Measurement, NAPX-F4-NC24 SA, NAPX-F3-NC27 SA
U2FsdGVkX1+gSTTCwy+50+AcWgXqcSU4Dl/Yz40szPhXu1oLmkQgduWs2ssnr0bGr2bl1rgCmod/EMynv3kkLyquGr6pntLgEBo5au0cIom8JoLq/hNxj6n2oqUFIRrLoYb/sKAB9mLDwe+XoRcyJVAE13RUDDA0523ojFs0Wz+5h++UUbCbEvSiIKSnCDXvvczWox8mSLeoX8yfsUWvCTD6PlQwHW6I5hp4EGwwFyvCRk/gEJHTJpm6i4K45Z2E3wOH2Msgm0bSVTHksvDOsBCsvlGxCcZpX5DsTcIbTJ8PRquN94irNHzkNhy6Kw2btsWSo77oo5fK97nqUwKxfzsu1R9f3JSK8nXTKle+YZhtfSnUMTrUIRGfvEG7S6v9LKnVjV6KLcrIOEEgVm/fMY7Xg1YGwD7ab19Ilm13XTzLS6quQani8h5AVVhUqO+/vqk5sJO0PISadWHJbvi2p4D4oy1sLpKMzdGK/DZXGHzvkMetR9g2Z9CrfS/8D7lcBeaUL0czU3oFatx/Fbh1S4jNsUQNK5JniQd7Pd3XaxoUCmRd0eWZ216fDhsaZuTpaRGPlFvUtmDUOWTG4+K+8y5/qfwUuqs8wAvZdDK7yFTprf4saOKSlpnZ4qCeyXnyuejd3R2+X4YSpy2BQWCIjMpwfWm760bIOmOC/vhKPT/aMBbQh4y7IAPZK9Fc7aH/146Bh+81s6PHsDw8GPjoHlWfjEBj3DHGnYYL1miAhptGuliCl/5KSqB8N+tvve30tsF+prIN8/hGjpda1EUPAIMC5dUQYBLbqHAZy7/LvHOqppwhNJYkfWqhsUFUUveHEuVpmm1mmM/i+yjfTLiPF/PkO1ew346VFGU8eG2Fh9wEXJjaWadZkYSkEZnMr1y5NaYAUQ82LEb/mDqL+tQwQpH/tSNRgtuto1HTkwp+WDG8C8mp0naGhP1cr9Hy5NhzDdmjLehu19DcZeMeK7Twc+vt0LZWTip/PUzOFKvgzbPK1WWr43xaS9K9muEC+GfN+J8p0OzSzXr4sX/9Jw8iWNajQmEhslylKMaa7Ryo7spH3ZJpqZiVu36F1P6E4GsvKExZbGYd8W3sLMzcHZ4kV8HhALueU3AAuxn9btb6MAEevm2chqwXBfYZmknVYs65WbnW7jF/FJV0zgH/ih2BDNxONF1fV75ouKJj0uVy4+fy0+F7AEdoLfUhCLLXPMWhMP7uhmzgQZig8JX/GpVa1NLy0CJpJwhOxcSJ6UVWrMPkMXC75lnc77Hd2KiYmJWwo+rN7Tc569pXT8rGJp1mAVIyj4NJPg/zeALpDhHGO8Za/09gG2XX3hHHH0XpqmMkhclFN8zn1yH4CpGJ4VOcW8n1BTXOkdPZsj2YTlA9vvetnhF4rWHdnGTzTyfDhPjzw5FkBBCIIiS59wRBPXc1KQ/wBPMySBgizMU9SftFVOXvliYK69xGqOgAqT5DdSZ7vvHEvHFmq4UQJnb+fbCgxZG3HMgFTq93j9a5oOZ7POfz2LclFhQHa0v5MyO7NsN3XwPXxe/Owahym/pdnT9IYp+H+15dzp11/zZAziw7Fy8y7QwNI5snRoRl8R1e4LDtW/CNjZo+b5WAlIoboFhm5v11OwETzi+UhQEma1QO/l90DSD79cpU8UC+Eo6hglnlxzLKOSw3u0URsDRs8zhTgjWrc+mxR+HlH84fc1JeakKYpIl/N2ZPVJwH5cEhAC5UFcCoRD22l4kutmOlDe66wOef3U96nYPr4CfgvP6FpCBQObX7y3Fikqc+rhFMANqZtcgDVwakgaeKM4ebt36Dy123ASADlr2CwjZrFF0KDa7dgO4D3HqTbNoFdBkEyFI93Z3oNm/MD3z4wJ2cKWEW5qd0QkZggW4q7z13QsxcQvVIvErirFCy88LK2rQL9E1rlpNyEcx0iEfUCokwKATIhiT4nB5S9ySwZ+Rzu483J4Zz/sU0AFWZ9m2Lkf8aDJvWIy8iFNX34N4HRBrdiuNXSXDBCZCAZ0aHo9VUSBs+RMfFECn7ebBoEz1bBSS6ZBTq+tDkTw4zU7VmHJbwib/W9RBbVuxzGg+0YZjWe2qkE9BA29hKFZx0sXWUkpNEkpH+TODursdzvCMw7MDF/I6mT23mJfd8Y5a0+bfj9Iy5LvQo305ttBTaFYos/RvWNWEXWyOSrfx+LxDsEQjf0lrIxTScf6KGSvU7uBnL8DO+A5HEX37Kr7f0KMA8JRlJ1uZgoNbZ1h9c117YrxZqxcbHaxtN8proJtFkZRFO4Y2zSFIt1s4Qs4CNfSxSNvOrJgFAJcuwHlvMA2K1D+yRxrqVcS3p56uO72jClrdS0Q0Erdc9PaecALaD0iJgAJq4boRe+qZn8R1wV5gks0RjPrUdE8nycrVRPrtMBahqGnjoy7lTB6SqdL6D75L4VZN8B/Y5Fsky99xXMHBlU2nUshDiomIubM9hGJA5FZUvcfbgFOoEN7jl/nA5Mw+tmhH+0iRhb3uT6JxzxohKDfNfbP+AiUF9hY2AGnHr7OoPkYDHyWRywWccrEjsQzY1BxlJ7AX4N72XPQxFWiD1l95lqY5hC3jNRBwpMDKLwOgsVDvY7sEXUCHXk/21/Gj/fulzCFDUNTWxbsyjoZ/u1JcPGsTbny4EEIDdTxdwLNChSspP0Pu/EAaXWx3PO/VZxo9CehnVEfjh2Lrs0xbRBDQ2ntuwYomzJSzfKErErXXECH2EMGYJfNMSCO6y+Tp8GrkegHn1IZuC6/15ATSpay/dIPdPx/27JVy4ZJfDCTocbGPoF3Trwb6EvqEEH/VdZM8V1snwovaw20p+5/9FcIngHT/+wSauhpJp1hNsi3B7G3FJoYa156H3qcc+Z3wP/kgxtKB+wF2et19j8tLpO5jxT+KDOoWDMYQU2Byko6amE9nB87JEsAkVqro4tLbBlnH+8iJmxBUGOjT5cYr5j2P80i5hsg7daamaEpgXTmTbG9jgiDpRlrXLyKy1AD33Gxdw7nH2TGp5FV+SJaWbIeV8aB+q9bPNYKaFwDvTPEcchBmltHQ6+oUuFoT3SN7Rv8/jsqnKe2SbVWy/kzK5cyNhw3EmqO2UPoIzgnCppB/+85PIzmwy5kr9QpChNnpd1QyN+YPLerHMbWyaVdu1aLct06PJCsqfZksuxF+1S8UopGYQMHuMcN+r0bAR3J4sOvlN6oHWlDkgnBIPveClIO3ZC2K4297c85Msg1Stjj79LHf8jJtz/bjuMYG+hlJ7ZbNFq3NHq/gwmDu0Fb0LDv5oQqrlmlMdjw7owVsWNddhq6LsS06qwLeSHPkIqoa7ZwLNDXX8+xXV5YstzN7BpsSgHs40DLMxj3Dl8EpZPH94wfwnkonLwOW1bJPl/dxVBAxWcoEC9ZRbkIoRIMzeNPZcmg9Ie+D9jwkCK02Sst5uy/Xvf+9wjeZaiUzcgi8dEi7QbsSYR5yEF/bm+GTDQiWU0N+1NQfz+/Dah/ddt7Qd/XWCMjinWhCnxaeheUDyZIlyb6rbDcjJo76bgr7dRREYzDLyZmfpZkY18wcrTJFBRfEF0/wud2+M6d8WXxY/3oJtH4Utldrq0B3et3bkQM8T6/9ysJltpZ/GcDFhc8LSuk75kpoGJQ5AaQhY1aea67uEW95gE4Io2V7kV9TFp6u5qii/+igxKjv9ayRDD8N3kO32nLxZ51j4H0KSA/ZKhflbbf0iZCz63kC2MG/1iNqFwX2dpVPPFrY4icZOJcxT+v3N8NYMC5C4kc2xhNf50ZqalimZLdCv9BeN3CEkQ59ede7UGcLV9oyA094iIQPXS7+yjTEB86oUzrhUlmLMo5MqJ/kiDOhw0/tfWk7iEFogIuv9JmuStMhMN0YocRFv3m35iXoC/I1NhMsEBOvcjgQEyQDTQEjQNQTZmoPl6e5wmhOQVYWbKwBJTRjwgeCVFj6oES4ed2iVU4g8fGEhEdx9fSaIU2mzZ/EKCeYxnP6/PxgQ/nr+t96RXMtG2EOYD9iZp7pXGGPdXB7bw63fEyWfxrTVkqyXhtLKKAcxAE/OkuiBR8+v5pJs1KELVGDXUUejyapU18CxDn97XMUg+8kxAHR6uMKXoYB7lLxZbX2mYpEzpbRbNqEGDDpryfLyFkcdhxbWdWsdU9Gk5fT/9ycDXELUSvoFpSpm14efZPruBGbOrZFK15wbcbddSlfZXNLlwDjXZ6Pa23MgUaGM1a2UaPGVC/DTVIeI7UQYsqB3J7+3nBknLF+EqjqpkteOmctfKGZZmho9VkHZDobqF1k2cWntb74ajwCWBRw4EF15pnxy2RRO4Oikozdb3TULuysj4bfJQ7RrZSuWGmvwdhL+mKULroc0808qGA2NVHFlhA1DWn1Irdj0zdadEMMNFUtHX1Mt5RxraceVHgU3Qv9GHGw9TIfvm4ynn6LcnZinYW35MHfhdwHrfv4+Y+mW2V3LDJN6kBd8RmJaesf7Omxs/UhneV8P+sK/r84Bf0HVbAylVZdqtxxL4cOTumdOQV3prdW3RjiAFxdRWgPkltX3U3kl8p+nxmmtA930SKS6f7H9UX5lVzSFdKL21/MniEWx9QHR5ElmaUObaFuvEYMV+0z7eEo5/uME4NpBtAIMESyoDWXO3xV6WujpaqA/vIRzFVEM/ABAUg5S6py6CyriksB0ReV9LyBOkC2qvAmCCSeBBEDTtV+kl0AvibF8OvyUmqUmTBu8e+ARH9ehj3iQGcw71MTEpN+mPu4GwIjG9TqsiyOl2igb2XJFUDDXEOeB8RsL1HU1QunlJraMkfRPX9cph8IAltizlTXeD9KjWwonp9RGzTCTousGrA7AszbWVAvz31kyBIJLYwTwS/NV2DzW2a/gmbxlgmn14Y7naUHCGPHTD1tA9drYSX/OgQwrExtCVUfFibkGYkoAWNyzmKXElDR8eZBt3BrZGt9a7OKXLTFE8WTvXc27IVtQoshZJboRjuz3NV4umTUYxz1YQcd2/RyMzV7pIXpIRP2rIY0Dd7cVxhQ88U0UGGvsiq6wW5QWugb/LGXq8wo7cOMenlfwXtckowCV5qYZf7zSi38+RwTxkXiTpQsnRIQSFLg+TSf6sR+r1muI8WHADbswKtuuCKX9G4nZfLiKfw6PyDbTItHfK8fhpwvdH152UzdznDRceEJWlvjm7NF3eSoGcB2twO9bRVcP/oQHddBl0pXqINJfXn6cMI7QdO6ZwurYG0ry+crjUqx2l1x7M246gK6nulpxlBeVspWQl4V0/eIec28V06W6v0ANh29gnE7n4aTxve2jppO3p7KfmctFasJlx1Whhh+zXWeuuNg/dQ4N858Kyt6S34DDdVZZe95V07Z5++kHTYYDIWyBCR1Y4U0Q6ArSv11mQI5Es6ov/ecpQ8OZiZOLUvDDuTempPC9RQedfkFAjxs23OZwRq+1k9Rs3CCCZVAs9MHTYfeUkYqqwSBT8HbBUvLzpAhfriSkAwrOSvAIMIiJzE0EPVqOcr4m252sP7WFuULrBTQRM7F8eBo3Z2kvXz1VoTuP0N8+E/417qCUUWYRGSBn4nFFYIxVtrfqgLlwyWgKQxo1pcw1Io45ij6zRFPjUbdHP+gerLPNHU8d0+GBixLZDHMuZvf4yxXIYMVEnksdiUXK2GDgcmASGBBweM7ANj9NHQQE2aRA6G4wOS1cac32Oap6HEcYH/7NydcpPmEEFu8OsVdiSLNI0SkqHAvS+/43xqwjp0j7HiVf4tyXqU0Ok46qMcMHBz4opqIVW1em5tELgdo3psAHd7ji18DqVyfNeAcSgzqKYpURQ2h9qQX+Eec26CEI6LKMLHPrrV188j3bZYfjJzKx5Ne1kJSrzFp04JdI8+EWlbuenpEjqk6pw4m3ljGJROa/YEE7h7J2B4Suhh8RKSJTTq+M7wRvLeD6Gh278d3lvhvXJqu6eGRLNABflVUXjgcFzdksVdOgEdtKAbqrtds9QJxnE+Q7Qj4h460thmSjQulbq92De7ArEeYCkbnyeYDTnWdVAxOzEDS8udezY5fIGWIa3TIMHrtbY+LAu7bZnjHgeKmYShN/JF1SzS7fT6c5u5I1wzZ0K0itirIIQxPFDPXJdMSkLHoN7ZUcyePilNOCJahjdQXkvufcybJPiaqdbn3XQIh2pGBtWQSDQ1KagCfd6xrSttbrBKVw19EQb6tA0OUuT6rNTsPIeocLzuJvsFRUxQDSIWDr6NJhXG7WE5LKmPHqy04wffQYG2Xx4J//zqfieZleDPGK+nD2mEnGgGmOb4NyZRLutHW9K5a4wdkrqkpX+w2H1SdQbgNyWiGXdANbSGhTBmySJouyBRzThLZHnEDE90I27EiUMSIrxLkSnqSl1O2r0rNpoFA4k4fjXJaCYBYqWIDLZOCmiJryouI6s858yIac0dBq/IHw8YR7gEZYsQdLGvdro8M0oO7IBYWPCX8YDbg+/yVKcoxjTPJiAtMo0s9T8tiSF6xuI4VyvPqyEo4XeXwTJhRdRiH4IEAQ2N2PQ6pt1zJ4wdj4KxWaBN/gLUV/0TGH7T0dj3ebJ8K3j15zOBRFqo+6iWibJI/bTtEdJl5BlGcc4TPlMhVTTRhr/ylXPxFrr3FNM6hlgzkPX7lYsW8YVJSN6TR9Y574y5C2CBXpUAu69wQKnnYTRNf3bsWQKX9ztr3MYD9sSaOmG9vCB2eKu0xu8UN8fF2Ymif24zQsMNgWTWFurK8upzI50/zi/LRIVJoyk3OiLf3h2GG2RVGjlzEvL1DrB3oMWXFRZ6fWJP/UUU/+ycBJSIkdGft0XpdWtLuzM2Erg5P0Q+cwzkkLwL4arLP90uAuEtw6cpIjcFrnMS9DEjn3Cq/yx2oY907yplfLkv0okCl8ZBVgk270ZtBqj5ZHageYcUH/b8AWsN2SOPtvDG92zOylGZx928t78G9wjcn2m+r3MAGFkYnJJTdkW08Z2yRyv5g6z5k+OEnkF2ZOwZJiV2vuhLoss3soAyFRnjQD+4o2jpCExn9EpCY141AIvxSWnZLFRr+YEkYM0c7ygAWUeY8oMcPTDdZbAED3z7fOqWPptC033Rrh4pVFKbv9Ac41vN68uVEF2rhtDFqHYsyySJDpmSiTCTco7Jmr7R2jjEzfXfnrV90rOlgjbwN7luuLYfbuZ4YBCPA1w089mZQGQsC5qqrUH3FZXkq16YLgSkQO1hHZhx+R54ilHS16EJUgtJzuhwhQcm143cFrCGWvLsDHP8xTX6divx7r34JRlNgzs8zrPurgax2lMh6ZjxdJQpi61UjpdVDpmBbJKnLnYoIXuVO1mGicIkrxdxwJ1WuIww29PllKBDGfcTo0f1O7EihcN9JnpA+cakWrJxBYQ1uvGuLCyt0c9e1huPUM8C5Q6ItlHkD78C29HvJHBCbmrStsm00WVRIJ17blAsi0oIi/5oY+Dm5LH3RH02kfeJ599neU+2DRgUYv/gIPbGi/theC/JYQ0k1h0zgiYPb5A0dhQ2UUDfUWN19C4MmdS+gfqLjMmcVIXp6HNt9T5jwFc/wN5lJozix1sCa3id5SjnaFSsdst83KJ0GsAbYw7DEHOLkll8TGEVQhGzzFuSHXehN0ZecODSHnpKmDE7xHH9SOSB64VrtlKoye8jJN4C6javVmELU5mgE7Oz1dJbsSiWceObe/j5sFYdjOqUsaAXhpBXx3WrFOntEy2oveUnozSGLMFAuQVgEEg5Xff4CvoBwAa2a9k2JtkcOb2tRv9GOcw7SVG2VtxVdBnEO7WilnXc1rHEkpq7PB13oqh3nmpjiBWqBzDJtuiqIxcw0fw8W1cL6wIiKeMKfIHMNkL9THm4vQIdY7RehL4dDrU0GI1Uo/StVQeIddF8DgMXCWKAcFsJ6wyC526pc8xMQXQ81Hyi/0RJ0gaIXTL9fCthJA5bJHe2A4UqEez5c5Yt8GNBBKT8f8FM/GnmgJmZq2GQrKCQ/V8mC5qcs1qslENH7J+AtRYIDTGav/zepXBw8hEmDExe1rFmCNrRro3cSSvlZSwWpAKi9X6zt/pZKiS4oMMUKiz/+9UvhzIEDEQW5MhZ+FcDF/turU6hyY92xdpWdvm0Gu+aoRqWsavhtDPQfqFqWU+iRsdgNwyDZ8KvYZkAMgLnfc5zayqMMUN7fgJWGcM9pJPmQRZYev1QICx4t07xF90ZG1T+xGeh5HmTOUy41q97YVgp0bnQrI0uFKSewbv1CJJSTI01rNXuNL/iv6omMIrQL4kDteNI6OYXurRA8l+MJmHjlIae8FBIEaA7eI+0WG7pGIbo0t+SEPdX/IdElKgZ+pURIt9bEFUpaEumfZ7bM88PX3WP67II0euiz9ubEdTenuRQTJtVnT7yxBKSIv9L2irUY6odLAuU3PT7kCsC8lTMJmWL7PfsDuCkMsUpQbrIKPvv/dXwFUYxXtN2CUBThLQkJSo2JyMe3rZ8wtG9Kq+31XWbCw6uLoxiqjO8VOQWiLxZitRjiOKhwWbkmORW4hhNhvQzWQmQDhs6Y0re/yh/7FqcdEXencUSAfZSasrYWdpu7kdWGEkM8ARFKEKy5s5IDJnyGWgrkt0aX79AJWUfg5aRXLxCdOvDjgUQ8XNvxsJxES2kSyxGsfiaHfoCJn5Jkw1gUBMYocqS6i0vOqdnE2zM3WuqXwfiR4r+6gsYANi6O3NhrQX/zJjDYQGyFAkeb7U/0bfLtwkqaH22+B1Z/Qp6lqwIgn/OjERhwP9qkw3pvw/TFc3fw2Gh1bPbCe7nZia5nI5sZp+v8JlT8lB+ZCFOAznVYp41eYTQuYcL4Gv4CzuV5b1cdqQBeI7NQtD/ERF2Qg9IFWE7S41kW/Nwb0LU+OfW6ahAlcAYk/xvATqrXWC4xn43ltRKcdY0IfxwUr92KJLCrsBQ5lCUaf09nzyODE8n3wghd9zA8sxvnJU42QyHAGU7JmJPpZzYoCZBzKE+1b5lh5i5kisYOnJ8FSxn4hJEjfbCd8JTfhRtYJN4AN7mg2BUs/0dFMb7/epb3jYdSO1fgi+J6NZgzMfbutEfppCejMdvfeTcF+bXSBaTC7yxIf2zxeOb3clWLKcqALU7Bqxyj9amCF8sc5iafS8DEwJvdZwecdxFhZ9blV2cpafA0mmWtzbf5AEoio5ItwBVPGXU85VfnhQ1wjap8ncb8y+yoicFl0DLgnHfF6HelbK7XaitMO4PReFeiMWGJ4GadhTmWs1043iKb/ybotgvhTg9y2MAb1xJdXPvJAAfISunLFqbP0yhOaxIQ1vezYsqfg2aBysrxLQd4YgW3M+FGdu0LFMUpvVo46ou8WSoCoo77VoY7sRJGeM9GOtsDcTnuyOGR1wKk3QZ15Hm23Aq1Jza5lX1Tq4+DWr4/vtXpWxcn/yIi30MHnCdYpx+otV+y7Bw0r8ZyxRTenfmOzJOygLQWFCmdphWwPyxdmHLEm9JpJKeutlTV/39pGeF6mutDNEgkboV+MEUNa27MM2coQiRfn8CwCd89/qy9eo8VAwCCiO9YzwhlPkqWbzzrvNIxqraRk3qVfHM/cowRMEwSzVRvDamL316WSB+468flvGHkDIEFO8bCISZWNOpQrvOV4PoQWTjGIw97/OiUR8t1AlbX7fJhK6lYVmCXby26hI70+i2PprieoeB/0A2pT1b/ELgjUHjL41DVwICEe+/tM++rthWu6cU3fMFeFrfPeiBMXC/rFLpfeXmxM0DKESnbD5qVxD30+PAhDXqNknoI+pf2a34+QswOlBBfk9kpoNGG2qYN4XxEl+0P9Kf/co9NUUCflleQB4TAa2fPV2d8KCCszIn2SEkkuOqFfee4zuTlKw3cOTkDO+ajHmfXPOafGgb/nNu6DKkyC8n9Nt/zpBCRtqIjfnjiCZEpr1F2hrQ8/Utz/X5LxyoGraYN349jAlZQRtCw+uD60S4lmeCweXLwHicqvpAQDcDMa7jmtmu9N+vyyQ6RfPw0ZDfUQucWbnQx5XzS5FW3MG8ZJYahe9Oi9Zjh/MZw0t7Z/Z/KakTSCp1SRiR+32CI0ZVXk3x+bwcKzpDBKqb/NOH/zPCoadEJYJWFxKhNyEX9/NImp65DnAFN47TIot4g9IHu8OPiWqUdRQaEo3/nzhkM+5XrXTnqszHOQjofO8qo4fZzOJ/+4PPN+UMi+ob2gZU1Rxk1pOXhEpG0V9XMeXuj9Dn3aj0LIcrocgpBQCNbu27JtKDST3FS08jy/8RULG5nJ5MZ8QuaZ8bGLGlujwNQpeqNWeYjtBiqvoo92x5oP+gFTLsPkncHfEdbyActcVnPtdQiJ7tXrHCCiW4uuxILL+5KWM6JfXg3NCtQ2d5TowShzivf64ynRqgB+aupyeqM9BdT/EFtsRIOKS410L/LE5KgTYCWSy/gBBe01X/n6QTflsmq+pZA+6KfcHFPUUabqHaixAuvMVGIFA6f3JwP97JH4KrjJzw1jUkS4sf2/ATTC9+azMb6fLcQeT8clXyuqkBFaDZEijq1lrCnmlT8tsMMc0Dtp4cmz4tldqr0HTlKWzn9RAyxYhIGnkqt8wtYBwkdan41qRk7jy0Ng7ueJEoSoZu+1ItobYCSMWryMlAGDbNzU5YN25Lz/EvC79m4HssBSKo9MghyTNRPGBcVFo8jxZSJNIe89iQlImgiyq5oPy9VbuLBsW0KP6ctZgZTv+Jf4eU47yxT+awqaBAUm4xBCvfXnUg+IcyHPWPpeVU0dS0pTsmQJyr4M/8H+HO1KnckwsGYgW8Ee+rMKaTm8r6zIAdexXi+mmSebR6zq4Z781sCzvEdAQP1uoDSHmrsCd0iG6y8SykQ/YWVWnjX5QhTWlb3FRKih69P84GFfJI8D6HxMIch4Ynl3q+nr+xzguG9RPpW+45S2NVflTy/9znhxPDjVo8Jppzwq+qss/DtwSGLwWVSK01lFenj/ydzEvHm5GRziBOROZx199zEuGERPGV0CPRKFowMQMhiJI2a9LT8keqwAuUV4WDnXV7vYWVHb13tRP2aSSbHCpYOax4NNuNMYJz1XmHZ15JnBdUPtapTffo/E3yvPseaY+pIRXxtCmp0gdqw8uxYkrpzC6eCfOuf2aLVylaSy2mZfALbrrAvN054HeuLlv2FWYZYg0cPSPRWb6T0+xbuPXLWnr3B7Q1GoWiI9bOgZt/jY+ExJfx+lmUihZaEJ2SlVNbuk3Bc1hYQjkKo2ZFHYDSRmjocGtAeZ1srEr9dRG1CBkqrjiQwMnHp0GF5/kgIc4ZOn8u+rdvqCE34sq2za67kFJlnLto5c0ng8u/VzFDjDMJH1ldV22d1L53Ldh0COzvAFQmGxF1O1eR1/66RPCuCQrIoS1rZQgMHNHZyb8EoMntmFrQMqp3jgAMxnmFjYT3eaA0oyLdSTlRxg5FA4IzweVSDQ01XXbBb+b8MMF7ylXF58+CFSkEIFGo+9fsVRredZAJU2ULHeZs7WBP1hm20McWDF2cliRHC7lFg8bFTMBdrcH/4UNRPK10+0SdBgFjE68Y/j0ImnPFuaF3hbO/0174YgQwIwM0LeBiBxg9sFjYjyHPcOgShYn+vdYdRtYSM11ZaP3mKKpwC2cL4aAee+99+ObeCks1JtdWk9LVDxm6LvGVwpzoyvv2iL2Erfq0gjVWBfXi+F4MDGnBeLGvhD49tfFzWS3u+Zqmed0H5tJsYVNY14podG06TXnm2nktBw63oWQj4tIRFuZ1CtHKk2UPKTQX1yIH+TQjMn/kEznjN9sfTy2/mQodVzfZS8izya2KzUOtWSPjZnByXRBmfygaVRDfNjKcKZ4BLcpitpMTaGQqhjwX4g6+RasKBlu7+aiZJDjrEdDSC00TidIVGukvtOw5okfgf7LzEcNPlMradQAfW/wRIWY7fN/lmAT3dleS+oBQGMIrSe+aV0famUg17iZsLuyKvsaB6wAyI39CLkv5hwt5FoVvUdg0oKA+bXx7U01pJXTs9OknTjPMgbxznSPYC00mGRVRpf0dTSAQdLJiEAM/JbrBaiHENpApJaE/kVPhMFLDpSpZt2YjJneF+94pLu/gCml+wNB3NIKqY/uieYwX+wQF36+9MlmMMDhi5Kua0DuHuTZptEdASQaF9hZYQHuuyIkzXl52LHYjGT9U3Cg9A0+Xl/xejlXXVhg7tv95jhtf57781XVkLCtcWxpsmvwisJQxmBNA5rEiGKVcM4lx2a/bO43LVlaYgyBghTrmb0/KGuU0kVqPtCyHEbw/iAS2hDokTPIVVMdx9k4E/g8dbHqvhIj+hFcw7hU3T1sBQ8aAy1LifIIXDOqsPOxwNYpPYWPe0itVqrA1q6B7JSji62etNZ+I1m/88HGvxTmfzDkbk3twJxckVKmCGUbBQgmIrtr4z4HyRYr5MaLl/Nk/AwwsXBaYNsdZaUzwnHNNX2KllMin2Bgm6scPxclqnojTOmnvxeRylJJc2WCXs1wrgYRT/oK4DMlxIJdJP9uIaTjMjjyfii2bGVA80MhgCHv3dk4gLtGwK3yRbSSnaqaZlx5CoX4AOiYjhUlw8e+68vVuVYZrdfuBxiO3cmM8X8XsoPZv1QDDPJYe2FmGZbMVFDpw7mlsyfsC0uAdlsX3EiHSZ8snDClk29Po2Exqcs3IHyujwHncajDsAQ+HZgyqMZvFoAt4apxc9Sd1vgpOV+esvOYD3iVfdYkg85pCjP/2j/1VC/WvCJ8wWfglh3KLMYP6fyNK6Pd7+tCZqJe12g0WwosI/08u8TZofG4LudQ3lsPCr0RHx/mou9DdMk+GP4nCRk+kPMimqrZm5XrZHoGCC+E0klHmJzzVCcVREZUVovtI+1DeXtY3pxVgGb+WPsA67hXt0YrjJo4asA763/kWIMEj6r24BpFe2Mv0/POv7WaGOH+w+gAnd/AqVffMVfTg+GBloJJDhtLhNxvSXC6qBk5/L6oR9+tayG/v8PX8ruAFjnjeObw1bmuJIjZcc3DuaK0Hb3hOdZvoKCDkLUyH8DDOPgThIX5pT0NbzVcXvxGSq/yq/jim1Ex1TQ1ZVFz0vpJTM8l6omx9zGiubkk2RQoy15xqLYGg==
Variant 0
DifficultyLevel
695
Question
What is the area of the shaded part of the figure?
Worked Solution
|
= 21×12×12 |
= 72 cm2 |
|
= 21×4×4 |
= 8 cm2 |
|
= 72 − (2 × 8) |
= 56 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/06/NAPX-F4-NC24.svg 350 indent3 vpad
What is the area of the shaded part of the figure?
|
workedSolution | sm_nogap Area of large triangle
>>||
|-|
|= $\dfrac{1}{2} \times 12 \times 12$|
|= 72 cm$^2$|
sm_nogap Area of smaller triangle
>>||
|-|
|= $\dfrac{1}{2} \times 4 \times 4$|
|= 8 cm$^2$|
sm_nogap $\therefore$ Shaded area
>>||
|-|
|= 72 − (2 × 8)|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 56 | |
U2FsdGVkX1+mRxS64K1Vw3MZ3fap1t9/eZL+LZqJhujNKwUKysrPrsgX5Olzqwo0OkbM1adgGIaHdx5k1iqjim/zzwVbaTQn1xpqKbFaW248mu6tYbYbePLgHUNeqgAPoD33KVaz5zrWM3fP6dMk6e3Wwto2mqIDdj+yeoVUbqB/t5bCNMydo/DqNzLnVHVRnX1u/x1g67qEBeqUaBcYlAjjeGh2fFk7b541cq9ThCsAH1hXzRgL/SU1HAYRDm1rYNLPfuSidmNaM8LoZNmZs6dvxCsLGFwghmqutRqPVA12RZEouU/ZTtFxCb/00yKFmTnFY+0K8vxJkolWw9xh6snXhYasqteSbBK5rAO+VEF2XP8ilYi/eDeudwZDmQqnB3xKPTNYK6ZOxgxn65wtEvgEkltf5SzYzrhCMyf6+1uxkvguSJnZo09+ucnUJT3FLEhNsn0g66JxbtvqRTMrKoU2BFkYqcBbnQeHfcB3HmnqVUexEfnCueQOnbuuORtOmXeKyl8PsxhEMpnMmX++dKxykOjRQLAEGdP/M4xLQ8yclsC9kzK0Y+qJ8cQucmKzv0m2evr7PDTBG2tJ8QwdVJ+pp5ONK35Sz2cGn43DFaeGwa4QXB7qZ6wOwjQCykW7EiF4Mlk7sVDd/g5j74Q2EYxTFZLm8PsrNlTrqon8rQB11VTFBAagnq/snkpKgjxV+V5Ha239VevtTH4F4jE91X7Vi1tcmOSJZLLpXJ1xdbEYyYM57ZqrgGQzG/qoXpJiqTXA23UDWCC4wZu5AG6iNK2IBaFHEV0AwsletvkAom+ak1jWp4Ojkjwk1aAnAzrjJDyd56GhpWzQ9WS+zYBjOqhpE6S9Nq6uFUHh3sIJwPixH3V/564XdV4z1RvUNECxolo1LVMKX8kFLfVzKdQQIenHNb3zYTkhgjEX0puOboR/7MCAjWcKFUbe6aZtPHX8gzNuEa2tQngwti/jujU/03iRcuYyuXfSsCcSgDbdNzNJWO99Uw1hty4vqoVqTrFwi6wzZE5enpLLDfuJ4wZuib6G9fvzueRPRz0IWZqPPhgystRGJM7ykMMbYA51v0cyc/TcTE22M3z53f9E5deqXeQoEflRAqLbdzrNt+S9GySJKLspQE0gEWjCfkzXbr9gGVcTWSXuSCTVy1S2QihIr7bR6FYIKkIyxxO5Y2xfwMoWRv4bKjxtXpkzgZJbmwux7mouc3tnh4dnPjKP0kOFg6WrlvrKMSqjC1g+elmkCetvWrI68bbYCYBJqiw+tBxPRlF/YPFv5S9c7KqpS1NQTmuvNCwFIKKMQLQStXUmaFXKZ+Ko8PwaMQbM9SdI+7R/swiTU90/C5EldoqbLYLaiylW+tO68cBMyFV/wUUWUq6Ls0bhvGef4U9H4X+LQ+ZyGhHLeX4luWYOhrMqG2bnuPi/mdUGGsoy1qMPEsHkRJ6f1oGXj33jqgO1t4VXWScmAKfwLBvwKLKtZQ+AzWpOLqCL1mo4i6PyMPazDSnk1Dtf38mJBZN7XOgbjE357S0ljQ7Re9/9pZM9kdZWB/s0Xp76g3mis9ekcRR+PNa6+NEEztES5JzeKggl2Naox54wtE5SwdjPOW014DcYWaTIizKsoYeQXF00pONYoK+aJVX2zNJ1ayONME38JR4onA5L4kzU+O1vPQbpRgELd58Uc6GinJctiDLUImNR//Q4aVpbTftGILTOlLkWcFHSj9+MkFRY9zF26FGH2yPz1N1jgJZrt86oXw38TeQ/WWKZHpTX468bzHVgeoclS4DOLhnhdBpU4wHpnwnMSK/XJIrFC8mgoXl30OwHWHNNiTauQE1/yAOvJUsOfjhPeUMNfFlNJxPVihNvRqSkcwkjtrEf0i7urnqH4oOlQdRimrw/ekTfgZtLD/2dv5y/ffzV7NqPBgwuv2VC/AtMImDz56/uZb8ENyLvds8HU6NLFIlVcARL8c5Iws/mnFEN4DX2qgKxD7PK9pvNJDZXNa2pFogka/mpZfyt1md/JtCjgwXTKNlomx7/pzWV9t1b+YakZW9OPXsXv/ZGw5cIhS9azsZncerJh9oDhaGROvIWXEJM3DqUFgKYNPAxfDY3ORp832enKdALcx4O6PH9jy830RFb2hOF8nW8IsaDqbuuG0ZlIwC0b0g1SFhjp1IPHCM9WxtRif2TsgA8mEnbxzGE+jnHxE78ec7DZtark664/AVQoWoJd6/l2Z9QSwqDI2gaQFIGDgYxFGgVmphuldPMJ1jJCe+GydETfz9XdXWI/fSqfJFok74iyYWUy0pt7r+kogCgSHnrm+FVPmviBsuUbLLv222RKZSzkm5wxyaXrYOnE3htcLY2t7rjn+jKkaYfRHAvnjlsPZrZRxfO1eNKuxaitTllzW+Wm21V+gXDpJOBELUd3ozifkh5idw+6EYX3RzS1mK/Ay/PmF5k2DRE4EtIOLuVfiM0zH+GkqA7wmZljdyf7LsFFrGh8AT6PBhR7d2BcRjiJgyRFozIF1IvYSRkvSbcy3m2lPD8valpdtj/a5reqnTYlnb7NWsPyAeVPLjAMHz/LMArdMB3cnDBKD4n1QffUY+KFITp8wvUF9ZZQRWiJ4HmkPZ9/15b9LLXcxgqVZB+maX0wCtYx91HKoqw4tZW1jRJbKHMYrbD0VPndi0PGp34EKd6dQqWfFTziHkNDpAGLP3BkTHdxL9hR0xfhzVAZcyeT/8IUOYTv8FL76gwBJJ2U3byEzZ4UTLYFPYytyzYf/G+fGqnRl2uQLK0TlzSVUHxkXVSL6Kv8W2HTtcti3eaukrpi7jQmbpHDJ9Dz0BtyaAwCkN/l7feTInuQfd3A/bxwdWFIpFnTdfTrLvzRKGFE77YISOXxCWb7AWMBWE0hZGDTMNOfuV4Zuks4/SaANGb9cw7Fh++TJgEWUzS9UkJ8HyPgWRSFZyk1DEwuctOyHsEZ+NpyF8SYmsSs4+at0dFG6ypaYYyoxfhQuilNN5HKH1EdZ5ddAt+mLBuW2kUBQG2IFWCJM4odhI9g/8lAKADwJM0FIvrWrcZ2c8YFcmNUR/KGCpsOm5ktyeQw4PqI2R2RS1ldieyLqRjyFjg0wMhMKBX9g7NrP7FDKcR35xVu41oqSX1T6fjpuAlDXGwW4okBBbSXVViwNGUoIsDdjzMgOWo0GkcbbXIpCcWW4YQWg96Fouoi/9r2PE75TxPWwhKvmjpVKzGTBWYQkU7VX6X9Ks1l3mDHYO+N9A2jjkQN/HdCOgCTpyZdDgJStNFJn8HFm8+yRwoJwDfdlUe7gQHo16lapdcJ6RnHL3CV9BQt+TE12pbx/zBvQtYE2e0xluiwkekz2pf8GGFQDWpq25xKn2RInIFXWYaagpqeyFCUaddQmqXAWoJWSjX3fqR8sAKppAL9mz+ndTkvnnVP1G+fFrdeQOchN+l2I9EQCabxNprT+qXVNDPHt3S+4j4xHeaUjnRbXtV/VA3NlgeXBojlHBlRpT+Tnasfmqb9wmMQaQ7JokVQwcpi7NP1+OMN0EqO7JB+FDe76rGzRFxeXVYBg5+vct5tWrGtGioP3oE5kfScF0Bz+WwDjToNqJLHYPRwdLDZ1EGZyrQKIacVFgRWKEX0tAkJX4pxTDr+LP7KZSFZWTKd0i9EBTx1ZmwzXprchP608jPjqFUWKKZd/EvTXS8yw00+BiHCxRQwWq4Nuamps/cHL/VJtBPL5Ah53r78KEZd8lcDoSaWY2qG1D8N8NiezoqFGzoA1fIGPFpC8C6gwV1AV1vVvOcyBNe1LTCucmljxMTnAlIKGwfkPj7LcsFCb0ihEaN3TFcXBuYvUWIZcml7RoY/Zb3YUNW8mxgrCaWGYM3oPTZS2+06Zy9hGcXCBj9re7NzXoSkqsZgeUBRQQrjETUS5xVm7i61HiDF3/RIG8XCCqvV7/pLHM0PLwvbF4qC2d/9CLWT5xAuOdRzsHG1LTKy4+Lhw29JDApYRwSQvtOumfzTtuyIEF+peW89m+T/NyrTTXgEX+runnCZcyHlrGKd7FdeWxlkYL8nQCpbqKcrgBQhrVOT/SzfQqOUFl15pqx5zBTxb0Fp7tpPGhFhvrQ1Pqncat6RlLxHjuM8bManaWRkZB8Pli0EKg4wWcKtois0MShqPnYPAsOC+o+GdZe9rUeIWvQu88abPk9uTQUBS3rT+IdKH4o/+sn1n6i4b5FaAiiV7FsAG0mEqocCFoPgh21nY31N/jqEE27akbUiloN8umlXYT82GhnYJBd4mktnzFwB0Ka1v/pWU8tZN528JpAz0YRfaNnaLxU/wMdc5DXw5KmGBsa7gflWR0LF4H3pLeTdxSHJI0Ka0fm1XFkpZkZALv17VCdjtpPy59UIvrCXigHiFOFQoNDkD4f0iu6hjUtOqMr8tpbVWW4xF4ldfCVPY4rMf+hoS2eh48IVH3NNK3q2RBWl/RhGL0YQhd4C0u1qPOYjQHY0Ti+cHvww2KY5AEoZZlRltw27nM2FZdaq5gpOE7SLxrOPkIObpB/yk0ZOxdaIMhyIhLBHZXPJgGSX4Ry2hZ/ukHlsY/JrNUrdTldW+B2WMr98o3KDR9yQ8CURjOWH5sUcfrTJZfJaDUZd6eLT3/ELdjR9WDykf6djaLZExEwFe68Xs0Ykj67L7kHi9cVD2slPE1DJh7DOSy8F7nan8jRxwLnGxD5Ya5C/G1MsWdU4pYSG22XQ4/5bOoF/kh/JfApTaIJ+JJNAmMCdEof05VAu+F4utzpdC+VunmXDVKUBwTHU3bAmAQVa5jd9PNbrDOIXtbxzmSiHzr8sTuJ8tvghcjmYJEWbupk7qTJVeJmmXHaIKmy3Bv4iQm6gEdLsdiaC7ecBltPKL5JSaW9wP9GUPhdJe87TmCUR8XMJNh/00lOGt9ykEbGzCALcQYcaXW+Qz9Eo+mlTQRFSJwC3NcirfaUTryTPZHptXfr7qcS0XU8TNnNoyj2ADpXly1DbkyYnLqaWI/ZWGhtGrVjqq0nQq8hjm6hIgwhZOJMjbAl9lt1uC3mM8+XHpjfWlM+Gk/2orCN27SXz/T4DlbSblzmzrUnq2hoLHkASnw/JlXpf4BPEgC+l9CvF3nJsQIPRYhxPi86l/DAbSD2OkQvoBDJkA8Xcatmyzyp3fVxEJTXzPPJ2CQcsVNgeBsMjN9L3QbcXb0+/kA+D1apWLw+AVXsdu33gO6WM2V+eB/DcD7B9U24/KPFKUD++bbVVTnkCjixUuNRoMXr6nzcmapZlaa6lmTU25HHFMDNUSOVtIKLLlQQslcz/P1iIWMIkdf9lo7NhJpneAvx5ffUVZmQ87x5l3XZAda0A1MNyXji3+UdbjYsbiGca1FcfuQPZ/+pttCw1e7EX6bK9AFjHqBrBuNUt6ozfu+EZa6GC5zV06s3w8y2UlsGXObDiem1MZvmClh3MsV5Ki3MVxddbYUoIzZUDcxhK3fr6KdiXuTb560ULFwR5IHUl3EspVjAMBxVUInzqIjCxNd7pXi+xIOcc8o9ibuPeg9lcsifA8ywDR/mRpnmMWb2ElTxZC/ri0CdV95hKGvLlycyVRNf4CFavQ81UCohwC/wVJ3wlobaQUTFp87S3/RX9XnMlQD12UP4EVhDTc3wVxRZTOY/AH0DY1AEXMkIly0om5Pwr5Busv0CdARGLVOuxY78HNmltIREN1TGHx/pitGPezJroCSW8SHYuMhg2ByRoxZW/FIrQ4RAeHz1Q16yn0DMK4QpNwzDPBhyczPPVDO87T3mL6hTf2MC/BncbJoTXAGSSBspCzg/soBxKDUYqxjnXKqorVjUecuAO9PYRP/b9779q1eNv6FaCGtow/90FaVi0UlV3XchL1c0aYn+uQwwTO6andac3iGsrIatdJ3g818KbMDKYOm2juG74d/XDVwq9//4ZOaxrSHXP7YYEN0qS8Gf0YAbx254T28iMbQD2eWz+3/ELlONcOUNOoA7nhxbGvgsReg3oR8M3BBBunAlmdCdcqDPiTrhozCNdtq2MonyOmFyupIi6k/0OBB19j+ndfsTgT1sNObTYgtwW3M3BnLOBV31WMTzsUSqLe9c3vjvYwVktV/ZEewjhc6bHu7X51uA6wmzM5eg8Jr3pW/8HTlrfRffPQeVNbpMhXp9Z1rFnoatMHaxGqdZmN8NDLhTHgXMJ+BcnkIOHlWbouHmiM1r8oYyxTKXarRWF1SmpOrf3Zw/PI6B+wb7M0OmRwcKX0VsBCSPhsaeVtQTuPMLCZq0cMoBxhY5Bag0hvuWLUU/h6BlN1To3Hw2++WxUyvsRrXHv5C5oWvDkTTLIsH042lDT3GmtRtFM0oJsE+GYbiJ3P/2LAEJmzVnpzQ8bsC4oERaGdAw70rOe8H43P38Lg6snRKBq3mWHO8Mo9WY1hxbK7PDfv3XXBYz/WE20j2VpFDll9FXsoGmmogClqvgdMUbyIAjc4lhEQTvRsOKPyLyEl1STyFaZd8YWkkhSqBuRYIOh3bvb8lCiURh3HLEjw/IwI0Y0xggp44kltz0RFqfra8ZnfwPtENubaBLyJA7j/ftWtE1kFlrbMd3HMJfMncvgmtAJJoUWuxGJq0PHBGPR263MHkebqBPyxqUhEP3xx97r2+fPG/SpfebADnLZUuMKhjz7QTPIo4p9Qf0kbG5zRoiIh9MNvf3Zu23LHOHEx8vYOxo3k2auHhmvnUkdqIZXHBIRFBjtx2ZIaaLrYGw2dDbl5eWk04P8xSzwv5bEXkG99TTm2V9ebz/fXQH+86CWqSedgMUnSB5ikbrsm+bj6b43hd8Gh+RzvfaJqf5vdlSP2JBXQtQY4c9fsoPkSI/Sh4tKZG+idTxbC8HqYjfp2A1A+2KasCrqAuHmBx8LKDXxPkaORfKyf9c/z0xa/UWFQ/t7T4Ri0ATNGNGL5/nJtaJNoDHUoiKtXWf7bksky9hruTD3eablJ4CJUYrM/oTv1JPl5lK4dBv/ud2Vdnzx2cyMwYuCapwFY30VbrtJ3ebKa3KSXt7gEgPtIDro4hum6Ln8uPXz47IJsmSrz5XHoIk5t2ep40M/iuQYFS+14AP4ke11r2pxkf8vedIWAMpPKT7iK2pB2mV1WT9BhiwqzuRhA8+j33gtzyvlpgeliaOmOCBCZnbe4D7PVX3SazP1FMQ6Sut4KBQrC8eF21cryyS6oHqpxKeM7Pu8lrYwDAQzKYvGREIQppDZfpDKJAvYEBT8ClKy5+dZDWRkJ9b8dq+uf3760K9kwDAB1b9SsxQFN26wlz+rs0OTac/FQjg3RT30dzirwXymVzpRowzavo4wNxuZ7OnNGiwHXSMLVZJ1Y1G0WlK8Ej9RlbpMIkORXD+ZqM4A6otOoTg/JSHX+9ZjcefdLIL/9rkebsYIDHN6lplOPQmH3PPjirxwQ4m/PEOYwEXbVJ4J2+Sdde5dhQAdEu9uKM5y7sxaofCFE65+A1zPQvEbdOwNalZ7Q6RR+I6k6DsmPTmgsJxjcc4t1H6Lp8GmalSBVa8vatoBRYLRj0UKmLpwyyCgt6uhV+0Xf7Hn0pvBH5EtDRd3z972Mso0Y4w+C4fAWrMw0vFcLqxRkI7dpAIgdoq4fjIwUjteguVYRl4biP9yIkp/xPUEp22zWEBQg4SGGk/ZEKl+g9PDUFpJSyt3QHQH4jk6vEK9OXEWQ12YAic0hwCC75E5mxuQNA5YpbNpnZEX7mTfHBQZKCY4uI7TvPzyIkQ8HuiKpn+dgSMQWoLfita2+Y/c2AsRpRAEiWuIA48ntqqO9076omTWDNurFs09BRS/nd/ycvIJfTmpje41NX1YB8pilmgPxL6AEiMLdT54QCdGNak4yUKCW19tAnQrPWHsiDwQbOmTN9zBDNdnIJ9AysiDXZd8pG7D/IGgDnUWl2IzUpFNEUY6idOxYr0u/ot1uErRfb2Z7fQ8rbW/ghhhH13vXi7Y1ER9DuJGCEjEnPYfdD3R84f+38OMiLilsDYKpSsh8Fn3L0tPc+xS2OhOM0o8MKCNJn659jdREtUB2cFOotQ9bI4PWRHFqBiioebkil36czOxeO2ikQuXFTLs/bNhfj6cZyZ0ZL/CYm41GJWKUr3+t+IEwS9U/ZfC24FqG3Ypom+s13m7M7o2DQ8Et8+n3w/sRD+NAonCpv5FlvTwlemkoQIbqoKQ0ZPIMK51ccC88x8QJiOOON8z8lhd2U4nYqjWNOfHzDQEeO5ARMdsxcL/dTq0TnJKAhDEVn1aEcNHXzkpMEPBg7hJVW6HMkoLUCTbv9cKmfNB7aNIzpIECePklROU8PxnGQmvmS84WMH0NWD3BnI6emV0ncAiksNUceUovsT6goCmJt8kqxB62p9ytlT/JAvKCZUmCN4Zl2B8KK6iNZHPHsghniWkTG/FwNRuppmZbL+U51rwWGE/UyPJWahcZVyphtqJfU/Qb0DHHp2i/+Heh5fyLNaBeL8iEdN/N4keZJq8DNMGEw1yHluF3O1yZS44RJ8OfPKGaVjwlksysKtgWb+6BZcK3YeAxX/wdfDK4vLXWg04b4gyFuPGSgnHeTxSzYF6MOvsdeQxsghLm39cfqYtvTkK2os8XXGAY3+2DUUbZl5w+hcjeM0XpCLOaf5G/o/zauW8fWU8lATB78o8k4gVhutu6qJcmfLe7NKF8TaN9GEhvZ1WCwc/LMttFHdYL//3NU+eEOB4OtU5KWxX/Z8TEHPr0nn2AzfO6ryg+C1dMkLKlsfXriw7sNk3ty4PII5NtBJkgcsEghvaCRvm1tjgRVf1nTWKqXKKdE0Moo4r/68FDajJHWe4JSC1UmNz2zYR+4cLufZ7+X4zevD32eWeTQZq86HHl8jTpCpqZLjee1n2A8nPP5fwxOJZ0bqHgKJyCwkIN8/Ww99b1wK2++vf+wAk8wmjeKbT+yRysSxN9f/vON9ydKjmMDdZxTv5ItfCgXyNQ4xBjXpPCVF5ZVrVcNG/RfBZIFEyQN/lcN499dDIJ1mog3WxE7HwACNV2BsYO9r2mpo0G/zKEolWhk1U/+HS2H5vucC1LKD/pxNiAAj2oktS+tfe96hIjHoGUfqF640qKhe35VZ34CWB133lwMB2g8jfRu98a5OHit+6i3L9LxWL3ppL+J05dlwYlA9it5FJYt0by3kj3VnG+WXvxCeUK8780QRm7F7SUh16BKP9pDk/p22Si3kCtfLK22B1nbdwREzhAt9W/AAoo1eusg73V6CPPCR9ud+FGVZrSP2mcR5cfXoYc36LJIedVw7UQkoNGir/YVSMlzUQrEtgFoPiyrxh2dVgLejbc0EhlTixbNW3z/kM1VWis5IDN7l5Q0jQgr1tTbm8J0eSaisyf5n59dezTaJT1Wvd5b/UhhiYSpKu2VAikXcJUiEyEnkiOI5EPlLnr72MyYDvbtCX3Tsy5ave6uMgEFvLCmFS9Wabk1ldKQg5s9f+KlVb/oGRaEM5Ib18COc8VrZ9yFqTEDz8vzBvU2bFOLtwu3pHFat7G/gbadtEH0fP+plowiVVU8mLlkE/BFnBli9luA99wSyUkDGhO6N+zcLXbrjdfrF3TVrX8sFAlS8Bj+T/Vsp4Y7aQXmu4JaZFDmsSB/Ttxcc1snzLgh1ISYgMV9K+W2MeIDkcUx4SlyF1V6/odFCrUqTdcVgoh3NQ6PHVYB+fzUduXXJZZihM/guC2IFg22imiaswnU5HlnCIzJFaxAkxYCiivic1Mk53/MlJ178p0r3fu5rhAZLFB33Z6mPn5SCDNwNXjnCKFGfHk0wR7v76+J0NNi8+5LK12vJ4gZ8ZwNi0v1mSUEq+FrSAyd78QQY9d8PqxPWMvPXKk3IhQqpMeY7cATOmsgNgnZPb27Dzjm7LfCk8EIC1CYCLgFa1yudpDYghQtbcSpaltiN3a4XTzfrvEY0ckcdt2/G4qHalEcvjGl7aTDuwJn1UuTHrsa0Oyh6O10oJxoslHI7FVpCytHxLUq6eE4nQYQi805eZh0M5OvEuvhUGoVW/NtbY5QX5KSnn1GU8MfenSz7YQ8PIWB3/ehqAwX8GpUaK1r14KDukzJPhvBp0TuyymvLt4bAnPhFrLgh0uvG0A23JEG9FEMTvwCbcBEN0R3Cad5y7VYW0YpNc13JSiXOV93D/TTna+iv6G65m9ZhT/xX7MtD+JmhYRJh7i2+366NdndVGCxCF4r63xuKesTJZJAv1OyMf7N+g6ZeRGtUw2DnSS9A7XXHJl4TK+9qcQv3fj3DaQ5EOXwc5/hywLtn4aimA/LWHtuE7ErRIuJlkEy0Yamd2VBpZLBxwEyGtGm3V9ihBKN1HXUuJeZP8HIvqELHYLETOsNXrkI14LDnCcR9fdj08c2CJjRuK/CK9rOuUXjZ8jwdvTILfMPyRD55Oyh6uKF9ewyLsb73gvexBEGEcwLeRWZYmqftFBfrLPN7EZntfwM2/t6BPOER+Dds2Bc7G5K3HVClnCNt2cXK/tpZYCBGMsAxwu9on5/vblr1sjSn8ljDFyYCV9HhSqm9N76nuZZtIBjt2+2sCD3TOCEsh9mVNLNoZQU0fQYMzv39yr162Jv+Ad/RoJghI1zQudeBvcXFBPlW9y3vkrbnRBerc3XPH2evk99Zx5rE+eOUx5nugxX3T53HGeelLBFrQK9QoU7ObFighb90+AfCh5bIRyEQRCLMsYc94ZQse6omXbODaOH1W+/VXfkiCEHXKrviVNOgxmKfMy3gX6MTv2miMPE0nLnSfQPsZG2K7CaK5EMQCYbb7wARJPuNWt/H8IOFV0hmvHe9wu/V9gwjs70GEpErVyFoR7mHXZb3XxjRoFP2fqXiLGSWZpItMYDr9UXBxXJSIs35SrRqKK+ZDtJYrTbXs1VZwXT5TifAScjm9z9yqQXRQpFVOCFOoCkzKm2u+J+aQGfhW6vg0eQpKwg+UyPNkHqWRRzfkH2rR6srfnVqVp//IpfPO2Aacm+6/R/BQ/4RnJJt1M56eQmd1ZN4bgOXBakod/rvch0CwSIQOK6H2Kl4JDJZyTBNg0DuAcpcS6H27W5Bc491ivEAYkGfR9+QKhwWGb+I5pSk0EFy/1pTz70I6LyUFffhuBHlcpeGbKHih5m+pCH+nKe73lbkqyzZzTyp1Kmhdq+wo76YpP11/SNPGYO90WFH3UbSDEpOUiERm4wtzpRK9DztO16EA4qsgkAT8WEHAFxQJ3ubl38szzHpmJi7XYNpLIUU56c1rccVmL+NT76TKqjLgjxwbqnBcmqBar2vfF+0cH/g8pHsPKNKIFnVo8z55HLygfau/vt9GpWY4CWqeU6UX6nQex05Snxr4bfNZWVScWXZ185WXFtX7l0jAd5ENMoVWntnUEjMMhoTnGXNCs1tEv/d9cRDckx6qgR434S9tWvxLR/B3XRrv9oe1/gqaV1uwTcz7LSRvcRfackc0BUxYtQeEuy7U06b5lyavZW1r9MkEo/AafxUTapBWuPx8t8+/xpBfucRTCwxMyoaZs5+IcvKYPb/cFsO0Z6gvA1Rvdtx5ZgtFzg/EJHhTXXmm44RGRG7/fT3GRHJNDTuNP/pMpGwIPQn+Dn43G9EPU3yQGi4tMltvEJ9Nn4JHYc4+Hyi2R6LomSqyTedY8xIKhTz4kWR0RCI4uYendURd68xCXmsiFCQpsOTjFKXoerbwbvlj9OBF64Wdfg5Zow4vO9S/R19RJdJ89weNM3n8aP6CkXTZEorsAJ19goYSxGNV3YObPoTeKgRefCXoRgewD4IWmQJsmLrs7C25nQl74MZZGmOOlZxoiq3o3tkHt6tNPjVu4SNc3gyyy0uHf6sQgFngXYHIuPcB5x4gH8pl7Ow7y7Ohdf0IimBrd6VTleVLGAJMF+3l16NOiHlz87MKGuin7ZO5TiexCNiAs1Qw2O7P8fC/AprTp8RMVJgYTCg8gpNuGfQpuiui1pcNoWdqy0nrBCDPkhoy15dmafFcpWUFHjOsoKa7D3V4ztkJ9n/lnUkFd/gTblUliJgotE+SsZ6voPkMWCdf4Ml0xlOU7isGG10LlN1u7yCkKfdfdjZOjgoL8WZCbjhOvL0fDDFg69fae6+EFc+7w0EaE78ib9Ing4Ie2fLy8PN6VDLC4xlo0pn1qq5bSH1oXaLHkuFm/wEQtBmjgiGPiXKX7voPbiGm+rvTmTagnW2V8r8WFAD2WbBkKqUSAjz2CHKCKHsfiVcKD54V6Dy64eVNNn7Jwxs0eQmBXZuc3qQPNZwaR/mLgNOh9bMwoVX5nEPlrhlei7etggFRlP+PtQlTJB2z6J4dEmBIByqoLIYwDTSb/XghJ2Lsox69mV4SE8QKpwcjkiwGQSTR6IGbbk0hmDX1dzYxyGXgrAwizb9zLdoONvrK0KVbCYQx8IYZjSz3CfdzuaC7s6l+O7YpB2tcgmUm2Upay2iJt3QPRY21iWYa9oj2TSEVdDhK96D35/xyCn8F6Idn06ibafxRYfWC/h1jacm+u/GxZZ4oJ5D27zlyCWUiCLMpMUMfDG94k+nhxH5Tkq5ENWKZrLwy65fFKEG0PytIMiiwAy/bgiQ2gcBmVQBhIXi4KeO/GNEyCQj/M2pJTWpEjUqeV9vnOgQi7DO/wNnLwuuzVeo5t+E2MAYPJs4BgyijRSARDizg7sPOgwJ+FJxDgM3oh+o6uPcqvu8o0PtCPMjgEznRnJ7jsa28ML9TINJe4UHk9ka8KKx7c0NeEstd2TNYmecm+wSE7unsO+PeevUO7xpRAczGS4Hen6w/Khb6kvNF73/B8QsRF6H0EHFDAA+Pgmne4gJFM9EIKo5wPadIIm+Yuf7kPHV2alDwYUTU2WzFU8QcN9OH8Qvhs1+UKChTaU/BPV0Ir0HkmNu7E7uD/DSO/rnhaZMDmRTJnOtkLidbt42x6humPRYmoogG1ig2MA2471H8I0ZXsVKu2MlHvPmOuS3+43OSFMBNOfXxir94K3ebK6B/oZIMAVzs0xosvdDj+QWS6TQUSn75AC3OaFi0pGETJJqpTHO03pJep9wMto9O4uXlkX+9PiNwKvDse3kpnOif36dK5lDdHeYpRzzo7eZ/fOAN/UiokGvuw4c83xi1Hr8AaOs+A+yy5JFEOO+bNzcVNsgkGnpq5oQDCEGdraBZt8Zba0bBv2+pw0ahVEYTMyPRw==
Variant 1
DifficultyLevel
698
Question
What is the area of the shaded part of the figure?
Worked Solution
|
= 21×16×16 |
= 128 cm2 |
|
= 21×6×6 |
= 18 cm2 |
|
= 128 − (2 × 18) |
= 92 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC24-SA_NAPX-F3-NC27-SA_v1.svg 400 indent3 vpad
What is the area of the shaded part of the figure?
|
workedSolution | sm_nogap Area of large triangle
>>||
|-|
|= $\dfrac{1}{2} \times 16 \times 16$|
|= 128 cm$^2$|
sm_nogap Area of smaller triangle
>>||
|-|
|= $\dfrac{1}{2} \times 6 \times 6$|
|= 18 cm$^2$|
sm_nogap $\therefore$ Shaded area
>>||
|-|
|= 128 − (2 × 18)|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 92 | |
U2FsdGVkX181NfP1YsCYJCWVnjy4DVOUWA9vu9TI+I8E4msMU1DRp8eX+rpB1BbR2Hzjl1Qnyw+4C2hGyF+sssOOA3apiymF5eQCOW69lKCjPNyzq5UsGcaiu8soouB4sqqIA0fAuQtwx1gqorJ1Q/cK9BVrskBMfveGvV/mY7CoHjMDnmS2ggyMxjS1NjGynWhFNkneH8WAF12k2pstELCWaDfUtJY3SSYjdry6Sb5Ve16lh1WiSyfx1Vn2LzkRUr5uDLGzeX8uxwpYA9s5qNNuCtN81hjwCiKGZKWoHBtGDBkjHnDnIt0liwrS8GOUonGhCi+L8G496voW14WtAquLbxKkjjk9NEWSVDFyy+vBLqPuT5vFCiJ8HR6Mo1W54e7BK10j3Yx4CmD/N+sKLmrAmUPqwy9ffwb3uMNHiyYrGcmslEaEvBTE+FUTe20LjDd5E20c2hNDtdLQFn534KALVxspSiQq3yMTwXu/I5UWdViafxVL0Sx6F8eUKERqwLxRaUvSsLkgXvf6qBN5r/Txu1u4dqrUjHNwzh5fII22Wzg7aB6oh/+he/mkD15sK+iziFTK4/S11uvGhzaDyQnBT5hPUdyjYp5rxfVBBCNnyqKoCrfBtZpyfu8FIcd8gJl5itO3/eNhBz1Hoq65pMBMRA0Gm6oTBDX3o8D+bUmhM2Me2oThm8B6CXReUtyRTnZjqlhEqXEAozEnwawZlTA/lTvizEwLGVFghc0p32huJ4bwAg1jxk5dUGDwYktcL7jdKcgNSWGQ2/oLBYG4iNxS4oObLWPen+1w78xs/iUO7oOYttDQCBBaLHQoMcYxXJ6vLbhAS9ho2JlHr2brWquXfhDCBNPrcI3NGCaFQAkvF8c8ALIvKy0PQx8C5Hh71mTJu9YGu5+WIeqj7P98ip6SruvBmv/sKIqUnP/Ntv71ec0sqGRQuTCpcb59zlbRbR04ZHZpnN4XhPF6cirCnYH5+hAXDRtM3GgQ0UHOLH1Tt+c9M9irwajnTB70dNFrY/IcnOUQTIgOljKsf/EUzOKMKsy3odNBCQE9lGQacLuYonaOcNT9kJf8eDoGLvQcYNsE5C/0wvRgMPCUkJUSw04NWE7i9bR9m9EXO0ATDbQvlzLPjxNaERvFmWfEfhY7FZDAcGrCBmUq7O3TG6U19jgozymFr0BcnSuO6qP+/Ru1dojqHcrlc7NQN83jAQJ2yz2JpE3R//N8KkI3lXmR8sHr6FIDeLlZQtiZOXSOGYL5RvvNo2JRHsRYDQhPJTMvtgDGPQq1K3MIy1/WR/ud71E1aLkXG0haI8yWrMf+wihgE3ox07auwUMoP4XWOORLkuJp78sfV1HEwH6Bbl/t/2XPJxXoM8WPSsYnlFenQ9tOG/F2Jyk4SZwgy3nv1NbBpUnWeeJ+HRlNDRNR3R6pkGaF8sFbaxj1TXGzECkE1wToPVTrqx89hCKc/hfX/F/e5UQ6ReegNehky1EIK7n4BsBRB00kxY53QKUKe5vkKvF0rx2njjNO7R90/ll7Y5xd5t3tVtatXNf0ohUyewgbFnWqjDk2bzWnETMWtxxdxMIaicHLwXRs7OlA7CImL5fJWahBDjf66KR6aE8kMUPrRMc3ld5tUO1EMk9/QF5UINFLHjLjO7LeuIEtP6usr9jk2tr1Gak/UvMyl/yg4kEOGpX2nNju9giv7bvLkXACHaVWlX7UK8HtCr0nUatwwb7Iwg9ObW/w9/oydK+XijUpAZqYuEeF9ZiFoFLt1q1ougEE2K0WeFYcZCNGH3KOSk4e+mbIypoPLgSnnPyoNLSANgrCI88BDN8CdFWbrBaM5eBWciPOvdV0X/g7nWzSFSsrwIcbbB6neNLc5S66UYBG1CDk0nzcRMKCaFJj2Z66mOF0DWLMfcH2g+bcGTzAF1eM1u86yHfIwa80ACEa65B5BAJqlA7+Vt24zpS0ka54PjAMUYfwS1Lih5yD0vZmOurE5kbN8oyFK1HcIg5SBKNt5ZW7s9O+9c77BV+WMhfqwtIyEJNbIclPRtEelxuoFOO+8bf6b4knA3trJ0bkY8MnTww5feIGP8Gkfei+vk8yFtNHUhAji/4lm437Ab3NCHy7OWDcSZhSlpGnT+0Ex3sjZe6kaNhN+C1jPDeSG1vEEuxGLcIqc+ePpG5TKq/CzcpUb9/CvN9CsdxsusPYjgy0xyyPPRnTNifP4qYYpySK5H2R//CDPeML20Bh1sUgJUKvwJjHqJpovhePqf1mBl2BB4AAyIwfEUXr+QHuY0A2bx/SzbO/QAGK1vyhI6oT932e3nIifqs/gcwnLykLbFzgP23CgiVZCBnp62xEQnDCoDiMSHgEWMm2/iS4YMpKi0/VUiO2sxD6U8tlRywLMufoy3YaLHIfO6siDZFvUjE6NsuXYbspwoDJTgWqdqeJHAbRuLva7JKEWOnCbnjnt5fdl95UDV836cVVxvDZCZb8U4zgAlKCipIvO6U5IWrtYUj/87zJh11csVfQQlbtuf5Gtznie5PyRttKQ090+zHzNsybiRIephCAmTnUM5R16SXd2gDqD+eBS/Cz/NKw72n1CuoH9/lbkHsF3DBQiRWBb+O/MrM5/Gh8/d8QLvqJpflaAxesvcC+pEOflse/IrE+aSsxd0L5GxgDpH6xhXG4wiBEhDN3FNn9F9lE9o9CeJDROgiHLz1HJ2g72FHNaLVYCwIfpLoF647ZLqtXomeZipkvAFzXMI8aHLTXeLrkvzBFS3FK2WoZe5D5rIHvrvEZUvw2Lkyvo7uS9wWyP3cmvNcq/uhxKffl0LfPrr/SFAZl4fUXtNge8l5RgntMCtT3v7flzoH8HzoO6+6u3HuykG+bPFRdWw+EcEKiChs8O+38NN25R4KjtLF/U3vCcMaxZEjJyYEdOhP9wERIOj0kWBn6VXqBOiYNNFHEegjIff395U3da0Xb7WlGO2GiU/tKOtu7a80ecXiQLqcVMuvJ4vIeVVdFPVQ0QoT8LqN6aFTskZ9VUPw22uaCOJc/u04THETYzJ0z3AG0uf6uKQUNFi2gwR3I6PshAn0Ul+t20FQs/H4lBE+NWaLIwnS0wNV82EXyjrLhKXP0C2SZ1xjmy5gPDSnEyVl4zx0x3BxUoDMkqwjXBru02Jpvor8Zs43OXsdkNHIdV/u5f5LkN5PkH0Gw8UyqCxOFDEcRNiTitVrRCk82MhuP4h/uRGs5Z05HHSQ6GiijjX8UVT3at5P2ElQkP/ELjD2ttpRar7BHbrlbVRvfXuX4TmCjJ0Cy8EZHSVuhwPxs4gl9LQ+R/H0ZedhArOfMNQ6oFC5yYCS6eY+tMd81tOKLxFkxO60itOulrotu1YfYd+wJi3+ty5AC7YWy/IpOBW+eLRHpxYGaXMTRIMPjokyleRySyQHKq0AHt7EdjHtoZYGbiSJHPBAIrRxDBfwPHozYdlSoe2aphjzz2jPiHxGzo9d5RRZIYKQjfePYvlowcDUF/5VqqOiMHVnnEbLYmEVgA1BbYKA7oVnVmkl/uG68pIHIz1IK1P/ofDMvOpv4CXhw08Ut8HeEqaCb1ov3rV1efZ1SUZSxbuscofpqzOhzK8nzVq1eRRSFFYki/fRTSnt0rIA/LsQJAgzPcidfVDdA1V018gul6QkeInY0IFt5OJB557r/Q3nfNu1WHBKVjGDKITo3FkeL4/SBMlN6P1AtonwuJjlHNH2BrY1d5cNuK7uIbzHbvdZcsuDLAIl3IAbfOd3n5kTCr3XpaVoBp8YyTDwsFlSmzW4fhmTCvrubouJkjVcANhMFRvUxkIw92GtwhwTXAkHF0+s2MiZj7N7tBM8deM1pvq3cFp09yyppu23lgyrLOJX6ui1A4gTWKjqRaopji6o3ML72xHxZ1O3Mfiyn1luKpanOos2a12lwxQxe9zv9R3QimN2YpMA551ymdxy7tKjmuNZIEIIfKwGwuEtj2BvmdGR8rY8WsZpafo1WZyGvWjyab0UZUy/kRMgxiE1bjtUm+PlEaiVPsgrUbSu3HyPBw841v5sIM9LJ5IglYtUJJmCMUKsQqIdCnBi6r54JibMV+4F54xCvbTew9UYGtQjPnRUNM/+y7CH68BbCCcnKtWOtYUhsflDd8ZCHEABHF5etyANFCmxyZfg61w7uQm3qBZFV2fr+npExFeWUnFTw/ezjY6t4mH17MH38R6+6EwEhHUadm/tnAtlzR/Dgg33ni2W+zfs/fTJlIx7yUrahFBckng84ULeY07+ClIHt/459LaTTScKrQMSbPVGu+tC9VmtKN46UCpUC3HjcTBSDQp+Om3Rwxzk5CcI+o3UXtuTI4UbuDrVJenHiFeVo5s7qGtdlzBrzT90rjAdO/xs+no+k/QemM1cg5vI9CWvpTajiOeQIDY/3JSpI208uBDIE9PMI11jXb4HY+ArQdMFJn4/cQoWEd4jiZ4myzmc8qZx+HrDNNox30e/VX3mq6mP5qRJARs75Fkz34Dinti3W3u5Xq6Cd56YcLo2BztHZC2ooQkMe/e0yD69eF9FrPCKqebbhuLCN9S3UShLuOjWilXYPhf4IZ1VOH2/HqtGisNYNSzpObdTjgobc3g8RsE5OqG8SIgUNvnIX9uFWc1tQr6q62ZIiI50LMbvvN2n0wSV/QR2cW18agYz1ay20EKNTRBHnFGwqV406mxhxVOaFYYCp982mLOxIyH44HRrYjQqy23OSzfilnnoIK3BMT62seUY/+3qzq2O1BEtrCVbd8dgK+bcKK8crYjDzbPjGzrctF5rQ4CtR6+l3MEr5p1cAc6t1VOyi++gYLqo53uv6mCFhaQcLGwS18d9i0f2s8m60OJX28Bm9elK0BMd7OV/DgBOfHoeHKZQSj9uAhJ0aJxymHw5lQUMOJ8HPnJcBVzyBw4mzbbv/yY+dhJZ2f0buMY8UsUol5iKaw/GBv9AZQxGNYmaqF0IbwXz0aMOsOVI2/x3OYMzI6lBUEHPeaP70NqKdl2eyd8GzP0o3jhd5xSkIjML7Zbw4qWSqgx/GB3lp5aq6GoYtVHXJoP0+mzkG+7qN8nIknzy37S85e0rlCjGtskEK47MhFJeuDWaA0AekNrAyeXc9D/kjGKnJA5hT5LAxU9OBjJuyl3z71yjnrT5rSrnz1CpIYJDU6bDbV6Bnw8NOFR2ur+C3UGtZCy1jqej7uFGd5GX8Nd7Hp33AKSHYUmO3h6ycw8nfRdGJhCraFmr0/Pdzt+7tZqPJR6EpJNXuRZ90rhD0F703L1oP+x5pAO6ScYWJ0m9horYrSw0L6TBi3zyehKiaTYBCB4jMg+oKHGA0zaTa5xDH0gsKVw2nc1CVz7FtBrHJhM1hRbYbBHbLjPzv2Ok55SKzDTeFCk5eLISlHv1hXKXOsf5BJZ121opWv9i8lpkuPDjo6EdoirH92+AJV+JGDPZAC31jEsGHVhz67Bw3nhMseImVLaMytkueGSqxI+I3M10ODd9GPSSoOos3Cxu+7hojfME2KJ1r8pb6qPeRkU61NBqje3y/DcAxzrrDpSiMMRbVOZxtW8BA98Hm/a3Haoe0o0JKagJp8AJeR5M+D1tDYYkb9fn5LUJGbpyR1mvpxGqqvVesOYaEfRksB1LB6ct6A4GEKQGtecJ+VztrL7frTBz2dmq23uWMWGkNVsQi8BaLuqJ2JUM+K1Jyt8rozGJYwKHfk+PYD+zCehV9tdkxnnNZuEl6ao8ZvYIxDTREYKgaoYyWlmg6M0qFfv0QzXCHFqRP/cBSLLUUtRWvHxRWessXzWKG18NzngtWpw7kpymXgE+ZI/ZZWeNtXD3rYr61auADMzE35b7i39vay4j6BtKqlqgWkU3lxGhCQ+Zv/508HJMWmCl7GLUg/cgfKlFM4NwZSDLfWCAutave9S0NivbWzQjfJag5j1B92jJc/+pd4oLtaO9dPe2u6BdOPyfG0T5n2NclByXvHdaU9Vf9zNifULNmmCDQ9L4XuDpZ1UPrWPIe/YytU6pr55eYQDfw+y4yZvuZYm80oTyBVBeLGr2WkcwVATPenQfTuObljSeuxTtaerxJdvLrMEhoEVJEfSHHbbrGgoSeg82dBgco1IM47pxAVsmQU8eCT33s7iF25jVI1dIt9Q32kUGfEr25eW4hLKLbWwiPYfj7+c7WtkfYs12Nf6h7roJwxJXvEviBkcgfKAVP5kYKnT8m4s7byGTAYxnaFQktKIjEOORDakmERblOxdaJL7UW1lgF/PjFKtGH+GRP3X5mSXLZNM1R8vndNZWQfslg1briw/W/iB6Nht8eQ7+97eB8Z5Z1/HIhq7Kw6m5jr0v+NxpgH/5XdmM7QHExSl1qd1OsD8s4qJMdBBUw8PQgLIDO+YO2XWawPQiME1jC78OCGlGlsFE0CHU4P7a3Im5CKy9E//fTppXn6YrQy+iW/T8BwtVOv7fIFAAxJSa8eCkaXZtUwBSPMp9yiOJvtrqXWanPWl+Ja1eLSoFMbu4/LjUWxifRUXczt+OBYpwoXIL9OPzsh8dOKtyFZxpS6+e5IT387PuFsInpOG8/kKn8yfZ9EGPac8aw7KMzpRWRUVmIhZWFOMI272Y6Ztq/yFC8Af64UxWMEIw/UeBhiXLN3T+ihi9r1YdE+CiitzAPIMOMYsShPDi/qV+sjf6X/iJSzCxh3QdEUE/vGfZowOSejmI/ccuOoK80t1QKNF9BO7JHCo3xdlG3dcx5v8gDmVYqgiuQKJpcIW5OJrXHyPSO42oGoyjJ5Dc21a81PZdlrAc1klLr5mhhJZGDeWWUcbws9WQouuiSq5ZF338OpfqhVN8HmYPZR2W9vcOYu2Rgwm7G9SpIBBR5nbtsJbFjeEWjv8Nw6VM/Uh8gE4J5AAj2c01SBxunIPXFz6P0WDKJiTDZT8kgqszs0y1G8etBlwIqih73eeraj4T02akfLm1Bsm4ke8EcyrHsHwCVd3zrk+ayVWi02CMMCjV/+Gb+WSBt7WroB+QBtj9HEvt+4qizJicFpKYt+lyDGe6YXt1rmfh5t2kz/z3vYwdzF4l5MjeK1jNyVdOcthaOqahiI8MPWVwf/mkWB3p1vlsL64wVjuJpBFouRaHEOCkCSplHk5U6TI3DtzfRPWmhX9QqhwzhPC2V3JifQKyAJgsfa7fE3kqFlBVs/2gfTLW1mRN0bSNsh8nwQfOQ9Wz0mzvzHn6mcqmJdUs12C20UfHK3LQ+U5CqvkJO8O7cB2s6PBQRI4N49ZBN5bqZP5DM1Ffxj6GsQ9jsgNHpBV5gp8owptprAvr7ZVZNm4JC9NBRgtUmP1MPfbPviOR+KimdSFOGL0eAE3+KUB+zuqt3F66QjvWYfwG8o5KE3EJe9yZPtjWXXQwR4BsApd1vVhClrT/BWLsQa4+Si4au38TCx2gYnevrYthlyg2FgY5It1VjmkXs5jELy9eEtoo/ovf7Lx/vx9+w6VIPgXGPL8fkYicHJo4LNZT1mWR51CKaYlhtNVsN28aXGw5HFzi3r/kjh42HFCpA5BLc2f+qLUyFn75p3+A1AG8FaYANsMB4JNgrQvbvHnN1FngZqRdU6dhOtRw07FDdxBwYQ6LXeAVmOwEshGY4YOVWajvebduL5bqifVubQ9zsqmLYTLBQLZlxxNbbCZ2WYU4Tu+Dn+maLO1rnDcJlAfb04cS+ulUVr57YC6VDwtRX2HS5Tl63Rk1ndrkNxZZK2Va7VRgoGj5e4qfKx5OBgDK09cfyuY83xpH9LGX3wi8H2e38l3Xi2pq/8EqqwhW/84mczNS4ZxMj/TKWjVoBQBEIpgev4uPFvVY4VNVbGosyH9PYhFgHGmfatZbJVe0FL3tDNK9kRBnoNyS6IbFgvsEYrDNzhM5B/pUzwwwSLxoc07qdlpjJ6O0KvfZtAVKyYDCUjV3ETDvJE25SxbaERkfbB3mVmgQQQv2LZEDx4h0z8uffrOsAOapCSLPFxMDD/P6EcfyCXg1eIy6V7sJcgUrqf76mM/gDqDYwKC3juiDNbpM3FZcE+TSPsU/pbyMeR+7p85jf2eGTIkPZviAk2zmKaTeDPhnIpQUdNXDQRNsCbOaWCbyDHyhGjvw804/FlnnUNzgblzq+IonsrJrAwJILG++GqXMFlPxMK9rQkWE+EbKTQBZadzrASarS6qaGS/KQielkc2pHHW1ONLQnrmHTc2NPwJKrP6v8T9qB8yaqwcmTzT6SsdwH9qvonbfcPrfg2lojObfZnydv8GcHjRhhY4f4QPs10NfobIFQYOu+ftvr6CcNJTXKE0EKLFLdClaOHfkfBT7lG1aWDeOzf6Ni8ejQtWqExLqWMNm+GkrDzLQKbfiCIRtbCabrzFCMsmmMTVlYEJc/jA0LtjRFeNsvtqp8bfXUB/+wVtgvc23ZSORzD/rWJe93T3XCGQ2L1/w1uSBgX8K4ZV0hf82BHSReVwmNWPfqyZDnz1X+5usjKMq0kEJ9UfKgjWbj07vxGm+qCmn3ZUYmwhY5ueFBM+S14xmjO75k618UF3ibYEnGqGDnSxKJhpRBPcxMKw+AD5pBUxLeAZ05JloDJVq4Xo+LjZhNfL3ZiFhkNeMwbsvBOx2r+9gPOBrNE52VLu/nxIKv5owI03NfHvzNnPsCNHWeABQLm9CBR+U19ef+qlJCs0dgBlCHmVr6FnLBVguK8IM/BEMrg6bjG+v+S7WfB8rfo386k5BfSWRLBPqNg4gVOuk6HS2leHqoH23FjG9hbDpWrX5Qg4cgqocjYDdwT+b3mTo5BhnQt1gzdyMudR9+pACqs8mDyb1eknrTAAdAG7RWWt6bri8RIHPBcVqG5TwXZqNkFbhsa8WTfkFbPca5Yu+EdmDdx2NfdUC25Q2wvc5amSdwoXOWbkQnX252n2bkJSUbltgC7MoEr8Kn5dubinyoFBC3HIiu+Qjk1sQ7e+SMDmV8DRmcID0BtcoBxMMRQc5UZGK9lxqHJ8hHyRTJYymrx0euPp4bwsXwsDk71RhvuEifkULlXlQh2PoP0X77uypDpWlIkHtdRH5oXYTrgN56b6MGGTtKtofea3w5oGI31yU7JBx4ChfMjgNb61ZD69LK0+VcNJRliLShEbIpdDWcMIBGIFz/WQ3OBlVPe6yi+4pSeB3vRY/FLKbtqkmt5QJ7i0cLSUfIioe1q8JhGYJ9ji8hRwrzhznB9DNPpb9063vb4OjQS8DF+nT5+A+qrjMuyo2rjC6RaoSA9N0XocY4zmY9J1GrSGS65lbvg5cjfX18nvS/Ahq9mMm1hjr39fJVSUdTl4m1npfedObuyCVnAh+7r8atukGmvAB7q2zkS2HIU+zrIx04v4bZ9d2SsfdaeyWG83JUYRKgL9tmpfjhHGvkMXBBqxUnJK0JgwtzAtueZaQxg3oWvBkfQr/Kg4WF7Zdgpf66Kz8OKOBKJzCNQk415A68Sj97sWdvTJBeiIYn2L397OBgpXDIAXVZvnOU03FA/hDtIaunpChvF7dS3KSXIZEryRZ0krf1tVo9fOJULbx6HFwyHFQp6+HF4OE1y+Raeu65I06yMmpqehNU4JNeWxG+vzfsBk0AQjX4iMPw8Yg33bCg3ZSjSeg2PR5JobqwSVqapc5Rx6A0w+bUeNDM9enVGVLzc0Xm8VIm6jZG0jFkB4e+XUTY6GHx7fadt784G8Ju4XFRRurQF2fEAaClVyGdgFjU76cd5uFBJNGjfoSzPfstd8TrZ6J3cdu0qrDHIyKtH4VR1kE54MRmyU5mXxOGGLCaytK1/sSMPjt0yCt2G640kQlAfe91FkSvI463B3SwMNdzA4nqSVh6agnQ2ixsY/S84XP7CSvZLosGjbQVJoNd0TSw4RtLqVOT5CeM+r1XzrAgnnd3vU4WZXKQPh1P6WtIqM2k615F/+T6I6bcDm/C6P/j3SRXWjY+QVjcO0h57uHhDM8jSpL4RnRatejzGFzKY16GH/XFafLp+lsvVzLANLw9kbCSi8tAWi7KVRH75dMNfnGkvcU9oU2SOjgX/E8I9n3oL73LTn44EN0oYTRmqa68tdAySGK5jUNf2fGDMJpzAUfeSZC/iKMgzFQYGjVJFhk2Y2FMr4yc/pY9I6T4oVWyqeTuFL0NNISJBU/mEzGTBwd5nLwFhxVI9mVYAQr7SKEOCLkyFaOOhUfBdPp8+1qdwkTBxcehe4NdayoZc0lEGjedShmfquxkaHGhD+31JQfvIK0Kzr5aLn3+AxsA4+AqGtsgjzKTEmac9imuCIMJbUWNR1fYO+0KnVtIq9vsW1XOtDxNoZ+0cHzFGcSjczZk/0JNyXStxVq5/CPTAs7wwNgw9pvPlkg2ZQIEupywFdcfcxkSHZvBqriiTgLarQqRuSHdnuPXs/j3XOReHLzg5Qogl9ov3uPhmHJXd+BM8X3aKjv9kyMP6/TTjYgAYOVxFGqiQzUdrtcYiuvQVWNCwTguWl5JQxzHaxmSOFYiACTYfRZMB52tOMqdAsUOa2sYQF48k9e/GH/vcd7tyUqNvEUowI1RLFvdOPW/n2wuqgIQkcQPlE2gmtB1eupu4tLbj7IpffbqpjP9uT/E/DM7IcdRlUeF5vZnCwPKaVN1YHAffz7zK6rTQsxW2xhG6XDDHcBpwcqVxOX+Ei6Q74uJcksF3bLrBwuTK8et9Rgmncp7zdSpUA7xyPdHdyGJOIvod72kqQ1kBudvkeYp6Cu87AiDnpDkCXx8/ajwT41zc8rXm3QIgFLSSfIxQ8cOFnFaUkqUDKmnAF+PW6NoPMHuJUCWQil/hRmcZmUKzqPseQfdk4Ue/HT4fYoLBvzOap7NJvWTezpJkR/jvyOf3SAfj7axarDEew2NlYZ3leJi7yVl/jI/AFErWunQCW7hY447o6vow1EJwc8Z5G2bEmpSkzY3vsgBBgbo86qTHyTUCZ7HBL1fhL8PSbe9dbI6x0L6eW+Ifou9mNJmJvCTFbGXWhmgN4/Adnduxu6/iaEVykmrVwnmuIaFlADavHEPGtUizSRAXhCzBrVtZs219kbqd0X2GqrEvCC9/UXfJ+q/izRa8/AlZr3P0zw+QEW+X70f49fcN4Rv808urfyMsl2e3pxBJGNAkg4Kcis+ikax8iz0qKc4XKFkOf4r/rjW8/NZwAHtQ9LWFrVZ9rhA/4aULTBUbPM7CojmgZa5wVRKBfJhCBXM41f6DLjlTdnKtC9e4q9meBGdsuRKH8P8hXdHCqpJ8l/50ixp1RKSmcS0mB+rrLWf+gHMXgIvtILazJ+sgM3P14JPuK6AqT2F5m9afaNcqBh0cYsgpPvUImtA5oBsGvg6OV1exMctakIbGnSQlf7cUB0ANLRYUkOvARGOcm8zerjRx0Jtfoyo51fAtYt57Uw7xtLUGuBHBNWXeAfF/sksd1PORIQv5xRapqrJ12gPfGEJYszN5+OhnWUtos/gurVjlhWwSnxb7GQQVycHTZDRAEIiSeDNbCeOO/YOef+6lsVYG29V43FStaTYV+3HCGurWpO03+GrTtwZV0wuysbWD8G2WSAQgIbCCNcFmwNanTEIKdHP0yN57sm2i7wnqfKoB03NmZAEn7s9VeOkFkxheRduJs5XFq97OGu0rAe0uasJ4PL90q02XiFtm53brACHTXr9p3/VbouRty+dNn21GWgcnKI3E3McNLdB+FOoFCio9eB1Tl6pbyubPClpSEd+yPYzLfa1DCt1O8sC3rPqtS5x7gZRXM/qd2CtrJkBEEzxxHq+7VkkxyF+3KLma7HNrj12MtlDh9ngbDsS9A7HFCTUpxcqXi//OkA7v7qQ2QVCiE9NFaQl7pg55zK2oxIyUzIctQbJTiyjK9c6mYaVsVngzBY/+23cufA94OZ3trjHQZRM6SrNZMl7EUY5QGRHgU1JmdaixmqwTa7P3Xvu3KpFr2F00fsmQSbv/OyosS+H7PfLSNLi/UsP1OmpBeJBNvLlH/vteu02jBf7l6EeF2Ga7umzzhIHf2ct8/O5v2avt6zBAhxa9JH/bbu02e0KIReSCZ3fmzFtycT34u26f0siW1Tnmjs9V5m5K90w7QF939vOk1HjQGJuuAYG47BwJLQOa9wj6I/17CBwBXcsOHc2A7zyGM364h5tFAcZOY4Vf5KzJK2x2vzhhw3XnD8Dn0mq5jJzmGDdn68lHxOQ3Lgd2N5MaCgastdswLhb2+zagWGjLbJ9aP8hqWEEaGwMvv0RnIo+RLX+380oDYp3/G/nwIJpuB5gU1LSZDOQHV/gD44d0hfhAzFE1U+qwV5V6BvwkIFCg969HyGyhj1YRjxaJ74h2s9mYeGOHyiZg7a9cbvV7QWASGLBetfapNWRoczeUcX/rEc4uiSy5wxh4zlz0xCxy76yX+Z8NP5ayNfwRnMy/fCiT+avf/ny6Mht+5W/hRAZHUiXi/gYhCayEKH6sO7rcP+4JPX7Qt9H1SumnBb6Cwa8bXhfR/4RfVGfNNZ1IYxbQ3ZIXB4qrprGX9DhEJjlLW3bheYWKCWahX1HKr0qwuajwXzSx61F+kbLAzEFdPTn2Zgso4jlBvbrWjQkYu8RtB17AyXlO/AMgvysDMvvvw6xPncRQdFmjFi712zmQ+bMmaLrr0MFptMI/ogagEk+YG20itIK8FmKTfd3JIL4wuFwe39DBxJ70PP6L6jutC+rPzjwK6L0ioVo+jWAOuCgmRknk+CPaDHpuq6Kqn3YSYrCRwHvalIRHVYWyeA+ef1oE6m09/aPI5PFhvM2DIxcBddvAX7/pdCOBUMZeJNNW6MaPc+o9TtN6u4uf9ZFGiu+HFElLG0BY57e/DAKUcD3d3f+4xL6adMuKrXDLf0zePeEoU7EyWY21DcZn84iBuIXhd8GElVrdwInd79vzHEmZjyHv/Yu9Xr9JfRyL/x8cjubga9lhIgsTTLZJ5crp1ElZyLrUUbR1xR2Fuk4K0trgHumvK9xa3FSJ9BdXYeKvMq5jFxFxUfAwTlqsXfxN7PZwEXlp8/JJP8EnsNc3ZnQev6J5NjphQj4xJznDN6BdUl5Nto8cSGYLEQc0Cw/tW5aa0bOlpoEQ0DavQQUD5aL6ncmuXCiKSDcAFGJqfvVDX1pv2/DoOc6zxrtZxRO+91457q+0A7Mp+gsyGufVhQnbds2xlZNQEYqq7K+A8KSldtGbKB6iQ==
Variant 2
DifficultyLevel
691
Question
What is the area of the shaded part of the figure?
Worked Solution
|
= 21×10×10 |
= 50 cm2 |
|
= 21×3×3 |
= 4.5 cm2 |
|
= 50 − (2 × 4.5) |
= 41 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC24-SA_NAPX-F3-NC27-SA_v2.svg 400 indent3 vpad
What is the area of the shaded part of the figure?
|
workedSolution | sm_nogap Area of large triangle
>>||
|-|
|= $\dfrac{1}{2} \times 10 \times 10$|
|= 50 cm$^2$|
sm_nogap Area of smaller triangle
>>||
|-|
|= $\dfrac{1}{2} \times 3 \times 3$|
|= 4.5 cm$^2$|
sm_nogap $\therefore$ Shaded area
>>||
|-|
|= 50 − (2 × 4.5)|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 41 | |
U2FsdGVkX18VMge2vP+L6H5GjN4YcqjaGeG0OzGmLHxr8ANsZSKB9xLMdOLE0so+VOKKcUTgRP+eS4VWyoiflHmp/FWAnhrh2bvjffXEznN9KxDyRBM77ptTO65j4Gq5N0Jkg5gKogY00VKTEdJPLttQDmVoNqjVxeVmA7Xk9AILDaAyg5kXFx+PaU49SyQpCXZ2/SA8dmQJiGEZvhGPKrLqppgGl4ntoBSxLriSUglqaHR69F57uhOXIoWk6vmaf1Tl74AK4ULuuHcv4Udjx95nJy/5AhsEFvVz7bC63p+bLy7mV+E+4KQ1/sw3eEMLkhOe52K6af+PVkw/QWRhwddIiYA/Vm4nrPKUVKMtJUxvx2wNbLMAXdJwRXQriwy8JiQ820e4AnPhFwPRS1E5KP3pu28LCULZ/Q4U0K+CeL5IHEZQKOnSo2r6xt+1Bt9r7gwNt0CG3oiwYu2oSwRKkmmnHVnf9h8Q72mNxR8wPE+bo3dMqOUVPTkIUbodW/kC9A8lMjhiv5YM+OKBBGpNOl3VaZTDNJ9n/E4izxw+4nZcEELpfvqlimMTuose60Dng+pcdFPwXLaL3TvDpvhBjgs/eSng5t5wpGxF7LdzYKfPmxhH7qMHuEWMOHCX/o+LBuN6N4J8TFNjS+pPnOIUidIB8mmlHeReCkAG75EFRBg6/Tkm/X5A4UGsZCspwUmH3f/qEJQl5islc2/gNKueAIsf406Cn+/OktDD2g7tiPqU1IXpSI80rqa8JD9EGvt+XVh3vkMLLEkWMPwRSz/4GIuhFVEWhFNE+3mzOnPGYfboa4r5XkJm0OD86co2bkMkvzOtTMv7ccj/NPpED0Y1Q+Lj9P1waKNew8YC6OcDzuM6839BfWuyw2157THJw4SRYYHC9+FNr22Bkox4fGmmAc7NJ8x1LXTGD4ncKqMkQ4C6LGMklkwv57/6TXvcv65kUgE2xRdmS+slRZAWy6jYI4nz6IIKLDhsSbm7wf0Rzm+VJuLrGHaWWUssmLaTiC7nKJ8oRiK8j/cfph42tLnpm5C0/tvRVyreOosKtUnPOrEREbOGM/Ha15Zz8zvMcquhJeCL14KVsa88gibTK3cNX9l0AjsyXbbWk71nOWfvh2Xdod9enNAg92ZgvI5a7jOIx9rRfrFPO1ltojmMXRTM44XYwFfwQqp3WZW2RnDQ/EyTX8r3eON1FUtfDxKRsk8VQOsAuXo0Pjm/VVH5RSUCDN1j9DhBOH3UCCV3ETVICXQGsEhKMNRrCDeVe03gNZ+/4wI6SOhrUc4y0gcj63NFuFIJZugEJsh4JxzcvWrmPPucjzvB+yCsypXjzoMobgjMsZjfpp4sVlvj3OZ4BKSUpVtKLMCueWzeTa44zy34HpYfprj0TX6CtAybv0F81CgHodA1WbKBR+6w4pQwJ4EFNNYw12Zr1S3MFzTBAPtVsOF8UDmOglzOiQB8yBpkl4O7oUo6dZjgk+pocpP/qfvxeIWp3KLOkK0Rxz8nS0APJxZ3s5ZstXRcrNFAcRG3Wi5YqfbDUeInn3+S5N0J6cKHgEogSfWfsH/c1w1rEs7Ss1nXeuiG4a0HIC9MSPLle69yo6+QMTVdyxtE/vTjPP/d63m3PQrKf8RnO0DvMdYWtR3TS90855qZT+EDVJYnwD9HDad357CMLsR/nMZdsIpa6F2aZkU4tDQ4WwHPQAfznLcmXQ4ox6szuuyKtMBlmwRYyQ+L/1F/gHr/hqmUSjogW7/y0XGpXeoWsQUta5IymHmCLwO2C/Pn7fV6vadYQrq7vG+Rz/a4lbRu8PfYROaNnJyH+GlN2XCBibxQ8tz6bDATwQLeJyPRWUgI+rv5/wz9+Qta6n5qg0U1eGkKRM1MPfmcUQm3HBtPNaH+Gg4QM8XjbRZknYkKXak0NIvEkz9qVu+FQSArx7RgpsUohW/KvA2ukCvnVz8qLQ3tn76h7MgvZJfsO/c+8GPlIMoAOiTkvGUNuYKEpWIS4olvLw8C0Q0CH4S1sZwdw/bq46eskfxBxMRAN+ONT5eH9/D8ofkFXj+HPbjOJ9s/Q/6k/a6Uji+zPABD2wBebzJrSIO7S97bk7cz61b97xfVqPFfga78r+WNgTK1ncbplz1603nG/wdhoSuV23I+b/NPvHl/ZiR3hgIjDMlZ40EIPi+G0TGTfFUOY+Wi6ekaesQppZeRtWWxrq0zsj9ShMYab6K9qwlfX3rscAU9a8hrlEGn6VBnfdh+rdB89CKv8m+wV/Wy1SkUp7LuaZiPPN8ZwrBudtHZjROEDd3Cyz+F1439zNYHq4KK9iL69fTWHE6E3Dmt5h4uTAWevt9xEcM5c+NP46Ug6wEnLh2vvINTUb5asrfOHNo8hlR52UDUg4vAtDf69ir4X97cuDEPp+OUt4mWAP9uReWTgJh3yXsHcKQ12ker4moPmFVjU8SjaMwKMrK2ILsbbOdhRmEvMkRl+3kMMNvqsV2DZLQYeMF0nEHypCpd60WPEcX4RH2CBh/nKjz1GbgT0oaxgktlhp65BN/QMyB4FK4wu+KoMQpa7bAcfezeasLYLSNeUCPRV/AnkATxBsLdr/3BUCe9q+qGEgEU84uNo1ylv0pWqGYQc84ncK/uVE5KlgiC56AlWMrB3Vj87jorPdfj194CvPWdvDy7VSdgs7PTzLUo/6dNt23Vy4eFNEcJ3iV6cJVz9/Eq22Mpkh7gZSYTbaOqM0DmoDE/P06LrOcqGAKLgHrMZZUPWKEKGGRbTjPLrG4iW5yPEZrvQWo8xnKYlwqcZnk+f/4DvZkbM3UoDSrVv4PC99O1YGMzfeweLGpMQOD3z3x25dT7qkYi/YkLqhMt6z0gQVk95E3J73ILJkdNwCl/cBsc/kJKVzKxM3smPDGYoPjBO1V+5Q8WrWOECUqIPiN3zggf+1mtGl1NVm05w/DH744euDiYKzqC5++zQcVYnCEHdT0YAQIF6XyJVQQawrcD6GvT4W1AYgCLjQz0Ou0gRdrvlkJZnbH6s5UicH2dlWzKWv7CUwwIB+ctuX3kQUBZBu3SMfhd0OxPHUlPEwGKuzVFPqpcleB66fCqmAURgC+AcwwFReSn2QowlPgrUJdizw3fBw7Nw9trLU1e0bGZtrphWDadHk0Kn/jwUeqGxrXd1MJYPyn/aVn7ODumqpLf6gvdIZgU69CaPq95MjY73VMTsy3d1/op3Aaznx/tcZ9MXnEpKEpQ0EKU1jHMfUd88rS8R2HAzK2O3asncSOTeonW6FJhW4A7LdkgbhFIH8yCD0D0VCkC1kmuFOMI8G7U8EswgB5Yb69zcBdnpoNWg/mDYcbdZTHmPnMjaTp6Q44ZSJPuSGCHfKbVSgR1HlX/0UToVhGlpxB3EOzpSh8odOXVecH0enYeaVxbRqItcVFhamUhfK+yshvXwnJ20F4m5M2PlWckExNA2izptBnSUBkoJCLHTT8TIE62Nq040nTEFhWrhcR34/d+l8C6FEzImwv9v5s2MhLK2fXQ3p21lcVdR0UdmeaZxUnpJUlrdT24+zHkOXBetfy+6D5/LH4uyA0Wh6Xoswr+wEAjuUVf/AaiAB9RfgVh/jqI+d4hJHW+tTzUtvyrY2q5/f6myVAxn8KH3L+BGoQbB9cY1dZgWFnfNAk4CIMc8b8SLnDqmLVPAHDMDRoJ1B7cIF/sAP+HQcVEH7Qdzai/tsvdsVjsXmv23zAwpMHJUAKWewpgniM0SUUs9/sW+BTlNRJbV1Euyf4OSYN9TcnkuUzGzCb/X7wDkXV39fzkpjyO4esfq0lSJQ2gpI1dFHqmh4KY5vuhPO6vbXsN1jnFmmLToPZWwL/8v7lEWxpR7Ik4j+9Eb0TDlDKSS2NTQ/9p5KH4x8BhtSOUYhxAmBpAPGAHJcX7YsdVUm2Crq7qIi8Xjt9W3yCNGyW6CS3cFDksvmvZFZN4yzKmh8yvQQZpARntouEBvufe4m8EeKt6Kw6obVcOrqgprJ/5WJ805Ot+CdtN0YTINCFHT7d68REuywMgBqrRO+KXvfej/4hISSnlHqrLAEPdo4ze1B8QjGYNBppiQUGfuPKyJw0jhKIPMv6nvh4Eu+G2odII0KaAa4/2yhjLkQfTv2uBZOrgP/rTKeCTeEPTNr5ASqhgWcgkAKcHCH2nNdB2jaH9H38uX7BWX/F0XlHGfZF33MtZJ9sKhXeTprth2ZdhuGBjnPhHiDOEqu+BULOJMm25yLAR1rU1ozJVvs9jNtbuSVpBPtwj6SEAqU5VsBN7MBgwpzAgPRy5vx9x2BOETi18hZW+ddo+xaLcKu+siOFdVLwX3WQ+nKoTvsdMK1sr81gb+x0X7bvKZuDBh5qs9AL7gz9JxNttUN2z54FCODbWxGmoLGiIA6+2TFYERc42afu6NIlxxtMgOeMqWiQR2JM/J5l5ivtHBqNbINfBWHHzYw3BncHfZzWqBDdFdzEssfdKbHdetKUifg7jZlmqhlLUq9iG+aC6rMwsh2u81PiikRDXwnv13ar4+fW1BIEBRYhSW2jAvAFL7hBWdFgWhjNfPbQzA4ziM39JzgWqMzFPniH8iNMwtDxrRn69PUC61irM//k40V9qxMx2UR26qYhXTuXBS4/oIr9fej+masuq3sOMO27upBbh0rv7g/9EN7MlfEfRRvCteFHqrc/TDdQvs7yfdTjpxOKDQeOLiPNYK5wp8dr7cA5wS1FegxerOoIsTzVJ9NJ+SAvRjFNiHRYwJArOwWduSAUZpx1EFWLV2mzz0dU34DLYRS9FkjTHXc29yaHoBO2r4BMp4pDBxqNtF1pPmDoUlHyFBZGZH4O2eDrOV7k2Ul1S/MrU1FNl/Mu5oaTHkSgG+fdjAyCgKJIyBTJMjovVgDH+g1z4CVwXhxBushleFHYlwoiHNaZNcE9hMROt/o2X0mQ0fPDIAGqMTaGxoc4A0PzysmAIxjz/9UOZQL+x+I9ngcxSm2oKPBEE5iN/DuKophz7e91UzydC9kwKudXSQdygMrzUTzfTiTrMnLmCDZzNwqbZuypGx94LKqxlGkGwqaxLl49JBfXrujWZ7JyEwNbIcMu10nTgwso7XVXvhQTAmSmOjtv+e7htNYgss60yjLM/kCBQXQWi6JgBFGBGzwvN5BzwqxfoHBZDeRiJrQb9crT9TTyPQzpMaOa7fn2NmrV5uIXILQKjTl+Ai/7PpBaJ5IAuIDmrqc0ezs8H91h1lkrwnpy2duMDdC8R/Yn6f3fwEoF8sh1j8MRfdBcCECFF9JJEmBdbxV657myOxTVqIAUuNs58N8MQUmOAYP2hM6wPgj810EYPlIw4YI05JJasoqgluNGoHYuVYuHL4jswNXq31qghoK85UPY4TKIyoIyKxairKR8lrqrc/xnG23FdI1SpjaXXJgu5zWXazbILOWXqVBDjdVlWDUIa0zM0n3FRxf6tn711D6jamhd+ayR96gDBkvXS/ECzMKsbDKhadw2XeLbeb8vcBoCFZ+IInWrCjika3RNF+7zS3GFwTel8iLhKJII+v59+VOHNf7n2VY2Bxg97IwSeG3M7h2N0L7dRfUyoQDdaPjvFJnEfVHc/KVSAZh4VlpaMC6vb3vCXBRf/kmdFi0ynJ2tzbDIzap/bESCDDZqrppgs3rtAKfOj82+PK6nSbi2WhFSMVjY8VHZIB+KBe/lHn2GCWddXA74IfpGptdFfhSKN36Iz1IsIy3Ckqew05CMiy4axgSsO+yazjUkQstNmLn02dKCniabLUj4yvVRq5BH6XZdNi+3Amy76dX7jBiqk23lxWAmGi3L7H+ZAvQRczNkGlaqiWsKjM5GmdEi8F1dTGskzOBO7128xmSAnvuoaheiTF3bNf/ecfJfealDNKQx7r0d12UCDGxxK+eWmxwFqewO3qNSIaKdw+mgTSoKq9SFaPrwgZA2BtangpOEheMyao4YXYIF9VHbPH5X+saeBPQekBvJfmDjyem2PQrWen5OA1RzzhxNdiEGxHc/TYaJcC+WgVYEK64ymKMI29YnXIZyZJI4bgNUf7bsExgcqqOGvr1XuD207NSjxiGFftTd7fRLxTQskORPfVOoevHSzvHfVLf/vjwB6zjSHv+cbhBzUWJZCJ7Bw1zE+fakCcj/Aj6qaWoOiGHNmqMZdqx8q09TvnPriJ920W9OufDpRhg7B9J9GNxFK7xVEDjeke1WKrUXCSkaTkhlPOoViOF9L/a9ZDYgkT5+M40axEYaE0len/xqjCPMD+Fr0HWUHW17gXeyiqtcEA4DdZxKOsBRhdFzMg6vI2ZqrqBUkZB3mwCD4Jt8ETx2WxdKrUH+C7qHGPdDCY5CmmScR+IxW3l5MY5rKbrCGwAEClLuElBeeJ3WVVcphaivyltuG4PGwq4I7ROgAp4AP5abTH3KZiWG4B8s9HYvLmCoaCOgxfEZ/vnBXKyDibewa9/UspxX0H1LwHICWoV220vkDIEjefZtbL0p4GBkcpz6ZCnkTd6Qmm2ajEU0K6QU0sLE0CVA8j1xywUWfj5xnMssaLebB69F3VPv86HFf9f4D1sMjZ/lhRTi7JCIaIF4DV38AGIXv06CqLtoHeAcnJng6hx1wVBP0FMLFS8jup4X6ZTL+C3K7S5SqWeKBBpicylspG+gz+nw6jKfMrGRQjTvTTOyD+/uvNsVyMoi9lc+1vDD4RftLsRw7QLUyfZ+OsPPAUZQQn8P7CdN0GAnv5ssWSYtNIbjwb+8HkcksNG2Z08RS+bczwsK/spZqwpRvs1+ago9qpyXmdROl9/wvrXfmpmHIQIWy61u3jrBI3yQGLR3SLUQ3i2hqy3rSQ5HYWekPIWqPTAbpGvUkzpBj2l2JWr1KUyaQw8ZPw4ghOLk8vxHs0TIAhu5UTdvYR6EJ6u4wSbOfxlDP0EHwCVvu5S1gQ/jqWHa3D08JnaQMn3XO1ugYo/WFwvAQn7abrNrCDxHqf9g08FGUi1OI4Vto4VVquDRIPRfsUmraqyf0FnGlSF5GCjUcoBSLJjR7VhLs3xDwB17afPDm7/K7+9ZikBlnkMbjkZfU68qf3/VqlFcDYdusYZFTbnR2OjdpFRZSWUrPB/jzIaqJKlsuZnCv7RE8qogGflZetfwlhZatHwgX4nvlV1Hgl+2SNJpxs0/RrN6BCADlNN/bH1CPR5mkZ6SaXDkXwfG2zFKBQkx3nhI452I98cKrlRUVKg9od2GHuI8OQP6mTXeepXiMCjczJNURJD0zN1U5K5zBZEjHymfkBmxT48DJ0sTvTtXicu1bync8DP31dxojvPOkoZeLBziDgrJgCeCBRLVgO2M9rdboBlYyet/gYT04bxVjknvGL2QPe3JXU+pvG6GVPwmR4f8HZIlxda/eSBgYd81MBX8F9qucQtcwkkKLJhaOT+kblRQDcfutquAp0luEmj0OhoGPMDTuwgx0HZgRzDqwXyl+518LuRlEaZq2ANfxLqxOGgqsZOZGF0sSB8VF5jYc4eXyLvMaEtVoUkFVyZrh7LOhQpm+TtW55QkolF63THsvDF7nnmqBzmw9Po+Tucb9ohbVRfC+036wgJ9G+moXSvFlxqWX0j4NDLLlTEK9Zse3sexMhMCoEV/XMOochOtVRPdruNT2wqfdGhZWqBj9/EG6738ZWXzk/c2fSMYLm1gCKS6xSxD6IB6uHmd8QZIH1kWcaKmhG6hrUCcn9rp4zYgXzSc9VtHeG7Dt63Qvw1MgSIherYdUWlnJW7iznqwivOoD8nfTMwMk7cHhRvjsTK440B9327sVKo1P93Kx+5GtilIg0QboweAUr16hQ3GFjG4z1HcRRKSWTyzAVrq+MNPPlT9IPmFNBscLJ4jT8GC3frnzfdntq23Rs0yP0WPGeMR55qKc1nv9zDyBhE4/DCaORbZiZdRDabgUieDZ3CtTk/u8NHrDb1AkQrbYPYayUluszho6wUI9YlDtBeTyPrG/0yF/UbLO3zmujQk8XHLSJxDfFb3dPEJCqhPNn7W7Q87biSH5Dtw7CRn0ch+65N86+lYRJYPNOFcFbgfWGUjtKtQeGTlvJXm7GlMur3F1CIq7fwflRAwMm6NqaMMnhutBBY/LD6Y+b9O3+45C/VLs7bUCiisnXbBHln9NaWH/0llMyQ+/QAfIeUYfWspvfVMf69UnaCBfKE8ZTfUZIVWig92WRsPLXHJHdSGu3RqbOnNvK1UO7kYFhBxMFbo0bdBgXr0Xy+3CdrBqA6DOCLFcIrN3T3qg/imKNhyW6kGKC1nnGricDCXjsNhBU8c2ydEFChga3nK6IWOOM1qBo+V2e/zk5RyQNwB7gaG7gc7gI+vLZD/EAlTsiw9KJeSOO7bcvajXKQ/JQoNsHCFGSEgmVjKAU36QZw0vExuBM8a5kFkWgMMCuc4yvHRW9KJMIHBk+Ma5rHXqn5hFYJ+tNa0+XRB35lXQ5z/Zdhx49fzApmAi8Ubsir/zN10bMXiR3mSEHco1dNDEj6HgP54RSk9SqqcUc4N0RmOWPp2hmjULlz+Rc35Bv+MeGYD892M12HBdKQabhDIsoVLzvS897J/IdfIqgnrA8tbh9DAvKXL3gSns/EUepUhyTE6TqLCH9qkW0fOFkjflaE6Il5x5hBUfHDS9oXDQilcsNphp4KHFBXcAAx8Zwu9QoDIKDptLOhIJhWBTnPARis9Zd1POzN2zOKiFVtWO5sKsrWiRoY40opER9Eba/+CQ4kXoPZT9vWt3xuoZN8xWP/QE8YnUluwTdmT/cUHYRSIc2pdbuI+P6+CIBVTUEdblwMNGgn0tzJUAPtFIxw8DQetH0Y+9ZN4avalwdkzueYnEYJizMCtSDxkAPgC9mIjOG965vxLt6pkSznC5epwu5ydA2SQq3vKqGxN7JijP6FnPwurhcMXbX+dyyr2T3kfYKVdvrOH+ySrEox6I6hdi2RQCgH8jrYt1VRRaRAL8JFl36EOE8odGPGcbFZwsL2t1aWxINw57a8bqLjeQo5QLAf6tjCcdC3X5a3HSqV1H90wM9hSGmfeMaVNQpYFdxw3yGG+F6Y92vr5+3YSlnoOjV5DbJKNzappdHguWRsUxsMcRulD4LrbVWKx2vtEmTK/G6irEZl6HqJ62GV3CpIx5b9d5ZSDt5diT9OTTu37WR/02Ub0bPh6Iznf0Dy+fub8fdtgRQucz38y7JzlAnZuqq6fxpu3XND8qyouSpSS3RNyqySPu2T8myRo2lrcHKJCwlu51V7rVAvC97XG9puG7LNcrucbVOLi4K67XtrJHCxDJFh/KJMjoo7i/8DPvXIl2xWqH0TDE1qguDN9HqWjU2iHvZuL3KNF2NGuGfTWm0sDieFaiaZzq2yX+KT0f3plsoO6OqQ8N3ZsoR9KwWAgijyVh5Zvg+fjCbnGK7omteJIlN/+xBy0Trme+dkY+Z8CstXtpG3Y7NKKO4ZnCsrhyEGNIesjyQ3edpzRP1tN/HAFN1wPL5UkbxSsKoVDeRFLYoOfC1w5Ryo2w+IG6ZPFG60l7c0rkf5Zn1m4qT9CvD/oCbHPAjKHDb928F3pdfeLIKmF4cqJMIRuMp6If0DpEEikrB0m84RZpuPNozyXuNO820J1oRFIAD+bIVHf3zDbQrtSmtqppQYqBjAiwgEceBwczMZ7LFNEMRdT13aj1KH8qCSd28aDBCEwjQKFjF/PUj2OpeTK241LkpAHiE1YHjTetZENlyn4ZD5pGHy1b0VNLzqMAbomdLiep5gJUGZWZq0g17ZWom+3UX3OdFaZB+YZmU4TMjedyHz1xUwehk0+ZJkOIY7iQbn5aHq/ezk3ngjg/S6KbrlGCiIUdWaaqJujF2AEcNPMn+944GXser6Ww4xsA0Qz9RdzQ9vMJCsLMtMpwc/OLPbATgfL3B4W4H9QVraJFKVazTMIffa3n3MurE6ocCcjerc+JgDpb4naLpe6ydBxcX9ehbVjXkn7SMNnLx+YOR7B50lH4zvYinj2zVypYkaQt8uephIO3IjnGvBOfp5bIvwyQ7UsuTSg9/OIxg3q78pTAOIjxCw85JH3bMZbzGIB7plQGjZMHhlAk4f/WqXfLaAtwAW2BqZKuboezi6w//MJrv8FzDE8TdVVYbufbgxa8QvH4omILCTsKUyZIEwHxmqKrD8yjESZ6HNxUPkqVyBKrnkh67xIQtyIkm0OlIbKmN+jbeMJUtl+ih7ix/PjIs/fXx1ReYIw45rKlJcV5VOrJYhkiPlyXkfTa/1ySDY3EoWZ6Eglnpaij5z1sIHP7SDXoqxNH0tqcVVhl1hc9eq3edjqbrRsS0T6a7vvH9HFtGL9hhc7acfUQcTuTRArIHAekX/KnUTz9OHfmZvnQmVupYhxAAKc4PyaGdnmC7b8F9/iT8I0HmT8SoSm536qPkUAcVS4rPwbVJPGCzEWgPdrDu+qhpOkD8gY6PwAE44+DmxUGUcZBZ/7Aq8nZRxffFUCLQo7KYnMkGZ4B6aqw0qw28JqO7mh8i0vN7FlcBZrMoF95al0I/jFhGyUEJMguNgKApPfdwn4CnmBS5P+VgxVs9iHV2XrIT6G/WNEwYL3iTc5wLw7PPjn1ZQ3MRmjPLThA8Ec8Leguk/h3S4hRJ3Vgb2d/T89eaSd+EWAXv8aOgmU5kJLcGlRlDL7zcM8TktZJJr7LptkSXluUgZnRkhkw8LhAOEItKdoYpJ3nSLvUxwJM6KFEjTPhdRh6RGLxWrgFC+0XLTLdcHHjOY7RKWN60LQl/Nzp+6I/joDN915qF8A6Nb1Nyfekr2+htstBXAjORQ317J6LIn3Epf0GTBbJCsZKMSMtxGl5J4xYAtlnYheLjvbOcZvQ9VfkjbKZqGBPlqiGI7r2ql+9SBwlgon5i7wYoaDfom0IsfXcaQLy9mOUEQn5kfwQEt8kwD3l1bx3tZYWU9yntM+6dD18baKsK9DUrCI7D1ISW9TLP39/PpgKhTf00S4bj3g9n+dhFm5jsFuMb6VL64YIGBEPAXAGa1m9OeAozBagqpPfiMcT6JXdG5q9spQTHbSKkKQWHv52IlA0vUguGCmf0vWyKYx4SvDrxTqlISxA9z7KplE01yfBP0OPJRVP+r1aFMY/36HY2bCuvr9HwoYd1KSJZnBiUUz6nxIBTyfjAqcZrYt6GuOhQ0Li4VLb00rxpRzRuIECBHuzgnP0Y+latAtgshAh73q+92jig+pbRnNvx92s5fOte9+jTZMtpSu74sZ4p4Okbx1F9UTdp817gbJBqaGNbeYVjJUvbbf9/AJLCYwcV3X/RTxNH+Gdeqi7lOoIAwU/liQkQrNASktZZSHYY/EvwB9BkkazEss3xMu/wdtXgOe0De8zZgkx5i1DbwkyekLMiMVwPob+ne2D6qlAxh2oxdP6lGvMS9EUMCkHrqp3WllLNu6TQlxKmfzzsQxcW9T8RH3qO97bYQVsHKT/dl6wue68JkjwXUmyijKEtZXHjumjIeBz/vv/yT/M4WKlMiNF4SdO9zIvg30d818PTpa9GcK9P/tRpiIxjW2OwoWA0DLJVDt562FenevKsChH8F9Hx8GrDDMsBvTTzi3+OyfqzmYZKKR2EyIMRUTpUEErh9MzbsZ+pIWMxObQ7x8+9i0kg0008U7UA9aE8+i/AFPDKLE1B77UA7BQZQAYB/VFWXX7CVI5Dj032qH7D5Ee07HKSoTpQBEbs8AsOq2+6qzD9FUXKXANN9OPgsZvw4K+L1sPTTKnBbjK7hb0N93rcGS6jr/i2gB4REUhbtFqX0NlwH3qa2Uym8YOmRGlDkRVLk5Tzlgr0wg9W/MDHeeEiCE2QAJtVQaANwDQMsrXigDTtAcKKoR3iPaGFmWs0azE3FbvHh2UeiJPDbUWkP1HsCjvECt9aZ2pPaSVJvip6eDXm7U7UqO7CGqSs5IydGjw6ewxaLXUkfcnr4+nPRAfQf2yo2ybYuixhAMJl9uO7QiOQR1uTHyzVp54b7peukewtPXBLI5VAkHhqX08uhWZYqgYZrv7adM5lxOCIV00nNr1/dAAC4UMMQWruC0TuirNxb0sQDcDbpzUkRSjn5o7wzOVZ8OcfAtcMa47bK/0vKKJiMkMZVOvl+CXj1QyS38c8X6KKvlE7xS4cZ9sI3UJeAI0pepYkgB1WaEnSpaBZsFmS61P1QRNxgkKFMmIydaIokVdA5tms1dEuNqzpQtLanSYz8xrmYSnxOJ5MjVjewBTyIb0e6NBoWVHKsxJ/DEZVwXL3AYWHqgRplUd/OSPsHSX3s0OoEQurpr7Rmvlf+ppCBVUWlCqobxtmGC5dT0+TiK/IgHrnSlxOw+Dng7zQGL/bFwhJn0fS5h3Wte+fFYwyZOeaLw4HlGhYTL2OdZADXo7k+UBeDcDw4G4geJUEin8FcRh+/rsuoW+t0YQl/0xrT5dDvinpjXJGFJ8Hb7wIP+2JONLC9MAOaxfLQ+9govYL31c4IxKhTEmZ1iu565D5p3ewMgqAtjOKERqUfwFoP+xSd7jwchKx8krQ6bJ47+KWvgkKd8UmQSYfRL/BMuRjrtdQkPIMe+zZJ1a5XNkLTPA2lNR4N9zmQOmB90K7j//ou/Yj5pTi7iwIkDZ70gqge3uMFUF2VJSav9iP1XMOvO45I00gSc34AIfddXUgm9k8Icn+s8phGDENLyM/z3MbjgN1e/iktQ72q/g7pUiC4mI6G28wiRwH0L+MYE5ukRvIGHKTQifCg7JY4Z0oUh3jzbDowUZzHcwhqkCorxBtciG7vPb0SVRLBMYIy0o7Vv6f7POn64XJfxTCjEm9B0tdp/7h8TUnvbugWBJgwQVCA0achaMdBbUBh7Dp0q1kYZVuuMmTcW8IbE02K0/t+sBOjjXH021cXuGLRoQ+985QVoJuvDVvIxiQHOv2CZ8lQ5gOcdE5SbdP+K9KsAQcTKhl2zJpKpmavjPFv1ZWa8K4eyekQodQrHrlLjZiO1KrljEWKPqN1VslnAOMX6a1ME+qDptWvsSJsJtIvVvK76AL+suFLcYC4PuBfWMAq44e3a5odBEO/Icdu/q+3DHWvVVFdTlF98ebnjPrtsXdOaQpkVxUrf9Vuuxl7506+pBZFwgp67E1IDgwg6g2EyDrAo5mJmqKzNDgZUMa6+LLlzfpW4S8seRVi8kb/KUimo5gpfWj8lxSQ==
Variant 3
DifficultyLevel
695
Question
What is the area of the shaded part of the figure?
Worked Solution
|
= 21×20×20 |
= 200 cm2 |
|
= 21×8×8 |
= 32 cm2 |
|
= 200 − (2 × 32) |
= 136 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC24-SA_NAPX-F3-NC27-SA_v3.svg 400 indent3 vpad
What is the area of the shaded part of the figure?
|
workedSolution | sm_nogap Area of large triangle
>>||
|-|
|= $\dfrac{1}{2} \times 20 \times 20$|
|= 200 cm$^2$|
sm_nogap Area of smaller triangle
>>||
|-|
|= $\dfrac{1}{2} \times 8 \times 8$|
|= 32 cm$^2$|
sm_nogap $\therefore$ Shaded area
>>||
|-|
|= 200 − (2 × 32)|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 136 | |
U2FsdGVkX1/4nvSVlncKueYNxZBYUiq0MHakUV3E/p2xpfDOm3KyPZo4RCXHGjxGlFgca9G+hgGkmQPHJFae+nYrj14YGNNsPEDKZE/3x6C1WHoTNDKzwoCAUI3kQZ5fuBOsurIqC3nkHL+/baioyK8v0GEW8naTwDiZQkHeUMFcjAasbK7GEYgI7Y4dO4x+VHeHYaoTZBXISQejKgtoUcdnVBTqc2OQpvJcFL4XT3xHb5RAe0day9jX/uPz48kQ0mj36EPPVKICioW9oi715F2gpMzWh4UzM4kksbipV/CDojT8mshM2w9v4nh8Dk1+dZ5c0R/65kWZ8XV2RYg3hM1mxZRKi9WrO7SKfcU5Hy4vAvP4GhkkNAlYNBjJqfDSe5isiKYWCudxK0hL4eGHmpsV3b2CKCDQ4xZWsrv2SWhinTtwiOQCyyvWzgo2bt7lcrWDLzX//OYFzsr8AjOCgy66uyU8lWXMPzIEqEPwtpMEj3WAU7qKbLlMvCX7MRazpx4flheFAj536JKx8SOJ7sb3GBaNEEGH+WoWsXDP0t1DHKj2nlZCLhevLQyTXwYoaM7NU6m4HyYhMCp9j9vWK8DCJSVlJWiI0/CeZmlxNgFzE2JRPde9RwhDFP6dhvbXfy7zLj+vDEHbAn/dNO6sPxpZdD26Sq5+BybAeKSaf6aYNbdqHLcRPTqzF34ufA3og5HUUio5DzI+D2O//L+xeIM6PANMYDaFHUpiLPx+p+SSYjA/TYumlkt9YXtb0+XLgIE/qHPVURU0uZf4bf7tqK6ze0nXQUdleKoqRjRhwdc742WyDld8Fyk37IFPcg+nf2N+0XAzO2VgKVnnQ+bEOj0+lzLx27kN0l3VXHbLyLOdPpsKZIvZkiyaHXL6Fenl89PiHlRGtIy7usMut6fi1fwZQaqiA9IkpWFrQ9hcvKidQoaz0S2FqQYd1rqHLINRLqLLPNYCT5tSTp1IripoKdy1Muy+l3RFgb8RpO6lswk3a+xAee88K8ZQmei83g3EhwLFQBqqYEGBE+xz0En9/ORKEDwZFit2KB0/HF7Ha9/8ZavrXqZRe7C/BQrtyRAH2VHnUXIbRlx4xTvM9/Bdq+3FA8DRqiNv7AxtNXwNzi9zSlU3E1ADVnpNMLD5QWULfJJSrIlteGzpY92bRNYhZdEu2E0P7es6r9uQl/MR3uXzhAE+04EJLCHW4WJjeD595R2wcZ8DazJP1pyNt2T6rD/+MQPCtO+y3JKqWNCGORFjb+w8tutW9kXyPbCQzv9hZkhf1nuwefUPx7gG59hqhGadHD1Q66U5bN48C09oBAbQzVn65hD56zTyZJFYf9eBhwnudWs5XxZ3Esmgx6NMYrlDxJEIt/tJj3LR3gzJ2PEmwrlrUdaBRJRGzOfNCdx5xw8fFaiRkFZoN0qMKIQ2+faAIzz4F8HnXwG1WyTze4WVUcndzKQDQ+D4kpuimFRseclaYAq59r0w/NcyImgiSvNFOKTCsSBbEcA+J2t0tU8zoOqidMdHiFDXRL9Cpg25QqH5lXdO4zFbvWPauKvud4kkhy/gQaGdpljRHcUZMYfi2edjUejWeMY+n0qiAbqZQOAeAit3kIAYRLS+/2R/azfQEzURLMIuGduFGh1WP/z72xsJ724WJ7lW/sNN3iwsEz10gr76Z5q/c4Itc5yRhs6K3EV93zUnsQS/6YsUicynxbT8LEaHTQeUDl7Vw5dt22euiF8pGsi7BVwSjGUVUloi4ZOr2GVQ/VYErJXnCpubt1xgAT/i94E/Zz4WXzkovcKcVTmmj7Kfs/BjWfTln08E9PlMOk624+nINQNfp0UZXl+TQj5939/NgPEOI0Dtq/2mZICfm3TPao5n0rVQVSObhdIfHmxU2RMf6+wnA6rESID5VExqF2AJw9K0tDumFn5pUepE5Z0ztrytEFIu9RFmVAUe73xHeEDaOcOw0G+FOo3XTYg2nOFHI6lUHAJQMs0+shJlfdGjPrT9Baw0z8aKgXrOoeui5AcNL2GD6C7wY2c/YJ/GuidvXJnHX8Oj8AR7wWlGXArdWWR+1tI76R+/6336E/idQYcu7VhQ4Dl8G9XbniAA2SEHujr3dXXx6QAOhhc+CvuUOa0zwTUKHPnRim8+2r0uiLChycBU5AhgDrJPsborSLKD0SfUH5uuwVnKhdEkn8MnZnW3wrQRc0IUXC9OulqZPaaxjCZZFCvK2+58I+JSx49N7R4Bf6KbZQto+vIL9/NiS8HbNEDSInao99RRoRo6yd2xA/YQHpjUOSamvIzyeGopYSP6Vo/fIQzSMjnjVijTdL0MiLOI2U5IlnkL9UiK6eGl47Q+Qkzs7dhe4Cfi1HS+6wz5XmTdAZW5d93Ltpp6v7TiEVIywhDqz/DNWzU5nB//zyNlCgEQ/MOTRKii/slwJU6NbLeOd2+MMERAlSVZ1xB+Tp/VT8dj0MJlmmru1JvPbALpCTMpdB0Wl10sMwj8CFQN/vmn65tbsyW0zsz96mx1LRWkTg6ZCryB11KtpD6QcSBUiDPvnhb4XHogZYQwwyAjpPg393NK3n2lUejAA/zbDTAgdecOv1A50oTZfWM9eaKzRQNWTa/mjq+fzNgGAovo5bsKmv+7E0DEOMgAgUjeYRomPhMprl6nWAwpwmI2giA0bYk8c/IBg9qAKI77QnLyAsJdlg2mdgSOjRRkLEZppBAZ9q0SxmyL/gSQOuSzkmcAunmt4G3CoKKAhOs42kEMlHPmdvHQt4DryFdrmnWPlil2rAFPQlhjHvEou+kWuKTCITL3WsxQEEvz5OUZaPJw0s1ggawcUR9iUORaQtzThdQ40NMqD/cpUaNDfpqZzRe4K8deSNauu9aV7ggYDldkf6b8pF3HZrX8Q7FuwkNDaPZRFEu4sRKDIkM0GMMBMXmvmX1c094ZMo4kncRtr+apRCFFzuL68uCdnWhgAeYGnUPR3UKlFMB3+Xqnq1cZbp14PILhcQEGcndOAUAQhZbbImXCzg9QzaT0BEhXMg/eLfltgcCnONR3y+sjvL5jt0tIM2nJLjNTfnDp02zdozG4Pyiszt39cTuw7hCPKUMMBRxGxROw8bZzrjry/JldrPA3CwYO4obqmB90JDSosBOUiOuSXfrhkz8UdrD8XYmG1/UA4yYOsD9btKJl7egj117SMlOvGqMPvrKVI9VU5EWEUIW7YCBxrjFz+MyLBssJDgVl3kNeBC4d6K2QArRf3Ch0Y+affZ1f3FiUL+s5xkwgwWgt8gK0sn893xz4ywbGAp2zq2OtuBkWibn01xrp2s5AzI0DJDeZpltEFR1uVAtk5z3hBeNVdqYxvgspyg/ZbRGu5OZDVkTRbt/WBfO7zL9szQax4n2TtEGVDrdvx9I6OHgUmujmJCbH+0ahLiBL6tx+6xbxFsJ+uRIu8NmR/RS0REwjudy681kTLKzjiPwgeSzLv13MydTexQAw6J0VN4527Ws0/b4PzuzSdc1w+5vAzOmkNaCvdeeb1Pid9ym2cpVIcm8BCwsHTl6bHgvJkFNKpdqVyhZlTywRPUXNc9cMel9LSfmlcmpr7TaChhsIY+5ucLos2fIUv4Xyok6wut0vXpcIgcNhAn6HxdTY1m3wMqm5nhQA2mlU/5JTvigSmlVhvlaiPehMwDbgdTbAvSGOtybPdfeiQj1OGuvodQKsHVNhb38bqSPKHxGAuidpAFJWuoMMLiRhPRrGcxvADeLRcmvaoqn9UgodlpyPuhJnTqFK6hj5TwHzEsidZWUPrdD78IPLvfNWyo5VJvaFVGCDkHxk/E/hurzn7Oj5e+7g9U5MBEHhk3ZhrDd6C6SPycAR9ykbTZXiU81zOKoCk7EHemyZ5QPjS4g17s0muGKp4i9jNxeAy/ZjEcU/YUQgBo+YjMMX8lOvUpEWMoG5oDdtieauafDYxp8nPzF2orfwS1Yr4tOg72w1LaGlhW324hrl9PnJZpetoLb8OdH4lM9n7EJKSWtR6v8sJWpXWZHzYWZB0SjaeWNzB0g5kQlg6jAdclHtGLY7Q9e0ZLXn2CANgoXtedu6zyOWcFnDTxwbcEXTqXqWo+bbD511bfazLWamPEVb8anp0khqP3NR/tTrsw/kwM8z+NK8vXRBRq+iuMvVn0gwpx2kwWRvkCiJGuHZhdOAhS+1YhBGhYRQh6TDYWkwAUQb/8W0eP+TvcOsCc9rTVk105kH4EETA1/EbTgr9/tpPRLNQlmxQwu4vg30n2TrcsyOCK2531Ejlabw3L+EyrqXRF/NEV4Uv8++zDwoYbaiIcddNh5BHg7US72y+xXouVh4Wz/3IegiQa4DE+anTTp3/B9CxknXUg5SKJ+vTS4vRC0w/TyEmIbxJGsbCzC2emMBZDnSdKFo4SlSfRIndM+f+xpNZJ2gE0aV1ZMsDWrkURyaxppJEobNJKG5+eMwhnC4ruOW8NflaV6JLVrrQ2Y9U2taRib4ggJ1p91x7amDX66cySH1PVYrh1XXWMnHbfWCRlBfDflm2uBFjQVlOplzdoRNgOkyAJY/fx4Jg3ZnADiCCLfeo9xh2xFhTg+7GXUgAOeHkb7xThKg3XLM3txlJiF4zxn2YvNqCe7hFkTOxe8GtRArket9DxLrS9J2kAizqlYGAgBfWlWKzYNLJIXQQb05PR0zMxYNg66wAwhC9gkmnKpH0P2I31Gjo35fbV8VfWq4UTi7XUP8/vty5CNsB4rQ7fJxQL7r+pSIc6aFyyISXGGAHkpLkA1ccLwmG+i4VowujLz9z48nGJ39Vc6gf+Km8aI39SCFZAhf/+G5glwSiyyBXZHNC4aJHSHR3mOXsSBON1aky8zehJICndB40vUE9b+MOU+OsRtAsqmjV/NBcP6/hMAfkFzEv5LZPisRrlsqyjkI80vVxo8C1BKt1G3/difC+HmwJRCOvkAkHekwaud10e7z7ZO98micYCON96ROQlFpZ3fJVmhJX6gh1GyaCDlkiD5ywpT582j/ztvEVw/ZOEiLyz2oozhAHmGrzeCTis65ShM5O4opg42iV/EogylWm4jseEV73KcPZSEjy08CzOhCva2Eg9UAG7TNVIUn7uFJ+u1Qqj7erQmBLQ9PtpOZhNq17VeyUhLxz6iU0raRuiH2QR144qzwhWD00vh/Yby4oWI2+2RfWf7qv76s32PptiYFstQmZ4nWm1BXMbEzSirUD5pDsj5HYsLwRMUpUN73NU2OgyXdIhHoLIDI8OALQm+UIjTFcvwVr5Xa6E50e7rjQkwhO2euiCy/pnpclL1RQQtiC+Q7ivirDjYpOYX5uXL+SwEhVNMxgPBY1K6EAnvCW+IFKha6e/X8hEOtbxySldn8AvnjMsEGX+0Fa0MVmPFus0K2ybAOwcSuvwfyWm1MirjQRslrlAFJJRrU7oAZE2f7k1hKe/16uAHwyjPB+jmyGKC9T5bmL/u4/WEy8wACMQJ81cn675X3bJ6lrR4w5mvsb7LVF6q7HpMVYqsmhoxxWxxS0PcgCI1jDGfcZqU3Gr2eaBjbbEVJhnSwYgnbnHYGSAvlPS1QbLdODyNTamoxOsNWnjCF4YXws9gxgijQOpE5vH25+lhNa2D9N6aU1otH2gATaS0FcB2PS8f2cZvNQFsgXRWbvbkC8RjqY6iUNIC4qQTyOCzSltRq1J5MorGI4rrHue25L+4anAhPDDoDXNndE8f3bB96vllVwnanI+X8+I63msThH4MXequd04FYHfCResSA4L1NL+//kHo4iR46siRbwc68GOtbaOiWvSODmUNqWWrfgfQS2GvM5pP3HjIbSUl0D136KSexX9wWcW4+F+jwdmH24vL76xNFvXLW3xfzFaqer77MFiOHhZAGxgHK7oiW3OTcE94IYiajkBQKfz8FsL9ddymAQ76PRiFxeKZvhrYhvQzNVTWUwdimyFsxF8kGROGDCiE1B60265/S7GwIaRbhKQrOU9azDBRfsrTEFj8jryETPOqFMBReltibYFNydvbB1rInAvT+tfeGo5lrG6etXwi7unU0y65fHcgIJqtjCdr4IS+nYETN0UR20UsAEcx4oMq1FaKcjHa9KdeyCCZeMRl+J21NXVZF4qf27GBtBhJ3dYLZQ+4KCVlLeNa8MM4S8z6RqIp7RnvVJO98op+vc2ywfzCjWDf44wDQ+lgBDM91t/SQcpSNj525b6/qwQ0dD7tRNgjsN69qviUm3RGRcv5uR2yd0G9kaKrYBw5o2BPbyOGpHUpO6fW7rv3g/nUcKNZoad8PdO9BKVUuaG4gh89Z23eDAK0/1ENKEhM2gdrFO/qkrfSj3U+646gtqdDczuITyN1GYslZhS7y88P/Sj9gQWfDUEUqQzQyveYFJxIsmqhRV/7UDMol7gbuU5HJhxnZ0Ch9ZBWgj51zLt4V2mKkhMUV28ojCo/xrqD7m/6xF/b4JW9Ek91JRuAQPYc022fflcdc8KZN+C1pgT3+ilwU+htEd8ys/7ke+QlkG7CLWzgKots3wfFvU9PuYQlL4XuadyQnYv9z9EVTYtVybcb+Pl9qAQzHdyB2Rkg4IwajgbkE65c4NE3uF5Dxj+7NnTX5ILFHVXrdh9eidYSqmHWqDMDncdpk1RzOzJlkqdruwuERL/PhVMuwHMyfAPimKAgtoJi6CKuV6fxyAHgt4O/T7Gbc0TuHaOAsTmZA8xRBiFPBbkqqcO37A7TVketRSd52ujdVVwaPUWNrpq86HWM1oB1SV3aRgV9PSBydZQvPc/GpH5Lunt4PXVaoA7c3kBcKkbkyG2u2+/u2N9wMOV/UXSeFFcmNie2VFCzzELWdZZVBicY2V51x2es46nW5HLc10bt0bKNsrqw6KyxQkPTPGu5VFSgZlIKXfjxXd8XZ7P/8yssIUmL31onsmyLXnuMb7XJulURMlyhO6i9ckjCcn5q0Nq/vHVx7UUnc1VBXOXEJEbTj+dqITffxgOKo2+UWBgTLE1cK7lNtA0V1jX1YRtBghFH7QHvkr6Gf4No9df03F4M+pK17Mf0YN6LsFfa5Ef8DxbG7YqOUFDhEUFkYhb0eb1BnO57YAEeEWhLDnZybDh4DE8Bxh7ZdWJGwL9ahvXbRgY2cz7nd9Qz5n59OJVGv8CJH9a0OZ9dNjiWdCXPOIirCyRvLZT5Yqa8dEfqMWuOUvXzIlYu8eT8Fzz9bwXrosTZq3fgTOJ2euJWQjSJEv/mZNid2JV7obkymotonap5ZHcExywM6cDtYZdps6rwvuemWpqkQ43NVtXD54NSPTHW5P8/VJ0wrCwPJx8aA2yzgqR0zMDkX1jfaCz//v47/0zLSvweO23EaNL/0Hi+qKcWo81KP4kSZMEfcAm1lsq+vcIFnvyZfehaitQyPesZ4rf2OR4gEUtypytfPeGBaL36uWfTpbnTlyBwkF2+22Uves4+cIhjua+YySbXiztNIrir2yTx9AF1CnVs3sAn8jQtEpGrJnveuI02E8SCzGeOe9KlBjJSdHpBaJZI5HpbhMo48do3vf+m3LbmQyXd0TEZ8hgfNBa12G00TsnZKtKiH9PYN9/kMC5CbNVxf+bcsS12VhR1QKRBE52D8g77mMuXH0Qe66gysqr0ysIzY212gxO31R1UL/b+YxUxGCrfYrGhgx7CU3vo6psoHG5Ri5bXBlS6fsV6wxoJOBK0Qr1OXWU9ft/BuHc0/1nw8e9d2AgppDMPgf2tTPZpipjS5JPQYFfMLugoeC0I07OM+jWnio1vqNCCub+aWDPtZWL8SJkUgLe9kWr4Vu7H8uyw5g2PJq1mibmnnC54duCZ37Zwk0aCR7HG7sjYt0ka8X68BHTX7POolDWAZ6JADm7hiQlS/09Ngk57HJniVubfeaMSndUDPhtA4Xw6pIJE+kup/45euhCJtFV8+i0+VlQCtMz9WXllvw210k4yfXuuogjj8TVcm/7Wu+GcBbLRFKvCLF+OdwkZZysfi27GBXMuBfQdsnt92IX3HErvz1GGzHl8syaaUQ/F6Y7G3kBOOl2RU7eP3745HMSxnOKeTu9ZM778DFD5j+0E8vBo4cKyS9NHmuKinErLxvrhUs8G5NA09Vpdq5PfDvz01HF89ft1ZYWimhpfMJdXVj8RyajqeRYEW2taDwxGd9NmD2ylSYQ0YDZcZ+ZUvrhHbSyzNPuKrFuO/yJfIedNWLShIXSbkj60c/mWxiGp6mgT2qB7o0TNft3bSOIgrVL+LouugOsb16nJ4lQNiBTFEdVELPwzkT8k+PxfMfjjmtkF3BZZs9PPhLatPwa8oq2ohn4btDDajtXeZFWulQZ/+Y1uy5OpYp2587UuTyvXmDn8idL315tVwjqFmI9C39NkU6vTZwpsPx0OKEpXcFbnkYwf8SuM/vvq8GoDrhhao8CDn/V7dLU6Ql+mYKOdRfIxI6bLh0f6e/7njC04ySiPtLHkIxK1qgKfv6dS7BlpRT3HhWfNAvTgwNulAspMYhNowagA8trkMvN5/Cz+5FObsuliqOzCWm33YlcswHuZ3S56dM5t1z8AxP9GQPKQcnaaqHCRWqUwc+2jIUaF35y9iotQOoKniapc7pUm+uoNO9baFmXvUbIUYYnZUjAIAj/ybomv7uCGw3PoN8Atu1az0p9Jt3+x6QDkl3PIwRXk+x+4vh6rzcMm0rzqAhWh3KG9EBaX3rUeO+bDj6eVB0qMtJcGm1jfz5F8njboAX0wseICXOIAMbayY7a7x41aMNmOrEZAnpMt/J6XhL7VgCCUD1sMz7hfKqChF//NT31phhUX7XPMYXJvq6MPQWIf7qXhHKsQAAe7KjDeqm7JW2AthSae4gng5vdz4ssjJJ1ARpeFzdTz1bC6MYqd+orjcAXNVmEZnYfR0JvyE2FHakkNO3u7wqMYZbUSnkUL+zvwQ1bCJZ98BrIAoj40U+P2FyFaDbdtFZr+D0VOnw1oU0bJZ/Ms3OCwY3G6WSbz46XF8InLqxfyP7tbi3H5u2+WycIgnsx+S14C3VAmsYEpcfLciQgvmDpRqNnMEbX8TMEQ1AtpTVSVew7I13sWBnnAU33lqBzVnsk24ulpOm3M6uKQk0wNif3tK2fwoOufgpaGBNMTvzRFYu5nkA7MihS7FCFDsLEU6KZHFmN3w6HlwUAs/PCUbosrHKthOwMDG1J/Hov4lRpSRGkOTj3di96YBtruK/YseRE+Fp1oR2ME/VRMFVDXSrSN9uO5WRrEl31/zvwFz6tTrtQNaQC6k3VzxuMxL4LssmT7GBR8SHN7tEkTRaBZhHLuvbx//P55IAJiw+Hs3iTNwOSKqyEyLdPpz5kyUIJmiFf+joXQfrJqG+TVSAQzEYaF+fY2Mvs5FeyRG5v4O/dOEGYaXa5Sy/xUeYsM8mx0N4PMi+0HtTs/bGZVbDWNsHtJM0CT2CP5RToYCjZg+KOj9vAge4PLybjWQlEkgIWlvY2ACqwcoBvSr+CXEQfC1b5DWDFA5QbXkx/a5RtuHa3mP9AIStwpCE8jjJ/B8Mi/v8XCHiVUIJX72DHLdBpQMK38bY8NaGBCRVcItCwUwrp8t0vxXYBNypJmVp/xF6I2o9mKZNPuvogQ1GRl1876sKvuZzw2/pnWqWW5nK59GJGfcD1nXsWe4OOVBkTYDHwE9p6wFuhTavao7+iw5Zn32oghH071Ht0ECMmrsMeX3WD1uYq2tZzVIp1sLR6GCCFX8LFcJFfbTiszpShfpqYqcFLXn1TRAE7oEV1Da0QfhgW06ZsfFO995nUasb8ylc3NvTJygtjh9QSgvuLZocQMV4oXH5X0xLQa5NMHPZMn7QB+LwrhJKRDGhJEQEHYvpImfpzPbrh/dlHw8SDN+tpuVuEOU/E12LJ+LEBXNHSm/YKYTkEoe3gJcPq/rxQ4di+BhKyoxdAkflTQHvkSV2FxXKp8NFzVAH57GwuTlLeUUp2dZJjjHsHc5RkyyxYbFUps7nFyeAVSdb+3BtIsMEVaMhLJjClU0KHMXWjFFZDkLBLzo0JEUxfXui+r7uJttdKFa4tE01qx5P24DJl3G2ux9r0OCtrY0ca2+SqEpwnXak8P0DIeOb0BdLhmQopPubZpR71zy6S4IUetLkHTzaD3uwQk047rTVgMjlV8Z66GJp8a3rVBpJ3P7USKHMi4RvlmO7/en3AVqQ6I51hA1ChUhqK3YQX0oYyiDTno1XLFLglEdQrTjPSeL+EZbjQFvqxmT21Ogjn2bPXz11I0M9Kno7VC/Fiv1d161sPos2Vy33+2k1D/lEI4EMQFRVx/6oXqf4KLK2ZGDPSEFlqOpcAE5amHBDH6obqtkSmuqf4EreWVoIwIoDjHXYHDJlnqUKIOUmmlQ+ptpUreXo6deKaPWK0FbWma28eg098JqAIxzQ/+llT/LCEQLD/1yIPV956wAJg0wE8xtBCR7O3kdeSNRyaXh4V5wkxZqeap1onRmDxa7CDqHXuQbJcFHADDQEtHhlckdyuj6cB7Ia9yjZbvR6u1+VsixsVpb14QrZHr0ZcNLd0tjSDO1tgMJjOPBdDYcXRW9On/Vt0xyweEviu8Z0n2A5svEVkR3Cyipnjrk4XwAiWUiz24xthD8wNezNqlkGSvaBLfsEKpPxT2nzSM+Ecmg+dk44V6DMbDU4XZmUrtX0M1uhcamQ2eR66DZd/UZsJIbUoWRR+1OEYjpZNR/JMS//95pCWgcbMqtR2418HOyBZH3I+sKyQmct2OunnbrRMaE/QZ5JRqQLaBJnbE2xKS0vwuh9HtbrK9XZWJvgv2FCH8rmM/njhXzn+4PnoD/wF1SaGuL7kFAaqr4u+LqC5iF465jZ4Pi09Av02pX2DmbmvSYP5DXYezlkgY6b+BpjZrxLd4DgOYzV79BkuwA4f0twmqQbatK3WFGgPrtKnSUQTv/L4CNQ8jzXFFCAuJW1lhpRDCmcwNNy2kfw3AJlm3supacop6jX3pPMZ34IUOTNC5wzb/jAud5HU8SYUm3nAW7hOnbHvUezWnEJmwCZ20w2phCXsncmZE1RhHL3b/MDUamaLC24MSTu4CW9EBOUJUJddVztpP0CItD9N+OqLZt18BBDSXICaap/Tx9tOTfFFnwpGsQGi6yaxKmWxquSB0hCA1uQR28G3hIGoNn7NHxCoQRIemfOqEW4kMkJ7CUE4vWYsomxJVClmSN+CJUl7Z2iht0V6nnxzrbN1paE+0yHecuYQ5WxabdnDzS8DZEf5+Ir3fw+p1bAeSlnMv00ol0P4slQewLTHoCUht9Ff+PFIrCmi0MMWTUpAQW9RrFNqLF6TpjUkNMWkXrSC3EIeFB0lQJ3ov3cW06J+fwr8MhdxoSKQZYNxdu6aI7EOHC8MYrPPVpmA/xeOAx0R1XihNC8auK1RICSAQmEViG8Q6xpsDhevT2A28xTd2ILLcJnm1bXEoRdZ9nllgd5MP9y1/laSmn9zTRNhztlyXqMt8iTKHYZ0Mkwu3yHEbD5XA1G4jAz1lGvALty3CcO88JPehGXDRqFa8RpBdfzU1Dyxy7RW2+7Ckoq7GtekYswkd3xBc2i2E3NBe/6w3b0caa+cLwmaXdGrQzRkxIHrphTq+mFELzwzIsWaCOrcFoQNOn65UWL+8HIxvUzj0mDJSFch49xOOwFpR3dDfFzdyrOTgw646I1fdL1SSeXtqrYggnQ0OIP6kLVu83CHidqgARovIvh8Tr6glnajm7js/u61vMuAxgq37cyMspRkizA1OYRf1/LyT1zUs3SDA2ahI9T36IdvcIOlGIsc9HlFx06atbOijFkP5uncJ+2QR7/UAtX6jF+H6U5m32JNhdrNSzWRw2mOdesaVwQJbAJ1xTa1Z5yS6kB76URCRGjMjxWwJUC6wP6nvP42FHKnk9LlxWlPLwfFA4JYXui/NmBDU5f86SHAk1nTLd0NM2dxxi9nfZllKmEh8cOMEybZ/HToWeshRhRS0qeQ77PZv9uncEYEVJRCijVlO1n9NHxVPUAM4zg837PF7CKNIuA7welGoaU0IBn6U0r5/LcLIWl45UyyyXt0DY15kBbITOg688SaFxmQ1KMiSik/1LXTHMH4xpkhac3xNcuFERUvP+qQZZou7qULeWFpGzZw8R3TffunwwjIFb4L9u+EWIytP/W8WgqeOHxz44F43ieytYfF09u6Y2ox4T0RnuGExsa1PLrXG6CtYU1USer1LCNGvKKR+UIXMZ4L+C8eaDQIQ+2s2C0Bhjb4+l6Uu9j/fP5MwkXOnndu+TRllt60hvTjmU7keBHDYL9ZREDm/KLZ0AKD2ug9rhSXawa2ngF8up92n4B5OnN/jFqB//BLpU4cXtfqAyYfV0CTjTTojuX+zZQU1xUjJIkxcNfpzJobwuTVYB+iGPm9G/UGKVU+Mn/QA3D3tmGQfs0zo/LtYR7Wnc2JYc7/yQH213lhttHgazR2c/JogowAN7vBDX1Co4tT9pKaQVpmVAxpXvm/M43o4fs+/zJkFUsDL76aV/XIaPUp0NWA2FVRgP0OnoQaILrlKIC+xUwaZam4JRt1SpnkmwvgPY4VmNosbW9gsNCmmEyfXtLg1SiRXtWh2VAoCtDSrFYOrMEarLNcDAxPxy7457EpXkeE7CgN4QML4TrhEWlXLFjGU6NLNtH+2SO9SyOPBWyBe/lOPgsy+WMlWDARXBxORbGu3xCQtFciikVhj44lwyz2C/oTAAi+9G6LtY6PnHAMJGZ5q69jfZU2AhZAGt+LSoky11Nx1SR/2HbUy0GPPc+0pzyhkWbZaPcKpPcKQpnjoPtxrH8kDCtyLLzuLpH19pzdfKCsYLJdFvqHyS7tWOCRDVaSRukZNkvJ9A4/WwtfnvgZRf/XQH6ipyX8rKaxufyag5vm1QDzt94tF4Cielks/oyU/9pl3T17dUIvtVBG41YNunYaEXS1nTx56Medju2bR/a5EP3Q46jPkmjWE1gJ2u1AqDgvjAYSCU3MHOnOcCuCAp0iiyzZW7prTh1QWQcI4Z3TGLuwUL9UaUBm/9ZrFYqQTKUSkJMUjyI+Flg5IlZpyfHZmE1t8vbdALJsT/LylEUvh/p6BZH4Uwa1oyzFBTxT8eQfumUqIpS2CIZbzddWhesYL3tZ+ETKNORxWco+5wKS2FgWoctcUdRP8oIl05G0xYUXhCRQ==
Variant 4
DifficultyLevel
694
Question
What is the area of the shaded part of the figure?
Worked Solution
|
= 21×20×20 |
= 200 cm2 |
|
= 21×5×5 |
= 12.5 cm2 |
|
= 200 − (2 × 12.5) |
= 175 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC24-SA_NAPX-F3-NC27-SA_v4.svg 400 indent3 vpad
What is the area of the shaded part of the figure?
|
workedSolution | sm_nogap Area of large triangle
>>||
|-|
|= $\dfrac{1}{2} \times 20 \times 20$|
|= 200 cm$^2$|
sm_nogap Area of smaller triangle
>>||
|-|
|= $\dfrac{1}{2} \times 5 \times 5$|
|= 12.5 cm$^2$|
sm_nogap $\therefore$ Shaded area
>>||
|-|
|= 200 − (2 × 12.5)|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 175 | |
U2FsdGVkX1+/YPmcWbZfYDKWZisuN+XbzI5f+Le/4Qe9H0zz8MitHpNLoS93vDQyiIIYR+fNWhGKGGj3+ShMSJn6Z1ljxhFigdoLqI3ru25HTH7nqKlX5N9AIx0YOAKAXfQthZPbXf3CqS2yB5LNP9BwFG6h7yOPjzEtH4HCQNTGwQM+7704GZ2HA3XOakYVmotOgvaxXvpm/XOHiyT/ZJr1Y6dat9wWw/8XH+/h/j2Vygz6Q1oRHC3CC479NxlSVa6qLvgI+9Wns6/4tZFv9exLahSf1iof5wbLwIpbVhhHGQxNLBF0QasEIBnZIEu4OUj7OJMME4W08GmP9XHAdHWqsFSwablub+NQdKuJNuRfGv+Yx4HxHKjLHRfcawM4Cb9VEnrPd81N3LKrygDLtkZsSIyF2WUIePZUwkZrLy6OMxyGZY2ZiE43MeYRCiRGp3iAHuevTKUxsXS9H01SkQ9LxdJurOB4uEu8EBlWVIaavvCHAG3Fds5mZcYJxoZL02R+WGs+HgYTvEhw9KTmy4vvFuHr6aKzzKT07sTfYhaIdrAYRrcspQsvc0e2jRxJXXXFxxx82DDzekKsMnfwY9fZZdodxyy3YtClci/rNvG2MYtCDTSxTjrA9ZBMzWZWB1DqAn4Qa4BliQQ6ehyFUcPt0joYivjvknGYXJ53v88L3g+UGVp1cd3bJTWH87DBH7JLxXH8y99gs5tDzyUzdpnVIRt/jHw4K59PpuOdJwVNyGk0/E/C9baba7RCwJGmgPuZU2t/R+Coq6FP+UjymfIxiCbkapl2o5+2jhY8H7k5ovRNUabN/U85H0ar7rktrOGTj9z0EXTNYAnStinyPIntb5PkgC65YjPT439yKeHp3G238B73kbxAvPXjCNSUesyQckNCl5hWlsFuGVD9JuLtBmqJLoIOVpVlHb5oWaSO3bCq+Wjsa0bFmq9iB18XBJQZXbQV/Dsoo09xDbopn8GhrtcipLJjZoAFfu5A+H1GEKCcZ5tRTGiXGPRhEx9R1fddXSPyq322kch8h7wnYpVuNW+mzGX13Z5gBIISz+6RGV9ekBRIejGX/tlXGU1yRFE7eL4CQjwKvp4fMa7tdfqt6QNMhDnP3lv7zJvPCA1B6XzqE4TBi5GeQQnELIwAa73fgcBeKJoRy7Tk0U0mWt2zibnsoCQ+ez/wFos8hEK9/wGlBuDXQ+9XGWrRHxidiYMmBSEKuoJ/qVgvawfuFHo7CaZ8A5prXf0YxWnf332N4COe//IaBVw3eu+SayTGP/ZGLSnAKU0z1m+4O/2djKrG77ok/2z0fdY1bW2BzUXJO2FqppEG6N/A20u5HBvMbr+6FkJ1VGe30EAIkOLqyIf8kUfw9LuIkx5X4le9s4ktOZF/wnVN0klf97EOM+iHuLnpg1YUZjg0fIWk10qySkHXhP78hNz43SIMpymT8jWKFNsmbfZPRlNfh5W701U7gctyTe3NXJrUmLUdTl6zwNnMK+4ECoxmPpTXQrKg6kFz1bQ15xBXjridrlmtdylRGpU9+eYqEx3d5pPpEUO/IATntiWzxLK8IsiQWeV4PZMSQHheav+PnpraOAMEF6FJSkskqAAxXOAqyAifnAhSgRsgrH72FdO2C8apbZpI+LxYEn1krmJJh+sG07zPnvh5CyZ4jfVzRdCtJn8RbPoaswQQwCKEMxfo3Oex/Ej8N5DRFaZlOrHOSkKpD4y+VbR/Pw1ULJlOh8kDmGYtLxD0f+j2/Ez0SPQ+BI50hu3bMk+uOtxWhLdNqtn1Ldgunh4LVPoYr2dXl4qWmgmk4U6OkxTGYuQlyrcLo/Zkif1E0NMGQjhjmlPbJrnGTtSINcmsag/HNs+Ucop9lP7k3BQFonDgK+gJ+HVh2OLCM+ki0GBT0Q+YrL5DJIpezbk6Fyc3EVDJaaQzxbLgjKBhZ5fWHM2xJT6agGP3g5R49+Znk016Q4EbGrTjXlMrE7DZVpwWcHx8bO7GZb91pAo5JDURbVUlLuR8fmDsHqONonxagn3+Gk817L5xZqCJMRAOdcuPfpEcZ5nMf00tpiZeUOH2W5NpDoJywU7vbBihpDYTJTL6H1GSTXZmi2H25s7I32V8hYQ5YKozrjPFLPZeo60qJSackQz69yINVG23d/6w1bOK9jF08BRl9VikGlDk7LN3f45n2LFlZ8ETd8ntT7PSWNkraAWMyLHdq5s4N/y0CkupdTrj2mRQvP+gESUSSKCw5N0BeAZq4DwgnifRfFeF6nvTQoWCnWfngiG0MTmeBlCW98CJHnjzs9WFOlr0tq8Wtfgx3bN1sTaUVnme1vRhP8hqOR63itI7girjDrxsH7SO8mK4ffvMQL//ZbJKitbQV9Vcjjet+dWVAdlDWD9480q7D5bIQ81/CLKtZnaQhfR7Z7qpz4vnQUlNXEVRn/KXvWphKqq+aSojjP+/0oSeXKDwBPgoPO3reVbMkLFbeks7APRxYbCQ2iqFuiuQFwLudvyc0xYjesudNvMT/OOeDHXgEXwN/CeA0tI2exsAK3/ZgtLXeLTE0nVhBMoM4HtBn/w71mQO0YDwD8BZrgal1LMTlfXyQe5jvUuqQR9k4oaig9Opr8GS6t+bF6bJ00Fs7g3Oq/ndXd7oK07V6dX0NsVw9TBoKw3cwQHpj5SpPH+yL0daEuFPju223OM0MRn4GJDEBMFRl/u7k5Tz56szTyvrN5uEOJzU4MgwOXZRVAUojSiIAO1AqeardQ3XmMIAT/QDxPvZn7Y3P3QRFy8eNMHZd5rEWwmYhlSONbiyqwlnH62E4H0hH+Em3JgC2hNx8+GjOWHAlS1zZtY0H2o9s912NORmNIF6B+xSsEFaXEcTcBcqIx84fU9A9yAGdsO3qqMO5xCPTO8n0ugqRarV3kgLMDkPIdBGyzzoF61zF66qnxPjj0oNxlLc2a2HGZFE3idsGJVJVcVMgvPAdA4mth6ddAFO5j6SASgs7qektbihGcxLUFsYMwCSfoc34Dc/0bo2P59V6Tjm1vEbrB8uObg5W7xUjLcn9wLwDVYMCuZJ58AHaO+8HUz9MVohbHU8TE6nUUe5eZiOG5DY7tJS9RmpF4yazTU9WacgCiIirC82ySG1bdDKgWOGqbx0Puo5x+u9qxeFvbK7G/5uLzG03Ph7x2Cd69WoulA/oxXqEYrNcrj2HBCy+tMbJ7MqUPRFPWlXCUlg/t+rbJAqu0ASuCydQ2Nx0x9QODRwoxIT3sF1WOPn3gI3Rg5E9gw4lLvi2fnouPMQzrgCdke5x8/ZhNOlxHmbmczxa31fpZlkUSgZc8CWtpI0GxSOerABh+u1BbtlgNp55C5P4XDXJj37e9V2b1FaWn1RSo8H78hx76fdgUa6TLON30rBV0q1EBGoZWeZny/31KuKmqmbs5hyCdutCzlgGBOCb1Kq4OfQPqXBnUASZDeZQqZ8EnmtvoLBCc+ap43dHgpMOxYbnddH2rDXIRDSA1v+CdxSEbBzO29Wj7GoJWCZmI0leo4QKuxhLyInmVP3b2bMn9ZXa3RFGwBj6kPCYbD+e2+S25KwDBoiHzWX1DWIJxRRbabR4tO4dPrjBmI1EOiTaCg73U4l6hLCWhLzynO+o0KFHIBHef00Q//YLjoADU4rTfY26AHg2VwiLFj60YMgR8ESNaKZZ7dyUQfAGHwK0QlMVqoFdwntZBcjOo9dxy+iNdNO8fma6btRcXYgwKE82JDSxQ8eeNRnFTzBAwMlfN+emlCI2b+77iRQxmJtSKaIUHUDEqzVJfX0HmKZC3MuhX6WfyndJEDLwleHxh+oRBEQ5FVNLRETypWeZV8Aj5+0xoMn47yHeu3CnmmYqfigW8eZlDGcE8A8kI3kZEdPT6RbiC4nHD9pM8QcQhBoMsnzZd3X0GbuDC71kGZCAcpHXHomAFrnsLjG59puggopy9dcbrRJCJX7Aff/jebTH7/wZz5KwobmwRDNtpp5qbOoMHNqE6i+bmh+6Nj4Mm8SIFGUt3b/Hrb6G1BFwCCME6hb/45TsizARWGaL9IO9ZD70RdH49DM6JW3jm1ZBnvNVmGL9Ju3Y/RKofvKkjKBIpI+3fCA5V+iB5HiDXxcauzmPwHwYld4m0IYLaDjnMLAc7tfhDA28GoxqL0wFlPiF5zrh5gjMWIEy1kDSPGPwnyJ24s76guFjSU9F70dKYrd1mboKJpFDp1IrNCNSF7TDxjzQJtny5jMhO/YIgDxfoWx1BAtz49u0QYtIopmEny8ltBxTOX33r3E1+/ZOtB9eRSx9vyIbkMh9Z9qBhbQBiEMzufVim/qZsTSDwKHMeJjre5+WbJLXAoFssv0rOtdIjKJ1SqvUbPWpGsZsD0I8Wb9MQ4uZ6m73kwZsV5sKZRxlmkcYNQuWhtFjbnZgE+1sAiSBK7ojy3H7PhZTRzKBjQjR/z7m2X4rX+fbCSjkua11CafDKDi1Man4FX6+JBDGzGvb52V8vZA9CyuNkrtv7luBP3fvjOsgpaU/upGglvOpmEBScXmAb6IkJHHQPcB7ZoieUHa1uQMcIb3wLVIEPCcu0e1Uk0TsudML0zuhrYbcpkHQJnnSP4uJHrilv/a/0NuIf4cZ+3XgKBUDTtk+zRJWvkLAKlFirnzZUTidqCLGQymBh4QuH/1FOBhthZ4NBqXjKA5Akxh1AwegGlDVG9U/euzHKaq2veAMhEpJ3taBQdGF7v5uM1tUas4JYctkDuW7xhURQWOzwGnfLJuqsteAReSslIc3B1QdavzZsnPHDf0727V5IVRmtb+xK7coBJ6d0K9qOHsAfPJoTIoQruI9/IfOBGauiR5tx1oUNZN+VLLMZ3//k1SyP0+AIdAq8ovxZ8GvKSXs6Sts9XzrcPeAaHLtFKKp9L1QM8KumnZKdiFwLYTTuDkVEeJcnUdcWORG2QRxRmY+f0sNewmbtFT87fsJzdasO7FIxPC6sXW915NaMhyL+hfi4wiNiZtzxDe3MzNrNO3PwPFUCKR3VykTD8VzCjyy8spM7HzFvlFp5E86/yVz1zJsiRE96oFNXjHUm74Daj13b/OU2WZCLS7EoQCQTKD87RKRg1bRXMHpY7IiMDMvtLoxAAgFsDO+ioGczEetuSDGvXhDbH+m6LSnOe4Wb0Su9bZGJmwLYiekqSfrjD8Dgr32YwILwIHsNptnDdyZOAyBx5hv35pQ1akPwxxqLO5NN8AtBzZqoKVo2Eo5GXdeFPTWYsp53j/g5WwogdsheZZeSnB1/TjZlL1SrbfcdyZ5u1qni80BwRT5s7y25mtBeWINPtH46HKkEfS2Cf6IXkwz5OvVHF5ST973qkX9tJwywfrWNZFFfEQubpFoox7OyA21tVJ4MLTBv5O0KuOdPFSs/mLlJU1bOeWDEeD/4DBu/QzM/pNHwhDe2mQCqyn1HgHiHvpFqSFjXx3IwK8pjFwjnu+MVgHmHv8NRizFToz0KQeR2J4Ki0h03H5qreELSHKedn8U/bETFiQ7HHF2LOLoHoFjy7GQNW0/cYqeZSAyyYYI6fTRE3LcmPGovzFl3uJiE43fdpijZ+6NJx+dy8Q0ydnRBx0TnMcLfJJXpi/V5jRtP+Z6dm/BVqDDk9D8lOkDgd5uMOCWV9U6AI756hszFM2/Zzr8vtMHq9XKpvaQD7DLTmoJ7ZH6XJRKnHQOZkcP3VtVRN/wQ1rpPYkwi4RQHoVMwIsjR5QXKPcWkPqrT+VXPMr8WhnV1OAG4Jpw5Nxhy8nBHt/YBONzQraGwdqfBxV85D1jyL+JXGiI7PwtJFM+DqpRwU5YjJpEElY/Y5nzfXF+zDFzKsNHeAA1K7D05yC9Tu6jI+ohlcADUqa0XQJ351HguisglRosBxKs8Hxo4nW1Zpa5+VRgZSfOO1seo/uEiYyIcsUyCJIY7nIm1+OW/2jN5EtmCU7VN1M+XwWVpseD8I39Fboe0hDEkvVeVtQPN1rsVcPh/CjXbs9Jw1YNep++jSdNkOH8kNvg/PieWsFASMdM3oLDlnRHysyZ8+5Z5fsXo0zDKdekXw0hkL9Htxr3VmSTcUN6bEL/dL1JP1797P0S1Ob2U7V1u9sI+Nt5VH6erNHBmuVldWD93UibMJHj77KYHPhFDXXahHp//deeBEYGN2AL1U9+Hpku367fD7MkYtpXoZbIh//cETAhwWwKWtwxoIRIK2j1/mKzsc1lSAJvRhWQz+I7CQk6I+p3FSh5tlKrPWBDI1R4fc6F+3duiZY8lLEekzmw/FfmQ01nqqo918mFaMswimn9aReqcdfuMZLTXmJRNHQnv2tceWSlkrJvnUAdCkXnx/TPpEGolj5nNC8VnSmW0lN+jaX6cAuT8p1k2FiEKf4hypjnhkZ01yQtlrDMXILvKWfVunF15OvfqD00ZHtSZ9eH/mQUX6FWWi3Xw3TyqeGptH8I6OZZlbqEuFb0Nn+v/EndTVCkO3olJr34NVc+9urlyM/J04GSudIF5uhoXDmmBy3VMBanwbIzi8X/4fhyIGRZRxraoAqbLJrAqCrC4ECepOa7+z1o4efe9Mw6I4FOo8ZAuChXSsy8lELWoXwsKmdJN+NmoO3Ka2jP3onwTXS+FpmMhDmHytcIBAcKjd1WdrimDtTiXPwU/TlevAlm+d3E39nPDt3VP3srsT2Lo5jGMShC+YRgSqPPZDiIWBQnLjYmnPJYriyKtesu8BKpuiYgOxFfWVRXY3PnQNZre8hp3Fri5NAzIDyY4i+KxprajvNEJ18NovRjDC7gXb1MfAzLOkjksQh2ImyRj7sMkoUPQ2bafW5luUfLsJYhZkZ+uL/QEgZA82N/tQpRJnpqZjObLkSBNq5gHouqiNavFVUiFnbRCS5Uaf0lEnrgoZpRGI4v3GnoNEr7ygmREXILigKMVGZwHP5kYan5S9NLkiYTwRVjgCVNtniTOkWy+OyqeGAW8fD+RpvgJmFKcUJLeTOcngd0FodobnQeGC4pcXW8sQ/R5FB92C6ApfOQbAGNp0QZsEy01uE9gsv5rxiXHuvtIi0iomchxXxwq27DoetDZGLVIrx10p7x+ZuO2PN/zI4rtTbAUlcVYJhBI9o+c8BnnDbYu7o4/JOC3ODuNFJCOKAv89sIU8ykCdXiARdI3FYxOlNBnKF7t7CDpRE4l/RjYshu5M8DYSQm/XqdwPkdNc6fQND4uO9QmU+7yiuaU5hA3Vde/mPHeVXLOoPaaxShGNDcaZCnAtD/jCNLcaUdBwzBqmh5zA00r2I2VXrlB1pKuU2LaVspFGgtdYZQkKLA5Acp2C29MC2vi2E8TK+IPjyWMEJVb+y0LRorNzd0UHv1zCQThxJhn+B9243cf17WUGG/BqgtunEjaSuWzmtYFsf5Iq4Gb6mB7jfrpG5KMC8moPVZBlM/yxaK/HP+w031w5nG8UrRdlXuQ8Eb2BS45ORDIPp92nfMvP8NYBCdzieePkUvqHa1W+6ExVbkiLztWPM/qMKnXCZkAuO5QtXtiGfWzxf1ERI9JqlNhqGBJB/sFt4E9W9pcY8gbsDCiLV+3pg7HNXQe0/UK922EzvJNqxQCjkIsX5yccWZCuizUwUxCWHFyfvXiCcubBj8IRXg5TdWeLQ4FCo9ivb9D4IolWCaseA0wYgZQ8H0zkWkOe8pbWAT7EtnvnAeHRv9ocC3eI0Vos1XOEEgihThvJ3YseRfMvsToM8qGsVDRNfGMofZcmkLESy6JICeJvVmgZV8FGH/iDn2WQt7ur4ekjw3IxZVfkEP5JCK19ryJh9zscQAMVuPmCRHRhpbfoji9CndBzJQQKnn6dBnu8+E+xkwqfewsbhPdz0AFzPbAriCS6XfngBScKSU6zellyBPY6XnmGXkSjbAmRQW6Dg53vZF23WuGGn6UaTqrI+5LpAsBKpRwtPwQmn5LX0VdjqBJpOWyq83dclQ9o6xmKyXc/rVu366hOvEw8VnLCRwk/dhM2fVFEY/eo/Fz4vcHs9pVVuqelxbH+rDbe49LzCKFT79J6NEO+F1J96gtTEIBNCfksizHSdG8WP112OSanIroCwPIls/iR7QMwUUo6ErR4ZruQQ3NR+OPlrf0dkSe6Ac317tcQpqe7lx0XKJSb+Tnvf+Sgvky1vxiND+7WHNSMB5+W44Vv+40KQvGUgLUnBXokEX0Zi6sPDhv33MjxtYJQIheXsz+YV3lF9Ya4VjoyQHFImxI+yUCFhClAiYxUXllS3A51YVwmKwZlU4tIzlIt3TLSyf/YuDYDLNHjDTUuoebI+wFRnkQwb1nVSjBpVbMrZT8582ae5w+I/U62NiJ+1Da/c2nfrFqNrZ8W2rMp4h7itkILHhqF+V7mbaVLLGixEQFywLR0pZL/KqSZzpWaIKpOIClEOouzYHxj5i0sWEVDcnJYwbmCyHAv42++BRYT2TVtaH2fC0337nxRNSUHq3g6lTiEA8z71KYnI3yId7KR99zAf/0sC4JlYXVnTPeSIjAhN3i77V5r00jdmrnL/8QIf4tnzqiAwE3I5lEqyRGKTMstnxn5HOmpGDNy5llTUydujUZza4QXSImrmekP6rUaf0+TPmuP/uf4DbwzCRmEdP6OLt6aSkTUV+PxxI5pagltEl2kOg9QngPatpzZ4svfhV8q6Wok9qEjM456F5fk+JTByq5rbf0+Hw5qhiOmuwFxFUZ7TIMOBAkioLe9rf8/EyQrN3Fcsv4ub/KHXGBvctC/dQ0kE9ReHoQQqCPY5Q+lzB+vFCo/HdA54jUl4415cwImXUTXpx9AeCmso/EhnaNsWd9cAkOeQrnvFmDYCoEF+Rb0kuzAhcRzuADr3OZyMNm/R8BHMA8yq5Qyt7XT2NyD5heP58xxuSSWXJp84g+AsPHfWGI08AaigJw9dKqgj5kY8D8YRPkKL7NBnXwOHZsRVtffjObSUprH3RAQUdjjl8GJnHxzP5ct8pkS+KJhYEEU7ylcl9+Fw1DVm9wUbKZjZg+H8eOCI8nBs+b4nLeFATxa6YoSceOxdSYIj4G4d6Dev4Bv72a/AulxgiExu8hbLd81pVY+kkE0xbkcCfKt0He2Le4JlEx5SIcklyJpg5vKl8Rdd67ZoGD5Yoo6+XcvE9SMMDOwMw0MdFIvy5X5CE/xY6+7ZMFDDSKB9CRrYwI+OEp8WE5EtXNWjIqSk1vmHVhLog9eJeTm0YMzLzqnVMc4Om/W6kMB/5REshI2UYvvqRguhraKSpqOQNgxN3XOCRGnxQnUz5/ys/L24zc73rg8HjSyrzyDSkRQcUs/HNyoyWtO+b+JCIv/f48sdGj+hSPqBUypzh0ep4jRESant6+kK9Q+q6PPSdtz4O5xNwyDo+AuMqH8YhSEvfLpDxzRy4fHNQRfmf1aN3LYMV/61+BDwx4XRLZpAbXCFYac7HeowvtDBkFRADFB3Pg/ZZOnun0ck91aPgQIQYGfeWtQxAwGgBxcGa3Noh00ymE2nBQbW1BGbLfBgyNsnqzTjZHDsFLPH+tKQTJ1LloZvRao8W5zCKZlwizju4HMn3AWvRClfWynUwLvIM8apEX5X/BLMJ19rd7oMVo5R8HMulNNO0/MVugE5wL4E2Q0OKqa+65F4x1gKzCW0nQiWfwoQnnFRFCnD+F9wd+GfjnbhYTGMzfIJ+Q23RdNkaKDq8VCysUT0WoYdjiX5V3OnX2QAuscWEVy8XlQSaGZ5OZZjYy9ONmjYWvZ1YdjznxW7PBYqP600jcoE8u6Ki2PJlaBa7C8qd1Gih8s41YsQBjl4upoXQsVaSAph1bqUeIiLjPXUOj4aRNMcu0NiEf1hUYLJy/u4yDT3JpkydulKUS9LBAvYcHynYQFlfKtZrBKAPzUP0xlScnpLcm4KL9exvJIdjWe6Yem5lluqQhWKTWYbYvmH64ZHGPVWlBodCvEimUgZtf9yw1qZ8k0SVxqCcVsB8rbGmsNCaGADASpKU0uhOx/m15dOBNFE1SGaxeIZFipwhGFhiWXPaRRxQfRh121cbJLjPtcy1b33kt6pF/IVH2TuDRwK4WsCJdjwgtxTo8bjeG3Zjpem6pLHk7comIT7kGuNQcTqPUQMTOx7G7Rw+1iSqPGMudxocBFqHp369J/sLenHd56J04aUTvNrItKhNjmOz3jO5k2mqcrmX2mBaw7A6ArVlD9KB3aipcs45zrjLttGHopV1bkGZVZfRBcxhF9+2WZBVPqBj0vdzfgo/6ROADP1PxO/nvoUHlZ+3rUXCfS+gRV+Q+nEsjvW2WJB1CKvdLyZu6NOzTBr+ccz//n7wycKBGT6bD+GBDfwCKYanKR/yK14tPOYYKr11V0vQ3ytXzT1SNQNVGO31EZB07I6IhtUHzA/HH7XSTQpQ0BRfJ2c2i4TjM9sasLA8LbyJ5TiqPz3/Dc8LOsFg4+cyxxwe2iv2OPt1qbjGpuN15mNxA0KShk2526uivThlhdLNH1dN/I2wEqYuY4JWqCdiSwMeuCkeBPRFs7rjMvIRGo8/cyInJwKqNJf913cthsEz+1jwNuXqwdSCbkdPYeAN8xk7q9zqX9i2MHbV8AVTdPKGB1tfU3FpMdU0wFEJUL6RYB2+GVGT6Pcx7JNhMxsu942WJq87lba2iEG1z3DoTWbp+/YDaYlxc5Mz1YrKpXZAlrYxrUAQaUzE9XxvrZfeiuBujXdiqCC4PGHyDDPYmHp16gPLdbzTAVPaaMKGtyZau2pQe5YcR4wtOOBDTSiWpZ0xJZ5fcz/ALM/n6sAjc3YYUH6rhRMbBSx0CXqptY/SGmlXtQ20mzcbOHqx5KMoY0WMyjtN8X0XcgZypOQDxNF/w7kop8ZtaywoVk/KsD8RB5zAOOoPy6m69OlQeWNxjj5huPCsMjNSBOjoL0Jreu1NMqRG9yDvrEJBuvmbkWCeTLy0aKIA+GjrK9eLvi9Pba78XSmQfY4r0vFPym9gv9Q+f25MN6RKKISKju2MeF0ZIYuw5C+moMRds2dD7fGqmcnOkm2Ic9SM43nJ30X9gRVOAlwffTdI103SzzWECpf9/FXTsCHrdPJJ4WFJM+XY3ciQ7lu9hrYbGPVhZKOhBXxEBovZCSk+qrJOKadNQcpV3F3ypLI6Z4Nhbc4TQ4SOmAaAekDFZ5yvswaqikG4aP2xszR6AIxavmoPPUq21gzWZXrKkV0ZFqmF1diDbLj0dwKqd3hbxTsAYxDWs3bZwlwHa1Ss/mPcq2ZEbbY3MDrdstatuKfdbId/0Yx1wlKrH18LnScOs0gUCLI5WYWegOpdhm14oF/LpTg85hpSqkhEzRI7SLlwqSM17uqzcWZEm/XxOQJ9THKaUbR4j9UCI24esdxFQbUlH/Ej3C07nwQsoV0DqPL/TnIY0RAmHOC2VDl1ZvzyyOBuf5Zlh/9tXzJja64ZqYSWhSsXVi5wE3BGzQ62BYcAUZefWHhSeZH68eTSysrxiMvGWjEjwmOlbCgPN9YJPn2NnSqO+psOtDrkCMbYhvG60JEoCo2VN4OLp9K0lQkUszrFCzFm6wQcBxXe1y/M9RkeGp5oNd/PQ4aISpWP8aJp8f880C1oeWSDxP5FXYKFMZottILmRm1MT+Oa0ntPo+iTLh4h7vQDFoSOIWxo0MhjI0GGaBTqHKreVXl9EpiLLilSlQxX7hybuQqTSUHW/iC0tuaYjzwjOIDBTVFE9dJomlE/J40e/BeEe+mGS+4AwH7sgB9pNPucPej5jeVtSnUBb0pHm5YcMGF/zjEgpvgLC2Jkv+uto2g9Av3N6I6MYncPfoXJRuWt4N3zw+mQaTDhKole+0QdTAOMGY+izoTHiViDdQxXH/Wf9WWjycmCW6vhsaaXmugM7DRoloFsK7xM3YHClc2lYJrJpMLMoVly2DOXa2IcIyX+Oak1pGOg+HbJBvisTdBZmnTh7lgognj7HisvxwVtKFSUFvl5N5T6AEOcX8nEsGpsEAqE7e9dRsbIdLKN4WnrZG3t/h23CtHey1ygoEu/TJKMB43PG2Q/1CicJVd160f7nad20gzQqfkrb5Gipair7Ehi/N8hv0f+mD5Wzjt8f22zjK9foOvyIod8KhUCyFhDUpSdGDKcJYxQJWfloaiY1kb8Ft3TAXVgRy7q1ViMQEi6HbHEO8kCp3rzZS9rRO1BMK9gRgoH3LjTw9FrumLri1NUKInIsqytCehiOUH5vf1Slofc2ssL3EbcP2neV4aYyC6ikGcq4i2lbWpTIypSMqTI3ngfLRtk83DgpouimTH2TXTnTmWYb2Ffh30i59yAjyPUZXxwdiQzDeN2+aNfFlFHroggZUaf9l1ErsHCrQtwkTOV4wLrN8IbSpJlf7a7cz209kqQNFYkRoD5sx4zsHGyCjbNIoJKW9gOY+b5f9aD/uLgtxIsbUVu4OaPBaGepqgk76+J2b0AhIotYVNA/YmI1WkspibaISz9s8kF+BLLWHp2EcfiegO+167n7vCefXyFG18VrC0rLyN3Spavr/ikZ2lKw4dQcTOlZgsnB0wAlO2MG44Yd3TQPg0g4izAzcUFLPh1umpw7J5AF2U57MoPUHZ3qAYu6ZmZ0reFqySR8XLyNhNNbOxoFtNwM7zu6f749ZbtMe20ikUjb/JJHEnSPSpzY7Fz2QZYh7GedDYk9L2uBu2wCDneYY5yHGWtzpZXtaSx9oQQkm//4XfYp2JdeLviKkNARJLqzTx2Xl7UnIEZiaiWZbdVL/N8rqBVurUmCoeANR1N0o/3/RkeqBs3DFz4XGsFuPDyT2ntWa7fNV5JcMf6ZwjOH5UDZM85S3J8ooP7jKOHN2KmUjJiz9Ew4pIa8t51vAPErNmsxf5w1Ei5ybGm0F+Ic+UlyHs6LQd5hc2daSF28XMDaJMCdoQ66ulvJHcwJIyZxajbe69KgZxvR8TbKGZ78Q72lt1uhOE5FjBCHFJzKdDxOz627VfqFDY6eg2NY/jse+T3rM7ejGXfArDFOtXdBgk7v8CxKOJwm+28VSRYUmCiZRGXCINsUnOLlJDljtwJ8QTsXpeZvWuYcrBaAOgsX2IYDO4ARkMB0T8ZxBM4qazf0eIrnaHJRMm19F2ESyjxx/bjXPbcyyF7D14h73/2GyhSzAk7jFxEpAJGHKp6uSb15pTkTqloIcS++k2yZqtrIo7+sWN9tTKee/M0cnDE7HrjlpJO9BItocFhkOeL7B7S8cPeIDliejA4QW8RHtH0JaFuiXGyB3EiDXy5MyJuiBFi2gP5m/TlVVmq/lVOWWU/sHzFkefcdofPhdDel0yUgqsP5swo+QNKW/yEGWhHUifrZFet0g+HAezX6O0aC/+UxIzBWlEyk1XyMfm7r0xRLFe
Variant 5
DifficultyLevel
713
Question
What is the area of the shaded part of the figure?
Worked Solution
|
= 21×12×12 |
= 72 cm2 |
|
= 21×3.6×3.6 |
= 6.48 cm2 |
|
= 72 − (2 × 6.48) |
= 59.04 cm2 |
Question Type
Answer Box
Variables
Variable name | Variable value |
question | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/Measurement_NAPX-F4-NC24-SA_NAPX-F3-NC27-SA_v5.svg 400 indent3 vpad
What is the area of the shaded part of the figure?
|
workedSolution | sm_nogap Area of large triangle
>>||
|-|
|= $\dfrac{1}{2} \times 12 \times 12$|
|= 72 cm$^2$|
sm_nogap Area of smaller triangle
>>||
|-|
|= $\dfrac{1}{2} \times 3.6 \times 3.6$|
|= 6.48 cm$^2$|
sm_nogap $\therefore$ Shaded area
>>||
|-|
|= 72 − (2 × 6.48)|
|= {{{correctAnswer0}}} {{{suffix0}}}|
|
correctAnswer0 | |
prefix0 | |
suffix0 | |
Answers
Specify one or more 'ANSWER' block(s) as exampled below.
Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example:
correctAnswer: 123.40
And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present.
prefix: $
suffix: mm$^2$
width: 5
correctAnswerN | correctAnswerValue | Answer |
correctAnswer0 | 59.04 | |