Algebra, NAPX-F4-CA29 SA U2FsdGVkX19DuIkFOyP/0sGXY0EmMKMSTfRSTaZSkSTvI/7zYiQVqumvEA/TyFfniyeNOgKeGy/MvbLTbKbReHW3hNjVM0jnkRUpWDOtHAJ/QXGu7pECna9Schk5jJ3NCn2JBVl7I0l1o70vZnLH/6Agh8BiJGxdC9ybSqe4MzyYWYvR2XpZ5lzSs4csvF5RAPISSSvkpkiMqJUplM1bfLMRL+gYgibMIbsMZBcRRVMpemOaK3e4x11M+NZKfSjroKNvp++ytd8IAXInplyC3Ico6bPm3yOwud15vSn+bedCFL9nyt/NBCfHzkmfbWdVUJCflzt+u6dTHj20AWUXvaGpb9vX5CWMFcfAbU99faKOmaoJ7Du+mOM/yBRsh581RLIeFakGeJt06e1morQfZJJBkXP8TS6DFC+vZMhLEZbnxbPPK/X8trLSVdY4gZ75Th5KlhrflIQssgwnEPX4IaNmg4EAwDOQ0Tj1uEJCNZRyK4Y25u/7nX8a0Epg+9qfVXeB6w03WrOFbCRecXK91S2jwin3ELC+IzCsuICajbOJK5/Nbr8H9vwpdDX2oPiTwMYEOmddROsrazuO206Y4gPHYQqCt51TXAUIBPQCJMehOVCcCR24COD2DiSarwMaae2uiSYaTeP4bFpY7Udu4c0d3/Fvpq284/ia+NVVEx1TA3QYUBGsx9yOah/8f7mkQ8NACg+viqwheXFDb2c01jptPdnjlQsGcnlEGIo7pqj6iAmaiwDdsyzmE2rg/H+x5oxy7206zkybyTkZ/+DzBwj/9EPZgxzXA/PE3jYcq1WWuM5/jaqbEBuNkTqTHWwR5qGvXlvOhiShAWuEhFuCOl2T0VbkJJpUbw7YInPcgDRaYuM93zG2BZmJTkqkyPjkdWVerxMFn4utbKZgWbtySMF5JOCGUo3GTZ7siqiQK+8sWI6I0KSwN8ZCl6DKuV2ax6T8Swzm6CqlVDZ16FR83AhWcXVEOMathpucg05ofTZfSSnvwNtKuxHIeI802rKchQnIIeOiwvVT7uL5LEiZwRg6cHRbviMBBciTwxIunr4GzjSKMPN9moQ5QNdI8vTMsf0pil9rPFqjpbp8tOh9TLzG73JaMpH3g5FfAoQOT8FzfknyjMzzyEd/PjJH1EVw263LUMiyp7vV4aZlUVczjT5h2cYO+S69zc14Wmps1MHkyFH6rrdH/NZZ7+q0Xjthucl6R+Bu/Nb9vn37Q9xuo8VrjeKzQofxaAg3LPEGjlzWDK78SalR0AmDHTlKw/IDqqMPZ4vwi/p2KEt5wcJup0ZrZxQii1tq8e7YIjdMm6HcGol6XW4XS+LswVr1/KZPO0VujWRBxfSB3DtrryMAYavR9pxOgTAMSDhz68KQwCHCQOlfzssmhbj6n+HTnCG6aNeRuRb7awUavmZUZTGs/axDQYutaJ1k0rCRpIYL9innaTzbOIpjX5adoXRq+Nmfk/Gk/8geuTGLZcwIRTjZciot9h95XvBoTcySv4NR8UZyxcfoTEys3d5qJ+OewY4T/mUbQQLCvSXtC38EbHfxTSSnSDupP1jMwBrp5q4Huuqr4rC+QTYb8oJUgJnKhl+HoGFiXISV5KMZ30famd580XLkO9EKFWFnY7TF7boMOfbZRkmguGLc0KJEFd2yodj/wusoIzF5X8TxCeyoCLX2S8jviZgZiqzniYWOG70y53XNmEKxhkbGmDe9lcNEMXhywVhDZ55QGG+0UWHx1XmWeI98GoWRqxoYSxcvdV6Ol2BKkW7ToGI3+PwnLnvb7m6Q43Nto19IRASsix32gh7mpY+Sg+kMHP+HhQCnNZM4M1InI3QXfq2yU6f78adj76usHbynmvvViBrUS6CX3Z6JwxRTCmNOh+fUYiVdBxingOhIKyKO7meEpc9nqKIzBAbRvNHeU3ZxMvGpkEcitTQu3tCUEwHzYQJInnYPVg6jWVKAEmOGLE9znSXuvzD748K2a6hHFbWTmvSXnv71yevcr1rTeIO16VPgCFVp7fA97JkX0VBMTKSQQFjnR5t2GHG5f6wLuNJB+UQfhgkBRuRCJWDWSqqoE//bOxKkakxjD7znDM3dyNZe/T5yENGvha+blBKihyn6cML1IRl9V9OaTrOHuJ+Et1kY/vJzs9Z+tX4wocNXMM1YQXIWu6hZnMMwIYqTDuPNiTsYh7BDRu9GR2jvAEaTr3cp8UlgS/BD/4hOHssohY6tlDprcYN0dd7vvqw1pXkgMuyTA8WmzvIUktrH6AtrzcTlAWrnWATHhHKats4uQr0tTsxzuviWj0sLBH3ZAqysGwAYF+dacKCHvscrDC4QOuB9mtxZc9jSKPmcrDVOPHPicbtUWXCcsxiAibYpWlgaopUJ1BLrnjuJYNcRgw76dggD9ZlMqZjxdsCwzDSuoHbGrll9uE37dv9X0+eu6OLPzeE2ld7fg79hknFgXceyX1tfmyb73SEgtT+YuR8X81AaCfI4FKZVj+cHp06mD2Kw3aWRyNXNZ1P/tlZbEw5X1Gk3hd+M69GQPYnIBxu5ChX7orhMePBiz29DUnjz2RtQ9brZKalBrI/Rc7BU1N9OvxNjYqH8TjfRxsvzMEf2VNrLHz1RMTt6NVYeh4pD6J7tmwGZ1WwFeZnfmS8IM+WPl71L5bgCjkLNnbKf+m0JJRjwdQynIkOMsPGs1F+XmL9b0GN+LqBZcfN3ITYxOspHQkhtNFM1WLJJ2GOnQ4DNYTTTekSMWhAW0QfmzmWoEU0BvbImUD6G1p8te9iFpekfk8K/5NTtQ/ELPlLoRtNDw1igDhOqL3Lx8zrNDTP/O5Kj45zGi/Sp8ATtpM6udmMk+x3rloQIlkdfyPu7arYdDMSXRT8GlhGMG+Ow4MObIbQNHs5aJIaqA/QtbEzVnuFzALUn8Rfxt9snewzoHaprYxSJsLgM3f3z4VP0B1xtMjSO1ie+s1TyniV4FLaTSbOdowB4fZSnXxbZe9o3pSpPTaOL+5UKnok2MvmsjfBWkAm8oLdckgimIIVT37ETkadysXEvcYRB0wWPRUZkdF678a46pLzpHrPnFmXLyjT5Si3XWTsNcbOa0Sz8de4KxBQW3avId2FgKkX6gu3uZVXtrlLvmu/143nwre6nldq79G2XD2qWDfCl31yINhKvs2/wXI5k7ST68pol585oLgkcfAKujONEgo7V59OBzFD3l0LAab2By1zNiST8a+fQBWQmuigUOYhkeqA5m2YmllKNzrzgYPWsvjM/0R2oasFGTvdRSiU4iih6rwJjsTLdeADZ7Dw5oIAErdWpnYSfd/aBvFg0teiIThksEWNw7Wf6AzddMOg0JEwC8cejczom8bgP9q4fYDrCgtd58g2WSTvUZno+ovxdh/OZKoIt8MUph96JTrAur2Jhxli4DqpE5vOgX6OREonSs5YO58zLvDgs8HyQMZi4gBZGQNnbq9REsE+qCRSwzrm0602AUF5bqhAyGDBkOg51h0W1wiQ10uxTpPxTeR0U32Ie2OAmAJKYztcrzJyj9w+brONhUPtwsa2dRagq9oUSDTG9Gpl/hf0I5me4K1iphvkJe2fDcbbGxUUxot0phTPNtVSNSzVPMegRriYjm6aNgPCW62XzBIBzsRUV+37Tr/uHV2w5GmPfGLHnszDjXSFYVBJremxejV7XreBGXurUNHwcQFbcbbyhwO2CN6W/SIgbxHTaxHOfWAuFy7xh83p1YtjZle0AUCbH6WLp67TVQS2VIHqHj2SHSi4B0fx5ob1csvIwB89YxlEyZDwbYc+VRxaHDjBh/HMwrsRfZWDvhzSDH2Ti97sVZ51aVSEzBqn4FoxPzsZgwhKyN83LGmeOZJO/RZ6zl4e0tHQpOSQmzgrhIW17XvlLrtYMSwsVreXELyw5RKnez4irpSmQ+QAy7IGreJglLyQ6qCrWN0EfnQZmnMoC2zf9iESCqgA7ON2J7D2ghO1drl4t8EfrwEZkzEaz3FuN7TtLW0cbAxPeKobdwLLv6+oUEAKQ50IxhXGzdOStNhltxg+7lDz3Rpdq/Dmz8agB92ppqcB5BQ/tuExzVTL1YF56QXE1GqFUZuPVsIUidsOS/OD+i1kKRRw06SC6TEoLtSuqbiAt53WC5Yh3CMxAYKmnKtgmbmy6HnDVdEobZjRFCZ7vAoPi9fW1Dk3SLZ44fI5Rve30AgAe1IwYRiYPvfCeMWA/PCCkxEtWfAAd54HgwVpYvt+GbebLXIH4oixwhajTqkh7l+VkKNWQC9lf08p1wec1OsW04bzxUGUaB/gmahPWyZIcWgTuDxYNnI1puXVOvayzaxo75cBzPJqUpKI7nFycM8bxVwbEVq2e7+CdKG9XwqzkFrqR9E8vmy6Q952tn47PMqnuLdQ0BtioLoVGdFWEyG/MVepmh5ujVnTXP0rzejg3XZgERyD/H3CQ5mO3zDknHSOQY975QUkH5RzhnvUONTMj+wsRETiT+bH55qCFptaX7Q/i+6L1zXd68hEOoVjxBIaSVQqfZ5olYGNhaPT+nL+GRFp6LDQ4ykWXtUMbBQPiGYnkYoGFx2FjrqE/ELyEDzVf0vlu1LCZq4qscOVUlLjbHL/+wM2LqCCc7psB9HXkBIW3XEoEVJsPhmtBSCyLo3aCNInWLAy1Qtfg30DUe1Hm8T9+XX1kGTvtPwIK/K9NZP0adXCVvWKcTw5aalQG8194F7uwMnYK8HjesetWee6+TyMszrZEDx3cc1/C6WMH9rm+Ms8QG0QMt86y9D2irPkzY5rRtjE8fPzXyFm5tL/6jaZ/p6zrkB84eo3xRBXYxJFro25D5lbVkDbZqBp33i+amaJBC43vHd1D0aYH5jEBAfCOsSkztcwutsOvx2hbelrCUAPAPzmBhM/BfGTRC5x9V7eeiDBnQu4dPsEX/JpQ+xdpX+8n0wg7OnkWhS0zVG1uHH1f9wn2/CZyQBim4l9si2I80ebr4vwAmqSAJNe+4L/kS5pgTf2QvOaYqXBdReNfu4O/3LvftJReEUC3SSgQtGMx3JUsyZnJ5XOIqZkUA2dqg3VRunn/Gi4L/tG3Yn7oHNfCweu/nCPxNXf83v+0sJLH5IJQL/ZLVoDX5tj5pccyZ11QIDUwN9Hs3hB1p6WFmrUsWGwzVX3wdHkSCcvHD6J0dW6akWd4un4wGgNPIKj3lptv2/+iEoLdAwa7PG1OJHS0/PwlBCKkKysiMg2UeTcPdSaO6bbxHGIKZywCeFBBThv5joRcPUwab7pzYoOBU4dVtziDwlvE6rkkRASWfbjY2sh+J4CVlhj+jihNfj7PBB+tNJ5saBBNWw+3jahOM3upa/umeKV8kRWDwK8M2ak6OTX8UOC5OL40gWI4mMHy5EGMav+1G2EHOWCUmlswVYU/gfoF1l5oPl+Id+0UREqWXBaZMWLXUq+rzfurjs6/DZDFjkr1P9qev1AeLSzh2g2GLW+ydFRM/17ujsg0IvZHp3cwNReT/zs5i/5b5NXGXKoldW1KYho6VBiORzM57ndMi7I8MrIfMCB3wyhjP/WslUYeE0Pp1HSsJ38JAkyEtiQ1HqIUuvVKiqlp5lzUJEMB3Cs7QCAuZH59S2QZhbDSNPLUe85PHVSS5W2NaMy97IaKi679jdXCMNF2TRbsN0UoNMka8zU7tyPh+dVhnBSh7qeFqIqzO+0K6RmbbfSws+4cMJ7zDgS6rQq5gGt4SajBPSLbAiQ67WTeWtanhUP/+HW74425l2kLh0y3ZCPZHYPV6mkOUC0Xa/r/FPxcZWZfBRkuhLwvCZfADTUBcXeX3fK7PHtkF9cB2sD9GoC7K0ayadmCgvHGSd7H5Y7UKtX1hOG58O4ttjP372sm2hjwWMby5Jfpy81KT+T41rSCilp83gBkMqSvr4nK5I+IdSpM773VQhs2sDt/KIacbn93Js7ic+HMRI4OmpiXm6rVbmmDkMlDX+o1psM7de16OmO9aF0wO3Ci6niWtmsPHtK1ZMOHTYQE+aLlUWGCpsFRMcU5Ma8PIpaRBhTENlhSO/VIlM/+JqoFYPuk6WVdiEloUnz2/2DewpWgnR2zMW421khgoWqooqMGp4bZGLJQV/1COT10n6znGdS0jKa8w03A0IlM5609Wrx1Dv69vz9HNf9rXl/kD96CCut69nQyr+7Ol65xFWhmeqhnUVPDnZSsE/EYCveKw14b/bAdlUTRlG3Ba21ChGUDb4fW56rh+vojdGHPGx/gQ1Wy0t6Afc7cOw24NnbrSYFMHkyLiQV32j6ez56Wfo5NORvcFJ/m9bYdUZucwFhQVegrUKo/meTZ+eRT1Z6kzzjh3EO1yAA/rbAihT6VhyeCyuM4xBo7U2aOBOufKN/z32TMBVwH3PKP8DvmxwHBWmD1VRF1E+P+cKLuKIFVpU+lEmEL+tiT19GMuG6zPHsAZmQ+M3rq4X0PghfWmSyluarSD/yVevdrGDzfvnPv2Ta2unMaG+Cwu8aqTtyapI7DZAD3d46XfX1t/wJj1oerRjSjhLhVe2QVxnoptfxXjB7ZTvOYjtDGLRcquclJlnLhAtJiw59oiMglLOeNFvqie9PK2HmQ57IqyuOM3zRQOqaiDcX8OzkSakL9KDWiNSvr73cyJ4fNssaC/b43DENhrscePwJrvsQ4Q/PeQYklfyeKbuhNIsDcMx20zoNlPsfdpsTLo445oANG9d2P4TY4cXydSsTPX+he+0vfZ1WL95gRWoVc0s37qKAnS3f0DRrJxD8c5tXAEcftUuchen1r2Vurx7DtDGGQFB5UdRaW0PBAOPuyTzp6IhX7loeDDzowiuWekEdwbcDQSoF3L9DTwEWJDWIebKjzbts54pavGQMP4xdg6Yj7PI0PgKMenNKIWNEpSe+uzw2gODrMfdChMg75mVn9wo2/wupQ9LXMb98k1oLuiZBHXg9LVYzZSCOTcI6jxz/49QQdnCFX/s7APr6TK9j9iPbbI9pKdfV+gZ5ETT3vgQRe3Bn2qAWcRNDexQk+yUGwLemI93MrcEmLrXGDmDEAg02Q7zgit2BFIvWEzjQRKrP8yn2GalToetwGP3FoI+GlnZiwqsrENtIasMPzlVri1T9lv3RE8q6bDS5k7Kmcr1DBwNjSwAG3hDR2R6618MQzjepWauc/ii1FbJmaa6a3ZHHXyncqRf67+GqA27jeTyZfDz/dAyBAzIJHrvyBEAizjvwqj2Yn6j7+dkY4LAiKjQfDy5VitIT2f9+SBXHZNfNs5tQ5RXaiK+odgXLYr+7tSojG4bkhU3v+g4Mhjbb+6mnmzX2L7is362JtxFJFKupBqMOriqRCiisIeK001kwezkDfu0ECY+WbbEDeDa+Odcpmy2KFVHaGlx1iVHHLkavYsdEy6dNm5BagkerypQ6DFsVJOFlpBRmvbV7RObBJbi01zzUfX1CfrEUWf7b6AjwwFdv/UHqiB6D9mCHcVQQMdkT3klB8O6ms44FiueLwhRXoi63QOSf+npOpXeS95oI4QYvgZwL/S9VRjBJvtlo2azBmejsf2SrPl3Lfr4vm5bbTqYx6geAxL2AFThWeGMW3Ke7teSJIJe3f/WJBHrEicU4cPY0Y5SW94LoFYpEWxq9OZ43ao6M4iv0fETxxr4AXr3GzUgu/804CdXAofdjOZ0LKdF+M/jbT0GbeXIbxaLEml64gZLNqB3x1zb75nY1Zoml5tzn8O9ZqTeisyqIiPM8ihzOsaSZDsme+ZJ2pyjxxpqJS0ohUQNjjvLrpxU6HzvH4vEE1CQT77Ds56Oxrgr3a5bMAZPDVGZ4AamzDtrJbuEywmiBQ1J870h430HQz7fwVxVUFeZJTWW5ETmpLV45OVCy15ztE5sifwKi1YJ62MZIaGbzKoMeZnP3mIvhFMJFYHMOmVRgptb8pVyL30Wc7eHNmTXumXPobUDf9xhEMWEomdqmlxOfw8mPu7HrCiRHcFZJvrGSyy0dEC6jKzw02o3j2wPU7TKw1HBCoAba5xD5qvjcD5MUyHOHoyuKeQxMWJR3qmRfbKf852lHy7NPUn6RsRAdPdArsrb+uURwu3bBsb9oenfpfSJgeV3xaBCw5re0wNBpZzlFOcIwauD4IZhzNEmvwWNQAS48qKmBAJjMgc6PS/+Xcpv0dYVfyqM06x6p90jL2aoJS8Klgma6cs6MQww5R8W6eEADlR6tM0K8ZT+ld2tFYqIqVmw4m6X8rORjblgcXM/vipzgM9VNPkeAHUQrZVtjHG/MoybA78wT22llHL4Vmo/sFmf/5k4oac1QmjXY83ESLsXnPxq+J7uzbLhfLCkqTLTKTfMHLZSNHgyVywXZH72zTz/sRJ0vYCFcBureyKpWSiAnMuSrGe31XdMq6pMuKW8RsPtm8H5KrWt7WkAaEyNTTm+ahuyQmsV6Iro/KqmAbvh/a5aFDQBxRwh6DOH8ByzDOyV0icRhI+1W/w6WWn7LeEkRGReTvfNA+oaK3s9Ic5o8UQEjEBJZ4Fd54E8Z+dGBo1bX+1rFUn6mPYdrdudhZg2edMrlNvg9B8+YGqxuD7BUpPFvvzCizQ8Oglo0FmpYCZxhY/xPtASzOQMYo76Vitzb/+MHQ2BDiIVj8oZt/REc7Hi4RZmI0pkWJe0J4bYGjN1A8jhR8FmgzPzaUFCae4YWf60wNDjyB7yAV2oDhe6Sr9ywgZE/XbKJw+I8HGd/8gtqTM7DVDFti9rbT+9xVtQj9KcxHLBVrfTvJcL82zhvEqBVwRt2AAc9RH0I9SjrWbnRXQq5UYZjzovpqEGk8TF6BKdJxl4MrQM0cdsrDITsIpAybARdIT9caiA6pX48sQiY0rPfHTlvCNa4C+b3eKw7sOZMaWlYuiJfs7iUObBPxnmoLR92OlNrJ1rDB26JUjMPdVxNkN5ODLewTubW7z40Nd9GNW4Jit7aDDCmz77e7wJkkPvdG1ltf4jkethP8sxCPIHRR6S3LNJA1fBOaCL/ICrb5p7Lmrjh6kAmBTY1zbIPG9zaX/yfFITr1BMMS8Q5qBrFcN4PAxqJQx+JGY+qz8YQq/vaO+wNHq53G5mMgKB09LDFO1qm8xJO6fGSd30LWty80SABY3Ertbf9M85+YgIBxf+98QIMEyg3e59UKkoDAviWCi3G6UM0qRV+DDHCLXW1C1rXbOuiPdXYRAO9oom07h07/zlD7aKMxbm44jOljC67pAZOkNeL97vkzhP23bv85eIUMMsRACD+IZubNCIAsy5l0K/yHHZHyUCqgR48//R6cDl7igYPxVeaHfAJ+WqLjABeViLfe2Adwuy4aPXLZ0evLHDD6fI2gM29f2MlEzLrWpsnFJArujZu6Twa7SbxfgmTxEgvlkjjlkvAEzUQWsfWFs/GOxJlG0664ljt/C/olP7alzyjOuYHhppzh/WYauh0VguDsFS4+bDjrVpHeQXW1RExYQRIFJfWEsuPFvHu7uY3WPZ7WXRatzPjOi5E4fc/0Lu6QCZz2ouIWOyEGbm+JVaBCgVXsVKG0TGKFbzw8hn8dPpCV2wo0o8bQkAzZDAg9DAN02ETt2pHseBNFfB5XqJieRx/PxLjumVHj2V/PVmMq1OxKhdawmj/HBlD8h2GaD1qTg8dBW8kRK63TY7kSUtSS2OUpLXktTeBAa5rYDcldYuCfMde5dpRok4j9WitikOIDLKYMubK9ldwH3aY2yjHOMLfyMm2qPK4+aEmfXRjkfmXqGug+DSy6ViEvU0iMCyZgpPlZuoqJ2ic/tisd7aE/06f6EMcLodxDHDc1uLie79mVxY1wUF4R6b8ngvQV6rtJmXUewfMmbeiOIxmW/xTXhvSgjg4J0DVvPGYfYoy32bKcTHmntP6JKWD8M14c368lisJ1fjrABZ5ghsQt0yAhHrl3MwacIrWd1gnx+Tx0E2iYSF41rTwaB49cUql9kEQhTJO+Rwh7Eock4hR0JlIDjDxqB5BZP5+XwoBACFUAa1tTUjDLbfwPhCBFbCdnV/u351iKGSc+EZ34W4HlmCBVhfr1cooGq2DMenKvNScGhrRTQydi5tt/zObUBVkb4+1t54mDLULm2N5bCZjIOEmyRgROYP3WVjzsQDQ1JjlYinNnbfXXbbE2aHcEbnvhczTt5TCVT7F0ReycBjHseHPYTni0ydz5lmV4oBJ+mUQhDz/MDKzEr7o8iQ5rJi0TjrNAnJK8qJc37jfcCHW8H02lPs10DbBbr4OLGWxAJr+Guxe1dQ4IXT8SgI+NlazE+ACwYP9giYk9QTm6Mu4xJYXCzlmpqI0fqfrTnudut7BsXYvAaqgO60b/3UA9dS6xbQcO2vdNM896T93vZF7Sgw7dEd5VzZ840lst3bWoJjVdev55o94YvK7k3AHRUawht+qy3hBJ1F2rReIEMzwIFYEDTLzY710SO0mFd+B1j62Hb0vo5akp6VhbycAnH9KrxJqbufDrHItynMsdEp+RsVlJIjQDR1QCCYtBo/XdxrhzrmvGzh4bo96sTHD70reCUi5TJWLBsgC5vKoPJciYPEMh2P4h/3fMzXeYCmgyn4Lw4K9f1T9gTc+UI/pHyLiHU9tI9het2sTEd1QGhNcQ+Org4GtZFMmeJ0bI4KLmkuBBwhF1qLLzLH7IEF4qkfNqehx3AL7s7i+U9HYHe+FpLVWJgs3koXjlt1HnZniACmGQdnIncx0QIeN4S58+7Z25wy8bp9rDHqchO/y1oBQFwl/MJV74Vlsu4KAXO8lX/a+qG4j3iptLlqRzPkbzzPX7+3/mY3VHDUYRq7sZ6KnZMUQn0UuF+gkg7DRkCWk3zsoN4d0XEv6SYmW/kfbv6Y5m/cE7NGwBuBtDv+j6qil0tLI+XwrtfGh5WJVI1LHw9anNsFG94iNxm2QekxxO7paGceG5/utpZeCBbouZv2ZzVUBS3zeYvkdM1a6y/3CLFoTdE7LvUOcBc4Q1nikRz3Bse3M0tVv+Zq4wIrgQIbVwbmcxo92+1EVM7kwBMVzkEFqDEUx4A7NYa+T+hPvUrrYbPL9DMw5JafPys8aYd67C7um2sMatGFI5Lx88mPqNJ2EkO74xCsvO6Iygib5RoO2WuELc+2Q3oK7dQB/Cula70OcLIvJzG8VreQ80YS/fku/VAYPH4dQfEYOqRpWRjt77TYAlmBi7ElMAhvlP4IYMxDS7RtjXr6kXdZlIga9Lt+iZ57ceTPIdQSqyQ+aybeb3fv7hdv3m2rEWrCeX36d1DJzPwMQB6mwxdJQC1mOSiJAyUhiPeExhUuwNenklCfHIAuzceao3+v4dYQFXEqr65MMKTOUqasn8Pwr2X6CC7NmkGyhV8BjJhQ/UlU1DFoa/3eBMIlU/y5p/Xi0YmzzfLIeD7wyL8Df3DoYeBDll7njVTjdJSc1pm/SEV/G+hitvCdB/ZINkXtWloymvdVEQV2yTlQN914GBwigJ7QY6pebHrbj4RVrqiMb9IchHBzyezYpEI3uvndd2BbQUC22gGq2X/4uKArNT9Xx/6eR4uPppcKm3+uD1uLl6Xnr0mIWPJ2gGw3mlL12NbRWMQHOt0MGN2EB6pQ7fpHrrVPjBosgVqCQGo/D6nv7WgeZgmBMa6xRvK5zRcO00lEB+WQzGhLoRl8Gq7xNcHXS6p6IDfEok8pMnG9w+R/yfip4twwrUtP6YjnfQjy9Apl35rT2Nkw6omQ0JJheLYSLmX5cFXaCvbGrcHE3J+DLjzktFImy8PURQaHZ8yuTmY2eC31wk7L4s4R+xjtQ8la5twGIk096DTN+hIS0Lqsio7K16cU5MrhpaYK/FS/IhvoMZ7t61h6Mue962oNA0VAvApWfnt2LKY0wNj3aCEIop0GdxZj9vBEqL5FAwmGcaRBulZrD6Pj3bAfMWc0g0tnKCFENHX4Q8nHGRDM73Q6/yc57RAtOswIHo3pEdJ1t7B5APfiA6JGz57QiLgMJGmJhPA8IMtk2d3o2VsvxqTHB0NmA0VMgEUfKtAToLaL9a1Uy1uCSr3wrQoO7Fq7WVAJS/mChD6SZoPgO75wF0aba0kQi7TALZ6iORsL+cwtR/ygmJsvuFjyaYCEvRaDzzDmi+SvdyLanOTxTYj0ch7eTUOxQoYJnJx0joLm8RsKwNLYQxnWt5mclrHogGdYaz4WtdUSD+8n2EPAVlAVv2vEU4GT+hPo1srxu9TG/qmeTMrh1nmaeuBvt/+lm1zX0WbC6HdZs669KNDvWTdMDACKfOFplkY5DatRfYV80kT3OsNX+lwFgK4xuqJOqIBIjPHei8842Ou60QSGrVhJjotv8tbnWaYi4epkAFuuttrMzTjcdwbOlRAT8TZIFNeOsVzMPJ9KPrJadLbbzZgNIfhBwTr2Tpc/pJhebPklfThPX54dbkwCY44pkU5AvGwZzqARiS/1DOdmg6S/JH65G/6q44j+GMPtWTwH8ryaNEO1FDm7umNG3FJLSCxCK2Y2Di0irK09lG82PIMtFDmvDcgKVvfQWqi+Rd1yMsi89xyjdCek88FHRtxsiukbfrgzbGsLHef1x1so5qjIb1Ae9a/kGlbeNJ0kptYljPrb8aP/YI+xfO8pzs/z00AunLorx1i8bW8dpQ9FnYcaTmtF6wDnttKM0pYA05GaqC+ew9jskGE5F09gWsA5+/nOjlctokKYTeWlgy4c9yiJHe3hmCKXyZ3Ab9KdgKwK3XZ/IB2A1y2m1MseFhzKPdEjFSR2xMOh1TIkueO//qHC7HKdHca/c0eTQfLgzYLyEwPFuktqQDYgjKVhyKZtKJhWEpLWHUKzHBGdA0hN+zpr0TtvbPqZc7cCYfZcDOcHhXRFoTR+nBD1hUxhRcEpo0xD38JEppuC3RpRykdZKcPd1wjllNgAaiD0SAFNYPIClhVnNplCSTLvCKP4Zx8D97X8vjv454ZGUXAqhQKN4eJi0ExjcmFcUPDIXQR//NWVXKLGsJo3I0zxLHY1n7Lg68UzQHgJSp5+NSQsepE/J2SGwVcXvWPHOhispdUrgCEVt2LjzmUKLW6yOutz71X3HX7a5C0lNXzEedKHG7wLSs2F+pTeH1SdPvL5gfZfmTTYIeTgfcoR/oBhSZfCK1vesmCyMh0JfBSzkDMhytzvkoimyOPoj4r8R/12X+2k1/qhzzA8p3kInUcjBYZRNXM7ZZl9a84hqtaz/4IpD0CPPmJKO56su+Hq3WvOEa82ggqzq1zgiHTPzR1NSltslQV6fTAHMeRA6lqehAD4zfHOTwbtGquDeOM/wBJCybTWJayVU3xLZy7vHJ7Nx0j2XwewH+GIIX37a0r5XeXNcjlcL/BaN1Lb7vxnswW5C7zqZKzJHtXf3RSIQGcTvaT4TecchpsEmsWRP9TzaeN97OZ2T2S5wJ+60NzjvjYVuYqt8bOGgrGhDNriyhU1QSbBkmtgcjLcEKLsMWg3Kf1k69vkimTnjN41hBbXqW6Ng133Bac70yDm3MhgbbrX+Rmtcw46uwGt/d7Wa2qikQ0rf4hoaHXlTIrLgHenyjg7TnnHKOcrRRFjCkbV11vA4aAzAUKW5X2DeqJk6YXNupkxNUKIjg5rL8S2dwueTKvf5HbfzaUcHz8EdfdKV/iz6Eom4RJRWvQhgwLstvr1sxETxhSG/53mQ9yiRZGwZfFAskJdfGUKyn/vp7jkYLN6qNynmlUUFw1WFaQgXWSnqdVq8SWEtTEZ35KtoMEv6WsZ+h/Sb9WM5kXOybW4IrFUmtJfTMyi9jPcnoYBTcJEJOlnyrO06/IJ9c8eE6dYoDGrseMXEw0rUr4WIVtLz/GPeybx18nlodumnTdj//WMfgExy46o4j1uJ9WPUAcWg2JKZhkqJM92JrxnuQ+03hx8Pga5ZSfS1HRG+O88tS7EPqX9sw56RsEgnbzZCzGpMEahD2Do02Tfz4HoWZ6ots3ucXVOSCodd8aBhwo39F2p22C+0JzYSTle5rJ4zO+FFOrnW60bGqIw8AwewiKTv+G/5bJmtGVSNBeJMhbLpe/zN+pgzaj6z8q8hBOXxuYLNFrq55W6Lr1lnjZHX383owngkEOq/uPIJF6rc74ucM9gK9Is4Z96atH/jCHQf3omDPsrV9RjtKJ07VQ0n/RMhqc5QEdqBe/UE92vOiK5FjvF+tOy8lUySsx5qO18STLUppzRd/61gDFZjcMwdGofeucrxHKaKsHPXzLxbkjHyimaCKfuOvhH1t0LW0bJpAyQF+qfzeN/W5y2dCMYjnG3qTGf8VJaehTEt2tIpqMqFSrG6ahyMfylMmI0PlxIt8O/JZhCpVcavOqFJjdwVHuzYWwos+hZhumJTiDvqBmm3rwNWvf2GHuaCJ0/kgYLlO5LvzPfIBZ2KuLWIElA+kdPgRgg4lait00fF3WPX0iY7ter8iHddv2VTtg7DuN82VDNxFjO99k3D9lTyzdACUwRiNP59SgT3slpZEi2jCicM5UkR2X9OKQ5TPEIh6ToQomTUHCZnhwwGhr8opV0dkNvfuA7S3qL8nVFIsND5hklQ4/pazlqvsaIjn8So4qx++1gkr4CmLXBQSw6XZBtjwHzhuJA2SMcxE1v/j+fA4RnxbewJCFmol4oxngO5iDUvpX8eO8nwsPZsqSW7V7bTQ53+Uro/A3ZxrJtXH+OSbAQaNdYRHROWYYi3EgXAGdlNJEp5KUMd/jnITuYnllJdhPdmm7iMi6g4HFHVxeV9VMSkTaekpVCkQWxvJkyFgGqqacQ2N8Fb0vvlb3wtA29sxcqHQUyUxCUDjeBqD6HPEcADks7gBEWXmANRSMbz8+IEU/vc809P4RL7ou0eV8zVKWcqEA1iVMQkrD3IrCzZYJNQ1l2Y5l8PcodACLtSfL7DpWv4CVq9Ykj2J2501DtE/+WOJqxXxfWzhryykryBIy7J1ALVmYan23miwHw8v/j5cPEypBIXIuzOvtBQURjWuTetIy5C7lU5BkIkRAx0uND33CU/32Kp814JL9+51Q4roSfINyRQSeXokxUZ0NusqwZQqB0DatWDMzywYoo8zraxlvNhLi0MPQDq28V3Ye/pvsW6LXCt5L6FcK1SOImtE0w5OafoFZdovZCA7dtp8xx6PGcMO7WSLJ75LKsicZv5PW7+O1YsX5GP+MghKqdh4JY2T0ie4h0RxCH11iJGkZXx+IUiOES8A+iXee4TeMfIt9gbLXbkqOcZP+kV3PU8Nv8t/LVPJTb9zdeYTS2HuyrYvq8XajjfCM/23exTU28rTyIp0dirYc4bGO7g1CVrYeEZvScpZOmQ/OrI8dWlFYE+2QjJnOcqjMY1YfW/YcPpfYu7CDjtxfSL9Lecohbsoxc8buJlUxFje4QHfyGsTk8I4ZELr0O0ZDN1vu/uJDyXQDzZtgYr2MYowHp0ElCSWW+xenOSJjHlNA8OXR551fekKFYUS5wb3Ytn5CXQuehmMQ17/OGDfXG0Ztz6Zw5/IuPznp/OwmJV4+yL/6TOJ3p8G6woJTm2LQ8ctcdqqhorfDfN/3gvh9xtZIyDj2l2dUwazzsxxQ54fIuJZbDbNSfLu81nTFWta2on2Yr7gR7RXsC765hEe/tHPOCOhA0sSSUsqNv9pjASLanqn0rJzxyB9bV94e6sPKgQVQZqP1Bq3UW2zoRCHYlG1hIIQOe21mgSkk2fgGtHrWUS0q2AIazXwWh7U++EGBmW1VSaUmUDAqai0XPrSECr/tybRQ8ubYFvq7sEFtnmPZPJmycYsGrrDR9BpDc3G8h+nU4AYDEhVGwqQVxFH
Variant 0 DifficultyLevel 702
Question
The mass of a trout fish is 16.9 kilograms.
Its length is 1.24 metres.
A rule that can be used to approximately predict the length of a trout from its mass is
l \large l l = m 10 \sqrt{ \dfrac{m}{10}} 1 0 m
where l \large l l is the length of the trout in metres and m \large m m is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
Worked Solution
Actual length = 1.24 m = 124 cm
Predicted length
= 16.9 10 \sqrt{\dfrac{16.9}{10}} 1 0 1 6 . 9
= 1.69 \sqrt{1.69} 1 . 6 9
= 1.3 m
= 130 cm
∴ \therefore ∴ Difference
= 130 − - − 124
= 6 cm
Question Type Answer Box
Variables Variable name Variable value question The mass of a trout fish is 16.9 kilograms.
Its length is 1.24 metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2018/07/NAPX-F4-CA29-SA_1.svg 330 indent3 vpad
A rule that can be used to approximately predict the length of a trout from its mass is
>>$\large l$ = $\sqrt{ \dfrac{m}{10}}$
where $\large l$ is the length of the trout in metres and $\large m$ is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
workedSolution Actual length = 1.24 m = 124 cm
Predicted length
>> = $\sqrt{\dfrac{16.9}{10}}$
>> = $\sqrt{1.69}$
>>= 1.3 m
>>= 130 cm
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 130 $-$ 124 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 6
U2FsdGVkX1/Fd975nS90rc96fdeQ4kavTcUhrueH1RDkqCg7wDF36Pfv8REIG3plWoZEee3cTFxfIAx9D3TO4zMrb+KEzmVNWTa7c7B6T65TTVU+I58UdkLNJE7CpSVe+rHD2rHtypwvyKgk2kTer6+gnGJcM5L7qdqOgonIkXmlUfdXgg7NxQukzyMJcNrX470TKRL1M9J/wrumUQl4dJvd2H+2CY6pQ7Jdf9jP7LI67JrnA10TequzFrnZe2t4yOqvXwWex6CReYr63Y2dl7jnFyiai8Lyk+5Db+ZdMtujYuJrwhimc+aLUS4CpqbWlhppizGM82N2BtK99syZBwQmRLZl889qIvjBXHUp3wA7YESQxrVbjXzcBc4AD6tMbuGJp7NsA16Ff1VObkBzlAXbDGbDVKCFpyHxLuFQ9v9e7o2bAaV7nsYVki1yxapFFfUao/4lKQL/J0Bb8/RsQsAzD9o2vjuT13x5tx97gdQDkbkfC8PfliOmTRtMyjGB6PI2UYShh4zmpJG5HON7qEs6WmLPwRql9J7KD1ZREGpP3DZBz7zJlMvWtdsa2SMMmHJDF1AW/3uVicFH+Bx+Euivv7ymYG1lUrgPsQ5jwkyB+V/d0Fcc+URVK0OFwnDH2h2uOS5ubR0h0LMPJNY/1LBjNrwkLsjymTwsiAT/sGpgWgdRdrP85m1IXsLKhK9Dkk5PFFAKUvCtP3yrt3Nx7ZId1SjbMOsB6M7mLlq8ZgO+sCeaIWcy76GILD6jhVoSWAlEUQy5STpRFz20AQbYnJmqheTngoUBZ3xkC0HgVEuVGGmuiekLyAXO4e3DGcBkqEkz0NWX05bax1pPjATAp55ih1wSxBj6yVHGx689/AW65qPTqXr6k4HcQ2/3Zk+UUvtzkLaMXiUy0P99NFn9t+OiXgUrCwB95xEEXCTqY8Y2oPXJuFL5Vf/GBURfPYZSwGwXQh7ZB1DzdL4ryRr7eoIbb3Nf+MSWtDL+7fSnRje9dRTfMXcpLPxzd3Pd4cGoVqi1haGNoWCWBLbNsbGMOeSQVQb9J0mrtBfM8fgXJWAOwz01yGuVNFa+wsvPlRDrbYgdzRjifK9h/7z+vNgxZilhM8MfMlLOdsNCeBYuHNlkhXLl2FXv0OyQNaL07g/rttyduegRs87O4E4bfKu7ZZN2NLM/e8oYRtNuLNb54qbpP6AuFf7+av3bDSRazFxo6F1ppGrIGIYzrlwAFZSCBTeoVmh5sXXDcpEwCG/Tavy3TN0/cAfb/LRwBvCIynDUdfIwO6lBnAC2gBfyAMss1uc4ve+/Q0g0Y749Q0XR1nD8+NEsTeOaNcXmG3qdz8gz5IhTNy6hL63gELfwP0j2yoCeWh4T2ZthtDriqX/XhpUYSEh++gydZwXdJiU8cTU1daMnsww9yM0eALuShVpWtbPbZ1eltAylxOCaZn7LRl/2mR4iXNjzjzBhM30yrct/S5LG2BZ+Z53kSH39/47/AkN9LoqORKzctAT+EbtRO02Af/G9rAEHig8OLAFXtdKSpd6bF+yH76yKPwyXgJdgFwkqjhI2DisJdAUsqNMCkt/wU0Uk2i8E9IKMi+ishyCntcg2j9SAppPxBDH00PNaOUfa6Tdo3PR62wSjmoHA05UYTYWkDMFFWPzbeSmPotds25F75OqOzCowb4lFp/wy9Da8hiBrUfW/p3Yj1EYDVD8o7pZAWmxdM1k2iQtEjCoU5jrsuR9PnkxgeG0DziKaUVkrgZPKwfBVsiUfHRiFDFgw/A4Yg7PiwSgPNWgFLP6SnuSjrlKDXURA4OnEkwT07NTQDSy8zuWLQi9rEKFF/arc+uF845eDq2aTo0kn/ObqTRXq95TfpK/WyMwYQLRQy3uTOV+CZfOCrCK5WkBVHojJIVPAFWbjis8Ccrw8xAMVSzujmlHpoL2GLXgZRX0hC6mLYzocs4ALZo/AtjC4RDOI4As665lwH347CKtDJiwYwNw59aYGKYKbSqWqwM+DwPBNZ4A5Q0txGUrCk0SB6w8YR5+jHlXvXWvetdOJzE3XMXmxbBT0SlsOUJlQ+HAwUot2+7hLr6YgSlnLylzaDWNL3Y0alELT/qWEVrvlNrGeYqhKxTjh22Wx62PO8GUIaEPhALxJAn5h2he32yo8h/uUqHdzAROV1EpDXtlf3u871iZtyZiLhHoU5QjQoHqqspngE1lMRVzP5NQ7X+73biELA6pVQWeOxtMyNfK04E4MrHRCU+jHqR5HpLo31vrb1azQVH78OelSnfb+EYYlleeuCC4XTDC2ji3DmyGrE5u0jHgr95jVAi6e2shkHfbWIlrhmSuj3+UAMlXZP41+CIUp5eSAr3fCB+1WIXrRO4bPv97pP7sPNpCYaowwYdbPNQRmahcRlvJHQy7XrkeLc8bF0F75fVrrI7r1lexrxMe1zXWO0+RVc05gaQJr/djohVevhA3U8EJIJw6Cgktzobak8oPE4t6EAaW50mfn1kJbsVBCn1lyabQpBZXidcZCsF000Ply2E1j7ff00kw10eE9xrUTKLuFANzOuuXCFS+o8060OPU7NqI+/R5ywEIC61nvoqE3/gSL0vOx9O4s4+v50XDFPzyWFXjgNZhnjUJG9wo+k/0byFxnxnW+SZfdLG+RimSUR0mDTWAVEuB7lyxVdr/MSsUhZ7Xkp8ce1miYu79u8M2u5qVSWddSzIMciJ5XNqB0hBeP0y0v/W6/ue5U+x+ZAIWcjcBqYMTXXxlndAaH5PDh/3yQukLdrdjQlVdYQk4Zrausr1IGDk9vdDU5AEl8x3+8TalfTRmFSgg7o0tFOX8Y4lJVOdByei/FvlHdXbaKEBYHOeikERgE90kBjbcAjTMVRIXWa0rpkgfuqizTWcu4xyhxdndGuJThbF5ZVjP3E9kgXstch2KQ60uAHk9ywUz6elHRpIdSnqmSlHVGfoTF35AbBGFpCsBTEGaePwo62E+Y1fJTtI2xb38HIchHkk+NzdVo71zOrdNiQsx9o2RoNnSAFzgyzALoVovhjRI4uM4vwRtPKvHmuZnvW3HEA6EpbZsFrGIMViAxxCUyMmRCwk9aJMV+SKIOwz4Wj4E/1TSa8eezS66QQ1IDifioFB/eAkYeN7mAeCx7wJLAnS2dwdDXyPTRhOT3wPIBpoRMG4wz2me1JZF5hODB3uD5Jj3vVC/275dqUrONQ6e/2oFWkRGbTpkd5ZaT0Umv+Q/OcbGQM/VxdXrki2EyzFehHzVl9sdjgyonz74klzpLIhDx9VBMxoJJEMveSWXBO2uiNxE3DqMpDl2r7rS4xyaDigu4ADDNs8unXK8nvJiOn9EOxGCUPS7r2/aQPaxsF71EDnkVAErNbNqt/lnH6z6YA/qjrvscwMeGdRTA8168ITrrTE0rH/KahVUGRJ6DQ7r8YNLShW6LQ5WTued6+/DJtk4Env7JYb0/4/EZaFJeNIao0F6Z3OAYcL3Ae+8Z8QukruVPnAwwXe86Csm0fhPe24gx66T/hkxG8rc5NlNna2OqIU+ILw6Kf216Yvs9XLecX4BOU4m+7IHFSI/6uY367+uQ1apx5ztSIdTubXOt+p4kBMAj7xmwvSQALVoMSQ+mkP6PdyHJuydRKn9G4voEf54xc6k/+un/1XR6ExQ6WqSJa1yxWeXiDDHnGpBS7D1So/oBhaCw1nGoYzdouJuIicvO0fUT+R5GAnMoF5pbrut3jrQlxNP7x+oHlkWm3Ke9HsgIy4W+V5NYc/5CK/Kdct4DfifMTVouR8tE4vxauFrMhwK/ZaCwTTDKKZTVf+n/LLiskftCRAr2K9xeNtU/QmRzssf+ytBX8Z0V4A31xBvdPsHcxpuhMKcB0u0f8PseOACIux/hsk0TcP6KG7pW99ZqnJgmj8b5m1S6i1738wVfz2TUpiSmFX0PFwpNac3wgZHj6jmTPmTOe+gsp0X3c4GxN9g9xGFwB6sExjlWcT3CIRjqD9J22NKyTrxD7PE2lbYs8CeuXf0q/ygYlc0oCvcIGRiC4/ngZWyKltanttBur3b0M6QWq+F2uidIe9KecMGUs3NJg6xb5W98Ae6m1uXtC53XvO51TAYz5U+o8Ielr7jIozTeH8lF154dyoni56fpU/FW4yx2u01wF/rEmQvCeohHMSpuVAuvU9fn3pvBwTjnlg9cZrvSMwUHCni8cAyR+8Iwo8mXk9mBDXRYX3WsDPSiXtfI1EQmPyiOoVttACiycm3POKB3+gVEjHHqba+RYX5MVn6PZ/OWN6BmUJwRrUnN3vTfJ+BVkftGi58HAg3UYLDhQvdOHIyVrPzy2n/0GRCNiP0r50STKsQbsTDjwzfwRwsM+AMTlpKA/vy5ADu8AXFEeOJ7IwZz0dvWNCoqr36lg0SL9JA3/5QjbjOyw8JxvviV8nYOUDuwL0/RTY4NRp/uT0N6f55N8O0D5NNJeDYi1O5WQJ2dra4uBNfMJhvKTE541p6KixxmDO3jXVlXa999UOcYQemAN2J00QCSitkppqLe//fg2e8paKMri6/EJXFpYWH6ha1hCN7WWv7xVnlqjxGUzqpH3M+xo7hMoyZNwYIJhnMSh6v5NnRE/EwC3R3739CcrUykRo0nyY2f5a46x0QC4HPjDxlPd4D0t623hCIa/SNkw1m1uyz9eyslxBBIetF+vt4R9dMjYZC5VQ9y4L0J/+VvdkkjRLsbtavVblVY+9b+AVmqRAE23wa+dSHBJ5WsMYoFbMTfZWXOKpveGBz/6LEprrNKRj/h3BIvwhJtIRu57Mt8zWu+HEGDgS9BiZpl97SnHxAgWP1s6J5JHW8lNSCDSqn8oG/ag4iWjA2xLVeobxnHwEbEtDzPKNnPQNKUf+LkRDSyqL0T2AD7BqGBtFR0SLi/TEFqrYMms+L4PsSIAp3vn1wQnI9GzUqWQq/OnjHKOjainLb1pdAaiWl0YjynAuw0tc9j1qEOXXW4+dMWS8VPUOpmJEiRhaQhkGLwEOJzRjjlCgXGK6AxGQ9YNSXkkBjaxSxzXa9DT3cnyb00XofNcZYgpWD2uc9CRozN4x6qmJPCTpZQ+AppPWqBox/I/uSxs2f7I7Jak0t3mZxkO7o1ha11mPYrg5NXDGx8QwAX0k/MeVz59u0LOWjLqKRunb5HT/gUAdYQeswHS1w0ZyLhGHKjFRhD997mSCuiUMFD2l+Y3LTpAOC4An8Bwye9nxlPrKTTMWB1Es7Z+lh9bmDj2WKUKNj1BbUEtoqXEwoNouvciEFymHowkzLikzPHoRNvUK3yBTl8ufuDNzgGng8Fo3kgzuwyyCgUyGvVJJnTIGMxNWbtlGhynOI8AvHLzLiQOCjtHgd0b1xloaWLcg8S1xBA4okQ3da92Ss9tiAlvMHjGIxPaaY7vNAQ0w3WM4Vreynb02zZ6LvVSPsksntRYdyiAmQZAdoAxfvUcm3/eWJJXcem4f49SksE8qWDirbyfI99Dg4YEeG8X7qgj63LkiTpKiBD6ZbjNaCmqThErYlgEWo+B2ZZ7vL7mYMfESy+lCacL7CiSRUDJXxdZ3NpBcekR2kasyi5QtefI59UQ2TqWA3YqCVWycT23qzRhb2QBqr1BUTtMTEmbz3PxSxFLapKK5Sj3orSCZWP0GgMnJg7FPHlK/ifOCcVALG0dnQaDHV3AJyBLu2pBudYFsRrh7qxrHtXidWuWJoybFHjsvq942FsqTRHV2xpgDYRI1WHxh5BpRQUFo8nnahyLoaL6ScJor21LK5n0Bs1c8vQqeygFRpiBUnOX06pV2Kk7RQUQ2JUMGDnNKtmDIE6VL7A154jfaztY0YbLxB1rY6zKxKJOfixC6z+h9AisHxvSGPnODJuLqu2JteZFeRBiquTEOhwsLwBFj6LtD8X2HgrwHt8PXpo/EJE+TFXUkXXz/KYrwJ/JeY+9CcNUxgom6nmW0Rmd/pdJoejq8VH9n8n85V0uNCaduf+a4Gu6QowUfo51x5wH7REgg9r8Y/FPztmChY21zT0dwdEywU8gra4qar9LOl+vWhItIq+BZ+7FZMHxeYrtoeq02j+YzaVl8qoDRFHmJJUndPutqT0ivvrk3zBSia1HPuvwpXFrGYluq3O55UGQHUyrELR7Kf/U7W3Zu2Rf8P63GoimqJogaHZ7gRonnvVjqeMmuxXsSUMv2JgwXjR2XdbtIBre32WI8GiHdOolxiuthvRNLx4in+CMpJ1wkoDs5m1rEndRmzBA0S9yqcAbQ7kQp11oS8LrOIqLtnRGXTbrKSDFyK91skMI/1H+g6fNlhZyddcpLIpC+Y61j1vGr65sMkW2LuvwN+hDHvRDmW5x5HIg1uZoRh3E+b3Czbn6kbqxHp0+GeBhqRx+ZBlK3G7LHTmaLSWtYCtjkGVlXAcb8zj8I5NTtgmvw2APCbBjwMHwcRz1++ZEQGFOJP9kqEgPBJBKP4hWBNyAvD3t4Q8hLt27eBtmKG+PPo/umCg1wTExi/lVX202DHlRJV8kWlENwz7Mtm/TXKs5X2mdVKjec8EwBvrZJW7IKISQXgPEFossnYDYGkqpGvF4jFoFsqET2FhCc3Xd0u1Jd3beGcnyWtLPoX1k4+7WJnk814DRIxwe+/1P8DrrRT92ae7iTVlZn2LekmLb9fjsTJRB6eJYIquOXi7MoQTdkLIyS3Xk56UmmgWGOKySXkq0++/vJd3NOraH+E2SnTCckahghffzha8zy4KVdS9HRWhhKunuCO+vmouGYoqbxZwCOFcVxVU1rexfOXewDq+KMAsirlqmZlGmAKOwZ9eVu4QxF/vE2upGG3tyst0ytl6PTZyentD1XhewyPFSj+7FmwK6M3FS5QfwJVoKhnz2xcgGZUvQ+EmxDsQpWP+9txR/Z2UWsKUXlAYp+oocintGVXqSpweb97QHD61Roq56758kojLkHrdwAIDuK/VLhjCPPE7gmYlIkNxoJqXaQneSGNX2k0J29EJnf+yaFD4phmv8zf4203nJHedd0H1rgmhw0xYxKcCA8o6nhgng97iN7I9yR6ibg6nT9SgcpLknL7vpvbwFGasDXUncCsHZPaL3Hdjxtr5FV2zVobdfFIQAmfwIAeUveUuf4g1myNMIKrsI16UL5E5dDcHGGScgAqbd4ikgR11agH+9PU7bK5WR8uvT52gyi+oUtN8prULQWqydq0G2tuzeaZcznAoU8vQBBcZvk++ttqtl95+s3J1mM2kG0Z5MPBjOwLYbt1lYHBH6z/C0v1SCU7mKxBlDCTKddAuLmF21vgaG5TMzflrwjB+Ygu22gxcCCIaX2g235f+bJqLHdSfv/kGnBkAb8YV+xsSTeAzSPCmM4crVHIinSyUvOREEntx3tBysxfbadhxddExaPbQS8YQsBhuwSsvaYjFMCdH3UdMYhOz3ETqWbdj9Oz1QCUKdUgPd5FtgDMVpkVU5foxSRb/BTcvcF4LuDMA2GCT+MkXUSrUR2Yed16S7AIzaJCa6G1gVlnf+dlqpYgwjQ2FqBAaGk8ULOCwCHt/DDcGTOZo2RdDH7uHZS4VcEnGBphdHue1jffC7CwqtG/Lou2IJBiXYjHKoxOAmR3UrX/CyJ42ON6lmUif/BQRAO0niaW9w6btazIkm4XtiVECwf9+sCpFEynz1rXdvRTVFtCVekdQBKFsn3aORQYeeJ9mRLTqfDopn3X99q8BkmFVR7pmU49X7G851vfSiYtBvyuSlunwIo+l3K8u4aygZ1vbOlQTyFs356HJm/EcwLag6Qf0SCkzJzdw7pP9dVqlpZDGjZuqcN2IjyqLOIil73+7Ajqo1aXyqV65oKq31r18g4znJUKXDbzvN1CDwmDSlFmJHeLbZQZiy5XNH268unHr6avFo0CjjX2xMCToDL/YsMCJZt+/1OqrvP5o7/qUDKiGkEdPT6zWekZwfEGwmfyFFMpoRfOyCnEA75KBHqDOLkrTOMIsjVctWVfqrWrYw3F5qYga8N7OFsKpR/mRs8ZwT/fZcA+MGObXRT60TTxgBeQXkGeuYTryc0jElfqO3kjx1oD5haPstsIc+9XUsjLmHkew4iaivjYkS0HrXU/65z9aa+UdJIzo+UVj8RiXWNH9nVLRPykUOze58C6sJ1D/3ICdkQRvtCdVvlP+Vm6WtbdICS2xwB64Ptorkf97genBEffKil4bDf6B031fvNrhaSjBz46sA28TKC4jckYth2+6my5iFGsXWF6CYNGqi8m0HJIhaIXYX1fi9vVkHnAKbxgQZWIXJ4PRcqTHntah/QkO4BlAEXXO6+9OAN8ZcCIjKY2d6Dr5tK5UkT/nC40106ACMVzvmrRZgcUGuWDFbPbUQVMfuv6aSBDeGa/o9FSdU4qA2Fw9+j4PZSunHdPzydrzL3KNsgsJHx9uKp/TiaDQ93EUUGM87cyy7Q3LuMQisNFqQws6SMdZV5K1lFK3kb0tSo3NcocwhPHGpQHHo7U60oJZ8HacSPPCbGLMVWsOdULUykyYCzmE/uiP+q/kbkvDdUzriA4yM4NkZZA47puA4xrThUx++24MkP62Oe/1wYDQKB7Wrn768PHhFViE3VoGwZfSjwBrCiFEnwa0L/FrcE0UraWQJJe3gA1vD3t5j0uiT7T22SCyKqpP6wKji5VOFeOWcdaDD2C1Bcg6kuiokyzycWlkPsH9VcR5ihNJ5u1lIHPpEElH7oSd1RjQd/8vFhJPXk6jWZcOzJ3t58kJsALQPfkYkpcShhzieZT/Ca7J9rW4cBCdgpQMfC/VXgk+v+0qRDeiqBJEA7q4kZX/3adwdHC4WwIOWL+35OMW9zJP7x15Wa1fzouH3LItvocGC6a++qPMedKkOJtfuMsjcTTuRC/nBRM2ForlCDLaLZ2h4y+eCHuEYSnulfyLLS7xFz2lojNbDvYs14257cRVwHichfP9pWGd0GBR8s9zPFWrS8x3VR/TIQwBAUGvojYdrH58tMDOwa9s931917dcf34uYaS9Y7DLueLZ4hlq5L9T2PHRmPITk8dqwt0Z50tPTuXSInZpgJztFQVMPa8WgRWwidYWUI0mCm+8hKM60oZEF53W9ZLs3j1p6sYJq1cfajaHnlhT+F//ULidSmU6GZobKhgQX9KMAv9Qt6Prt+7Tsi72mBO0goOXDA9u6mOK9lVfyqCJoLJprPgXlHnp+gZU45cAp9N/mO1+VkHxdfwUjxUcIcvndYWHFOqxA+ZJNGnyYcdVzINCXq/O2bhSndiR6KR2mlOudGtubK0ec8mA/1LqfjherEMYdC8zJeqMkJ4pVMmqjI0SsLQXftyLOynbhJ4jxhcMkDm4h5HJhK+cDBch4lR9T53xGdfgCqgyjcu5PboUmRzbfC5nZUrVmc/2ISd0/CGWY1jlIEVyB7WfleMp2TI8gR9+hWNtbz/LODuaZiy/VhemixxDWQjYlRuWo/MACkYSMy/lyisuEd5jGBNlbs3+7uGXyJkeFSSyLUzDejEb+xsLZocALakrzJIliTkzIX9Vy8AppSxM7a3Ll582ihyvhcO9Mu/dUkta0ykNs0Q4DQF4eGZhkLMZnwN1T7u1bFQdPm/L5j5OXElxJVNLwQ/iKj46evaAF64/Er1v2Yj+38B8YKBU3caJQWW4tEqqz7wmXvwCulLj1Wizt2YmGfyuOnHpQdRi38p1Gxkoboby9/kyUSO8c3I9ZlaUhd0cGjI2pYBfKJkNbFVfXNYxslZS1KmKweLUATV4k/YEHe4sLpA0NFGlCHaOoivfd6YQNiapLG/YXYK7VOOQvKOWtK7r0jzVMhJkAGW2Dz6mZMOnkBl3/jEnzfZqECkxNJ35TZC91ffM7OlyLn0cUboUN/UtSj3zG0PKET7fg3E8d1iOftaYPjllBRALsqQXwkAzNMnD9Ld1t/BejQnfCmQtaOV3OMj1/MFmahQrX196vNFR9EbXuHEqWRj79HYD1w1Q1R1VGEcf7lZQFwP7FpOzlf/S8C1/itH2UvMI9ZdCLKeGNTFh7jfW3UgAU/jpDhjdApQjutyroIWmgbm7MR6adzg/cAYO3CVJx1DhU27ToQIhjPCYNO1+IB55zqA7IfQbsQZ4Uhe6qz61R0SOXdoOdzZJrSIV5YehjqGchwbcj8XdUkErKtq3NA78VrA1nBn+ALIVqiJm187q6dYlwolru8tcBRIonyynQn0eV7vj+/xdkJOuIsbGHbf6kucBR1k+rnsjwWmxCkHZUEHuKF2r1MCoss0+UJ/7LUVF2u/xscnaR1XYNvun3zAGjcdnCKHaF/oFjhSXknd4MPiRgdO2t4oX8e6hOxU1e4M4AzqXbNRPxiERFZi4FTLsJ+Fj7pKaYQVPHJ/S3QYzYIWeyx47+W3smucVoYKtwqzImqMxONxSCZGRbk49u8Cpn5CpFAeZdKf4ZqAwu/Iec4FoSiwbOe28CqVOJhQ4LlUWPnzd5qqFVSU+hLTDeMPpnvmIp1wY3EzhHSonEbyFHcPCMzpCEzhGCUvZRe2fd2IkBtFz0eEDDOFaFt0BLYqZJnPxEcYmk8gQPN18+EF8mzBDtbpLImEk8mKyvrVQR1cw5EhmzwJNPcLOHGBIyTHc5BXJhft6ODdP7Rb50+nnF6o0XF6I1vOieEaMK0BkDAZ1Faa1oVXuRb3fh89Tar+hwTWOXid8G1iVA9xi/kc22MDNJ+pE3/pwExwmnsEgZtZDWM3e/M+udIvIWAFL+Ojv/d0avYRzFxHbH3ngesiNQsI1dN7UwYFbbJwNDbCfS47zq04N3k+iuhPpjQDllLtsPKDOIc2mQGRW23OCl4K8WlhLaW+z39vwybq12FbrA5zOLV4WUBvE9N0gDAGUfLmOz98u/X57q0REwXp2l8PY/HaIXqxLW10fFrcH4Eu8qpaCH6KO5JvbWtgicX6V/8UTT0crZ9mitp0+etIjewl38PboCpwUJMWmpxCBV+cDj3LFaNo8Zflqp6BXGhKF7CPJqtrNgBnSywEbw1kb1rWcl0UaMZORXxOQm4C/susJ9PkNsKXlsUAAy5yj8q9Brd2uwmfn6pTfPuS+ASBsVD+PoggZhZF/xjx6nC3lgG/VRxVcdz4QJzILbRZIg5WgfBpe2U+4Y4RiPpxsRATMxya3P5XqrrtcQ6Sh+cBvuUMGZhmoiNtRVzuDyaSuEyVgYxAcgBW/lKFl6Ak4dNTY2lSVs7u1hAmF9BM/V+XIcFalHGSZoJdo4X94xiYf37uAiQ09fDX3OQX7KMv4n3rLIp7432zVjSUfBGU5kavIZ/NahK0ho+AYhbQaqB7wzjRPeAGcdPZQ32hO5T2loMqnu2O5dWEYPfV0b2fTsbadA44C/4p0OE1M8AhumFay6i+fFKmC7Ws1ItAgaVRWObZgBezWxvKGJiToOx5vE+BgZeXars/UTcxkN3FdndD7lI1pJQ+2F1G+//ion6eEUdORbbV1uAeA1QIPthWdx9+Vt1Fg5oE5V+HeLKofywTjW/ZtUe+KVWXvneoMximYIrnVEBRiEA40gcJbuG/KqzKCXgBKReL007Bf0w+LpmwI/Fd6v8BpSNMPJIJ7kEMW9BQayDTyJaeR7tVYMfaIEZUyvL9z9YEIErl4z3izrbri7uSC4n0bXo0m2jHm0/eHH4eP5uLT23oQT2IK/FslsuvCP9JJ2pg+cyAKAZAiwJP2mC0NKmtV1x/Mkars8RPMyRAAHV+a7zHKaNDLzxGoxlPZiXfqsDH1rFLfqnmPSXHfCshw4mwxu6gpHtUbm8ONs1iNOH7es6RG6iTOYHK76cTAupMVuNiJdKmPONEjK/OahwFYiNFJISRStbhnmTVvN6Pp+crLsEdvc0ak5nc1VvyW0uXyCEo/TqcVxGNYmbUd9fQXNTeXGAgtGcQROHLuR9l8diEbkdvF0lo6IGQmQblxL1nW2ScDeefk0BAsXAfI7DclpdHgPNLgnevzcc73zjFH0h48Gh3jsVmnTfPvgxABwGJ9D6McPH5qGZ8hfDCLfe7u4UJe8JmZt/6iDmbZGCKW3O2zSbOWRxmHnRbevJz/RGMWUhI70W3TewsYijMjtoHQKkUWz8TY0TyGaRGrk3J/XsgcHwRFH9z7T4MiUiDB6ijB61A5PwmFsrplaTunE9FLPTsmH8AN1NykHVLs/ueHQPPr9c+JixuUAZH8s36JE+bUcZG6J5jgIoPo+wkxPzLGhpMBhyYt8Ph8vsK4TyZxeGzbYzQ+AHsu1zYSuhAztsGMqlgzIf24bplDt70sq8U0lSCbWRHWU+7kVdAbC2EYL94ZgX7pY5/gLUVOA8DmzfPa1MR/mSoXwgXPSAO+8m2bIMRUQREpVzOTniANdF5hXz6s9R+dSE0mjv6/8xmM2e9/e5EQdqaJtqZ9tPi7sgMRbt2v5c0L1zJ/FndyB4oakQNOmSBE8PsxHO/kng+D3iFBAdWjC4kIXI2CPD4xaUM84kBNp9oQ7eOIPebx5zg5fdIWn+MiD10m3W1M9JNmZKYoqHBVT0O3OhCw3lDLj1jybiSUSfPT76jJcw5OvGBe/NVw1NnbER7AAoO2T+G0a6rWMdUS9Tpqhk6+oIvlna64ZwnsSbdFxcNXPcKo6i4RDYDTiAUfXik3vaYJ7LkbHowoU6sLCaxWvtxs2gsrqN3Yq3BOq/ueE81TYQPLsMvLgd2bDP8BuCTGkkAq6OPcFLzYFNl4m3AsohTutOEJTgAqwAQnBBAP4DrkNtlMXvtKuXOTXC3EkTlCEc9nIQiCQif1wNWpkhlVrUfMWAIGNyHH8KcVuf7pjeebjiW4BV5YA235d+ffilnkTwRkMs3e28Jw5/kVSa1npRq3Glz5xuGvSe0adN9bJPGOj1bvexoOamYQ/GRPXHAqLOh+Ynu7O7CXvqxhSxvG8u+aH5eZJxrN8mIIkyAwqDbyLkIOEeUFs28kBSIErRpIMcZoOKl8EVPbUnHt0GbtPtkqBD8fOG0vAidvd8JRKepTfwiY4LFOpSYwKRJtbDgyDWZqgBNYVFShReKmDu9prAfajYeQsgCd5lmNqeokmQynFGj1qu1oBUnX+tmrr0Cbm0bmnLT/elQaGLsUfBF1ebb5U7UGalNW/XAr6l2Er71Wgwbyw+jOgaeev3JBpA615oPPnusHTnTKET4ym84FsKxabi3/F8DgEs98ltO07WEKrDACXQvm0pfPjDUTcIQc+6CpuHXzSJFTOy/9meahpuHkr7W1vs06vvYLYwwZe6IOSS9SWm9FDR+5Erj5BBYpJuOGPa6+zDdyA7osH4ILICbC2f8pLnX7QeKARv9wyG2YK9gqBpNbvpsEH1UqhdbiDE5C2JmQv30yM/JUyudyoqMndOqQCWTM0m8CjLwfYiruerNWZUuV0JbiY2SVO0bb36fmy5up1goAQ0Kc6A2KYrnT0xhcM/pNvHJQnx7zcmiYfj/KUNJ+rw3vpISRf4Fc9wn2i+ZENLJJ9wq9M6gbxbHioIJV/8kRoF/OnYROkfXx9rCoWy3dOOVr0hfLV0LYDzpN6rSi+usjZ3T5HfxX7J3VKByoqlGESfPfzqm21AQsUipeY4l15XmwlnJBkPfF7tzMaHEYchOlODWtE0Uge1jtuP0ZkZrrqAJPRTiksHRbTcmzd3g060ocN7eHP+fAcybON5+T7ZwCBx5Krzv1Hv+4Rt0T3SG2uxslXxv7hZuR7l5Nnmr5dUnNByL1hNaipk6OuvcmhqjG/2XXfACI7ZIGG8I12eHkfrcwfVdM2kDVI7RZY9PBRJooMQm/VrcKDBCIoeuNz+6WivDEteUMKxSd8l7YWNdfM7qfw/v7MG/2vbFdhQZsas/OxUktfTTwX52hZ+eRcj8xq8tGFopr3VWIFFuV1t7BFGZorOdw2UVoSWuFnwAxsN5p8W2ffCxkCfDT25FdrXyrmmsHOHTi5QqqP6HbD3c12dqQR1ReffaZoy++UFtULJQN5+ex7l2S0aTg9bhSV7xcwZHrMa/BkQZEs/mcVBYBse5gQnryUBHNbLIN1BH7bDjh+di+nm7WFGna1oWj5OySK0wZxoby3tVRqGy7PsfTmQRsrRY9a1alzHmoCJ4SHHokBT7k/JrMlCz+BiKgfq5OFzbLsZJZcMDZLsjlv4NtXKUaWLlixIX6RMp08cjWMwBuXWAzG8jeWW38D2wZzrYzYYfWlTmfOBlNpUVnXY/vS2PgwMjoFVMWgLY3MN4SUn1/uFnlJCtluMAzn24rJuWityd4VoezMpaK9LdU/qkEpweLihL6Uy+RbMQoXO4potE6nYIOtmpyDVmmQBgUTGfKk2uqbA9XrugUagxjAHnEADeZH8R5cs8vJqY5WaTZpfWYlp51A65BFWEJTrzDouZJDBMmbxESCoRHpVrI9ucuoZ0pXxxharexJJ3KP1yHgib2NLTfW72EUNYGJh4lyZYaNs8Yc7ktJeNOMNQGxzSQHsFhPJ+0Y1mfduBvnEE/Mn+vb6fqsYRFX3Ihm+BGX/1Ljvq3PzdbN26VS6HrzfiDC0dZ7x2E+UMZRxaoo0B0+gHQnEOijZ73bpGR/BMU86lQsG9wolYn6hMAoU1ad0xAjOwxuBrjYdCxUBmIHE522vIR698Re3EgghbJ26l7OP70hqWOqn0FvD+V1kKJHSO+oaeW2tGGQWZ4clSOo8zoPkWk5FE/87+2T2dnK7uCykWEMLfq0+YF8Ik1IjyPDqiaq5IbvmSeGm5m/ixiOCAeM6L+nZ/CjjhcqTBygbrvkYzASwH47vNLJKhd5INmqrXvKD8ptwqJI1y0fPVcjXMnNir6j4lp6ucG58epc6fB80b8XeIZ2jezWpkSipI4sa/KoSa9mjflU3rCQAFBFZpKxqvKjk/L21WjjFEqUFNH8nwlwlUYbUu30cwd+dV3YKU+gK1f67zxznYGujPw2S3MjoSByCYdp4cnT46Rjr4bbafsG9yvPzLVYnk5yqv+K7vp9AXhfY2+NsqxEgYhkwkj110XeBb1SZ6nskC8oosmyntPx8QrN3hCQVun5uiAUbluczlzA8ZKSDnvpR3Mu64k1HI7DUjaOQGDOau6T7HflbviBUm/iVSbVaaEzTl47oU8z6J9zkGipz2NvqPRbQFIp8qpvqPMcckC8T8IWvZ3MnR9wIiykxBmsbbLYuBxfIc4jaydqKjhpuk1pVnJN8HL3z9DcawzGXUk16QTjDd5pJAKZ9CTG8Ek1cvAOn1y16hrswNJZotOpe9OJz8sMMYICqsWpGibanzIYaTe9ieIiKXmgqwpdgrNJDYJfIMkL37gFCAweKcIDq0sQ0oi29og1Qd/IQXrfKWX3S7QXVbklt0hBgvrJIjYEp16lbSDwqhILhsI225Xee9g1lDyNgaMTF/wP4vGDDhaBup0QyGNE7bmo719MwigzqvckfwiJgqCd+0IpUG5+IwrMpLBl/pV49L3DnTbaFyTAmnPhJDk34pf5aYCzMNIgUNAL3aOpaJgQw6epB9ZH9xASPKl8Hf8x5xVHGTSQsMTtX0fsxv53bRW1G2RWLITk4XBsoOFQnUIQjbufny6NOtrmziJs12lzcHcnupn5rV/QD0y3clqmLfA29AVeDNotacULXGNi9INlIlJfgBCsb6ugOfa26xHwgiFTex/hp0YB1w6RzAbEI68+OUi1W3mAqMtP39AaXW6CHGjxvOWFpmLWsL7BSimDsBER4Lj9jsjIKxcREMZR839Eqs2oC5ACu0R6SFLSKQaewCoNDcy7H4VO7dFsagLA56UGNlCL7HozcCGh3z4sCwl2SMZiYIg
Variant 1 DifficultyLevel 702
Question
The mass of a trout fish is 12.1 kilograms.
Its length is 1.05 metres.
A rule that can be used to approximately predict the length of a trout from its mass is
l \large l l = m 10 \sqrt{ \dfrac{m}{10}} 1 0 m
where l \large l l is the length of the trout in metres and m \large m m is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
Worked Solution
Actual length = 1.05 m = 105 cm
Predicted length
= 12.1 10 \sqrt{\dfrac{12.1}{10}} 1 0 1 2 . 1
= 1.21 \sqrt{1.21} 1 . 2 1
= 1.1 m
= 110 cm
∴ \therefore ∴ Difference
= 110 − - − 105
= 5 cm
Question Type Answer Box
Variables Variable name Variable value question The mass of a trout fish is 12.1 kilograms.
Its length is 1.05 metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/NAPX-F4-CA29-SA_var1.svg 330 indent3 vpad
A rule that can be used to approximately predict the length of a trout from its mass is
>>$\large l$ = $\sqrt{ \dfrac{m}{10}}$
where $\large l$ is the length of the trout in metres and $\large m$ is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
workedSolution Actual length = 1.05 m = 105 cm
Predicted length
>> = $\sqrt{\dfrac{12.1}{10}}$
>> = $\sqrt{1.21}$
>>= 1.1 m
>>= 110 cm
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 110 $-$ 105 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 5
U2FsdGVkX189dkaInNd+q12rmGDY898Qd7QbP6WT4R8hzve2n38ZE33vrwwadRzNeffXReQ+mCS2nW70HymWeboC2K4X+8Tl8T0e0WAtM1apsEJ3SkuLRBji5btC+W0/5tOSIsnYbaijzZCSNQ3bTJ7Ny/oASaY8+MaobnE97NWKVPvFDMEnzVAx6o6Yp7+mnXcNHH9fg3WB5s3PwZkpHWE8ZMMjDFYeOO0YFZfzbIH+MjjwnoN3QAl240Wj1+JustSJ3TCNtaCjj6yXGXW2s8B64H5MjiQ5LN0k282CSBDruTNHJJnlq8qZMZDAKuqtYAxnZJSo5LyyTOikkUfpJemAZ0cyfxNVQua9NflAzrnX/quxIQkLWre/WJ6oHBUK0etFPAiTLBinVkTKXV4BDjp68fUrZtew1CsTD5yJf1Lf0/rltYowWsr6AbGXeQm4MjY8SpFbyAuHfh5RcwOA5JOydl3ZZ78mWgqhhYoVnklhtf8O15tgUZO+YXsJGfQIatducx4ZcLsnOpl40CpoPbtNdrarRlPOGsi5804VjRTUkEHEEIPl0BRt4E2af2SraVUcDTiH9s9tnrZcahKDyZP50d0O+ZAw/LIUTzLWCg/VJRanMs2m/BdC73laQx0Szug1vNEPAu6OZlCcYlQYrG6ynt44iA7stnbkkX/V9S1PuufABfRA1DOE5WIOKv9kEzMkkPGeXwLhBym7Ri9u2HOFZ5ZnOndCU1L2NiF2rYsPLUemuIF8toO3zoITk8URkG6WfP0YAbB6dMiUDkErhNN9EMMgWMaDjZMz1aCpfzF2UNhcz7mie6AF44kH1IWAxktwgWTtvcIXoLPwfmI/IGo4zlDbjkyCio53mUU2zKQ8qb4ez/4KPETcnjj+ewVF+qkM0ffberyyecVAg/uG2gbRX0SSv9p0uZwiVTXjXnxPepW/KWgTxso0GvYq91OEg8BDyVfoU2cFH9Lmv9aaSv7o2TfZXMjRZTMNjCPxDmMq+Xu05RaCnYBDmU4PvjKb0oDWX9adOWUHMoi8kX/X1r0Y52DvWFcasAFgXXKimUG1bDxE/po401lAHbp7p4FuTxbTSe8EeLqaJcWPSL6oy0LcSmRycd+XaVoxWr0QgP8aArgnxRnBaaoj8BwFyU4qvXDGeUlCNquKRGaMgZDRbbK88WeRiosTe0W2bBIXTwZnalyqI/PfOczEqsg4Y90s0urYts9O+GaLnXaKL2mFYmdi6JKvYmhE+IA3cOqHGvpcGk94DVdk+IosngFNKxHr5Fsy5G15KOQzi4buLrWLnypQocQgxUTNhsStZbGzht9m7daH4MkkO49R0ZqDZ2xZSuHMLavmq+Ly6XjeSfgACMAzRvquQTXFcjLrkZxPR9w4Ue3yUHSutdExLky6fYbxMgtRtf36PSVYa0QKjidIYuKYOEqeguKmRLL2jvWWDW5lO+XUAUJm0H9sl3/sfd6fJNL+XlkCgray/9Da8BoneDYvNWKtNqV4Dxldd9uh9ecyYFdmREtKai+Ib2EZDJHU5zpplUnuYJyLAB/0DY2PY2h7p4vC6rGRW47rtJcUsGKef00YS1FPn3RRKaiSZVhyl1ZzotM+1O9g3LnIer4nDJTC5GMPjxQN1FIWqM/HfCWOFLqupwHQCmpbm1YeX1/whNTjrWOWmZvC3V9jamEXYH3Xc5F43NMtWCB5NZFWxPJqcDzdGrpFeFJU95LQjkswT8UmL2xWEV2Vxm/ZyZK1tzQGwyfNb6ptV+EPC8QShl+EQADMMag2r9RkEzljgpB6xcIg2f4K7gYMbEapJ2Oo5fgUGl3NynM5O244CkZHdfLj/SU5u/aG432Ggx8AD4ypJQrx0GWSsTD4QLLtn+LNM9JohGxlYHFzGup1mHoinPqfsbSCdUv+g5EcunLd3UWvOdavJvzOu9Mz+HCww0Tplem+zGa2wfQ8Om+gzCPLLCCVG2dO/mYS8DAhIJIQjccLzvSHHvGwRGCWNvVFK9IKXdBozHK1nvJ9hllWuy26+lRuIKFdFZyzLAImWMNCIZ1/66JL9cN1LDrxVTnfSyQLYHLMqqRoA7pjFcuiFaw9Gxf2bhQGTXkbukpx4YDkHLgtZmPN8nkNI5fggfX8ZDf94+gV5jpLt3gfCEaBp1lldZy4OLEi2GrUyMykCQyFmMXTkBls9Lk2tYl+FQYc3hBydKM0g9LCOwIkqA4KcVwwWJ6a4cYG2NzEZcWPTSYuI1wo3l3meaemGMcxjytonPp+PYpUtz1ctok3X/ULEYXNQdmy+Wzy+VqiIWK2x/VIkEwfC7zQrIUuHhfdZJZTkTqOaR197LRmNvGJLeuQXeD3QMe2ItQP8F5TJilTQcHrlskNrRjDbDhi7kM7vF5Fh1KRxYns5AI0NA/w+FxrNv5nWCvX9+KghY9ZIhcuOoEXG2xGizs2Wg+mCBfa9bmGGXRZKkCH5ZhBxcRP8cle2+gt4beMG5C55JGkvB0JdzxeMg5QerVjuxVyb9poT+evnXySr+uVGucYfBHNQ6oK+HiL4BlElCeyPANCLceLkEwUPAmDss9UzMtiz3aUETUHaNN0eVGPD1BAGrDwbn85oQAeemTKxuE5wh+zK0YiBEhVogcwlYZQ62wm9xH/3ww3NrovLgqplb/2LCSxov+KFyaj9JLApIYwBPJailrfgDx6u3pL/HIxqFIvvkKStv2jVAMC2MiHDZmjH/bq0iYHFCn0NM4vspm45c6CX7k0hS8EyzXZiBJctj9JNJcum5+ZTGYxKjhVKBzuv6gJ4KNZgr1Tqg+6feNvU0TfA/QW7wilWd6Ld8o5CQbPN9Z0kIPafdih1Fuxi2u+bNU6QYZSANcyoawJOZkD3OoQibHMikQ6WNpdpMYDJzoq41SFyAACAMokWgBwGqeCth4/z9lIrhfmE5APWfyBxtZ6vM5LPF4a+jIe+ZjkIm9jMgQKnliKygLOHMzXe181czyDeRuMxWIKQx3VNXri2BCyN54X1Vhs6khXnsK0Mizc/HW2fb+XVH6AMlQ8vsTqRRlnWxoHtis9HPaOSxKSP9Eyw0Rs+KmXBQMv88GfITbRqAHsBhKHOkBaU/A36xMMp2lzGcCIG/KS3yfKg/lO7FrJ6kbP08NYEtJoBqj4iIxiqf1aT/+A6RdMMD42BYV7Hha0V0Y2WAf4bOXC3AKU1s8lq/vjh/pRR+IBQkcoeCF4SeNga8iQ9krz2eBrL5kmGnH6c3Tnpa9lpXPQ1mJPsWa7Rxh4Kao70o8PYMFM1/m9XQwfSmTpdwW93ziqdCEPlqJKTOSD/yr4szANbUzpElkY8UN6+TGa1PxGnGF6UOpTyKkMS9A/O5VZDHkiL73FcuzkSh8SGn1n4cPtl+HF2sEHhIf5cfYKOkYi2eJOOu2ytdDnC9eZCbEHzSKzvrPL/K+iiTZwoGdsiKLlRXRDUBO7fW1+j/5diOwKzZczS3ZSG66HGSMslGi1y6huEMGWHBDAh2Ue1aWwANs9SuCRSse2iXZE04ShbV3fj0d6TFiUgHvPL18SikweFBZXnnVyr0umIhZPbpZzonu815/zO3ijNcioMpF3xwpDrl4+xg3UlHXiocunenhH5Nq7JLqVj8it1MulDv6DSn0G4GElcPd57LYP5m3DMa5WYZzb95a9+OqG22QJ+venNNhJPKeaMOc7UmO8fn4x2fk9MNLdJKS4wdm3J4kTNojeg3ELcqqEHRgonLCtg5/tH8pyrOqbg7Wvx69LDne7dQMCf1DHkVf6KcJyqfsVm7YvsSWyM5pFT0FzdCUDMdi1v6hDNRN9qAhFBZTUsBxBd9dAksLjULvzcKvOIZm+tKuAU3WwXsF0fGEw9i7JrWiqGnyDm3HuRWaz4H6UcnsG/TYDofbNV14Z2wpkgYPotLzuHvdf6PS3eYwRQ40434c3lzmsNKhdgCLaoznMtkXhjLx8iUzcb1iN4B04YFzfU7dgc8f+vTWSfc7CXUOmrOB0IDU6i4VUTP3yjUFNJfFxDjdMkAOlO2+NhnbMvaNjNTqcS9bCy0UZulI0NxKO+py3m74DP88na6fNK78wkVlLecdO7dw/yqaOgkHwFGRs5lFQg5rQoZEYNKGbH/j+zvwiZKi9+xx68A9NdPw/s7NnTv1cDlouBgGJRVRxPwb+PB5t5vec3HlWI9MqN6gOVb8WZvYGVEOWvM/52dmkBTCawHPgzx0Xj6qrNO9lKWiQnWbTnxOdWiLyOTsdJUyKXW/1plQvW9fVSs3A1GlMQLNZcWKMX0Ea42em5I6wI0srFBS0NL8xE69cwf8sc5bOpHYpPGPzZm07iRWE/R5Y0+g+3wqeKoG4EMONoDIJe75z/AI2wB+G5kFGTD1tjLPd3MwqURHODXFYdabn6SVIPKaoSVBWXEchxph/JixGca4hyaIoJwdPO/9+Dtr36tuH7csx9pcqWHXetlYYLzJY41oV61P/yfNaJsnTS2j182TpRWJ3x+sIBsNMeqG6vSfoOgwhi35yr9WdM0TDyCjONz92RxvydfXpaoy8evsHuK4R29jpjMXmwora1Hzxv7bC4ykGDH6y5vIFWN0aGshGtL4BXQQPjvRNMNalEdAxwegAR295PJxDp3/U77KhZMHD38Lk2rOsnYGLHIAfaXqOC8z7kHKmPmbrdzrrxIUpkFAA3N18w4efhE1Vj8fQJMeN2odclpTUVnUPz+Lx50t0eMCug6S/Ux7r17+O/TFnPGzcKPlHMFHntcMvY2U4NhLTVgThGH0hsTO1SIkYemVRnn2fPPTWW/gFYpYuIRsyWGneAuraUL1w+dJwqvOSQTzupxIijkwTNYo5aD/Gn+RVVrRknsE6ujHtSTjTJnHfUKBwX6AnOdCDot7lOXMWIbMU/ztnBao8R+AV95jy1DDLvSzRv4HoRx3moRpdNxPdPGY1qSMTDls211gWJVtKAEQ9/0dnQ3yXkfDm3k39N7RimlihaGqFjwryksNx8zU+3mFaSZ27t7w7Sk/gqkITxgEFf+QbtBrskLtRJW+OG3QbspQU12RZnZu6AqGgxK3Ug6FxAS0Ex0T7ElRXt1weg97xB7K8VFUtsScIsiaxzp7WCMRIWGKKJTNvEFVmT1SPD0orrw8fD+rIGRYhVFipolybYcWsMt36YzHjPv/sdK5rNAAkDi6+wd5JAwT8dE5rEsnxHjiQ7cW0VlbOTA6Jl4QzowV/XapJIO1zELGG7GT799cgOTOE4SSptfdrq3z9tth9qFAXryIkP/mYsPUFvEA92OMFqD2PMQs5q/83ACAGFsUh99IBY/GhzmswRwXUfGkls683x9RS6Vi+31L2+mxCKGWfMxLQ4G3nHPd2QbtNqmmhWtNn+HfBfQpzrsvTx7bxTvVcEu8xUTrGmmcbicyttUj6mCSQTONVcQC4KFr5sMVVjfXY9jZkocPXYvlVQnhcw7jgf2XnmtjKbCU3yQzaKp0U3pWlyokVxG3t8y+E7zwiXUqYj41dFsQ635iGUs/PRFy/igsHry2j6qpHnAs6LMXRSE+Fhp6Mq43s+zvRv9PCT0iXmguvpFTWePTzFOQ8eiPnf/H+hM34+4IIfWv2G+iH6F8YiiD3kkIPne0M/9+lMnJDj88TItFcrZYYkVNL5HtwetnT0hRxXXxNeIHLCuHzNuJGJROsezSD2i87AFIgM8iEgNjQiv0pjillP0nilSVkMucN5vaqqHYNX/RWyYAGz+5UQMiUY+MUnX/9cw7poCMblGOXgDNWFCWZZyXLTOH0euASmaoGNijmwkiX6nqMiB4fzuI9u5OQoBaIFx/TjxQhKHf4u8YDeg/dHaoBalvxK7hgSDuz5EYW0YjfHadbcI+/K/E0rD9LqGXlrhrRjF3RtE0H2Baq8NMt2AToRVmi+bPEeq2rnFrRj86E8wOVKchmVX8+5YJE8ZRr7Fwk5DnyLsp8iaPBllbUmf1iuAdcOZhlPXmRxh0YY3NzluvdvYpma7JO7NEN1tktFx5MywiMvVc2rMYv6Q9mxKY9TJsoHI7pKNtvRSqilWjJp5L+4iAVfEfWZBMJSEuBke0SISrni4hmA3IFwXk+CuuxpZjMsOkWTfqokuzJe7/76OSkgHg1ZARyIDw0/aJOZ6fnVty4E44tmi/Rg9T591RvuvTqgKPIyWvnBZYy1NWr1JtJzVjlSPx5gLduDoyMe7YNVOh9ggAemWm1ZiUsPAwCpOwuiv6hI+pf2QEl9GkyD+zpd7l5CBzio379Y/qaC143+1w7L+QhQYoQMwytIHmWI5dlswVQCRerSSP7caPAi8upD2dwNqSSQRyeXNTLpXc06QeYY2+cj/dqL95PvQhjq/hVZJceaoLx0ywKb3JwVlS2QmnC7AT6Npaqfr/yTyEkpIZrfAu+KELLe0BTeq9Lzu+pJyoESZWM9+O7m6q3NbyxW+oVBoLo+6ZqKE7FInxQSs05C337Na9ACSdUSkEefdm0vQe7s6DStVXR+llW0Dm54504BBVpNzK1/2T4dYPbLcibjA/cNOpPJFivYCbbWWztQBP5mDB8Q5rWWiZAk1kR0EE/SXbecBYN0qRUCfenKssC2fECss/U/zUUKTZ8vmiyw2il4wfrvOxIQEGmPvNX6/Sb9xrEWpjXBwnoB1WPeVOPhH78tf3BWgdc/30xi+lvf9zEu2Na2KV3GtaPbv++YpTiP9SfG2d4elaEFnHz0nQV2ULptnfHwyHO/rcUH+Kezc99kFk59djEDRSnkxLycWpdbWGINbzr4BPCznhS6NNi8CAE0djQ730JbBix/ZGfdD2awgz89yS24RAtb0UAMRqjwM1xCUxfvbpcPSVHBriDhew+Cj2cM7RMSbL/hKkC6NfFEikeKkGd4Uur/hFOMaz6SyPOoN6KkNfp9PyBNRH5pvRqpKMOqdABwR1p6wS0kbZzbwGFk3fpmtH13HR1PMAqCn3GkhnRd8n9hF0JyiY3eRoMig6VUgqAdfUwiqZIA1w/BCdetA5nsxRfkJAx4iKVr/hWVbBkzl6ysvjV171KmdVsGYjioyTpxJ2kSa+dluD0/0Wdvd0vLspgcS4MScfFKdUqx6Sw7yeVVwqCvGt/5ndN4/g/3t+Ih4CjYxMNWW81QwyhStlOCLsFYgIDqyjYw1898yOqeMy5iW6XucArovQnOnK77aT8jj6LIGWgCL5AaRTrmRo8xpC6wnzw5Kkb1NSguJ9+7VGzHaWp1UVSwxuLarEXWo082Pg04jl4mZE/1+y2X4NWQmpXx34tgHxZR6Dbx9BFFuoYLPTzpgfUgs+VhP0LHfT+0UkQ6ZkJx1vHx67QRCy42KZcqihnTnRGIoLJBgR8WH9MgoTLwyHX60yOWsr7ZPA+8ATU/MSKcXSBsVR9XtFUNcH1Y5PfEna0E/XL9/ijIg+zPxZL2LucbFHNJq1xFbQLvaCI7EeEi3AuircuHqZcSHQq90ZYPVgeiVt8OYhUXepPMygeUqlm+EzhH/yNnNmULe9goIdQbLy3RADcLw/QNaadSoh8PVi6PPn7pOaQW34kz3LT6Sdq1MkiCvi9dso3rHxji93MCY5ze4yy/zJeDj9jdr6dqeby0q5Yf/jWiJGvGAz8+TRyHwEYjLxVHIqm5cASvVRisdvktRiI6hXx3AIKR7cYHpif7dU9Hv1yf31ohngH8OkUnu1yYvMGClAnNcn7UpnS36Oo5kjFwPCjvVJp68Rhk7j25b7Si4q5sd7LnWlwpNF2Tlt/pqSOvruiO7XxJo3HWSaSfFGad5JxwtymwL/4olCqNYGXjPyFvWXURxfBuZNW66L2uHCt8zegEbupq30HkwMtaI9dsq25mLi2HEojxig6shQBu6Y5mvHWTMJy0DBdW7ueiLBlRjIBUhy42tmh7GowM4pXlidaWnw3hXIkG8f1ifwpYmJC6mspt/1boEl7uluw7RsxVRnsXeZGhtx6OBRTLvdHV5wMcoTDuf4DiTPmj+ZlkuHzHVMtUvD2AMsYt9kjU0N7FdNM2a5w4P9jSjZsRu+FQsyREmEQj72LsVbMlvfIDfCfjVAmYyFMWTTkVAHw0xiCj/3t01/fyIyfxW9/5heJMsEb2NFZ+dDvAPCZ+84qKb7S57sPWMxJXURsPBTvE3RcdnIFYJcywS9Vq/1NGs6eSAcNCAVLN/nlQSK7TUU5liTwV1qFv6W7xnWK8skTGlltvvVPrDWiWl21/23cBUpl/kr2X4Kihnb1Xj0b/wYs3CE1iR1if6e3wkv55i6U9nBo+t6G3KpHFYqtEr5PQXFRn6KoOEiN9ElziKMdHxoEvjQc9l19NQLFfqT87f1FCd1wbCJ3VpLVRBvoF7ORICD6NYoGoRB6tVbJ274gSig/Mx46PqyoBI5WR7TZyGjQlfr+21amTpzFSlHXTr+8JjScvTjfjwa4Rk0dJOzag8PgwASYN2Y0TgXTa4Ox/PgiHAoRlwEggxNpJADkYv20DeMz9dzBfwPuO5fNzCU+jXWBiGu7duzuwpPUed8+CM8XD0RenfrzzJxgK8Kb+MiUQ5bty8k5RuIdxRNVdcC/mO3vOnCX9mA4nnfh51ryBdvCYicGUCvEvh0n1jKUG71aJvmuuQHH2hO0oo3cU0NNDANVuYrUgyA7PuWre1MY4jLig+OE60VA2NeD6+BSKyuCy1Zu3xE4ji9/gHuCVi7woO1rDTS5H6HcAqQRwa2zSOErAHTGso4jBQRqiV447ZPi+ID6wx5o+T/Xit4LjC8XDz9aAHz4QXxDTR0V5T4TFB32KJf7EZ5OkEKzgMbJtp3TFxZIG2+9lt2jBAczTPnINQOAWrHXRdVpfQoXwbq7jI/D/iQ53o8eEf64FaSnEsyMO9Iulq73KAohE9/PEzPHv3zBuJ3iyM5lkLFjop1KiUACyOdEkEK4Bj1ZmCBVWHVqXFQq0Y2abg3CkpwjISMUPQe9mkFCzfK7tSHsrMrxU7TNaEczH1yWEUc9NayQg+qfHstnE4sJj81ZlKPhp+WkcrERs9x8qK4Dy1rSw/f0sdjbC52GIUiGQVcYpCFL/hOTQQaP9+PcRFZz0dL2lmgzNshrmn7IELIZuzEczDPPiwcRA2M/nJGPe6IkdfLNWe6vZhSR3dzolM6N8AMGYeiZtUXQxnTCqM2Pv6bmdCCiE132p+GS/yTiN88fk6yZA5L9R6S+pyJfqwombS7J1IN4Y7K9K9pQ49X9f7GHbLh+eogGrmASZYHd9k0UqcovQzQHK14l3V5p/xSIJHEkJKYHLdD91DERG7Z+xgpi+y8+MnU6QpnVxnSsgNBcdreA90Cz1wC3QdzpKm7j3Uca68qOm9i3shTKfaSCC8d5VIF/DzF1AxT+J2gxQzTDe21OShXoxvtbzzsUW/sFXc5LJKIcQuqrEJq02/4kCRdrz3jyj9gCldCmzahnuev9mIE+NzA6lzPUTo1CUc+MuBqbCZIduPU5GobTjbV6M9TUdZpbK5vZ7Tl0JsDG7Jd3irwnsEmxa27JEkN2D2WWqoOTd7YuKC+wNuKEwWPE9NMaAqQcoN0db4Ww65VgtA2WXK/nT0x4lJnr/S7OpthOGXPVuaNWuiKXDJ8JldLQEMP0iPTAE4pcNwBzzdkEqU8jjm4S+C1sUVkscdwpRqQtnNG1/zltPYb/ZGwQBechjmh+M8IlGQYCjico7a54kS+qg20xe2CRYP2nEudKZnsc5LX84DIuyjcGh4jnCXsg8mZyufGfWKGG4F7I/rrzxx/jMxgxwD7Qf32n4pz9ZnQ1kw5cdNYrDx+MBXxk0iuMTgRBUnF60uCn9y/i95F8QyBPtrpT3322OVSzFiZI8jbcC4s5M1lbo1cA8RfxpedYmLR8IOeaqXDbmGNGhLZrUuB5SO9lcZQuDUq/MA6sWWvXxG0xiBQLxtNy6sMOCbo/GHV40TGetj67+0MEhDO1MbLOfVjLAmHYTCumRQPiN4iHPwEKkQwxEzxbFMyHYfd/3XA6+4Hzj6CblAiezur26alWN+VZApnBvOoRjiek1ekh9nIzDfss5uo82vxiwFjgVbmnKFk/etCdrylTmWCm0ZaCyeAKm39iHHU3u7H/HMUMSIPnUyyzsHtAl7Gs7ji9owW3gOZVSE3njfh9Nt0wZgE6zyLNwSQ+OUe0tAFoLhLwT+ad5HG87wuCm2q3j7jxWlKnQxhTB0uNR2iw6eSMOqqTX2PSQd+ne3cxjLvIkgfcYPizzd6N81sR2Xi8iyneOw+RxOCEKdQKHGNFmMgtB+yjibzyXPzX4iafemRLTLJuu28XDppqlDeLecD7fI6Q6e3xySP2VNUHJQLkpJnBSSzuPJz+OwcntRA840TMqOJWH2hQ4e2Tul0Q2s3XGqgbxIYDWwdHZPWHQXKVWkVzoODUacYCkId1nMn5WlJwFgUslGQTRK26Kd0m5mOYIY0CeWMoIenbDj6GzWyB5UJkQ9n82b774R40A43d/vcymjyEOoqGod/zCms3SRGCu6BqN38DH/MCpKv+wJkojW8zIdYD2RAwvZMGZ58Hc6wkV8x0RK8rlwFraWRcCOublGj4p5QAkgNsfb3a6EAaclvnb2Bf/1fNmkSS9t+ujRCqREAflwv0XHcBnoIUSwOKXCu04s2mJx92ZPd/pLITl5eu5RP0kgCcn8gwD40/nGLStU5LSIq0UDesCD6OKj69lc6cPyxUuEjPuu/UmlDLfqono1eolNheaIj2ENYQVyPCevbCE/J1Ebc9FsqzqxUPsXkFeBOxxXuc2IQZ3CD8PhgaLnmRQRi+QwD5LN8lmzUDQ9EV6e8odwALvCP6tWljx6hnJmlRXK1l/cu05F3wVWjrsMTQUCOWl69IeuZKkc4AmzoRKo//IncE2yetF+6MXQPQV2aNLe6/Nti27QDXnHF3qS075wSDBylSKr8FD/3M67Pbnorwrf0EEjgorJuOUFwwTiBliN5vCoeIdUgqFD0aDu6sjYBJXsIzEROqGnfku9+R8peHed/WoVoDpDXa/wX+woZK98hXYrlxOpp+qT++qD497XJ5cRfkeQbiQi2E+qyGg5xE5hxIITPOsvVELx9aYgerRndRXZ1I+U4+U/FuEzk3QcPcVZSvCbM6JqviEARlGF8CIoqBzAaCsnstXTMIG0LuNp53y4OeHsAmWuLtd9mSQtt6tsD8T0tmv0varCdziMkvAMSj7MXmtK+lqoiNkTpfsIYLNh4pXQ4Cai4H9GA7DI0UD4oPXL3oDAkF/ikjP64FYnPKQxQj3ASPaRwo4HoaO/Taq8LGdrsJMHncqQCPo7B7I2z5wh6l/4wjSfwsPZ3PJDvpbRT6iphwdFYDzDzhLhrpTyTIFx1A7bYN72a5iN6U1+3YJnrFugJDCsNM96S6zazdtO0AAYpzAEh73LQbnsKl2kZNm6RKeCW3qkIr7v1n/EzLxwRH7cofxGEPCzraIGPbxrA+Fi5zDjohXXoXlZBw/o/SvbWfTRq3Fxz+QTaiqBdvuUS8c7oHg+S+uzpor2gc7DPe6fyEGvBWJHqEcc2ks3tY/BreJt1LWZeqm27eKbz3SihGYe8bsyqNwMDdFlBHsmBqQ2ZrFt27KYZDcAr2SH0Y16vKsSG9jSWyGrJd0AuAtF4WO1EWpUWWQpZRlaRTGFMPmXkKubZjOfGYC3G5BRMqp4NIMTdhX+9Ky0HjmEkmYXj0owt3kwSpQWqfWvfmV2MQ9bVWwr/WNlcxkLvUFtFLLReEcbSDEfJBcpX6MBgbqvJK2tCBBaCTthJsFNMbx/iH+Sp2qRw5nD21kEwildjOjoNUmKVj9GwueQeYPxfbg/XL8D9yy4xgth3VsrZhyBJZ+LeIGWQ0hqM+G4Kql144USVOuEJYcj5keuGvflRKi53TMv7TnVyuug8dJZc8tttCGuSwsYo3184JhuIOO+iwM4Ua0oIBOwsY34iXHdI5unNC8hIQrRpgWsCv3uT67y+XkLtE0IlTXMEFc5JX5J9XdLFO3zSjvpXCB5KbdT5kypA1oj2NQq0+UDPhbr7KqjDKNPDxdp4xdoNgr20JO/9RKEYsDQZ0OahBzTVhqnn3xkUo/8M1lPiHqnWjx48YumB+362dvD6tPR/7IhZUUtCNvimQpc1NudkuZX6LxdiKcTmT+6126Oi32SdYnIKznVbReLfhT8NiJ8Vs79VJO8H+Q9a6Y2bnq5E1C6UfDjZTMxpYiSY4jkchs8Kj+7fJwoSIW7Q6APboNFR1FA0/yU86j9NasPbNfBAfiCOzaJuZWpy3ueNx4EIMR2kMtApxGJAJrRWVFlR5gjQzII9aWaR+7FknSq6BqtefYeItkMfdt5tIN+6sSLj7B+LkS+apEYr0I6uSWUzz3eh+MggJdUldr2OU/hC3sIj2kZXoBJ8+ePFTua/8AyazXhTXtOse1DVq787VQWDABXnAvF5PoptHDgosWiJ7ebuID4GTZOOq9kXsVmYuYs1FlI31PyyJ+xm2a7XP2qGBJoWN01EB7S8mwLX0N37fBt1PkKgL/UKJXSGDQpA+xU2Q63ctQPZDtr1wk0ngEOZhJ/g/sGz2DFS+Mz2CFwEsIJ6YER9GGr49OfWhRT/JCHPPkVYWOM8k74jirgMQafp4e0gQI1bZsziUGpNHYNoVzaBEzgluPJ0cGyNwIpSYwkrsvk4hJQZO095R+rqvXfpvqmZi4ocNMVdEnVQonr9XZPPl9EmJTaIE5uDznnpt4E950J7IGib0N95HViqqmS4phWYtLXeqv+xvgL9U7Arfu4bnpaoGi6ScjhCXLUMeA1AxkyNSu8DKDBYW2brO2fVvYvxkjFR6vI0L8902NSWxrwOv6FgMVddcTbme6BbIaDqM6J/TiGlQfqERKVnuAyC/iB24WEqNw31v/Qw25luiisSguX3GJk8H8IEqrh9K68EP7QZwDHEq7y/INan7Ei3hQid486R6WDrloes/b60sm0EWOCIV3XG6kmJDKnd7YKFBcNKYcrAg+36vN8kfnbbJI5Aehp9e+R9aGli9qDQnkjR2imRR1FyrWWXjeSisq9AOhtkB5nGMCCalQxhs+MXhuauR0TocjMtn5C7MbTr4wcOSH5LrZj7oeFlTSAgzG4GQlg3AFI6///42J9dlE+9d8gAxBkFrfhZP5z1eKAx+qZH+BUHg2Y3lC0FYT4gVKHIfiOCq4EY9VLUslEwP7CuWbI+PZqVaTgY3H/XPX0ypOFdvfMdaX7ynR1MkjF3hqQ+eTs0gc5VUbT21/wkZShA97YIcxhZ+V2F+kFxRycatJfBirUvksFvCV7tXDQ4hpMXMmvAS5mvLI2+xJ6zC6qqISzbRmP9e9uHT09O3mLoEAtR0q+p1rlk97iCU0Gpz3IlzeZdxA2roRItFEE8QJUCC2y7vpnEXn7CwqWwrV4GQ9L1urU88uFHsdkvICRIaSZsPLBiQIzCsIB7cCrcArZ1k5vou3cOMzA8zkCQgNdmfhUdvpjNKJNuVHRb1ctpxc0ge2lO9o0hRGzwxnl72eBxyanPTCWGBCajNVdVnR1f1uHcsfOzlQL//8HVmi0sxo/2RnpX3WqpinMll7/Fdpju6rWD/iMguxgvI3sDynpdwI2PGKjXio+8xMXWU9HKi3m+O26FHXDdP90+Y5UZevJqSpEP4ZMHodw7r9NaXeBQCW5PphdPLx9H6NbktsPwjmiBIRWO6sngxrDT/Ffgz74Zjyv0K86xxhmDAtV1K9cJrVlpSaGcJ61UhOo+/tlL8qnC52RgNsk2WBea6u34/KrVT6HMuzF9bdJHPYtFWdDya+TEx+NudxYnvRTdf8peX5kop8+CQfX7O1vdRih2xUMSGXPWPMJsCSzcU77YAhflfRFdPXATgo+UKQ7yzogRQZeNKepoUp3fZpSyJK9ea96Ej1WOwvFf6WcDGdoaLCWYHuZj01sDDBBpTpGS15CgAXp3AbwBF7VG4BywCK2xV7bcadcLFQJFjiuud64wF5roNhtxAR0Sze4AK8zVHqzkR42SOv9Qh0shjNuFoIZ93+oOuELSVk8OR5Ut60lOSXRN7ZrnHdj9nhsHCVGyzXzROxqnS/9GQe5GIWxV0qDmflaSosAJuQ191aIoa51j7LU/RntH7otgo3Cx5+CaKkL8WF4+vaHlIp8v7q3CTVqNPLCFeABh/F/+Zo26OUm+K9vAH+DTy+6bQTRH37TbAMqfXCo5a3ckel45SzWFTgEYXgUyOgQxL815SPr1xODGSo4Aslhql7zi1n0KQpVxTDg6BucVncvX3ZRz9bKDC+gsMUdRH3Nc4jWCsYR4b4e8Rz0eeCIkrlLenIizQ1yTz8+e+N1iUGDL+TgrL68ylrUszAyI76C9TsL2PkbeJ+Y/LFGkjkfL53okA8hpNoAMvBKfaGkFPZHa0ZaJsV1w1aSRTcsJ/bUO2wKwiwaEyxo1qiJktTvXJozFGC/kOb2qRdDgBxC69vhDHvyUwxxdvTyrj32+GWqBSHQxESPmB2WL0UaKBACEHA9Nm5YQiz1OGFc2j83VjdVMO+Mo8YDyUqr4Zwr1bZn0qyDEjSIyPPHbIaiT+kjEMa/VJYtTYLaqsGcdFUuYCtfJ+wz6bqJukVJX4IjLsB50AHTafpKBQZaOHjktOeiByZrg/x4AbFmic1gWsFew4BuMlxUaYcGtTGE+psXsIkrYuX7dnfaFEWnLrp9jedB2vahiC2nxb6F3TVBnPhbEzQOOdeoo0v1GOBQzefiaOvev4VGoDuSffVIImsM559GKnLfZ49I6sMnh4c7zBIQMbqKz49EpbpK9v+/qqH/pJ8zznEC8rivbHZd5pd0xqQZa+O62pzbqWlw/ZkDHFDC82ltG/cOdiEcOKjd2UT3txUPIt19/B4hzOQcFZm3LOnVnFP3TmK2xOb8HZDCacSSQJ0EdPNRrTHaUHcpCkbYO4IiXnPss0eLeSvlVle4bnjFUs6ZfDYomfuhe6B1xTqv9H6v1EFGobZBiBJXxce7Yg82hCUX6eAubLEF5Ye08FEE881QA+jNxS5KHQ5t0zJpaV2u9rnt2SBSxiEFx4Co19T/oqPavC/9PU6GpdlfIyiq/TjZuHcJSaCi/dJDDprrVeklsChaLFAJ6NwY8mS9Yfa0q1dFsPNpLZYUW5lHepqzpP8W/YX8zoeoiGyJB8Btwe00bSa0ck9pPlX3GnsftEAFAscZ971p1O1xA7zXPbjLjbd7ar8TTuF2q6qG5OzTL1kWscfgRRTwQb4GsYmJy4ZNOU4XV4HI9sfBhq7QUlAei1jQRE7byKm/LvPypsz5R5DZAwxPXqMlty79MfEVlUgV/L114Je1OlwUAXlwekyKCJHqWzTxtJSeAb6Rb09FxLKtZXq1+zgac9XFGkkmQlp0ps6+Fifn6WokGm8RYnmaTt6bQuQlgU0ac1c5PFzqlH+OCep4qhe4kPIFFxXxpSaPZc+kPc98dDrfk2xTobIBjrYMxNGDX6XiRu7Q7M66Fx7OtuXrky7G1s+kHOsyZ1u165GM/wEzZA+uKq6LNqGvBK8StVyoLc2cmvh3JcdV8B/Kt+UQcFYFqMRQzj+b2hIKwPQ72DQAMORGp7OTxLjty2yuDWQovgoGPwB4b7cREHw/q9vH6ajGYkYNyI9xAwxj2DM7QQiv1AWWtVq+TyEsrpi/vDxXHMZeTyDQ7sRszH52+t1tp1J0ad/w7zooRWjtWoeCYMOTTVYy3Z/NN1UPiLEKqySp/fqmake90KBvmddgnzKg==
Variant 2 DifficultyLevel 702
Question
The mass of a trout fish is 6.4 kilograms.
Its length is 0.87 metres.
A rule that can be used to approximately predict the length of a trout from its mass is
l \large l l = m 10 \sqrt{ \dfrac{m}{10}} 1 0 m
where l \large l l is the length of the trout in metres and m \large m m is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
Worked Solution
Actual length = 0.87 m = 87 cm
Predicted length
= 6.4 10 \sqrt{\dfrac{6.4}{10}} 1 0 6 . 4
= 0.64 \sqrt{0.64} 0 . 6 4
= 0.80 m
= 80 cm
∴ \therefore ∴ Difference
= 87 − - − 80
= 7 cm
Question Type Answer Box
Variables Variable name Variable value question The mass of a trout fish is 6.4 kilograms.
Its length is 0.87 metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/NAPX-F4-CA29-SA_var2.svg 330 indent3 vpad
A rule that can be used to approximately predict the length of a trout from its mass is
>>$\large l$ = $\sqrt{ \dfrac{m}{10}}$
where $\large l$ is the length of the trout in metres and $\large m$ is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
workedSolution Actual length = 0.87 m = 87 cm
Predicted length
>> = $\sqrt{\dfrac{6.4}{10}}$
>> = $\sqrt{0.64}$
>>= 0.80 m
>>= 80 cm
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 87 $-$ 80 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 7
U2FsdGVkX189yMNN+Wf1N+dwA48W4iBDqBd2CM7v+DbmZSIn6ZDKarAEBmxe5IuiAAUPbSKiR7w+Eh8hxiR21wZqCIQbU90WQ1xH/a73PCMWz9gHGdoJe88n100LDvFi/vjy2OjJNnNjkD0EO5f9L3ykNcTnTntA0E4XoWU+VuGZXr2P8urXvz7LYgxi2EAy/0jfdN2FQ4eRr49R8EBbwyD0Dc+9yhgpioBtltPu/kC9kHOqxNRz9YuvoypjE3Q1v5midVaUHECPlMoLTiQz4/vyfsXS/kfIRuhnk+O2lSeD8A0RVTxyCeQaf/G9lFdcbfZ6v1Z7LzXGY8f7QmP7Mxf7LSwCi6UBBriuifRree27jP5t0D7YBpPm5COhqxpe0za16/2DABWRKq3358ENgVkr/ahBpbTAFBMzHctsbUCLd5EaamorCJHbc+lLe3C1ebd8K5mgT7BrZ9iI6H0DMbxhRbU65AC33QK5Lm0EcGVZG4HvwKsbi6wm3oPGkVgTNfcAb8O7DSj1Gsi5IvnexJu/D49tx4P/5A1+Rwbkgz2zUtK8HgTDT2rHHrHUi9NmEQVXMnvKcLDdLxRDn1MZHXEgmQB3+dqevzplgwUzY4avSyRmEEPEwzXa9Zr5MaPVbvMEayNrXQfQxntbrFVjyBlaByGgH/4rXWHiAh6mZv1FuFDjpwbUTmO8uiTY7swa1B2VmqJX4B5zy0gEd2G+Zlq/SaZwWw+imSqcXiaGbDjEMWZGfAwplt6oY1vsm2WNIDJJp+djog5EFOJm0bs2KE1g0KoIQ+gA/qF6rAxkzegnqVGfCtOB0vXJDzAbtY26nk/PZ7ibCiTXIj6mt2a05waiAb5Yy6UMhEYGJCI3jddav2WcOzV7dt9QlF11VatlFddLmJZS031tZNKG2Jv9Ro0ltGT5ZQCEOM/DiMiohAUOoF/nyCOwdCz4VxoQxuKOPTzArWAr9viyZ1nq7Z/9tfDX3Esp9kvA95/FhtYB0g7HhsnYn8ePSCToM1Qdx31NhBoJbEVcyoMzMcCW/nfxazOc09nKKkfNW9nrDD/IWNWoCt71YOMh5yxvRwL4JjitSUbz2CUEyl+Y7Ix6PMWdfVSVbJvyKgasWnOdtvAnkPdf2kwnSbQAXursxZszgGX36z5oEUdmxczJd4EOrR70T11BtD67GOms7UaWmEipIC0axx2tD8/GSQ+9R+rxDT7wIuefctxLGbyG3ChSsEJCfgpb03h1DYdcQnu5wsReIOqLq93dDYTPBbZPMGiQME6dAgEXNS4di8Sep6rukXeqCLgxs9p4cebrMIj72WcTTfvYIDFmV+HCipTfie7a/BnP1Q0Moz8aB01fY35LDGhjgytBnps7cSzXnpcSb4+cNlppS32LUpaGyaZqvRdwZG2WvRoQlF8Xh09ewW8MLDtph9EFuvTtngJvcy3bKm3oF471wvjad8MCJESPcwQAR9NEutMMLjf1mgHmJ2bRuKL3G5yLj1duTtrUxIwHNiYIVtBNjjO8o9I01gxs9I8dJ5ckpcgw6c/MyTqQq+91c/YRenyLd2zuYoBHCHmLi5XOZTMLfHOUAEldPtbXxP6iVGKTrvLWnOK78d0BxPm3WMWxeKZLp+4z7Ga7LACS5siB2vhpM6wKJLJmSZFXDBoJdciTAzCluNURPiAz3Rc/wGfV4s+1vQinw3RhVTEh6W14k+qhuFNQ6xYnxxU4UPemQ5ebexL90h3RIvlODu0MckWxw3ss7ZUgYtBBWch/U8DJeX1FRpCzqi0QSTIPE5aulIz19cBXczCQu35vmtas2NmRb0Ci5/df8m/XZ4HfYoRhDuE9SH39OsItckLHK5YRRVTiDKV5MPVJVmM3fFPtqocLz69XWl2Sj5yB5wKM9PZR9YXRWSKVlMeB6CIWbVk7CeckNrwUvRWBhq4+MzzaHs8jiDydTbBI3Z3XYAquHDWhBvaqSc7CMO3ZQGeqJnJIv3uH3ANanNk29Z0Bx2ts9LRVz/wjePuoQ5IHP6UjSH2KesdczpDOg/1WE+unaFjBFsSXPIvhZNx5psil+d/4suDLucv3eYt0QtBA4I24khW2QWqR7+bMA4JxuETw7ucWE7krmuVqxsVYAcvgwEZ/aJNAMJfjfB0SxAiJ0rQfCeE0u1ekBr+rS97eVMC3kzpti1ZI6P32nEury6M3CJY9AoMRfFKiTf9ImRrypuGDoy/bO1qULKPfRGj7M1iM3FdV9e1RTx+IIXG1Gt5M9PqGxgvxNtp2LSYzxJstl7stek7jddiWO63WJMxFtUYH7CrsG9Gii107dWcp8YQFaCu83E/+eyEJcjRHyKN6fNXAgGyMswomzulg6T46XvIxU1aOdoiBLmmVBh7GYhPanmAiKwbngF7xDslLctx8PwcAXCNOzPCCr+vehaxOiYCCTqRsD1j7gHoFeRfYtKeeTsgO1yS+yaXhAra+7m2wLjIm3d/nJWiSwf2MlHQNw6llXzODVMmPDlm1k0if+fHIGmJyNgvgQ5AtslJ7spkdw8FaJQeMGSyo1gn9WpcwBphn0e5w1L5Smzj9FTVZvuISCxPGxsxoIfzHIH86pBFsacEu4XvsP9jcdenpHVEfmqH1DQiJ3in8m1gYv9SXISgoQvUtoAPfuSIMLQ51iyu4W1JJU1Jf/4ftZIwDKqRDSL41Lm9pM8tX1cJNZ3h089hX4fEbYNCbm89JzvkrdObpVjde6mqOwK8PMfD9B/wPalB4KRRdr9I1GxUIJiPn4DcLjXKJzqlYrQgyrX4uyPqKXtxgAqyswAh7mT+OG14IXU3vb9yodgKy1js3Ju7lKJwRiiFbQBW0543LGwGKtUMvKgEY7yURpi5NpZysDekTbtV9WmWoga1JtriGnQZhv2qLgbCJEjO1g0XD8ZOAw1FA/a43ozpc2XUzLvhLfySHveMBezUrEF0FYuqwuNh4MiMnL/AFYJBtjn2+slIqw88TkcsEGE/MSoVZroUUB/A1khI8iiOnXTOqfYtVHzSYoZOAOjZrM34WmJV1q1oEnH6UbZxDS2vkH2TcYXaNfbyLX4OrmGYjGvcjoyTbkttVKMYE+HB5lFlVBSG9f6gPP+Y8aCuT1/q2/diXZplhAlxNt6qda+KIb0dCTfG4j3xAJBZoYBmmgUjgURUQnZgY8Giy+SoEHeEtjkFTzaKTZyOOO6jJPoxLaZ34yWYKcziOc/4tdtpQGVVtCoDDjnv02dzmq9Ax91dUgy3M3JrVDAGz/cOCmyjNJvwbau1pQh07fBV+Epcm/kOpVzyk3VYkw0ahEltttEum1QtKCC5yKTfaer6ch7eEtVdW/8JOsWRADTRseoectxeIJa6tzagUrXVKHmTD5/ZRQYAXeZz3f1WYro7Pnodqzc0bvTjfcuaqv5t1ONp7+dQ0JqZQtsBj9Qos+jlnSeHPjx/579RovvdNs09PgujQUtw5+f/sIsSgvcrM7RzboKSvn5LykJviHa33HEO6Uvm4a3sBPBNrAJAaggS0WXIXIp4UaZs28rpTR6uS6Apxa9lsH2RLqOsjFyWikt5MoFwCmiIh2J1nh3+Xy8g7PGjYweKOhzmuwW/V0EbwV0ol1G8U+l4ksyKoXq1tkDWro9IKpE/EMgP5wq/42DbdW/NJ7RAqp05S1JAMZ3cR6qeTAII5oagOc6IqV6e2Q8TzAUoyq3gml6vAIPmMOr4ScrAm+6kx5UbZCVuBK6eIUe8O2TA9J/UHI7IoWsVzbAVDoiz+baFIS30PBmLC7j07CqFP00Qf6pM5KK3VnrPDah6upYGWK9q0nEBowBhARsUhZonaENcWHR3X66kZnn9QTf3nckXBw+cZZ7bbndAyZlQqz48K+QO5Yowm6CD1krDOQv+MNPa4g9Mma++hI+7oSSqPW3NnyxCUKDMUFKZ36HhvokaUJuINxAdpmm4vQkP+Mc5jLYIT9H5eckOXPzNMOLchswirVLsMyu5Iaba6eLyzodEVvxkKTD72qmgoGyYY/mrXt9zvOtg6ZMi96rv5wcFVjTuyJj+KSvu0elPwX5ZH8/Gr+ylkss27AtBfVdXX5NwkmiLSdW54slX27peqR01YAnKG0AXBKAxE3rWnJAaKfldOm3wEvFIy4Jp2GRXRITikzPrQV9ry3Z94EY0IXwbzGoG0zZ2zsDZgX6IqmlcTifYcOE4xC1FTafvquRit6Z63ZXWsfv+0ymNqr6axIRli2zkWTqCVdT9gQ5jixM5qTg3c9awIzZ+D6Q3K2oxEKAwK7vm21CVdn8S44VYKOXjuPf2BGl0Rj0dqCs5xthbxSbPQZzHGKDCxdLQCsb9proUrJ6i94Al6hEQv9rcC69vXrV4x7dzWfFPLkj8j+B47davPzDExLyFVs3c/W5Lh9nMnYSp644YL6K9LOC4TaHMojzuUWxE7IAIwlAulOA3TKrdZulCdJ+yArSSUPAb7CcI7gykp/RHqvXo5qXXvwGrzhIUav0yW5saefH2XGLsnGrth/CRtDOuqtjJMKe874091yaaAImZVTbkOuOhPFrEcbie+UjpPsHOWgsCsAjY/Ani+DPyWbk4csdt5EFOqMlYx1ZwksFuZtI3IwYF229We1pVMnz0EMmctg7Ofg8SycRlWH9HVuXSZHV3FMd5dESMmm3Y0xen18co87PioJi+Wrlo2Unk43VIqIn9PjEvb8nuyPdLmiWBQjQdJ77uxU6VqmP+s/a3irHSQT76WVwafqYzzl2YF8/x5nYMHIsSOcgJaF9TeU8hLrnfmyXtnT9I/a0IZRYCmUkYAzNWW7wSiOACTbMVTNW26SwGcJBOGf6RFPVgg7B6Vlq0am+SMVK6tMu42sDlytUSxOpzLSs03tLelW7j01GcuFuaUSH0JGQ2LcBkgBX+n+TEQjjyW1Sg9TBcvSIroSNyZSByGRqZeGtQRqsejR+AehTLlZj3Ccg2TkzQ8DFlKw3q1CJ3VhNCW54/87/XvFsoLgYnvBvQu1ePfNuilfWDPKUIpHgoR0tTRkNmsb+HfsuW8osEiEImchwV5QV+vWE4fjFBI5nORjiwv4IbV9wEvK5MT8BcHnOe8/LjCauIWOhvIOEhE/yI4qlEqWs1SXCETX/oiPEu4CpxWOZUzLxP8jfkghVB0xXgdznNSWNs0v9nUlZbd4wMF0jyons8OHgT+m/f0/J1WvZ3M+Zh2GhlS2aHQjbgMwuO1VsL/h77EK79Vcsl2PwQMEWqcpLZFjEitsdu4bwz/PDlRlUm8r9xxbqbkecFMoHK8mXVrygnSl06trwuIR3wLF/KQ+JM212q6THVuAPgsF8tZcVB+a2M26gHyYU5aLcezoEeHhUMXyDkAURAFnyw3RsOWyQItnqOTJ8Oo7r74gbAZy64s/tLqCljDeeauTi7ZeRwIe/Q5Vc0xF2jzbGfKXivvWf/XeRLtROjWXnNW90mqRX8FZ2aBe5TzAdzgjDroNboaV0f7dveBZGfIEudEB25ymx80j+onJZa+x2662ty/XRD6gr2S/1KErg+7B6HhssCwV0xU6JgGKYeC8XDHyhwzITQz/QP4A0zdqYkSjhHhPY1P2fPiiEBOYlazv1eT2cIH3m2ei/wcpb9vFEt8drLmSuJWq3qkVzGzqN/S4sDBpjl9ZLXOiWAgp5OAThekk3Er+8lTyexq7tJK2gjkc5elmW28TM3DVo0Vr6lGfUlsB7Bjn8gmSL0erjNqnUcwijVo9xLCK7jBpAVuoKV1+jPrJKBkM+jdP89juaRcPJDkGQhpZIm6MiQaZnDRhrVFleggB1k1Wx4xjKRl2koNMqB40O/KlbzYZj2s9LrnX/qwfhx+Sb0gsZMwYEiOQbdV5JpgomQN/Aq5ISLjoX68blNuACMs4syMs/lDIi15Tu19Ot+SOkYdQU4x8YrQZCSwrnAQGhRR2V41boAfyMFAuV7I6VnboU8VipXUuySeHuBIzT5/W/daPjeimq7GFWkRFPEwkKXlg/rJiH9/6iewhU8fHbeCmWFlil2f7MR1DVFwj7YNX6z4I+DcBHvFQEhC+R4AwCJx/7i0hS++9JpS1RYVaACM+kZEKl5f0mcwg1U5y0mcKMKs25+/9XOv99Cay2vLkrK1+UMhYFgdAJPGWMc/iy1HECoCMJ6mj69Ei7n3Ra1+5bFjY+cc8Ibc5HSU/JX4aiwbsWEGrpEl9KHIkJxMcZs3//OgZoQJ4tKrdE/bwNGDORF8wVcs7YQFtx5w8d/KKBZ4p5eM71rv79pNaxtUV6awZtz3A7mpotkhUGooRtTYsUzAG1kudN+/NxEEzSC9W70TdPAO0iN+XtMiE4sok9v+u5xyP7JyN7XX/xhKLKGzqZFtvSNd74MTLRSN3PdZcsuSGBViY142pCDFlhvulKmjci4xfknFHpms0leR45gU9bw3nE2HeIHski7J7oozdL/jUdaRp74UlhLPZfvQe4xAmqyKDKCyS+gcB89cdiXAIMfPj/ATHwZzQF96c8BqmaaNGa+uHy7V/7K7K4LUuAAqMq90xJfQ8KVygosCVBDSCDeNKolMgMb86BqS7XjEXmc4viZpEezQqpAyoH41xI6kjEzL1Uq3rHpriugNTAWxT792BdkxibzdSFsl0ASwED6dJ9QSkO7D6kCISSSzoY0dKwvk2uemFac/isDN1mYdHRtK6SMcNt+j3DPmRTSzt2BHi1XqiBwCvPeQNp6r2TQSX9sgUb7BImPp/8wvwBpJVIv9H5lDhu0dautpFpwpIWlBECxfsHhl7rU9oZHncpt2dOqR8tljFooTmjc9zRfg1QTcogMZ2mK1SsfPcmkFK9GByiuA7V9rXl2RfBOkBZhBhtUXxOeZ9JPIRb/PfL8gDhv2XtZmt9CJRPOG7aWDbDM3yrGBb6c8jydLGOHRFGe72O0OtnlaVAEwWqNzyLuSk8WoXSOW/RYJzrPGFuWTZ+QA4AIGO8ZMCbywifqOUCKYTGi8Dok+Wy8uiJACqCTUoJX6O+a2bPwUlpKrW6G8Lc7ksw4UbYDxvAKXaUz8yUbBaeb/dXp2KMAnur8dTQ0jtw70WMh7sm9KXkmtk+eeI94WZtpSTbb8BSXGteLVeXZyjZy3iFAEzgf48NtQhxDy6Q4IhTq5All4RLRor8BSwUEX6KYmmpNQ4J9tkbURxHKhAUpaIRx0o78K6m1E9+XDC6QJZjYzG5kE/vGRZ3ItW+wcQPAPw10+2D2DyNENUkiWD2vtBolpsQjAGABriSPN3Jx+G+LL3z3wNgPAw+os2zJRYvKzOBKRPRT0laD8Ti2/tKQfu61IOkn7DYS4GVnNEBHofTmE8ehkb/apNHWZhuW4rqp95dMIiwu7apXhceRuMH4BRnn+pwTRKgWasLmUwT3MxDwzjOrtFxETjIzO0LNd4ZxudJ0zXxZAMLzPD5GFmotQ6rXXDBpbZD9Efp4XN8OuiW83l/IXCPTO2DPWUEjUL8sb94JMRXZhcW0AuodTofjOo16Oq0wBjaDKaRPQ/4V7Lwjyaiej8vnh8dFX+ZfGSem3hngYGy6tMtQALKqrSkpI4HizPoVgB2kjUSEuPE1ruMgB2VIuAo58BC6leZmPI2cgxTZHWtpcJJJJIMOVTDIcLL7+p2UlIJ5Omfvtw1Dy7ndv5v/3pov+mtlN4h6yZC6ufWPmCeViFDrthrG7q8FvpvCb+YYaaJWKlos9ZAqxZGhiB9cxTueFN8X1e0BuJOG3U44nPjk6+a4ffxbukHOLWuJUWzskkR9dI7P0NtflL/eLJvAs/1PZu8ZcQ0A4sHLifhWu9BCIjjWJ8IQxio4p62VmB9mOisx37r3nV0Q9+Iw8iur1MVN4RMCdxpLFicuWZ2GT29U2qG+yv9irOuLE5CZZz5wbngmgAZJRzDNW43cJDSGhSH/2b+48H4B2UH8MlWaC7kq3F0QevWQRSworuyEPjoP1oBffLoaJJ0c+P0/BD41+mJbNbBZcMtaGLk2OpcYkA4AJzxMnsYBuI8KwMWEjpCWsNO+TaFn9s0rP4cjP+zLriL+xFOH5KmceOnbbxf/dehQ5Bw1TjnWZT+7DiyFnZwqpQPnhURPBUIKvTaN9EJWSe3NPy/omyE88uev612p+anESfv4215cqRXspf3vaRmfS9B+25g7asDFkv6A1/lhfATGf0Avgve7x0iQ1vSrm+yy+qQbtclUBGj3bgYq857YkSW3CW7kw39CXmBXYQknuvBhZHu4IYFTZFPIEtuQE7pxDafV0IoNPOhZws3UPV9tmf8d4ruZW665AUlaza1Xvfd4oY4inRsDTq0PNluBC6uRmxfnSAsXmJY8JrL27HkpVXZTNHlqmkWKu800IlVH6SO2E58zIoWwbf/qcOPXGvNBOrntDLnFp2EP1sQGHPA5PlDJz8cEEq8tmmy4GAnrwbAUG7NGiTmjCkSnsi5pdrzQ9HZmwnUxB6cHHlA9EK8k7auZBQKukksY7MCGAMIlyOE3Y872N6RtNW4sPzpkCKg1RcshuGKgpBHM0lmplxldvuwYQUT5G5rwFqudWygDV9Ulr34rUbUiQYTJUhQbVkNtO1LT4INZPBzpuqTSh5oCs2pPq3LobWILdgl6ISzi+CNKmk4sUXuzsNx1ndEX43ZGLFmApLhW4FbufAv5K5IS1mQc5Tg8yEjGx8oDHYmGEI9J9Hq8gJK0MIoCLO7PG2gSYnTiNZhv4TgW/tFpB6M5jqxyfhaVY98vAGZUYQFTYoHfO5Q4zS0qWst3OwzDXLDLMthsmlK24h9awI38KSwAW8bo9Ny1GS6UC5HuVk/8jReu63MQxHMNYv8YRoa42Vo/ydolS9eeFOEH68+szk9ct96kugPTJHbYLbot/qbcZKqxjGvZUYVfk5DxmkuA4rwKbnRUpVOfmFNWKhJCUkt2O+fvdNJq7EzxF4rFqpZqkIYvbyYo/NqdL7tH6EV84mwcn05D0lXAmW8OkGlFfet1HUBGfOPuBTpHnUWFt41D4zkFbM9NMSH3vawUHLPNHmNUW/rI5Pxa8UdYHj4HNR4yT/Wfl3I83RVKUBD+HLwjTuZLdqrtWo8EXxlW8jKOZY8sp0D1+WH72rpX1SQ7h7iJxY1shsPrMUTpUanhh4Kl7ZavpJfhQv+ijClBn6dZRqVj/zjqWs9e79cHNdRWVu/+7Zp7u77akmckkbPvNQLMCA40+vW1t/yi9Q3fs83BWT+X9qa/8KPjOET6T9QIvu/imsNdIQCw8srL0Hd2ASFI5l/E4XtPPHhjyIeUsxu4cyDaqHgULDVB9QJ41TrPCkQ9seVVx+Y5YvIx6b9bXDZ1HueZPUkdimGX3Qg3w3UK09xav8ABN5H4mCnn7dx9R7PlKxQiVG0EnEjVptKhvPpBnqnFQYtfo4CjHrpR+TlRxPENk9sQNbKg4EwOIXDfOPuqEhajY1lf8nYJJD3eHhgMDEdcz7I5xf4UZP4SbLIYIpB8iKNYTolz9rL/NiMtLv2thxEBjsDIeyJ+FaKsZyMgC3I63wHOIDfTGrAzEbI2npQNebU6TodbS4yk91pPcrJLRAAoKvgoTYviCGzIJVsPKfYs9ubQXDG7HwFvUABKnIo05umdS8p8MQetvexnYtgsGpGLGULuUWQEHiffXnuUMHGV+5EwobLuz7GqBFk71GlRuPrlbxd7Ibdzt+nY9peGpkY3dIADqRuhM2JsGu7Pn8LLAJ8Qgeyqpzk5ToD65++v8L9NsIEFbOiiH3RYCZCQeo98qDzFO0aPEVPdeHpzpCpjFJ/ukdyEucnDTtot6U+DpY5yfjCmXEFwYBwwoYzcn6ZGnbO0uAZsiIvvqts0BqdSs3kDxLDFPn5vkdwcvA8OmhxRzSeikq3GUpSrxmWT8ciuOXeeS18PDCMMHYiOn8Cr8XE4pRcJ4f20c8EVFupYiKRqiDSK1qVfHHEklgOnk3gawQ0+/ExD1/jYI2QnucgeQ3+xSKPrt/QE13g5QPoCGCM09XwEIUNvdeuOn76jOsorkeBMP2y3DkxFF2AYrIm5oyWhHZ2sO3KrceH3TbUruM3aJ7OkJ5qJUu//8dmrFrsWTaQsp1Ugw1RE8YGPF+2UmC0289Z3g1LeLhISZntFXHiISF1znn1ZkZImZUwnbbVAh5AyNL+vIDU1hpaTQ43l8XWSo+OiicWKfXGDLWdAYAksf+1HMokO64EmPHzUR0cqldPYV77di1DlskATEksftT6opKdPQwafdPXdp1gBzJiRhpKUG2QMzlPTQfE9NR5ANFa9ai0fBdQOenStLeg65TvGtE91aEPGp9rdQg0mNDfOaGiC4KKzCvirXoBA1n3aPhNYVnHaJB3DhPgFjV6p5dQk82xFsysUhRi6ZuoUextTn3IOXbdhSMKGsMdiuDVNkLFhvB+ejwUfDjuSShQPJWGeOa2aiIx1DpZe4IRo269Tz9eAZZGxZgBGBBNg36om/2x+Ttev19l4Vdcf6ufsAnkE2/OZFjuv5NMN2JK6eAkv1ZRMydniL+8R7TfrC/AgZHcnVdJ88AFmpthOc2w0W5RSMPItWxHQ6zb9IYLggv5dct8l+OvRXw4uDizOmtaOE8rt+HrJc4yqPkWMkUXYZHHRIfnw0Fs/SPbqg65ngWzNsyrBmJR+tq7CflEzb2AKTvDDOqrL1Mm9PJtcEHYN04YMONgs/OsFzkre1//o6UR+NI3wST+eK6p5M4wnelCWWqJk1UipKZsD2KdNwUsbtR5gu/oCH5KSbYeXrR1Untnwn3nFkZQQuhP/q2Smd8yogCPyfNZcC2hn52OZgiU+OuJ41IgATaNQqyMBVHmL623rFMliY4VL18pvlyYKknGaJl9pvUaVF9YSMVo7DCV1Fd4kiCARxveM/gFexRDItJMISS6u9Hq7oFXtPlIx/cmStsMaDxxYnBcybr+I5/i5GM6YT30bmv23a7R9N0KN+4saf8/YxlT6dy5Uu+0SkYnKoyu3VDy7B0MvHQdfaIQBb2RstQvt2NyXENZE+JShh5cIu45FnLs8oSinR3JXh/MXtjC3jiscN37ZzMCNW7piLIZWqVUJ3gHHOL7CiiUS8k1/Ktai5ojEJ4w2ti3V32PDjROh4nxMguBO/HfpUm9ox6w8r4Q8t57eOI60iEimS/1dKOIeOSME5uy5yjuI4xR7SVwXX50iLstA9TlOkXFmEpGxhPdX843L5TXG989el0jtkfafLoh73Zk+CqwsO0zcV55TphnyCpV0wKRZ/+n2tUJ2bCjRWNuO9o92+BvqBCXn707J4sGHnvhKgA7TBuSSLDJ9vKTk391P7P7p+rzM/rD7VwUdYbzSdeRiFKSpSKyi/jF2vaLd38ht0hp/NVrJiS4pKl9ZvTo+V3K+ovdOXBWt2W88JHqPi/fWLYaXDA3xT0Fkh4nTkRfIEP/Sr7Vx0TE1S+2jFRJWpuszIAS0KhvZVkQRlRRzhexTrngh1JLi84B3OEB6OsxB/GcwncEAzFcs/AikP0wMvH9qmJgSNNk/r0sk6tiRvglB4rlJFsN9LVEHVLcfVwapqDmq8Fiaw+8cy5oc/iRufPKDzEz3aiAt+weTZTIEqTyNmEyuLmKpp2tf4hEy+GgYI985bjlT98g/GUp3qOMCmxoHJbNo+YAK0nPDEn3H8FPSYDxGIcgOgQ33Ma8Fpc8bdYKk3gCdbz8BrstU1l7tvqZxbOhwHv89QuyCVIrBRRZUN/jOVLYvllvg11dBvrLChkyLDONpNwHRgWynWgIofqrhyKiknuZiSw55BCEYhpPpfFaK2duVBBWz1/NagjE5A5BzvCcy9UtuWI5We1tLpFuKzJVYzCF81thtO7vWAa6D0Dn1gmPwkAoYda2TtAgTjpjgG19D3cMuLElfEL4cNgdr3ocUPjqYDNIiuuViuaSBjbaYQKafGUihvHaX9bV5yfBDgdL6LB5ZYn41brURA5Ns91l+B/XAwAT8Ms+t3yrGel7Q3uXgJ6h1cleiIRcUWx5BRi1CersA2TCp1sHV0pC1YbnoL4sxsgWjaKg7DFH0SPig3nOCNrvylC/W60vDKt239uTYbpNq0HPBGmamq8wGbTRIlpMXf7G4L3vnuVlZhVoim5CZftzEazOfUMg/z/6xI02mhur3mx1n4AeDqQjiFGY1lunqYbwPZPV1Y4jtBEGfSVPHa12S2zRDcbLP1ahfKCRWahIaVXT5FGWtQrUyKIra+TGTQKhe+3ipkzZHOWoPTR3Hav97K+oqvL0eVMdJO2zlZ5UtQgoxAQkM0Wv7+UaRh0SPCqdkgvgrHuSeMgSNXfJAAGsM+zymWBPFTfjejzpNCSnnfA/tXdPUcDL8csh+b1y58xd8sQj4LKe+uePrJ4Dc3e6So2T3YeSWnR+JLYP/RTCFokbD4QCg4kx0yV4fsO3G6aV98ol7ahdybho3gYO35G3XNeS3S0woQnbOS909vf9g8Fh9bvup6EN0iSjcuLULNOq3cr1WXa7SKNXcUamHazEWMKcfK06XyW6Eut4tXigctaTO4qxV4VJAkktQzI0FjbXCKrQG0Kb7kikAEzHRgdndVKHCCDUbkgU7vmqdRrnVXiyDcucu9tj6rESgvgrNUzl36fidPiNRs4L1s+yHLo80QTmcCNPSO8wab3u1YTH4JJYWqSTOQc0/2SMf9/1kw3bGm519JjPjGMDbMk2RUZ+BVqAlpXa5DRZEGM+No3V/K0cMU0/ir8JTDWGRr96dvwZ+TSYiC+ojL1aYrSUUzojYtlXlJF7phKD5XSiM+aGCUH+VA37u7GsxS5FmjqRymyjKyyOS7OWYfgI2xYGgX5MILnZ93ZqnQN3u2x4L9xZCr67/BTUcsWA3KcHL7J7dQ+jiUyLG0j70wVlMhAliugICrr943QRwd30finTlGA+bv7JYdQZGZ0914vJZb7+tE0GUHFJYQhclD3Wg7eMMnqdNvh/xM7seJ2hFfh0ioBv4+w6XiYfmLCdhaD/QfhAyuBhZZZP2iMftSzVQHwNuZUmHZS2ufAxret0XPGiR3OXBI5/68HKTpC6v6l3xSvHbe2TmhhnBcA8Q1y+MOOcxOFPNNT8gdXE03owsNSLlfOgh3HyAUVryygtJHNXDVvFuErNWXKEz8WUbSg2FAFMxF1So163YnPjwZCBNcazu6HEtbzfU04X1AQHUBBdLWwxcEoyQYjDYePy0RZ9m3SbeUtN4ij0mdwnat0y0dQwK+B3ipA/kvC/ZzR6dzGVGAEjCsOA2RICHGt96wG8FPSFV9E3ODFkRsLlmAPCiNrvCVMHEELNZQxJ9ZQalZUm+ukPkQFGVV9NNttEnnyB3FByjhJqAwuKGKeYRuWn6gUij34CkqoM7IUQ0GKHawtfCqGmiI0I4qGMqXrYSNxWHKMHgCEqdcwDXLskj46tppyKSOMVif1xpKkKA6Fn8XlOs1fHxPhTG9jBqMnp6VBcU9AhR+If5uXF5liO6y6XG9LTz5iBUTTt3+OKn0kz0uiSRxn7RjfDePYyGBxhNP+c9p4z43XM+dV0bloBFfhy8+O/htf3SY0A1Rgdi2gc/o80qp0nvXb2wkYp2ie/lhsYkgJx76jvwDfp9pgkg14SCy2CBSohICyggB4C/z8KlJ4m7RA8/o8Ib64MnbAJJUWhegqymL22+/Y4ZYAEiF8G8UgGamp1bb9/YxvG+FTfsPL86D2ABQzlA06Qak4MdRfFmG+ZwnHN9tz/vhpSLypJGHc+nKRGfWmvJedrGR4CF8tqkIzZDjSolhKPzBxeelfxR0mW15ydWwRijz4emkCvq6BL0pj0qtHNqEb2gbsGAdGRx/xGEwb4N5vNdeKdJ6Kh/PnVgA6FF+3JYSYI2Gcn4RhuPA/suUwXqRUiYuczQ3XjlMJ7BJGT3FscmHjHzQmrt7o3YFO5Eq1i7M5826xjIKWIccJJLbQFG+oZoFdxiScppxZF2Eh6giibemgYekRGfI7Esl71EEHYCGEUp7NG2wSG8uB5G9jOgQlQutD7qlGsI5y7Igafwjtdh7LXBXbpHnY30R3RrOF7E3rzCcTvE2DrX5jV0rVUqkmGl7RWRxC8gGvBC18KgUGe3w3A5352ojW5+r+PeIKP39CAEptSNGvh8br2xWW0n/ZoreB4dYC4bb1elGDgVVcAL1KUz/MdLZqY5oplrKLl6bxiOBEJl0FQqLITjnyfO01eoZmU5cyMG8x05LSY/mC8k+O01mGfwpeUIcqfkYKGnPxYJ5nTYGOpTaDh/CbDuaXl3t+DNRCIi3andblS4Q4UbMCcMU4pLeYrLEuiDE55ocPukXivlUvM4obiNK7XOHG/Ihp1shwb4AlVnLAVb2I3xoQdjoqcpVh6R+VtQdyo+HtVlq7qZLzznjaLysxPRlFhN4MPbMA0QTTaOObTcqyhDjpX7UmJLiDQUAIIc8VBB+7zkTdw8uhMV8qiCRqs5KPqqp+1CiN8gDN1qSz7qy61d4LdxWwdo6SvSm/rAL017Y4G7FKu+O5nWWz9aKHefg/CKZ8b094Wknwp1+SzOHNPYtmVr92rzmmgVq7LUz0W6AvQUjwSfy+D7kjnyLUuZbL/fkjvTP2dZUBvah2VTWfUth7H+NlkmiH9IjwrzPn19jFkKbaYUwZsXmZR7sxwbRO+VdUCI7+LUDOa7AhmnU8njAl8vsBboxAhYA2It7HGWn8kEc9JT7RatEXf6s77MBBGX3oliYrsBBx562wFxEcO/lI2SwOfn2y+cn7X61FsaZL3irGqyz8HoIThUEWkNDynIBNTbX38qb+6zbPUWf71x0/qg54qHS/dq4Nje4XNPDRvdtxtT5v9JH87hZmUlsviKMGrEWqKQBO/3Z5EhjkKA1kht6x0xEzKKCdB7EmD/R1l3wF7YruFFp2/yscoJ7ibrnkixzPgGWfMIw3n5tKFp3RE6G2Yd9RR0+fSCK+tPF6pQhCaV5WH2RO/qOrV5Bw59fK7qdJYpPDTfEPrddWl/zFyUqLHSlNm1qJkAYnqDlnOTLQ3PFSQ4eGa6EnkvNycm4rQeCt69nSglSMmofNR66rLlASYCDd8L958p3Cr1AMcSdlPt3aLPMOAJT2tIjx3HH+92M1lRaeUQ2nWJmwsPVmbp6PTF/BsGXWSeMtJNOmH4eJQ+8jQkeGMqm+jrE45RbQLYPN7VU+NLFlckeV7uTVjQ4BZTS7KIpxNp46tmLAqgTddiSMCwpya8WaowtZ4DMZjdRP0YqWWCxuA+0l2FhSl4ON8OTv545fX21EC2WGocFGt60PQNMr6aI4AizMGY/v5F9EkuhJtPqRcPaMBcmmkfq2vcFjslDnzD2/hJwbtDSAAEltBgRcPqNM7tsQwFTG7g5YEWPe7Sn8uh4h2hIIeAfxlEx+hF0/+5PkhciXIaZzwq8i8Wwydp0UrOdNov0pDfMb3wy1XyGQK2sdTozy8yD+ayAQXGwiKWrV0P6b470luRFsOCgwXOLSTueLxm0y7vEEOHK3ym6mlnixfA+0mDry6tuSmcM40KJ8rR+8az7wC/GlMhqDmzXE2Dgp0IDPv/aLu5tN38Rsfw89v3yUeH+9NAIaUkmpLbXAXSYwA7bD7Fdm1DJrZjThUG/JLZisiSUrFz3t3M6DLUHe2ypLovyhf86wVgWR0Xjqzf9kH8XYuGFdEdqrccHfYakrK4Z3ajGjt8meadBMOg5YXfVV6CRoIy5ULhrRjBgXTlQfbuB2ZOWR+BjP/E4vC1ea/caQfmtuXMbLo7gHq638Ef/dCPckfwO8bErQZ77oNTkX5VMIt+hUcfa
Variant 3 DifficultyLevel 702
Question
The mass of a trout fish is 14.4 kilograms.
Its length is 1.18 metres.
A rule that can be used to approximately predict the length of a trout from its mass is
l \large l l = m 10 \sqrt{ \dfrac{m}{10}} 1 0 m
where l \large l l is the length of the trout in metres and m \large m m is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
Worked Solution
Actual length = 1.18 m = 118 cm
Predicted length
= 14.4 10 \sqrt{\dfrac{14.4}{10}} 1 0 1 4 . 4
= 1.44 \sqrt{1.44} 1 . 4 4
= 1.20 m
= 120 cm
∴ \therefore ∴ Difference
= 120 − - − 118
= 2 cm
Question Type Answer Box
Variables Variable name Variable value question The mass of a trout fish is 14.4 kilograms.
Its length is 1.18 metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/NAPX-F4-CA29-SA_var3.svg 330 indent3 vpad
A rule that can be used to approximately predict the length of a trout from its mass is
>>$\large l$ = $\sqrt{ \dfrac{m}{10}}$
where $\large l$ is the length of the trout in metres and $\large m$ is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
workedSolution Actual length = 1.18 m = 118 cm
Predicted length
>> = $\sqrt{\dfrac{14.4}{10}}$
>> = $\sqrt{1.44}$
>>= 1.20 m
>>= 120 cm
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 120 $-$ 118 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 2
U2FsdGVkX19b0PpDp8bQjfRNkiAWRYqc3rH/nkICWmAb0J898OsVibkr9FWnGus4nSswL4NjJP8tLjjqUYyznob+89Rmqggq7ZEBlbKSqW3cxSyIEYDyyz93tAPC1hDXalSifBYfn9uV2CiM7Ys01CavBkgJxTplPI4wpWItJeUQz09gR6d5+IEXLSEwQng3E69FNVyJePn62l68Q+kiFzPo8YrWK6Hq5SHAaRs93RMXR1ZfEEwvBiPegqZT24Pr06zF/tSqgLF0RupRzxDU2M/6dMRC1pGUzfEvqWX/Vp5wirdh4FYl5F+CkMieLEvEgfKx6eknNGITK7bM9YOVgUxU66zlDkiuv76f99xGw4W6lD94Pp0PVJaE7bWSUDvFLrBhp0LUJ52oeZe9/VLdbGsCkoJVqpiVPEgTbuPJ5TAAPvYFxdQp5EAi7848e+tDJNX9lyNQ3m0Q5QV8VOefbgV3dYvSmK56HcGZG9phEy73bpJ8n14tEEa1J7NVcQodIV9Dwo+sfhgLvMekDXJIckniQWE2dPfiqv/DKfRUdlYe0WdCLc9x0pzDYaqdJsa3U84b+xYQg5kMOYxTalyp7Esw2aPPBu4/5FWOW50oV9adzcpErAe19YanKkUuWHrpZrl5HDCPwFjcvHHzC7ez5tKhosm8tVmoTDv/GtwWEfJsXSupy1BEpiq3ouSk3BlzIrR7F0XlQdAOEGl8JlEaQO2I8BOgeR6XWZW5IA4SLReAGu6aGXw6n89/NPqxvM1KsxUqmALzjXMVUg9aoivY0Aa7AmKQqn4IeKRZt3bSKHXzgzy2fxFCqlGr6W5Z0z0/F+TpIjIf7wW5xLUrxK+00DEbJKqk2re6P1QvYDnYbuVtOzMB+42Obm8wny1RA35SGibc2CE+Zp2HfqsiadxMu7NPzozOBPVveIq/plq/FEAa1UydCoLcas0xBNgQ16KpTC5V60o27of5/QcEfbD+xQ7ciMED2wE9F9fOVpITGviymh8I9I+32nmxcj23bN0ivC1hvzXyZbA0ffJ4OjUXSYmqH4usCy1WRRTJhjVU1XBz9ZpEYSWzlifiAs2eZFQvvaRl3PpdsvsbDF/ig+b8lfW2ygSzzIi+ZCQPcNI3YHX0iq8N6Z7SXqHv1BYBdpIhf7eE5RK62psUaklABiYS0hsI+cJxHgRAoj0uKrFwRTlSBbImk3D589RLpiTt25fvob7iDJzzB4PQEKp8tOlWC56jG6l5dMGZH3W+f6WkZfsSmiegcMLv7dNz8WgXz7hMgToZNUMi/zlUKcMKW7SVGxKhO0yLeKqUMYgZjRqEtsTFmMbn6ZvHeib2D4NbFLUAFHuXmrgJ36GGMeLuCGGy+6i1hQNc5fxZNJ6yBC3zFlWoEg4FJtRTMpib834lRlvxTUXC+PK1FqJJAo7ngJJacXGu01B5N2QYB4QNZARlVCuEhSGvWIKGuFZ5vU1sirEOedMTQVux2qoIv/fmvqjdK+r2RlLI+asQCdDVx3FxvPX/pKo0neZ7m7dxu3yY1MymqOXUMOeCbk+BG8awnbZqDp2fEMSfoTKXPIcvuBA0zplireSsaIFJDZ6Bmi11fJhRRaXkonlpY3SxOpKfSvaS+IVa9QZiIW1Dx/Ccm8W1tojJeb0ZMTV1aFi6XxprTRGms/qRsZV0gzK1TAwfRfRrF+CIlknnmP44jmhid969RbiaBQVekqJ5JwStuqQhtImkWZukrPVjg7qY7iz89/LQbW+/ETWCS+As+DpQo7K/3eYCMfMr4lsloedDOjM+yZNz9NgQLYnkiEBm0RrYee8T/2IJleyd4CHNg0FMVC8dVNvq/Dvf3M1Yiqda3ispR8WWy0zlzmBrt/t+h7qVmCoi6t3teteFN0ODExxbWGZ2TlsZUIofW+xrlW0aI3iHq66ALuyXflK0vfhVK1PWEBxDzzxvUKunWjEn2JDAqo/7borCsEA/2+jzve2qumU3hzc7krZNI/OpT+5ylK2EwnbABDwOvTWsJEaY5mERbOme+tNqEltZ6UVz+2DqDZvYo+N9Vb9mvWXkNVd5lQ/xrNQTC1V2nP1hOVN9gjA74bvdGuA8JWiaX1kAQWx8ao5vlvfsD2gFIiYmkrB8CCZlovIrNQRqqdODNejd92gVbkbyIB4UzlR2P6MvlIhGkgZf12B1zJS98FejySUvigfFrSiQKHmbVxCaZoFT4ASe+lwVUOu3YihNJ+8cd7U2f1LgYDImbX2k5OJBhqcbTOnlA0MNGKMfNQqdCJbZOH4+N5vQ7u6lpnA1TbRVghZI/ITJmyvV1e5fwf+DMCkVHmX1S7++DW1zGrxB9M9Op/C7GUtaa3J9ltzVKu+6oKNT8TYhL8mqMXn4nlUPtJesqPOCikbB2kFs+x9c5/qROho7ULtBUMEqeT3BaBxHBKqMKfReTlI0p069QHZYbBRPlD/UWoc5M9HyhiF+V56RwdfsEY6R/hGd21z5m01UK+KrPHEzh/DQRsbBEyfqgWvm/TGxbi+LiX82JsO8caHRL8aQeFg3uIwhPD5SfJhqPmkuKVuU1wzKN9VyL+GM2PW4nphg5i4Hm0cXKf4W1qVgze8QppRpWxDfye+8VBNu5ZlCefilGR0hnxJaNEbrOinwaqyLX/z0ZvOcmMwSQPwiQQNTbGvbd39CMpUrz150wU/RlCbg6xeJPvUdS978dmxoyivxBAs4ddGopkex7UrjRm2IfT79HdK9t1lUWB34e0a1WgdsMQk+eZPV+MSCWMpr2gvkXqKZ5fnNW+T9cyeQCzm6SzxlGBh9giuvrg7XTkdLrLsHk3XDc2xB13X7C+yYncnE+uL8Xc3SW5/k4S/RE4b9lWOKwzVYI3LsoSOUdPl/RAXkVly5wgoAx4KpW/pzi2JSdNavYzCx5vTXK1FQDtupJsHraCI6HVVmq7WvhSlulvUwKd6qnsNcw5CoySR6cqAmEyd1Nd9zN1ZlAa7luJ5Jpz53qXzI0mY6s+F4kHT+zD9GshSAZY404z/kckrFBVzia6v1UQ+pp39MqMpxGvslpJi0CBBtfFq4P5u71DyfJVs4JUZHXblRvX0ftv4A5IaAjbby6mw5dNvqF95OB27ljZ752nP5DCM2RMgUSDDIYInWnKunGVVj0Oy8vHnH3NlF379mRYmt+DbFwtGx3oJ2m1H+pFChsHU8kn2SxznevIHgCbKntDxs/Qkpt/rQxKgmw/M5kccUGRCtx9BvruDEGx1UX8hD9/OmPtbFfkejmBLl9jkv9HxPkbfreYYwiUy8RrsST55l2KCUCO51Jksl0ns3d4LSp2uTrFHg6tX8TPtXxgmnw6bT9hbxaErS3hMgT2q9Wpvykfqz4MeNFIt8BkPwnC229F6ARuYN320J7CmSwwv7oCuULHEMq8xr41sptGA9LXLu9OOdWmp/edOx2IgLb/liRrJIgTwsDVGXPwDKwNQpffilO9q4j7ZKzY1rU9/SOvtreuNhZI7sHGkUcWiUNGmdQz9bw3ZQshAuIoQ3bGsoaH2MfEZN9t+9qbV/xxRmQSmD2Yt5Js0SxM/P8GvZeOZFYBYhIxLsMlurXrS/85hp+JFuGJBROZcDVD5a41B992xumA3xYSGDBDlTyo2X4SSP0HAtx5tX+TndNbjVHmNvHM5/BjEMfuXtSk5Xf1J6I99X7vQ9AcVPfwdxuG0o2duPOJQGePwWwM8wEAAIQEZT5MDaQDV566NGP6MLlV3cL2bVV8f3oQ2Vl0RYYMYHEchobd2ZjDFclsWx8LPsr+2hi1NEiTu0gsZs3ClWTQQ85Ecv12GIGtsKsdYqbim6XGnPGoFaKoinotdN5qyHeYvUN/i45IK1z+UMcM0MmusFelI5LDBv2rBHbOSRdG9aYZlW218Fs+2OayDfVt0mYGz0lMm6vEQVgO4y4QM5N+tIM6YBVX39ViLgVPm4uD+IdMWW/8Cea4i+rnfugx2aWGtJyl4HLFd+s/Y0J1MWIgdIk7v23LLDfZG+Sqn7BMAxrMBT17zqTuSqgy1aqTraBbRBWtvrd2F/jg0C2D99PMXMO5v96zG0OykhhcvO0ue6pRE3SRmzUnsm/0PX+BtgQeDIaigPfVsCD1P43wXP4rupvVPfKpG2UjjYlawIMqgakYfvQVdxFDcyZ/5FWFAW9lGaPQ5flAX6tNuZPyMtJeH0Pb5XJshor1h4kp/2V7GYg6rVilKVmkcgU1a4z/xbbG+5TGx6/IpTZ0nA8mYCk1sZTgrpZ6MiytieKu/IB1FxFY8gNtScndSVfnIlgDJmboGfku1eDTVjEuLuZmzetchL1RZ7vTSObUM2cBTdRQcrF3DhMhh7DNEiQ00k/DqSJuE6PTGtnO1BehcQf+fNsfkEE3LWHrY2Lvs9YONdp3/Lv8GTjHCEycbEb8C7p+hOx0KKi5NgN/wqjzHeinWu2SAWws8ESt3oK4NAktamPA9u+VpfYTcFsmnGdoLJGFLfczqouKGTSqTroL3CHdiFhMbM9rrKXVi/dokDk+n/WoAa3u+rHjtfTc39DCn0h7YV5xfunxbFg+tlI58Tp3KtwU5bdh2Ti1B8Blqz+pM1VaxaNyTJkyQcc93IlFk4PpCcZrmBe/R3up3chEmJj8Tf8bdLArnh3atlPwHEqDqxQ/jFcqQzXIZ1G4j5h62uDvZdgczghZW6AnaU/R2cf5V58BG34Qdyix4AJzjcU3+rnlwkbsonI2gsLZ6rXMHTLeI2RkBtNGOFZMsMxO0NLEqShSLQrfd9aPyQZCYJEa8m60ybFKkWMNO3czl6no5Vseb6xBmAWatb1I0pUXjDpLmZ08tV7qsqDUdsf1Pj74JcRT9vYOLFhuP0i9JAXQy7yHsUQOYqKuag8Oazpd6J2cKEhWnJ8loZEpDmuSSoFnOFH9JWMGWuM3rrijYIsqWsPuVXo2l+WLgRfqYjxZa1qRLeXnERgk7CvhZQXv/TapZt6I/z1Um0a/4wqWVsxOwx6anA3niphxHL3iOAP2LWZJPT5bWDY8R9NtuFnF0l6o4QUQvKiNxMuILWZbqo29h+PY8P1SvBnTpDHBYhOJ+qjZUiRp7PnuN9QKo5BdLjJHmoCZ4RZze5BYpZROaThmyjIxUWuV+5yE2/zOxBnb3hgYWCt4t12tHHPp2/NWG4AgTjECWrHCmOX6tAYYvJmnN9G+mYL2CJQvypq3K4cc1jVsYjPTCCiuodic3mi3BRLS0o/j4wd8qMYZ/35x80aOozk6dmaaRJ6K/QiRwLTKkc0rwUtG9yjmmFGqSE+oMbFL5rVdO+A0YAnOluM1nr/dzMKdSf0dP4HlQtyBeDRQCcnMrSq8YgGRCP46y/FNZ8RxiIxb3ksYOKSTvwk8COnUqBYGFqjt8ZsnhdOLAT3VJwn5ZxN6Ohl1U8CaIM1ZFrLndzNxeCBcOibHKXRdnD3bScpBmVGGwv2gAgKTPDXlYjZeVBqqolktqCh2XMRu9c/QUs3Rg7r1+eRrv4QeAYFK8Dgj9FUg9CGc7h78wVvFeoAnzMMsiekS2I4gGOe+8rl0gWBrDzD5h0zXD3GbiNshJno9IDGiCfRHm7ynWzktEafYoeIGl3p1dszXqzuWtzbTAcCw4pLFERg5JUqEdutuaDdiWitCPOEXerVl4k1KP5db/gNqzyvUe9WI0NCyrecOyK5LgAS8juNdHvNBPmaH+lRi9zLOlM5HjePg+9Bil/8AszDc25P77IMp36YKerGgvfMImrAkmcHjTGvhYRkoIYnAfNvqhP6VY/uvyzBmBe56bv2HeVP4Pu89rRsR3CzLep/7u2cFIzGAzm/m+qLDZz1ZhYiqVW5vcOhNgoEylvLuq5Y5yhYFUQNsL+OyyQAIUq4EOb/oG7NT/x+ZvV6+X1/bj3clEbe2FmqVS0pjaTuy28/G+Gg3MwAGFwtVoNmZESaktGBuKBTmXlfJ/4aD3CUOU/RT8HA/Ep/VET53OndEvyLlJU310FWjLnI4xbqjicURYmBaL5Qner56FG+lYUzSx/HuH/uPNotQjW9SPOExHJteY0iqU3k0+qhgHxvOHfSBLzEWhWLNOAJ1lkx6BW/L3DOQONS6B2vZAVZYFZB3rwsRQEirB33d29QkOBdzX4/g/SF87lKcCIBO6eCBMOxgSaEi3CSwV+gcrVDC0HCKTDI4QUkwNGbO6FQ5geRmGPlysO4Q3vnibRpaJheo4xD7Ak7uivbYanSFzY2M30itbuV1kp2++ZPa3/zP3L44+kg3utMMrhdhtpRkbVLoHVhyrOLGzAO/33gFzx2lH308mtizxUF1zIn/1xjdN9j8YiLTHBPRhe8/rEwDvIbWJO3zPe0tQf7sUGjkH+s4cqHtTH/byuun1kYgqWx3d0GlXA2gaLxBxz+7Qi6EZ/M3cDf37WlGbqwdvySP4B+ljP26PER/32HRAb02orU8DFcU4KXbwg/zbYvTPkylMoYeBBKVgkTBhoJqIv78VqLdWTgqtaP01EDvzKqXbYUfgJDxXc/n2EP6GhObFtSH/T7l31vUViUeU4TS6F1iuwAxS2obLWMbGRxeC/QpOTs4Y+9cAGMKchF3xv03hJdwSWk97vKO1HDussKPq6wm9jwsd9BHCJ4h1jOrlGDCnRNVUqR0NrpsilVnJEPER/5bPo0HYhy2hdpO1aqciPAucw07j/5LZLRjEm+IvFfDr8xQeaR0wIWQABV9SNSp9PbiguhQMmRxpF6Q7vkymMivldU5Vl9Rr4aJKXxpous7NIZzpSg3n75jYIyKV0Pd1L7UzdVxcN9NOk27Arv5P5TcYTgIs4vPrFIsWtEnABGq9jcqZQJWoBAiRTqeLhON6h/whDesQnPEbC7I1lzEEOU/iHFGi3qUEKYl3bsgLEOEtAp0/Sw9whrfmISjuuY6SlmKA6kGyg262p3RQrjBHwWbncrrQ6A2Y01zFIkZYiIm3sxAhOB4FTFvB36r7eiytQMG9zNxPvrM5iemI9KrDWoY3P132Mw3jwDbBUBk0cIgAEUQCuTj2mPoFFPIWvFZeQ4BlQbJMqEDoj7WEg2pQwm8vd9ljvFeLQKgBnEjrOmvstTjocHGR8l2ZgLj69nr7EDH8CtYYA62Fdx78r6OwpPt1xt2tLm8n13lcLf54YI191BJX2045yNf2Z9koTBlhzmp3noVKUjs2oYgFFLlN2BfkVgDInq8dOfl3ecOHySWjUsXXkSTcmdvlQGJlLWx9yFSPeCwPV6B2SA51SAyfwdbQ/ldTrkspnbfjdmj1L/UNxanwWleDTegQpx94imBy47wqRBcS8lsHMMmG+Bpbj43eYB415rf5i7cJFx1bf0mW4lCLgx3VBkfTZLjeSolC+Dfo3s4Ia1CM5GmvocqoYntKijHIBDu7QoJ98Hp6N8RDSlh2bIzdXOKAdIm6v92b3fOvsFcUulBaC2l7CUC1Tgh7M7n8hEJHHoMc4wJnIedZN0L4cM8ghdYaCwE1DeldTBsq9Z68yIEfESaIsv9QAgji+h5GLN5KJHSSH9oCH2lVwABIfxt0gOejNJlO9Qt+L3jrMGGA9Z3YRYZXucP/CW7VyikosgvIxjGiqxzZgLFXRgo07uhzfijgKf6b8YQVVMKDRqLBZ2wzC1C8cVm6+UPVeXFpvB4KzjFyit2mvhDU5BDrtusaRAozTaNm3+nh5UITnSQ+WJ7uKJViFEYWINmkEH48HlgOui60yDz1/IKMzDu3RrbrtJILNehO23zQcfqEYvhjsyQhs1uNTS/hvGkf97ZvTSGTQ8N1sXl1Ld9OISeujlMPtfsDRxCHNhG91WeVQ/oqPg+dSW266sOIKmQBbe1V2aiIzUdTJXGHsG39/TlzfbY/OI/CBlF2+/eJVKTUXYdMthkk4oUC1rBDOaBq7Lr30vS9guJohJcrDAEnRR6t0zRD3Y2XKcbFvrwapXPs2iSFnGg77tdnrILR5n3UyRVxKf68iANTUAn8iagfNvxM/xkB4z6GnLhnhBONHHmUshreE/oFYJ662QWynZ2Tesi6Sk3Nm1MWZW1uyft6rnA5CMY2Vb4obZjnFzWt8VRKRJYbOG5l0izTLOmTUaOoKk+kD7EgWh/O7Wh4KhglQhebvpPmeLpv2QWYfenzpBoGI+a6eePApeOZqcyDvLl4YxEeyjT8MH0HG0LYIds8fR9hot+L1Yc0JkY/eQtdQf0B2QtsYkEZ/ilGytqoc/44oK7iivkDpQvqBPWZgMPvXtMQ3MlvK62ntTdFQoNv01oxc8qMycFlUVSwb5njfB4N/ilyumOo96YYX6MP5W2IYrFknltnKEAehV2cR0Z31VbCgxypekSzHt20cobPVFKT/YFcbS+m3wPXe8/rgT3piIcFY3KNv/rkmossDZ4YtAyMsc2oYo2SLNFezjevQx1wTAtZbWFRGvlU+Xw/pdWjKYsp+mrai/YAUzmPcU3KvXi6Gy5l69M5LHl9kV5kOTVO/5zyxgwJECBO/7IrebWdVVRObkjWl5c5/kHK6WFBAvBT3ke3hTJQWs6Hcw7WWZjPuypkv5xP9PicQZ2UOPx3cpxbPU9DHCztLhsUpzzjgJ9Vxkz5Zc0Kb21hDr4UeMgL0NS+7ZsnjUh00i7/5ZicDixnNKAq1/S+b56fV/9x2W/psUTk7qqNlRgRdmEBtTqSG94unTk7m7cyeHAeJqYcbd3DHI2/JRq7jvbjDu2ibt9lZGgDi4+ZwfAoBKMJ+B/b4pXbMyaBoXII7y2c7+gYguGdPLuq3REEhGrdiZ6HSWm7dSARaWHHmXGGsLEpZKjNDJrL+kwbMSgBjM06bSUnsENlZy2RrXjLg8XdqSt1HR2sJFvZIa2RGEcuQB1DCp60GhL9B0ObkjzjJxm2CWXGK9dXlY6odS1Z8CvC3sXxhm/PpHRxBNOQNsaijJx8y1icFwdrTUGe+5wzNMW6nN58mRxTR+zMPTljLWNL70XuKlHzCh9tlJEYai3YSZK1MgNOUIDX4T9f3mTtn1ydbvl6SU0nvU7SEtWELvVicAOb1XJnXGpm7nr3meJOViKezumyNBDRa5xTJ5QfzP3LeXOZ7TTF+dhttRl7OpB8m2kU3/rIOMU8JzF4FyhcvZt/EE96E62lN665XIRlcVJvdK6czEP/RMMFEXpP6Kh5oTcQwQnGUDqS4zNVxykj+gP/CyGhOka6VfnVsE5bj/gIDRKF+TH6JQE+tdNgXKjWl0Wdet7JySIbJ4JQ4mQn5ylzM5n7/pAY6/4oVKZtskvunSjwJtbcQMan0dEgCJf3PP8mG9d6GaZa5lloNOGLSynGr0f4mnCbGG4XVY08efGlOG3qwDU1i0yN7gWCO0ZFDHmAtLNFkbbpXypJZ6doCWY6gzbwrzamCEKnJyxwfgv4LNjFQ3sjmTmK5NCJHk/svAn6KE5ySWEDhrvjdJ3vfgqs7A4ReCDGcqTbDN1O6CCvuRudInxtSyZ3WLspskr+3T5i1maHrYhyDsz/ygFEJwYo9w236ZvpyphBjwTmqiRBjqJ5kGR0C//DXZRMla4+1P7jywg2Ua2hgm2WeB8ZZBCIg5c3Vb7B8qIgTP6FvYH8COvmwzdery5Y16aLl1BQE7ijZpj75LSEw7FkkTUl75UrxmVoJj8eDOCXB8/2WFyIV0JaDDCLZEpTPpUvazTZQft/OX743rEMMq0mRb9Ict0WrwiOe0r07oyfeEFjrBku/Vwr1G7MvFxZA79tKsw8NASFELhCYYQQU8VtgptwbluCxiNBTejfgXmNdBpguB9tzMKitb4d8gjvNgAHv99BCN4dKdXOhwzDI2YRxF4tuddFNmV56AdpiDx0N+DOuyH027EXEWIVgBKwXzhqmrlxbktzfHNMmMe5/lOSRjH2zdSlZlxShy4ctFPO0i+Bs6CbVeU5e4cm68+n+ZY7ZYlr/QqOuiaSDvuJe7WN3U75L4mfnR/NFr5IRHGq6n9m9dR71V2UEErBRLR3/Z6qXSmtTmrbOPy/yGYgMc0raoU6dffxG9TdP+zeJbknwoJ+nbIOmHndPSwblhUFhVdrnwUJxikFFZJKKAFS3eF06TJRTvhI9aUpI21lGTYJSyO/jwapIecU+L4AjCJTlVDKHfLKDL81dSOq7yHU0i49pM+S5ml6mxQkCQkytiihk11efJC5DDAso+jWxcJfzJTp+FhaPUxrvBkX8o4StYtG9KPY0DaG/nV9MQ8nPPCgVY+tmKimxoLrhvkZUdlqBrgC3g+TrXX0e3/g5t8fP9qTYV4GNFS31Js4mRnHIBFqpeHAI1soqMND7PBpZbU1bSyk4OcqBXvpMrsoEkS1Nt4tu3U7yd8xOsoKcFEVlfYBNsJu8teSyVBa0yMmbXmgD/dv7OmIISfjcM0kbCOpUgWpHiqHpVnyn/EMaM1+4isqFuXSKh6uXc+L5ihM9P7etIruh/l9F+SxhHoMnuvbO3BPX//6aLp2YQEgD2XGNqlYcAqUaTZO6WisiN8AZQySfiH0aKtjUidHrVEpYbKxGpNXTrdpoeWzVfYLFvhbQozm41yAN0wmQXbcFWHsp1fw7ZejYVyZGvI4iD0JXnuONSowQottaacqrqiaj+KaxcvVoS90mJReOsWXFx5qka1ov0tZVVMHpt2bx2b/wzj5L1vBVyMbooIsVOVOEPUHsTifBqHTyhUceMJai0ckW+PHPfmIWDO392erLTk/OFP28Gs1dee9hY2sffryR9UocluhObgZ7lmlyrsWtxUZnUsamSGnpoM6USkHM2c5rnoKjBYM8oTX5AIF/Asm8CtLdeTPwOLuD/FCxXR/zaQibkt9Bp/GCqnJ8DU1Pe8cf2gQx03rWr+e0UZyEy6xRtbAjM57qLnv8GGP/Iqvr7UdNCl9j2O/E+QWRBYtz+/a+G3VfPbhTfX2y2fFTK/w7nF7e5DS2yY983WstrynHTap77tz7kZhoTYMiakElgLIdVmAE3FLN6VRKxJEdSnpglyNtn9ftYPgjlDy9rHhL7cm8IlYOH/eJYP3zURYu/ETIWaRqBsuRZn2bWrfMmUx9AUrZ3xh14cVx+VkS2y6GjzrrYqxbt1S2SZPExrC2W7PEIkw9qnba2XwGiBFbaoC+luHiotnxjbH8rKjzwcpasnhCtqTZdbzfcCsp+HVAz3ES3yljuVS7ihyznLKAvNcHVmxyjzXtxDRtLHOhZQCELYR0Hpyt5LyxnhzoSSpUQ+74UK8FTT/mzOfsf/LRAPxsBf7Xo7Odd9r/cV/vzvK0n3Lw+el0cYwqy0zMsHYXovWSCKGMDtH3VT7KJc0AK/kt+T0XjBnSXcDkN7Jv/OpT56ifNj/cpky+Jj3f1g8WTuOMhc3FhRAdoVBLEz9eVLrQu6dGh/TWUOkVJ6qGfdCKzCLhyunA8/LpuNjdykNHlbN1/5woFxa0gzN0nlzKhPTIxn72Qv0g4SJvCwHYoibxEiI91SMhpHSayJcjVngEgNhP1mdf3bwUeqPsNdk7rHyFV+VldluWIQ4ZrKtMtr2WSpZHDlhNySnbptTfvtH69fc5r64pv9/ncSqeTQBIIjLkbLucsmViIcdkVvzUPAyS5caEVZpoT5Oygt/5QplqJBJggpJPD4JIi9uXDPIKGMRXjohUM49lFIzLqlM1U7+OOYRKpPUaYCVUwA6m/Acpx6dE4xAPR4xaG2EWdySggAwtet7IhiOI4j76A9vc7xjRzumwyqUE6prwdR0PqwvIEeDFJ80mTMBBwzKEWmD+SqlLBInlwiCAZVS5faHDEzknfd2bIgXYvWxhVpjDUXYiNUu+/2WUyyIKCggtByUTHFadUyPdJX+69qvT79rQOfDjQj7i6MgXxC3sgg+RKjPWGG/Rdfta6Gp9Wmjh1OnUPhmiBCVq1Top8d0JUlA7aEMnbQsyUylcQDu1+QJvZPm17aVRr+SOuX7ZMLtkQvBSmOIJqtNW1dTUhr1n+X/AeQvIYufJU//3CaZVGYQGzTYeMJvrssTNdlozCtDQ8nWzdFWyc+Gnjq5pPS/NpCMPoDMeED80Tgw/uOmogVf8uQePbAJ0GySl7RkGEmJGU18CeDnFQJ6z47mUfyfdYhvihruzu4lyus9j5Bb15QP7O2YMhqexhgJoQqD4Oo1EUO1lz2N6xrtYRH2GiOtGX9inVRHunZ8+h/2H8EcRZHscHRLjAjBntDrCjLvbbuRp16Ikpk1f4rcIy0AO52Rq8vtQcISLNq3x5VZgSYBB44y24w2p8pWNcxfuFkX266LHcm6bKVc7NxmsAoTnciTsvGjtWC62DAd5tCWNVQGdmn3HVe8bxP87+8WufWuZS5G4VK0ut5XylYFpEpKLXW51sJZJ7EwrCqrOs8FBnNuNl/bMTeLpGYIjEUBz3makNayK27+zrUrR8jd+aSc9KvWveEQIcMq6YOUNaN8skDQnaFFPO519q3+iuh5gAYoStkzIXY9OLvxJLLGC0mmMrCscXB6DnpSYtJ/lM8xq4+cdbEPjjZP2eL+qEpnkSkwZvvz5LzFjbf8ShMGfC6U4AB+A1/6oGDzQRxT8iEyEt4VGV5drtRUE0NwKhnvbY2BWl7jca3pZeV8BrJFx6U9Bi0mKALYM3Zlx+tYGtYAxIwrxu5KCrt+tnT1QAF4OSLh8jnY2a9Kewlszvq0repDDBjMTDvgdsqP8ZLkcaV7bdgNFUOBI9kEXXtFCJ7+T07kti5xmVPFPEFk64WJ3RoNL58oXVZ8mpaUTMoAtKWARTxQGLJNynxzZTsR4scFEXNjxpeCzRtgqGM/vqlciBAgXy4b29NHXS1OqsIA7pzgjmB5bRSyAEeUbxVhfUXbfqJiH5b213nPhdFHy6ETTpM0tr1cH8A1dVEUevVo80Z3mg8x86A/HgHanOty5kVu85Qz+nxEmLmrMsKT4efWyK1Gds7ennV1RWT5ThVVkx/oF32gIyjl4hQ/TDOucC5crGKPNDdOHalUpp6hTKdrm7qY4oKB8p9COuLdLv22NH5ZZDmXNZpl+cb169vcCCIlQwcn7AqB44lHZ/SokdoZIMV+JMVRSHShlPYhoc/0KAIoFyuyFrYCjAYA24M1N4RJtqGt8EbCRSL+LJitd7xwxHf2O5jY6T+L9Yw1EqKoAOaUpq5noFlN7fZGPStDG86RlRp5yd0iiJ5WR5eXu/bW/6CT5P1Npg2q6J4t8x59+zlVjCh5imlk3oxQ6yYZ+lo4XXxOGxhKaD+FZCrar31lh+J3wGhZPELyFsynOnTYphfNXgvwZA1gIiCDrb/RbCVxVdi5N1C1w+m2ZNfLoDKSi1FC1sHVvdOKb4U/NwaCfkCulSdRU0wdgpTXvz5Akno2H90bsb+YT3cKmnXWIsPLJRRJGtkRACkFAdQkAhpeqAcl7uNklcnRzRz8ZouXqzjpBeJ1Y4QnsmeTqSzxKpUb8dvDgjoCnaq0RkA46OUWNaFReUTB1j8ehTQcPkNqTw//B/Qz715FHCqONicok78Amt5j6FZgDXCry9aLWPHRUdel+x4l4BsCiz87PSK8P92g7K5hKD+/6yYLhEOzI0q83fOdzw0DwPZPtdGcCSNxBcuJWNdAhzjt15SSzk5z5vqitl57m0LKncxdlLyV4rOwgybAZXZ9a92S/hTH6biRk11wZaWjYgPzLjg04Qz8n81KcEulXA6JjP2LWk6laCkeLIW8mutdCdidspN1T9JS4+KXtcaqLrve6/EgFLftoi2ul/HxGTE5cSBIMUGBEelJKGUrrj4QT6qpknCJp8r84kAePn6nDjb2f6z6m/vYdkbALyIuUxHW4F2JxsbzrDQ6ZoIBHk5sF8UfSGoXGTC8T5Z/guESAm0lWWZl1f1ff2bQ6ZWwQj9NmZc8EnflxGGQaaMrnkgWWs1VM2/GDj506f5RmYgrpjeNcMUB08kebL6ckWO3D1X16zV66UsLkXSBfLz/UnA43Ok0vPcOoxqxtpM28vSj1it47c0jIY0485fZ5pCV8Vi2vDw2WbNaYvSDpK6XkpRQb51d5uvQRM61ARLuDfOHcI3xy5KKHedwUhAq6lmf6wHKXaWvc2hFpjhg/oYxaQUL1q0JIZcaBSqE3BVeNlK8W3RHvrvSPq9t1nLu/9hUsuicqajrbH6mSoJnG8cDZ0m+/6gwSKxIyJ7jAT4kyMOCVf2vKUmbywPruDJJZ1rsy8fb/4c5Wb0KHJwbvawlZ6LRjw7ygZyo2gsqHZsJBryht6kunbbd1/ks1pIaYPItM4eEQlmJOwbLw2W/PenqUz+cXCBNYYG9WeLE6lQksk/fikBVHOKzmTUrcFLm8bvK/OTf7/JsAY7atg5A9cjfhu/abTlm7F4oG9X6/npAvpXVezT//AjKGJOHJATS2Y29PdFQHqQVX2ewH8E5poYAnpD/cnMCoe0J4UeGo8hB4Nw0ZF6czdIyrBydBK2iQ0UoB9FTepMbBTibPvWDyKkRfKyi0XrXhXyrPc8LeU7jTyogYdtnJyIlAHLDj4h4cBrg3aYUJYdBw3mpdGcEtuUEjewV3YrOvCYtvRXazvhiQu1fHDJkjMSC/TCFiqGrGtekJc6RMSqgbk2BVF71XxJTtj5+a96akY6Qqid1V05GNKi7Qk97lrUi3bhLf0RMw9oYaM+T9s49jEo3BT8KUq+PA6yOXMEGEHS+sil2FtLLWzYXQUPSioSO/YbjEmWVmf/MVk1UA85lUFhXGmCyJB1h+yVtGc3NDqfKiByojFoBxozNdC24HDZJ9SNVaEt4aLJHoYh0BEXSCahFDcG4sUOd06+JLCOvZmeZpdo7TST76NYioDX3r7n4xKeEv1VInRmd2fGL8pcbo9aaQN/r/zuRbHjLDXR2AfVMCfeaeYzkEfBYR07EtpuEIsMn3sCvovta1IRVRuSKdeteWXG5ww0DwcFrqLrzsb0+qSaSbOaxf4m5esZU4dgci+V2/zG7VnzmDbd2y2rMqX+yNLlNjw09KdluisNCHmIevCyNDJmGN1UokSs38stlHGWVHgZ6AZKOrrWt9PKvbaWjbIti4ULxg1qkpzlYERgzHPbkQmr5/zeYr0Usy9eNVwfyLz3OUuHRxGh5XP3+GeKH6/k0HMAB3QZRY+JvfZ+GBtwzDOHv2klIXimOCrgW2UmVTs1sMbUGF+AJ+SqnZlfr+b9hjkizenh6EJSyNcEt0TE7ygX/+govMzMM9PMNYHfeucntVv6qizHiEgMhLKTrYVPn0YnfCPfViqQX2DTJmfT0OUkAEBBRYS9ZyHXRk4LtpRSIwmsA25WPNoDrfU2R5S4Vk5y9BoejdSnVZxN5k13vecCwr7aX3me/dgxh3xM1lAlYfYZitMUUqWw/fb+gKUTd45ju/hvmbQmUBbP0zPS/It82IcT8Cx0WR9vMkdoWqx9swUIHWL1hlR4/Gm/WKmGmwlSCNzp+42fwF0L2MR6EPvI5ZBPEP1CHYuJgClIpxyC+rPKdkt1/TvMHnU/dyncuC/QLNLyJaP6Xj2ZgKLNVO3b0KntoEFFruxhf7cdv96NGEouISg4NNl84rbC77f6/IFdz5rFAFKhROALLWOdjoRBEwydgRSMwy3T1u2x9qgj1QysQxn6aod1SJDciLsMl442iGJSqKH/v4LMaD6YTDgZQJAqC8WhhnZOyai3zfN/j/ZhKtddvpmn73Qb4NEx70Lpwlqe8SwChI2WhCCJ+lIfW2p38Q8aL2QRNIjzH7MeaeKnpKXH/mYMlgdUUOkrUPLoQe37tFpA==
Variant 4 DifficultyLevel 705
Question
The mass of a trout fish is 8.1 kilograms.
Its length is 0.87 metres.
A rule that can be used to approximately predict the length of a trout from its mass is
l \large l l = m 10 \sqrt{ \dfrac{m}{10}} 1 0 m
where l \large l l is the length of the trout in metres and m \large m m is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
Worked Solution
Actual length = 0.87 m = 87 cm
Predicted length
= 8.1 10 \sqrt{\dfrac{8.1}{10}} 1 0 8 . 1
= 0.81 \sqrt{0.81} 0 . 8 1
= 0.90 m
= 90 cm
∴ \therefore ∴ Difference
= 90 − - − 87
= 3 cm
Question Type Answer Box
Variables Variable name Variable value question The mass of a trout fish is 8.1 kilograms.
Its length is 0.87 metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/NAPX-F4-CA29-SA_var4.svg 330 indent3 vpad
A rule that can be used to approximately predict the length of a trout from its mass is
>>$\large l$ = $\sqrt{ \dfrac{m}{10}}$
where $\large l$ is the length of the trout in metres and $\large m$ is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
workedSolution Actual length = 0.87 m = 87 cm
Predicted length
>> = $\sqrt{\dfrac{8.1}{10}}$
>> = $\sqrt{0.81}$
>>= 0.90 m
>>= 90 cm
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 90 $-$ 87 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 3
U2FsdGVkX18u0FoEG4EODyflwCWfE7FAEhydG+Mqv8TUYHccIgvotVcaRTj+DeZtCBz9QOSPUJGW+sUa7ilHUONmFTsgItm/3MI5d/3hU8xrTBybWD6/Zf5P4OArFs2htl2lKUoY4RxFlJbQDy1l2FlCTj7TXea8q7OpoHxERyG09wEtMsBjbZjpO5AGCE/y9WuPQzAmov1AZzsPqV5NO4CTdabWg/bvGglkkMMykItMABbrzQHF21EaUJPzsqFG7XyQwvnnFuy2EQlk+8uJGYx8TBmGR9jl7eP8fJxqLX6HQ401MdptTY6igfA5v7V0LiMegp5n/oBbtbEHTtwTNZ9TkCT8xtXzo3uk4rv+a1U9roe4gI2O72fbDrxFF6CKkvhwXbzp7sqW1pKhCANnYGZvPoX+0Z5XjIJaFoQ8h4LMRNLjs2JZy1VTcgqREnpRAKGNY9D9t4xxUZVcCd0rK+NjxqHDM/ZNFyOlz3NCg20/H/OXui6MvblJSDQzRI9aqIFuaHQB8gU+EU2tQ3N1elhs6+cs8NzpkS+jPZpCLGlJlqZG7FRzUZ3YR7frIO2n0NoCIuaIwhZSGIrww8qguE7SuxKRitjj+XgmxlpANFokUGvO6Htd991yTyQJxA32ohnx4PLvDCTdnZDsbUABJ87SsaTWv63vZy//heFa2+J4fFd13fyrB1EvfTn8iB6PNDkDZ9TOL07VV+Zq/xBtDoj0vcH+e4RiFCxXaZGXPo8vkaz6AmkS3AQ+tDBJI71A5AnOfBQsn7253j5y2eltfRJpFyonxucWefOw0P1WzN/QEf/dYT6+CNCLHXEo2UDbOA9SvGCjQDgaNpjraLWHdxLBRZHX4SfP2q7g27Jibz/SRT5YoMV/rF2g3bYHgBXMIV8uKx5MCl0rqKGyx5jE58gbzJAVfUdk5PGHISuxoCH/OJUAkyI6GHF+/lYG5wFqUQnLcbpQCsJhKIQzzFw3QRe24FptOvG5GeQe4wNHfhVoBeKnWsWvuzfKjlEORPM/uklf3RF/cKfTHkYrvPAmpX7hvBdOryJxginnOkoS6utoxmC56MFR+vfT8cMeRkADMTEVP8X8nU4YMImCjskK9NOUqNrgBkLHQae/A3W15qrnPrJFvE0i9UNoVTrhUdcJ7WLoGEVkpuVDw+m4UMv4hFNucTM3QTxDZJrnhnt3VleC2S7a8ilhkAc0+yFAftzhdZIjN1vIIHBg+6CxUFo0Hum1CAoQmXvtyp3z+VrIfwj/APq/hdvDs3BwTMCudYl6QTN9Ydly2qDKRwnvF/6DHHYJgQO0xktQDDyp3xcRuWh/2xwqCLHTkVsAx5u880RGJDgQUVNHaza1F5+bx0E1xy7GroTkcDa2VDI2eSYb69PVr1kJz9L7yrDs0mHF/sEPk1hB49u8i/jN4OEhc2zEp2+hujeo4tVbdKGllvwGVoYaqFbvFs01PtQQzXlGT93Vb48Ah6XrY+YNCQyX/Ed/XlB/qKY+l5mw2j23YpeSD5WejPKhjmSLRWu/TkdSNiw0g9dEDspi7mmQ7M+oChXThxVbxVL2T5z+adDPxSxq9/hkrirkUBLivX8nt+L2aYEjAoaM+gNC6NKkWifiplhTQLEl1HNh3VW1aacLmYVcQ13tecs6BRzHl2jBqih3+AQajONslAM6mV7q2aFUrDgFuELb7Roeiqkd6J2WWHdNrAuBFaimricuhBZ4LfHKOd0OUxbQWTcd+hUjKUvnFzh1j4thpfBd4ezwp3ShojisAhqAISNvyk0dfaWrmILtb/4DMIp6bHkHxdB3BSHQJjQQ7AfTj8JdIgQAzyc16Xn3hSO7oIFL2ftnN87a1QUhn7lXtbXLEhLks7LZqU5U/bSMbf0La+J/JQLF3ISfCCotr9iiKDuINxUCfedFfr8uIiGijnu1MKFyEr7Rbo/8WT69p071BRnv4PowGQ523nVopZ9JJGCfk0ZHgguL+Waq1J/EjSFS8D2mBGuYAB3toaUEgOjpucDIKuipCYuiCKZ9wY5dUwNI5+x8PiZXXzQ0zwNc/7fdVu8SIVmZbFhhvA9s1M7tk3vcHVCc40DgWU5+wdpsIYVOYBdC7IlT5MHvwz/4xFLwL0rYCzh4EfWc4CsOgxaCul3Bfj4kzYm7XdoTTMK9iw8rB5sX9Z+YxMgZKTV/0H8KOt3Vs2Y/3OLxTb45CRKLYdWM76ExykaODco5+BCpM1qs0d96rriYJCi0S20s5ib6z2CeJXUs5YpLRtXqSzrvIpM3GrU65AuIzMFeZ5lR1r0y4dqQ18Soo8PXAAmDOZt2oeEmmpL3DdF3EXTf7NfALuGuIHoErXseSvSJiaoF7ed5/LJ3MYe30MbaF4mdKbT4a5vSJGl9eetTCQRrxgbz1Xwi/NeAxPA8wRLp1sS8Io8BzcyKfNOgIhIi6I+q/32DzzQ+bE5tY4w3zSYuN37iaGpujeuzuuOsixq/MpEW38FHXYAh0J8NN/OreztB01dq7BpUFppQEhczx7TgUhKSJ9L2tbFairSf97/MWngj3TW6gzfV6nR4z/D83ykkbLuH2OdKSzny0KLR0PTYV2bF5sCmh4zIHnHmh2B8a+TrHDniQ7m6o+604ZyCYpze1tDTW9dD6dWipDugNPOkjBOYPXqRuFwcZpKUOwS6of+jPSbtHy0PcmOxxprypCm3LURl8hHHKqJM6lfw/9DE8tqdO2sre55GZRvt5mwamRAlKX9DJu2hMzdVy66q+NrbjYnSK6TnlLq68K7sg75YHjSGe+S3+fjxShhKhqYA5mtm/GrPA8pHay6UnoLvHl5eAh4e+unBf9BXT/oTEfCM9BtTcvn4dobPcCLvON5YEgllirE2VDH05VQJte9m8bcAnI9fXvdCjbGOktjHNheDMYjOU7ejZrvU/k9crUjwXUaYchhCEMwy3P4fvp6tyFhXInv2wLdOQjGr6RM3B9EWd7E46XaG/zORaoVaJUvEb5jcIHHh33zcPOzznE11y1cnmGJMhuQfXcRxEugSGL3Az/pILSwbLUT1YQT7qV1asAzMMunHQht7asXb4n9KzIZGU1qzeszi9zDmXz78HlzCQ4Comr6r+9QoLGIMl4GiGnNex76eqbfd1NrphlOKRoqlvPpX9LUDhlSho5fhZ15JGmiL32t4FGFWZM+xr8yqSiKx0O583OqPmRzr/nmr2oTgqHjNjhfIlFMa0bm3E5s7JBjESb9UGE/UEv7Xh8yD1505fIVteHkFT6p82EQf+F+4bD5iof1HH/2ryU3qGPSK5AfCNpCKmCNYtyPwpdfR6z7+iCRv1TVmYxHJXCMzoEKiLtF4pTzcLKNUyQCRaoSMhDUU1IWjxr5PwIXABqotsKKbl6RPGlbqSBOastKLruiW4CYw58WBpIycV8BvrV1L6HKm1sUliDzpUty2/SW1JfShGvBeeCcpogibnQfeURNIp4s6N5eWIMxnca4PH/C8PDgbi7idPFLgnK/wVgWBout3uVoE4EO666f0RfNawTqZeWsodiqIOHwr5BH0UUuSXNb5kJzw0euUt/8+hjAlVw/sTMMW/grwEyulsoSkiOZOkMmpJi+RNFLkTaWGyBqAzdmfr/SC4vGydA1rDJ8W5A4JvoWPAxbiY8Q8saEBL9XLT53qvAIPzvnFWCymurtvXCu7qy/Zxl54dMpVybi+x/DThP6RIbLhydMqJ7tW+8HVPt2US4mW1AqhJp86ueN/kSaDgihaeqz4YX5Z2+6krX+IbJXfwqCKIUJfJPNZv3LPg2RTziRbDpoBA7ZgbA+VvV0Xjg5A8Nd4kNHzDUxkW2fQQQtaOsC2i3e/vC7abOvbG34sS6NFNCCTq5EkkWFUHin5fM/krfYyH7OQbs8Zoz/Cq4JC21jehUqpk/U074ATfIIfdXb93N8VBT0JScLx6ETBfk4SeaDhOoz18A9aNEQ3FefiFyIvTYNri3pHXjMcjSbxKjzQ1ROBtz1khsMTq3JBX/EKbNecyFMHMCFcrpIPeA9m304ppFNymSvY7OjuwA5k7OUgPVAS+rsRY6FFUmwJbdYjIpSEHVVRrltyp7fO6GZkwViAUlemM0B60k7askZNSa3oYj8LsuT4imtUI/d5hT+kWMaS9Eqw6xPhvVWLoDmXo17s9sxhoCl8zaaIG/mqIsb/dHv8hGv5bumfSjuLEWc7GQ5jgkYKNlqQJMH4MJj9ewJg7pxRjI6Q0kWRiLvLSTy+vQry+iwmIwNJAyqa/24espI/tA7oXYzij6YqA7xTI2gbeBQiNuT8OekvXEca4kIBuo/lIYKXDtAL8byv7atu3mIkVGnAEaeP9Vfs6s/ZWPREUmTQkR2F4iI0IxQbcmrEKde6Vq1DUpMPtnosEL4NY6T54ogliRQ7BuQHrNGeliQizf8UttDg+DsRKLWcBFtIwrmYm7183RF3Yvv41397wMubIgyLzRSpJncHvROpFV0i1TOiy2g/OwXyg2dl+H4W2Og6ZxqX16LflFNNr/Ns0OHN/JhVTHWk2DUHZDMPyqprmVFZDXnx+J/iJwKUvloovuRbJQ5adr7FBpIClmcRHh1uCShvHQSH80vpa5lNbtTwTKXRpEXOg+MHQSM7/XrVWkrobOiJyAhMhTNHtYIEdCNd5YedM+roJstrMEZDaPQarO+2CfGgvhQSRTP87d1XVZcwc8aDCjmQK8Wc4iWWj08FhiMSAXTSj2OZgtm2zHxkhaiVUhWgOJDJtvfybKMD6JEziWesVgXLPbeoXN8NN2dQULT4gQjqBdLR9AzpTGPsjrzITIb4LiGHkeoDYNZ3o/0MGYhx2fWoQLGE9AxJKjPGKDNogRrcuQ5rUT9S4Z6rQBFUEtYv05k3/59dzrhV1RgdIQLzlVNMxddmcy1GIzRQvHnKDyEHrhL+TKfRt1N9CCIIHiRlank4XIQCHr8JRA1yVRrlXTbuwzM2NEI8Z3hq7prhpzUHvlkc/h63hv2fPESU6jLQKMYMibK626o3w0y7bKiocKIcez5rtMd2Gs/lAdEAREeQ20tabCFndGaD13Rhqr9k9YZZ8mIF3tO0ep5fylNloH9hSWe1Y1pOmetIOC+X9jE86tZlTAnbYwPJTt0BR30yp9qsnvEQ8mKiVPZoLueX7kPzNERlXKJFxQaaKnsrTIyTmxLTTkcURbLljnYw4FZJbFE5mkjdTdfktJibP+iFY82k22a22SHGJrC5g+AymHzbAhcgu6ADF2Akqw/02ZSpPn1trM4eo68OhdXZewzSgq4+ja8LeJ7e5H546Nv+Tecf34bpvor0xoedXlL4g29K4UvNkdImcAOPeyOrX8w6rdlFSbg74CtoryUudlcIqDp0cawxAkYI4VlvW9SGCv6WKapktDnICYejsZ5ZCcPDpRt6dRKVfBPHlh9ZkWKY9yn8zKt575XmJvq3JFYULw0Gy4V+ZK7jOxWWxXUVNT3/nuzfNUp5IKGGjXFer26UGSCxj50rarXZzwh/qxIRMjyIZEYCOJkBYStuRtA7KTaCu2f4N9s1RdiH/ZDKOCiWsMgo8P+wNIM6F4XkWVNBJtmaDSzKEgdRMV4TTV1BYCm6Cb/QrwcL9S9RcZ4DUEYb0VD3bCMk4ZtYKL/NtlIE1JT4lQRld4hq2VuCOibl4MXxiJFv2EBIJh6XVnL/a7ws0iAZrw8XeRwtUd40aqW+pIb1sstQgqOlHOk8yD8BV5mPfAq8tXip5Jmwqrsao+mKyIbcCvzgGI3sdibXoYSbddV4ALTSS5pxL6u5pdGKI27cztV9h+a9TJ4qZHms1dkdvD4WlBt7ItY4ytjqYCNEYtPfeicFl2ejdlXsXqwUvoJ9fJl3XzwCwoA10SCnBJ1tGSnNqC3aQw8V36mUpZHPfRmJ23a2TMl5GQO8ClrwzeFabWciyNXjSxxttz4W0ptMxonspVw0DrAj6D3PPjbyx7uSsFs/HgmCfAIe/Y/yOjPt8gJaMMj8OwelG/63CCBApDaLLNoSkcY/WUXFtcLz/JUIWISrxGm8sOv8ZDk7jzBthaW0mGm/UwpbauyjNnA8FUnr950FxJCwd2qXyOIDvU2WgOpfySXYCVpjbTKkQhT46dsIh/j5P8rNn/V5B2ueUvPUrQ7L+zoWxq1DfazBrpHXgb4gU/MtGrAs5GmJhqJf2Hm6mbpmyP9owb5jxTVkotRduuUzC9vFeBKZzPPuTyGPVagFx974M9M79CedIdcezHOdKJR9Y5dC99iDTbgLM8fADBHDrmpk4omt0Zyb39V8pb1V6MTsKt7i5gShPNV6embOYYK+8THIrfZiAcGdQLH67p8KRByJ6S7m7TitaACqQ7ZaES9nPCvnYKjMjPsh7ADv4fJMYziFILQUuDoZbMVKr7SS1YimozOHvpbA9jaKpXBvROFgcFsi+pruYnwD9NiEG+vH3cLo4GLTia3ZCOE0pXMDVvzsg1H1Bfc/aVbJ4ZVAOLitjeOvjiexF0PluO0YmMAofAIXY1PLTSghA14YPxzmbmGPG8GPEeMKbbFSGair9psKGuo3vaDKOuzEyq6o3ry7HTxRdMopat3TQTw/OUi44ni8cia88z+ZGPYJlVr1PdFcQDjH1bf5PpGpUWAnWOVaCu81sKLCXnzutbTYdXsBHpjklyVCDaKyYd36R9+mFvhj9For3G7y7BfcWOuZ768Fap4euZjGJ+6xbdz+T/r3LLsrqKH2vKk+oSQM9h9X1TL7uluhz6pdmvG7C91wSNgCSWSOmCaFd0uG+ZXVyJVNTrn5RjpRhFV8oICwNAFmOHc74BN+yGaiE7wQSnQ5WowUIZZuI3jo7LAFvuzdBbZpuYhCo21IhzBGjkwznWR4X4K/oyjJVbtFNvyaTLgbwo8QFd9oZQCPmgVNex2Mp3CXpH3sZvZxe0PvDKB/2baXUFAVlBrm3zVbvB9DTW0svi4C4cF5wa7UjiJUeMkDKHdPrBL9fjavMLo5XizjWYcIxxbcryzOqYfiWxQIp2mwVb3PR1ogX+C/Nozfku+ruy70R4SDmK0y6zDxe28pkkgh1OtLd+SynKO7DMvi9i8aGUFS2r18DEOmGWosztz6zy1UgMcdbRMPOrhqQnZOS1LMgrPySUI/kUjmuZ5IGhr6R7kcp7il0VtmFlzN9OCqkNI4b8uZryWSMbl684mixoJuv3MLvRrVD2zju/Md4us2dkxEQKAh82WdwPvkCOv9X/domevJCeGlyezlJkcWb4MI2mtwq8eV0qV1phvK7oqoqjeP4J5sTS5o6wLcQB6dOLmRok7xC+2jhprVbkpmjMR/cb4AL9XXYhF19yt5A8vpzmuuXYtam7a9yZcw5SqshSZGTWrvnNxlv5+juyT6vBqoUuMI7kAdhmrdBbx3clw4HLw8dx22kPKOum+42+CgwvHxH09kISt0ymOKTGc5+Q0vYnZqeznOyUv3fx9cqKE/2WOnWaj8E7bdyUXgCJZ/gWecEVBauDrwntaf2bxbyguSw5jfMz30aMBvlh4q9sP6Tvtd2sojpXCzLCohqkRw7KPxyhGGHucfhQPGxuXTseDn6bqCOpHuFRfd9fLt5JohTb3Q9X0QxHPt0JyzZcrJbnX+1VTZbpysAM1uhPnU0iPxk+RD9+GMI0xzrZDVxAxTAW9kDb8BeU0b2ZKP+26Ykm8o4rufrSmvgb5147xOt7KqBM6GysOlUHufVm2jttB+eBfdVYtmL0ltp3OyJO8NzJYEjw0rl0B0vJMtLKF5Bhubw9XYBt+niejE/S4A8Tb0uIsojBv8XfRpwF6uV/yt/uvz6o/fJdSuwV+xkVhdza6IG3UboI4hIfYaFAp2F1WYafAeQMlFxBltt/td+Is1HPIfsDZp0sPK/gzQufImYEfLdyOTDGjhXaB3nhVtCAiM4Bk9lCAGtkp8LQWL9zrWZ2YAGTxwlNef0bPT0+KsbLUFU9kc526A/94FGWEoBCRUHUy9iXHiAm6GcwaHdxSWsQ/elBxE1Okk63hEsv7zDtnx7BaAmKcZCbvvCKeRvZ5CUYnz4TlBzcKIHb2i3oY26svu0QWrhLjhLto7+MPrpnOmYpKb07Y0ZsE3vpiE5EijC2O5JJ5na8XN5lz/9QG4UMfLhS6VtR/L6rSWSjHBpMXvDIEZ3bsT1xTMMQ9DK4QTpT0IgeJhMbFZ3dV67YxV1oketjpm2oHJiZLFXM3XbM35WHh6RMU2Y8A0c/fDHhrQD9D3RyQKlwMTY8a5H3p5rC7/YkJPs3qXyIGYw+DFo4s8y4DM2EXthp0pQN0VsFBGcqzgsucuh2QHFe1gWqIXrOMpKToTOwgcIBAZhLRdbbCB6r8HV0/f0nxITKakXBZy/AoZw6iTmzeP5WL+/5LLGgIGIyhDXZ4qWCbbSK72Fq0lzALfzkgJRUYCL0nvlmiK4c6pdYhOhKJSvi4DVEdnuiYQE1vWkV8KTIj3GKYrC0K+CWKhzmlPC1XL3m3qBRttWtyP2+7oFvcEx5JwRSaX845Ko7QjbotsI9Pv3J8ccm/1sFhUMXTlOOLbOmMc2txDe8XUtqFXtXM16qUaAlA3t/Atqr/eCRJj0dXTPWRuKQIZsfgpzdNwmKwqtfH4CQyHbXwSVbCgBxssJLAcRHMiX5AEK735/nk6v15D3Bpm8qEs91pxxQ2CYER1kYkHc/TASZLVg33wQ92Yj6MOo/Orb6TG0gpaatksgAdQP1nuIpVSRUI9FdqbF8fz3NEabB9wewnUctOS7i09ebObLaCyyhl/MU0kpLoIkWOKA9Q1/iNUFZm7z5wKCKlkqh9vvahl28W7FLVlUMKY1K27pRY0KT+YHBwJMpU6JdmtulHJQD9t5XMqzr1M/4DcAo0SgQTxpvhqnptOQ2c7GOBItBg1WWhaaEbWZkLZGPCUu9ADzL3iniaXgi1F0hxL2P74iyEg6CYoNPNyzqwK9r/0Q3d6TX2X26BtISjXNJuAu3bYLw2nxCgfRtFTSpMAIvbBSH5VOVUAJ1cRAy24v9NGz7C4vdPdLjkJRIFRrtK+lCNaMf3HEgyaLYxzKMmTmQGZoaqzKGb5plQfqy0TZoqIYPB5Xki3I8xyTMZBQgeSf6oCurOOeDNp4WoYjoHiElXZXpONKWnNoVeRzYkgTqB0SNcnxd1AE4wx0MCpk0XBv9uzTeysd2jwFjDzprUdo5ohTl14x2EC+KXzyQLerfu/IOuLAId5ctr6BBzVOBJwLcuhKO0GN5LURQa5Lr2Ks1e2YschX2k04sSTu/0i3Kn51GV6YDKZVNsA9wj7o8OmgbxdaGKt5Yc2PmFvnv+kVe4WI5BKgOXWdeEeupnpRoYz16GL/056nZnzbehI6Ma3sWVJHHRrS3NHTBPpKhHWc2CwDUhT0R5lrtKvREWpp1agiYArZi09LTuouUU6TxVwx6oo0X7tt4+oBOHiLsnGVpgg/Uv8YsGmQ4gq5ABNmobMKZTxm9+In3Cp1Kvh/CWgvUZjJ4tsqMFEfgMoyvhYF9RIXPzJfKTwOUkXekc5mcHzMQ4eKVFcv+f/0rKcmL5TVEsi0vTo7VgsrU6X5CO2HlfeLROiRdOBxHjAXLE1IIyxAUePN3x4l2rp+BVJlpgtAo/4pBiZ5YYaKXJziBMmqpLeWhiTF1Ptsg5I+ZkiSgc87iTYjuQFrxo2biKPtmW3cIuZAkxW8qREJHf8ORXqs5c4Q/HOd3SbZZSC6lH/vP9VPb8+R/r0EU+3vbG/IgAmpgrEeEAHli57KCSDccUtnahwdLcY8Si+B5qe1uQymWmRQOPL9NYdGoasyfGxndGRfNrqD+Op0zeLhyNz/s7yXt5IGIRHP0pP+oCrJabeVSSiVRyUF6lMlF+7te/j05XEZJmRtbbcswUlhPkebHPXL4r9UJnvimbe6S4XpaZEDnE2J/lNqRE8OJtxs+AdDC81R7o3PZ9UsSH7ooB6kRQ8azfBGg3mYrSxJPvGCNcnHnu773rZmov8752KR4N+Nw+i9GjYSNqEJUqkv5bRwVl6oucK9eccTR8cFRE42qey+8lEgIJefLZRq3GYpP62Z/02WS6o9NDVysl3/lJvM1A4Ct8JT4lCNoCS+9krZRQwWgqZFX9eSNZIkdAL+t/l05/pytnOV8zuDDS4NCWgyGXa/BEWjwqoigXaCJA+A18/r8Dvk0YdH145uWHpPQ+CD8n7Ek+CtCkwv+nlKRt57UQ6YEZ7BicQz8wWT9l2kcwHZfc71LJWn1d/YQg3yWQZ2+q3brq2eSolTRem7KUBlkMxkZgmpg5ZydS3TjnfRU8nEZzaqUuSz0wlHPe1e42WYdghk7w29d2Zl2kmUcvrFO++8059UBzSb0WL7UGGDPn46Pj0Egjq3llDFvFAppwBst8AZ02w+E59PHQ3aGcWwsAI0VWUMY9DygD1zIlpjps1OPHOwIPJS/JQHiltgTn0So3CkmCbckBl6o4KjSjIYRq/ckhKOInTYqRJBqB76nexdZo5hZMCUjK7yNKizhSlEXJRJ4k56q3R++IQuvRIVq5ZvfLr+9EmjnAVX151MWA0uQajAII6WVhJ0IcY4DhhpilZ4xx+WSsmMGbZnNDBwlkBKhafK1OgcIhEONs5JAczb8FX+cZHcaVq3yHQrRm3cunoJZST5vNBQfm6gzN6opoPVLdGWj4fM7QjLpBsEvDFJGeD73XPhqdyQdqfCd23vbBlOEj3QTiXwggAyTUlr7zqlEZWqC34y95vCYoM8LUrxroHR69De0xY+dST/JQNyKLtIirgIoKhB/4WYPQF8Gc0x04SOhgAsve748wQmM2BfQgddilhOqYVnOes1pkXVHm+adGcuVEEXvOlSngzJBJftAIWnImNRk43uU3x2ghSjLO1gldrfUfsQVxz+5IdzqwWAcAaOX8tXUgjvU+kO6YGXCliU5WprcXN6efHdcMKyScooe40+0L9deCsO/NqN1Ur7B2po0K9KhGVA+iVRBxIhQff0Ny5/gII4lHJMGw+f2XEXpv4F2Xh8l1kwb3AlkZGtLukHuk0SLmTQ3owNrfwqJwytAq9ngUvWdiTSwVWUR+BRwIXxiVZ+UKL89Uj34wy/iX990umf3dpTdvS1UiYhtRa1nEKGiJ75Vi3VRuYF5UbZgxKZ6DlJ1+OevkO09ClXUovnLtb9dLZEMyOO93rCwoAJ05X3cq3nxJk4UiYdkhKU7bd+9zYBWDma4jYAyoc7bo2wcE8E6uDLcBJ623DWPK4UztRBVMgjloZqMVVeWgcOR25Xz369zs1fXBfi2AVAIOfuAGrIJwU/Kpn+7XqeinfrvVwN4uWNDMYt4UUXNSIjYwsiyDRgHHzyzTvRkomjGl2FIw8JzsFjzK4iCUdcw9afjnkX/KIsPsCBnDisP6d76YXG6xCDtuCh4f7poF9T7vcqIX0RYIDtak9rltFa7upvtPQSvH9N36HPK85qQh24KBLWjrMRnqfW1o/TYwTtyEljjSOhrBEDh0669xVbI472RijQuJXbiXUwbpdcE3HVJMfq+3hhXPBFI1wXRXOqxcQjiasK1B6um0RaxTDR8iYG5s5SS8xRQtDIHzPio+ptNea00BDeVWo3u7vsM6VXoA9+Rz32O9Lm5Ufiq8jnu95LKk92Mx7/pvM/vR3yoXkjmlPu5Z7PdOK0WLHlr0Jpfj4k7sheLNMaufKzdT7nXmeT3GQzH6xXLCkMyxsvD4j9syF/QQTG321hcS+BwjKV25VjlY9NjsK5s1rQIdra4cyz5oEE0mR4mStcELxZ1WA40SVQgLccsr2fgp0BjYHMHm53wkS4q1Bzknp5aJxzzDvXkGy3xyx5YVeWoQONcR3S4wmnq+ZzjJk9AesVCcDT/O6qfTRyjMAx4+8cA8Kikp8x6Gw6xYmIvZ6cL7fjDVvRLwFnfnE20yfO7Y06lnPDcZ8FrLxf3IcqXsB7gnyJnliidyLppr2/P4PUvRj4USMSP+JyjcarbvSQZLHN2Qnt3PYe3fMd8pDOseEWhiszyeHWNE/HkNKm7Z3+2DzwU9TRETj8PGuhhFD3nQwPCmCzrr1DpejnDf79Gt1ngAa8Pp28sDcUToankLxQdkN6VsWijf04RDaAfk7FIVcc9xUspnYGt0AtVKdClYp7dep8NxCy12QHqxIBlCKbabNids9GnnvWyMBojhFdi9cuRxe74jFascJH/MjPNwugsjRIi6BlNdjMQrhXOiTzBO7aciXPDNjlaxciwnPygfzyuqkIhkND6dr/r7vmCFhlEy70p5KtHzLkErOslsqJs9KpQICeW1xNLlpj4fgzkbi41b2k8efb+OSM1DDrqErB69y076Zxj/ST/1m6n4fVkflmrfn8i4ln2bvb9p8pmqxP9flm2RG7Jk8uMqkaukeJvL3uevcPMbGFySUW2GcDxSHADfa23YDtoMV/DQYoLNy+wusBkyqz1C4BLGNMxTMlCNszXhGEr0dCKXay4IrRlZTKq6FVcNoSD2BAsgOh9pLO7LOwQQw0imXE3loU11hIHywPgeP3lO6dm/vjKHDok6S0dYP1tB3ybuK7uTEgtGRuVgMNC90WpGlnBTRa8K7OCntdxD5NLN1tiA3P5JBneTB1pphIjYhffhFBtZniakfmNSgdUoRWvywcC/Z5VDaqD46JgN1wSjhAzQUQetv5gTj3/TjKISLcPfLHzPSqJYAhXZdQu0QLKi0luib+PPZh00z8DUogEAw9jJ3mRl/f2Z3K2brLQo00EUD2Yog2T3bvsvOghNhIqAVpR9cM3HjMQwyYU9d8AK7E2ByXH++mV4BWI5qH+dq9oOdt5OcvCkKQcbROukQvbCo6L62He7ZxPgmWe1cnmSbA2aVj+dOZUrcVppldh+0cQBR2wz3+1QJozrvDcJ3rkGn5KWmbwFyIAJlyJZexC5Pj/854RhoKCOgA2/vV8XCcrVrED59tJ9wXilm/UyXm3gOJlg6Q9IhG/DFUL8OyvVBRis/yGZ+FArYHofYX3iehqZHC3qB90lY+yVyr3VoZISf7/0zBRXzelwN4tE3K1FEeTlOu5Em6TPsM+ezpiGBzfCLHS97K4v61hE+6/51I/OUugQyE8SZ8Cx+woaqf3Ezmhcs8EsZPTQvFU8h4Zik4yRhvYJqZXPDQncm9QqWbjvlsYfLNpHtoK7OPF7P806bhr4v4iVu9TP+xV/XQw46ZV/bxJjK7Oz2sDtC0ipYUM0N51tL7RwW/+gZAiTq2Y4xHYidvVXHSgGLMqwNu6SZYzdFNLC3h/OEPVgYoNRA3OtfRsv2JTIq2PLo4rRTriUHU/UjNgbxb1NpQ9xluON0Nm3cUx2wqVbdFGRSKHXjk+FzbNnUxKKm9ND9hA8YRT1ghrPBZRi2aYEOpOU6mufh+KI7s3iADYmB5DsfRJmE298cR9JDBykQyAvVJ2ePIh9zymkLcWCcm0URXBcDyX/aliILDUdQwHlaq80CEFjdnogYA0YX9Px6eZuUzHpR7pVoMI3b95TfAth9v00JcIjmmPGNULNzLk93B1DAn+Du8jbHZVc79KX+iKi5xjlysuL612FmDH0DeHO+FjIP+KZHIEyaW0Fpeq6xWByQ4KDdYhoR9xkdg2HKADyD4kX4Mplrq0/vwpIZ4WbuXVa1jlhrWvDW9uCTH9NiOw3pPLMi5FOnB6jhuYcsCadRNmrn6GDRGJ6BfdVWd9lcv/yIF2/BHxZTvODr4pHIjf2KXN27yCBkZ8nSAeC/OjIcf88yYsYPD8O/mbHlIAtZ8eVWK835PKlaG41/B/wQth1uT6nfHKKm7u4lOX70JltpjxpBZY9IkudUX6Q/Dce8QQqWhzRE30K4uQrJP+Q/VnIG35ty0Iro1O4s3diOntVZwstEYv+8aqsbP34YuL/pVYc4ivOBIjXgVbV12diYyIGAWBAkPzT+x4G9X+TMAkk0k4VRVJagaKwQBwiCC/UGKAdEiC5VU7ogvYq0aY7SRoEPJlD9dUrZbdnvF5LrRLqo/tOGP3PYpvc/YFSMHZ/7HbLrI8dNSnCeH3N1YBnWu8fTz3zxaL0XO+7oT1FAO7tZCqKnjBh17mv/5w8ATXOJEXgVA5Swuc+ePhlWBiXZcTrTVMTkOUZiT+4NcclbLjgP4n+WQg81oUgXa9zLhCbvG4DvscMX89MRF0HTKpNXF1SZvPJGufq1Yl6VCf9qDmE4xZMraZeIdcCFF9dpmlTU3o+MqDMO5/3NjHxiVHhLp4O9jLao6lbw2T1f/etMzEZc7GVbNqkSHBQRfwTZEU8I1+ADfNHohVOeAdbqcNMAHqVdzjgdNFlJmzkDriBy8yIGZojNRtttKvF5QZbnRQCaztDIME0PTZxiD4Mh8fzYYR/yTIvRAerCfNTZyYgIxeSTb17UDg4dA8jvh0Ol6HFYLU/kKuR91ctohm0L9rFmv4NA/DgTcb7sh9v8w8N+GTUJCSsNYNDJrb29OCVU1KXE/FvR5VkBoYBh8cwGSzYEXMAEbXosTNkL2eVV+Jc0DJ+h7AeZlBeVsRZmfHsPt9mUDxgaBkUD9MqTtkZBCGhvqHGadZYB4WIaQWAH1PK7SFGVIv21mHg52A4qEKHnaLNT4LO+IrQIf/z2cp14W7dXwZfkg1jXcspprMrpV5FpVXYGdCK8lMhkMCvctOCZFHsUKrjrpkrgjESMuJwRc+rUHBYgpvxElVsf0ei2/O7atbH7HWKeElluRfugBHDIaGnEUXV02O3dDZ1dU6S6Z07cMsYlfuweA9rogWWO1a1j77fdWNbYptmg0Ao2hiBTvmk3ps8vQq414szDJsNDN5+W2DWwRlZNq/WyPzGMmOCijAX9s/3KSkurvIUNrLp09CiBWmpEmT2GFB4zT10N57RG7wNR5nqVFOU5h6mIUSccuje0HijUNyu2eqiW3uXJ4oqLIYKQ0AYmCfBR8bFDMCX5Kb90s33BLRsH/1M171Y0JWDYTHqWXxTOd6VZgEanpf2C2Pj+B6WHZFyIg9lJONSWqGBWYfSCrJOYu2v4U8qhpKYev+EP7daPJ6IS9w9Sap2uWEI/GMX7ZHDl2VXpgoo9hLvW6Vz0oHwFD6jNR1WQOZ0XHC0k49eGWW2Ki5XKJ/7gOoFWZYV3/xaqc+M9Ecvt4fJmnXQomuL7Eg7LEqqp19T6FSMyCmVYGfkIpQbSAAGJPH8VGBxAkIMZwCeUp9Cz9v9P497r94UA1v87H45UId+37Cxy1cIL5TyF3ik3cnmk62We/CK7MryM65SvTAwGoicFvWakGKkmvBi4f55ng/yZ5SOufghUt2KWyXOOTrafbH59Vgwq5poc2PvAYj5DLiVBjdosSBFPBwfvqLQBOYo3nSy3/PYmdJOn8phoDzn68q8nkuMA3ueOZ6rtpbQp/ijk37yK/6RQlCfYkGgeBZp/eOVYw21+lGFUswkjC/aBV9bY3zPyRiSlf59Kp4Ui2VRiCHH6uh9xe+4Dqa6L+/t4cASDQ8fyjvW4uPntQ3pS/Z0gAeGylM7YekVaABqt607JhmXaqfj7uyeaCKZbgZxYbCMbh0WYLkkIEhGFKYm8iHnWGcrO7zVqQT1rxEZKreXyivE5Lbw6KYIYeIaPIOUNzBSH9criyRu4EA41t3z70eDXaQS0dGfDsEAfU3CRu16fDCLdHKsgFZ6A/4MhhLQOgF4F268TSieYoSyNWcvwlAaMJGAnt7LcXLlL8W9QPFTlhDgWJo5WffUWCKC7rHKPPegCGzsbhw==
Variant 5 DifficultyLevel 705
Question
The mass of a trout fish is 4.9 kilograms.
Its length is 0.64 metres.
A rule that can be used to approximately predict the length of a trout from its mass is
l \large l l = m 10 \sqrt{ \dfrac{m}{10}} 1 0 m
where l \large l l is the length of the trout in metres and m \large m m is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
Worked Solution
Actual length = 0.64 m = 64 cm
Predicted length
= 4.9 10 \sqrt{\dfrac{4.9}{10}} 1 0 4 . 9
= 0.49 \sqrt{0.49} 0 . 4 9
= 0.70 m
= 70 cm
∴ \therefore ∴ Difference
= 70 − - − 64
= 6 cm
Question Type Answer Box
Variables Variable name Variable value question The mass of a trout fish is 4.9 kilograms.
Its length is 0.64 metres.
sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2022/08/NAPX-F4-CA29-SA_var5.svg 330 indent3 vpad
A rule that can be used to approximately predict the length of a trout from its mass is
>>$\large l$ = $\sqrt{ \dfrac{m}{10}}$
where $\large l$ is the length of the trout in metres and $\large m$ is the mass in kilograms.
What is the difference in centimetres between the trout's actual length and the length predicted by the rule?
workedSolution Actual length = 0.64 m = 64 cm
Predicted length
>> = $\sqrt{\dfrac{4.9}{10}}$
>> = $\sqrt{0.49}$
>>= 0.70 m
>>= 70 cm
| | |
| ------------: | ---------- |
| $\therefore$ Difference | \= 70 $-$ 64 |
| | \= {{{correctAnswer0}}} {{{suffix0}}} |
correctAnswer0 prefix0 suffix0
Answers Specify one or more 'ANSWER' block(s) as exampled below. Note: correctAnswer is required, the rest are optional. ("correctAnswer" is what the student would need to type in to the box to get the answer correct.)
For example: correctAnswer: 123.40 And optionally, specify the following, but only if you need something different to the defaults: 'width' defaults to 5 if not present, and valid values are 3 to 10; 'prefix' and 'suffix' default to nothing if not present. prefix: $ suffix: mm$^2$ width: 5
correctAnswerN correctAnswerValue Answer correctAnswer0 6