZMVTrBq3bWquJG2CnF5tdf8eXu8qa7ninH6/Uys6ZGSkQMWepGKYBCHyttmgTSlYm3LwH3doXDIZaPKQdS6zaWknqZKtgi/g51tX1qHGe28uWUxMXXMl9gSWd8pxDejn4IJLoA9xzy/ZyPE1RHnvjrVNQD3d4LCQQcEH7+Jp6tdMlGO5ili+rid3aAxW6n6qnMz3BUWsc/oX4wPQMJIWeM1SerUgSF18qbBocg//VOCZWEGR78EGObBSW1xL2B/m2I0t78297IOnNNWWwHWWQdDl9VNx275j8YShjC+noMtfnV0wRF98u/c/nJUbnOJM2t0y++LiMSbiEn7JQ5KZWh7u+CBgXOKYNEhZGYMjEcrtFzN5O6R20nSmQgNDHhDHd+Y1mWAqLdabhGX4O11CL9q1LbsipGT0XB7py3coMi6UMusyt9OvunSRh7SC0CpP0K20K7UllI+pRadNDv0LeQ3J5gDXOiHrkkuXPj5P7spCX0v3UC4Skw0/2J9yOQErSHh6s+RwN+umT/rFBcWeSPvrySc0YCnoSlZk3OhWfYWfYYtifNRlL4B0hmPoBJjrMgZ4tn9TmVl03rPqLNCMVSKl63YlMKt1il/ufJCYtKX4z8ytM0ZyQfgG598QHULaQWts4sgn2PWD2LoEPaTLNddBp3L1iPFCWgYzhOOoExYA5cA8aP4X1wIdpalUrLxc0SijoCZd4esT4cZPGlbEWDIlpOql7T9emzKNDvcpMuotD9uAseEGcaeIoF/lC4Ti/oAGWQo+9Z5faCsX6LVzKTA4VVp/VuY1U2sumt2OF4VyzIt05SwgKPtE+T1XDjE6DVWh7wdky5YYugcI3PWZ3BVSDyycdkyAj6Ois2OOmOBx1BqPGz3x6bYisZmD3THRz+7w1pqqXc2gI1jn7pFZqVzcEExQ741KB6Wjsu90jsMCYhwtPYb4o69TVVXLdpp+wdQcrwjBJXhosWTgkZ2SmPEh7KwZwIf+rntROkeeocjWWAcRSXZXwHKiN9zRuitDfImJ9F6PJdwpQCDZ4WPirm+Ro0I0uua/6GSZBERmFnlyInMvTOxwxDjMCNTvz7thjzIik3MAuBFys7d8f8GmPd0rE9lnIq8hVO+VkGTqsn3Rn2Aw9lDvha8Ez22AgizqQlAbH5NpQzmFIENnV2lpso/DbYKA51E1x4ajQEb2+NWGrwfddaqY3MSqd9S5tQ+XBZlJH18amDKNslio/a2G3S9rdQP4U+lHA+zKAO9ghRNn+GEar522WVFZW2KaS0plPTYm/juKHmfw59A+nvSkygIFTQL8H/eHD0OGVwQlsDXuGg1HGduMPCLdSPpkdXRtHuKCNn+bboIaRpYHyy5WXb1aDk52A1aFoy0sulWfq6oDg3sgGnOYPjG7DWpEGe9A1uYx3dLbehAjwWIZ5Z7suT/QiNY3S3pNVp/hbzqcv/2lxgGSh2sz8B6U+Whyh/X7iPV7epoFuM/p9jGJb/wfZRtbTQU7saiHA8uh+Z9lV/UkBafbz2owEyVzjh1RxLPvVSNEaDj+OHVtRCl6RMA2BGB0opBND4oS1FN1OoRBpb2sPBLhRLdox1YDD+XxFsOY01Z/BcdHBAGcfKybXjLe09paQyuuI+jeVsuOR5cGy6wPoaNHoZ2NPUGVqzG2QH55i1ZJYnOEK3r/Kqt2HOwAmMyxxWj+R2PYqyddjgLsg2qFuCjZqCBblXXBgaLYMJoPjg7TgkXB1lPBtIp5xeO/1J+5uDt7meRPK20yTgCfpI8a9iNVhaShQBjXyyDM1CXhTu71QdDicVO8UP0OKpgWQWLBXOUCSq3B4IVqwIFgldl40OzpR52Z4wQijcoKL/Iu8X3/jRZXHJtnCLQfacfW7jdDmSoYBvo0M0xQsozYbo0dmm10pUte1ySNio1wPybuNjDylnTqOVnSZbOitnQTzVHIkDFtbkSVpcgQvMbT1OTh6ULdemZeREBo2dkLqieI86dJr1a/dG9tiI2nJXNgS1t9/PShMiACZnN8HVeOWCxTxzRAZsLt2j5ib/7B8CO0PacPG40RFHQfpq0Bmu8f7mToh8Q/3cFYR6VBhZ39KKT6tsKXwgqRLW0qsovWwgJe1rj1EQNIrmas1LH9S6fi8Waa5QIn5bL2uTpvwKX0ymW3cCBDWPZZG2nVJdIMhIRuP/MbHRvsmHcAZOeCwoG/e1KkX6v9QdjZd2cO679H0emASSsY4mI60Ul42OpznIJ/sfo1LjQBlDkI/vAl13BFV6jv70YKV+LTQwYP76k0v+ZAk6vyy6YCbPR3vRscC1ivrwr8xB40DlmE3Y1rREIs4738QH7b2KHiBIC7KoZJxSc5WgnJ3IgYkjvKCRmyzfPgClXnDTSgQBCNdrP1QjQIoGf5lpCy7N3JS49KDqoQd0AvWKp8fZ4eiD9Fudn7vSle9tQk9eAVvt1fOgstH/g2i6nATvnEfOarkr84wng2Lq7q0jCawascNdOGJRXVdD3PQJdIu015ksitccyEo3M4WPnhFPSptUyweT9XVQqv/8ESR5r2HxWL/hX24ddSoI4bYfKm9kVMlEiObrvFqdqhuDYOlvGd9XUNZNC9N8gxJIFaZ7seNwp2Au9W+6YqvYSnCfVJG7nZDeabyw808XQVjGIB+lm/Z+Tb85KPRPhS4eKWtHDywvxJIUuxaXUfnue3AggAtnt9Y/ilC1MUKOEy4JQ5UWcjtVh3nWDfwZctlhJPF1qZ4vduBy6Gt18JM5fKxe7VmRHCnCFstemS+sWdYG+74ohdirVbldGY6GCYLfBS+LvFKjPbAkVZdA7Vx4OfL4khR+khkyd6B5pO8Lc9nNyNW6FbKvrE82hdSpw9F/OChOcbh6kB/oPnwfdsYQsMBYZlpJj5QbxlQF27Yl7/nJMqeAUSsQlyXgPg0vWHiaoZ4lPK6v+QeH16Ckw3kAyL1JKp2H6buC/AN67L7HGMyg1Yi7b3NS1D80tGGzaRo0LajyCO7opUmatxKDpKTef2JUzrTfJK3Vy4pOTqtDJ4KTdkCuNyKhLmWXHk6ALrY4J2NPoEEcRlsK/yzEMahvYV/GVsbXPeZWLKTXDd6f+o1FwvWS9nwCsMCKrVLkZrr6FCwUXzZSGY0MFKPPyj0+ND/svDqQS0LQ0KV+6I4p+AB6voBBBusYEenTvLB2xqUOD54cOlUCWrF6MnGTj4J+X/qG978PlHRJbcT9iK66eRyP0zZQmkXy0m8ADcw8Mfhov2MphjZImg+NwqY2ccG55JjmBhXROtbYiHug7lJWOTGCK0R6YsJqtACR1ERmbqhO5AIgj95CWnBgCG84KJYjj7NMonM6fKI3OgAzPFcxry0/734G8ISRPDrQhGUvDuvFPowN34loq/8Lr+1CDr7GHYSw70rnfS10soK6ZiOkYl5g+Z+Q8KPLV91n03sycvBQdedxGjmih19F8el051C2SS7ChOGBx+CiOwamAvKevJy7dhPgWzraEPxxq8CANf7CGmulkf7ZuqYKpe9ASSe9utyuFA1/0HTTriTsQ/OX7wRrcvLBjjtzoMpMxXCjszRIrYmc3f+Xtt3Zy8WpJsCgvcVwSyoVenLYzkycfWxeRKeDE4PywxgOfwUml9/Nu4AWRKu6syMPUdOfF7bw40e5wrxFRcghFr5G6Lop6hMPnEZseGUvSdE3stNF5KLpg1a3qMmTYpVFaT5iEcuYFEA7R6geEK53TsnclrGoyoaI7WfoRAWjhyeSIplZxekC3aiP4bsoyCkUui+EbqgUjW2sW72kQlQqGTQY57s/UDImp/AflGK8Le/G6Xk91aSLoyYWarf6nshkyKx0NDlk724gVnJho0eGV3E15o1PHkzpktHE1NvE+dkeDFdtb0nWBvvzR1GAse/j/yWzuL3KCm5y4nGJ2dmGwjt9Uyf+JMxxWg2WrnrvNyCFxaBAjec4gH3Wr1L0y4Fd8bFaqRV5cbcM7fB1lQzmjw6FI09ikAq7ZTy0iVX67U2nfu/ggRpRNY3d+PYt9pFV4DjXvDbi/tJji79X1nS6IZcrwZ33v+rUvRYKlZoIUfXXMk1JSYQxhwrgegGZciaeT6WAS/EmuA2fQY3Wsw2wSeYIqgtirUt12RgcxuJXC8BlO+lUOYjT4FgIkBu4NUikjhHCJMQKMt1piPkRXv9IKfChUjM58MNuRSaQZWF7TygkkTdy2WmXMOo1vFgH/6AUmRrg2ljiJTEOf/of6WBhyxBRiKGqYQgBto4Z9MRngORAO0QW/Z1wef3JN6sObVegTYXEj2ugv3xDPvRG+BSyTbNat9h1tptXUfu8lHFJaugkwG45G/AwCCJvcT0JNZlAyc7i6g2VFSky5/6wv6cr+9h69v+psidouEVIYOMroh6OZFASkgetCOO4pnsanlrYatY3BJO4EZgJK4aQTRPRUk6jO6VtDZvFzaUj2EXkZVXYtaw/ewFSHFB/PydAHqMoKziKk5TQfuZ75H/xbXVCxxdqeMra2Nu1Dng91C/OGAwiH4ny/TXKt0PpHtrQmpgZcCO4SAnx3Ir6bsCiNyeOVkPVqU8eF7sv61BRuNste3PfOlLRDktAEj8VALCALyRlcs7EnHu7RYGKN+5QF5y2Bc23rYDR0RM6he4mdqLNkBwkCI7rHzGApZQ/ohyThy4EvgAdyoBzXz8FZtCaJy9Itxm3z7CraRmbRFdCbBVADGr5/NgAgxnFZT/laObuhXPpwnS3gQG6Hp/E5QPfD3GwS2UdAWViDmMI2Q89++4dlGsKTNmnJ1IbiJiUIwFLhDOyksWnr4N5ERhw7GjR+a7UVnA3MlV6l3MCXLhi09nULf+QNFwunJz2j7c/QuhOzEycJUdelPrXdRApGIl464lII4uN+VLvaB2VsjNmVilfAIfUMJt5ecsxn1P6UGq7dPQ4EtLxdY7Pp1Q7CWKSjLMzUJMe3K5foRB0///kd0ZGCtaweHMJmTfX9CGMSfj+hfBLoJfz6Tt0PsYuRaVyxyRqwpniMqqtHVWqxoTJSrVpbXtDwL0x4Frm5BGHN2QTbBogZ66Q9Jfw30wbtlnZPAQATS/9BxOqolrVLpjV/KOaB+ZI/8MtLkMIWOKOttbnvD5dSP+kwaBlHRtFUoblPuUhbUnejlsBX66xH+2uGZVPBGZ6GX0EIM/1bJW+iJzHngjzbzXwOVn0yxnrgoWW48g+fAUHreKHbuY4b+p6Y7gki/NCqk8KmEMCvJIi4cdJfI0ItUeknJTE402iykFbBeaw+IFYhMZjE0e8M+6LMCDCeVJb8rFKBALTThdmIK8q/3EJVyVd1SPgYWX+jAqEFcKtGdqRx2Z8P/oI9cfTSIACD1vbuxtuHzbqQW/o6LCZkB0oFL6HfROJv4YLSyRmIoLaIldZmK5ayGaTQvfvTN4whvKssFqFfRcjVq+Hz9vY6qdq/3Fryr0bqS80/RyJbwJ3n81dFaZBtNhSSa+ANFNTN6r54lab833uUT1+bqqLRRgP0GNKMWORoKUufby/HuwUPfZLGYXllxTlatq7nxwSfe5MU4Sqbwhl/J7nEXf5UsPtgGC95Moi09GbhjztB8HdsWvWxjwbog2I+CiR5XHfzCllm6htfbUW3FV7jZu32dJypuOn/fhT5fJ6Fj+Bu8g1xYBU62EMgPxi454vBoFio/mUthq9ewku3ReevXfWucTxUD40pUYvarmoU0za5YgvyeiCj92iykOsPnu0F4gp2gtSo/l7OmcgrFFsIktkCcrdxObPZkL7948bc5okJ2rocwAdaISvmWD6Hy56PmkJIwufmIPm5U6i/CiaPV53FUGqL/qbExh56c+xT6UGPmxwqnkp88pqyGHcOZysJnacwJmXQcKkkXmhPeUXndo3jnbh/ArqK+EVnsl3Gn8TbDS/OAB5QzdEb0pYMRltffR+2XPcujE41HQaujLTqQc4O0p9uuQZ9W56mtPRIb8OR7DDW+wrx+4p5rYxCw1RvppuwZiytCcZyZS95Go5wWUm1WkngKf9LZ3sDYN1Im3Z4vR07pmt636k8GOBKfF8JJ44PaOlQ659Jdi4G/pUhrXHlhqKL0bGwPHkQL7UF1KYtBry0YheLmoCxdhWKZFL5YB0FcavMYxHn9BblSJlDQnTaOGIZB9Qu3gfO+JmRDpfrS8sCKXIs+UOOdgCeNPM8Rlv6r2/MFvGRCzdgj4ttJ0i56KRH3aOw5atL1T7FNs8CE+oLu6dfSA//7No3dAPSI3nk9yRd7qIS5gMpgtCd4fRCvnWlcVQbJnHUN3EFR3z8QjbttjW1kTf8ngOg+PaAEcZ8d3F7MUFP0icQRgADMnmAIh5DGDwSsuLzxZTuc24GryP4yuJPojf+9ajB2nDC11Cqf6/722LCTOyi197HmgTlNKou5b+BL4OUg+QzleYY0DoZ1ClyyHlQsSGK19DEyZORgHqJqTRNbGLW8CYw4+taCVXZ7Z29oDaYxDsbQ4i+KjV2B6tB2OXsfq9bCdvrrenlps3uLHIYMMMseS39GbjRL8wnhNZXIG+y11KuvPZIZ42EoLUpBd0oMbKSG1Qphf/ZWinTmQV3mY7R2Kg3FoFkRQXmpVZ1mJiYu3X6zbD8WdASPs2HamDnyY+2CqKn2w1e9b/dKxR1BcWYwxcnbwKPjemZj6EhKpd30t7mDsL+1WWYZWwjG0gj0zxJyTLCbGwvIG8mhnrv73eb9H8jxCxTEUMGjNwu5iJJr24aP6TLe6dLqEMvWTmO84tp+25mfjTR5WWa8Ja77bs4ycwrqkSMU6JsXOsy3WyU/syNsC8KZmmvPj6NjiclL0IqBqdFO6mrWOeWFFDIM6IB0AOLr2+HpGCpTM+tQNViPBBq54npnW+qupCl9zSdAw8yNsHxFVUkuaapE5B2QxeeI7jxr0Cr8tpkvPM/E1RCVJGO6+Z/rd1pk1RUwFlXgwXbFQhUZ+afPc/U4NXsA7iLcQqITQ9Ps+nLgFYsODIPePRAyvraRiJPLgDOj14V1aZCdfvxNMJsOMhh4SY/20ekO+0Y4Wj/64hCW7hbWOpKBCXCr3LJwQ24Ee914nO2JofXi8hrCQ8nGLE8a/xS2lP4IBeuYWqRfH5pfAf0SWKH/n3esoJZdcnHMd0C+QzKwJn/H9SBfrUo5nzP8H9pAxUhtpmggixV+fwdIL+UdjrUltvnTYObmWlxc9lolMnPSQVeSatR9G4HM/GrXt8PK7AHu2NEmS9o7k78oD6rksh4F9sAVzgJ4aNnEh5aW1nYRhSM8dX4mViqAUFLY/q2XM1xX2VQ9mtUiLR2ZXD7GmrdiFATWGtMsF0sPUeOxlGS/lPan4SnpzRx+T6kHpz2L6i5NJbjH8xYr7JMpH/lM1R6mOnzxusgiqLEsCdDhUC8o/SpC8vEe7f0B5NNVShf+MtoKxwMJzz03AJhGEJvXI9asakKTHzwHxG1kOdHkmIMpgyXthMACx4XMlJ+sCz7bJyXcxlr4KAsRhO5KX+zNcXWyXd61RMp0qCfZNi//7BOKH3rxZyvZOEKG4zVWipWCVgYORjR2QKmQWrhRwQWMntB9wu/zZ//soijMVlXMIwaRwmoQqiymHSr69U3yE6WoDqSGMMXgBVRTZb3484ndut5hH8gqCdDRKgGtLKkq1uiftq4za3CzjUPRC0U/XU7GbWA+C++uyiJo/3DmAg7hvKUxZIsY9rADNO7siR6z/48waUZ0MUxA7hCChrdWX2i4SGkdYxJi9VqY4+plNdbyOkzqLdRThqlfuHDIiBHbUdWQ3I8RFHLxseeAjlSKyjc3HbwQ/NhTLoVlR/4sNwHV2fEioLWx/400XPcHlYn1r7q39sDj/33dkXc6dFNMzM+0tsm1UpNrKidiqIdPU7b1a3XxevZlo5sm1OqIt8/J1KlK6RiUHuAY/cev5K8TWvxwL33fIlm4jx9Qi7CAdXNnx0EJLDLEugiqYvHWtiLhKKZRY+UcDzC+u0kr/HPPVh/mOkNfqOv3Wb5TSNDSl5xPMtsMbZgdEVLHcpCoie/U7ZUZXtbbcSsEBT9OB5JYAxao0gaS669Aojm81oRq6rMFfEwjWrT+4EDSDE/eLQZMDdrWPNmog1/anKgtjEUbFLb4uGkqPdEk8N+5XgQ7VEpZRRub7zOlijjCoTK9GyJL/r2IEbefWwVZrBI8PAsnDgRIgoP3Cz5oNavLuOVebCGqMTo+bPZh5BkJHVFPZwLZcSjIXdy/wTBaNOd0z8e2VsvjnIDQQPYa+kj1NzKK/NECf9w0uUaNdVwndVBSDqHLWqB2mM3RVbUTzTkGN2LUCPr5Z/KtfO8UnyNm7BXWin3zox4s6I8DTwqw/CM/JOMjuBcefLYSaw/oZRsbONSBqC/FqViuJhggNzoC65pojHeOwIEF83mp0MSi8sgYN76WtC3OZ+TCCtjmmx62n2gl+bM0MrUQzSJDTevRuDikD1NKoQJLF+9Em/wXZD+I04IqwmBdhi5xGtisWUnnCBwHw436H17zAVFwPPirw+jLg9sAXc8ViK/EERcZ1OWZhLf9MTKFMbeSsb3lulU0UrGMsqkM7++WZWIJ/Pt4cQ7c385ghtZFQ7iaT47neMT3wBMCEFF8ZWba5jcxWgU0At2wMob8ZtoEJdJjTBeS7qXvqh7XvqEw4En87Dpjj4+IVMUyot7hPyzdEPF8pNVgvrYqCLVRR1f+md5wVN2XHJ3BfNztZ8agjCbjbgndtNUxIOXMXK0nqUNWAo5wpX0ZClCQYltePQOHy3amGSGW0PoWQQqx6uSWPV/97YGVbRch/0FWSQT9JRIJ6meqUp19H+UxRBLiuwepgAtbvwSLVPmHzFdSFRxdX5IYKwvg/C0xy7RyUxxgCo5Wjw4Ty3Qglos6hxTYWXBLcgSC9hJfubbO3Fd8EASeqiwZFtcX9jyJ6yDvjxJ2B/YshbbvZPd+cc2JNiPjV3yVawlxgXonJD+23t5Bo7c0vegfDrjty8yoJZyHYPRttPqUlERzW+AL4H/nJaaYyDBi0b/Gjy8H3lPLMiKD7VUDIMKtqifNkYQa7jJqQfKPsa32UQjDYVRuxiYi6tbGudTSRW24lF33962xDpGmHVZm1ACtcvKF8OZCmArArmZsoUDusdctn6JykRQaCLoXlOJCGDxxHK79jJNJPsOQR+KRBJ2ufMTP/7M564SrYf/V4Ehfo6G1LiIMG7kK3YpuTRu94Qgd8ozuxq4YFk7yhinQkN6ppL2LcTTG17vR2tP+nOzpMDkMANgYi+6jVaxel3ukgurshxx3U3jt/LDfuxuZRQMPEhwT4jpOcir0eiH1calGkAyfDl+IFL1rYaU7e1HtO6xKVxoE/lC+F66MApkGdd0KtCL6PBmfY4f4umPEEQxSCj38J3Ac6yN+S7lOhudi3VgAaeCNcLwPIauwRBiYubi4ssbVsycqSZDE1i7+teFO8gL3qBlogiC/YaAu7NmDfJpDy4i6exId+s9g3UYm/OCkufgwtBW4SHV12w/q8jxFNspPkd61LZwdC9/QJiPafQcIDAayTdFrR+LjeL16+0d6nz/gF8dNTKUqCkeujqK1JPc8q1c3hb6rCABZC+ZmAMS5pc6Rvfj4qj3rvlIYJ3ia5WiqRaXjIP8uwP8lgmukmnDXGtQtSvrg/WfYJ2i68b65HxN11KI/7LZDduxfhKRgPVpSJREqMDg4wNTtLBSFyBpQNHDevZNCnYrSBRY6XpHd7J612VCIuzR7KcEf/Eyqa+fa52CK3I3ccGTFS2afOS23sVjyzHRWJiA76Nl4ufdmxYIO4Wsyrl3bGc6khKHCy8OWXBjYXv3Qf3WM83YROW1yt4FY2oY3p8rurbOc+fEWvZKqi7NyldTE6f6ysNGSSS0hc0ljgm3/cFWYrqYQHqtoE+MdhCmDNCrPymCMFaSw8V/5cuR/bwyp7dGLKBuXX71ak/nLc0mrJ+8q5M/ABMfTlGgKWcx3LKpEMhuH5xCewzFeJocBzRzGpfc1ItElLwecs6UCBqC76dODdK8HLVeCMbhWaCVbkCLsdzXikjegH9a9HHMslMhSFG9eY1MdUYjp4+ILRNM+hxT1UaPgESVL2/0PcSTxI0uY7yUzxI6V/6oUFGJ8S/Vgacjf762HmGm0GAJqljBeuYY9n2NMi/K+LSyT6oOoWX8nTKhRccYN2UmfMIMN4UIPSvyjH8v4VIgZZsf5e0SLNPCAgGnayhvYBfk1U/gOsOcWsUu4l7kApLfLrfFWB0Fy0sG7KQsBkGBsQmQlfMrbAdmOZcMJKdWDluX+0a8k13A1GRVInVJ4GkIswVTiDgwva8rdIm26AAWQHsBh7MA2re8IeY/1JraRflOPKmCBpl3vaCoGteFS+rGc5w3D8t8emKXUPEwPOErhj53Wv8knKow9SrtoI3sANe4cWl5WP7eE3AVChgPIEHF+0REEMeBv79hvF4q3ELn5OiYYojQVbh1lIQz5D0XxQNTq7Bz0Yfn9NoEBOGzomTbn18rEK0VAsdXIW4vwsDCAcPuVrS6WRz8wFcs+N/7KQJg+Y4dQB8E9e+8G4dJjB9xaj/QdDfjUUkCvXUVPWATevMcAK7BH89EVMJX25+Hfg/OCMD0OG36ZhWJtMQVXZYgInLTn47NEPVHxdEdXR7ZOYGOclLJ4OxGCEvEDxUjmgh3XvE2mPbwbxBkAJUduXIgiHePzPoCZcmFjqBcQrqCv6mswB9v/7/dOAV5nNyyyPRwtSwKGN/tJTz5Y63wbwu6fHf7nTSUQ9wkt7VwWk+uaaCpQIEf7nKdYvrOb7sIGUTekM6tVESCa2vbqXjKKA4uznucaRhUqQT6LHuZGIJA9ivN+tvlwILKVciuqzBl20RIWNWMSyMzHjqoUFFwvzS9HOP8f3bZhnFnhGHVB9MXy70ZH306g515mHLHgcoxgSZ6w7D+fkG9saW13oaAz6asg0fi2MEF/zzlR6PSPq+dRyhf9LajpqW/CTRKGZU9AwTBJEmdtxqCc9B+wmsLYj2TsBLaxtelVxnwUzrmKFBLZ2L7751Y2N/NI/5xDx7kNG/qIfaph+GgqEz0H+Sw9YTsS1VEUHYRj2B+CrA4YH3IDAoZXtzQx78bkvAi0auQlMw2oANC7k+OAxnuQ+mZ9uz/oHdk38wGvp2pCza5+Fts6Nv2spNF5hc/iLfpUdt3QdidIF4obh15PvbEje+2lW64DyFURLo2ioZ9yWA2YFHyk3jiICe0feqeCKUhwy1KP+2Ib5aqwd4Qxh7AuP2tmjEqMui0MEpoB9c/NrcGTMuM6qT5Uj0JJLxUSF9Ze7AIpLeOJ+ALKOjV1mS4gfdRweo3teQL+Q0VB2QSVskJ6coi3L9NAbAGRysvgoIN1g0Jq59LYExjznbHf21Fl90mrx/7MUBMBK8K33icVeO9ct2tWEsWHWSABXvtt3cVieHrmyactNkrJqekC3XCBOyN+6XXploFh9IOvxm42kK5LGNFTznlgtPqicc642qFZBzpDQGFHnoNv9GFXBKxHZuyHgcyvWNy0Pp/858SDFw6owQidgdDmTmZ076iChPjB1EEt0uoKG3wc75AFHZoOx8qiEeXfd1iD87TsLyAULsIUz7bwNIyX0uAW17PFZshlBs0pDPs9/ksfku3M0b4sdFRceQGdSDy5FiHBYUjv1q2CL2j0xscPCdVWGhgqzdz05TFi16JqQdpR8UveyJ9gP3KkgKcNiaWfaHnkRgvXfT3WI8+4KAQyOnE6gTp1Pw29Y5cmaDIkn1iH9of9pPB0hxhN3hibVduXtFV2qrjaC+8zFwD0jbeRwqeJrP+yzmWZpODkXK6l1QHkbicRSyveO3RKzmarRF8nU6YFQWfBY4fmi3+/fYS/UP04B4pWhlX9pj+CHxVfdCd/gAWQeWHZY6JNTLLD+siPPmpMwBuSH7ApbiUO2m5M1rXPY592DCgn6jMDV+C1Ig5lcNVtAZFsh/H6EWKFiHnqwaiUpZyMK/qxY1e1TAvnzNLy8u3Ru1PrkecGMnXcQ1XreKmPVBY3FUwbwAmZK7BqF/BbfC1ycvCiEHrBmLidkg9Fyx40zUsqORdZDb4l1GPemQc443WZ8NuzDTFO+dAxyzAyVweZ9SNSZtoCW7qmHlnt/Vq/qIeGjZoE41FkHKySFsbvhgnjczXpMDrXTKSu795Yv9gwMW9aEvBcaO+SxshmLPRGXlLxzb05Ors7t+Y32gH7PtfV5BxXiCf6e7aEevk3jE1llNIvjKDmK6XTCOSPBI4Xp9fm8PWvbdaqzyKEAf1LJxKGFyxCk+nhiz7s9l+CFlgS4vD+dK/j5yYE/QzW40C8USHaobWhkk+7p+UD7Jf0ninS4L8pK3Z5R9t9I7IImypz6iwdD2yXEAG1ehO4xI118oNSvSWya6NTdt93EhgB4mAwEHdlsHJd3FWiH6kqbZ2UBfVj9c4vg7Z3ENAZbKJniJrvy5bIDHgnGB608dCdXmDceowpPmevQSEl6v+vsLi2H87YvASUn5hqsJa1DUDVvIPwvkIyjPc9BWqatWP4MtmJ1q3q0UJoCL19jnQEsjP+OLHJAJeSTSn3fK0VweR5k0qJmk8BxNkOpdHqHnc69sPoXWYgZ9C4ecJabFmMpndRJhLFq/9GQy3+kzPSpy19vNp97mKlHCaPZpye8oUHUaY8uqFJEZn1J6lpWQkCp9U5xcaZraF4YDb+/gZsMJne4nQL4GvCI5aZZBPo5BPc7AzHF1cKk/h1DNvjzl9JUMRIYaXLFEc0DJTpHAxt+sjRGgBdrsGuGeM2WA9IzNWcOwkGdIU/GlhScjeGFe5gb/zTMPJDPMmINhRDDq07xz1zfigM2oh8q+9MeiIXfdSlyIjahOe6o7Fr6jUkQg4pOH78QFQlg2Fuu5wq8+gdZh2UA5fHvAnJUWpwN+zgvO2rq5KYxKdZ8wbiMOKmA5NVqN35lEgGw0VLKBDJd7MKTlfaYD04eM4JW1SAS2tvHEpW08mtYOvtbqnQbHn4G/T2o//XfKvRLAwBqCgATIBCt7A3ckFRB342msYB2aRbariy+t9jdWlh6o3F1VLqhwfrvCGyzFLC7UtDFbxBIIjDOKH1QXotVq+mtBVSoJx+ONXHqjYcN47j7fQki+QR8gLinH3LaKPgbBLTL9EWkN4wuFB8HPwwEs1C03G6sgaQBn36j3bCSQnfz7iEb468xAf4e1dyYxCiJFUMkpZMIOVx8StG0WKAt8LXjGlVOXOwaS6SI+vgqyHtm17gF+J5yRttrojj1NPpRwTDEnSdDKdDz94YCbufKG7w8HHHIJ97GrGiRRdVusvYEHZpiaSkh0e0QNdCAX5mgzLEOpFGt7XJj2r3/xFTcUErqlucUeSh5RRhb4njyCItekwGdHdJ6UYtAN0I+JmGBNu6ARpxKqR/nKAb2Ga2GkV5RCkCT9HyZtEScBd6XRIJqsyfEABJnkaRNRle9uS66ArzpGEcE5xIT5M+aGkOZkPc+YyDm8HLIs1+jwgBCdh6eboUV6HR3oE/qdOdo1WSWpSyY2B5P+IAZKY2EmpZ0wnCS/hjlVYI8BoFEhp+P9na1W2OxANlmDmurybX4basfDn/ZWJGQhHDxjDnUfy5/lJkkrNukpoBk9+VY7gDaHnhuuestjuIXkc4Hv7+bx5qV8wS89617WFKGKqr1Nwf6BJPqqf1qD0Ige/evxJEWvJLrsZ8dHG03MSq03Jr8sl/qSVmMNGQSmeRF7aeyYp4BVAIkLqlLxLKaYqOgGEfDVfpTlFhTjZbmZVUq3fJwTZAAVIuOS4kKVC5yEjDCIz8f804k+T1VF53GhlbORxnnSzbqmyB5lUGAxl8HoZo6YUdYlMrp87Vh7BBddHkKUbRdLVa4fIpUfea2+xITh6kWlBbMuQ4GpUCMLDVvQdYgnXJX9BqGQNWGqe05Z/yiY8/PU1dZUQFInPs8xa0Xwnxh2ewJ73+MjXCn+k5SGv8Wva1kOkrqa/MCObseSqZq2pASmX9nhrw6kxz1dn8UIjAzGCeDZu/XbxnR86kmkHmLNezKpcQz+I2gcPcoAvJZm54QpTNGBxgzolDMqY+6xIK3eEu+FGwDnKuha0aECg9DKBvaysnSX35JcpzeQdSu91BiDwmU/burGG7IPdYnZJnaT/uLw4ZLRvEvv5KHmlEyLdYRUp7C/HNUC9lHTvl9GuQ01BlbPGubKsAdZc7CsgwYCZvAnrJ44afoirTwkihvBb9GTGYs9I2k7PJnqCKwDp3fx4gnNa2mZyhVjnoKcpleummUmsykoU6iByJ1rPgnLlEBfJ1ARI91owSL74bSQWHpaVjRgpc/afo+dvqT/vFcK2EEy3bfl+Kg1N4Yx1OZliEFm3AUaoTQI7nzlcf1TDWucq151yeErnjQkOjHcmwVnuJz8HiCPR+UI0xWj1Ix/5UL1t8h0jFRsecPwhDqnRW+RJAw7CkBP0orICQJyEEdGZlDoElkHa0qZ1qqITIuU+5ZOAwfIoomVV8z1zRlbY1nW+AEXcr/ZJoluQ1twQwjkAusMTIXVk5K42xqmawR6YQYiSy5Ut4XCIRI0353qMYsUVP3S9RZ1l4Dc6jh29kPs+Q3HXBvRoN4abdz+95Jhy1GS0Pp9iO+tLssWTkIe49PW+Cy/29Q2iQ0MXhsCwRdHG5DSnRhCOZmsEJCjfl835nCg+oMDcHWbxiocTysGwAkIvpYXO8IrJwT6lIDTdKD8kG3+GUPObYs3mtYag7L8+hNyzLyefQAD/VImRr9w32gNysgOmdz4Rlo9OM6BYj6DTvJJ0T4jlcE+W/4tBI1Z9X7B11FeyjAcFza2Ey+d8MqQ8Yk06j1HGHmH1GDMH/+MZd9E8e09yI2/ke88VwkZqRBR/i446Or04TDRB2q6gAI3G2kfNyZsFMoSqfK1JBbPLJcdjchLLDisCpazhkXuSFKpS9COJ7egYSW/Kdl6GG9C8r0RVyM867HGl9mGudCb05cdepgvnD4FqVHS+Li08lmHuFhFK8sncFeNcHCEr/Lz/tWyc2A8FtcaNpX4DZTkFi7sDMiVtzXh58JZShbPy7GFPhhWKJXuewRDz8EjGtLMHXKcmz2CuRruadolpsN0HryDMmrG22+0t6csswIxdXYIuMIRMXv0rbNftx3F9rsQ3C2vpyrenW6+NOPME6EkqPUip2iJxyDp0HeBuqL09k2g8qtT15F/J0ISUrMT3KGA4ofiMCZFNPP24bzK+PnjpXqGW3GQ8OF+6q1CIjynRUU+CeuvN2d+3SUuc5hNM/a5oyRZSmWTxTVhfj3ArSEcEGUJdpRLaGZfjm9PtH75iniAFRkSrYF8I28zLbSFrFSUVReZmD9rXMvNulcHgCEWJJUmEfFFI2AkiLg47499EpuQmQK2b1Qym60IPD75mce5++HvG6HqvoPa0h0RzbzjzD/LEbwmzqMS14mqnrvK4t46iYSbUESbUwqCKaix1J918JycMSCMDYKrsd1a/lKcLBiA16ACjLAQ/BuMktg/afAkU4FpzZT0FUHdYQeSvYbMRJ++M+HdQR5QSkCfNpWYxlKNegO1Z3DkmedKO5XrqoN/WZ9xIDrKmgxtiD2DOJAe0FAiO6amj+l4nXM63wg6qijO10mWzu1vNzViD1zCggEct2dXKPYdXPMEp2/NOBKqEwg/QMpTqw7DUHDG6iEc4wznn6+fmHQgBEm4IksDSC+ocBzqTv+I+a2aC/LNlH2aRR4L5haW3/1S5EoKHxhk5c7g9MeCCCVLNdUwFL949E8V0ZS5BEsWvCFLyP7jGcnzSVFy2OjWxBFWtSeYkdWxs9Y2+HF3lUXk4X/vJqfx7jGg6OWP2Myh1wodc8wU+Ypr0IRbOm5H/ckg0AxRH9p08II0RX7b8jHq5N1MnjgA+r+2n4mVXYNcIMmsuEnS27EuRv3EOFYrih/YJrga8mjzJZg8Yo1ErX5+1LKU/kBqpGMxoI6o28oF1VUCZuG/vWzClMUuPOanVi8yR+jijBZ0+SDVxqkOhB/3O2B9iUkAoMrUKQixvksFvyGQcOAO4ZdZGWIrBIzlqHRUIr9T1u9ASKoVij23YWz6uHpD878ySq10KaseZzJOz4JPSMfhZvN/2P2BMxudHBCEpWilCDXgz3lhuWrPIBlnaBA2vDV8HqqgmdUufE0bxe0yOsy2v+jD6RQv54mc7BQb8muhOOgu+BHuBphqREoMOdgp6lWiBFxrAgipxykJQRASldqHG0NFF0HuTul0Lms3b+A5XVD3tggYj5q+QAtvYPL504+IUugLGETfkQRf5uLh0aOCCHiD1cgbRkuLpbmEVb/JOeYzmCRK2qMdqMUhnsMbSiRoV0MvlXm/bicJ0ylVF0Sn6DusewR4+yows5Q4AgswlEIbR89C0dbHU+yK5M5mOpYeFlakhQ15zz926VwjTMWwL+YackycT8SpEAr+SeR9g/7zNvv6AY0zKHZCG/umDAB3FscJBGzuSDwO4z/r4CwkilD1epU9Vbn8vVToobWrAOfUZM0twV7EXsEB4OWuev7GQjaFzS4izVb8lQ7hG+8cAXIRNU/sFZ59I30LMzSiY5MEjnS92N+CGMQfQF7cdd1prz6ujFMp84YcyJ5FGXqkLU7TetOT+1+9d/5/PLKnCpdiIOliR2D97Xo30OU/qI6MSxsl+O2JHSk2jWDItZoNJV9aw/63X7gdaMH2dUa6mzW1IjUOWb8pkZdDI/5rEcZrs//xBVUGRHvByA7jWAMFh3QXAU1BOrMyVxnu9SSUkxKVUkDw8WaAP9WGseZRUMc0Ip6zynfdz6d2uHRg+/0O804cipZOpT0sHV0hw6B1abLnyGeHbjgcD7XUomZrMf1PGO+Ge6Hn6DfkNZP+bTVhFAZi+FgTr6qeUit8hFNQNlnkhY2V1DhfFxeyoCHKjnQ1k8zOLARBmIJjHtMubiHH8AkftBTl3RaTV37qlFMR3Pgd7M1YRStOEUcRntQCBAZD0if8WYmhHOBPI2WY5jbHweQVeHASk9e3sf8UU4iMw48zLMVouupEzzr/F3gaYRFbhX3cSCpPbgF0rKccidd0POwrurW15BIq0eCH51f4r9t6Yk59ryuAO+q0CdsonBO7Gv6xrzBxMLVcBnhc4szjlPZnh9ojIH4tQpwCZAB/3UxCwKDp1M2BXDPKOj1XPZiftU7SUFKLW2q7jyWI5qXvZDP5bI0oxEPR6RfmuZoCFqWsBnZiX4Ov0+CVXTwRqf/opEORxt9GBl68t99pcQmPHzRSGPhyjFW2MZhjY6+pziwLC6WJaQzifcMIYHsSkyCzi8AXt12iyKPtICkJOIm9567aYCx7gYh92/tewOvmI6zuhSFkZw6yOqFMkiNNFl2EcA8P/bfEtbFOHKOM4a254LpZ5o13/3PXi0jTZy3ZyAyan5paVZAZniUad+FwJJOsfOpSGu05k6MXh5+VF+16LkjG3aaTnTEr1WA9jK3X6iKT2iGDZxZ4W+S3emvrrOaI+ddI0MbVU1A0poPE9sf5YGHj2ZymGjniw4llHVffmqdd48j9/Dydo+QKUNpAqSCKuKbjGMXXeKF76Vn6jZuVS8mNtsmhEXS6JJy0VlxOaNn5dJ7NraUSy5N1D6XEU6uLjwlQbC6iypPUzwjeVFhzL2qSZpOwgmeMLfQifBoNBuPUWGCiJfFjBKR1FK/tA/9Dqa/3mhSx6522PBijwJfC+0+8XHiFalDT07WMv6lg7bBazP+TirkRRhHxT8+aCMegq/iGChWcuHdLQJzPKdUbSdxK17EW5fd4BUYyt1q2XAIkl4GFMCkIrjGjjt1yuHpTyu9n49rmo7XU4UQdbpjXyCtQLz8Yw+lDYYFjvA9yhEp4Mbt8u3/JqnwuNpccsJCtNrbhOYkuA8dB52/9cp0q1Ot3wxejP0bFRUyoOx7EdxpILegoFbI4CcuSVx554fRgkY33yAE0DQjY2yOuiKUQlX6g9M3DJ+fwhn0D3T4A7PBM7YMRgaWY6ikYXlOBDRlp/hKPAFhFZx1S+uYYq3p7qBE0FQIjuxRIO794EbCvwj+dmCn+21moVT1lCbnJTulEliFiYko9f4GnTu6voWjUBygtQxISK1XFIoBe+kAF2SUrxj3Y5LhWJhQbEYJvLlY1UoJ93y5odpTMz4BM4hPqDlHhUdzYFKsyEG712Vph40WdVYzrG+jgKkJVGHv4swsE4HXH9ddXBMIcfQEmxMo1/tgc/B9UeGalpQjhqhsYAeycE0wmcWF7x2d18cVE+UkQuSWHUVWojDUOWO3Sz8/bKRMXYY=
Variant 3
DifficultyLevel
572
Question
What is the sum of 61 and 31?
Worked Solution
Establish a common denominator:
|
31×22 = 62 |
|
61+62 = 63 = 21 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | What is the sum of $\dfrac{1}{6}$ and $\dfrac{1}{3}$? |
solution1 | sm_nogap Establish a common denominator:
| |
| ------- |
| $\dfrac{1}{3} \times \dfrac{2}{2}$ = $\dfrac{2}{6}$|
sm_nogap Then add the fractions:
| |
| ------- |
| $\dfrac{1}{6} + \dfrac{2}{6}$ = $\dfrac{3}{6}$ = $\dfrac{1}{2}$|
|
correctAnswer | |
Answers
U2FsdGVkX1/AA2m5j7tKBiaTYy+9HI35cO30thueT+ZdQYolSfTiXY2bFtMisqFRlWue0A5KgSA5NwpaU0UBX8l0sL+DcHSVOhZv7iZ95GnbK7tkZPacCuLPytTcYPDvpd3YcvNum94FA9Id78WA4IHZCsJllYTj5KIQtIb3pGzUd9QhtJteyIjH050Gm4eCbXlhXdDvJpajaZB3sXCllqSvLCS02mJOHAmhM5V0/1eTri2eYrT6XUlHshdqyflCalMJI7LNB31A5bPbRhbzTTLu4MlEUxODTNyh266du5HIhDTo0uRIubSLv8ph9SXdbJF3z6g4rkDwqQTFRC/TFEi5H8cAIeT2P0sAXn9+kIcdxsvyH+jpNa8RBKSBZZfB1XWLd1xL/VtG9sHJYoackLOEVsCjePdQiGSzVOonn1f4iN6SCPPaB3XIbLzA05o+7IFBGDH0H2aDJJyHCCVc3wK3s6Y62aYFpd1bZCt3meMbufyRaO+m28ocZm4yVJLkgCoauIgf+Kh7bh8/NvFKps7EqItzOc6W7vp3IMLm1+UnvLxeL5BsEdIcbM/Aa6Bg/0Cwwg3DjgagucnAX8gBz+3lbTrc6e4I2GIJKi7K0M+JkCVxei7ZOLlJPkzSFo83VzKqoNYlf3Gc8UeEphSDWYjJ2R2xWgHyiiB1SpAKeBMoM49Cp7c/+MfQTpSEjCurty35Xqp3xBMpIYlQWrBZAYaLdVd3GRF1UUJPcEVr9jRFB/DkcOtLMIjThkRczM89l2/jAQV2chQFBWefSBaGRbYuI90UK/YhpAorhlyiHC9aXBYYRHbh0/45aUx9YUv/9WTWXu3KfRJIfX1RMgY8CmZPxtjGdEh9vuUU4Q9oyFJB3ey3ZvQZkUvp1CMxYdRvru/pafSOG09LjdE7si6QMJa6wiWZL7jBvQQupYnwlk6cgf3+qokW1AcRkR/DlDRylVi68lGMmsIw9lspoB3NlamSAF+8POM1jb59W661zT70ZPNZ8zT5pPZljTCxTRq7ERyyYAQrhoRPwmJ0LmPaZIr+khUIttBpgtsKDJPOCUxgA7mk8+YUMJcP3onIZvanJ4GlrC6Pxol9mAC+DR4iT1VFpgN40+Xm6cEH0ifflrsses5kizN9ja+nCG2JtKwquLnlogSqI1yKZIfXQfmkI5Jjdsh9TmwNPzsZEnWVhSkg2Q24DovO4mCHG9XtllsBeD/ELd0p0QbJOe59ITtUHUsvoTuvpYXEZzNPQq0v3cc6zSf/2snqOJT58UauL0tP5CUshkfEikPLvKQr0oD4rBcIjD9YtnP0PRURrxVCEXLFc6/vD6Y0O4V/9ibBYsk2/kuuxLwNy6qolfvTL2T/N7RKebp8HSwPUnju0+5JoxTlQhGAbw9ICa7UrNQeMpPizoCyxaN2JE832kEImINLuV//RFzHFOrxe2TZsSs7/JmDqhruybSXIf7wDexNTEBwgV8JbQ262e8fBLCooG83eKWmPTvtc26RgmNoeTLtgsAVz2SqJikYY+wMuyXGpDzmviv0/6a5TVSR5SCA96FcGQ6nK6q+GAGN50uAfULS1XnJtIcfg/I0FfK1l7TljaxQba+Sieyrj5hlwfaD6P/b1hFDKQwGJCZAdxoEh9igRF9b/MXEvaSKyFhYbR+O/7sJxZSSZRK+rMMdVLPoQeuGnmPCViWabVGHg1QEYVYHs74kHvMaG0n6Tmj8p7P0k3Bg1M5FtumJi4hD+BnjFlVgHY+WzAUVSv/LoVLZcYYJlOsPyMvdpQOKjoZiCwdI9GfQfbqY13mbESKhWNoTc5VUref5tVnd28ZFHRR2/MBnCshj7hVH/1ZEl7dti0omCd0IkeZDE8gHsDTOtgDlxN/5i3DCEjg0t5Q5c9TgFgGk2o8p2X1m2vxz7MJA5FJNosUhz/0mRQiBm8gpWU2R4LByZyOg8MUHddCG6rw6Y2/O0cuh5Vmgs0kAuaw9r7ijbw3Ul7H1DMhm9DOd4L342G7FnR1zP+XvObf7QM7mVzqkCIDKxfHRriJ1GUKo28qLsjGbQ6vSTKQT0JoNdaWlayixwB9cpURvGg2Gz/54itN2fxe/OK43VVb7LcrN+OcbKtUujNTlOpGp9RJIHOJXkdG8Np/yhM46r7B3QFIkjOZdvzoSgI5Mgt/JQBnwwyTdJzYHzEXBJ3jke0aBK4QGRo9tfPSA3dH25Mrio0F0bY3jKxV0R2Ia3FHkrVBIT8QwezxOGmmABz1kulBAWP2NAQMUIOU1Vyp6exjB16etfg+vhKVUwf7LjTiquT5I1idKeteGxyfLW2thssJqd1am2C8Zv8vbT4Ao2Mr7Wqn4Up/gnT5Px8Hxgptilai3sVRjfuyr7CaSMeewezK3lqab2FuhDYOhlUtmBXGePuyV4A9wo97kpdT+T8Kmqe7Jm1tAQsyBTHlK5C0hMxJLAMKfXrJbd4byWy9e1I/CxUS6q6F21B3//CxXCmUFCpYsNDtjyLXdevGLHJmNDqTrr4QIwcxJD8RNX2n9S4RtdsSfq7W5tqjSeaLHlRQXurudoBw4itVu9aga5KLSTrT3QNBmaRuZOiHy4SjXeutFe85sdHpu6OIF4YEYj6Q+06RHPr1wQfPjZqVFAfopVdB2pxmaLk41GYUssf5s1ho1oTDz19JbxLyjdi50ebReBnHKn/GkxnR1cXwVqRwljt0IZQhOeBWnJEYXoXz9DeYMjwEq1V/3GLOZEmPK/JqzCajjEM39OPw1B5CElnIKyeqBWLBYxLJv5sS45PSoYNuC0EdkDseqVdCVIWm6WYM7QZqrawbSth40HT2b5kjWVR6h6Sl4rov2qbUlx0AANvaPqvNqv+w4WpJLtfKpuSPwW+AQoZsF/DoPDD7xyeTFm7fg1AMxm60t55n8VVwPgMv6NoGS8yBf/dQw2MA+vstf8N8InP0SYBlQdXimrzGKLMQgZTL6/ksFqjRednAdMFD/i9BbTLawICVRWdSN6hIUCsjR8+C6d24Nlhq1DnIxkypov8kMC0j9j2O40ty+2Rn51DG/Z/dEt9+tb5phnSKLOD7gEzOGn9GUG51iel+1WADEQH0ouxDYqgOoHZC3jw/Ncz3wFoxBT4/z5Uu19uv+VbglgvXlsAj+3Xdp9ikT1alCG332FXg5ucXQaThLe01lXdbmjzeBQbkiGGjjEQr8pxHEDxQZnvHUpPIMVX+3jQxnPusjSDxGLAEqq5weDYehoNugGvqSjiTpCa/zo6iGOJ06Bg721xtnHI8fH0+ZB1vXCNNpZywstRtbYz5AdUXp+QxHFlbcRWcvogpdJGL1RUNTsEpuznjnBeJqoZa+X4Fg8GQSo7UE5TsEkB29EByeVOH6NqSf+WXpoptx/aSqXP3NoMKzmowYWTckL7noVqMxmpCzSuUMHbkNkzVPzMNZAREsNZSO8SWyRaxZuD7IbL3/YXUW1eGYE5khZdwRuZtCFKUSEMv/E3n95UoErsZiLvZRylFmxB+oBdvoF4MkEVIwJfkTYIZ0TNXaiaaxhB6N+i49SlirskmA/YLgiKGV0yEoHl1S9gu0C/1UzeEBNbhf0HjB/hfK+5VLnphGldg54VZMnpMVFsx3ltQGhDsCmph1yCZ5ZBB0b4SmiH5+/EGKDhFmMmNcHDAh2U8vGgCAMXglNuULijRZpNYSTG3KWU1HAohk6YeZMY1thHU00KTYO5ic0rNoIz2rIFnKtJbePmIZNLkZnkH39+lKQ1B0UfQiYHjR822AKUyIGdYM/OqJvqe2lQQK0flagph59guQ5LmL5Av9z+4Fwfcp4CnzW3jeaPR+ydw6h8W4hiFNd0tldAOMp1OGOHS5cDT12F2h5/aTsh10FSvpV/ZFPN6qgzJ5pBUwCrTcmxnnunbrI4moO8C0cDZCTY3wxDQg5L7MTb255YhjjRIZxie87KCkr/WWnM61fPVSmk1cTGkXKQTkGyzMxESJekUrmRAJZlxg7uZdQ1MR9XD0n+7e1KHMlFjmhn/g/WHbY5cCRd9Cf7em0FJaQsl85iK7XTxELlf18XpV82UAhcqQSJNItmbAaCU9ngNfKwIkYmoiXomRHkf1k1oP/kg2FlFdLyl7MO5VBM4HNLeuNxmJ3H1CGoUoVhwqzZzOmVRW8VyIDnJrTjlDUNerSNNaXkv7QJGflKFghgGh2Z6fUqT6Lx7FQqL66WzRbym4Vh7+UW89psBWP01yYyN9HOi7TaA885oqoj+tTukl2Vi2VcydMYgsvGZ+OggbV2JxlIT9WekmW7TeCG4s2sGlV4DCpHRJA51hfZwVuXHnGhv5lOL3GGOOKXtktP9+GO+dB6ce7TEzfaddsaWbF0t2kLta7tfeTlHtsjeKMJz4ilgVQA450UXns9DAbqGdR7dtZpTC1BuJmoVSm+M8jZZ5iWohtcDwxXBODMXPIItq9qtua9kflGdBHEhiuowjyrPtamesZ0YF9UE1nuLr0JKGaCXXeAAuBiFD6CHcQpUuiAyefBOk09C9/GhH+3alLalJGiHbWyAZ9Iif2P1KwdqZyU2fVKaV9k5tvtQdxt+HLcHMpc0uZ1mO9p4NqZJbwlnHpktu9FKtp9NSwHpaqhuWuiN0fuPNwvJFIF400zterOSfmRQH4bcr1tKZnhFu3BR+wlv/MvZphiR5SIwpxJwPnlsBVw8lpxYpMMHKMUqBuXTKPEWlat7v5q5iiNXNVnnvRmykUUTlOEaOmmFZH6euZ+LjE3MKfQ0mDb6VkiiwsT3Yd1Ym/0CTqSR4pZQSYofU+9DfAfhE7NLv96PZWUXSclfQj4RfxXUVGeI66z6c9zUEJYF/qUrNGw8VTB60lGCb+e6b/t3FX0Jqv3dbmx2EXHW2v3uDGDT37lQ8NVSZ9tDPErIK9DSscDI4kxIn5KZt7dJ5zxFFCxmxH+VCzDCpQvIMxMCkE49F/RMUDFW5DRsp7HNEQ60yP4r5r1nU3VnUO3pEv6lngLCXlYCBZ5wuhnw46p9nT4yPQL7dvzKsmk5oS+Y4B0HGwRI6MbALAnfBnP/BnG4ZlYMsYfjbHENXjgtoEpJNSBhZ8u00jqjPcEvhi6qYYmRU1JSWlK3iW+uJepmfsiAKoZ7C4ylksPJDs/JqHtZrF1hp/rXf8MTxA+u/QITk5rYdsPF+gi4ovtXL9H3PDMfiC3eJ8/DYZlIjZqhioohbuK3A4Rv66Btc79kf+ULmFp+FW6P9jvGzd4iRjqx8kfvzkVuIruNvCW2tJojZCbm5/kfW+MpQ/UOwSKYKO3Grx7IqFJ2Uh61kgU7vnr9k2IECBIXWCBnTvzk8FlGlUCdgQglyBZQSc7gBs5hpS2AKOKBQr1OZhxPf4LS2NBXJNRGC58FbcyEBUc8xI8W+sC95fzxglAbkfAC6FfvOW/rhdsu9B6C9WlobC7xhrhYc9/Kl+z5X83OJgjomU6gGbizQ8K10GSUCi7zAL5R8QRZFcaD7QVuYmv/iOh4OixkcXj7lYZ4cIeD26+r12VwyuFD6UAlzht+Cs/uviuoZfBkRcIrpr/GKfT2UEIX0UAnxFNc9y5KgL5s+t0Yt6NVn8KrZ71hiLJe4tX7rgKksgf4NvQytapg5dbFX2ON0qZkyV0D4UFf5f9im3Yx9lJz4qNVJ0tdfWONQ8+GIH21UE49X7gOANmU9aNpEGmLCFNQXhuISYbCGeO+sx03WZko27YpENSNFxjXUwNyhMJgRRSTs0mrSvn9M78Yy0vmciqvbIzxB9Mc8Qggs0PwPlGZCCAlYkLXVA9pjzWSdN6J20238p+JjzEzdD8WUgNPQ5Y0VX/IhK1oMCdSbdNsalHhkRKvLC/63fseMuExTW5gMuR5cld4Ez+ksJLvfzc6DePC0Snhn41vQM6I7DmnOF4w6S3m0Fx1e0F59kZb2FsVlKk+j3KejpxUA0XeFS37/woaukQeNoa9KTz481gxSyZdAy0zb9DfuqmFoBhpyKIDIjMvKmsqZburvAN8FoJTCneycV6uXKP2VY9+4IGCbaVDAu6UwCbWSHfhN/1aG+ygYGM+fOyLSbJX4bnjjBH7ueMETDLjFq6ThL3CDHuQmFZoYMjDWWGfOSqAu9/GIVmOUWg/IkhhIg02P6oHJDEeYtQcDVgCYJtNaUVXnN1s/rvdn7vwZZxMMjo7KsJhya34mDpPITG6raMg8IUCuOjqnRhZx0n9yVQvA2YVvO2frqXSwAWVBo/D/KIKUSOQQxpZIFvYrtJqVLFzN97Emrr9I5RI4Yk8Balhw2+AmksN0zyhwJjJg4t2cGBkmMGRc8YDZH1F97fQU1LCCUwCE0TtMsEzGF96ngdYP9FK08mVS81wVZfnazsKLrDoATpA2tqHTuHuy9R/ytzElMg46iCZTZ1gIPNBwxf8VBvu1hQfbSxgbcvtUlUJRCbq5xeOF2+QWOHE28rXtm0cqKukD5RzqMLny+tmL9CprKpDzxou4UCA3b7qnA6w73TLYggi4nILlVRWJUPsqJ13g7wW7va6VGUfYFnFN/fGgb0IdWUVWPNvkAZcpq1CxhRtTVR3mfV8ZR9PLwSbiU5s6Ye8ZppwVo+LHvE1HPNZ1HfZSYpLNKNcT6sKYQNq6E3Vp9HFCTnNKy+3H6CQ7zL76xk496WF8COFDveBLAeptWgyUmEFRbqw3v54nR6XXr1Uqn2l3ACqJqVPRS0DjcRqVhTd5GMv+veLwXjuG0yJI8XyECUE8SJLvwE2Ru6hmobARkk4nY3niCzEvNg6lZqW5piPJZuVv6SBj7sG3WGgvxviJAACZ2pO5aDtuV0xNlxml+E9790jehIyfXr4Hosh2fe0R0u4WXUQ2ikHRbQ8Lg9RJvT1ACWerdqfKaEr0fkijOym8te1brtfnM2iHG3N7lrgKPxCflz+7C1ZmaYwcF4RXb/FBsU1vn8JjQdZDc1oJ7DQVEN3Y42YbigOkWShxPpJ/6Bmq/cD3NjMS8M6w33Tb2TKxYwmNJKWjwzEdIfQxg7Y2Lya1FfNu+OcCDSd9YJFe9jdQPiCXNOUOl2sGMAO5b5vo9CV8DKIFwx+BTfEK5iWq7J3Cl1rDk65C8djMxoVlmtZwqySVkof08AyqLo1t31/TCimFjS15cXY9EoU8kWkd0c0mUcQXQOzDIh79jLJFstCzFwFK5wWbxR3x7QShXu4UEsheT0WlzLFbk+hT6nMDV4xXVbm+PcgDy240Rz1Gmne4OvHVqKRoUzQvQC9tcdjPugrgRkxWivuB3tFeCy6znCjXOtluGrHOC/HusoHVcaHDxGOz95akGwzeoiJOBBH4Z3EFPsL2DRWg8V4ss5cmkDMwQ780mOKJ/bLsvOHYz88hbu2cnIvGD+RZNMXUnRUYzKpNKhrIiBziFYV4LhvPQ8imhR7iFbbwo4fQzibYAb8sJIOFH2NOS1gzX0CDZcFoNIKTo91oHlPcgAopwEY/mLiudOucikOWOlLpAdk5JWc8+9YrD43dchCPyJGLHzmcQfDA2nOxZ1q3Kbcqw4Imxjasa+6I1P6/Q7NiJQp1dltiZ6hFMs75mDiBKTYlD5GQ04OheLGJheFUm38rpQY7+r3OB8OUhBeqNK29KVkizMIRDwTnH3ilSNSV2SZ9oKSYlg0QtFzva0jxF8Z7AA3nc/SJnniq+QpUQ09yAd828BVNZZO4Z8dEqmnbBvYvh4lc44cMBFgqd5QM3e38PZ0Gi24kulFxqLL2ndG/M01sI/aPJ0GjCNcukOMSFEpKl+eCa3yvECqhOOkK/hH/2nxym2gjdVlRxhVPeidQ9b9yTvzMZt/2E6JUk4cTZ2uB8OR1+5vwcDMgK/3hcAm/d3CDvAEpVYqcWYg5uMAEMgDYIglp2AFRzLk/XLRb9Q93hcUKE7+M3ncPFETEXjqcIoL5CQ4ZqqTdHO97NqH8z5Jc4mpXVLOzV1yCdrRkru6dOLT9YEsuelogY4/iY5SkcXeMjJCFw8dTofsciEwCak9lt1wwLPH2EMkFQjrLgiDx+ocaCZ82H60tkyQ46oGFFmuYVyrmufa5AZK8GLl9X4dlgCzgxah9UkQQI3sBBFlrXbYuDGLrt64lWJesXcFPmiJvMbkzOpoLhAhKMCvirZ3Qba0YPAPyxFNugtCuCpdlWh4YeJR23kgIRwBGpRD1OAkI2+xXXk2zZbREwU5L4mclLEKoairQfFQoYzbtayzW1MCACsxMqfG39Oi4lxKy8qoFFJ+ZQfKzvrdeZOkdqZ3dQ5AEHWdDCkaNhsjgoyguHacuUHdbkjws+Uf8AxFfGGuznjgMrtTzxZm+BG0GSRncXrpPuynt6vsLnE5lLkDq20oLibLuaPXytCzREj/5ADjcL39P4nctruHjeJ6RKoiRv/r8LM5tvvq73bAsUKrSYAU8kJidAkLFbFuvIgkScSz7iYHLBsFn/Qmy8H1y27WqWWtYY4/9pb3ZlbixcyHgfiEe5iZSNIZp9xUTaVYRmzBRUTVQx5ubvXofEAaM5A7ge9kOx1BrA7KdlIYXh8ycB+yniMz82LROER8wRyIRUe9sYxREnPCfpCA1+yD6TG0PZTSDfzFv5npiW0hGpWl1wqW8SbfALr2nGIWc4pWiRZiw80VmlMWr5zDyOFuruKansUWgDpqsgBjLGju202k5K3iC1cPUd+6oG1SE8thvqKugL+Mi6T+rK+N8ZN3iXwx+Mf+CuecvJuRjx/oftpjJ+LE0p75bmKBhttMZUqopW6R/lNuz9KBYcrjm5TNuiIW9CGn+fG7Hhhb4ggUS9ga0T8DZEfg3is63yEnZLHThod/koYWmE4xXRcUU2bhIuic1MHFRb6itTQTXt8w7wW/vHYTmUiaFYYOxpbdiEU2Y6d/ZHufrMRFy04RFYby/+vPUu3w/ToaXxp21+eiBbML2cBGSEoGKd3fJTBERUUJsHIDUuoKJVPtu5cI6Yfrry+4RSQfQwGAsENH44LR+AYyf4WDQquqAjrdwDTDWL3FeevVYQmuKyurzg6xko+yTCqkzBGcPmljqoLSr7/cg9+4zW9VJSoGJKd+prFwP1T6kMACW1izgGJUkZ4yKqQ5wziUKfLnkDG/qJ8HOQBTtqRsmEAo3vQAn5YdX5vHGuvBRsnefOutWBuEWqZu31woVxyVB+9Z1LCJBU4GzvZ+7qTfzRurUF2cLW/qku9MKePop7KNMmRSg1zIQwHUC/ScQ6RgM/YSSADs+DZ2mp7mDMRMAAe8zY+qey167xz2eteSUOZPDt8D/dVTk2W5fD12jDOie3PZpj000940euV/GAUY2g/FdhnQ2JeSn3HWuUZnVzwARNhZoi7VACt5aoWzZrBO9bJazQmqC731NGk+sHRou1AwV/vVOa5SAFHG2dZ590GNKrOdV/mm0ECJbNAgxHkyRKx++EQBk7jpCGyfEUYQwdZIv0fESCp5mk9Fxg3DKOnBIue8Ed6dslD0UMjTv6znfyYtIdBiJpwOQy4kNH0i53jvP5Z9oVY2b/ycHnDnekVA7ajnVbRrIPiTryd1CKX/tdnWfPjLibtLt1FbCv/v/9RHLaLS4kRbyf1L6ZcRdyAxZ51VGXn6li2w0tfj9DFzbs0LsnMf7DoJ5WKsJcuTn/bLSam2Sbz7LAP6pi+e4YjyXRFMPORgog8Ob1gLJOgXNkIgeMFKvviI+PHB2di5CE7g4F38lGWiYoyA3H0g1wCrWwg+rhJ9suxBBAHdPs+ZYcsoNZWquebGCkSGGBmAAnkGpbSg4epUYja4aN3IR+wNsFLBRIxGWkKghnzRcfRhyzxO4uXLjzNr3EogFRVX/3VU6gb49/YXMCxV/NKYRM521cIZw4JAGKYfSe0reaRQWXzUaS7MBHKtLYEw7JJI6djiSqql+UXsiwk1cyJa7viwpKL2/d+sRL89jMA6LVJEoq5Inf8hEOs8ESiy7adoVwTcQOPrh5zD8o3guy56PqxbjI0iGmGXi3fa/WVkyb10Es4CnyOeL9KAqRE7HjalJ3+1BPb5/Mzzcbu1GJmpiVcVKdaCyvdeyo/XgBgbCE50otZCm3WOaxh/TF7vOY8LnjcPGS/Gu22rRWCVe0Uoe21VCqY4BzbIr21ceAbmbipXvausHzPrJO8oJE7NxvL7hzcFm7uBbzgMKZliZW44liKVIjYaxt3jjiXzHxVbcc9rpRnEdjJeT6QLPXXzv23LJh4LVZYzf46oouM6T2kN6NDdXiQvdQPKIdUlgWE52vLP3KMyzNG/nDsCIPAaRfk2fdJjcSbApSvEvubH243js+fWHqAsnumCnHBNNe/lsCKti/jDDqfRc2ep6UuDc+Zjr92yIIkIaxtptQIO2xnmZSqEJ+QuEU3dmwWXCQQ5EEMPJM5gXEzGypREqI85ZAfBoVh/8dBB+i2yB2AmeQHtmio/Z3MzeiVETt62ZKBAJ9UCJ1m0xjLVB+qusp4iQ3UWPhtX1NYVQ3J0tpizhfeM1PrEcVYRGynU/awmCgSmmliRiwVrwVa1H8GDZMPV49CTU3GhRrt46mrT0BZcsDfTOurVuLYoPB2T1j2PQDERQG45zlZGmT0Y36cyAKHaaMNvNId3s/TfeT7YG7DxUmhyX1q/0Tg5dFB3DtegjH4Q9Djixspy++skapDPRVLP7KNs1LkDVSVS1C7KAqgQvC7g96CsikyemR7h7qbuTdhfx/cKN9VaDIhulS21c8+Vw3eOx7FiGhNqVLTGxifXxAeR3TQ6gNmL66OmxhFj8W8dNUDUHOK8RjMMRs8BKu9lUqT28Cajy7I7stBeBDe3McpHvpnJlwNeB89EtWXKCKQ/tPrEQF9RK36VdCmywWaQnQXTWTu+11SZPZRqQwK6sroibjhJlHEARUWdk+Yg34IVvymenMU2sqyvvtgL7fumB1pqwIRwkipTDKCAAmQF6hx7kB3O8zCzP/pLgcv2iUWjLaTTfnczM3IYxgg8JJcAbgwYcA8mfctOQ92X7ObFlFDD82YdOl7DcGG4WWoSPiJf9j1b+xJUnh6Rptjkcw4kYwz20zUc35xkew5oq5otvKX6q9RuMA/u+bUOA35C/JobJ1bTj1g4EEdFIq5OiQ3n2WxHh4dLdcWwy/kF5DtgKFSOgugqLlUK7hUYnGUYrEiUXXzTIv7XC1befw7KgCteriATdlNIAn+xVx3gF9fktb/JlgWt6Q1G/uKg4u5LwXsmqNmhdxhtDcJGMxsUkPEhb3qb3M/VbTazL6OD2XiW2nIxHgJoCxSQ+c3zdCyANZ3H1iQmK/FJ5k2Cq5XgcgaF9nI1w6hAaeasGDdR6Pfo7f4mlbYqp0MeyRxfrVMjewoklB/X7xhtWGL1SB38UMd26cU08CHhErrcWfVLT0BOw13CEkq6QUA7ariLBpQzqMJOwLGZuJY9lzra28FVvIGTpDGtQ+3WtL4lCh3oYohd4d6/1iwOv+tx0vWukYOKadNw78L8mjhopVswnrmeOe8VlvEImA0xe6hmeXvhTCC4AQf+mBE/sOm1iqN/Ue6+GEecTSD4Dwk/h7cR7HCNLKVH6tvYAig2mseKyTdnF4rnb//AHz8BkUiAe0ZT+Zjn0WTQEJSgYCeNO51tNFKCvfObMzSwugw+DaZBPQyhxnsdbQ9+4EsJXMkv0nwst4cWnSIgcKhShlb3Tlg/yEw37sJWYhUcg9cdwU/lhj94lXmqYpyA4/UI336Ri1QTvoliNVyhZklT6S8FQrN2+vD1+NDfNDy3t5MQsE67aEfUMurLK5RKYFm8csbpphyWnqRDSwl4dN0RZlO/fdMMqlQrfa0TvkEeo3cDQgZuX3QFKqCufwFH/w9NQ/QcjpTDySLNXD7Z9jpnpAbDUA0nnA+MFkUJIJ0r4Mikwz1Tnfpu31/MULzxAqdTInMek822PzRGiU8Mb7/uMEsz3oR64iQiH+iVQVcm/co8tQ9qAItLk/QLqlkffptritICzydzRMRPC2Vt7sCsVgywo4e7/d+Fg2oaRcUG33m8FHEOVBWeAmYXABAftIEopbMvFagUJWrcgN4OyDnYWOENj8VnXEcUUZTsaQSvK3wMBCM/dMV+NKO7QfJyMFLCPixI8AYG95kK6neDopkfZcwq5A6YKT5dXFZ/whT9H7WHrHRUndRAAyVnEUo5biwC3405diEGt3ykoGc1y4D292njH+o5bIno1zrVtU3GcQCOrzNCyXsy+QiGQpid5FxKDa3AzVYkouC5Iq9iKhXTJjSamj8DhRRiNAEraXVQN3jS7mTbcTUy58fxMxO7L8lPO61sE16aUQUtxw5E68I+y1pIfen8QSS5Z++dMBDUTzJodzJMc2J8Xjgx77S5uE5NRjpV1wrxicaq7L3ix+LHPDuE62b3GRMiqnjH97sHNJn9/JLuk89IJwjT/9YIMiu/r2PQjYFOdUPTeWBe2SYIeNwuGGx9MIRrUgrQsKzkE/1v9xFMtgjsEQJtOjDN4ntlnsywXUFCiGlaoUmTd8p5WMqnWeD2k8CBi3uuyQvhhVoUKT2YZZ75ayP/pzs+IjHdrBZOqrjoMz4pndGtsIqro85+UFRgfvtl/LeJXE989rOOe9LP5CwNk2MGtdsZgxkFUkX/Y9ohmLYCf8Dab+nMhKj1aI+onGatIGTyMFM2nwXxubPVjgajk3esElg75UwOasKOymDgq4eSL6b6TWwFyAlvQ2nq73b2I3PkE19kdAg+Xtgs3Nihb4eOjl9gPIoOj5qJUQus8fcgf7uWuMSySYE2ovYnvTc/HwMvY7vVspRIcwmvOzMeIg05mJRryabL8vM/jMYhYWYnV3YhW/dAvAXdNq0DHGNKRLS+kIwvIAwVGCH6lRmTPqmvswdQ78KClSE55SVhftZDjx+tVChoqyuBcUhOqDg3YR128stlWXlisAuxcR7KMO0MUPU1PyBnFagq6bRrreJJo4brtXDtbiAOtwSbkTSIk96jyrjoQ//kWIip9/2aG4/A8SBIPjp5YdgCceUf4viDX/ZHuW4PKJnepyOBJKKTEa/lyF9KV4lN3Brr/tUmyhVxDS0uV9X1C6rADsegz3TtsL7G76DmfXZpUmJ/aOx4cd28l/03aIN2xCQs2BOqnz+kSQ+yjtYak1CtSFRGZ5N8v1LqqBbWTi2EvsmLN4dcck1M1po8rG1Qt0wfnaKX3Q7qgXONGMNkRVQxLNtWuJS0kNANFTgbxtbaMSKUdkvaTIIVSaD9GsLvSUYvwWxoMhQKvYXEaL3jyic1WAPaOtIZGDj/CuGzRiDi6KMTuU/B4V0m7rLrYPwgJTBKguWmmI5hAVZ4GNsualZXGbjcZRYSgXZ6ojzCT7AMNnGNrLpraDhv0RjLey2qEoV75TXv06E7i9Dn++K+Jix2KqgwbBjFGSlggF8Ssl3WYbPwsDaC3sWcBp9ZkkMxqbfxBncpXThOZGpeYnCBD851ZcL22+OxXa2FxMzs8SbZ1UXvs89QQq0MtCo5c3gs1tj1VHKR4AVCaojoUmjRQYeyZhVrotTtZxo4YL95DZ9gzqXxj4kabMp6lDOEHVv6ykzebeLfgdLykxagV6cR4M6sbGMNIlzUNSAOMRgCeRZ33wJmGTTYGwmRRdKJ9a4+jxUdwtUHdCmP6WrfillDwP/Jvk7cfT/2bbHiGZ3N7AlLTsvtjI22UVel8i+c+GMrFsNiWJ6lcy9vKIWgm+Ea1+BDWb9NgFQJsQY1S0ykf7YmBoqzq4F058hQqhBhf2WdoqAUXvI+g0pSMglnazXqNPRVXqzmktFRvG+K6Cie6G3k0kwSopBmOydq7rpjG+rWxL/Goh0nMkG504Z0OmZdJd7sf5os2uVu7NJCYsDIGttd8U7Cgp/jgA5/nvwdIXBkS8U8K+sJbd1waPxeEgl05CxpaNlSs6Dkm1+Tm4dCMDYN6fFLWoh+mHodpbnpI/z/BSGsORccKOEFzogMXfU4ZqJqBAtpstZvVR3BrkAzMjTqCXEZAlNHQgHHARQ4MbOzhVQJl4xGPGmDCxsK17mHS4REyAHRp1BUIgFTBfDQnMAnJr2YFhkNKDO2mXEswYAvxPAoVqgbcZ1QUibQcMXPCNUZ/6SUYdmLN63RHeWEZjnjNMybKrgQqMrEALpRyvdzLNrWpR24xyAfiL2nId+oL+eNmbeAFQ70cdbUAm6GLIKSQ45k/MswpnUxWl3X+GsjIL3/5W6Sf3XCMY4FBzCR+4bSfU8oAoOexbmKjP8ay0fkrcnd22YX/kAS6D2Uf0w4Jh7lvyceINVQQ/oFEs2ybpaV+9Wi3K+ozxvT0ltsoiOL+T/TKzN2zG5EBeRHv8KFxzUuNnei8LYyLFqczlG/n3jwZgBEALrDN6pId6a0byTYrmKA8qoZGsZV/4cK764zZgrMliNiD5bN6SB6x7VtK/o6/Ii7Vpzith1iEcpADMNLuSSh47Z8LZKU9ytyI429ch0OJnYpXx6kIz0zrCcygYrMHjGHEh1N2KJ6MT50TR0sK/BVzhmnFjrrCQAC+XuQUl+48CQwmn2priE0MvFyJn6ZTASe/jRCZoEGf3sku9utc8+Uiz5Vru4BM7mPshb6/u5UpTnI8Hnl58D+N6QV98q6JMIXCqgsfXfbejMy2oYvdz/QaErcdKXFT26d5hGMSt6djuAHIKCWUo3gn4/sXeoEuwFpgmCJHrcUmuCAavACo+6YoPySUN83knT9dhxF2KBSLfr1ezWNfB+gUXlCgcFEEhCun69wkH+zWjM1do2aiKEZMz0hLgs4NHISPqiF1bFKITdg561VP0g4qpQ/KGpN9nDvlxGlTnb0NeRTHoWbADSBHTlJZj1ipQOEnEj3t4HH3LR2oVgChcrNOF5oQMoJk6PtwmU6RsvtYw1t/74rviy2Xp0M00rhSbG5JLK8Ivukk/VW+LU9xhDRk8hDceOTJeXayYeNRF0/HkyylYj5+2jxST21lTENs7FWSF6gM19a/+QrXuNGVYuMrBSK6v1FnTUQ8xuCWOwrPGmLaWvh5U4EpbqPwkDLLHez3w4pb170Qh6R4VhXUhOts3emkHENQGbBv2yHVs0itcCt7lm4rB2WmUR38craHrYrb15fyqmgKDVVJZfKfB22Ek5/R1qHVIt/MSg5KkD+3BpfzqR8iMo28pD83YRUWAMCHgo3EOvO7e7OnZnUIBYXyJSzQ+BIcyIOnr5hym0sPQJJ3jta4BBOd7vtjio2JMiHtuTDAqYaNQMb4Y600vIJvRs65bLO/HdQFwiEABeBFfz5vsFyYuecb5vmQMtmoENDw51hxEsnILeYg7WDbTEu6fDZQs54jQc6wWiE+d5dn/Fan+fN830QdxGjfAyraGXYqzy7i/fyUY2pqKLS7Vp4owxU3no8yoBCPoNdvlTTGzW9pCw5zOnqQMEKO1lB456HkNFowQqg69HnyOLlUnUA9TOoWLy/fziDkzIyHnKpaSaXLFAG7X+jPP4XrOsPyOfIt2VsUbFAZvMAhdVmqEEb0L3u0sC1eNQKWgwRHkb2Z6lyilMn/FSW83DLIYKwU+j3DuxItx0or5eAmGPat7KwlFWQn/a7X0+ZX315OMBLFv2nRcm1flz4MAEY4b1YHy8bgAYcdrIpUHJ9fRKHUjJcSCLWfiWmQpm6f3sHxnm3d9jzpBN8dabfk5qxHIRLcBuL8RaHI7GjCOq65pjsXnr6shqMHT6fuDzLNwp4N1YPDrzRBQzZFBhiZrCV/9/Ge7N9Qeg/FSUxicZFdRdKLQd4xPiOzXd9vM0tl82xUFYsz0SRO+Wt8RLkeBjc3m1isWoqgNglukMshNdWT0O18SkH2p47ETZBrjsq1x6buEUTB9dkRvXv/8NLz0HCPs6JM70/3adQ1PFDyGE6zJXL1bai0n1EdQWFxmxkw+Yxe+NRnVbPpBigvbm50iNuXc5D97QF0uvxrHHShXraoteFddk/7b9ieG29hKbUdK5LjbqCknwCHnt4Xd7i9knvzyvatnjEZ6bYkrVXauOCybUADSj88Ws5odQmMFDLLpRAMtg0P7sjX6yJGuZXxkwCjKYwzhO32v2ETeR47qcDTbcMODMDbr5ov6lA8MNWipmFb8m6DyOG9oyrpgYt2KWCJ5l2eUQ5gFJ33K7/MvKWbNQmNN93q5QidLC+2tT82eAhMGM3JN1HZTYgQzdbDqWwLwm/fJAZNd5Ht39Mo7y+IQLd85Sv++veXHReS6Man1uLiKCfOSrQ+GiWTQZEKwoTEAAGkP9l76t1/72sdOCIEhCdY/xoPmFf3irrM4YHyDAjjJJtqRgYtqEwkS9ErdREbk2nDK4Q7mb3r1F/BLyCSF8dY7hciEHg6kkUKvdCurRujfhLeo2ERWWgsaMjFst9K5p9pF4mZbvo+XyKEfmJuZn/0pzqOPfiVv4geQQRqEyt2+lKyOwpohwosM13SDadzq4ke4xXK/m2bPpj5M2WjJXm7HPTbB6kGTi0zzWJBjcXOR8yE1QmKRwP6hbYMxiB4I6AvccleXaJwX7YrUhb7wBNbqrShb+Q6Wdaj9dyT9ngq/v4L31ukUqGOj55y3mYGEX94Nz9T3CVSgNq5rLQ4f80cfVYzfDa8AIueiF/Fq4TUdy6ss6s8BaY/PLJ48dGP4XGHSEpxH3h2jpdcVfv/6GzMlY6wWI7rB76GAYtLHXgpRimQs/jAhqaIgtWTLlngKBnw/BLeYhPHtfqFHcidNcT7tqV9t0EG91Rag79t+CPPPxzhar6uicrf0mCwgYARCyhBlJc7R7k0o6VHACLB6d3CpV5z+1h5D65odni7vBymjPy/Va6Witt70ePyWdPlEqHfmK6Sizu1hko0tAi0uSSRuDxCFZ6EMXeykGqqELWUIAkv1Kwn1+dodCg1pUZekJ5GqMAyqaVNEjCQpP7GhLNTf25EM1yyFqHXB/5azfqzQyGIQatScA5ur+7rLIENCVoZlCs7FFudDYidDr+Y08zgZ+1kKrgOR4LquKP6gcDlBNtzL9caqjXto9YN09s01yLxYAy4+Kwr9EEtBSvgon32tKd+mi83Gz4NMj5vON5EKEbzaSxd9oVdtTd80tpGP08xc9hUUrkpRzqs6pq4C7DuNfMZeTaa/4jQpfZ1Oxirb7O/c8cIkwTbI4Jt5GhtXzqj8xdl/W0E4wiyee0ms06Uevz0hXSeTNp9KXgX+7nl2AnrQfOaI2Ko0Bun9QrXfDaNtauD9+m2nMWfEfKaK4y/4iXWIDb16WpNXlUd9SJZyZUOqGl46WS2RvO+ZM7nr7Irp3Vtotg6biF5uJE9bx/ZSrv/YQ9P6e1w4KT06n+3zWhn0eH1F6zTbjAjkrJmv6523cZM032mKSTJOTA5ha5hLxSJAQsFxgB2MkdlUKbEE1vaP7iFc3puR6QVNUW5CXKpKlFQnPl716n6MPjjdliOPyB0//r7w5nsfCIjUln4RVBnI94szAdgjgEwl8UXT5mPSFF3TqQbkGv6ZDuADBynCdmuOPxKg0mNdtnXB8tPm47JtUuKNBPNVIp5058Xu28Bw1B3cI1O0TXBYSqJQau3bUPtkeRDcGMtSo2NUNlXdzC4blJmNe4V8TjWeAqPBbxQc28ZAdEz/i5y4gV4Z5W4+DSLFrPngIJolG57CphjWu0pBjVgJHkk914n/i40YOCSjMKKsL1JW6HeH1ObA+9T6YuTX8rSQR4avc/ep8QAvKvZX/hd3X7HALNuPuL7WBaoxJc54O4tmm1LBgwRdv/KX03BqymmcLVJh4PJlMwfPSdidrBe9pFUZPvWUObD55QV0RwZ5yI/tfY4WnHhC1M9wLGW5PZdiyL8jSaeoKh3KhGqROyMBDFCMsLvzZg/OuTv4aTGH782ykdyATJlYWe0mNdZqb8ICxOBSsbtopu8j6or1V4MfScKqz3likV4QG/9UAsBnbpcWZXIYBmNdPw71Sa6A7Mn65YMmf3f+IQit6aYKGgGmPf/6iK4/0QLA44ZpCGwKF+av53uEfIjRaiBWflGQXYcYOjOjSJLKK8Bu0ZjA7fxCgg9DdII2Et8aTY3QRxdPv/2tHC3s29ySEQEe5uY/ivfZVu9LQS1qVypxuZHgzXkR1XNSrakk8HSOp32HS4w3ZN9UHE034/CgeB+4odNM0wfC8CBk55pzY3IpSoDD9gbPhEKQaK5Kh0ZWLR9QRUWknHKZpn+0ylow29onUibyR9KudrrFxLdtPWakGRLZkQtihYgoUu05HN62vfQUspmggbU+RnPOP7B1tet1OQZ8W3dU+DS2hgZ5IrpBU1UHvBZdyU7aDjO1bX8QslLiFoE0B70UJLSUTmqkY9+h/by8fBB9IqZbRPRftn4Tu0eKx3INkSAwrq7XiS1xSRFxOHa/MQxbE5Ejf2B9mMdmH6kkUaJxD9d0f0c12xWOd+6BtD8hxmFY1nMtoN5qbaILBB+OanNydfDtTJAKetI4VcaYcKkKInqBB9FmI9bfmndiFHyrmeYHNErBNOmMsa7hCGEcCBnmREbA0Vi+MoOdzTxsuE1Lg+eNTairNvVNdjvRFLgyQFHcOSxxDRkpQqajFrartNr9QMjFRjcqhtxdRZWnYmXU+TmakouD+rvelfMud0j6mKbZlX3T6UNm3Vp1hKILt2p2UyPC3qtTq7yCbfIqpdktzHFEcScEDnYBojphlf+MahQWDy5fGwRHhp5FnWVH5KJ7v9Xd/c56P1SFCOIRVw9xBUJaY8RqtRtR+p8/N9v8yZYsNFiXSrm65uqwrBYDF1qq/MiJv73MH3kRdgkkh2KGrRTEZSdc3pV9U/mNVvkdQIZIGFm27nWksaTYaiQBkVFh7i9IQP6DorQFycYTGAZw4wSqP9ugSTnBwyVKwrScpd++/PW3jprX1qOw9+qaCDp4w5qjdieTtJvkRtc1vAI+tBFCkS3y/O3mSAAZ8b/0+pXlVeYbw1qTDFK5aMad1ezfQvMUcKquI0XxMwt9k1F8E0afPInXxRFHscDolkAci78sKvymn4YJIsJdH27uf/3gCjC/n/Z6zkVlx7BqGtVCItpxRnVvDNT8npEqIxV48kRrdXuCic18pJTEzI/oUpGIZZI3O76cru8qrt+khV9reeDdmMLDOGH0Yqra+t+xRzUoozYAbNOpKmxXfCkpbB03aJJkOFronDtqw+2dmKKYiheaZEo5bhltWZyDuUw7Ql6/HMohc/wTtE1uG4k6PTLvvV+GXMxrJek8pVcf/Wbt22lNpldB1QqGdLgBect8lzbOR/lNo8WmUpzBRbjP7RJeoHABi85aNLFq3CkiiRsrWhxEniyV12ofKZPHARmdJMorA1uJ/Ia0JlCNrvr808GZ7lH7L1PTLlqgLoOUZ7dvpmPuAWb6pcvx8Wu5WG3sLD47iOUHwvxIEd2V2B/vtru/IXzsKlYsEaKEUzhs8aSgOTmd4vH7Nt+y6szNSDz5bsWWPxVYSFwsTsH1rQgcw/BJ2W2h/SWysm1zU53eNN2viGL0y7p9Ov99p92CkLUJWMaaAXe/lxRMcBEhLzq9TMas6DNWgnlOFXwJBL4cYqJza1ap4xQ6vxfIe8852fDFHWpCz950uuFhKisduqiszq5cE8J6xKe7+WdlliEeNTP2gmZVFP7sHdsPedYoBlfl2cPGRPRz2808oYEKvImCwoVgukv5/ngKjazGtmb25aNIqowDupTLZceNOqfuoEX4ZRA88hks0czl484w0GPmry//9Ps1hUMmAhZQ7V/s6N6adbjEFmCzEJhuwAGDGWCeR43F41kGyxOn5TvT8JbsNWvs+E2r1yeDvYh2s06Z0u3WiLB1+CLUuC1jJDqE3CH3kBvVXecSm7yecUkc+ysv9pSnETTYbAm4Dq1sKBM9cdtwUGv9ViDHTWqAabUrHXAevtAAxQ8bip2Zp9xlCnjanIPbIFmIllBHnwzGWaUS3zMP4W4+WZKkAU+26QqxuMe/AggDL0FNGazwYMxR0o5Jqq74cs7ysgMXLOB1b2yvUAmB1MN7h+3F3++KSyOZbkN4EatxNNqiEA84D13DBrTFHhOYH81Jm1Vc+HqBfNRGvcRELOfV58rmMnyv19stwwL8jOMjSBkBWhHG1/Vq8iKXHyeWyw8pro/M9ULOCE+U8Nbyjbl5nlwqPYf4FuPnOqALO2ats36CkxBUHb9Jr3FMh+VkEIAa5NqgG+KM/DJNqRGWrsDFtShH+t+9N2VuGkdfVZXH832fmySG9xeE1Y8TlN5QOEfU1JEQLnJePur0jJb1ZIKUaoW+e9S66KxpfNiJ2v4AtghcSdkyJrCoXKDXgkoCoPNGb7Duu5yz/QLL91/RKnflli12yXr6eaB5uddWCxHn5sMrtHyRrsFI8fu+HeAJzWuQbxMbXhD3U9s7RrRLK7hm5gpAo2fqF/ASj9jLXcasHv5q2I7gQXaauLVDyunClcac7MLMwkWZgjKilqXcVT5JyD+rKj9bsNm+sYyQ7Hdnt2StWvkXCB7LRNrox3wJ33k4ws4luebmQJf0C3dV7LM0A27ItcIDKQDl0y6WVpX2wsfX0T3327uPn+FZcU77JmUAus3Ru42wld+GNEzvieN/UtBOKXRny/UIWWvPBQHnWmHwXQVzPAGw/my1wKdJM4Ki3cCpZV4YQ4oTXsjxvhHofiCWju7+599h5KGWHHEO1IITw9frjlVmiqk/wgb55i9zjN3Zu+aOuG8bopFsTjnN6RK8GmUoRa68kVYEOSRyjOfC83HqzCvtgV8vq2dfplJFHWWJakPmYIYQ6ICAM1V2zKAgu3upQ/U+A9E5NYQ4+sFhBLVfMIsyXgkxCnlGpRp3gxNoxlk9yVlhhmIhvU8VQHMCQWG7MhKaNbcoS74KkD/HIe/6hXTHUDx9CW7F8nGb8h0DnFx0d03/rDSCDFWn5WH3/hv6hlu5wv70hA5O1vRRXSX88ZKkQhebqgGX+rhqjUhLnnoxe3nadQgKesq3FE0n7r1npyDWPzxs8hjLqPwslnGZDiTq+cBvM1Mvymd0NHmGcFkMquv87xaScs1PqaoimZIEQEIdODYXr33Wspk3ArQhKEFFY6KzJp/lW8a1IN5Fi14dAvUkR/wxx91T/LWENN3bxncDtxXIrG80SjUeQTwEL8KmEQlE0gB+rmjD2RrH9QXGRzskrd+9yUryUn/8pWqS7RTYwbopQsvp3a+tvmHfZuHRNNrgQR7VlVojGreMydXWv00JnnlBIF592F84bVQZbBu6tuvrr6x0JopZLFZswFfAA9mwGuYfx3HbTa1k8sSRUjVHdSyoamGXWKfKI9teqqzfV7+z3vcPb0YxbDCGmVkuvdmciIZJDM4UJM4Q+c/yRndWZEjxQGC4mQPRq38JiCFMb4AWSpJeJmm8aNBDVHtQxlnwHNmEoKkc3qPfd8d4MCvQ0ukSa+XQ6E3HScYRqJoeyWRlRWQT9X4Uzitt2er3NQC5tQdACX1/dGhiKaf/iI26vrJdpKgCesTx0XcO9eZuIyH/I80hJubvouGndq4ATbMe20dgkP3u8DUF/Qydk5ZPP83ilMztNp2uOHI4hPGmw/0jkxIXxcapBo8CGpSmkR421j1dgnZCvqrRLboFganVfxz4f+EQyOJF/Hf3mKUz87G/THGs6sdARu2i61dG1jZYA/zODWrybsYOR46XowyCnr56e7l6gqkQDP6s7TOP7PkpCGGR3jxdnOQdZbZEefUZ7yovywABKnWuQHxFwqrQPeL5U5IcuQYb3zt/rdC7SAeyUTniFj/DVqo365CP+dQ+p/iOWxl9pK0bAwxP5RsfloGhEFKISgr6pKtTdbgLs3SRREoADJ9vSxkjng18yl4E6rAm/qR56+K+2uoxMaUBP8OPQ1Yp6VPc/YbpwVHvn32mlladxMxhGROY58+Dfdi3J4iy+u5T3lRGvmnRgsKV/7nm3I0MegQ8SxqMq60QzYyXJ4p2FfyAwf/8ARHHNdNccAiLhu0mSRCfQfw1c5aRM6A97tZOwmCwVr3cm+3148FU+W3wfITv5r6Zz+LzxK5Fdyi24CNZ2i1qs67cNnrHtkKoOi6wiFRKmsTecHCQEW/Tlr5QVvoErgNuvbitRcXB6343pfzQc561t97wP05uJsxR/u8B2fzPaaf7SBSh/hl7w+7lNcpnq6sFIuQh9eyJkOAmWx14MMt/pKqX7ipiSoSTSrucqUp3CJvDEC4VLeeLET/sOEvniExNbwA+jKB9BndX5OB6dT3vjrhzaep8M5CUZaXMNKcLB+HUnAdB3JADs4P3KFotJbmUx8AobzUwmGXMsoYVrsTFW2PO7Mre/SpjTd8CP4OYS+AqJ+pSfyLnK4/cTstibI9CdMqQWoVyo5a0Rim3yKakzVB0erOiHhWampkO88lMtGK5Bax8ECk4zOrabw/0lg/xppA6gWAuKfZzhqX5Z93+gRFNkYL/azQYSyXwyK2pQWtYYvo52rYKVqW7TSntC0FJOZMVErwpeChMY6QjQ///Q5px6Cq0x0CezduWN6t0Rk/QCQBGBRIKx+HEj8Wc2j2cAJ7YyeDGVzk+fVg/hWfgaHT6tYXrRmYsARw2e3APJBMX1XSzIlF05pMdZb/LpiHUXVWcpcUHNI99xrQKLsvwcA32OT6SmiPkdj/6mqOAKCifjWX6e2gSiX4oVs7cNIiwq7uM0OkETbmdwJSKIp9JKv4Q19JHEKYfrYYTrM0pgz8WP1eouWCdI8jhu5tzU58iO/pfYosrd7Lgpl4vudFBzQFd0okhZn3OoRbqs2oTeNREzsHgu+1Ao2t4AnoXwbR7yBlyF3fInc8lQGpvQjE/KA33l8Damb5Q2dBweIkeC3R7iBdj/I65w2A7Q2f9V5/SbUaGChjOBsMa7AsADZMplfF+e3njLgEeUZGuQ7uUEiFG1+GVaxeCZnlEQ90998vBGQU7XQ6EBztvCY1g+xHEz6AtH8UnJsOpGBHfzbJtOkR3xoNDiaUiAl3s+gUW0OvX8auI0xnsMTwsZLZ8oP8ocSsvTh+8NuUf75uhTbC65Sgi8MzsTv34mokwVfm6lbdSzBtYHONq0biDR66VM8rDT5eT0+P/6PTc8XNYsIw/k6c1xKFfdwH5c4Il7NkEkDBfQYLKfsm1SULlZdWfjGM7GEcWyuUQ8VO0kv8UPpUJJ8LOiIkGjJxp4zeYGiDkvzpN/ZsuWvO3zb7qNhFJa7gI+zGDtHFT70ACY7zVSRaXPRo1dU65+VQH8QVv23OoQ00T4VycXYm/MvcEu+oXwm//xRg2EEcVlmWJvz80ZZmXZQY7xMw0PfM1LrHBWKhr3bbgWJ4Iw8sRxceQbr6C5fNhLO6WFnJMVjc04bUOsYlE5+/NOZDMt0V3m6Q2uJxvRqclqpU/gBV2ULylFHI011A+Vs9MRqZt/rc9v4C7oU0+qGyHDoqBL37rwcyDhfCQlKwggKnoLMZTfNvYk9F
Variant 4
DifficultyLevel
566
Question
What is the sum of 83 and 41?
Worked Solution
Establish a common denominator:
|
41×22 = 82 |
|
83+82 = 85 |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
part1 | What is the sum of $\dfrac{3}{8}$ and $\dfrac{1}{4}$? |
solution1 | sm_nogap Establish a common denominator:
| |
| ------- |
| $\dfrac{1}{4} \times \dfrac{2}{2}$ = $\dfrac{2}{8}$|
sm_nogap Adding the fractions:
| |
| ------- |
| $\dfrac{3}{8} + \dfrac{2}{8}$ = $\dfrac{5}{8}$|
|
correctAnswer | |
Answers