Algebra, NAPX-p109338v02
U2FsdGVkX195VjD4zxFjTWYNp2wK6OO6ZdaXnK9BwJ3JVlZ1aKBgOyPXSkV1JBghqBg8E7GmFoSZdnMiKn7bdaxrbawbdRwWXninEKpsOpW2KjiqfaTqYx9CgOp0mchsFgGWtXfqPB2ztUCnoaBvtbl6uZ23oqUGTmjcThKUrP3258d9Xro9JGwLk39TIAlnm1CTZCM1L3yUutEBqGhECB4Jcjt5gb1dyWqAIa5yiesSvFlDKllnFYm/BpWN8XxecpEjlvHueQpIJW38YDZvZE8pQzGe+EBjODZeFdj+E2JrtZXPmExV/SDvVrwsDpbM0bN/PAZ0BMQUokCqGZgWcqar/f0PLKhUdS9q7wH/UIAZcRT37UVrntOUTQXS9OodKy6INsOuzzDSQSyI2PbIg+fw8pZ4+gwMhTZp2Dh2CEHMZkRUu8+fnGM6yZDorW6Pm+54ObrAf3sCCuzGFZEBPpKldjRrLqU0yX4Ysok9hgnGoPj2AsCM38AwTQf16f7pJ+Lbu/BjvDeWXJd6STCxmusMntuWVUNU46iVAaMxVKa0qEMK+e34IikrDCyzwEUJmikOSBwBENZEE36kdEnBgP7Z+3Z4jDZLafUdK8XQIb4zHbqt5YTAha6IAURUfPqAXlmCDv4RO/DLDWzeI5xcRPraSYuT/ytCkO/BUAKyeMpTm/XrNDGcLmrqxclFD3zDeIpZMuZw8ZqLtYJ+GIbRIgAxWtl6YH7f/SZWQJ57Du9YiIJn+um+7Axs2axwp4fVJ6H/JEhh0BmDWrvdHPfQ+eLoLue4I/bInkvomS8LPcXZwmXG4Zg4yT7LncUasUCMOF4EOh4jYe6G2PO0O29Syp0DdPMRQydtxFSKPMQRxUS9AgAHtIsIZh2Oq1VHIO3LpWT3h22NYhx0dq8ATX89rU0vquhDXn84thNO6TQ6t5fKvZypO+0QMzZths+3telBL4nD6iMD5uOq3fIIs4DH1Lb98SO0uSQzhtwfZhDMlyhqvyx6y5GPMVU40Ea1pTzU5wx/tD8hDOccdQfu3nB2DZjI8cLcJmhKtKtz22EenEkBTw87xUh98nPbQTG0QDp/U/KA9A5SdPCL77kQUOWZnfOTd1eP6OzcOOdSQqExy0XNTfjgHrtrCweMj9MctQlC9wcOlfbm8G7mjEA+7Ha9uQKvWcWrqoYI07oonah082L03Vfh+yAOkPfmvSRCoK0wgXz1VgaVh2fTtY37iLa1kO0wYyGuiaFeSzOKxMja8oE8Kw6bwy0U4Ab2Py1vczFF4rFhoyWWwGCpcDLN244QM9yCmq4anafYmEJByz+v9yl1oZZ6qaj3sZ/LIScAHXGQXcbi80jDXKRWMUu0JVWPHT4Q+OHErA1CqTXlEEcTrMQPqxxTCtexkJAqeevsAayMj/PXU7kMa5q6fadWCHCv/zj5XvwtGvG0leEI+Ggi6+e+V0taRWXfoN5MNybCvsL159jEWTkrvcgOTTiObRWs9q7xt97guJAEr+Hoc7y7wnw7CkG7+mVXujRwGJpwwHKCC1skbP/lLMxsk7nczXTIh7+mWzDAHOc/nFXtOMf8WSOlEy2wn/V2On4HCWT11RjayLf4G74DJOSC2MC5TmOkNkD13gamjEw/o30ACIladFKD18WpZxQ9Zi6BgA+BCWZnWdgOTCZkBt6TA8OneVjgHEg/nWLgp2GTaWTV4Tl7fQVwfAsB4BqnNI61aXTNL0cQRh0dLkqpw7NrEza2BFiTkxZgBOlMvMQG4m3aOXDAG6YQ3wI4fJTmhYxYzp7rjb6W2aZpz3FsVs/wpNSNtgaaMM+iKzgp/G1ahn2IB142ZD+h4DQPNmA6zKXuIlDiKq221qs2iO6zJ59bIQk485kjrMml2kO0qShHPHRa+oQg3ICyz49bInjImvG0ASl0PS/XcgcyreWgaJqsKplnC9Pf03VjdSu4mu8uysJ4W+LKq0OynpcWr2xxC7lclm8FRAXzuTUg+5t+PnJ/o92b/XI92A0a4kRXEDLxTi+9DhIBrKdXryC9PF3vtayB+P5JchrDB4ThxXc9U0Nom1tjhkmtMPy3OFoAPoLp5xbacou9c4S9c4Ifn5db/HJ6eOm8zYPCveqcU12unxJlGpadZfWja+wUNIyVMh2dI4+Zt+zs55xG5VWreL338eon7GA2L9M5XVqj9QpOGcvoYp1TiMzFCe8Z+oE4M4ME0p0FQ90Jln96nfnjdwIiXRSP0xiPBKD1SSAeTeIpJ3knernM606RzN7YZyRMKi4qKdCijnrY8UR0Nc3RaLtoZTrfd0CVzaNUPvyWol5QP+tIllrKwAKx3JtLi2a2D8gOIOshm9oYX1pA1MVpugxXk2C2TwK0EJ3sOfyD1sYarBsxDE8b1Uv71j2uZQlksBZVP0MRmW/iW1uQ/XyZYjM9nkBLN0aP+i5UEQQ3Y8cTltSa/pX93Q6NyN08XFaAGfEWdTkeSu/+3Ag9TOxY2VxLONIrL/AibELQFbx4FG2M0fuXX6cgobSulh48lmnBwmhgAFaJnHmqtwuaLlFHqlpXNPMgSzELAfbmaOSa5Pog648sx5LhPCPNaZ/GM28HEf4WzRB8qYsPplAQwlTfkKC9okoPj93PLenG/Nx+qeUGPfTyZOJHfwaCKf26xKtkqK0eNiOB8m8Z09TonO629rCE/Wd3jXjGxaLUAeS4zPxNabNFvsR5eGT5CyP86Ko4o9W7I8ySKlEP7rVXM1hnyLtyYAsYO2Rj7Ep/LivDMuX1cZHNGT5H30+A/M48cqHH7iGGLXidkFsVDM5AEvm4HCBwYZUJ4w0S0YhrBKp+rxqEa65kPtWk/+oG95259eD+0nTcsecE0wjg3hn87TojHOMZUMKF1Yu3x92+Cp7AxxuS73+ZVJ7qzvgxIJ/o3ixUWjtFWb1HcZTlCL2TVp5KyiHGEBJ7e0Apsg6u/HI/AOFdaNaWp65zGBgHySicZV3bnlmiry/ofbVXgYfnlmtC99kEHxzfrCSC53VIaXZeAhd001Rxo62hIzxS+RIbqpeG7b8o7ZsTMtlyUMCSVowbwK8NHhZcF6gyUB+HQ8rexYeFzhfFuk0prGzOG1szZZBR1P0upc0/b0f9C+xZXvbZ4m/HOkctjI/jW50lEbVmIwYR+uszCFxVRVpzDNyiSv8W6fubAqW+IHoynVcq3lhvNyHg447jDA3ECPCBeV/X3cyLK55Nm3igG2ZA/xGgQ//IDquH1ZYthXXqUWEj5W3xwdgVoHQugQ66o9CsnKBzh3aUoO16pNui3hoyFnhWQJf2XrtSSICsqjwr4UMJVxIaymyChcDDu8PNJDZJ3OqUAqtm5JdMQrUnkk5+XLafawztN19Xcfu/ImvrVLxkGbDM3jRwRmA9nfK7uIfEXu+d22ApZS/b1XbCocbyBImJ72MafbY9SjKx/jkCKonlK+vsBIyOm8TzfA/BzvXSbn/2ShKlCsusv3FErsHdn436+Ufn36yk/JOKjsEKlIL8Sin/WUiLyn3IoGMS62Fnigs+yTi6Wcd8mGzE2nFlOj9aAM7fgrDxvaBsyQllGA5QaQqw3a1TWqUZlRNBG92n0uk+QcdBZkbcDTXKS97rJYHm8rmJVqVobu+WaCfLDtYjJXuDZNnX65R6U0RvdBic1ZiIvbOdDuxFWUmUuEdJzA4WhJasG4RWRpAgfPgvxBxtvRndLhJl/BUHW26uUC+0iZPqMYfOGQfY8D8ZRFh+4FiiM1MKSjhXw4ZrC3z25UBpCOraNW2tAl7tK8xkFE5YHAcl4c5sZj9XjxMn/Gi78bi8bZb1x8Ow6qeYMbUFzvX5oKA1ZUZSp6ytanIgBrpUSJ/OkKxrbSmaKyfUXrak7RfRwnMSUsE1DYfx1XMMEAnIibBGwE5y8SetNqYQuPRKgsMdQYVWMTvH8f6xQvFI5XybSwRU6FIZI5FNNfwZoGZ6OFKqomacN7cjhBFX5j73xn3W90xSFG/8ojJ2OHhrUwa9AW48pTic20tLOA3AR/Ct53ge9e4NL0P1ebwszebIJ5/DakKT6e+zGresEPLLjEHgN1uRPv0aOcpBWIU9Rdl+JsCyfb9gjbcc3ExRo8kSGqWUahLCx08qdpSLY0Q9Z5BJcFFHVAeDTIayYRa4GZojsm9zkK2Aqq1ckThKljO7i4KaAnY7n+OpVGq0gHs8fdirN9vo4lkV2ztP8nDpAxVTEQAdn2AA20A+0q6qm65eUoxx8eVsT6tP/ZAlu0lTXaD992+PBOipJZ7g2HznVTJmL8eK71EyH+2VwOtAivJQ/4A/k1dsASJkOvt0Q7BADKxnLgBcLiRPfXDJ1RRTF7Zo+EkwDBghUBWKdcGgnXACZDlHdbLFx9vmPdItSG0U0D5OOeuZ9gr5u1vOKg7QSwHzNvN59t7B4SWDkGXGpCPnK6DWxvSReHQ8Ln8IlQKtRp4XvSxw2HXsORAKavFLRNGw7cG9r1A0S5HtRi2RdMBI7vsf5fyKmC/HsMzDUuHVc1+IFVSfzgdG/wbEzRVFYKtjzB6lmOJ/PqJfQjd2gPMkmspJwORFaVS1G3K0P40Qn0rs/E5/D/oKT5JHzHp4IeHUt+zC7O9eEaq68Cj7C4kKzEj3SvNWS+Mtg0fRUp1pvOZRh9zXD99S0IjNyiabPVNejPR7dl2kRIfCaHLadjDVuqggOAVBCk/zRyapHDL4TuMWnb5KdgFHCYSaNsaRcKzMbZ2MM5nP7iNePIJ4B59Np1z0vh6BoPpMMVku23gEsADwsKHQCvkqViZHJ/zqiYqNPkM2ZwX8ypwNNrWM8hF8JJZQzPuO0PuViV0A7fXYMWR8lquHde2mCvS796j/cV/HBikxu+OA8H56UN1g2iwUVHxCaRfqaVY+Nxj1m5aaTCUjGQ2Wypnxitslq1QUBWJ2q3DZp1NlncGGM3gRZ5Qv5oAShZGMQSlwSTpXpvrw/LocingrmdDljfoj2XoA0KWJUNmenuYfneDIfQmmpC6OHdjt06vXfw6NqkqlENKx+7W92yRUZe2hL8/4lmpI8+jqggKR6SkneL8F5C9y6nJQ5XNJy68hoFwmOTKoaUsW7CLBh2G3Qq0fw3HfyaajxN+A/aspMJ2OJSbY+X8hmGSRU+g0rkJC5txLA4Wc4ZUOU0eYaCFBzgYYHk+dlo80I+8g3J/RhxR2qolepdyO+yzFpTbFCgBTRdHqVi72vuxIRn3eIflUeOkD+itXWCE7utTPCu5iILyJvDuwVBHidRo6zaKiiu+1O3ZABcZTdK3/tIPIXcqO3wDR7S0wFfjtO00tsA7wdtmalFkqBw7ycRhYmo7WZCfLniweoyjO0AeIOV1GR67o3RUe2QA8hBs2D6GQutCmnbY1b8ZcHyt2+Be6C2G3w7IufiUz4Nddq78V+KthDadAw3dZCI427GzFlSdQkI0swuCTX1cuWhgCfT1w6X1+R8+SbSLAKmIzqEqI6JxVBOTvhHWEmbve6vRzfYJ2BqZIKRuMik0fgDWBcqfbZgpwaA5TvLLCx0k5tolvscbjohzBCserDfyfAComUmfV7abBk8IKZqdVIQUZoMPcXzwn96XYV8jN8ZSUBQd92hlNj+gSTca9MIJvzF/V4itn5UZxKoN0BuhRibIoBrKx2ZvQpoP6e3yEMs1CoKPbIX7bOPeFwvr5XzwdJWqvKSeUir8LYD5rAXJW0o7LIuGZOaj08lLS9bH7unc6o17AVuLwV2afE8OypDxBEDPhYOMpH9/GXt8yaS8//jHQh6lAkQbA6i96ZD8MZT7riPRc2720OmBASoE9arrMB5vsPy9JqkIxbGzHxGw0PkkNoOA4lVCfS4LMtuEk4EUxIcAJ4FY6Jv5YFodKBNbZClFf8fusE4UBnlJFlBMdp2nOUS2j8UFXt5efFlGvyHDsqQ6IGrsc6ew+8qSDtVRqZ6W1tTI7YfGnDdp0Dg64l01iJEwmbldjPrlJmtQgkCp2KkftRykjjL0gr5LksYomX/DeQEqqWlZKUxGV6rd0qNNPwwz9INVtyMv0rb/HSMtq6iXqwYIfpPmGO9PEpaeHdyozIiLtNzbjAa0Qyzyk37D/Qqaj3Y4ZUgDeiECfez1FWDJxFeq4Ot/unNK2rsg27FJlmpwlL81GqslU4AuLbL53NXC4oxqoxKl28SE1V0OzZ1/gf/Wpa+5Fy3n9TBYTRLyMfvCx+RLk8uRPwZRXkoBfRBPmyAj3XIurwgtb3uhQHpovmSXpAu2EI6RYldzVGrJrStPFQZi72bZe1WrGM7tt+HKpzqFTmO3KdCbl8t5APUzCpoc/Y1ZnTzwjutDKAWp/8RrmK50474Uvhbu7InYVgSLFyTG0Y1f7tu/tYmODjZ8garaPzTr8msLMoD8dDGUVYMFxaT/xpYA1Y1baviFOUn0xJ5mMNWVF1oCgVPgrwa2FlcfbG8zpS1XSvyD4zVio61tfNE703xfeNztESYKwHonM95QyvfmA3lVTenzXlEFtSqNwmICFIdFGaEng9RjWaEtsnKg8hgA3X+iJNjoHSBFd4LTothnOD0oWgtFmXmUz98GB7QOzOmtW/XoMgk6BkMoXCe/8ccLtlTKowD1EM6iTHR4qcgDV2U1beB91zPJiUlcDxC6XjK4NZ1yYGY93zikEsWYrzkAmpH5M1eHIknCAjO0NdlZEUze5eb8TtwxbaB6C7Uxjlpvtqv/izl4a/k5JlbovKwLAtjDRZPj5B4JGmgb2cxBpNFswFQNqfQ2k3j2sbRLqbCwNX+GJeJ0VcOUq4l4EDrHy3ieAE6iNd0NKdtP0iCu6eM/kpmKbP+ciFC70tx43F5XAWF5W56HMZfcPUwXRNfnKIX/wtAQlKE3LxlsLnUxmmOhqP2waWYjHhTLioZf2c+JLM1cjZzr6SsGCZFD43j3HlU069z6HCyPZ9ZBP+FJnQ5blBfyzBPY2bsoJfK958DwA2T1IUVhqsUiWVcoP1t5UiIE0b/tNNw4kDLrUhwJJgBieOyBuKe8y0GSqbhg2BWo9ow3YZFtZ77V8y8vG8lnEIPxeOtNUnPQqYI3JUvU7nLqeHnr1gxNiXC+RfILyMicbYYBOmnezL5bMWm+t2jjBmaxlk63s6QnKIwFxwnQtQb7xKZgnF3lciKo1urgYXVr8soq7jYoHk9rYRuSHodWhJGeuSdETweD+kpPGIgbt5MvjTP4WY8Gf17bzOfK3Tki9M8Kc61nGFe9FfWMiJ4GB7BpuSvCW+6Obkrmhg+XWuoXnOdqaMNMLTPn7w6dW65D2EKHH1G38sYX3EJIR91cHyxTdSWmOMfoz3RszVDLE9nfCytnJdL2oqu4i1BGn6j9sHerYs/ZMvqmsJolbu75hnjDv/gYvrtmL1EQrn0m0KPy9Ax/uhd9ZLFIGrBCJb2WScRkwlkcJvTafXZcM2GbcIC+885Gi8ExRaz3YfQrizuGrEwsllTSOBip7HpVuuMuHIiJ9ILE4j6O2VZMSyyFPlIAnPnW12d498uaLzPTW1lgYl8qprAfEnRYgrctyNLFFj2q+HOYEdegETSQJ2OvsAOSqYCRc7zlrJ5LolG5s3yDbApY6WltYwONhC/Ymwb6sK9FDFkwugrE2xTNqjKsFDF2V8UYQ235kvsWiR512opiqCnerl8GN7HrJKNxnCNwjtA/kAZZ0fVqdb9JSeb0sD4VplmJTf+eoAx5GDr+GRZXPhqmPC7V6yEDDhLkH9JDnscHIgpo6ulmId4mpDZVrldvpYN5aRT2aBk2fVQsLqO3EFuNFC2HewJG1uWKZtTyrD3A52ConQdDsd5jmkjXMDVwsK60yJ2lXXuJu+2npATLORAzKYEw3uam5PRXmwv9G2AwsHSMh5Like4Utb4z8z3It9g7khlVJA6S+hj5iRd9Lqy0PETpJSCyHxNTWLKDlBPq6tsDUmZ6CjZr8vEXBczkQPOW5F2u7HB2DDHaibyNgTXFm9ZZK8UJWLnFyoIMvFSfq9lUogg8zc7wfuJTHAFWkq5UndT7pCwStCTFKA+hMrw7MDJTnW0YgYe39RHuWSauzSVDRrvCyuyD79vYmhB2omLbQBsc1qvsbJWSIvhTMAgOw1jNa6Mm9c3JzWoN4OE5X/ogg4DnBB6fLXZKasxLOhd26c5qRPeiK/F/k6fIYvEr9a6sgWZGvzRAZmQgSNkfaoN8ZjKz6S97MOU5/87MYIgP5ToRT0C/pwL8rf/D/wOm91pVM3++Yrm+46MYpaOOoxxcKosWrxC7cErJvLOrny7kTnLUws43vY4dMVF2Isx+7yGoXmIhGdzwtwqjmCSSiE7SirnMFka+v2abM2ftFK3SIlsq9O3KncwrYteZfXuKYBAroG3LGi70vVaOb10xMe1DcifgqV0R/pziZ6eY5WyrefaDAUYTinudJLCrWjT5pgRg+uf7p2VbWhGObElmJyLXlFRKcjZT213hDutGxlxe77tPEaIi7VXyqYv9yb13ODLYd6sOqjheNX/RSS1/Ma3XFJdCeGC8E+wo9mZzWAgx6HrUJj+oKGf2Kjdb+E3JyY/7i4DcW+nFLB6GN81KDfzimMbJ3jXu+fdhWjYAm500tevgcfAUa16V8+DaQNAKFAhIactMf9gIZMXV6IbOdmI96t4C4LQIVlWujZy4L5InQVZNkKfAsO6UIc5m++aLxEWPH4IPQplSSv73W9D3Khhag01mhQfyxJW4xy/HCxdjRMh5PpLYGkNXycyVV2wdNZitYoo7t8LbHLjBzPOjGXQua72kxZqCRrXhhpptKHv4QYn5YCdukV6yJEjzWVDe0zbfEc0cnF+2WJnvNbU8iOIH7qP0qJR0R5VlcaEUbqzynyeXOlRmRgz1y6k5iEjz7Eazv2LKgCS1adpvPWe5Uue9zXA/eflPJvEzG+CEYO+ec/sMC9NFLQmwUMXDn+SQIUK6lG13C+guTICdSOno53uQ14zDuAKXI0ivgbPLWhYw5Uf8VFVkt2nQVs6Oyzm2AhZgRmEUnyvpo+p7OWHLO+E/ZVDhb6yvjDptNnl2GlUs64UQxoFeFB2rX+leuIzB4mNlfenqVW3JKXE44P7yKYLOMAgBwDiMu1NOBJeJU9Mly+1ri4BMraVpLEYZ8DInfZP15sccLxaV/3hyGQ5Y7ov88n6po8kFw0zHUjAaUjnLIhwYxuLSLcigcXu5oj011nhAhCyeeJ26gMm06N3t8sQBJGq4A7VG0ecnT+XG/gwwp3vLnXDinSdKdvZJ09bMsPhHnJXn7GmqIt3jQjUsoGf4HySJZ9G/YFGHFkRf+As8XPH6i5Zg+Ethn77FyNm3gDqFL0CPFUrdakVKSmXV16E5tqG8Ru771PUrI6DFb0O4Ka63zIIlbZDs/ilU2uu8EDoipXGT/brbkBq3StXvnB2HLN4C4vNvQuNr06nGe+6KP19RKTtofmt4oaeqZXEHnXBxl6QShdlQfMieldWCx9ofL8bZ0YrkdwroMN/mTHSzZmkBH4BUZizn8H3GHcm5qHjM5XMuXMWZkII9g0unngBVjZ6ZZh47TK1f/+CW7WvEVBvjpmr2xtx/of24B9FcbM6G3vuBFqdPB9T+wMEHFFvt5oQwUt8Fk4JP+ducslNmiRQwrYa7zv1lnw/o23RDncpvisOwJ45nHcpxKHHobYpWCav/xZFzjOpdZtrHJewSXJvBd7bgSn3czbrFRYpJYH2HxtWQe5B/+xBkYX/+phLWe+gH2vgiK4kMRuMwesqkp2P7O0yDHyfzeSm9kody5JthZPm5Cvl2yhdDHdCCtbaiJQmbXl83kEsZJs7DsaUNtkjx154LBJ5uq0lttODHtDFl3M5NPbvTBuIOxXGhmSsRZeWcPcgchbwOQijfJVMNXPUoawHJdUuxsPovbizJZoT/V5GGxV9owfh04uX1CtcsQGffLarZ8OrHoGkiFITeGZLO5nlBnIUQC5+CFfB59nBxDKCv1hHHV0rWhMCpczFoNyblvURsSSml8VbDKQDQSOrawze6/WjgbF90KejFMRcviGTWx+6spcbIJNzPqlmFfp4xtTJq/TicGWET7jw29pmZQ7Ed3ZrIhRs6oswCZpNJjsfwES3miB+JhbdWu0Sxx5QKqUnePLMQPy7DfeWh+QUDSot58yrMpiO4LbSgCc9aC4I4hPsVNTttAGD08aSOAt0k3ZoYEQpvdsyHBGR8mYiAbjVBmXNDHwlDHoOJ/Lrz8HPSP/uTNNQhQKXS8iWjayv6o7J6vyhjOs7Fg3GVHZlz1jbyMUrOdA7HJB/23fZwr9qW2+I5bE5M0XRcQWQJFTbmAuUDlrpGLXj1rykoFVSNL+nizETy9/eGj6j2Zn79iUNqu+y01Fsou4+N834PUBEmXyBxkqkBCYCO2U+TP2qmDcSV1xXMG6aeUae3LJuOtPHbs4MEKstRy6HDq+0hndjcOdBJ5tJSOFZB+TwrCp0dOQAY73hGN1Pnp5CVqpxUMGTK6hLn4ofxqsgJgA5p2HMnJMWCtyGVPTjuRpq05hvN1AGB5ZIB890LHagzCK0lg6W/OpaZMjKu75JZ9bjIsN7sszjmW3xhlxJu9FV8JXSaMzlZjqiU2JX0pxdRVTty9qAzv63fJp0zW3PT/cNuQFO6OqjSGTjOSktyHtD4qnXzgzc0xLKYtX5M6o82JeNC/sTGvy3g8T6ayx+SaNT6NgCImsE39+uqdXwQ4E2D2cCgnv9J7ezwVsgAoruFuiPD10o/hOQCE1FM+kLAaUma10VBDBuvPJQRNoKwqpgGmQIkxs5Ii/g3ijWTkUXTkhzGeh2/sNYLsDF6VFAmbbDhmHP9qau6d5pB7CN3rh2M2UEnQSUp2XnV/5eT6puQCd0QCwCzYtZhVIYdV7C3ESrV2Ru1nOvm9Sm8Me2l8UwXpyzNuvjwAZ2Kh9qi4FUZGFIiMLpYjYB+IHXFyHn9N55LkCGp/FDjCT6D+rLJopSxc3pAAWX3X3Ae4hjFhNThsO72fx1W4ID3J5rJKa21Og8sO3LSFwiO/dFGOhihnwClMN0lJB0AXxlI0dNhaDf9rv5lK+cvTMGsJng4v18CdIaBKejj+c3QlW+DYyK+no0MLDhPfiVrd2jAPLGk+QTEwUqoVlk+NaKtLDBRwsp6yNqOBUDX1NlHYlE8OXr8WSyZGH5ONikINTaaiMd6Pu0scbjWrJ5JG1c8kb7Gqax5wJuKLh5pVtXvlejzpEnqv7n+nAwLG7Mjap9nYzQNX7jjisAWLLdvVH6Fu4dJ59a23hpmYRAk6pL7wxzYI7xmMbG0KgT0buGxNukzZCS7MVnl2wwzXCX4kJr/zI0/niYmoYqUt+khoZMvhF/OzlsKgqgFKjdTSfYI+VuHcmpiAySB2UDRFk2RHoIogWs4VL4yeyl/ZDAYsLiERvSu9LaUPlwy8R8yk7KtY0LvfzNCU5KXybBI3GuvZl5+t4FqobSpAmzVWxRSLQj37zn25iFdz7PkSvjnUYT8qD8FV5Qv/uJ9J5RqAwjciikpOC95TI1H5ODP2eBqac8l1p3VegK8Cgd8wYzHlYU54lytEJ8c6EhAWHaNDAwbdzjsyG1SoAM/kviNfAg+x0WLGqe8av3nEAy6lMZXUTzHmzUpgslMehch//YC8upEl4av9PG/XiMPFGltZkju9d21VaOSQkl6AdGxpYb36gki3eILMwGV9ybxCCKB6mdFQy6u/XdZ4pqgEngz9PgS7Mlxa+mZcVo+xLZKGFdMhP7VdhkPx4yO9Vxk1pgDqwY5dGtKRl2Gn+MAcciR+UhQ+eYXutPKMfBQpJz1dmLcJpb8DMYB8xD/KhGGXvNfzQiVX4I+rQ1hEm/w3lWZaq/LhfRl8uu6fVIH8V9aeoERzzKSm8G6Xsuy2xKtYoaHnuUwwQaUgqeyx/oKg26w1swfNgOjGqgHYBrthNVzO5gzByQ47NXYQNx3CGbrxjYBS6hy/+6TjHzQZb7Liz4aQsSd7A5aUJGMB7VMZfGLCxkPw/uxw2s0loVM+N0dgqVyiP6ABAH/wJioShnaPcHJFe0O8+ZCp8VTAPQRzVpMVC1C7hGMI76zhNhbA3mkkcZWN15mM2jVrSMuvGdPCMR4W0R1r7rGyrUKDiA4cGf6z+7ylA2K+IH8pVnDlAE4MCwvd9/GHKtDD1TPSD+zBRHfvfUUzGdRIaNQHi1mInt4ah1LWvaB5rS0dK9N0Ge7w+CmbP6eH94rtIOYglME51tNbSAVpl7DBXEH/8dtpht7qz42/nr+ksU221ZXALYc4z63EmsDVLefEMsAXCZPNb7OCx+5Rkw7zsVP3Wpy46nvabp5aH2HFgmhH4WmmUrS4vV9uw0Cb/f1Je6KkUW1cyQnZUTYyTl3jBCj8UBiu0kDxzZ44CbQyioFv9BpDqcUKl5MQ9WXvzYnx+B1ffBgqbPQvHEk69yN848XOkcWkDciREZRjOwwWwIL5lbRve/MeIy1uiiIzoarSRwC8s4F43LMyaOhTLxAQ0zRzUssrQUUy7Gy785Q6HvwaR+O9H6T4cUmsYQtVs4ojL26PN4bqSFWbISE3lsf79NtIIbAiTIzjV64PDwSaGpw4bnI5BySTldUNCRpbT6FVBy4ZWyuD4oXGEreBUv7D7G8jOpGhUVRnZddC6d4vxIHCaM9VSrjJy5xMYxlUa89IW0xFzF32W7L5R8BOAS+vI8CZ43pfdDfev3PDDlAMzMzoQHVsXgeebE7NlePnT8UUv0cdLAcnPfYZll9zFEnhTwAZUSU0ClkYohGWHWBdi+jXX6EqqPglBR4/Gr/yt//DUURxxrNsJMBrWn0S2OVvyp5aEZCnslCpc1CTcWm5ZRoM5FyJjFdI39xTe+hQOzBKT5p4AS/kXCga4d+RxMfaI67Ai/TZMlWFt1Bp4A4rQh01Wb36gsEVsxU+8ILju+oOG3ThxZPuYk0fhqDLExuykkcbiyz4dv+WuPjNrkOfozF0inc5EU7EniRLRTGJdnAeRpALwGaRLqSb9n9Xy5V0cFfB650BOPjPsPP4BOoUa0AailplxQSo0mlTnLGJK7BagKKdS33uNxkd1mDLzsrmB2X0daHrSoAx6vBXFUvWlXWKiR+1AuPmze4jeQ2EzmfTppcV5P11iJigKyH/oQ7CY1/GV5nbOdncM5gTvlfO8lx61zZSUYuk5M0lTQwWsmVnojIDXS9ngHZf1HEmrNeQIxd0odaYZ6jotLpUzJYHZ0128iIw08Nt3K/0hmuigll45Maz6Wr2pfmZTFyWL60R1TJp8dIJ1PqkR6rj8WmFiLJovFtikd+qW4TsAlO1wm2zt7gO6wSF3Lha/hU76YTaZq0S/50FDvm1F97LWG2hqw2bZa2UTaZiOh/AbvY6+SxiLJFpkSMZ1ERWokl5xHhCvJcP6QRDYr2XAmqjP4FcJXkiRKEUg2o0BzjIV/hxsGdXR/EVj+ysmBSV0xaOFmEdWYTj22O3D84tKTOdOZc6/PlS2MF5TZajrLyB5tgUyv4e0dSFpVmAoIVnGJ4kuszPB+TBYs9Np0ANac0wszO5CgXq7k20EQgy+ut4Zy4okSU7txk+CHm5wp1UXEXBuZvq4IiXHLyHi0Un3NZC0mt8RRweulhBoPefSV4VAPCuL3t/KthKhKcOLMMuzC3xdsNlMVWT+vn5Ayetral6WFys1Dog9nNLINWyq9MXlKonaZpZNW2wuxK04HW6U+Pwnac6DGK9E1zIuO0qO/hFs2DHCTUcMixlt/RM2L4LM5m9QCw1571f1SDwa16/lSsUp/Z36Sb+D4i2Tluc8/MfzejFeAc9mSJ7WOZL84ZnOnK5cTAU4I8L2C7F2bxoMnLEzpH9lhAcjSaSVobuOMv7V+Iwm6jUccc8ZI7UMellfdBxb9DjHIjuLKdQNoSCx47/4mr13a9Ks0CN+I1K1Q1CmaTcvkzYxBeU5JEzYgHZxe3dsqSlfLpECGbKgGDvfm42VOftyZENx6g6nKE3AA1LS13753sFeMLyuv8txtMSxtL5oVQc9uGaikqtYOh2Mc3RIAFdqcvsTEvMYnFcXwIQyZYElPbx9RZS21sD/wRZxH4dROlmAvI4ggEObG4XoiIdBk2hvaqXDRbDmH0YOYnMMe1mQWx8dXZIwc+zRsPeL5GQVzUlUC/0APZJp/Cbm5rVTdtQ5lB2mw4ttxq6m7Y61Z9J8hP8K0duHJKc8oSYYgGuAdeIH8CGUC4H74H5GuvJUodwy/i3kq6C269m9VO47puT5mrHvaK2pu0t7K8QqGneDfri7qgBuNYxXGYrUEA1B/El6mErVaNyhYpoF0lAcE6DOoGtltD3zl6PYivR7J0oZKobwv5Vq8BqEXBqHC9fbfd/15+mFvAv6OuAxkZabL7KicN1YCS9p1J928T0SfTozd8ZhAEfmzgeelzVzCKv8SP6baxmUBSIYPkmzb27l/ID43QzE/FEiFp4/HM1pugDlZXfHAwMKgu0f2L2FHumNpxv542NWoMGqlk3jVY20DpuLdQQUwNinHVSHVHHI4c5jm89PXNosoS1Wqe5mPouzwXmF23JnuuOMGTHBEW/vimm/R9bFA0+WCHRVBDo28IfJA44ofcH6xXjieoPoIwqsBeBfhUk15+fi4kmKG/bm1mtAFDTN626r/SjPDPi9y2f4hkmg9Jba0OTo7sO9GiB7kfWU9tImr3V+2ZrfKaL2EPoYcgjcHEdZnfTGaILYB835WR3Eh7UgdtSgS2qHRIlgt54NoGvC8jTGhYyIA9D4AGh+rk4C0VQSQ/3PWFyVUxUI4j72FVhRtsYv4X5G8SolpIyr1EjO3WXcPaHiBhn6AunItKmMl6rTT5q25yT3lF3TJG7lKNYZHquyQsu0yFaPB3Wa7DZxK/YbSJAZ09yJVpGme3SXF6RHHfqn47q3va05aAIluMw8htt+aFKqODAd3g0YuWUiu1cm2MxmAyJmGQxTa/fEJLGgTOmmyz0N2z5x+YAsnYPhq0wAJNhyc7jRFGSBx8h+zv6nRJx/QzGwjbcTQyiC+Bs+ak+60QQAldqfagYteFT8H7SwoMk74+RaVvL24g07HPDcOed3a7VjB4BPkNhnBDQ/x7jAcmFV8qf+7V/NvHSTkEpI1D/SRyYjhH7U9klmHzySXPrX3nwiQ/jZ2qqjVxoK0LjDcA6xm5vLnAzdXhUIB9aVkgAu64pHX8yFxZQIlcEmZwfPgmibp1W5eWLRTbnqeXqQS2fhQJfgq+oelIrCSxEXiGQl+rnfr2yRg11isQKNLvLVrVxaSLhAFGDOpTXcUOTh3GnKjgGkIizZKGrED+9cuB5DIGdqbeEPenY6yXRcaDz5ujts9CAfKOSYLNKWI8NU+zJvu+3xVQd/yP8vI5DRWVA85eLpGrvOd2pQzjT1vR8cv8B63FeYuADpck1v3lnHlnMGSTN9jpAwYeGSbzIS8v/+iBuGS/bYqWOAfinIsbiNKU3i3xd/GMLy121iV0WtCO3vFwPp5BsED+5negW05/CYI0xcQ1s5sz1y5hrm+1WCK6fDeuNjRpRS/ow4mGHUn64KtrivMIuHRrJFLuXl3+ce/wbnYgCIfbAzv4AV7IA+rFp0TsgN0Lw66kL57RJoYY3ViVmNxwTrzEoQ4oPlvfbpVEo/NoQ8wh7fJxnpHt8j4u4D/fYgf/4c3ytehTUtEKg5N8dmWXOe3fT295QtPrkEkrBwoPbC74IkLqDtAxCPuB2lvvyFrr+JE7I+axxxKDllZvtytH5+k+hcAFPnCRgnbndmoC3Yewql0KzXHGR9bmUOh2HnLto8RsK4vdyVtdAabD/K9eY2svP2rji/NfK+tJ2ZD4DxmMaQvGLB4/6RICzlDYxXy26d/PO+FAL7vxSE/OtTRIJKsoeBViXz1D23IhBzlFqJcXkJMX4eHq7C4l6yIgpGQP2Gxd9Pcwa/tbkr92717ETG79p6gMxZzY9eKgycxQyU8IB5iOuGmC/G0ZFruTkxLwt+w2SsVmXAM39dOgV97WxxvtTrdU2bsWsqGYYtCtU9XnQeNN2RfUTDVpiD00DLfR5Or/Ru/5T8xSUb46tNxlxFDTohAb2xrcNgpIcmqE1Qjt4wPx4rFKlAWM/AgCoL2lINIic6jr2CuasmN8Vn9jRUHO1JUO0Hqb+gNbCKVnbency7dY2kO9dXpc7vZ4woPC51he/wq26s3VAvqHrqA6Kf90eXGl4rliyGsqyUqJmQpdpcraZ9/pj/E7r1BZG91ezOo/1movHfqTUBQsJUnyxYPj/yf2el6I9gUps7N7bdCR5oMp1i2MYvONM4npYdomo20WgPzXI3qYF0k0XpliyRGGoDy/XaroejiGf/0jPhHkezXkf1iyujWGk1WWz2Gq4gHFUDPykeTcmqrnH95juI5rni1Adl0iVVzibtgZEja06vBYlvKvtUeWqy0nVUR8PL0FazUkK5MWmwKNxhocmxt+vRnFn5d/6JFghvNAfx5NHIx2yCzH+rScvsHY6xyCnHozkry9Fyh1agNoloI6AD8BAp5DqXeSO8MvSXdw/3Xu2wJ7oQhrG5F6t/TgNM0zY/rX5aLup522AwIo67dTfmmuFzDpsBBwNWxjOV2JP8zoWRgaT+YRBNDONI3mbiDvtvWtwzLwLWRcKTXQj7tDNw8+hqUu/HWP+p1BAnKO/Ms2EClUH4WyLDXDKtLCg/23InOiOODTHL+mlCDxkThrFVpOi4dja78KfXT/2iuEs1s0xNoen2XLtzGP2/19nsDQOD+SLB3jRSoGxcbK2P/iaOY14EcAav6t7kMCFO2FbTKhRlD0VSC23lnkpCo02FlSNl73OqivLC+hwVg1guBqL26+MdHUnoyXGSPcPWddLEq3PTt85gXdAwdYdgjsKyUU1kK33fBPKoQD//aHFmxLWWc3Y2vF98KaSi8od9fVzTVJrglDMfES4nue5KzFdZmc5+H1JgdwSu5TyUw==
Variant 0
DifficultyLevel
574
Question
The table shown below represents a rule of changing each
into a
.
Which rule is used?
Worked Solution
Consider option 1:
5×4 − 1=19 ✓
7×4 − 1=27 ✓
9×4 − 1=35 ✓
=
× 4 −1
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
The table shown below represents a rule of changing each  into a .
>>sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/05/RAPH10_Q54.svg 230 indent vpad
Which rule is used? |
workedSolution | Consider option 1:
$5 \times 4\ −\ 1 = 19$ $\checkmark$
$7 \times 4\ −\ 1 = 27$ $\checkmark$
$9 \times 4\ −\ 1 = 35$ $\checkmark$
{{{correctAnswer}}} |
correctAnswer |
 =  $\times \ 4 \ - 1$
|
Answers
U2FsdGVkX18PrC56oZ5sQJhKGwUm2N2gPGBHN8hu964cW4QmrmicJ+aoKLqXE2qcM7RS6plLLbEVMteX8InLPwKsbQr7rU0G7IsSnF6oI1tdTWeglFUr+JaCEL1kAP06l8gDi1ILXHZyDe7ZKE+uM1sjtVE97pnrUpPfvG/5TSW2BabrJkWc8d4Z+fcS6MLsPffUVOgJ9JXDy1JAO0OOJcqIR5j9wY1GkLGm0E0lmJy1niPwobpxbI4Hr8UjnyqOG4MnTk5JMLBM2vVWghOYNgJj4nu9Ao+3SLlvU9NN4kRsmOZi5nb9kK0aB1o+bg4k3HZxVEDVuAb+5uU7OSzvez0L63zF9x3+lAZXxwSCNFOHwJFExge5Xdl0cqlxDSzuCNvhvoODRlcRT1XPhOjlgmvdr+rDQ8HTDcaECQsl6qUBmUW2cu5thEiWL59dRntSzbxEJtIlH9jWJFVr+j7q/s1UkhMGqzFwZCJPvfoeWv4oOaOvdBUaEUV8LrAoyFysRT+egy3b3n5ZoiMfwGPzY03Ab6rdQxyrJmWX2rHJbHztWsg0a+U+PxwPDYk5DhDF0o+ZxrTCB1u/TQfFHKFWpG4/T1UYcW/8h0LfhqRwnGxRP4VP3LC2mXKbw/bdxT8qJT9tfHHkt59TU23zc4ghxhzz4EOOfWE06AqxqFCbhQVzE5DrGaHcJiTHFQ1Qbe4mUtqYmXuoXRaOBUtxTYET3rhXNmjyM//ktbmIFigsI/kZXL1pGI5eKf0mfTuV0a9qqAX5p7egkgDt5EMQwwm5lDcLmMjYXa91a9K3swkDGWwVFwV1ELq0Rfx8pOCDBfSGpqqh3rOmanDIbkvz1yFlMcLGJT6GvU3FTLVcQhhX6QTpr22MopsQ1SSF4r5UMK02nGJsFC3NkJHFbiYNCfY2o4qTB+svT0iIZX+OVUwEModCnx0BJ7Q/WDBfTvIB9SisM4F4NeLtuef6fyL+7rKjZvhzIJaXAtyCwwHi8Kem8XGO3VhSP3baUQtuJbzbrwF5lP/JoFJLDmSiWwBV1ZRsE2PppUwk23XcIHYbupEDqsZGHdKVQKDAKDsCkIPeAOGMPlCo4amoBCcqcAIoggIrJQccqQJYYdFmZssJK0rZg5yPucatskLQUydLoClkeS1eGQTU9Le4Vlz2JHy58jtUr+fNXhA9W+He6m9Sb9V/N7ko46pMOAJWQPVobtogY6KSzXWgEo5c/Q4HozLUFV5sMg+gUB6fMga0CBxsTMVUgUhibONJWUa26V5PoFXQwRKwyA53/sjLdfK5nFgLnaI/MVMBZQF4gU4TY5H0BJr+D8k9I5cvwdRWYuY9dCxE7l6q7pGA4JEFEyck1JESuy395MiRY13stkpxE4ivdyhRDjZX17e9ojp4QjTzG5MSLlpKQlCdlJq8lMI5E7D+NSsI0QUz16uATXUcEg2JwagIobuiZOrin7IHus96Q/y9GwYHeqpgKbe6cgCbaicTTOQST5C2JEqhAC6d+rb0ygHmwYxLq9DH2G3OLtmFtsV0H2L23OzFrPL79aIjD6lrbbIzPnhp6SadVOLrfnvc+54jeNcSmR/MoR6F2b5KtDw0qrkAy010FVsD/xYX2XtpmqZ2uinyxKQtRAAOW8G1WRZ4phgtEIon/YcmBKmNFWibdYkMIKgqPmMZwijXcs5oyVc3z9Jr+CwF3S3+SABFInLaX44ta71ZybuJ2kB1F27VLNDLzdIAW6gef1TWsVg2Cn9Vw6VQdl48QHVtI7Ox5oHTtFAeqwWXQxuWGBQ3jr0HqGq6RA6RCgaik3uVJgd4HeCQhbuO029nvpVbx4of1Uyh13j3bSWwV6IStAeKpNcw1G1PmGPGznZA6vocEbGKwIh7zZEBv5PMwRQAKdyjXPRzvCQ8XEzkFxjLRDRqdAxXHShbPOO8+Wqfaz9n1u6cWO+pKq92l4EuhXGLKY8qsyPmn5r1VwtPFD+/2iSBpeWl4+XtBT08orahR2ZbZM8Tsf5hS4nqJ9FOTUOtp4okdbH7QIb00rwiluszDFaA0mFzgTacNoZjW0U8u2rwXW1KVPRdKyj3jMqPiJ1ECiB7PtdaldDkwiQSDZqsQSpTrgvSy5JfAQDfRJJikXbOIf2eBrdGkhNJzoSInV8Aq6ol+OH8K6Qd2X/CwSGhBoHjx7ggZdECxtua2m9v1NE3GZRy2zpoODmvv6F0Mj/spxGSaQRs/FbWP+VYmvnG78JKSZ5wP2jB92QgE9niOpzqwn6CYBy/Ujilx0upgO/LBh3/CDj0e5JPgwwgoCNk/gJvrYuND5uK41yGpCDnDF11fGYLL08bz5LDs99dYWahcqXhop4st55BW3qYizjVtNeaXTBq56ykiI1Yya+wJOT887ZuvP8RixyIENTlt1kXPrfkBtsYtW+4uXHhJZdhRWF+xyAqf8xAoBJihg2hvMlypiX4qz7utoqpucNLOEn6Rhrp4LFb4DAuSbFOgOI5Wg8i4JkmiqtqtKUKa/UK5hN1PPkaAhfV8WJ9m63R2oGvoRVlP38oneAX+OGhvQA9TXoFp0feqgOSYBHElDyIlifV2gBZBfkX/h6zvR1h2Cprz8LimrPv1/DVT9uDDQhx2gfE7s4IGbSsHgM41JslwiMluoO2nOBJjRT+zCwxKH7e8/h86ZcWS1opVaquDjW0SM2lt40gnW4j20LnJ+Gt9Gm01KywP/N6AjV/gqTlSdb2UcHKkFFAMghuhoqnPr/2/u1Sv7TYPa/pS1+mg2pDJECz9BL5cmqsbWtrvwAq3kh3F4dJhBL6DPJUyDjyYisAJUT+aXmJmjBu5otY2CY8TZbRbAXRguk9hGpN37RfRXFx61ASYrRXLyNJQq4P9uVVqJxNr/OcDfupr0q6UlOMgI76qpuk7iMKetchQIQD/a9I5G5m+UOl/fk9tqV6P7zheQRjzU6+XgHIrY9j0pdiFm/e4QJxPylBdBIHy3PW4ISR1eJb6rTGpYYO68UTosXowvOIN5jhCQqfK95GUz0jeDaHpv5voLURlpTte89l2FB5UcRKQJ6lH173JFkbk6udz1YBg/5x9yVLnp6WIJgF90clZ8OjwraxRguTXKmz12MLDwoh8tRHG33niSy0iZTA1jrBu1oQ2JRc2B7ZmA0oCCmWTdXd7B4ji9r2quV9yO7CRDJRMwEGHU5IJNvy0hDreQ4ne95umI7cWV0/jW8av17GwWBbZrrvaNPJ+twxD/Exu0tDqamOYzNPI9+AhtFt2Fn/EgLHHBI/3Xndfqi/CmYnQM+G4ZUmQcWHF6k6/kKAkaEursqCcTmikYXyONRKFJK6nT9Ob+rljjytpc5dO1mjVge/C0Dge01f6Z59EbznGdARNRztOBEAw5kZ3aEog7qNShzMCI6tMJkRu5AUY+tW9AQ4/7aYyV8MTZGxO4O34idyLz9qHDrmr8pl/seXS52GM1NwpJ7LVW5feSX0ZYZfql6HQ+9ci26TGY6oPdaIiuzR9aTMzOv/ozjyZmkkJucQJVM6boKw5jNNgDbZIp9Xq1Ts+NJwb4iK51kV4K1r/w5DzdIuO66K/gqxg/aEN0vQmkhgCjuOc5P9gWZoQ8ZIodb+9nxEw4vh/DMBWtDeyet6ANylTt6M8Ys335p5au2bkgJ98n9IlUTadY8tP+3tmZATVYfjYLNn5fWWnyxUaEIRcIG+vycpl/UlO4HtYgb6mmbJ5rQIVRQ1O03n/BFwEla3gMf2FU/QFKjl2L9W5FVMp8D2La/Mw7mM8p5qTBbZFP9lYrORdYTlxQBZHhR9OLxDVNK5GftknNUjSVNOLaAZkDpr4wEPSq0x5YSnyd4BdKh+gf796VnKSNMjG5JonWydlsP0xCVMJA2bTGFE1hbKaUNs5+XJ6ZdTzZRO83sw0z1rQHL/nG6mBptUjjwaVPtUGPwvjjCdD+6jnLJpmBFwFHAowopZlWrGH3ORsLbIFTliV/9fID696BIbRJvvWmzc3JMMPE01b+hbkpKY0aWXngIWZDdfXFY2OlocnL0XIG4eF73rju2EZZaCjBMiq93pJYYdsKAbIZPqNfw4RXhiHj5axgCHh3PAJ4Y+sLhXj39T6ZpOVFh9zb55FqnDdJnW3fJOFPyZzouJPpo+dtDALfOCXTIIZiqiN8ge9eo952Go6+c1mr0bgQJeaoHNQFis+oVtJbu8ue6Brw32zRvOSiNhPDcpVo7dbjVYVGzUAN+1iOICK3/7R0AXOmdTBxXumv1yP4QrHHUdIT0uyxNCK3S2/ofSmkmSwUaQrXGfQUcS/PWsYhV6NOHyJsVxPjME9cSxtf5qIUNRL/EbpALHKiQ55o5G5cwUTg5318lrdOosLePF6fqt8kAEjWXd0t2C7nLTZt6SDEP+LaJbOvSuIIejMFxtJ4AEeC5CTojhOyGDGv0QRCM4CWX+dPn750u/+jrdBdV7eHoEtqBCi1Un0AJZZW/929RCRt5l+eS7rVkPaP7CcCPAQ8/Pe/foo7fuFteT2jTYgKVw4eY0BT/ySoH3w8nStb5rf6l29MicIX5p/9pJfpY5aAnnLrnNGlfXfiTWB6pEBZE3tWkEgO6AErVYWgxL5tl/fYMB2xxgTr73GMnuiHoK9sTr2fuQ/CoKW4+x1/mpN9p8cKjRQZcQaUgsPzOl0E+CR2bY+NX4yD9a0JkvYfNcpC0mlVL7sgIEsx360lHrGRofAV9UCeyoWtsOVvkfTcT/tQFXTeTpRfr1z0m4ylZX8WT6vdCrg5L80gq07A3vMXAtGUfC8HMyQnSMktkb7Eg+8hLyxdUfpKJN9jSfc7IOmVOfvIAjJZm1qTVqNHcBi3j7ImKyBVwtQAdlRoukXjS70MlBzAZhqvwpwjgpqN7TeU6bc2NLC0I1bXCdx1zHndxAHuR4EF3wHaqLw4PiI96q9fSHRulUUUgeWNT1ByqfUtBvRdecVE9h20dukMWC+HNUVRIsfnm5K1wv+JiVWqOKqZ4MiLfTP61ikggntMFeN9BSK2wS1if+5YdbSmiSqzlSxxcbscLENZuA/R0yOKzJ/UwwVj3Rse8ZE3Qd/S7lPglWC6bUJPS7fJqb5+gvweXKjrHkF5DJxszMsgbSAtdxYHelyc14Z3n8azaXgjipAsEJfaPCxq7HpsHROoVRMNa9zARMDD1MpVwWBkdx8BR+p59tbTLdbwTYoWtNxyWRsRDTjIpfWH8+tNb8lriwNnLJyyYSywOcSrPw5V2zPH6LrE3gzA0/5n4+Z+6KPI6x/0rldn9EOI4cyKBJLnDp37FAMKV5vyY1IzUGFGd6lGmCQ12ABCio14Xr8wz9zDQyfGPurULTxyrvroghf1CTXHI6ArU+BAEeTcHKi7IfytTEoifaHx+9EsYjNvIc/pJt3XGohTJFo5MNRhZQA0ATwH5bHXRx3txqvLgNnYVFNy+gOfva6jhPYRL0d2mowy/CQT9AXsFxIeIxk4y751H28aZIJV/M8kVOnxi466rbcjolRqR1OHfQc52LWpoZLCmszJnFBKbvL18GMbHK1pIc0ttDDjd72UVcEziEpK+ZvNlpTIcJ3zFZmz8Iq+ZgdZDRzHpun764ypfRMzx3pucP6qkcNFJdN28x657kBk1J9V1Je21smpG+0Tue6LHmU2+YrNgiZZaEuDEZQKm2qmcOnndgejKNwscsvT0BulVgOP+D7E9soDsPYiiss+Ye4+BnMd0izh/I4ywBJmPs44MCbpomXF5t6sWcSWe5vWCn13gGK6nVyNN4KuSiXwagRPgyu9aeOcIYRmIssjeZA6+gEjlu3wHkLKZ6NDq33OKyJPNOh97aisYF0u/w5/PdCMZts4+x6EKep+mvCaa2mCV8dxvRviUxfPUSEGWCaW22hLR6pFK5ogo5GBSygU5gyVP5mu0BZka92X3mztbxihy1wNvtP1x739K8q+SWTjPcek6373LKLfVxsCBoKPA1KvIYj+6jBkdxuerHCGhWoLiO6EV6nqDJ7ihQbUqCkEcd0KUS5cMIYXZOE188dbpUzRAdXZjPjtgx/rxITtsGxtRF7/Ob5nCvhlRUSOebpVTXDuY8dwjdTeDijtzCg9vKmMFPDUdqzuZ+iqEGI046xi8kQyNrzhqxrBwPAl1m2/WQ9lFuDd8PoKyta68gwvXDe7WBsN8iaEvDGOwBsDLNFaDbCnbz9EcLfkRRUVuoSS3qCVttwmzL2l86m5DT6/6TR2dAjh6sM3Do1MWp8O3EpGgNGMlExu39vno+4+/HUzZPKu8B7ahp9HeExyXA5pMCP0V+UFKng6ghy8ixEC+Zaac8jRozNN7Y3Ub8L+99sE4sm99/Z2X1bMqwyw1WccxZEldKlvOErvnOIBeN0pM/bX9BOsaJylfTwOHe8fItsbV8J0oh7TYq833NfednDlDj0vEvdEHSVgwBykVds1jpw8sQq5C3uZO5HH6Et5RV+/bqjlJ38AlB8VsslTRv8dCWt5LhVpz59E+n3J2ABc4qpgBAg6GAWiC7ofghpgT3UJ7210XpLfMzU1qEijD+YGRBV7ZEbkSjdvhx0xwFOeV55PxQs3Kd8FrNW394SlPmrfkyS/z7ymyM/296Qqbv0apULJCrbloJxMaimmrd+4gy9fmXPLW1+LX5HZRV41gfkN3rfOvPzPaYzeEmj+3+gADCKZ69eVmBV00HfXoqOeoJx3EtHrfEU1E0pBcDbAXpeRuvXLDcpOe2ZS/qmYAhw8vhq8NlnyyOgFf8+oUX/5l8j6njFdUmzLaXoabWL5An/HvQPUlOLgfU20+b1htO1pi2OLa4QYeDZNQhw+OL7E04HHh2R5sgAHTr1+5OMDm0AZqNLMng6HQ4iXmChLT/7t/qznZAv6eOlSyfx39neNcT6yvmuIfX2zGCehktB5MPI3RuY8UsLYKlCEzwXbpAS+zgLJHZrTW5QOaOWsszSVO7cMKojxa5DTIp8MHp0lAk3GFFGiqHMoWA35JqivSmAYLL5LespASWvLMn/klTvN5I6ZaEFgNJLny3CKcAukinoRkNRTzl7QXZIW5m5iXDfmnQxQpUkOV7OW1d+kCzQfHJD2P2W0aVcWOToiv/cMG6g8jR9P+UmaZecaIGctRmksX12AtLPn1VoEz3p8HMeN4n1uzLyEfjvYCNxhNp4tNpjk3dLdz/P7J30pnOlUU3F9fdo9kxkTGSJcZfF8R6ADFTRX3aLrFHLLDUAuNjp6HdoW6zNiNYrQ78KhQG6cw+S6tI1fPQcvasy27t/8mKBY/zKLS+CxiSD96kinQm1MwePvwHXpAnYsG6UzUKIUpczMhEkQeKiXVmlyLuhHcto0alhuOBIFEZXVbuVg9jDP3CbeKplTbEzm5OYkXJqZyCFBmaPW0MNx9zoIAsV5b04sguMABZpWikTlHi/lD28aVzhL2DjVjnmUpJpQpkOB1LWKpwhTHy1kDAI9ZfdJUDCFveg2rEa4OMqijRq9v9VQHhiegt9JRt/cgRNPj8hR/cY5Iw6t/L98yIIWZ7JXpCMnDC9bhI02LwJ7kjuUrBeEde3qSi7rKFQN+qLlxZt5EZMDZep+DgNbjRI9M9Oeia/rj54UfgQZUkFCcLU9tiZ3ep7etmugqTJDimlLFQzmWbJeJVVd2zFmhPyHQLYa/s2U8afcbPh4te5JppvcN/r1xo4wvGg55uFB99a0owag9uRbubmtj9ba3WjMfYlz2KHOpq4lS8F95nmFgoatqofKDaUdtv/82scalkhmMG0mFj+BCW9Uxg6YZ3YX8npuhRvgwMJ55jRxKvr3FRFHwEFgJ1TJwgzE+9BbohRoI3akq/Uj+YSgxvJNQzV2mW8Frr4Ib3SrK4k68/4ypKr8tLggY8I4QJ4QdtFqyMwRQ+dW78+UiftLaMUvoPwd3t3LcEjQ59Ea1lBZpPZbRY1L3dYkiseDIxb1R+TBa9UNhR/yrGgS32rXDC/XypVtysI+T1UG2umEi6Ccv+qCg51RK4naPoGMEAntQzKn8a29fbgcQhy627jgUSZSmbzNfDULVpK2uXj/YUhCZ02nxY+jS/OIwtM4iKQz/GY8n1Jdo73zsUZ8rNJ4tVVSvM32s0+h2fTCGooVkdExVOpz1xCxDKWVoNzfH8e5l9oBMpIqfEE4togfUOZ2phZ+8tX+cIdLIPIrxcms7daQ9mH8RREk7s4tlo1NQ+3F9AMpO3aP3lwP2sZ1HdHRo+D0UOc4aIFjxyutqHKcvmNVaa30uYaQr/SHTrqfcYJf7Ry65bsflpEOTrlXp2qAMx5XPISIRRvf19HgxYQ0yLF++DunH9aJZb61lTqJ+3IQy5wGZv+IOVJZrhqJ5t5VkrXE+NIp4HAi4nYGprTXjzoXfwGrsWtAyflw63DdkVj0t8Za/Ger8eH9Vkm5Fzf06pqSCDufND2qwO4+fgUJqfte26XTdtb8XEeQMlWGo62lWsUa5/L+Egn28aRsSkbT4iuxuzabgDqYrjkQ7KiKqri2k3zNQkY+/bNIxVblRMUkyIi4H61puQujwX6b/ltfjwqZoJo3dI2brW/ivCm2dsIpLnyeqYBHHSs6xPyCKtda3W1i5dmSITTYQSooAw5GHdXbD0XoQYHIhpP64v08xtywHddY+M0VIRk489YeXzjQAG0+seijvXThuzn88l+9JHlYf5meGZm6ivjOgS9uOA6IO/93X0vqgrcLCoNUE/ZJ2EvTb7fEicxWk29VYIA6tLQM6RLBfVcW4x4Xz0AdDzwYWugwh5fvpkyWLvzp1g4iitT2KN1iGiylCxqNLZV//G+mupkSoXDbsp9tkHX7mBYeWcFjwry45wcZs1s2qwAmS3Ip+YKhqlOjJ5lbqxeeVqNMq0fcaJTD4Nqb9I369rwsrAsZPIiTTAhr4vCQMt85/O6LrVxhwwiT5U95+BUYKLU5IDbgBAkIa2Pt3VirpqQklV1zm3pjMYvpf9rWsJDUXR4CZm0xSd6MK74CLNRQXh6p8eAKFH0O/GIFCNICcSSSeyvdWSgtFWjx8GF5oDs87q7CJNR1Ovt+UmFKDUf7U5sIuK8zqfwdLUzXMkoeLoPJ/03x0VK54smleUwIOGOnqSrxaRAVZICB40rqZaHXjyOrkC9LdmuHN3cGWOWYu0BpQXfLPK7FmZyNsBU9r4v25IcNZ46gJM88MYKxgIKwOjVFKs6U5y5/etJ9h9XCJ6RvJyh1O7KWi9ArtTWNgR6GqSer9/Ggn9wCGcAXXoWB5JY+2hX4CqqONXYSg3pIS1J78XbseqA/hbyLjcIqvtu+asQmtvtlGGgi1/wDldMNJbA7/hzLbUD+kidjY3UPyA8FgPKFUCWu8go5f6IB/q5Su+kBcT7mzkdegD+v/0i5mVtbNVHJ/2IxlbF9v3G0OpDqJ+SuhojnA6kwDvyIyaEQdphrcc2Kst8GINZcj0AxGFBQzIz02AVnIT8NdbZ6yjkyAOkOvP/9kPvK7UC1O77xfaLQpMjNsVVxD0S1lUxgKQnmy+qF9xGsH1tHr4I+XT+WMffIXheHhBOTuInOZi6I8CgTgWCgrfZMyHNTS/dqtjEusqUfDbSZrRTlb4+LLzo6rmQO785Qj/eZEWGCWkMFU7taU1BYX0BWlAnATm6+CP0tXEh6pJ8gBl1gnNUlKFCth3uvQYLz2cA6GednW3bBZJMB1O+EVX+T/LUVxvtypVtQR8M34+cwRmAls+9jMiw8Mw2CkVbA7oS6ZnxH9vJVqO5ed4cXaz8cVJx6ZlNnodwZ1/fBQ29V1AUD2n850Avy4CCP6vJERJ1LN0/2jOxCPxEfHgB8OlXg3qE1sEJn49HFCXv5LHglrVoWBmk/5uA+FeEFGAHWp0iCp3YczyeIW72yYTxeRxhueFPGYXKaEMQJW5cMOLbVpov46nNFClntTerUfkwUlmLpxNf4hyXxcWueGY1nOznfmT3NUawBjJsm5+xxPUu/myXOWbXh6xClvmTVyUFdS9rwkZ7u4cjFCaXAm5nzb23xjAnN76iIBGIXIeW6sziRyUKXobl3233t8RmWnbsev98VfvSGZyRV+fzU58d+g6B965067nzHP/kydTpv0U2YUpg2oPUyyQzIOMNTNWJLBkm2fKtSm+pvKoYI92SGo/zfoLZUnB2qQhoSq70S0Pe9vk1Ki7b9h744BKKuHOgjJNdawhdqMznzgYfj2rX68aeRjOpjUYRxnhkqc2WpLhVGg7Z/5PA94cmyjI5N4F5LyrSf4SUYoNvLj1YKQZndGnyt7ZDvZcMJO4UFHK6cheJnWUK59lbjkGQi52AjHsxIWUTNmwzVFhbLljrFaX0Cj3ndY+Zawqpezs3ffzsl+xLF5q104Jv8gUaDOeH2Job4sb4phn7X8A2rDxnbLeNht5GPG9mSLv7hVyPEom0PqhgpMdrbJ7Wk45KeB4BBoKBrNbZ4yfZYZy3gwkoCZmO7cm17ww5wjeOD95N9G4MxyFjJCrE36M+UQ+HkAAlRt+eeAHHI1t839l15TUlqnTBwc8oXpffwVDJQw/nYzaXDUmgSN3gIzMf3IOTEqB9cjUgswwJ3Qg/LIIl0fTY0btYjQJQ1+xi4CmhGxM4or2rPvFfbMY3XTNrGXkx2bv/0GeB/qOlJqmnPbd4wPzMZ0ZSuqj6UIxKyJk1lkT0GVABc1KI+FbjYI8aLf63GoQFKeUPpwfagr52XpFgbVUyR0FpDspiRE4yUup7w2bWeaG2pIYkKCKZ+0zb8oj+SIktTJlCtcMBV9N+WzEnmSLPgNBrn4kQzBRc6b0RpUWvzjbwACDhWLymaFAmoeAUaAopw0sRjSwoc/iWxMI4RhaIgUGp3XRCoz0rUljVV5PsqOvpZWUxEZjBFd/mqMbunQzTv/SAVmDc0fjqFygmsClSqbYLZY8lODiv74iauAAbC6HZ/5WE3HVWWdH+8YF+JgwQEaGMYX63p0eOGUxadpm+xrA+vocK3A9sM34CDu9K6HzsH6z3DFyVEBb2s27lPSCY2OoTspWG8OoclSuhUhsaanb9WGYC4XBKq2G78PSuZp/tnJg3SQE9/TtfuRqfFdPsvVbuSBYH7hva5ymbEmgh9v0RMdWDruOHFbA2aZZ+IQhL+67B/zFgJ8p5JHwI9t0fa+Tr/aYZsdCLWbfDPBWFBPuONIy7Pc+GEXmty2yn7wyRx61D6n+pqxaXWWx+wpG82iRbC5Y7YKNoycosisJ8Ch72MqVWqZvC7Cz9RfFGxQTPxtI4J3usbkyFQV/wf8D4ex22c6hsRCoJWWD5AwFBNm2P8g3kB55CYoTYsTM4gRmHpV77H6n4aCv06v4ZuH8LiNKg5/YqCCiJxiofa3KSC4+e6HSsqiuI91EaMrMaw7OTFq/Z+WaR6Jxwj/kEiaScfu+mFgO4nE7yAV3p2J88JHBr2/afAfU+3kkOZiW4ElMGc2E+i93H2OTLSMcHcEQpQMOg8hkie34FDKQW/IppUt3Zgci18j6NADCeOmAccdGlHGAYYo0Apn0XjA258vuvR7qdgAUuu8ux1/MXPYASXlOat7FdlrwKA4WtFNzpqzdNdnWh6civeVhGx4viQkmqfA9Wl/uUQEqbdY19CsVtKpwm8KpRhhM0m2vt1D5Vji5McNLbe4zKYoDyIvLNMuwc74wH4gDEAGogvK2cfTo8cHqaQS041wMG3d4CzH4fpbsSRSwOZb+dGoZKKf69c9DOBLmPYF/jbIt/OnQGDssJ7gmJ7gjxMkorxrMZsnsDvub+CsRtbfbD6f4gEXSWtNE52P9mZ7r622wWA5W1MLcbYm0s6S5UcgS9cctJqog0mWAq9wqVsDBSLnWkFYXxxmYY2gClgZ2wO+Rts1hpMxMzhvd9gmu2q3QjtIg+oBGw6UcLWz3Mef6fPiNq29FTwjz2tbeTEMJ/6a0g2vqnI4IjVQecGGZhu18NzXJZNh3pDHnREsoa66vc4mEJQHpZZQqsbfWxpJGdlO+YboTu9K+xoxCIG1LWovpO8NjfuQGwIDqbZuT0qBMxx8fXDyKN6WoFbKfI0r4bntVdMmkjnLBEJ7AxMH7boD3QdxzpiRriCrvFjkuO4sNFSquo9eQnAv3FJ+ybDdUNtSNeM26mUha3lA4D+AL6hrL01x8le/4UwDCerv5NRLBZ6pRDzMDOME82vRjQt/cZYcgoYJnv0Xv0JJtwXLsksIndBi8lmekOjeBjX49kiLDMbp4QJxvhy+53mkhsq+1nyKMdYSHXsqRbspg07FCdGm4zNCL82isNX66kmMqDHEvn5e/fGiAFHP5OUUcPf9NVIBf6HRU80IjmR8ZKpgTW0JOSkDa0PXWL+ftzVr6sZVjHFqD4lSxsRi0E/4QdYiagjp2dYeNKoUk5NFXgKOLParlAgrdUnOFFHmtD0yHsYe8vO7AuWKTBHapEB43kjnmpwFyOJnhYWkjNetZBNaIIXdi5aNNP7RU09VJpKaJYexRkOrl7DEGXG1WH6ksX2CVWvrdHF7EJZXBs1kOLaFuo6ovwQn2chAoyjcOrUT06i4YbMnwk5pJ2iICTQcpi2i9KLIkOuRy9ImiDhRhoCyTqS/NUBS1Usa9PWqy66uddqOc7ZwTDCeNWL7aqGdsqgbIdQnT5rOAqJS92x51OwD8m538I47YoI/EXCl28KyrXNdddzIkGUXNW/sUPrqcSsXYiKHjaX0gGajfX3SxYWTKctsRrO3WOnqnmgSm4m/UDgL4R5TPvh6G7Wc30e08YCehQWYu4eVre1eftpwifc4OiZ0Cjt7r8+Z0KtEwcF01LpcJ96ZpbKujaZi7bggvnxvbrHeDgnaD3ZMJ8lyX6+g2c9uLu/zYIA6sXjYhCqRln86vooRVld9ATq+faFMj+L/SWcAL261UFn0uRIou87zDf7UFi/4j/rXMTbYDP2ZNFEEqoz9FvQUoF+4sg9X8YviRYEQF3SH+zhZEUnesvSwH+3OmKYdwVW7Qf4gkfsas4htGe6tOf75Z6ggqtAMahe41GhLd1/MFi4PU+V5qu9n//kppKTSOoe4C9uNa7UhSMKg2K6CuR2ePgMW/K6myOPOoLBLUDAhLQpv3+RMzoqm9ia95DqNhmL6AU9CKk9y7OPg7MnSaRu1NTpVpmvWcBqoJ+M7Z5PmBZTkRveRy1i1+ph4N9SlU6Ib4BdnD1X7eUMIPpE7eJRDDR7Jyx+9TFA2eONFoCQIgEDThC8qUaYNcFO33nyJwuhrqwd2yCNH+cfdJJedRb9X3uA3pXTRVjkrww2pbiL15yGsYbo5dt+fwZ0TpBZMKbXmBH3MXNCUbRxWQUGdiFpUC9lYmC/5IHPVt3MTAnKazwLGUWF+F5eyxScbHL4lWvNb+poBwC87UmIOW3IiyM0ycRZFyy7BDfkTTGy2hDIyIEcNfBnqZhBj4qV31HL974N1riLnmNumj93pXOTxdj1aNi7q6GCDDPaWhcgF3Xc6TRtdAlWU1aEDgot9UR3pLTym2f6OOX7BqqBWwRZc7QEgw6EH7ob9RRDpYK8KfC2S453D4RIMJZvZnUiOJiMyVMUs3MTKjMWhIwupCbD6igwKwMxNFyY7JkkB1uMP+eFycKmRsyHQl2WBGy4XvlYbuIOABtsZtk/5SfgMoIUpKjt58GJsYw8NVC1She9H5BiN90IpyOb3jFY67jDbex2Z781/XTS6YloQfHVMj4jX+vxkzKY4s/CyKbxKaLoctmwDBhWmyCRRv8qOn0zDoMyyTf6AnKV+tA7C9ZinR9ZZbhMgH4RoVbCKTFLY8OyNkj6XEDpI8woZ3aQltjYeqpHklaop5j1HHibSm1V9ZKgGn/uXcAG8esEbQk1x1vNq8sfWmXG7haPw9DoMUs6LI+k2/V4OR0EXsBaEZi64li4E4+7ikCNOpiYWXcGvqW1YiRAhg8WxVKREafw2E1mS96xMwIKzfKYEBdIyet2RLmMf2fbjKvED4NQ/2t9lf1Voq6W8pfwmXYGDSkNCtWPiBY/M0w6Euk+f3OXgSfuv2LN2w27W+H+7oFtC7Y6VOLYQzxot2CgXCsuvrkEHnEpxwuMq62JqUrk08EnFrksd75J0Vx1Sxf5+rg8pBH5kbuB78wE9E0jDDWknDMknvQKQw5E6gftA5glu38zrw3ICKpPFKJha9wo1Z8m8cNbLEwwp8DUkhf0DYFiuwBK66JhWnl4JiVhm68rdnuz3duIhHy4XFMiy6Xd4x+wx0uyeVG47wJtn52Ulpr27qRT1K/E57ztYLOCTYiqLu36ul05BXASfV+ksDJu2wNVqDSgBRlK7zvnY23o0D3Gxk/XC1nxZXdOmXhI6YojjVOeqv37tbAhicH9GfCdZxsruc5rXXLPl6qm+KktyheaBbmY8a/TsyHs4bIXFPrymGoglX7ypoxYOj+TSi4GpAf1+QnJCGDPQcDDWLkm+JjG9rJOY98IR1Dsjf58Q5t+uQhCExAg+0EVGF1jppcrBA6B+3zdIN5k5DzM8qwHsCGB8DxE6cndXdFfPLGJVD+Z9pWED1f9YPXk2CpfDjJEoQOt1xDLdQMZA2+z5IbJmgwfivudX/pjfp5kRWmaSgLsvSX7XbgNejjDsBwcgdIUG7K0zatvPqG0A3Z95gnShmv7oP7bfmrxGQYAc2097KkNYRJf758KmGX7i2StldCoJRCPVHXvvvQ2/bS1Bxk48bkT53lMWt9uxWLMr1gyzUwFQOTQGyDTWZIufYMHuKhPlWh8ZnbX1MiAfSWCV+UmviB50F3flvYBEN09iF0Kb2vxqh4jC67Yh2pczJiaMguGuwJBLQTkIk8vFKoqaEGs9V7xCk2EkNNK64lF94oj2CZAWcd7hSzD+8gJbfD2qOMcdPjMXrYrpO5mTpF/ldzJFjQCWQK/jld+E44x1UgKWW0EqO/nPnFMhTl+NsbYgKw0Mr9+BsTgmPVwQhO4LPpsSqYu149PL6BwkwrfolFWOROhJqhpYdR2uyLNa33Ho7sl+B8fTBEAzezOHRkRtwd0YYULGgowI2hu9gDigSLskTKqRCVVJvHzK++yEUr4sE8yJ5zrdcv1EcFfSg9T3mUeTS4MisW1qkUeXF2mc8i0hs3kd/jPGUUZ8zvFvLE3Qezb8tJ95OnVvAku4DISG5ijThLArGRK8WL+/dqZemiM6G1X0c0w9UIN63McJ3QSSSb7UO1omTgfavykuaalHV3gFLjRFJdnR6BPB70lruuBlZdSnP3PXnTgEMu2wRyBNa+FHjA27aI7BAltx+Km9IjvY/0g87tGJq0Jssq1wAn2kKrRoJShhj/JtH5h5DKnwQEJleiFjihy6a2UAaDH7QPk2Qa5knWVHJUgOGSz2a7H9dTi200udnpigkz12Lhc8zbLde/K/GDUmq45geWYLHe+paNFBA08ROsQirHhLrriweowJkE2+6fqQqaIiHPszz/lTb2NdcVzPcOlcpqGCa/aWqNqmmAfnYrD5dadfjOyclP6pwEOiBCVj1PkxmmbC0nT6bC0sAfYz+1QWbGHTFREEOqyyboT5JZsYylDc5j/gE9IRRfqk96+m1PRKcdroCFUvRTC6Qrj7ozgHNpb3vcdyJj/JEFrVWwasw4RMFeH5cbPoyCGDXdBdfzuQ3iZ36D3xxpyaJgemRPHV7oA+KTLjS0zzqHIDiodI2rJWFKXz4sLIUAz4jHyHvVn8Uk7C5xyKvFl9ZqlXPHOEEZyEy8J/l0ExM5qnj8oEE9qAnGQB4g9PABDxwDSKMJeF+F29ojaDZUq8LZFNG2ZV5kw50eCczNXKXQso96QyKPagp+BXkeuzXIatqG8fu/QExnIvUFSQ5fme5Knwih7/BmIM+vtGxfrR6BrHcW7rSP5oBS7e5F6GCbpxJbxVL3oz4OMw32dJZWD7aybZwaSFt/y1B4eIsTWz5uzo0kieGytkq6/p7rAXFO8uST5uDxYW9NCnRm3tdN7Gmq/6O+4GttV0xYkgz25Xc1yEWd4OzOxSum4snnTEMYWpJgWeQ7/mwOTyUiVp4ggcm8zR3JD2zClNTsbqbjIQNjk+3h8QPcMjdOui/W/m11ce+CdlYkM6AhniIWyAWnMIALeNAHlqzHbekugSV12UosRIqX56WFyEaRYaaspK6W2tojK0deK5g8JY+WrlPr8ivYSgAwkjCEH4IftxtTDoQnfHSnMA+BC7m5bz4zwGx7BLkd7orQZX9pQ3rw6ichVZO52J6f12KSBhRfx141PzuXNVytcbrl/a4i4Jk/2ww54DRHcImCHMC0qlDZL3QCPi1FE0Y4+lkSuJa/ZzE68svDAaILZ5NrRMUgbENryIc5mk/mMBEeozZ5FXwVIszfiUDdD2yFsH5SoHCIgm0DnefNSKJACZDzG7MtuUj3WmU/Xc2ssSkeg0bPE6IyqXOLbhckpLyJ3kTUOPRBgjOZ27EU9YQe+upSgZvCR/193gg/YVZUj0sI0U7nTnMkapGTb5iu2pMlRYpAMXt6LilvaRaPQ4E9n0VvvtA4mNOcEwUFc5kYS++cfpT1V7A4Y/tSG8ZsJrVL7XL5WfzHrj9v0I3iWSg2PY48RhPySW2LMxR1c0HbQ++OqFkv5XGlWSjL1gd4Ls7v+UysHG3/cOFA2WlOow3yIDnJL/RqHAsEXksi+BdTzIfC05MqPu4oxXgR0NB4kLVbxMyBlxFyNqocLj343z+EOZUjep30LuAi3WszQ+CGkgiPyuz5883mcthz7y9XOctI5YMuuLCyyvPJP1H9aXbMpzFAVh0Bj5NTsXkirKHa3Q+05FA+06kDRdijvlAfoWULuq+HCUePOMo7ElWjGskdclzKP1otfZpYRVlC7L+KUSktfmYU+TaJtZpLDexFAO5rq6ghya6Kcdy/fiRjykSdQMypLaM4UtJg/WIZdzNHx4+kk03qerQh5+/3D4wA0RfCHaWjdbSGlM8v/77oGMQ3+YwI5LXRH34w19PVHwPxgFRwicduvGDKcCA32bifW2EBEuhfq3/b4Fysup3H/bo7QM9HN/ftqWdkA2PcsaDo+5kd+3nGy4rI+rLp1zgesiJ197/JsH0bprKhS/yeyOb7zbJL9XAWtR4Ivj7sojFJ3Y922UT4EAekM6dqceFiOCzst7izwWSWZf31XFnSAW5r0EilyPonFhKg0IlEdGezxCVmoBKzUNGSmlMjniD5eJEGwuSL5bcJ0Z8wEr9fZXPW17DVy9jEwjIpOaHZTo+V8zbXuklQjOtR/2Yv5G37VdoKiENVM5atolntM/qzvq6oo5Fzn8nAndxr7TtGD4YJtqJIBNogCAbertREXwMzUL3KIjKw/aingx0cCYRSqkGTX+SUTR5kCUdVzqlJODWKrTlU/3irtHnxqq77gWuzZ5ptuPIZLh2AhTnqEA6+dnAK+b1XDmY3VLMtTC7MKwfelcsC2ARhziPPUK9EzKnvhxdxIXuvcAA3DhXZN3ibAB3tjfayX2dI0S9qDQjw+DXwfHgHrMxNecw077x3L7cHLqayIMDk3QunVloXXu0ygLdJvtx01eX14+SQovi8nDgRDSn+S/zhwKJFOZLX4rSjkULvffgpIt/ujulvSxYdX2ZHuldC3wgNOyT8qKZ2sCXrcd2OUkQCT5JM9Jrq+nd6ricpQfak1TSIfPQWvkyzV+XXubL36JXwPQ/51i+19p98OncVVnqeHJThWrv2zXxeJ9mm5SC96amtdyvffYGYa72rXtn456B5ynB54XmrtwwBuR49nJWjB+99R7L5N0ouKbvO4hJ4ohkTx6R40Tm2hd6zhvmGodMq6Nz3nTbZMhDBF/3tE5/c3F70Il1w4ZKCIG1R2cui7gEPDFPDw14xK1fwzN8tJwJR9JBDFGn/LmYx2vj7eI39l1HLv/mLUoKGKFf96qlDFjc5a+zSE3d+dLSIWY8ihvIq7WIoucHwBQmbqP62t7saUf4mlHrvAcjvD0kyOUQp0qZYnjdwENhMdYmdhVHIujgUstT7/YL+EleHkePvBCzJZYgrp5F7pQLoDYUebdMqu9nS4ZiqjjbHSfu6GlDOQJJI40KUXkOkI/mEpQUFlYYP/qQE+BVwkz8V+kFlhRhonN3YRoFN+WSUR/rRUsjSZXRUr6nM1ZZzpxYNzwkLtDqOTKOh/alPVezHWGPldDvZofAGOKSiCiTT0CG6XQ4WdStnwGJGE4udGmZNr9xnUTKHVQKR4o+Njvd8jK5SSr/x6ZqcIPrDvrc2GkwPgFb8tShZZZ5ZJaHHg73cSHnwQWtY0+/hrQbXGXijmVxxkeu9B4qKIaVQF7Fk1oGyEqIwRpt8Q3Pn7G+giOjvYvlnx1MaADbk5oq1i12j14vb8wHEg8AxoRAuDEZYsIFD4F7Lr/V4Ihog1ZX0KiwNL7SvfsYRqiL80E6vsfGISu+O5srwd82+Bf2aVdVCp3AUyxk0UTTtD9HYc2YLr2RxAcwkGKsTdAl4H2tYTCfTwLmqCrQufN0O08NKgEWGPMC5dNcwDlKtErCpustqeU8yXNLwC+H9BOgkuxv0o6XCUtKPlXL7WB/Enun30LlJEx7sKxhetBnTkyWz1GlwUfmWzpnAECHbIcct/n6/Hyo3ml0OgWOBFP+6uMVSOU95uQc0CANaphw922BJw0b/tQAscZkEtb51I/5cO9j//2W1lwjZicn/skSWqpfEEXZ5DbNE6y664tn3/afyka8aaG3OpJB354QIALsVJ/4Hw4tXpRtWOTJo+vQ+1f0gWRN6K1j9+CtBs1czi8i/u8kuUIpWwwJO1/s7idAxeOqsnZNDfQc102xXb64TyJeHI/11lFAc+iOXWV51aLWjN/PTXDzsKelzYjLxX39hxqHY5YAbnqaTXpKC4L2Z+SOnts/xYSTlLIlOxDXre3FAboxPYUK9CrWZwgwQfruyuUVL0G4j3X6AghmLzxeVrpA5axuUW6Qt6Wb/5RsKcF+1Sga5cESYxBUC4JQGTInrd14GUCIx8X1GFQFPxoeJFxlMRZlkApD2P4tBzcI0QrpD1mO4RdajIrr3p9G9VbYaxbhhbapw1nrKBKZqNw2AcoYAMOiZ2y2c4Y6FcPTACJtoc5eduald/awMO/aeSSoD8RKFH0vYSjErMT1xfR2MHk0XsbdZCl8gDoP/TEfUijA0+PpdAqmazwdKGr755ljETnKdhTZVf41fzpkS3QK6ifDAsmzGtrPOp19m7rf8FcjsLBwFnJBpCTpTJanLAXeVa88OYse7OaUaLDhd+QQ1bsQfP1VwpsPpZxhKkWLM62EJnKnNitFowpmuLvpYIyOsuBk2XjA9RNK6H0AI5qITEYsEx9KkqtbtoTxB0mrYqt7J8NyZCbYbsxJoTht+vu5hNs2akGiS4iASCWEOk4QpdxLTPYDR+vDgcYME6bGNmdFQtXRFteEShCYvCGIDQQVPVmjrx14wy+4rJFiinJQ9ZRZFKkfuKaZwUJuTLYklkQd7+qE71aX4bxx7qdq826YDVILKIegF8kQGOmiIfuGEM7EQXFsVBM1z/MZcW2ffD5zybY2Y7kf49WI7AnQJ2gMbfgMIjrigL0kjDE1EAAZiptYydJhUqJKcyENRw7XrzHeu7PFjADE2iybbxKKAftDBOzakT8E2Q6DS5CFw+InOsTKKo/oQAA0J0Kiu/4RUkHFbGrq2InyAsuK9QTIr+NCak8Uj2MTcUVGT9hSf/LDfnsylNf/63uvz1hLerMS8lzAcDgOxjSzdBj81Nmz2SpMR6sKaJHNWoruZSD67Yo5+10EWKH3DV+rtW65tzgRz/s9e0djbPnVVF8ckLYWfJ8jiVV9dzZbhCXfeIs8Vhzi3mJDbtnHTN45Cr7rtQeGNRnBlDJ47gEYZkKFAiF+QXQ0Yli+oLN5494NzEknFB8O5G0ZbkApHW6aKnD9+4qf3XaceHoV3AELrm+9dklI7/DkYau7OaRkq7m0S8qKJ+MVayRRpnk5vskhYkgSXM7DK7Ja2nP69igMP5iclYej9Fwwqz2CK03KKRW/yiv53WUAAjuxOgWnRgEgPOmNNwUb/82C+Jyakcis5E71/2rILVOBVH4DgzcBFn4ensG+DMQtUY/D7z0XAEiZlPRIC8SArVuoX6ZGWwA4ZfnADhPy8zhCvxncLU/I7wl9VfhKmHWl0CWeBdUoWlxh4htNU4ppjSoYsowHddxv7EEu3gxKZB1pAFf/QyQlz76LWAmPDP39daz1S2y3Gj/NdxmfS0OqLIucL3fnc/WT0xZAbYIaAQBfcauqaSiIYvAQ63UkbCLR992qHg2aQ18y2X4EF6MPjGyNVIZL6qkUxYcZTXUPW9MpyjwjifhVi1RAPEUi/hnLJzHDUnqxqMAoAoq4+acalYFJF3NgRCr/b4dkOdU35WeH/Xg+z23O6QVNhqc9ZfK2PBPeyRxw/JYQijom4Q5VvAtpkzfNglAyK/QyfwNsHBlXe5nHAqw0DTuEDdoUezYV4zFNYkSsWx9gYagKGLmZSaMKyHNcaHQm2vrVjO/QBr5n/utqddX/bCXxOCFsBTz/G1jjNNmzXGYYYJemdTkA0A+qP5ASoQzpJonerCsCfiFaamEeWQBoYGvl93shCjUtVTozW9jp9/51V+0Xu3dFa3fd4zV2PyPm+WWnEwBHn4tnijXbGRymJ9AfokiAAiMlToQ663IQOjuLjbl9Mbecf2ZNTn4mGLxLJccIWr7jaW+tXO93MvhxCs/T1cl2aXQmyDnRVm4S+vzLKF3SSfdXajg/z9zw4nJ5eCXVNEIx3n+x+M6p7QBlLBw0CqK449k0eu8/UFuu8C53OSYarKM22huvXGr8YM2K+hjgNBmtCUsDyZOLbx4AEI6u1rdbLHt9yHFG5kgrBvAXzNlmqd5v8sgJ9JUhSR0M6Vf7EFv03vabZsk9s9Dc6WI2iTJC09e5ElQtDEkByx/gkERbPFFbmyOuOe3cr20FmQIDG7uswbHuVyQZapb//7h9eyrSUWFgJZmOlLa16G7nkU2ig0JF836Y5DdzZRZtKBud0wDozSpEsrapt0JU+/izOpomRfW7LPIgQi6jVCxysyseEC0K1BGM+PprKlqbZM8YJ+TpxT0CkmmHXBxumx8xCpzUQdLzhMM0FT0P0Dg/+f82zafA8rGkUdBxExS6WsuMRG0n3y/EVPllwI34dLadXQtX3kHE//xEEg8dQb+6Swq1btKQziwwXJxmCtJrglevSUMgnPYuDAkBCUK9opXJHwLghpPxNwPgbQAQFPZnW7ztZQbYVmIu+uV1y4m1RUGimgz4OdW0UsXfmfHQqt7d3ySWNvEgOvEOju0lRtlbJT+/QQLdKHJM2UJw/SoMJPqsTLNuUR3KkydXaMfDJF0l/BLrUEPo5j7uCdz75l/9oc2dcx7nWVaOvxZZotABjZt5AjrhdelDS3qMRwbDMeGKU38iSe5pwHJYj/VVUZtiBFPYJup2bgJNt2T0r0vduZqlpg3SpQyNFHhAr3xOMr/h0diGwvpI9i0Ve+b4btfnpFJhDCOaqBszcPqfILYS6XvlA5mW/hFs8LS1sMVatSg99/4ZPKZqMuJW4ywQRDDqOQ5sRZrlS8+7rBDbyWt1Mq4A3gxEtoRUTEm1rw9ZTnIzf33KIonNB+uguxxEikiQKUh+o4ocyL5NHNgzz/g0e27hU2Atct3K6Z0nKj/JbbQoRTzVeR3oVAVCsoiV0REM7Ft1PhBGokH5LbtHHUHRNg0HsHCsy/p7z6EbvdLEBfULDt8IZNpvXW/+HjkdN50+SaRIblV+1op1otc4BX7jiKjJhR1cwsHl6+kG52Krsk7pQgAmj5aTSJp6OrEaopwHvU/vWKuMtggbjT3ksh6U5Dc1xK5omnaf3dGLx3/RILrd3DoOZ3kigjw1dpGUuNvt+p7/SffK5TZbjsJce1SzSTsELa+kXwmY42wwehSZvBbsZDJfWhURqnxP9UQ5kqIImjTGNQOP
Variant 1
DifficultyLevel
574
Question
The table below shows the results of a rule that changes each
into a
.
Which rule is used?
Worked Solution
Consider option 1:
2×4 − 4=4 ✓
4×4 − 4=12 x
Consider option 2:
2×2 − 2=4 x
Consider option 3:
2×3 − 2=4 ✓
4×3 − 2=10 ✓
6×3 − 2=16 ✓
=
× 3 − 2
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
question |
The table below shows the results of a rule that changes each
 into a  .
>>sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2021/04/RAPH10_Q53.svg 240 indent vpad
Which rule is used? |
workedSolution | Consider option 1:
$2 \times 4\ −\ 4 = 4$ $\checkmark$
$4 \times 4\ −\ 4 = 12$ x
Consider option 2:
$2 \times 2\ −\ 2 = 4$ x
Consider option 3:
$2 \times 3\ −\ 2 = 4$ $\checkmark$
$4 \times 3\ −\ 2 = 10$ $\checkmark$
$6 \times 3\ −\ 2 = 16$ $\checkmark$
{{{correctAnswer}}} |
correctAnswer |
 =  $\times \ 3 \ − \ 2$
|
Answers