30150
Question
In the picture below:
- {{angle1}} = {{size1}}°
- {{angle2}} = {{size2}}°
{{image}}
What is the size of {{angle3}}?
Worked Solution
|
|
{{angle3}} |
= {{angle1}} + {{angle2}} |
|
= {{size1}} + {{size2}} |
|
= {{{correctAnswer}}} |
U2FsdGVkX1/rBEt0SNa0veVVpYqfUzN6yWxIZJ8Foo3tS4d3AM+lPad4LbGBNYppvq5oAq28h9uj3pAMTaVZnkB/jmgBoPg9mcfKaC1OV/KTZLy7pk2155mr5wtc83BP9aYjrtq8M+zXVSBelytuayUYyYeDUN9K75X9NaxJhLXjGEuZmvjBfCJ8T9rLEaXu51foX0EWHK1vjXTaNEb++4m+V+DLHPXGBgBsu8CFjoDupdAVtDx3z5bkLkLK3sBFw71XejqOHY87OvkQQWovidRZKM3tHdqraelIMbeG3k9l5VV60iR+MBPUhI7WIVKrAtAPhyaxe8kgFF3RO2JsISuVV1rR1A4LkK4K2gVOVfXUwcXjsv8u2jyr2IVl2RdleV2pQn/sPq/U5iTW48CYxfUnLl+X8raUwSQkEFK1fz/m73L/tA+O8tabL5ogxkP8yKVJDoMtILlifc2JKauMk1u27hDFUNbB+QSKxLewfpYq7QIVXnIJ8hEf9U/fAFUqw1GLUwertW4ahdQfIvJEEaEEKNbaPKeXjOw1ahA4Cnhs3V2XvTZTG5EGdnyN5XEQEcOzs5/yqQ9niepHAuO6CeOJcD7bzt70MvYDNxzbGJ4HRy6EI1zKeSRxr/UYs4buEapc0E9qLdBMs3LykkIQB9qNZezanYFJyLqiQDS4zn977ZbL3/vqVJpCfxoHjQDJJQPx8nxDZHCXg9/UvehQG/c0ocw26qdJqa5LFXtyuSkXWngbXeB7dpyUNpM9rGYUj9zt8g2T8u53B05+bSpIwWZe+x38H/xw1RsILLUr+WY5oU2lI9OkHL/mJinzqEmBYvZsk3/mPgGkOHYUXTJSPPyp4N/VsE8mM5uQpxzpo/mPg8nI8aryOShmAxLLL2OE5/5z+QIZVep6slEwAooASOvgMW3LGmZzRI77WKAyYc0QIVlge61DTc/Q0xKQ7JWUjvlS40pK+b+mBYjs7WZEtLM/GLrMDHR72Zn6AMKH8cdNG7rzt9rIVXwn0bDIpM5l00ArIlxkwFY0Q/XzGUn7V+j9dxjGPwLbgcRTuu8Y+o6itxRp1nLEU8tZgcmtHK8q/WRnDqfQ/Cyenediq67jyM5OU4B1mp6gBOH9UjgbXNiuAZGCIWkI3lOa4LlMPnpvPCq/bx+pUmL/huSQtWxYF6Yz3opWlemGFDEJxJD9hLkgMxjeOGutoxMBHcolao0uldlm96/m5zAy56xOxeuaR16sZbm4cRK+Ylb+10H2WCuWYqzfe/aKxcIdHi96rh39xntB9pCg9sEWA4n+Gag/Qqv8BspcsWg2Sx0JIAYcp9SxrVkSGIzcDIh0EiM0c63FSdA8c/4/3VaRc2OCu6YexL86L1/mQx6BHdftqMXpyyJNZ44QBBlY9XYIXCp2UTrgZ71f3+1nQj3CNQpu4Pb9LHfkE9xfvnexILaQNEpqtCOtqmULqV0CL8epYsYNxhQRbqr9OeJUwJMXZjcKuit7PYdEXAFPbhO1go3EasjhTi4c2v8r7KmJazX7bKH9V4kys6LNCtjkd2KZ/jns7D6RdcU9BsJttJ/BkUPqO93Vy6PeUE/pThVHcpixfq1fap+A2pV5GMLnhYVcqMXRUPzhsjjOUDqH/jeOTfh9N8sFxuuJW5CwpAAJo+FtM3d/2ylSEYz2u73Cn2prZCBKQDDxC102t8R2rSwz0J8avIgLk14onmlvxaClkFmhMc8+aDrxvW7RFmX7l7d392VIrNPm43XRU/RHiJ8I+NzbYWyQYAzLAeTbaPltcSB1ivVeSAWil47OnSt8YXE2y9lulrThe2wAjMli693B39a67R7AhJdb632VLf0+xjgm/90/hk0ymMEujS7F+ZjgyNRAmzRPA79u73XAKhnMm7zP5KJImS+bY9jTiqOqHEUIppgm0bU2f00/G+ohzaqzYOzJ8jZrLsjABZrSglpjq1ZhvYKWFbea60iAzJH6LlCzusY08o7nhd9eur9T7uEhlAUoy+n89xZqk0iG8Oo/WIPUqBOCO/nKGzniZ9hCSw231CQjxSWmbDM8RwG+2ZYBM9UiNUxluTY4+vnFsYjFGrxpHtKw5cVvKfUYPVT9dM/fg6X9HJAyzVK4b9K4XTUsSdtbRe9w+jYWX1w8pTCM+7AteAHsh0W8gzX1gx/f1Tg/HHozyOwpBwqxGi6jdqTFaQdPaVXmRxYNy1XVse0IsUpSCqC0zexieI7zMF/R9gG8f1J1nNk9k6CGOY66BeMyn2iKy4j5zEM/PDT/RA9iGlFPYYlfjvDuY8qjPUwF0r7zdqM6biDSwEuxxTV/DuJKcIY/hxC1xsFfgcYgrvOlQ5Nf1wjqs8636cF4FIQgsEeee+P5lZyxZg9SoB/o4HhpoL2woVTdw9sn6OVAkMQPVWMPMxWwUOn4+xmizi3dSACzNpAPAIROb7sT6Xl0bJxpF7cjRqhbhlMbi2wjb2XlM7YZj0TJjkB6xzTcejKIgJPZ6a0FuvNPMstMYYPLZ/QnGz6xjOcMnqr7tkYU+aoZA1WB0HFahHEokKuwdaZLZ9GWJn3F5m2FZVZ7ScSqfOmDrgIOZNSo8nvxPAPV58iEfLnTp1Y+QA+vyh0CqjkxsdZLs2ayQPl81qxAJPcZO37JHVWI1QdWK6WN/ktmiXzaZbkKv+R4M0WNethd8zyAMKglu1XBrJaNotyyEqk6S6uONZmoiDNOGdwL50rNd3dD1LgR9EzNafcgdAG89b94xKEFiJJ03QU7Bo63hZTXR0hl/KhmIa8RlCu42jQwr3mCkb937SD5OS3uJRfIbzkpmPjOHljZKDDufuhD3yJRveiaiae8+gXIzTnGWM40TqRwOsfVAOW8M0sGTUVoP10bLxGozxvc/p5f47D8U9NYlvMbudiiNZpqlISJgYoH8pHCjPyGs7L2xz5P6o5Dd46cQ2MMJYcQ5BszIUSDkMV6tYXheFCRplGrMwaTFMecN+Axgm7afRFpyW5JQfXIy98iz7DTku7tIMWaEgRWcSoJEVwnokMtYP/fYq548kEx5xbisyjGxPD0gc+2NvSJ0ArRmzK/dZpzaeSqAScoX1pGL4HHkBrUHFFOS1oOYZWJHNxbntS/t12Ae3VdfPtJqPEXyhL/TEJGQnwcHOnMaoQk2Yn1yRDUkqKReG7N61TvKlw9GIj/x5SfwubW5dFNlCqlalNoZT/iMU/QGM9zUcBpugFfrW+R41QOohhR0M0YXgksykyZnNsksN3+37JLPDLJh6lmN4AGYmWIrT6ahpCj/TwrXmdF4J3Q51VHp/EM0yHn9o0Kbrx8EhgIYkupUZy9LECEh+zajCTbgEhgVy125JdCbXx03Y5ocnZeF0EFXGVkMnPo98562iohe2ZYAKEcVQiIplD9mlltebur2Hb1hI0HW9fK6qlnRIIigR06f/+4boFiE2IBIhtGppMziey8nZUuUS8BU7x42VZ8FA3+6rIx1IHxulOJBH0gxcoXg8VW59YrIikZ7fY23RdobFBa7VdMTohPHKmnncrnYy6lGOh8OGakgqxZ9Q+8CXH8mr6wfcfbuKLqBANGDWgwufWDIlBMdTH/6oJNXxk+IvdVuQLQ8G0hJ2A1q1INiTYdCypleBSdRO+DXUL8Y0Omb292QEBREIDhzYk9PKXO19xVNghLXDcBbhe3Z/XKast+rQ5P8iMhVWVAyewsTMaKy4NIJOEAZPoJaJjIYXg8l8SzkAI8bw2ZlBIqSrr4KXjtP8/DBxtTP2qoaTROu+8CqfAqTZLyGAx3z8DfgAnIximCCLr5oJQVfPOoHKat+gMIwD13UYJfSO3P04ox1Vqrar98r9x6OpUFmHYdw8yZManweK6q8RfPadF/Sjlu5hEaptVCamd8AVZwm2Cqom8obzXEUQ1t8kal+JD+zxJZG/eRtqR3DjBh8wlC+foB4Ojx9nCj/HmCVqNNIVRy/umDX6hh5ynsCUeCfj18qoUV/YMisP6ndqAkyy+lwxK2s7QKr25RuLYKjRyVHeUYZ2bI0YEgNLkKmufTxyDW59sSISVflqaHUzd3YPPrsgX24fkz6L7sKQzIWEJVIs5wvxVdvhsYLc3L/Era71g0731Hk+jaGZkeHIELt3WYWGVmHDs7aEr0JHfFr5ZohXcivDpBOKYFVRKCScHHBD2zyN34Qdh1ZvxT4Ziqo1R7liUmFglukqrP38YorHsa0aCMiC1uULUmW6JTmlE9L+pySzGjcktBWvEQv4xfEAO+ma3CoFzA17FFoxFutCPbN2Tzy+7nlbPJetIGhQvoQP/gB3Caxr0U641D7e6VZdC750LYBlu4HOlhNiML1WhKBn52IxHeKVPn6gp5q19nRKMEGU/6Ybgtts6yKd/mwXe6/fJwl+KNfLovu7mF96KVuxd/SNayUsyeheZRwO86MsihVhJPHjCFkAZi3BCTapg8awG0g+W6rPE4qv+6xM5HVoa51XHq4rHgGzGsMC9GInbUFLdkpFXO+wJYfnAMSwgI9AsgPH8cBWiEmZNayw+Y9eO4Qmdt5R4q5crEJ1z5isjsDd/zP9mgxJrbAPg6o4zzPYcnOos44RO3ICbTVbXsllbeiTz56k9hlvvCA1Dqta3mwR0m/zUHX3ZiAg/nHeelz+LN1B2vuF8KHtgfrqSsJqYYz5UQdu6Ltza1Qzudo1pUPmQprykszNmEC0EnFFrORWlxqKR3Zaesl8Uc7NHQ9Bp9ppZr4eq18k52796Hhqnv8qKDZsOjfGUVpzGGHdLE0SiEC0OIbf7mPeD/n/SNQc9nrIKdYv2eNrbB41guMxpXQGhyht/kbj736KjmXUmkqVc0fSwD+Shb0DTlS3kaNF3qn9GvktX+cllo/E9bDbv8i56p0Vm1eWW+KF05bI3JcKDUUXLu4Jy5IFt/cC9HYMy/0As+wInnWbYYabx2mz/voJJNAWoFbmCdv9zqK8Z99Muh3pIOnKlRCjc7wAShaH4y40rH4KQm6iU3Ew4aG+0aH/5tmYKnGOeuM4edTT8Zax4Zfl5xXYVv8BoZwyc6VR49BU63eEyXaYVbVpPbmOShUnqvWI4Ypj/0dgd7f4UTu+AY8eYTjMw/kQFuCp/bgUea8EJEZcf5bEithrBzfoG8Gzr18K+ybAHv6yFRPpyAPUnrErUcBd2kERfqFn/Uogm3xrK3xpmKpBk0njZLlqYXcf64kwQi8oy7D/hXMvkzPbaSEqzSYex0VdiNwl98GuVokuaLNOMWC5RotU2RodM6/SpMUpLv/QEZTPRu9LBwZJiEkB8G6sSXNb00T3kCEa/vfSetkwbEYb8n4reBv05gcIegfDa0sS2Sg5ZHPBBDninkHLmlaMf4Fa7z7vO8scAHMm5g9/lmBKLAq/iGwQ4yud3NoqWMRp8gegiYATFAMSoRFRi0a4PxKRGqFjEA2eEiOWSNvbNNUTORYK1TWBHRz2+uYKg37HcwGxJ/MwuR7Gzv9dKE0jq6n0P0LtY3H3BE/k8EGCgxL4gDkijW5nS3tLF7B41gGU9/s8bSMeimV04607ble5Ic3Ph1a/zzb4PiOaeu1mbzNkopAzoyAYrYbZUpWagQNAXZl8i2S/1UvwvYcSCNZsk3bfs9UKPYRiOe7YMHUlzTjdlajOvWgodJ/cjKzHlIJ/K+FpIUc6U6sxjeZv16xQMehD0l8LqIBFaG64dy3lwG/vVUKSHn8FWS1Nkx0fud1AsCEWjUPYLH0JMbwf5NlgOIXlSCB/pkQD3bWv4zS4tUPyd5iAaR90y+xlWd0upAyN2FXYiug9DoZVNWJgwcX3D44a5YURS/WUL+g3qs2O49426+pOoNzp1C9uc8UrUTYXvYFvZS1zvmgqRqg/aoDvOOdNligdaoWMyElbQs9TeP0cZJ2zdbXnq0Ve35fh90JztAlcOcdILHWd9H74gefWdmkbzXanHHPUVFZEiSWxg3fE8iwFROAWTsDfg6kMWmRdHqltSGuFgUg1elWmVUUy85Oq/x9gSpEd7lP7bDz9f0Dv6zOdDdR13U8jcwi1NbUnxHU9tr82Jn0hK9tsqUdVyxqxO9b8qlavvChdIMbjDUP/YbI1m5IqAONWR62kLvpELUFV1GaWQYd/TwRQfkogonnyKPswyv5V/+4oJMJAzoUE6BozZGGJtgLU6yQvD/CfLedH1pZcH4vJfEguJcjuO50baVa+EfqKJ56eGFKINx5BSqlmQ6Ia7nmOIOf8ldnipoMuNw/BgDLGcbNtrh9z0NoMYUFHwQSUrc40Nkp7X3L51uty/mCOjBToKmPg2nF4CsI7rbQUryqVW2U6kTUQCcy4VsWqeR6MDgtxK9fIgdPpqam61MWEuV88sGsG1ztJ6L7N/TpJjyU0huIhMz9TXtjOyHoZ5gdk1Ahcc0mcjzlnhk16VWdd+OSBwz9jW+Lc1ODP/LHrSAc7cNHhz04dv9Lyt2box7La5rUunq+Hq2Y07znRy1Ude63u9fxXXkMC9q5Kgy2CFV9JxJuuAYWC7KjXSKYStVPJaTqgctSGbdg1B15iyxzeKCCatFgb7d86317yB4BP/dWIdN5xC/uZDjhjwo1juc2S4SEvRJYfpeSRJ2D/lGT2UvAV5y+tcIlQsWzG7lCZG5+W60pbCbdhCTF4KzTygz+Bl1aB5iR/bHVuHiAquoRCHI48MeyeJeHm8UdMs1iDrunuFCOqqxn6yyKw91WzLzzEDHf9XQAOUjFvIaoIvgnSikQuuDCHgEaBOhrKqtRDzABhAs+hdShHHYxAQ9NHkApMerPXbZHE7bihts529gcSb1lbZf01xeFlYYunJbs08tz7e0tWzzkPiNjcbJX0JCKx9zPoNDe6fAhbX1yD+jc9EsLIruPQh/m3XJRYJ5KZnuqsATM+IRRlXVp6vPH1bBONHLIKk9yi6/+AKj3f5bO5BYQAv4LZjpBlZPSBxA3ikvQNF8v2BCQNoY6AwYZsT5p/PWe1FwuLU9a21mYdZXmil7vWWET5jaJR5PcaTW/LqGWC/X4dvYOBJMab7Mo25EZ+CcBFzsxSHehWkzWhgoJx8AZSNvCSkN3McMMo29ZfHHJuZMLg8+/HAD5uPLYlCfln0PFgvw3NR/yOdPnpdrx1+/cxmBGccNmDlnUuGPpAEuYbPPPAPNHCAuhTij/odDUXTtjw53esjdJlG1o9mS+agtx+HgIb9M6U/2ln4L7G57luAX4SoP+DZl5chal5MZtPru1s2NvYMUgkjWSJTeQhmM1tfORDmwLtMJIPGd8b0jBicnPYhGYChWRWsOuSXXlOy2WAolgjOGKaGcKS07Pw1or86kxuSVGw7zgESJeImRdP6NgiSFSXL78nSy6ioKGMUoYvPifugrlHZoIXvxkBtIhe+zSK+FuyWsCnmIz8ARWWqi9D4lkbjqKY5KK8M6G6mT0e/15CCYXVsfyWpi5Y6BW2Lk9rzpGHF0h7O3xxS6VM+kjQrYicl6s4sRWjaIrq6RpB9UXdE3+gDchunEmpXWA6Yk2SZXU55M7cA8+ewY73/AMxp2fzYAyV0Dd6RapvdN0AfbeOoTOdEMhzfJroyEJZ5H3JKmJbN75EeJosQs++McUG6yPH2mMH/TwdzsfNr22+W2/IcHd0/9IS6aCm6qFNslU9YQhxSictPF1hzYoVKnFCjYG0ed+QtR+RcbDuV+zE+ZsOV1E4A66btXx/xl5BAktD+dQT57xK4qZ7EgJtkTH+6U1Xe+LRnRb0k/bdrDK98J9tfjN4Mc/s/Tjs1AMLeUMRBxv+lULgmq5mDY9MLxy4z1SzE7T4f8mfuHzZ4KCZUZZzPTrmNNZbQTrVENMu3X+B6nh1BUDecquMsLMb/fqYJc0JlnB+3ZDfIFVpVi4WOowj3/B7Yns1eqweXmnWv7i8Vmk8UJQMh+MEzu7SiIGV+55XErWb69TWpUieUKVqhDGGBNP0ci1+7ZtP2ke4LXXGVNje5wqn/HLz/WZzYx52ETPZYUxJ0YCQoZtJaXmCLn6nM2CiXmdfXXicWC8YDDsbPVxs0n70fmfhMnwZJJgsfw++rnpoBUvqZAE5M26wrhDyBzy7a4uF0UUTZwIu+wiLGZmQ2/AnjswtyFG/qC49lQ4m+Ih52UE2FvYn2qoJ+KHMYHjgnqBAyg8Cf9v1dste9wbFhXtx3ncyPRJBtRVS6ibHKemchw3kbcHt5Jg2f1p4CKhtQrdrUpVYYv69tmToEZ3rDGLLe2iD1E4YQD3yWbxDDBWEHjnzIB8pjVlchxEPyGMQCEwdUwI7+HxFt6RpTkyEO9rDQbAF2ZdhH9eN5gTlB40YzycjzxUYD9jkPicPX67EQXvqWrdWrXXHy6ajHXcmqweHs1om1hGj1XSD62PC/PlvkkWdU1MKuRpyt7HYeArAfRJqHQ25HEh/AVYnJBVYRebS9VPeiir7R7FSr9lxKbJ5K23etlYYp0EBX0ppkck/3I8dWEjrFsLSx8jus8L7Xfg2wp3wSFGZStbDQNuJ0jw2EOMgoz/FogfxRVUhUISZL2gGpXdUUzSQl1oZ/9N16jo0tqleMNCB7YL3Sq9VBCbRGdD8oZ9yQUwKE5CoeeFuFXKj0wVRn+Z24uklc1yJthpDDgzkENwVwnCSmiCNMRESFzlRgAwG4ORznPsB/tP4bWsKartLoaE+hHNE1H6jofEb0NjcLYSqpzbQAj7QmKqe8DHsCenMz2XhVdvRMhZpCHI2NIzdXHv5xtcQtzWqvaW09MZu9dvR5Us/UTCeEHDrbBO4rVOFyl+6r6MybxTDfTLUp28OJw/3szl7Q1Qp1phaZwxJXhNJuneyI1h07ZCYs3JQbLF2hAdJEoyw29lOrHp+/kjkLMIBBp8oy/qqQO9Y9dfxPEGfb2RbokxKTq8YTtw8jsA7xSF5iivdphfcSP/kktH2S1lzLUn9749x9oveDVLHAEOf47VgsMh++nyDY2nfOZzm7a4zKNFxsyDTWhlJoYi7Qa3CyOq4xlu34zUSwysz5DpdbT4Ee827jQtWrXEfi62BxMfyuddiB7QROhYzqSYnqpfqvtcBgBDgLT0qrOcs6hhQYESqtXrvrE47RE2CWcN9s6+l+/PHzR2E+b2/KNOIhI9I0nl12swVfmrY3v2xNGuFDTJVokrOC29lC1QyNGS8fzLt9BXx/XNTMOmHplhp7bBWcz25mXbEcw/YnIIUowRkkllSfzhh/JY3tQWqkdMKr5fOJa9QBYF6XxRVhCKEvp5HtFxoQyPWbXVt4T2k3mYAMulG5KskApNHSKuWbpZ8Z9YHJfE5GgSIUpBWXI72f+JlJ4LvM0mAyM0eVxIoMt17p5LgkCqXBosVF/XQPWvwd7GkpJMkRJm72z0S9c/L2YuPftIQ6FLORrx9S2wnqxTwjDN3pTpB0RRzfIvPIJ6WrUmnY1oO5sCGU2LLDDr7gsHG7S3SNHE/dIGhc8P7bTCaPLce8lu1+GX5jMP+uIPdYsQoEdydeZ67qNKauT85enxlKLO6s9sV3yqA9TN/7duwLKaNvkRlKDwqPSYHs6ZqCoQrtYnL3wkBAO8VIt/e2wKua6jK8s938Yin1B8pfBASr2dbeGMNR78qsNZcv325r6z/YW9QabnQn0DjSTWA8HZE0xU/EQPeNFARawrJo+RHweaMIP9M/8y+PdgrxA3CUEF5fylWnIWCWRU70OW/kQg4CDtjH5fGTn85zmJgic4adjDfbig6/EreOZw3WmFuj/D/6pOCoPsW6Z3NyAJJWciLFZslWfKRenMvBFoImBAX7hMP+P3jt49Gs3P53smTkdHA9RZIx+bURg9o89Azp1pufYFlvg9ksCJYPM47xqCNl250V5UxIUsQbD9pG/sHGMotRk1Li8/e3Bhut4/dthwRaWbNd3jsSL+2CJyAIgpsz0TEVtLamVL1MpdKgWuzqPq1WWeIgDLPEfbM8Ix1uJhnyZGz5Z8wDlyu8d0w56PPKf4tB4rbULZ72HqnU4UlXGDIrkYR+qBbsuOHskD6YwXNswicbyU9KPiQ0B/qVJlL1Xcti7SA0iexyUJY0SniseP1gEWK3Q7kfHQyLHxIb91kRCLGySlXJWEeZC4aFKeQv0RZ5QkDgSDsQMxxiWxvOCono2kXLqlkwZqbwreAjLYqGD6FIWoK+8Ej+wHCTT4aqypLxaK4Tm0w1WQVzYqHE8DZHZsS1ymqyfSvahDskaGFLghWmIdG5i6VoSzWGu2Fl8HKGeMVmpc7d1HDuM/6NkyACTK5F0e7FrUfKT38962IiT4LiqQPePLvIrK83qI7wlYIeFNxkq9yHsaWzW7f+yu0aP6nHEgOELyeSiJkM3uzqm4pAquUqK0OPqhO/AKfyBYl+C/VQX5urB6Zz8UQ8cGJBGRNqGmmkIbgGXa3szIjsUCdWt7ZJgEY3YbJhpxg==
Variant 0
DifficultyLevel
513
Question
In the picture below:
- ∠PQR = 56°
- ∠RQS = 67°
What is the size of ∠PQS?
Worked Solution
|
|
∠PQS |
= ∠PQR + ∠RQS |
|
= 56 + 67 |
|
= 123° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle1 | |
size1 | |
angle2 | |
size2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q41var1.svg 150 indent3 vpad |
angle3 | |
correctAnswer | |
Answers
U2FsdGVkX181md0Y9D3iALiDFUgh9NTgV1iADoSZ/foQ6/78nUXzjKP8hEeOKYOixclg+1jtnX9pezIGbP/f/+V6DqJCoo5qZ30J3LUAGWgpgV7epIjFaV4qkYge2qLv5VcRSzdJLtUkhgcVlSReHEnkgDvSf33cSo9XOVNNKsS+8sHMxBGgYgv3Xphx9C4on7ngtb1mAcrebS8vf9Gn5wnGE/oUJy9VSpcUaYNYvH395yPlFdr5d/GbXfn5UMSn/lbVMPbFn4tumTkm9qBmtm34WdNu1JpO4Fhv9DGQ6q+Sx9iDKVSa1gq5sxT+Lt7EV7NvKiCGtWUB6C3tLnOx2ObKHt1xOOLANoWpzkBIywQxVId2PkCqwG5x2P0SvyDvIsdqhO4OUdH9Lm4a2lhujjy+ThYYsKG/uTcItJ8j/0dPjMFtXVacWLc5CWC2qvDUFjvdHzz6k6hDV9HPtNBr2LwFuM0uYBzej7Ommh0kEphCGTMC3KVLS88DKY2lmT3JYSLnFD3iVR9zx7QTHYx52wSTBFD2IgwMP/GcrglUL+RziYKbU7RQf67BwNRyqqWg+O6ult4zgEGAy+nG4QWM5a+aWdmd9lMMUfwWNS44BA/8PpHQQ3t3NlI/qR+xclgAeDj/d5Wfzzsr5msiMYm2n4mccZFUSf7en1v3/w1asBy38o5jJnk8ckYf6vLbjWCtGRmrPCbbD4TUC2dJM5aUvvq5HLEM3wM02wJEac/1uDbFO4mjKb+q/tBIppRU1pqoF8gpwx7fdq7BbQvnMD2ax59I8gYYPuXc0XPWSg8AA2mBfbQldvzry6s5tLkpXN0Uil0SilzKubh5R/jr8K7KTthySuyYqZSHcftQoMVB5sNoVffOVXJXq9+/lYwcNnZpMDG8FyAl5kBjHJi5fRpqiPl+Wpz/NklvKp+xz6Rra3uNqU4PU9F5AP5gFIX3rBoX+1oWXgrm20P03+j1sPe36jD6P691sB/JzkE4+RfwhItb7KgpHphM1NNPmgO/RcUWRzHtz17GsvwucT5IO7ggLQYqn2sSCEVGUMXSYG9uZ6UBdrCxxJgBC0/kaVMy6itd+ZR/lJB2GsVnEivbKqqqrBcNw73VEUbU32jEeAiO0fRx7eLXNtjN5SRacxfopilHC1pZyeRhecYDhjtH3AyogmTyZqZ7f/LejgSYAt6jdl/ok86WZZk1w+sCxXWdJQvduozGIDWbClcqqEh2z8uSRzGxy1QzrRV8c3xBwDrxZyxE7vriDF83KThrxiiIf5KS4ugj4LWLDWdnR1HtOgQk+qqxQ2FfpVpcq5ZIp4iAl30IiH3whVEkrESgQWuqcVGPnejJla0OjH7N7NoBH4KYzEcQJ/bcBWTlEcoqy16zcUDkLBUIzOoNpXkUykf9FfuhHwDOLf/lGpAZ2TMPvzEpuOAu6ZHXXuQi811tVj7VS9FC2vUaUJ0gzOhYsM4atON8kymQNMdGccTqKj53L+AfzQbgk2RmqI5UWa6UENSsKgcfG7XBwoPsdNKG+DsImjWh4ISlkudMV6vIbnD5NBQDF4rZVwB9nEH9fI7HdC7Eb0CWylnTOAp55yOwo89bI0AvFVtXm/DvFrjP/86zhcEbHwRVIaOw4zdz64vmeGt63riHt5/lqUfuRGAK/teHB9gHUyd3ULRo2Bp5nhAE2v0XIv1B6ihfD55hKZe/0xIqflNH9+UeMWabRDmWCdLwVsGMmWZD8jeIjExbqAftYYfK4SoJVewl0KmBZ355ZPWDuhxU1+xkdd8/McB7m1W50sbkn4WA9khPuczX22HDnEQfgmSaSzuMH202/Kiuf3QHOZCa7GWSaaipvUPgs7M6yPXJMJbr5jNcbj7M91oVFd7odPqV/YrnWo9in2fYU7cs3DgkuRnv8yFUDgtEBj3sstESMQZkfK9N3X3UBsa78X+gH0fsEHcr+o5rRmxEdJY4rK596vQ8gEOegOQsfiQcUAdTgemjJFFlSMt+ZFL4S3RhGqel1XrmFTBHlwPO1jG4YLimMBE7Jl+RKSde7NyxqKGzyQKFyWpmv2DIzsfuyUcTc4FG+BnU98I3uWXNRvHODkLNDcMvixRcrgqHNmWiJgv4FhForWbrHg2ZROcvRjtMHEM7e5NvtPDwr792JyiAsK4z6FGAHf+5+RN7CVI7vlASYgLlMuMI5H5fSUwYBhnorHutP0SDv2nyU+S1Y/O95bT5UyVEcL0oYEDSf1S6Iren9ZoW6ZxVL71KwF/8wFMlvS0PeJHI/jBxsV975zcrnlm4qLzryJSb/yAE5HIlwV8AB8y55IKx+0AffE0pbiZUrIEZiLgEaCq6fTT6qiOdqV2kF1EpdM+YkdsUR/CWEGr7+bFMiInKKSZt6nIrF36nRPpZWqUl9QVEO+z81wF5SB8m85kEZnCvAOiJuv8f3tCpAN66ZXmsXPxxIBvWcLRxy3wqBGe+NuX9KwwbROKZMNxqLBUCAJW2QOYH/MRgi5iGy/EBO1ATosDM2IsstrPYzBM3tB6dqxo39xd2VdiwzMGvEoQigXu5+U0FCIQvHZ22hPOFUaRA6iYSplvmDfjT2avb4zqR3blIvCXqrvyzxCPlmbvf6nEMZQ+vGdaE7JVUANmsHtdfHa8iKRtj7mJx95WOY1zXnZ8Ew0GsTv52vjVlJpaPXmPT++caW1tlU8FtJkCDhh4Gv2in7cgIC45yUlFGXWHB6NwtUpxT6ft8oqLg3ZDPwxDaUh5xTH1rk3vGeeDi48eKpF1UIfozzsA2rcQmvvbvmgNrceQSHc8Jv1slV14ZKoOTS+ro+V9DUtol7a0Jc/pGvsZDn6BLYZx9PFMTGKCukBCLdqPPhbo/by1Rh8VeGiR1LSwlFMjGZsoei2e9NnLN6ikcJwwQcrhL2eZC42F2l84v73TaIr14zY+8PWgckDJJTYkKFp1AkMSvyMONhkbg3AhVHJESzbNXRQkp3/T7jx1+u28kbC/TZ3g1/h9H1RNEYYXwXIGLm/XfdolHC+mqWN/jrghODQJYuCQJ73c7vNK0yWfcv6kyhCkMt78anOZmaKU7VfID6EBdXStqQeJKNoAxjXA6aQ1lP2nBc8TmqSYQ0q5Uihm5QYg7t168uh43YOB1o7f5SsMlBxyAbSWls3EK28MS6aJ1XEhOQnDS2TKO42PMZyEW5p057g5S2K3YYB9k8FsGlonU7AS9N8uBjns4jpnpHV9QQ+rdqTBf88NRXHN4v2kMOGF4LFObDiiQktdNFOU+XxDnWYQlV+khgEnD4mVHg8VquICcs39snw3gJjtg4tB1NIL1M45MTv9h6HLVoHnYce5EmmlHPMS76MZJLIF4gD7pSryB61XJTZzdftrRGPs14Sk32GNR4+HQOn1pwD+cZdEM/mDvWfjNS6ksui2y4iQvTrZON1HDj5S/4hvAhiOJtBHzgJGd1J8Q7QTWVOVs4ESZzmLWkd43IlwWDboADFHbYNDvUcn1P9UFZ+qCcgjfJUYw81IXT8SYODc/lzkEPHm6VwWHpfSuY97M0QTRKa/28z2jOZaBDKPKkQB8BDZfM/5vYr2VKiRiepRFMYXMjKcOIwoCmDBlEXaru1sjmJqDiJ9IAQE/0Q/f/AoGTxyc56ZC6J+NY2KXrJ0HXfdrufhUqjFKQa+VrapTnm6bh9vEKP2KboUmttWMZYWTTNYIZDW6qPLo+KohR5mK5VtNxmjUkQGfabWUkJKU8+PiWhdutmMdTdd/I8LCnqLJ+bfjKUYyv4v28DJj1lsQF3gx3DHz2+Pv70kEl70yApe3x71TjKvFEQUc/ve1+0OoNlO5FXoqOGbPO917DPLhWxpTbN1yZ1dOdfrnxRezPXE9nBhOd8URejTAopV+O45Q4Ab9S51pCLVD/CjjvsOJD99m7I1dvoq5hGWsqAy0UrxmJwTGMhhWIrdT8T9VOycwHHmhwELTiAtI41uN0ieiVUMk6jaU2oL6YAqyI/gs9SY4RMw/L+mNOrgCX8Y3neaWTYTy998BJRjPjb54bkwdZKJLkEL5hkEFMI6Jdzwto+jk9uv8Kxyt2qQUibKAx3kLXkSqkSrfgJJLbSA99dmKVIA2sQnk9nsn511kTex+OPEQpQYnoiU5kv5vhKif9a/quHy0vfRSOfzmz9adpeN040/IW3OJmNT+zPLp+Lufw9TOpB2/TkV0tE8AxfLvavq6+YF9HWxuh/vvXiK9+7EIx/h8AjIE2oezyjaNTCUkAvTH6Z4XLESIVqLi3Z+b+sNv6qfIoRgE0mCCqJOAjcfYDqadc2aQVvTXTJ0cqLEJzhLA45iTNhP5JWGjDP11rmIDQsdSXqi1qpTQAhNf4eRUn0K7U4FSUGPWDSbMwaa1uM9NjawgD3txEo9ZFrvLXFxFZdHjcM3ozrxuyE9WYYsu4GPHmh9pQR5ZKhamQgquZAy84+AB+alfN/bZU4Vn9gog2z/5RXsI5aprmdRoNZfWsPdMjhfJObTnRNTezBzGGnRIKC3WKavUmmDkNVgGBTRd4pH8jN/9Uevynx1P3UOe0wJzE1XnbhO8xCu7hR7qrqMNQbVvAm97pGwTnDdw7tFiuQJUyWwVYx7LcXy/WKVW+uvvyejn8k0PEi11R+dr/QAXT71i9VKrXscETCyYJBN9ScuW8+zP/MJ0yHL+i9XntfzSnJ644wFl2w/CCwo5cEMO9rFoLPg0T4R9Zl/WxrwJpm+K86XLIIOsBpcK4ptz6Jf4hoLHjH2zPEUoZv8T/McVGDsvY63vosBUW0ekE28cp5twmSGhN5bVTax4KqvOIRsFDkAZ86DImELxiMNzNACRc0AR1rWWhVKwgrKGCKZz3eyUqr2wgKO7IlPSWMGRLreLHNSI1ZwkvxVv8bivib86292IcNF5SGRarND0ClCjfe2IUvmSuCK1YgKe5q+d2zF+nrqEtIbFYBjaB3/UL6sWcWQabR/y2dVrrpxLuQ85013YMLoRxKin7tatGrCCzXXBnryBFko30wJD3nWNdz5eXtKmkRpgPLiktYZF7ZZBRq+eeHxdRl/LV8LAd7wNGY8iEcAHuaR43aJc7uwHrC18JZ6PWtZHhmZ5eg86tVH++07b67+RtOj5IOYobGGxqDDBhKJxZzg1j5phqz8csXBIlsgW4b2nVzF2bguG83Y4BFRZHOX3DNN1dD4DTqnwF6RCJK0cJ4DkYmIOI04p3cDkVtVgz8/blcROI6wpkQDDixHjgRtERQo3ikRQSAjJUHGHet2FyLhNiXsxHB2dp5Fl7SfqNU4850gDrAKT7DOGwgABQrBY2Wq9jZWPFtZ3qCyl5Mxv0tmbKkCxPPrTpw5slkwLSSQaIXFZ8dszzNJg0NgS9qvk8W81gcb6CaKqmdWYUnzun6uzwSYAbQBJo9RZF/c6l3cJkMs3CpSCcPIzGKZ19BiY6IP09fo8QgdDqPuGiPrl2xxOT8qACjQ6ytxKA/OyI1xFft2GfSrxJaPje4rLaawBgRlcL82sLXwyWxGJXImojUcDqc8JNfWXOayjGCuPYt9VYw55e0uLX3BLdLXAEUNZPlpqIea/MoKu2ybC7oq8i8sCSWXqcQ+2qbjx+c27qsyGZ8kwtugIn75ZQYv+bzJc6gIMk/pqV3sZ5AUaTJdpBkW0eO+ePMJDa81nJM+XgKXDGVSb9wfktBy5t2Ksu+SBcsj8eqKy3D/u2QQulkiTuN8MS0yFv22hEYztco3Zmf8LzsP0xT1EG1+USy4Lgw1RerGqihxPhBty5SzOtDGNn/VCzifqEylf8jgqlTFmq3XdX65JV7p5Z+CDTWf0RK9GowM+YgcWHuVwkkqWMzwYiKQR8WPzWyy04HqkYmQOD1Kffgoqjn8NQ5WG3OeLcGHNJdufMDgkMQP4cwCmPZ3xNPCwGQVybH8PnGcO7/2o8c8yxy1OQDX6sy0P2IByTl2CcHNjvuvX/wGin88X8a8emGU7GF86F8rJiMnBTGNtw+7IG/rZShSk3wgkU1AKiMpwGw6KftnkddKFO342D4meCPCADb5N1lc1kNVwiQcbXEi6ep/ne/6w3iWSAQo8rjVRrR7NH+sk5rLvf0kSgsJWCHlzFSxxcTM44Zh7AJ53//QX22tIzxD1qjyb0xxZ9xrJktdlkpEgj1kDNXNT4X5Sp9HntxRMHgwH4uLca42e0JpaN438sFgueNO1fhRFHs/+Dy7uWr4cRU+wwgcJq/ftI+XG1PuEUZAmpdgScfxRTNWc7/9SRHtqcOdORFqI6RY0vQduEWkuuvFTvKY7lqMXMg7FyV9A5Z+FMwaheVR0NoYvxsNqt+M58IOH9jkgpEuHxsNaVQTDnDnEwIb6fUHUQ/ohKjyEFX2x4gRjxaUJv3AWFTzYvgNDU3/HpLTF5R3mT76p8NdLXJX+N7hLM+6jFf17EQBgzIQHzSt0zSWbq0BEQf4RlRthB107oyjjrWMH4Od8aN2LTkFSij3+VFpOtGeDNfP1liLLNh/q3/qUgVYOX9YgBHL5I/fBfHGFkKYpKPASTZkhEfcAptgEK/rrzKWg6CcZ+AoWUmu9fhYNhv2SxvF1e3aqmLkeFx/lOy7N9sAsJ6O1MdD/MOgIaF7nM2HuGxQsDZxCNgzRzpnfkgUQOlmW/ZsK8nddkfnTy8orueALIdYUJNUf2y66TVAK/XurSYtdPisDID3e0y1Ty+UOVH22//Sdxdy5K8WrBO4fLl2yAfa9HZ+mLue08uetPzJkWFm2MSxECUgXonPVxlsubPsezi/YTKxJHYgFqhGY1I9IOOsV1Udx6wPKGS1aJXmLG/phZs7xhl8iztkVJFpFGvTrLt37IMA3hvgrKo8Bd2l49NUYnySj6KnT/eXQjpnlsMsomOg9u5C8Au9bnGA2X0S4OYdAhniGo2FqVSBUrF+qteyDP5HcVjjfzhI/gHiyfaFhYhPXq1kGbeC+2sydZZBxJiJffd8NI9pCEbzZz5s/12ZV+P279HPqK3xAMSkXjMoH/ZNfsHwa0YgRCb01f2LnSspDI2JOtLvylX+/BPIdPFvl6kHN7mn1LpnVmT4VsudcKmnYwL71wLLchcjFveb3yVR6QsggNvtWeVxy/ZPSmumac1n9QHruEzfbEiXscbujS7GOpNklZcFOos9yyl3+thoNcTTIoa9kYK3fCJyJKv8y6KSmwHXSXCiEpZR5+pdzgs/VhPaLpE2q/l92GQpV+rhcrg2dmAM9S8f3Vsr7Ws6q0Q9zUaFTJ7viP9rnhlxoxxgCzS9DdeZCtIZ4TYNTfN8iOdCUNdiT+PbJ/4gytXssJLR4LByRBnDjOxkDUqjalUrpqyWP45MvjkT4GAffMcoDHABHCEW05kmRwxZvGAeAhvHRgL9Ot94QMoCp2eakIxHjZPM2310Z9hOmbrc5eOkOS3/Dakmg7JzFbiMuA4JyQUacVoEKYWtt2fZxM+WYQ1REv6JNhY9Li2oYRQ1jQ1O45TwunlJkx3DSvox7bgW3OBflRtsWd9G0cfKghWvTCPEHvpllB9xG3sLHDy+Hve01cxFsrk4fxyiEbww/8ZFQEn/5dtWg1SKYDAQwYQxrsei59FdNYqo091ZZ3I3OZPgfqtgUlMATfcmy/qauMq8hp9dz2ce9lN4Dq0Ngr0d4/HQSzZgJUMdDc9OWUHX4qVGsc1EL+CQWpJ2WVcDFnweb8tzlyyx+fIcVu5Y0OtvzMOczmEZQT00I5uedDTmX/MeHeucJ//8KJcZEl6DTlijpGoIUcGg8X39sVBddwXJVakGBYOl6vE7TysECp/by5nEhmP1KqaQSHnVOeJ+oUecqxSORKyfriJeH7YbKMDoq/SM3OV54vz7tpiDkjr8E4wfo0A4zETSjKkh/3w+83H0PlYmv47ayzNq3H7TJFasGEK8qa9QzYNgBOvNNJgRYoXuNi3vIMIoma6xS3ZLrpnoG5+W1m8YB06A8FDNvbhoQ47OXpqaBfVMYgaxsISoOvj24LvlPf4ynUjulmQuXCKUKW/LW+/yfRGw9yiXRYxfbSMCnZ5yf4EXOa4Bm8nFIrtDrJ5V10xSEp7LttUx8wG8z1TmAXow1aPmklWaOpGaBtHyryTQtyxX06DdEexau7eJTlyozNOLZYBvKPducNHu1ov2N0+qx1ZAgTs7p3BdIcN/P8X+T61qe2PjijDCNDZnxeQySPNQkGZ29uK2Fb7z3Y9sr7QAjB27jocC8e+ttpnkuA0XEA55B6B39JWOYf8z+jqD9czIgW3Pc5GZ6MS1ruqjOMqv75J7i8s1r42uAKtPHyc+JmO0Ie3TUemTaojyIPyROGJHoEdzSAP85fMoEcoBUra2Q04jKi2VZpd+8LXRaP3PTUpH8j+Exo/SFea061NkMgEzYjn0RsO5+wdj71bPkOYQ9U0EZ5J6ZA7wlDnEoQq5jUulUIOt9B7huIquUpL7hDDxzhFSxjOr5ejMGicZpLjwyi3qYGwgKsJWoMCHPt/t9do88IQXvHvEuHOqJPRhp9St2wPXEZVcDQZ/EFInQIphV5v7A8fn/X4JcqCFqrSdhqZQUcJ7kQY7lIdhJrt10dpjITBLmFoH82GJjkcvvM1vrcPvR/KsTtzqvUs71/w9ay0ocZyocZJPGKtmxSU5A/st34R/5TZiV5txHBmSzNueMpjQGshsXHu3T3tcJxMUWOP/BucudmmcRLF7jbhmi6qf8A1JmTfK5/AbfP76DLCMQn8pNFQQL/DhXwTGcKw6nzR7xF1zBSsNh5e/m3gikJ1r4zys+85duJ/wTmtTzehHWR2xcx83oCWGNF29TUIbZVCYrw4an6rW+5zYWUPtPX9xsV13qIvZAd+fG8F0IJpIfcBcK41I9wOhFEZusMmRq0QoKdbcwjrI8ItG+0zuD0hKaWCFbCqMulT3lgaqzrlNGIlTkIgWMPdt1jwzwvsQ9WKZypy52VL+QNKpTlHQ0o8u3FdH4nH09qhM0nEFrI5F5N/76I/6PTwZ2z3HoDL3TWs1Lq/RPnXPESkqreFu4yT1QzEENGNzBa5bI8j4X5PC4oEptmYJHpUeAQQJEW7HiOVO1EkeC6fywSl0tMxqdH23pnjxUijxqzQ2snwi43MnlhXTVGBH8ccD7MOd2ZKrXBF5+YSOEBRHOI3Vxj13wTTUt8+3ZkaFj4YchLRvPGsJ/PUAFFtMDS19x5enHKXiWDpjpoFpXfbv3AJH0K3dYkP+XBqqg1fs+DsY9jVCWe+jgxmpJjJZ4YlEQbUBuRW2NhmR41E2d0nsHVv2GLhN3TAo4UPaks2KM1LZUKsH3Ymk4vNHVtxuVLNdtOTaqi8OavvayXY9efpsnjHiKGV/7krWQg1i5PE5I40a7j0SoqNAdeTUquemm/OEFiX5uA3qeg2hpIaZCic7HxQug2ea4QLfX5oMnC8KS1AZioR5xxiwouePrOY0kSShQgU2faoaxDYFaSQn/cHY4ih1xhGHGcluvGIFC+uOAOo7QIOMapgofeWDPaHQS8K6TqHutgj1CCez0B9UjXiDVAOabEbbRvkQL+kP/BdBTf6F49xiYuBxlqqPfMWD7nsAKj0kwmPA6J0MRWFcC3sz0iio/j/5gWR8BpJ6K5VXvaRpMpsiOrd+fC7Rb5Fc+tLoHURO/Ldwf47hr4LE33+DhVyzSp07nGxF9e969VibH0Wd1JiHp/sdZZ7LQO9XVqLnHKQAnIQ/uzqRqUuz091ezRtHg90nRNA0dKNPBngDS4Oh12FQjKSHwBsNj4p1td9TGRtjzuJz+5gwRPqEftW7uZUT+Zx+eNwVoItvloLaPQOCM4bJLu2/uZk8EgYMflYCnHU1CFKdng0ZKAF7PuxjsFEaKszjMRS3/GbeZ71hPbDOiDUCgRRyWcTSbFYU8rbDs1VNDyq02ycmUaN7hGNvrarTmPEqs0jlzdWkoarI2lHJK/DfU/a8vsB/7LAhXTjbjVRALQNTQyzGp+aoDVEdIYL3jfHc0Q/TB2ikEh3irwWevbI3oE7YdygsZR9mny/i+rRHCLQkUXcFcgpFCSbQ96WSWaPVQJE8FzNK6sewR3ydSlnENpMbdFPZ8t/YnJIbAGx17AS2uye3xhlx2VX1fkSbax3ciIHLjSOSxdT6VMLensDUg+RDP08xrHZKg+c1Gy7Wee5aVVI+cRb4XEGMvzpjkKSGi/iBY7X/u5vvstvRg+c4w7Fwa59mNxO76VMWwwjQMIpuhWOG3SA6IiLuwy5tpXpOEDBVzqdwIu+x6oZJTtTyK6v9bgcfE2W13cUAh2+0b0PRiALsey4yuIbwu9Q4Bamw2L7TbyU8YdHtIfRWZ8UKAK5GZfbbE62khedg0Fci7GRul4QEMAgbBkpmVc6CMPT/MZ+agYxjCWCuMwYbkZtGjmYOk+jbK
Variant 1
DifficultyLevel
510
Question
In the picture below:
- ∠ABC = 18°
- ∠CBD = 66°
What is the size of ∠ABD?
Worked Solution
|
|
∠ABD |
= ∠ABC + ∠CBD |
|
= 18 + 66 |
|
= 84° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle1 | |
size1 | |
angle2 | |
size2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q41var2r.svg 200 indent3 vpad |
angle3 | |
correctAnswer | |
Answers
U2FsdGVkX1+0YPCoAjGH4+uKrstTSpkpIe7jNZUck+AzptNClQZtLqzhHeiga7a732fxh3zV/ECf/rpjLZGP6+u8f9LOkWaMqhg6nGv5o8YFlvPufw6hHhHg3/MXpxl2cOFYvGAzCScTG/n3ysTHsHvAxWPBYu+B8y+yG3OiQH8bVdgd+nW9efx3hAvDIrvy00xyHHhFm5H9w6ud4dpK3NQoewsa5fqEbGBNlqjg/OPiWPG0UfBcHTEOsOpC2FV4m2ts3LODd7c40wKTqLKTL67Q328RdERSjSZ6/4hXDhU0gHc/NHE03wOqUm1aab/SgVC3u/UBfgaUg7sChYKIgM8OfYRgh4h6nHmn/LHumoXbABMAQzI1Nr48r4TUATjnu0UnoRoo1snoJezwMRNoKLqKUNmGkDDHmyMZuf4BTxdkBI985k2xPo0YNVdReGFgOSNqN++Xx9mRgLlPR+MygZoGz2A4IG3Zx7Y1IpTl70s3YqbartXUpxOB6TP24OJ3SwBRs6gW45vUn/c0xiewKDQWIfYet8XyP0Q0V6+GGKiZvc/c88JzkM0vZjDidtbRYv2jq8k4/F10eNHTYM6MqlFVWNYHey7zyDpDsfcRQH8UJpJF9gJF7p2G4KtPXyyHEZiaNIz+bRXSnpvd0YI39g+knLSyq9B11Te1tm5hU0ZnN3vYrZmFnJttbSn6tOvAj5++wWBhX/fP49MCSPZeqLllNUOZRFMZYV83Sbw0ksy2DubZH4R5LdR1lkaK7U2/OZdKo9KCxd/Sf/zIIpHUsNCYuavkRGzIabbGOp5u2jE//JmExu5bHtwfy8GCZ/kIYO0c93ysTDmF/1phkwPQpWaTsabdTMkjpeBzkY+jHvpFw5H4OM3ld13MhLUGRa3oo/sPL70Mpht1s22PjVAw0eivInTqmzf+bXhUNq5quOayvHWiJQJd9U3xqjxoiHeioCliXTLVjeZr/oy9gNNuoN6sYMAYU8D38wtJ5+Zb5JFOrWyGGwmFpc5OMs44xOGb+FR5blkzWeo8WrFYU+jPeCEhOI6Ok3t106XYuy9/sxbGIFTuWzBbgV2fwNdKdhEzVwWpeAQ5ZzXMrVzoVI8nNzPtnOktFVOyyHKkzizkfQ6ud2xn7iu2Y1iBR0PAusJMRbpn2YVJ76LsJRhAGNIhJE0bl/cBp49XLXXLRu6fP1w07d5jn2ObxXGJPQw0MZLoVeDCql472q27X3+215F6hNc1+4NzyWE5TRG3FFTS16ycYpBOoJkLucj53FLMUH+YkPYsEUpqd1Wal9uFUqycY36bvovKNxJl6DwR2+Qbxya1oTcOwGfuWBW7uEIldUGNPe+bR11XlTYBTTqL/wdEmA7qBdLGXpWL27Z9dfVKldIjHcShuEnvhn9Evf1rEEPNWd2DpfGCGAA4rxdfowAz0mf6/D53S+aEZhklGAlVkLhtvARBQJboDMjo8DR8OlhzXHaLDg7T9SGh6GAcLL0BVpQnZIjV9D9UIxNvhZSMbN+3Yul0yTPg6aMpHhk8vDr4R2OkFEp2dwQVAdqC9M6atRyiPt2/vTK53MSlEe+x9TaqLFX4q44p9zNfR1a81yewcJH5fa67GgOYsfxzUAhA+KMELHPlrOVpM28jhu92/YPANNCa4heBiC6PbaTMWdQu4fj1ErrlpvBf0KybvozfGaU6mjmuXNMQha10E6X5C6oV/FG3/D5jJaZ+Yiz8w6VgQ23PyFHDmZxCPjsqXrKtI50LuMbnEOukvCiqUroY9fRRxf6MBsjRzljV+WnSXPkknu4b+HNCaI6kRKtTZNzVi3s75SENCNfl4n43e4khqZyvV6Eb697VkSxifO9rgaE3cE9eRjIg9k2vz77UkwMQfCwEVrjLouw5B+JGgGEelCL0xHXcT0o0G20Avgo5hsqnjt6doYLwEe15aI4nJVkVCq6Ad8RmPKcFb5RJruooRN6z6UoW7oRDm4jyA3yxAOfdJY6U9/Q9VyVdd5kEZnNHCjdkWmnP+POr1R9MqgqXzxAwqWHs62Q2oRPdVyrXrLweG4lxMKpfRlMTcXx3eY4ZeZpkUyV4jGn1LUImkMMIK+8pZpRaGMg5KK6oUtQriyNf27r88pysUCtnrg4UmP8EBxbanyuyzKfVRWjj+aKfBesPzPM8ICcW71AfDWhDxHtygg7zI7VbAyhGOk8cR0xhEAyCrqyNsriXvm1exxezNw3ESAZMiCBSZHcOk4xHrJEEGS3Sryw6IzM2OgFwBtBVhUjBfNEGwSxbi/pqsoEej5k+uGnzvKa6wlKATY25LIhnw7tAyLx3PIhg+T66GPucNBFsSlt0l1GgUFjUQf43gK0+e4fHPqrqgSxN+VlAxLElanzwke+Heo0NIBPkcKmO/eFwFO0OWVa2Anm+g+xKRg5AsP+T6+sQf1Y04F6dDGfjZQ5BFLQt8756IEA84fBrbO/jlFa/wy53Mk+zjdPMZf6SxgIB64eFXwgZvnRe6dfh2BbopIDiVBDzvNJps2LqJgo7Fp1ou6NlqiGVfMIsLjBFxtF6ZTiXGXPiOe1Pdx24l16NoC8LdmYaXFtAwqV2cHoAG+yC8Szjp6c+Jd58cO+sn3cm/fQIPoa8yImVGpq+Tx15a1SlkGCfTsN2yK9/f1g/o+DBI88Kh8w+x7vNlF6Nw56l8Dx91IeEolVFOd/ENWsKB++J57Pnn60/EqIOn1racMThWk9TJPxvFhhMFsSKKklD8FhuTTf9q+CbJuaYoPtYOKA9aT/rs2a90c44mPjQsxrb4XMw4PLojSIhV6SRtWGfxg1X/+w+LTIZussN5OS/Dg6CHeegcW+dU2gY4inVvV+OYxpN5J/AsxNWcmONWHeIwXHReMKybHp5tMNeZrUvJh9XcgmM/oq8C9xXlqo48FfcGzuQJxr++cFtDLazO9qsaKp6K4LZ8ZJV3wy1FBbgQ13myGuVFOZ1YAS9ZCDBgPnUm1dmHRt7n3i7J2bV627dLf6nd5+iW49b+uQ5eoFAzaiRukz82v5xHu36Hy0gxQYE1MFu0zalFPnsVhL8OqKWVgh7lbqauVXsDjWDJ6RECZr3is2UG9RxbySy33FzOth4jMSF+sPtHsjtedV5s/hs5wf0+Oee9wHkzDcUfJCfKr0xzbilOzUs+gKao7a7Jj+OC/GJdhgvBBvjjKuS6emcrooZElQyvKRSL/OQAmVThoGWyCBfPSOXTG/568Ci99uaBT4O0Hz1NDlektoM8XY8GfAQFvoRdT6yFWyqNvbp/Yrz+NGAVNgassLp+RoKIuh5g3yKGqvkBIhBHuWn/J4AcEIRePLYD9TvuuInNX/6YyZLBCYRag4DLY1YBx3Z0PNDYYMrAQN1mfN4Efw89+olnAONZKdvu/wL0JxFoFqz4O1gvBQ3XacDaWbI2qWF0+ribJN1FvxWUlX3zz7rZ2THhZ5KgqXYUnm/DO0sThfF8++XtUqOc2Doe3AbL2BiqMLXbg4qIF4Bv3IBXzNflExEzRWw8RlPZmWEhbO2d4pTmokmp4MmhJQmTnllWuQKw9vRKvFmqOTbYuaxnr/UBZxT75aTU4pnjHg7IclaKNfI0GjtokeBGkaocRg+wbNP2cNMnQhiiM4miitpC+f1D66eHI49K82Lskn9JigOfg9JJA+WMJBywHp8pAHsy/Jt3mLqmEug5zigiFL6YYHJXDo8JOWgqvqgsRYkiMi82qo+l/MbMZMN4HtjH90GZBPFZ1J6ncNCWSDE938sKd5TByIHjlaHC3//bGZGeCVYtX1MBgBP2zyxS1dPRXdYqfutFLxm8ZsByNVdXeq/b02GKqFVJyP9FmaRsvkAblWDya+/gbvAK8GbeY6U2tDuJKRSHtSmaS5J7FfQyurnMyNPSYddeIcnfdGfCA0z6tQs55pfImaCMBEEMy9bHmM5uqYUhtxiAm7nW8ITiljueZC0haSUc1GW+ItY0XPW9oyUb6OlJnasP0lmqBhNRUsTaCptNc8sPQhqqLiUOKY0tbvQ554cvygsESAOz23eWkRVxjzCQuD1AuqAi54qZ1Tmj39pMhTyxpCQc+/sR0LMsQoNPyOPwl9RZ7dFwxU0Dwh4EYKnlCeulQkIe38wkQVGnobBGRYzCITUXwiHGgr9RapJWt4YWkTmCozMjvSMr1Vf+08bVRcLSo6inbqiGEvaka99FYJclhb+aln3XLGjVSzLJhJIZk0irUE/02bxnH1DIRLhAumVvskxnncnzIo8Y0ePQBeMWq0txUUEPl1uhRA1uAj68IeCHnNPFa+ow0R5tocxQ//jbc4IUjVgDzl8aWwYuBiEZhYrjUT57X8p1s4cWZKDCVG3ULZTM4D43RrTujXOZCys6g+ZX+4iweeI1aDuZGimti5Ki8i3+C/PyIwqInwEOg8OeriypwICUJsFuaJCWQMy5ItBUUOGGJKxvESHMNzGYo+4VS3/SVVOSWVJh6ztyEjteYnh9V7G02/aWHIiiAvIi+zWHWRQaIgnSsg2kDhFLPDdW32mb5rDSHe0BlLfb7u2DnWtE5hjlFvKBe7X8oZg5i+qJlwzWdMStSksi02wejA1NgrwmIKAwtBZ9gbXWXJuKwgc6pCLhja9/mytUUlg+JJiClCwqJSDLIDR8ytAeTdqYd+UCcDwc2B9IG5403EGCruC4sL8VX7CQkWILvLPCvuYXgxTI2C2Hsv4R6yG4WeGjOLz1CO7dtT+0ozxz5x2CxsMJkwefz1kFxL8vx5P/5bUbV2S/zmphsioqh9/F+Yy17Nic82OmXbyqaADP94oEbzb6OEl57LmgCiCaPgl16BZjNjVay7vKl05lmTiwMay3Os4cFKkRfo+BhouRZf8QTdiXbOhGUZlPyXCkiKwS4BGJgqSmX7GoMbQoqfVOoCMxs9NRJ/nZ0QZOMHI8gcrsYk8OJGEkmw8Gu9SwQNQ6SXNJLk7Fl+SY/RjqlYZnVt2+wyf+/F2OB6jOUEF4N3TXU24JPsdib39Ak4B853TlXK7EACKpC3PUK+nG1EiQxBWn2i50K/YduPMDIhteKkspH8ks6hLYo+Yb1mTvSp+3uHOaxJM2NbS9sThrTfEDGieFgKHZQGCkl8XvoJmkdpGiC579oe5yohhg14wHOhx1REgAarbgAIc8f3ssHJXBNPR07ixv+N5LWmI/L9HgT2ADWLK2cnQRWLaEaG062w2VD7rcR3EHhMDYEW9G1Zqis0MKkgD5FOJOZ1O0Pv7DjZKSIxJw8Q8Szb70e3Mb7WZZyGcAcM9Dz0IVry0OtCmZKj++mV5KnWnU0BMj6dkh6TrycY+lQYYW1WMdg7s1/nGRp+80qKUCtwgddiu6nBSfFuwcQPzAV8R6av1AcBu95Mo/Bj9OrBExE4gqJJDqyu4oecFnK4eaejTINijD3sHxbW0L95/NK2n+wYDB5mgAXmwfMOHGTB3hbXTubT8T7+Aso1MgGCfEKUQwoCRmr/zgiosXOFlVade4aGGOHhzdxUtKY2e4ZIuGttYz7hnexD/sPP+mfczrAEt35WpvSnREjwn8yPkTuikZ4Gx3lX9kUmDQJLUDXxvG3LBwbPP+E1LaQqDpOvgnWQJyI2KiolweHNWyoe7k6aXL1TmtkgJtdFEgWtxaSWN97MTmYaif21BvE9picM4naRCgg5/G59wU+DONmZ53iEmiDFQUvZSPrH+K6sZ8BQZylQ8duQf0ed0Krr2wzOfHoLPxSq7Gy+nwojfGQi4r7IcuWqMirL7USBT3eStRVVn6ZdPX1cVhSW+aizk4sRWnSjZP+JDypXcN1J2vpGgvGzbuW+2GXtAqgn8SdtUY9ZkV1v3J/1qwli6RhTPx/SZE0O+eqQHDXGzueHfMfGuf0yrORGmaMgHjkS4tSlvy96bfNCgLrr96BP0BOrL+cwp5g5sgmUW0nAVzvxx32T71yGzklsOhP4GaTiEp3ArBC55/cph0cjU4s3uEfz9QyE0PIGcf9E79ccfSA9wsiy6REMsJrz9uiCe+ooxwEeTuPFwCgLk+Ij166TgasZbSyHXKWS6qC/AMeH+kWVM5mVYTJVN2fkKkCm8v5HvWRYwWOtW1D57a+Ol34ib+CFsa6nqP/ZwnwaH7/DOJ8KsqHqtdWS7YpckOggZBvJGj/2c96OgJa1LNN9vxaFuEbqkzt16V81TBDNicU9WLXNU28gvpzPsmel8uUMojhNT+/9R1Xh7ZAPGn9x0z6HOnokH4vRTdgEOvH3lw9BKjCD3P1GU6fnFKwYjN5EugZGKtnZ9zdIZr4ygxdOUz0H+JFgzGeKUBTuilk7LGWtVsPwJ8OIDK/mHtBE3jG9cHlGimXK2pGvDXfBc2b+zjo5G/rdKANp1PIkZiPiAs1lWbIa4HT5HX+LZ48GZ8AOK372dm4ZdH569dEdYQ7ZCO0eX25Rc2Ukg9W/6J+JFzTmZMQEyGqtpM24eDsHfB37/K8+AutR1axGMOqRzfo8P3M7+p+69E0mV3ANljfFYZs5/Tm7GdjJLCaGufuO9naaeBypHjuo4/AUheJxt6+ApfJ1Mlo6+VmEEa+pMIBcSqT/an/aP8QqKB8MhqkyIGmPa5B2HiV9lPU8S+DYWLvwuaISu6RBy2sn8N1OJC200dUBqwFq/a/r7D3vv0Da9XYDWcgbqpaPvENVSeTFgy075kRjmuDrajwgbNnlKePag5PH2xfylM8uZIg9xCDKG6PIr8g09YoZDfaSYI9GvS4MwTVqo/1DCX11OegOaXp1mTa0NBo4oycpq10IhvBZgjqOmCb84Mvba5BNhAUaShUSDWzpySo2dIn4vIvRIUIZlROPTPSy/awHXf9r20KgkckVJm1s2qsp9g64AWj1SSMNpoYp5LjuQcW4ZVE7ecXaXy2yozVSonU3ulRp1oRmrPHfZBF5Qy7SA8kL/7Sh+RGBNPrWmNgSOZ97OZrZUUAAOuX49gupqOHjpNIZaEkL1bXNA+5NJE9Huvm2KEi+uaTrcnjmbbYMn8z58QyrFduNRXSYa579L2hFp1k9JhXKZSlQCkZUAck9V2dYEKB37O53NeKcR8jCk/31CE+qS3k74eU4ilRlm3oAzy4oGc2aN4HjZuSr7K9subqagxAwS8gZIzxcrUIOTUDlQtjbsgCEhpTXvqd31BDJgKqRjBXCSfajOm6v+RXvoAtlIzNLhr56QxJG8fxlBFWn2fFrdJ0PRu3y2t2++uKAkX6lwfl4We9+YyHBrOzaNmcfbvhSQ1QQ18TmtyDCmI3AbmFXBGD/bME6mXu/zX3tsUYSIrO5WKPLmmneXRygHbjMPevupuein27u2LzmtfqXyF2zBVWxOoiPgoZl7vTbtX4AX+gXz5kiId2OZ810SWM/Q7ffMBmDW+DUQCJLvnY8rYtgch00nGKXQNKfYd8D3i8ii1+CpQvvT3K5oHNvVp5+R0TJj+27Kv1aYPr412WGydBgbpCcYiNeyvM5WKy02Q4gOxuKaa2nskAS89XzzHZgToQUP49IooIRCOkpdwFt4dvlxfiezdG7OIyLFT2wmYE1NJMMdXwyNlJ1hft3yG7RTaL25SJaitmny3hHcRSSiOHuUQsTLZTIRsoJRDO0brVzNWQ3csFP3Z0F0BIu1PvMGDC1YoAiGRRgMu6FQuHkKG6Ep1Cpk/377iJYy8wJXI16Ls90kg/LG1tc7wp18/Mw5s4TU3ym5dmvqit/irz9sGVKGuNSan2rqeACXcdLmYudYVpsPSXYQQ2h11OpxGZgSt4apsSQl1GyrUCH7d8gjbeMxU45RBYML9Bhi6QhM1BI0X26sWvBDkKR/mXpZESTyUhgBghDBEi+iKoEwKvO4UcrKBBPf6yWF+9TIWOEPgnCdlSxCh1AgScM98uv2Iu+im/Cgd3fltKqHwdOU2w7l5G1NArRxIZYkPIpavpqIXTImQWXVaO78MaupmPtr1zw17f0R/tkUfW2/XrqHHJxRAnLaKgLgE7XRUMfB+G6KrAo3VYD5e7/tlOz29GwxAH3v/yKETNBhWKTjrp6WD7VC7mvZRqdewBUloeCrX0l/f/8tfEvDxim6h7ndw5L+iiBznO91LFUhxtcKnhBLizDJocMxO0TaZ8ADGMWPovhEAmveSNk07kUbmqqaKtLZCK4QSaTFNdSJHYFflXF0PJCHC88gIKsB2/6cmIWen2sWp/YkUnA6QY0N9Di8V/iH5xLgVYHUmv9/k53TeSNiD0CtAe5vhZwx3WFxoBJSymp33GqfVSWVBLR6kUvhpasJv0gDIsJZz+DRwKGZQGoAgbjkUbK3SQzFmRjiBxOk+B+fGh0ledwqfN5j0R7GSIon7aRsVAWB5KdLekGc4fAl8WysVnARMox/m3oLCguhAAAFzULEXWaMrXyU5TbTFGorZ4TQDhV2jzQyAteMXmFFRXgjp8ADbsYDAYW679aOXYOwAEI/dUYnG1UwDbEs7O1shbaD1hLB0NS6/Ozx4UJ8UDF6ObGrL5AxoOccjdh28cVujL+9vymkctN2xWKVYsCIzLoE5bEWrvsQPTNlo2eKe45Uq+cKhO6aFffF9tuQIRKF2tdHADDT0A0JFgIIZo5du7x0uIPh/yiypx43HX8zlnCpVgfpGpQ0kaPvYBIwLJhpCbzp2peQ7VStLYLf3r6gIhbjUSGncr4ajyzyI9XtcVEpbIAQY8MkdfZVQElwJ9pSJ7mk4LC/3N7Fizusr6H+DiAai3m01ZnUYeToBJBf80xRZIPKuePRhh+DiGnTvA3Ej2EwPOA4URd5RbHniBEMLudKBQooFU6WTSTNFrp+hfO0fDelZ4vEadALJU1keEYWxRmsB7RkIFFQkDQmz79qvGLf1DFogc59vxfL0hpOZnoykNqfyvB0An4aay5jpMCkazSd1VpQBL+q/Q70FBTepBHNmVZmL/x4P2IHuLAmyLTPbfoOjjKh01vHb2lCsyj9CP8c+pPRRXmvqMvXNeJqLsehSdXe/X0a0m8n2XJidUNeDZkXBd5Djdl86db32NytkydnDenxatjORamKaGAiLJQZmU8DCVhxywaCSFOA8ArXEHM4H/bwr3k3KBNr2tb5tXnHMYaacjVua8OeVfQOMFp4qV8IfrcRZMo+gJB3AX+a3iT6Ggvz2Kuui+C6qyg3Mfde4/fOMItS7m3IiSLbNa1DsPCIjsrRGuz/vsiAzJJEMfW2hqnqZzh5jjKYBDKTXJEYnNl8LdOKSPYMQItljRQxgLL6ka7RwCFEGXqwzzdpHeIefBhLf45gJXAm7vkTnHHHvpMd63Hoe1Bf/Zpj03tO4oxpE6frP/Uku5s7OjcRqO6C488UUCHnAqnOc/Um3U5E41lx0afHFN6bb5Bw6CgXS1egsoEXQaYYuxkDET+f9K8gdbLL90d8Wxt7HHnlrrlqKcDOakLbOPNLUT8KYH6kgnFZoBUBKP4K46+Ll9qo+er38T47we72OOrQ1Oj0/CoRUueERdgirsE2l0kVDjaUP7wIYjtXiILth0L0FkGL+es6vaFkOrqF/4Y+WPHBnxe3DwI19gRCL7+1cip/Pe7dPDBi5vTdrc5qCd+jphNbl1I1OWnWRJNMg3Zn4sxLbTF0aOZMcfKTXiUWlyf7ZfW8r3Dlgv2hnnfQNEfTgTwGXdmMepTslepmJIHlpqTIbyb5qMduESkNgXgneWedCEr2Lx7ld6tFnZhSLkXKXdxY2JujCFep/QVhEaGV/qbldUbuEwKTTKUJDyuQFmcqDWLb81El9469ZXi/u6XQORlieNcGMBnw98TiylsNEABJ/iMOgKTE2GgIQ4VQUltkZIVCcs8gbEQTXljlIWBH9erkEiy1AvCA2a0eoCQ/mM4njRhjGNCS4jQXYXc6NoYA7IIcoD0JCqRXjOUzVrYL15S104gxU89GdCOwaUgsZMpthxIJ5/kImbMcxqUSr6EnMccBd+ZITtKORAzXreS0a1kmFroitaaqeEdgOfAeDPoT1LP5VtKliatXVCs0YJ2ctI5TrZk6gsEttFPGZ/UPmexvh9eSzAYO+x0Hla3pQ97toUfMKfpqbclbUt12H/TmWNwHyHQya441OYOxPrUlCEmHKoQ1Uy9PXgZShwfMMlN3ihyCQMaIyvz80t/sb1Rn5wMMYY6h/c3P6EMiV+EDVesMfpIRlnIbwNVtSjy5hOucRsKIgIDo311lhytrxxLcSfI590c0Mh+ssZ61KyH+GpduARHLdCy/NVbqNUuyYIkm6tBsxEM1ClQb/HujFfPT4hdW7JhDr5/J1pumxutbkY1DfaRluQ41eeb4zvCuJZwbeZr9RLtT+l0vAw+jdqwl8BxjSPUAKg1QFk60MkQ35G6bLRkRY/avu4SBCiCqmja8DXOFOVF7Rlj0I90+p9QqhjbaS3w5fMooef5daOIT+DZalclK+A==
Variant 2
DifficultyLevel
514
Question
In the picture below:
- ∠PRQ = 43°
- ∠PRS = 78°
What is the size of ∠QRS?
Worked Solution
|
|
∠QRS |
= ∠PRQ + ∠PRS |
|
= 43 + 78 |
|
= 121° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle1 | |
size1 | |
angle2 | |
size2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q41var3.svg 160 indent3 vpad |
angle3 | |
correctAnswer | |
Answers
U2FsdGVkX1+fUZWjmxS6KQLxHSxukwwz7gdQaiOwiQGsAqWof4MAir3jDQA8kOiy0KVj3BzrP9xKw3VtTKvdk21CgOTZ6sdetrIwJzqEo1zfGJLyeWcngsh73p+Gw865kxG4P/nTjHQvo7wEVb/TSjddYjYxkydArkiUNSuG6lUProsdW9++5Kwog3eXNNlgqsP8VC+kj+aj+8y0W4aa9YqkyeL8RlQjipc5K34PtMdzndXg8yk7jEgQvPyiS8XCmkgPPplzGzUF8ASOTmBUt8MAB6Ml/iHYiVLujsT61J1RKINRxdYiu0qgl8RaIj8JhVRmXIdEcHdj9K1dUOY4e0nA8eGh9Q9a2cVlbn5OM92wql4g4WCYgOWXTGE/pYXWvO48EcyiZaCeffSnCe0HNIC+eh6SD+FeTtc9iJtZW6PqejCJIvlJM8EV6BLl0He7bBxUXE1BIeve5NsmnnSjjb4TJUJeJt2Wpxa/Pn7KoHkmLBNcwjdCqdEtJ4NbfUWtAO1b6i67JSSsgYq5t2EVH2Cvz5Sb/v01m4j7Oehy+gzzrDhkb0wf5vI9FoCRKsOBN7ou8K2NEHXSUXxBcubKkkwcrCb/zKpfCYnZkdNcPQhLwZHPbWx3+ZEoJTEcGo0FoK4MemIXcYSNOGqbNwy3rTkV7M891QmVF3QwkvcV97zkVCWlkhe72ibT2WQqvnpukP/W8DaOYtndZQajPAcUQSdqUeBzOkOSrHhTBOmPrIQq6o+P15CYz/d1BreNLdRqREZjlMmFzoIuPInbgYlq1lrMwg1GxQFWk3fMsMidSASZBttsRPq6kwhF2w6gynoCFkEVGAkLL+9g7HEce9AX6KO9mpr2EJRnHCiLR16TOF3daTiFCgENVR3UKGqYXlZuexZWS8HKTQ8YD0TOYQ+ZObQGC8Sv9rNTMlYRE/oBGKDwJfpSl+vvS3ZBeuG0wmRLSqm5A80ho+rvAIFP+rMDoqd+qCg43DZjPoKrx0V2I4/zYrb4mswDrp4P5dmECvHiiJBH8xCMlM3gtv/RLpHT7HAhbwaGWL94B+ioXm3+/xyUf9RJQvQSmGjPZGW4XRwCG83v3z0qfCuWPwlmVEajXEM7q6vle9gPQg6XLd3nnKN8W2sY4Z4EfgPnvUToMisbQjsnvShzJn3sCJSpSQRyd049+5kwwQPVpZH5nGUzcLErxqtQnFw4zxZjNpCO3xfqvGO1DPrtJTzm7YEzMeSh+gOcfOq6DOpFvOBKPz4nXZmqjUIoTqv3hpJB0vILf4xAkgFegjU5mwCBTM0QjamSpBcJZj/aSYOebIsUy3ARvMvbLhDjqbTY46g7fljyKuQ6fNO0dDjbt+N01wZRa5wLtZJCtW+tKSfRAY3K4noNJ47pXHT1hqcvpsuRt7aCCqKnm3IVqAs+Oa9pyFzhw/BR4kbmMb2ebltrhfA0RN1Wwib8IkhVpo74IrQAGlIqbYwoebCaZPZzf5/ez66FdAbcqAYAPhIRYHUEBqMbmMLx892NlqkYmVLAZRKhIg9d6UvoPrBo7wm4iWjVJYi2FtszQSwaV2pERBXP+GHE0Xwxpl0hL42v/CIUTCKqspZzTg5Tdg1w/wadCZfI5gLf/jKK2Sts+8SHXF1y7utPneGNS5tuPR7OwuryZBMGnYqg/RplK5btD3VC1qAZ5ZZN5ncjHeSlE+mDF78OSFPjiT68ljNvzROV28TV3RI3A1EKaX2QeJIjxYIWemZkrP9ZmYg6SuV7s/Eokp3bp5T9T3fEJuanugzcPHpSmtsbguwOCJmi+6YGjNtbmgLzp7nBCTDsLvY9bJNswVwzZe1warlA3ofA4Nar8T36+16+LKtnTodfLU/feb/h8JRh5o0VoHYCh3p2D0dkFFcmjnlCSDb+PSVpk3dW63y735o3FVCgzUtXrmi8VjQ945YjFqnkmXFb5ThnOf9iQ2/XrsorXB2hk5rteyZZUcXqXwkS7kKYIGcZfKv+utlo5eNGvPV/JW1mk8CbfdDNqrJj1USZzv1hEHNKHkAd3cAWSa22ENeL6SKPABANstqSUswW6bS/0BAwKIGmZ3/PNEaWEMd5AJqDZRhj7NOB3/ZYfntC5AfefK6imTsMYgmZeOYK+Bvwtq8mkd1yJphjYctpMl3QGxhakfhLwxByWVg9pbA5gVuWKd2/BpImnWKW+w3dotz/Jc2Gzmcrnyh33wI5if0m0rSLAqUVbMnqARBO81T7t0fxlhZ0bQWvlD9d53CqVn2No5lbmmy4/UeP2/MT6NTgJhJDkM47v+y8ZIfc/Iv2YjKKtkqWbD5HE0hXKZkJHdfXfCPzgYKeQBG+FWlo/K8C1Zs33QZ2Ec/qtXYhLmKYfOmbGnSCrg6wIdwZnkRLkc8hm10hGfWtpcAHESDSJbvkiBgerTCtm/npXXN/4CRyouguwfA4ADYnEKlPZ2RsFYnbJ45zslpyyZBnVOn4Kr7aWHHGQHpsnSnIndmua/bGiOArbkOIHngElNjY6HNeOWf5bqfqeA1bcbdytbp9qn7/2piT0DiMvXR2WkIKk1yl3o1swU+8A6bvLlmQppnXvOnjKlbI0pbFi4VQYkumTBl/jdEeuUVFGFo3q0ePeCznH0VdKbYACEvqQwQVpTruPSfCV8k/ung0/MjjuTsuxfaFSW6p53A+j0zFDekZL7zaiukDgowXBnmp1t10rimOFkP1hduUx1cPM3QagMyMXP4zhIWEIq7YpG0C2qJB1jRODSvpO0+4B0RZkCSRWITLOJSbCLssvhgKtLEwKZG1It829RM7bJXxl8ZIgIDkZqsZfeNJltj1TpbkHsHc24F/bwG8Cf55DNbYL8TWC1y8QuXmynyQuVePeKiFAUP3NwnNK+qQhXbHkb10B662E8PqYbj1GofvBpORodWQyKoVLVtY9fYS4MHqsswHGpOpCxYhrdorwwvWVZ4UPp2yWq2eH1CfnvaE5YJJvpg78V0PMI+6youhUQlfwk1jhLm6BFcCN4JK6krnl6vjhzVPVR6vcPSMDyGeH33z2wzFyoTQNdP324IpVXDYP/Ix/brPo31pKS4gq+aGD8bNqA+j+Yq16na5OaUOJX1GWNGVEdSAXa9nYpx3f62vRDnnjjSweMSzrQ8ZWZfrrJIXsTztWXDIG3QhGhKGA62Nh3Kfj3NOtisGAaf+iqL9QA1QboVGl5A+cFpKQ2ifvcpW4fi6wQT69+V9FgdDIAOERmqQzOvBfAhCF9w4VaSLkX1J+c+QV0xsmdlRRE0pI0rLGF3TNAxGr78CJjE0ZYXmPaKnKlRqYofbgmeDeESBosCMZchACw1AHeSXT6U544gMpFZ0SNuCz0fyowYeQJxpTNfXnZd9OUUF/hRXCbavHV1C8rSiqig+lt9SJfk18rQam+IB+CQRVseBvnJMy3UTlbCFwHC9CbVSrO0AcIS7S4I9wD80ZOXtw+cBEAdfGcdVzTdmYw/qWwUnxsrYQOiqSKtkwYp3V5F92Tvtbu75SiHNQae0lIhD3XeeiOMxB73c2GnrxCaQGZKKo5Q78sgydUg2HGRuEiVIROOxFTU88Pw+f8o+JOMfocveGW936Ac9dqScFp3UYq/j5MM+r1JgBBsTjm6tDXEjOzCJcluRBLM6WORsLLDBBsHlNm7KzdiIKDKfrubEcK8diDiEJBNKUSndR9W+VRCoi4mZEIL/RVogxP4APx9iuzpa5KWlRNjLxRRwlzyF6SFVZPVAWC/ynSs8evkcaglI5Su8fci2WwAprmrSQDlRePDtmKTuD6Zi+WzZ6rwzX+BprWJRSvGjCMjHtFsIfDxMZdKgJDlW0o2d9zN/GoSGmKjkayFL7jhV+HIr/9yxtDU67FMWWWrJvH231yizyoo1/yoEEPf9iWPz2TBbdN2rIb05WNgt35X5X/4Vizu8xMF7dpTRnsfgd4uxmPOGIYqrnu3nV7otAp62siKgjbpIwUb/rq5avidVtbJ7WyM7x65tJtu7JEhX8z7NclbuASCyBkGXQPpuzh5uosOqwdXA59+lX0I6f6AgG/UJZZzn+UJ5SaHw6mtwDygBohp4QICOWKUttuc+IBTLuOlm/8z+ERr8lMkpopXVxF2yGY6cjWHDjEXJ66GIaYuJSkXvFt0yuklf/2TGSdl+wZm7pKn7XBTXI5/IghcqeGyIlMoaFkA8K5rYG4FXXOu712XvtNtFHkMk031HKVnRHcSSKTiFrSM7GCesKOnewzzkpkR2EaM+odiNXrjHirrH+o2/l6+xi1Z7gZVTafbKwP7qkMhwbcHIlDcOT1gQU6dnKG6U7teYzgjdLp61gihrOwhwcZTQwJbuIC5MTepjkG5yZN1SPEEQ2NeYfoGuea/B6b8I3Ea/CPwnGiVpeY8GBygpSQEuZMPg+nxYo4d/nEsGiTCwK6d4KPNhQdtKZFp1kVJKR9Vx3KMJ/OqY6RPu72vwT9pRlbRgtXI27tgXzwIf0sXV7panxobah3vr/cQeaKehnxVwNGJmBdsgHAWbbh8s4j1SZbs6CyFZNrWK395n4US8XdA0FWDczuwNHeV2KiVIO+2AsYIEaR3UpkpDbPpXHKFw7sYaocbaskvTlUhaI6Ko/xHa6RvNNHKeSojP9oeaZFNW8zMmtmfsQ86v1JS9e9o3TBm0VZ8FqbOS6oM+tUOGo0WoQ9YzqmwycsCUIPGebf2dovfOD769iDzXMwQ8Hr3cA0JotY4uaUd+SK6j7VXWxdY10GcFoJiCQtOwGRmvKEIsNd1Rys/VPer5YSZNT3Bj6hiAljjCqiUxRa+uctPzQbzMMt5rnxqWBqTaGJL37dXrtsfZD52iCIAd9L/fTN5OdEnN0A+JD8G98tjeWJqC1UslZeIo5kCLc77zqkfMGKnjQYNnGpYSHAR311e9va/LNKifTU7Y60T5CL6FK4xRFSLf6nxkGO2EatqfV5xDz7axwb6mu7a2ErrEFRNrEgWy+Z2c4MFvn021G3wSMk3lg/CFV6lTOVuaWHsneJZLnPoNSpwLfFPt7DkwxaguugpcqHsf1LglgdHSG6GIupmziYnvd0UPf8q5uL+GSm64lCUIH97Vc26uo8XFxfdJgOg27Ue131X/G0hbm/j1/tsDIlL8IPe4zJTeoMbbICHsWB4rQI7qv+mPzAzfXXtWYR1NsaLjcE9JbZQxGb6SfF1ga5efHwX+cw+KCI61lCT/ucQLeY79GoLwCoVStxOrej8TV+Wl9tuU7JUPskSt8OVYhTaMTHHqisk+c9OUDNvRDh3XAegIJPGmfpJxjM5KHyjZhNFmEaf+HAgAmxJ/LMf9CwTSIqF0FBHSy+FxIoj2bbEEXsMLoRGKzwcQgldiibSbgAg0w68pQQRN5HlkAyAdEpqg1y1tAO3940R05urKSsHVh09a/oJsUrxFdStdkxqFOsAUHd0gwQisTPPyLRoigJzrt7X222P37gBoFnzo5HAMbZGMGg8S1YPKavjvbwNXCxRRkHZnO5V3EIapT5vCJw6WA1KYZBIXA7+wnCzPKxBchM1p8b/LUb40BxpBceEIOTajeCa7cJQTsES5rOrQ9P98RUKaBiF0Lhjaoi94YfkUqgR1csOCA2PquzTeT1wrnzZX6CoTSQ+MAuNWjc3Py7Bk5tAUNwvljjLDgvHiLVslTHN/1N/Bj60ADlLwFrgApE9Ny+NOPtGvEFaLLBDQtujXR/Cu66xsEaKv/MQnVp+d7bV8zkrEYMsHsCOMnDRRtWoDt1XvzbcXaBa3zGcfhINhs1ETZHM8nR2IBmdaSunWbgn5sXlz0PrTGbVAm9Wn5ZgLxCBzjhNxvjxM+dmWeqcT68ARyFtmxdJeV+/KkDHswBiJC8ed7QH8hBdKdb5VdDNjREmaQkM2bmexbXiAUdRfxwG3KPYNqvC21cacGQr15AbMMOA0/fqNg29xFo6EQTGuBM2MdlRFCuILoTpMEvVjNJBg8DyqiOtMtFhNry0OH9acIbUYImnoIZ/eD0xjsd6qCB5Vb9FXv7gMwOBi34L1/ifEgIJPanK7UhTdyt1yFKjbIIxO7gjKiJRvdl0vSml8BTkrFbnsrYtVB6oU0vnd4+yS7A/A/H/PuiXW7PypzrdPoHuKHLBMINzvkbhtC52Ua1unKNMV1x+9O7jxhT+jS63J+kH1600TfhVglIA+vL1Sbl03ko/MFBxZwlS0nvGpVda3Xf9AMFC164IIjkICPGklOOS1l+heSdKVDNqIre3RavMej3Rsp1GOXqwWY42/N+3ADJoc+o5p11aAyl4O5vZM01d1Q6WpS2Q0vHhqtMc2cjO6lOBK29UroFN0gGRjfwl5KRlyV7rWuHbZ1gZ5l/yR6PuuR3LQjQWmYaWKYlxT+tJoguUlHrzVki7/D7i9AGfSruEJfzxXzQ0GMysXZoc3sBO64fb+SZyQTZsg/HKJlaDbnGG4LBRiD8d0TFt7zPLCoZfx1pX0zrkzPmo5OXVL7zLHr7w07sPLQqLDdgyqoBBdE4oROyePMrfOv5M+MhWGktU24Jrt8FgIeW02aqJ10aBQEOycKX8lPMGdrObd5GKrSwt87Op/kQ+A9CqLdi1/CNnDnRi/bM3ulxVen84so9SgAV2jh8/M7SpfAL9n+J0WxQplq+zWqlAlhWC4KnNj410VDHL+XVeA738vmI4luZlXk4iqVdtXcxO3O+Yl4Z7ZTfomcMO/IZL/va2WCCFG1wgc1AUCzuKqFLmsVYa9t0rTFKRb0NSquKu2mK0m34lXKW83RwsHMt18dNtaCpSb3jEFsQ0RQtzKWoZpYbjH06W+N3hS8BnTFNIULafy4npY+6G9zPQv7gIA9LEpAjzKpKzOrexd1b4TuT3yyB43intaAYZBf5hanl9WnGFNit3f6EGNA2/YTMz8PgpUZxF2Q4MbYa3kWusu9IVm8+C2ULr7q2aWj7lVsL59HlnIOKd95Q5LV2ENyd1pHqPnxD5y3W40PtPIyyw/EujVfvu2N/tUlcPJz9wuO5rEfCeYxIBMOytlvzqFbPRxcDTTzTL4NRRaHrwt5iFq+tj9sUOS6DOH/TwVTnysQBezbe4wuIVzxmHjgf9g8oavKWAlmXDNd9onNbJJ7CEjmBL6eA7je3ye2X0ZUKeSKrNYlCpAsPZtFfFRn5i6+wFTBpOWylwsG6qiLgogbPC/QeMJy6FUlhG4xLxsN5Ve0AcdLffB4jBOgONqfqXP7qbWxzKO8PbwSsaV2fs6qdFI8KT4ZLKrlRUehSaRZx+C2GWxmCuchzaOcz66FQ7RilIOIqQUJV+gV2YPBo3yqCXAHSahfmVO1XYvrIbkN5h7GL717XgXjhiV29V5FMgtDkzR+Nm1lQiR7Kk9c7PI0xFYSYeNMGH8SS49ibif+L3FjD0TqEFBfpoO37/bRqtXceNqI66SqMAJT7R4xe2ID5HodzRjVFYxUcMfdhtb7NvHjfX3fktr5ulMmeKlKXBWlPFnTnzNwKqty1yeGK1vkkShlDay0IxnAp3v1DwepWsDDUkjSmdtZ7+GErJ70dYqtPuCM6BqGEpxDUZ5nonrhpium1xxzxSgpcP685n6kiOek9IEpLkqbFW9zqefVyQu/IsxpFjd5Fho9hpK2LEf0C4JzqAYRPgaaIj0rwZTG+lO4FM0naI158YF45I+gr49f+4JAaIJorxEKIVzzRcY5VH/9zLzKiz0DUqNSo/G1eFayN/UBV+C8UpY6ht5q8moIF7UKIs7rPOdQCDn6fGxXMeJXGkfDlUWDJr4dEghLsFUmrV98DK+nkpRQfGNx78BTCYqHV5Y4QdkRPnPTYW8jlffD3ANnc2F07zRDuIR2LmpGFayzGtvx11c5JRnY9Z74FYEeeq9WLcppY24fv80NMVNKJnFUd7mCu39gDdbIaJhgpFN0Dwnjj89w3X4EsDJnZzQu4sE9hwlIoZiNYDLRhzN1IXaxIhRuZucsW3K9UizUntlm9VHW2IDdSP2RTmgwuLx6elo+sw43dfaCv8p1CrZFBojxc3Us67CGMpeOe7BsaakgDK64Nh0UCDJCwSaLjWjtzfrRRpq7WpXiAiR6OBlAJM/99+NE0Czd0DO6M3zU5wP/SlobQ8iHAr6tcyLxXzwbJpiPGW2muint3AUTdyJiYvXqlV2NPJ9tJei4zq3fBt5QaKJCQ7bSmi+68jdgIhPdTRjGTVBT/+/MAXKyserJJYScvj47YVq4q36xWaYO0hvpL1JWDgkcQHohDjsMghxGkAJpmDqjF55IhUu2IV2GUDGc8bn5m4a2aptgJLLFvoM6RcKycZ1burAm4sPbjWT46T0d98+fn6TFCG71wKsIx+26jGtSc36OKUk5vUxQ64s3xdSgOdp8wRZNy4u4EAlqowW1AHEPG05kR5si3ZR9P52fAZn/34rYoRyOSroxRvO1j4zDQ18w5DHJFHQSNpmfRZ47JuCFyPqQE+1k0B/wkOtQoiFrb6xxDP+jOltVngMplwMYKB9XzCZYapJPZ5xArjyLLpSi4ucW3pRDx6y+iLpVPhSrqaxDOuTFdN4Xx5hnmpqWx/nh+jQ+Ht+vqZ+ePYwTRG4UNAe7ys2OIOCJGwPqZgQvWUKehOKiVvfE8YCl9+hI6n86LLyM9K/Abva47wcIyQCCNfO59Cv8Hpy0RxO73KNV2kH1ngVlaTjN6n4N8Kh47bRXsfa2lNW8p3KA2N+0uKyZ3bCC6NP3C5PaU1QBvrVe/z0NTNoaGtYIFDlrR8jB5o2y08x3MNIt79qtc8XlMVN/xZZUgtzoCY59U5i9D68yZx6ZrMqBqhSwdSxETz6AwQ0v3SZwFq/kYHW5SwTWusL2jv20F3dZ+FKujps1H2djfMhnqeMFkCz5GvsNhcjsbnULdYCO0wvqKgUGlf3OWSNZE5k1m+N3ODLV5WoZm7dIWYkc+peymkIyESLHC9sgSL0YWw+EMs0CXGGHRkyoquLk+4KcX43hL3tEbyIzaozfAXz44GbBZpGtNGDtN1DlxT0ygZ/ZlS2GpXYWWNx6PtZaQFEODSlO+paOAn0cS5yvb7mQJyHkeDEt1GpYvgSPYS5cEkamofG42tjSqjHZueXY/X8u+VEfIvoZWTTg7pHFW9QRCWJhRX4N1+Ad+EdBvLz9kmgE4stcQ1bdFgj/2VFau523C1OKMpp0CP8PbPal3B3G0ycB1+O+XiMkmblVSlQN5TYLVv8CoKmO3kxlsy/gaRR9zhpqhM0/hWYXsb6yZGzRdr99k9srZte6Kn43az2Kksq9smG2Twr+t/3RVg18kslSHZlc/bSGzHGw4flDKXG6Z5EyeSaJZ5oO8mJbVHw5Z5WZkqjTjfbrq01KdJKknxgPpKQ/WYWEMiEE5Llqg1LisGoDCjKg/ndhhB7HrDrdY06mDuui4P5kf5w0+D0Aa9Tblg4RW7fxHV+4wpS61Slck2z3U9JLSryPrFFh39RJClOvdn3f/OiLslBQtvpY4bn88MQwFO6O02tJohdhUwFBEO6o6ttdK3m9ryfx2PQPFvXhgk3nTecLRt4ixNPrg47Hk9vLoeVsXZfg4IMGXQPhCFEZDAqYNyhsGb1e2hK9RoEq9EJmgTUAH8qECk3yqbfFuzsBHv/ud0KL/s4WiScBbHYn/N+vS6nshXj+vNK3UuOlQZRm5xl+cj9qoTZmN+kYNj/D7pvFFro+l3Q7oNtcYck4b3HOZ+6g6N9nWYTbDB0p3r3ZlfU2c9KaBDMAK2wRiDfLXFsXtkkjqsmY2hhojxYpkn7xqrqnqk+XARNBAf6bi1bdiOUwu7hO+hjO1Zz5I0QyRZDsFjDTbzD252oHnyqGXkCwQWK4y8W4sgBpdWKHs8XYClLiojRB7Yyy5ul0Y68gID/zeGzOdRSjNm34Ne//L74K00Cr3aIViadvhQA2UYmYDVmJEDttmzkBBopfzDSOD8xoDp1fqy0tVvlmGhULpIWSwl4GcmdAqQy4iF0agOMI5TSjPTd4U4dD76KPMfNdDXD59zvHNOIZTzHbdpRDArv+e5jlawr+qc/GkYSGvLKjMYwB72mYUL14kSxscTwvJem5Ytw7RvPeDoqaZU7KWwDEmMJw3YHJ23X+p9MAvHgXS6gUfr2GK9mo557tb7/Cn74QbOcQ0P3taBneBaVquVb8EwDr+r4kPhUQABI7IcyhqaF2TwbkFPDDzeAZHi0bXJFKG+YI60IHawVV94cCf3qOrHwv0yGrYvitRm36DgUot/LQzcGzRH8LJuAENZWHgku2QGz1U7eNWkuVYurFep8Ce2Id5zYI/sQG17UxdI2BzWak7CpXsD1sDwn9GtRa5gSEZwl3FlL8sOZOf1TPMCc98+kWULzFAiRd6bDh6GGH+Rl2iLnNNgjPFp+3XNY2LRZ25H4/xCeZQS9ehXFQ0DofwwWUXn8HA==
Variant 3
DifficultyLevel
511
Question
In the picture below:
- ∠PQR = 107°
- ∠RQS = 27°
What is the size of ∠PQS?
Worked Solution
|
|
∠PQS |
= ∠PQR + ∠RQS |
|
= 107 + 27 |
|
= 134° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle1 | |
size1 | |
angle2 | |
size2 | |
angle3 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q41var4.svg 300 indent3 vpad |
correctAnswer | |
Answers
U2FsdGVkX1//r4zfZhrctr+9+fiPrTbTJM8106DrbaCPhUaYhG6t2PU8TBCtIHcEL/tMS8cn96gjMNoIV2bLjV/mvYdR42qBKbuJKoxrZQ19h2zBitvTEMaGlm76FbmslLhfuMHw1I9JKJReTI12EJMnmyQko6ZN/IoVEorLOt1NJniJ82nXeVWg1R5Ii02PyO7KJKD1/gHzVoFUGS2ijU0nyN9P/x6F758R6LuksE2kHZPf1i3uAKCEbUE59Dh6iZw+7mLWSuMDuec68bBwSOfspvHgbhOUjwOk8jHVXIDGqtnlOwonoegkIwh5cAwgJKAa+PGwKllQccRaHIda1VA85Dh05QcfpXgJq0q8RdzGCNhbK5hAZTTh1bEeQknMVuRYjHekqj1R7g8EzWK6mVUFHxNLRJoOdp85I5fgd3rX6YIvOap6MQGAL/CvL9ros8SEL1jFZ9Z/IlUiyzO6bhpE7+empo3Y/8QHcaQGt7ylMfXkCISrP43p7CmgbYmxYqyQt3VEYb3D9d6fc+U70wV/Pia/ixQQL/AjU6f2HwWWc5BINSfD2/MENYxx44JyQkuKvucfWdC+GaHKkLwzXXorLvvlaxYK6BMlXTYlmbnuAwI2STFW4x+1VS4nx2wmJJJkOl88qlsJ2ih7BUio6tFyVBSIz8R8E9N9k4is/woajMQ6AdcJ3ijQQsuaJGXl2fbpWIaNXGP2xihi2mddeI4+zs+w4HSlUlQXRhZGJp0zy/3n+oyKVATlbFLjMSwP7mJSNU00wt4c74kgKJhAx8575PyOEN0pic5bQtWfy921O9gtmyWbNQ1tDO48XhFxV2QAwyLcA54EkBRcymmwP3PZmPHsMfndBivSWgvTGF4TOWwhC8s8KDf6Q+doYAEtGkQVQ4LfZH2pmPbF1daIuqDHo3auUxs40tJqpleSd51teGMUkVWczhcvo8G+XY1xvNIguW/umeZwkwYvvAUeOUO+LWkN2vdGDhYSH2m4J7XiEXQTvq1GJ8tm1EXB1gyZd1FzH4eV2wmkdfgYfggz43yUeM7158v4p3lVb+8olIXS/IgF+xl4QRmDTimev7/OhIPjGDHoEnqgS/Xqu91fZ9wOQ36PklWk5HlMfCu1OGqkEzrdyKYDZgjtiB+ccQvrjJZZpX6QsGexvynaW82cz8pWvXrSmpVSO6yfqfSeXnOuy01+ASTZzzULNsCiw6+Oa86y1K53QslyHDHp8f66HB5cPoAvVj36AHB45QWAprSsYuqrmBiIADcCPgortz/iFl4qc/RDoMXwpyH9hTpYXUvG5leEeMe+C4xq4YUG3Rlirg6ukvluqNzlBR6rYPbEkc94yRcVi8v54kzSYt8MzegckH7FIQE3zQw2/Qz/jNgMJf6pINHyD7OoqG8IIBoSZ9pUlxca6ol5w/zeQl03lpYMKA6U6hX72MFLsCq8b8S0INO7oTcCi7WntGZ9TxKI2laMwX3jZFNkHCaAL4rzL6M9Z4lK44iI2mncncw7EbGUfdzgPkXY/4Iknd25rRKOvWN1oQi6WCPlrieJdbVDIzZyl+KRO/1LjYA3l9xd/p8r5Vqt+ihe5Y14Pq6TdHQOMR25QwIwgbrHD1dDU2rtW1PijYFwmWi6oczpjGKPCmskQ64TGVKC0GpJ3f6GfFRK2dEUUGL11zoeC2g0qyvVzoOtrDindO8IyoVwH1bcjhui2ozrUq0FDjSce8d+tsc93utPUiYqXyDFnZ/rG27FMaAOF6Df4NPhCE+QWv/J4pfE+mrC5FBMOIpob+N3xPuUA+5j52SuchHrz+giPUTCzEf/v21OdCAzckyz6De+R00Pzz3/9ksJsKFDnzam7zpxj4kJrzJPoAa0U1EVd+rQNjoQkzduS/AziqyZOY072EIVakOpEo8C0g5aS74zkSf686F/mtck5DP7btZPkkdk9FcNJ8BzksZjjyB9NJj4CIUJuzzd6PxNVTtXU/UWbjI1bNDunlmHCX7hfNJl1T6DoTv72okOKb6A7yd7HwCUMROEicWuv780OrJGo43SajMHrRFGXiPwuxWsQmDOhqh2m/xOj8HhsxSQLP7FEeaq092AGXLQgp9oBJWoQN+fbeWHxqKKFMAIgpkAqFfTHVL9VfSpKrCFLWrDU/XZKc2yMmjSaQLya5TGBP9jDYhyVAI6qgA+0R0JhFC0gVCJ2LdJGqspX38d+gwUnm+F7MwLzK0O9OHjeLOmnMawXXV/p46bu05UvXoudDAHAt0NiwxTOAW/nbo10zaCRGntuykKz7VUHlf5A2ckkCwA9I9eK6Urg2WFXs+xr3f8uIwSy+mBRkZKMn54+4/g+c3ipUcIW8IOuHu6b/l/M211tRkfxrSGOw/HW+WR5B9tOXvbBKoNc6aHfRVbrhZ5FQ0IHbBSaWaPVNCtCz78I6M+u3LC7WmcBvEWjguqt+Wfl2FmhGhjU/kc4CidgNn8hriFPhJOzwXfwHDlDFXeiYhJ/Rm+OJtgBzN79XTHX9KCQSMFfl7N1V2mL7UtSJQ9kOzCsHUM/zNcWFAvoJM9iqCuveB+T1TN2pYY/W3H9Ik/nHALE2o0e+59RMYTYEa6lzC1DV0JrQrtoXi/AUNrN3/qmz5TV75rtKcw6Ko3LL8z59K3wumiyJOGJopbjpHuvtJzynVHinbRvGNB8t0CcdMFMI1iClzIrv68iq8/u885TlJKcs/ii/vl505r/SbP0unfntTUSsWWi+JxSmmlxiWE0ovG5LWZBGTkzd46eF0zmAgjXG8/C2jbjMlxrVoWuENuBJRVVzaMjtiTvlDePZI3JKcEF4jCT4ZExAzpsH2/DOGR2AhIl6e11rSvAMEloZlt8qR0ncqlsSayKEeJJMW/tMJOnm/g+f8EJhK/r7YQ+ygy3iHskbwSx8Zjd3XnEkEpuz0oTnQIoKtJnid/QzLo5yR9dkvz+qswJ9GSAFSZ/ix3Glo6IJQLaSnQIz2jpn5hf7xjhVJI4+Saixb0iAmMIkHrEr5jS7+nwk+JCZIbxvtuiaWYm3d3uHjiwAez4JyY8f6lThNAjI/W9Lp/9E/g/Zk2uAKEHPepoAuImar3KOG6ywj9cp97eT4rX61TElNKNZ6wdIsvVFH0O/gYC6kM+W/mEChugXsimy+1cB2un8hE0WmG8Ij1aGvK9rAWSolOs7Fz3fOwAIX3At3gR09WCrCmnjo5yaSkSce5kM4iNJ0H559dR2z8JX8Nk9za+YzE6rLL1YCcUAh/52Aj6b2gI2CnbjVSGuisALWeOIKDzeaQ5bbgIVms5TzwmJ8VNMYVfdvdDFyK5ZqyIpWYGyt0dfNNQAM5+w8Iwf9HwQs49POGoWTbcrvtCwUPmsNn44fJ6Kos3JEN0Wxu1Gkznuv7jdTTFlBLCClacapKAqg7bhyu5NHPMJOZTGfQk22cs3R+BN8TLF5wcMaFjHYzfw9kc8q5N/N0yMiLWuP6j2TibSUIbwgaQ9UJ9ncyrKfK/HWKf9xhe/deM6QsVwCyasObwklgH9Jhtroy4CY0iJVo0yYgtWMv54BzoZ8PARwcClfluOYqbp4qfLhhWCnRRAbCPGCQ5ZkbWkZdqfmjlKxz4AP8E0yONrJACUTBoMCUdCwsBqRvcF5slSKfrNFelYDLQ0YxTq+at5TF2lm+yPURaeSMZhGiEzQtQYBGgfEhcAAQkCZc1uoZSh/XlwfDXDY9BcKLbRGVAhyX9hPqvN1q49NJNkBDh6hrnwmtPzs8JSh15PGbJqqcKtGiBHgOqVK1icyw3BA2171eska9pgncCLkvIkKQhNNHNt3Og+h0MnW5+QLEAhipnCA09p8y+YqahOBcet8fcUfw6tMOPywamcyY/DIdpbdGT4EpvNBx5eF61xQR/Exi3AjRqb/hPtQjGoxPektWTbKTwy7FXpKM2OXoW3Z8huWlqypNdQAZFU5ZCGqwWCDWSmtG4/yAUhT1IlY4MY31ogq6g5MxOJmhzBP5RGED5I21+rzbH5qyosxeHAZSWlFzyes4RZQmjvNNL0ti5L6z0ExFEtKpZfe7D00DYUAlvgkc/SZWkb1TULn66oLxgebACOHF0tsRcw5vQCFGm1ZL7Enwr780qS6NfNiwmGYA3HxArAY/j8hMYu4D3eSfdOY5LJrNXpN3alnMWTyGF3i+E7XDeQ0GgPLzSR3TiiRMoVsB/vBoWt6UVNxmZw7E2Sj48FGw/cRmnrGc5Kb6A01a7GKL45924fMFfDxe0fSR4sZvwTX83Xc5km1muSCdwKUtCF08P5YC7YT7mEJlEmvwWFzFVu5Z56e+/aHKd4DcvnxGH48DtoblrGzvXc1VGuXdRJHgD65FT51aiHa5Pj9PnC7W9Y68URLz/8tesJiSTKIoyg/gs3p9iHfce+aDcJr360eKJURN+Z3cFew6omFC9IG+RpHC5DYK8JxkQAM/86VO/C/Mr5kCFI4yPawHh6shFCkrf8wxrt8BxEaoRwIObLQ6fcB/jflKMTgaz/XIGtRNfK2CZiRF4eBWA2mhKsgu1Vu6t1aUX/11cpJdDaQZ4xMdR6kHxo8ezuKoONeWGHvPhTTVF2rdmnqT+RwfVisJasKxevHd/vc5rkD4NmJO3PBaWIN2N0ggvd54XZJbsp40Aj5rM9O8/Lpz0SsYsgNmuP9YTluoAUaTJnLn36NzaVDmpyunvZpP5436++Qi/LUNf33tTINHQaje+6agvjg1fjaTcOO+JX0jvSB3eJeZGl6fz2wRcg7qQ39JMdD/E3H/aW+sclusMKMTi3AjxaSpM3GhiuMXHvM/bvYiorL99iRyIpfSC/TRcL1pvT0TOOnV+gsvQdENbAnJnI5QiTPjnZy3WY3GbVTaJvtZwzjlkHY1t3pxAELkNo1CiOtdBQg3z1LF7Wd4cIAx0W85Gbo2IEGs2Oqyl+TjQAS6bQuj4e4FoA1ml02hoxo4fsctsVwqiHG7h6GaXK35dAv3v5e+q+8VFTfChbogMrj/KSsjEVtR+C7irAsjt4TYRVUy/1t7avJfvnuYwSueqSLCyvg8hvH2t2FZhrMNFNLxd03qJu+Y4arx6CsHisP1V1BFEmgL/E3uOc0nKSlCMQxopGG1QD8Il2cRNQ3o6uouIrukorAbBoDnsNvq8Cl82ZxY5Jvr5fCZ6qqJd8ZtjCnrFiJeQiRcI7IAO3rZzv3M1gV8b/SngHYgvEcHxZvouKn6li19JWmBXiaC3mF4FSfkjpHhk8KAJHs6QPsv37PIPxpevAg4BoRxFimk0Kd0n1Spm9pcDVvytDQTUGm/MW+tA6ewkPfkAs7Mk6bPahHtQRuytgCxqR/XxqfRgG5e4udDZ59KwpSUE8kMLXcifPZp0wc6bDGpSrSUouhfP27fCdrlncJ/lCKDyKZL8WNyTLCjiHFum6SR99+0U6gPLsvNLbZu6YaoekDdjjet3l0FVIX8lUvl13lzt8WRFKTpQIVnjCJ5cvHkDsjMyEM19JYOs7EFxoTOipLtcmebda+s3lKVeEPKocnNJfZXoiyTeeF3Dlx27nHyrGW13vHFKpupAiqHHRUhdwq7Pi33IfYRI0m+3pSAQM/q3azaM1e33/6sR3XMb/TGNgbZqkLVDz8r6XTAmKNpOXNU0azLLl5sI/q8Bea8yZGBpZ+/wg/mEqU+o4UM8yTjEQ0a8BLqhMRY4sEpUleuRGtYTyY69Ujahm3x80FREOYL/wk6JhkmFvh+OTNtsbp01zjpqIecQWTiNsE720o1q9OmGITZGjHqEJVfjxGsNqFxX3TvMDg2d8yfZKJzI8LZ4If9FVHf0ehM5YYjnxKjq975QJcwf+V2SdNHe2y+q2joX7hNoCoMrcn6s58vLpE06JnqR20zahcEepATX+guizh9hq7A9o8kiK/jtKy2gvF3nCbWgKwnscpubG/XBA/QMmLHr+AUGEPr9vOx3kbB6mTq/Qt+tjnhOkP76YFDsf9IaGECedY7BHDTJYjNT2gxItzzuYg3aDj+oKRz7imDMLu7DEb/Mz+FQHN4F7Js4yj3kmblANZBZNeLI7qVxNWR4mvhc57/tSWuRWHCxTOhP2N5Bjtm4tZ6XvgIpDhNaOcvF/OQISKXePeyXCKLWK8vlVRdo8b7xqhUl7hHcaT5hVlaN4JwMUo0eg1QJ0JKP/460tBEviMzYj6njhK4eqyivD7vgQEoIL3A+FgIP7RiV+OB6srMJ3IMZyIHb20YOe1y/2lj7Mt6BzmTzNhB/Vv9a1mp4a3n/xj/6Y5DDFRoe2hvn9tWcgLtpgMk5EzLYZkMtzySrPdQ5faQ+nwcek/Cuc9hkoHZ9mvM5iYF+QUguK8yWOZMXVXdJe790ENquJTDNvogW1hnGvMVri1b6JAjYu5jZCDF6ItnW2KPVwnbQW0WjpJUwK+MOEF98HZhfO0kfeTzjGsVxHSjSAlV8tWLlOaDMD8FFrleF9tpLqlvbiZCeZ+8paYmbHv3ufpf9irYR4RwrHy+UV2bVu7lF/55AcflAxi0fLjPH/lRd6TPRNCGZKLgwQvyuZ2JqjW5Jiu8B1vsucdRYd3BVxueUaVU2rGvOciaWuZ1ZiwXQz1n5wUPGsIGcMMsKppae85VvNCWM+NgzeCd+Iq+1V80szEh911/HAXUce+P6gYO9lQlZlLQ7Rkk6r3mB0nX+RgbB7zrjFyduWhLHM5egeo2EGS6NH1aedwsN5W2i4VMb4+IYBRlwXlF0MDGkryiL+M3FMhYn8hR/+NolYYDpJIYDdHIymejL0C5UfMQWrn1YlAeM1iEiYSnQdRmja7Sm+6wUQukYCuoUJZPE96N80K6+/Sfw4eIty9koc2nOM/+9ZuSr+H2f7TbXSLLkiVW4FLQDshJQjL/rUEcgEkjHtDPtNRjgCOMH8SF/RGDCreny2FEAvA4nScwEDUT0IuYzhvLW4XoBYgMrGB3H55kZP+XhC+TunkQE0acQDmJjDFfttv+tQu0aSmwyqv4lWKf6A2aXewLwY0uGwSCtOezvHCDfzauDS4/zeIjcqedJlTq4soRdB5z8Xzko+18M2o+1vjLPSORKJ3niq3Oz6C1yRyi42YEipzOmQytFRXeUTT150X4PY2xYYSl9I3MBxymXai401jKLtKS4Fug3ly1fUaUUW/PRWN/9EDJnpWk44xCVzqKKILJcPbd1rv2PPlJbWJSSzUu/TkVP9yZv0HK3VMlnSzjHdDDgi0lbbRda3ky72K5DmJH68jYPEWRPTQmVkx8cL1VvTq19EkKqPwiUxuduckzkgzXRuUGfb9+wkV7XdezPaNC6fM+RgzLghDQmMOPQfa94r8yqfrDMK7/vTUkAxbF0pGG980bqpMFEGsu4zi/YpKV2LzROFx6wN1XAa7PC3mzDF/4ZBpaxqfDmAXRQx+g11YWttwLyN5N4H//wAKA2sDAnJfJstmfrAus9vuY+zeHaeqT9Lyuo1iuwZugiY+96qkF9otTDuZSV/wD39CEorQ+OPElNIVbZmDf/qvEq8AyarZ9Am0ogAgKRlBpi0u1u5+dbwU/d7n70zn/TDQo5mkdSdmcn1ifZYPhPR7e78a2n28DmC5c01xQVsjM0VeUanNjEJym1eRyMnXe9wRBVVpoZCnVkUDvl8t/QZooDzuEKZktUV2NtvEF2ERe77HpOOU9UWug/yqd3/otHihOhDvdrjxJVJ+kkGjv22wnet5Mu6lMdaP8heVfCJvKepyfrvC8Z63PwMGYRDVXVgHqLI1u96sNqB1w5ri/Sj6x+m9HKj2goAX0uc3UBAGqxam4BEj22bFmHpZZ6kPVSByjae+DcdGcyohIYNFQeSV9IfV/F0f9LO69COnKdHxNIXqWU3elLaHbJPMUsKm13bkYDEJPADQOmy/vPvpopL360fMm2o8c4umAp2aVlt1KzKuVtRsPNjHKbv95sj+B+ZLLbcpP67JajqTGp3KEeMKcacC6oRFgdM1GzQO5Cn14FgNjsZlyfDD1e6VFqVCjGsThgfNIiGbUE1t3UtJcyyHrVyvH2WPHCtGxGDVhLVwaK9pmXzObXxgRJQQyI5AphpDbhGNGqlq8dlny5xvCnTMTnbolA+TjhpXoiFuAI0zTho/uRqdrDeQK0yzNl4dnBYGHHeC7NW+2RvlK0zz3U6aDLMD1PC/HTCyD5VCI6lkVkJ7iGTZ65uUXVumi0JH+wkFfm5yNGdW5XE/UQUCeVxAyFac2OCf9q66Zht2NpsdI6On7rMx1zmETTJN2H8oDScADqU7nEas9GrTR04wZxeBnRjIAFpNF7sFadbTltigMmJKbJQEqmTmKMZk5c6+WKK9AV1s9AGLdBEzgaqiriCFYhcr8iK1KmNnE2BpRgxwMujZ0BtXsh02z1zFhSCaxEDBD1j0ObkfvBhzNLewJjjjxlvSfLw+FDqfbuAPnxWBH9tlaXZINmJQyOsUMltFN0LI9EEtrQu4Ip5vz0WkvC5VMvBvGHUIQgGZ1LDyr21RTjF0dGaA4K2k3Hy/IFPEFQ9BkmSMGVL7cstgvbBKIf2W/5wKnZx3/PVEx3Lzh3cqUwzQXDrQ4U9abInHFCl1cTyfF6ghndWuz/1QUU7EqSm6IoeTbTIBx6kghOFYI8ivOpgVIh0wgA4JUyXZ4+nTWXFmsUAvqQ6jJQkS9HGgb76Xw+aZzCbDCDLNzFVqBbrHZVZ+c2mPd4NIxcWC55lxW06Nh9pK857Jhir5q7CEF+drEVUqT/xIa4TmMPBcle8ePD5Q8TW3XO7bmyHQoqLORer2JTXPTesTK9+R4arUkKli4Lh+EC7sJx+IYYJeGYU2NlwL9JHRfBZKeiqeDf8HRqdzZE1idNUcd9Aqu8e6DSicvBRK2oN93LiYIDh0ZJVZ+yHFuF8ulo2q0mUIHgqpqRk32pHvRV9PQH9czFNo2mRavkLF8oTmyD0Y844CaCJJmB3wnVazqNyVJMLjRDfLldCknrKeoTG/K7MigscOvK4NV85wHa3788rAbXtpW7t21pSO6Og8asAdAak9PDfHggtcy2qu+irfFv0cgsF3i3LnV2rAi9neHlgsgT0MKIUNeCnQIrqG2ecSMLO540I1lObdjkyfZPwqJ1kpzz9WCSRzVX9JL+etLjOXn/z8qgIYRiXMOJ89pG617VivpsNh3oKCYExkgQNFBJLMT0UFlPZ4Lk62pDtN3z1tcMKQiDAOwgKRTK6+glDziTk23lVkcoPkEooHMdAlDFw2wQ+aqxARaPESDOGwFmXtlJKkOsrZBd8iTvFhytWs7WIH0GA4LjuFZBis0tGLaEHq020LxNgPe2nJb/BOyl/uFmwRys3ZwMTnzKG/7hxrwHdf9jHHO9F1l0Nyu7T1/w4LaAdATfBZWCZzyfWx4cabExGiJkvaQftdjokJJRJvEMxgrJxcKN09iDZ3gpzis9+oH8VxTNkfiaLfYfNcApZTXpXOHQxxiINnAd9x2LLN5FIjN7MqVJFuWOZEgDEZIOrxH+L96NUvMLVKH9qb7yV5oiHNQd6j6MD9nHCKZCYDCZ4Azi73rMOsGmT72me2a7UYTYIqpx02VPu2FPH8fh7fT3Xzf2z1YfxrfwV7/Wr4L54nAOPnQXQcpQ8FPoicYkXABzhHfBnm/tleUiaEu+yClzEIi+S7S5/nNXkTcqpWK+uRx+PkF4P0HLEZ6z6q2hN1xjgDeXrW6aJ1uQOz3DcXfwbBtD5pZ23ou6Ux5PB34XSytyjnan36UT+cEG4khNwDKty8W1oPAMpM9ZpLkstHKG044gyybdo27z2PjOyGeqtMLLC6WrSO6aZo0hnuPYr5ejextNFHA2GxubxbSEIho5sDojo/rb0vap3de+3H0eK7mDMMHsKe9bP9Sn1Eiu4R7uQmSI+Y7NfVq1Ywi8ziBtN2VTUoszmEil5TbjFzOXK7mY6u2WmCz2hlDT4E0/D22hIimQJ5uLdDK8alXAkvcgtGcUGUtfK4E8I+oxs0B+z+Lxhr8JU/CvvDHMZh2mONlFrQLppUTNujOygDLO3Z0W6W37I/difMylA4c4OtM/SffpMyZrl5rcslp4UHVgSJnkeycg6/3sBP5gcUEBofuAci1FqBDAbh5U7YVlTPB/R9khXsclQ84iFWmTStI6PdrXyD7G3dY6g1StN3LN+JQYY7R1G5Bblrmy+gM08/HZhXMK6Rlw0C+FJj1oeKkidpmCZk3PRFRsEC+CXmSN0mbQnnjECsr3NHW3Z+CbZJSNSe1o7FVJIreMHCsK0CaK0ELPnFfxaw8sy3TgSR/jdXvWsSx38XFT7bzX8tgXMwpyVrW7wkXpCBZNo0YyXlzb1Ovn45X2znlJQT2zkQ47uazinoGV9Qi7o1K8QZsmj/otg+5SLbXkJND4yqNlwYJexJ2xdDl
Variant 4
DifficultyLevel
509
Question
In the picture below:
- ∠PQR = 19°
- ∠RQS = 55°
What is the size of ∠PQS?
Worked Solution
|
|
∠PQS |
= ∠PQR + ∠RQS |
|
= 19 + 55 |
|
= 74° |
Question Type
Multiple Choice (One Answer)
Variables
Variable name | Variable value |
angle1 | |
size1 | |
angle2 | |
size2 | |
image | sm_img https://teacher.smartermaths.com.au/wp-content/uploads/2020/07/Q41var5.svg 160 indent3 vpad |
angle3 | |
correctAnswer | |
Answers